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Abstract
Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has
put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge
challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater,
and these could be recovered with efficient technologies. Protein recovery fromwaste streams can provide an alternative resource
that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been
proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the appli-
cability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be
efficient for the effective concentration of proteins fromwaste sources. The main emphasis of the present short communication is
to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The
presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the
combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction
of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating
membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those
of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable
proteins from the wastewater.
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nm Nanometre
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PPB Purple phototrophic bacteria
PSB Photosynthetic bacteria
PO4-P Phosphate
PFJ Potato fresh juice protein
PPW Potato processing wastewater
RO Reverse osmosis
RDM Rotating disk membrane
SBA Santa Barbara Amorphous
SCOD Soluble chemical oxygen demand
SCP Single-cell protein
SWH Subcritical water hydrolysis
TKN Total Kjeldahl nitrogen
TN Total nitrogen
TP Total phosphorus
TMP Transmembrane pressure
TS Total solids
UF Ultrafiltration
VMD Vacuum membrane distillation
μm Micrometre

Introduction

The most important driving force for recovering nutrients
from wastewater during the treatment is the increasingly lim-
ited accessibility of resources. Population growth, fertilizer
use, agricultural restrictions, soil erosion, and extremeweather
events have had drastic effects, including malnutrition
resulting from protein shortage. Globally, protein for animal
feed is not sufficiently available; in order to meet this demand,
many countries rely on the import of feed protein. At present,
soybean protein (imported from other countries) serves as the
main share of protein nourishment in animal feeding in
Europe (Yin et al. 2011). A shortage of protein can be over-
come through the optimisation of local protein resources
based on the elevation of biomass concentration, especially
from green plants. Inherent nutrient loss usually occurs in
the upscaling of plant proteins to animal proteins, leading to
the revival of the traditional idea of upgrading the manufactur-
ing of microbial protein. The extraction of proteins from
wastewater along with other resources could be an attractive
low-cost alternative (Van Der Hoek et al. 2016). The waste-
waters of several industries, including leather processing, con-
tain significant concentrations of important proteins such as
albumins and globulins. Furthermore, the meat processing
industry together with sheep, cattle and poultry processing
factories are also known to release high amounts of proteins
into wastewater (Jayathilakan et al. 2012). The recovery and
removal of proteins from wastewater has advantages, as these
proteins are in demand for the manufacture of medicines and
food additives. Such a procedure would also purify the waste-
water for later use. The main issue is not the availability of
resources and technology, but rather the deficiency in properly

devising a structural plan and methodology to recognize the
most balanced solution in a certain geographical framework
(Guest et al. 2009). Various concepts have been implemented
for the recovery of proteins from a waste stream, such as
single-cell protein (SCP), purple phototrophic bacteria (PPB)
(Meng et al. 2018) and microalgae culture (Hülsen et al.
2018). Recent research has been focused on finding the po-
tential sources for protein recovery from sludge, grass and the
wastewater of various industries. Membrane technology and
adsorption have been studied for protein recovery fromwaste-
water (Chen et al. 2007; Dabestani et al. 2017), but there is still
a need to develop an efficient way to recover proteins from the
waste stream. An overview of potential sources of proteins
and their recovery approaches are discussed in the present
study, which also gives a summary of the advances in
upgrading protein waste to produce valuable materials that
are prominent on technological platforms.

Protein recovery by different approaches

Protein recovery concept as single-cell protein (SCP)

The concept of the production of SCP is well-known, and it is
a feasible way of rapidly reducing the environmental foot-
print. As large amounts of protein and a wide range of sub-
strates can be converted into it (Matassa et al. 2015), SCP is
therefore considered the most efficient way of recovering ni-
trogen from waste sources using heterotrophic bacteria and
algae. SCP also has the potential to enable the bio-based cir-
cular economy.With this method, the invested nitrogen can be
restored from the environment and accumulated in the form of
microbial protein from a waste medium (Shi et al. 2007;
Hülsen et al. 2014). SCP is hindered by its production cost,
which needs to decrease in order to enable practical imple-
mentation and compete with agricultural alternatives. The
main cost input in SCP production is the carbon source, but
this can be minimized by using industrial waste streams such
as flue gas. Due to the production of SCP, the organic contents
present in the wastewater are recycled through assimilative
segregation despite being lost or consumed as carbon dioxide
and nitrogen gas into the air (Batstone et al. 2015).

Many researchers have tried to recover proteins using dif-
ferent waste media (water from several sources). The potential
of purple phototrophic bacteria (PPB) and microalgae to treat
diverse waste streams from agricultural and industrial sources
was investigated by (Hülsen et al. 2018). PPB and microalgae
are two important intermediates in the production of SCP.
Microalgae are responsible for manufacturing protein-rich
feed subs t i t u t e s fo r bo th humans and an ima l s
(Sangameshwar Barnes et al. 2013). In the case of PPB, the
utilization of infrared light has been more efficient in the pro-
duction of high yields (Hülsen et al. 2014). Several
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researchers have focused on the removal of COD with PPB
from synthetic, sterilized, and diluted wastewaters, but little is
known about real wastewaters (Nagadomi et al. 2000). It can
be concluded that until now there has been little focus on the
removal of COD, nitrogen and phosphorus from industrial
waste streams along with SCP recovery. In a recent study,
diverse varieties of both PPB and algae were used to treat
actual industrial and agricultural wastewaters. The important
comparisons were taken into considerations that include the
composite concurrent non-destructive simultaneous assimila-
tion of COD along with nitrogen and phosphorus. The
achieved yield of SCP was then estimated. The obtained dis-
coveries can be applied to understand the possible
manufacturing of single-cell proteins in our prime trades, with
a focus on the newly evolving association between nutrients,
energy, water and the environment (Hülsen et al. 2018).

The treatment efficiency of different industrial wastewaters
with PPB and microalgae was determined by measuring pa-
rameters such as soluble COD, the concentration of ammoni-
um and phosphate, elimination of nitrogen and total chemical
oxygen demand to evaluate the removal abilities. For exam-
ple, in the case of poultry wastewater treatment, PPB actively
removed COD (in soluble form) along with ammonium and
phosphate in a ratio of 100: 11: 1.6, respectively. The perfor-
mance of PPB for the treatment of pork flesh and dairy waste-
waters was reasonable but overcoming losses of organic mat-
ter is a question that still needs to be taken into consideration.
However, the wastewater from the sugar industry had a higher
COD value. Treating this bymicroalgae and PPB proved to be
noxious as negligible removal of soluble amounts of COD,
NH4-N or PO4-P was observed. Nevertheless, the author con-
cluded that the microalgae tests achieved better removal effi-
ciency of SCOD, NH4-N and PO4-P overall than PPB. The
most satisfactory results were obtained with poultry wastewa-
ter treatment with 91 ± 18% COD removal, along with 91 ±
29% and 73 ± 27% of nitrogen and phosphorus removal,
respectively (Khosravi-Darani et al. 2013).

The researcher also tried to characterize the biomass
formed in the treatment of different waste streams. It was
estimated that PPB biomass had an elevated protein content
(based on solid Total Kjeldahl Nitrogen (TKN)) (Eding et al.
2006). The concentration of protein was estimated with the
bicinchoninic acid assay (Ras et al. 2008). The crude protein
content obtained in the present study corresponds well with
other reported inquiries (Ponsano et al. 2004). The large har-
vest protein shows the integration of organics and nitrogen
without any dissimilation (Kim et al. 2005). It was concluded
that PPB and microalgae can serve as a responsible mediator
for upgrading and recycling the nutrients from wastewater
(Hülsen et al. 2018). A study related to the recovery of re-
sources fromwastewater was published in order to understand
the production capabilities of hydrogen-oxidizing bacteria
(HOBs) (Matassa et al. 2015). It covers the recovery of

nutrients from wastewaters and the use of the recovered prod-
ucts as a starting material for the synthesis of valued bioma-
terials. It also elaborates on the competence of hydrogen-
oxidizing bacteria to elevate the raw nitrogen and minerals
into a significant microbial product. Mutually isolated and
mixed diverse microbial cultures can be utilized for the tai-
lored synthesis of restored biological compounds into com-
plex biomolecules. It is already known that HOBs are believed
to be the utmost influential contributors to the overview of
biorefineries. Hydrogen-oxidizing or Knallgas bacteria (so
called as they utilize gaseous hydrogen and oxygen) are auto-
trophic bacteria. This prominent feature gives these microor-
ganisms numerous dietary competencies over others, includ-
ing the ability to survive in a solely inorganic environment
along with reducing nitrogen into new cells and more conver-
sion of carbon dioxide (Repaske andMayer 1976). Innovative
tactics using these bacteria may have the potential to improve
the nutrients restored from anaerobic digestion and waters
rejected in water treatment plants during the carbon dioxide
fixation process and enhance conversion activity towards
biomethane. Although a sustainable and effective alternative
to photosynthetic biomass construction, HOBs are viewed as a
possible supplier of the microbial product in the form of SCP.
The feasibility of HOBs as SCP manufacturers was later ex-
plored in a report on the properties of the proteins created by
the microbes (Volova and Barashkov 2010). The biological
value of proteins made by three strains of HOBs was evaluat-
ed. These strains are as follows: Alcaligenes eutrophus Z1,
Ralstonia eutropha B5786, and the carbon monoxide resistant
strain carboxydobacterium Seliberia carboxydohydrogena
Z1062. The work indicated a massive amount of protein syn-
thesized by the above-mentioned species, along with the se-
quences of essential amino acids. Certainly, the amino acids
are more likely those of yeast, but, at about 70%, the ultimate
concentration of protein, also known as dry weight in the case
of hydrogen-oxidizing bacteria, is much higher than that of
other species (50% in the case of yeast) (Anupama 2000).

Protein recovery by the advance one-step photosyn-
thetic bacteria (PSB) method

Researchers established a method known as the one-step pho-
tosynthetic bacteria (PSB) process to efficiently remove pol-
lutants and recover nutrients from high-COD, non-toxic
wastewaters (Meng et al. 2018). PSB is well-known as a col-
lection of bacteria that can harvest light energy to pursue both
the autotrophic and heterotrophic processes (Cao et al. 2020).
Being state-of-the-art, PSB can efficiently treat wastewater
such as that from the fish industry (Azad et al. 2004), waste-
water containing starch (Getha et al. 1998; Prachanurak et al.
2014), dairy industry wastewater (Kaewsuk et al. 2010), rub-
ber manufacturing industry wastewater, livestock waste
streams (Ponsano et al. 2008), and domestic waste streams
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(Nagadomi et al. 2000; Hülsen et al. 2018). The possible elim-
ination of COD (up to 85–93%) and ammonia nitrogen re-
moval (99%) is likely to be obtained (Saejung and
Thammaratana 2016; Yang et al. 2017). PSB biomass is a
sound source of single-cell protein that can act as a feed for
sealife. This high-grade feed effectively promotes body
growth, along with an improvement in disease tolerance, with
its advanced water value. PSB cells also contain carotenoids
and coenzyme Q10 (CoQ10) (Hao et al. 2017). Unlike algae
technology, PSB can handle wastewater with low nitrogen
and phosphorous, but they cannot cope with wastewater with
a high COD value. PSB technology is better in treating waste-
water with a high COD content, such as the wastewater ob-
tained from starch processing companies (potato, corn and
wheat), which has a COD value of approx. 10,000 mg/L.
However, PSB technology has the potential to treat this water
along with a biomass harvest of up to 0.51 mg of biomass per
milligramme of biological oxygen demand removal
(Prachanurak et al. 2014). Different strains of PSB, additives,
and different valuable substances were used to examine bio-
mass growth. There was an attempt to use synthetic wastewa-
ter that could mimic characteristics such as COD, total nitro-
gen, and phosphorus concentration in brewery wastewater.
The estimated measured qualities of wastewater are as fol-
lows: COD (2200-2600), total nitrogen (20–22), and total
phosphorus (5–6 mg/L) (Meng et al. 2018). The characteris-
tics of wastewater, such as the removal efficiency of the COD,
total nitrogen and phosphorus (TP) and production of biomass
as the value of observance with time duration using the PSB
strain, are shown in Table 1 (Chen et al. 2020).

As the preliminary COD concentration of the brewery
wastewater was approx. 2200 mg/L, it can be observed from
Table 1 that PSB could successfully reduce the chemical ox-
ygen demand of a given waste stream by up to 800 mg/L after
72 h along with a significant reduction in the concentration of
nitrogen, but it is less effective for the removal of phosphorus.
The biomass increased over time and has its applications, such
as active use as a fertilizer. This method is understood to be
effective for concurrent nutrient recovery and waste treatment.
However, as the final COD was still very high at 800 mg/L, it
was outside the stated disposal range of 80 mg/L. There is,
therefore, a need for more intense research to expand COD
removal with treatment by the PSB strain. The researcher tried
yeast extract as a distinctive active organic nutrient substitute,

along with other additives such as magnesium and iron
(Zhang et al. 2015a; Zhi et al. 2020).

The result in Table 2 shows that all three additives effec-
tively improve the removal efficiency of COD, but the perfor-
mance of yeast extract is more pronounced. As far as the
composition of the yeast extract is concerned, it contains ni-
trogen (amino acids) and some minerals (copper and iron).
The presence of these compounds may influence COD reduc-
tion. The enhanced COD removal of up to 96.7% was obtain-
ed when the concentration of yeast extract was increased to
400 mg/L (Table 3).

As stated earlier, the main benefit of using PSB for waste-
water handling is that it can produce an interesting amount of
PSB biomass, which is a rich source of protein along with
other biopolymers. With these abilities, researchers studied
the composition of produced biomass growth and its valuable
components.

The main breakthrough in this field is that PSB worked in
the treatment of the brewery waste stream. It was also able to
produce highly valued PSB cells with the dischargeable COD
value of the final stream, which is a value that conforms to the
national release value so that there is no need for any post-
treatment. The Rhodopseudomonas strain is the most efficient
one. The obtained PSB cells were a rich source of the desired
protein along with other biopolymers such as polysaccharides,
carotenoids and coenzymeQ10. The concentration of the PSB
cell protein increased to approx. 420.9 mg/g after the reaction
(Qi et al. 2017).

Protein recovery from plant biomass

Dotsenko and Lange investigated the recovery of protein from
two different sources: white clover and ryegrass screw pulps.
They applied the extraction technique in the presence of aque-
ous media, also with enzymes such as carbohydrases and pro-
teases to promote extraction behaviour (Dotsenko and Lange
2017). To date, protein extraction from biomass pulp has been
unexplored, and more focus has been centred on protein re-
covery from leaves, primarily by mechanical disintegration.
There is a need to upgrade the process of protein recovery
from leaves and the pulp. The pioneer of the extraction of
proteins from leaves is Pirie, who recommended the fragmen-
tation of fresh green biomass mechanically, leading to

Table 1 Characteristics of
wastewater (chemical oxygen
demand, total nitrogen, total
phosphorus) and production of
biomass as the value of
observance with time duration
using the PSB strain (Meng et al.
2018; Chen et al. 2020)

Time
(h)

Chemical oxygen demand
(mg/L)

Total nitrogen
(mg/L)

Total phosphorus
(mg/L)

Total Biomass
(OD660)

0 ~2200 ~17 ~5 ~0.3

24 ~1400 ~3.8 ~4.7 ~0.5

48 ~1000 ~3 ~4.3 ~0.62

72 800 ~2.5 ~4.1 ~0.78
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separation of the protein from the obtained juice of biomass
(Fiorentini and Galoppini 1983).

Several physical and chemical techniques for the separa-
tion and purification of protein from the leaves of plants were
proposed, but the most relevant methods used for the separa-
tion of protein from cellulose-containing biomass are via al-
kali (Zhang et al. 2014a), aqueous ammonia extraction, and
mechanical disintegration of biomass. The main hypothesis of
the work done by (Dotsenko and Lange 2017) is that, after
screw-pressing the green leaves, a significant proportion of the
protein content is left over in the pulp portion, and that protein
can be used to feed animals in different ways. The pulp part of
green leaves can be used to feed cows, and with the hydrolysis
process it can be used as additives in the preparation of food
for other animals such as pigs, chickens and fish. The results
obtained from their work showed that, by applying the extrac-
tion at pH 8.0 on the pulp portion of the leaves, roughly 40%
of the total pulp protein was improved and 80% of the protein
was restored by proteases (Savinase 16.0 L, Novozymes), de-
pending on the dose of this enzyme. The action of enzyme
carbohydrases (Cellic CTec2 and Cellic HTec2, Novozymes)
on pulp hydrolysis did not yield any significant production of
protein (Kinsella 1988).

Protein recovery by adsorption

To date, researchers have been focusing on the development
of efficient adsorbents for the immobilization of protein, as
there is a crucial need for the fruitful implementation of its
applications in different areas. The selection of an appropriate
adsorbent for the adsorption of protein depends on several
factors, including surface area and large pore sizes with a

volume ratio that can be placed on proteins and enzymes with
ease (Han et al. 2007; He and Shi 2011; Hartmann and
Kostrov 2013; Mohammad 2013; Gascón et al. 2014;
Masuda et al. 2014; Deka et al. 2015; Tu et al. 2016).
Numerous categories of mesoporous silica substances includ-
ing MCM-41 (Salis et al. 2009), SBA-15 (Washmon-Kriel
et al. 2000), MCF and FMS (Kim et al. 2005) have been
effectively used for the immobilization of different sub-
stances, e.g. proteins and enzymes (enzymes are mostly pro-
tein in nature) as supports or base material.

The biggest drawback in the proper implementation of
these porous materials is the restriction in the distribution
and movements of adsorbed substances due to the small pore
sizes and the inner two-dimensional structural design of these
pores. Because of the two-dimensional architecture of the pore
size, the researcher proposed new mesoporous silica materials
as an adsorbent for proteins. These materials are responsible
for exclusive pore availability for adsorbates (proteins and
enzymes) due to their interrelated pore assemblies, so they
efficiently improve adsorption ability. Still, the practical ap-
plication of these materials in the immobilization of biomole-
cules brings complications, as there is a hindrance linked to
the mesoporous silica due to its electronically neutral silica
skeleton. However, the efficiency of silica-based adsorbents
can be enhanced by the surface modification of this mesopo-
rous silica by setting organic functional groups such as the
carboxylic (-COOH), phenyl, vinyl, and amine groups for
the formation of active sites for the adsorbates (protein/en-
zymes) (Ramasamy et al. 2019). The introduction of these
organic groups on the plane of mesoporous material can effi-
ciently minimize the leaching effect of the adsorbed enzymes
(Chong et al. 2004; Maria Chong and Zhao 2004; Wang et al.
2006; Sae-ung and Boonamnuayvitaya 2008; Johari et al.
2014).

A recent study led to the manufacture of silica-based meso-
porous Santa Barbara Amorphous (SBA-1) type 1 nanoparti-
cles, which possess a distinctive pattern and surface character-
istics. Their practice as grounds for the immobilization of
papain is described. In this study, different pore sizes of these
mesoporous silica particles were synthesized using the car-
boxylic functional group by means of co-condensation (Lin
et al. 2017). Carboxyethylsilanetriol sodium salt (CES) was
added for the integration of carboxyl functional groups as a
functional moiety.

Table 2 COD removal efficiency with three different additives (yeast
extract, magnesium and iron) with PSB cells with time duration in
wastewater treatment (Sasaki et al. 2012; Wen et al. 2016)

Time Yeast extract
COD (mg/L)

Magnesium
COD (mg/L)

Iron
COD (mg/L)

0 ~2300 ~2200 ~2200

24 ~1750 ~1550 ~1650

48 ~950 ~1070 ~1000

72 ~500 ~800 ~700

Table 3 The outcome of different
yeast concentrations on removal
effectiveness of chemical oxygen
demand with time duration
(Dikshit and Moholkar 2016;
Meng et al. 2018)

Time

(h)

Yeast concentration

50 mg/L

Yeast concentration

100 mg/L

Yeast concentration

250 mg/L

Yeast concentration

400 mg/L

0 ~2250 ~2270 ~2300 ~2450

24 ~1750 ~1750 ~1470 ~1510

48 1100 ~930 ~580 ~600

72 ~700 ~500 ~150 ~80
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The existence of carboxylic functional groups in the meso-
porous silica SBA-1 template was validated by an FTIR anal-
ysis and C13 solid-state NMR spectroscopy (Saikia et al.
2019a). The prepared mesoporous silica nanoparticles were
employed as support for the immobilization experiments of
papain protein. The obtained results clearly show that large-
pore nanoparticles with carboxylic functionality are optimal
for the immobilization of the desired protein at the higher end.
The major factor behind this immobilization is probably the
development of electrostatic interaction between the desired
protein and function groups introduced at the surface of the
mesoporous nanoparticles. It was reported that modified ad-
sorbent can remove selected proteins from the mixture of pro-
tein according to their isoelectric points (Saikia et al. 2019a).

There is great attention towards the extraction, separation,
and purification of proteins from composite biological mix-
tures. In this regard, several methodologies, such as affinity
chromatography, precipitation, extraction, and solid-phase ex-
traction, have been developed to segregate the chosen proteins
from biological systems (McDonald et al. 2009).

As mentioned in the above example, silica-based support
(Iftekhar et al. 2017) with the carboxylic functional group
provides proof of the separation of protein from the mixture.
It was found that amino acid can also act as an appropriate and
efficient ligand in building the networking among proteins or
peptides because of the existence of additional functional
groups including amine, carboxyl, and tryptophan (Qiao
et al. 2018). The researcher tried to incorporate the tryptophan
into the silica nanoparticles used as support using cross-
linking (Beena et al. 1994). Tryptophan is a hydrophobic ami-
no acid because it consists of an aromatic ring in its side chain,
which provides supplementary motive power, primarily pi- pi
interactions that help in protein adsorption. They are used to
concentrate on Ova proteins that are present in albumin in
chickens. The adsorption behaviour of this protein onto the
complex silica nanoparticles with tryptophan as a functional
group was observed at different pHs ranging from 3 to 8. The
results obtained showed that the adsorption of the desired
protein increases by up to 1240.3 mg/g compared to its ad-
sorption on unmodified silica nanoparticles, which is
727.6 mg/g. The adsorption operation of the complex
material is accredited to the interaction of both pi-pi
and hydrogen bonding between the desired protein moi-
ety and adsorbent (Qiao et al. 2018). Table 4 is about
the studies presented in the state of the art about the
types of adsorbents used for the recovery of specific
proteins at given parameters.

Other methods for recovery of protein from different
waste sources

Different studies have been done in the past for the
extraction of valuable protein products from different

wastes (Table 5). For example, the recycling of meat
waste has a significant impact on our environment.
The study proposed by (Ghosh et al. 2019) includes
the use of electric pulses of different voltages and time
duration for the chemical extraction of protein present
in the wasted chicken breast muscles. The extracted
protein from the waste breast muscle exhibits the anti-
oxidant properties as suggested by the Silico analysis
(Ghosh et al. 2019). Other studies indicate the recovery
of several types of peptides and proteins from the food
waste using the subcritical water hydrolysis (SWH)
method (Marcet et al. 2016). For example, the applica-
tion of the sub-critical hydrolysis process using specific
parameters, such as type of reactors, optimum tempera-
ture, and reaction time waste obtained from fish entrails,
recovered 137 mg/g of dry fish (Kang et al. 2001). In
other studies, the application of SWH on scallop viscera
waste leads to the production of important high molec-
ular compounds as well as amino acids (Tavakoli and
Yoshida 2006). In the aqueous phase, the best yield of
the simplest amino acid comes from glycine (Kaspar
and Reichert 2013). The recovery of 91% protein named
Astaxanthin found in shrimp shell waste by enzymatic
conversion was performed by (Deng et al. 2020) along
with the recovery of other by-products such as chitin.
The recovery of collagen protein powder separated from
chromium leather scrap waste was studied, revealed to
be containing different amino acids and displaying a
low concentration of mineral salt that can be used as
fertilizer (Dang et al. 2019). A huge amount of waste is
produced by the dairy industry, such as whey, the main
by-product that is produced during the production of
cheese from milk, which is also an abundant source of
valuable proteins (Gopinatha Kurup et al. 2019; Tham
et al. 2019). The combination process of ultrafiltration
and nanofiltration membranes has been used to obtain
up to 90% of proteins from whey waste along with
lactose under defined parameters (Das et al. 2016).

Protein recovery by membrane technology

Membrane technology has been utilized and commer-
cialized to regain valuable substances including proteins
from different wastewaters such as potato processing
wastewater (PPW) (Dabestani et al. 2017), poultry pro-
cessing wastewater (Lo et al. 1997), alfalfa wastewater.
and dairy waste streams. Different membrane processes
including microfiltration (MF), ultrafiltration (UF), and
reverse osmosis (RO) have been extensively applied in
dairy-producing companies to isolate different compo-
nents such as casein and proteins from their waste
streams (Harmen J.Zwijnenberg et al. 2002).
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Protein recovery from wastewater of the potato
processing industry by membrane technology

Patatin is the main protein of potato wastewater and well
known for its good functionality. The protein possesses many
important features, including a molecular weight of around
40–45 kDa along with an amino acid index (EAAI) of about
89%, which is comparatively high compared to that of many
other proteins present in plants and animals (Pouvreau et al.
2001; Strætkvern and Schwarz 2012).

Traditionally, there has been a diverse list of techniques for
obtaining this valuable protein from potato fruit juice. The

most applied techniques were concentration, coagulation with
heat, precipitation, ion-exchange chromatography, and ion ex-
change using Expanded Bed Adsorption (EBA), and many
more techniques were used to restore protein from potato fruit
juice (PFJ). These approaches have been proven to obtain a
high yield percentage of protein, but some processes, such as
the application of heat and a harsh environment like acid or
alkali, have been unsuccessful in recovering completely intact
(non-denatured) high-quality protein (Løkra et al. 2008).

Figure 1 shows the PPW production and collection point,
while Fig. 2 illustrates the composition of the process water
collected from the source (Dabestani et al. 2017). Several

Table 4 Protein recovery employing immobilization or adsorption on different supports

No. Adsorbent Protein pH Temperature
(°C)

Time
(mins)

Adsorption
capacity
(mg/g)

Reference

1 Tryptophan modified aminated mesoporous silica
nanoparticles

Ova Protein 5.0 ambient temperature 25 1240.3
(96%)

(Qiao et al. 2018)

2 Silica (mesoporous) nanoparticles (MSNs) with the
SBA-1 moiety, functional group (-COOH)

Papain 8.2 ambient temperature 1600 1138 (Saikia et al. 2019b)

3 Cage-type cubic mesoporous silica functionalized
with (-COOH)

Lysozyme 9.6 37 4800 895 (Deka et al. 2015)

4 Mesoporous silica nanoparticles (MSNs) Haemoglobin 7.4 ambient temperature 20 747.5 (Tu et al. 2016)

5 Mesoporous silica nanoparticles (MSNs) function-
alized by 3-aminopropyltriethoxysilane

Catalase – ambient temperature 20 ~840 (Tu et al. 2016)

6 SBA-15 Bovine serum
albumin

4.8 30 – 482 (Maria Chong and
Zhao 2004)

7 SBA-15 Lysozyme 10.6 ambient 240 636 (Ma et al. 2017)

8 Mesoporous silica materials (pore size 17.6 nm) Cellulose 5.0 50 600 410 (Kim et al. 2005)

Table 5 Different waste sources for recovery of protein using different methods

No. Waste source Types of
protein

Method of recovery % Recovery Advantages Disadvantages Reference

1 Expired dairy
products

Milk protein Liquid
biphasic flotation

(LBF) method

~94 Waste reduction,
environmental
benefits

Recycling is needed as
the use of alcohol and
high salt conc.1

(Tham et al.
2019)

2 Slaughterhouse
blood

Haemoglobin
peptides

Enzymes and
high hydrostatic

pressures (HHPs)

~84 peptides yield Antioxidant and
functional

properties,
cheaper and
simpler method

– (Álvarez et al.
2012; Marcet
et al. 2016)

3 Waste from the
poultry
process

Amino acid Subcritical water
technology

~11.4 High production
yield along with
energy

Chemical usage (Zhu et al.
2010)

4 Waste activated
sludge

Proteins from
sludge
flocs

Thermal alkali
hydrolysis (TAH)

~67.5 High yield of
solubilized
protein is
obtained

Some protein loss in the
form of ammonium
and nitrates

(Song et al.
2019)

5 Rohu fish waste Protein from
fish waste
source

pH Shift
Method

31.8 via acid
method/ 31.1 via
the alkaline meth-
od

Isolates via alkaline
methods were
more rigid

Protein with good yield
and functionality after
recovery

(Surasani et al.
2017)

1 conc. concentration
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combinations of pre-treatments, such as centrifugation (with
specifications; time 20 min at 8000 g and 20 °C), sedimenta-
tion for 4 h followed by filtration using filter paper with spec-
ifications of 2.0, 2.5, and 0.22 μm and PVDF/MF, have been
used before applying the ultrafiltration process.

The strategic process with an explanation of the purposes
for applying each pre-treatment and treatment step on waste-
water is shown in Table 6. It was demonstrated that transmem-
brane pressure increases suddenly due to the phenomenon
known as concentration polarization, and after that the feed
was only pre-treated by centrifugation. After some time, there
was no significant increase, but this may be due to the depo-
sition of biopolymers, especially proteins, on the surface of
the membrane. The increasing concentration of protein in the
retentate of membrane filtration over time leads to the cake
layer formation and pore blocking process. However, the pre-

treatment of feed by centrifugation leading to microfiltration
improved membrane performance concerning the fouling.

The recovery of protein using ultrafiltration along with the
obtained concentration of the desired product was determined
by applying an assay known as the BCA test. The initial cal-
culated concentration of protein in the feed solution after ap-
plying centrifugation was 1.55 ± 0.03 g/L. After applying a
different pre-treatment process on the feed or wastewater, the
amount of protein was determined in the obtained permeate of
each process. The recovery percentage of protein was 72% by
applying centrifugation to the feed solution, and this value fell
to 62% after several pre-treatment applications (Table 7).
However, it is also clear from Table 5 that the concentration
of protein is increased in the retentate of the experiment in-
cluding centrifugation, followed by MF with filter paper with
a specification of 2.5 μm for 20 h.

Fig. 1 presents potato chips
production and point of
wastewater collection (Dabestani
et al. 2017; Fritsch et al. 2017)

0.01

0.1

1
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100

%
 co

m
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si�
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Fig. 2 The composition of potato
process wastewater (Mishra and
Arora 2004; Guo et al. 2018)
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In each stage of the process, SDS-Page was applied to
understand protein bands with dissimilar molecular weights.
The results confirmed from the obtained bands of proteins
with bigger molecular weight constitute the desired potato
protein (patatin family), and other proteins remain intact dur-
ing the sequence of several treatment stages (Li et al. 2019b).
The obtained proteins remained intact from the denaturation
process and no separate band was observable in the permeate
of the UF membrane (Rajewska and Janiszewska 2017). The
concentration of protein in each experiment was determined
by examining the filtrate of filter paper of 2.5 μm (MF feed),
permeate of MF and permeate of UF using the LC-OCD tech-
nique (Miedzianka et al. 2012).

The total DOC present in the feed of the MF membrane
was 2306.21 mg/L with 6% of DOC containing biopolymers,
therefore amounting to about 142.05 mg/L. After MF filtra-
tion, contents such as DOC and biopolymers in the permeate
ofMF that would be the feed for ultrafiltration were reduced to
1988.51 and 104.39 mg/L, respectively (5.25% of the dis-
solved organic carbon was biopolymers). The amount of pro-
tein is 100% in the feed of the ultrafiltration membrane. After
filtration, the concentration of protein present in the UF per-
meate was negligible, which indicates that approximately all
the protein present in the feed of UF revealed by LC-OCDwas
removed in the retentate. It was concluded from the work done
by the researcher that the desired protein from the PPW can be
accumulated up to 3.5 times that of its initial concentration
using an efficient membrane. The polyethersulfone UF mem-
brane with an MWCO of 10 kDa was proven to be efficient in

concentrating the protein from potato waste streams
(Dabestani et al. 2017). However, loss of protein was unavoid-
able when multiple pre-treatments were conducted. To avoid
the fouling mechanism of the membrane, several pre-
treatments were applied, such as the addition of chemicals
(acid or basic) to lessen the denaturation of the desired protein.
Membrane technology for protein recovery from potato
wastewater has proven to be efficient, but it is still important
that the value of the obtained protein in terms of its quality and
purity be understood. Furthermore, it is also desirable to study
the effect and concentration of total glycoalkaloids (TGA), a
natural toxin already existing in potato and potato harvests,
and attention should be paid to regulating the accumulation of
this toxin in the obtained protein to evaluate the quality of the
final product for future applications.

Protein recovery from wastewater of the poultry
processing industry by membrane technology

With the rapid increase in the human population, there has
been an immense rise in meat intake. The daily consumption
of poultry (especially chicken) is growing at an even higher
rate than that of other popular meats such as beef or pork
(Castro-Muñoz and Ruby-Figueroa 2019). In this current sit-
uation, the waste streams from the poultry industry such as
carcass debris and body fluids, mainly blood, are the main
impurities, along with fat. Blood and debris are rich in pro-
teins. Wastewaters from poultry have a higher biological and
chemical oxygen demand than normal sewage waste streams

Table 6 Schematic
representation of pre-treatment of
PPW to reach the existing sepa-
ration efficiency (Rajewska and
Janiszewska 2017)

The waste stream from the potato processing industry

Pre-treatment techniques Effects of pre-treatment

Effect of centrifugation Efficient for removing large particles such as starch and fibres
from wastewater

Filtration by the paper filter
(pore size 2.5 μm)

Effective removal of insoluble and soluble starch and fibre
from wastewater

Filtration 0.22 μm PVDF microfiltration Removal of substances with a size in the micrometre range

Ultrafiltration by polysulfone membrane The retentate of membrane filtration is rich in the desired protein

Table 7 Protein rejection by
ultrafiltration membrane is
calculated based on the
bicinchoninic acid assay (BCA
assay) (Xu et al. 2016; Li et al.
2020)

No. of Experiments Protein recovery (%) Concentration factor (CF)

Centrifugation 72 2.2

Sedimentation (Sed.)/cent. 70 2.2

Centrifugation/microfiltration (MF) 67 1.9

Centrifugation/filter paper 20 μm 63 1.8

Centrifugation/filter paper 2.5 μm 57 2.1

Filter paper 2.5 μm/MF N/A N/A

Centrifugation/filter paper 2.5 μm/ MF 62 2.3

Cent./filter paper 2.5 μm/ MF (long-term 20 h) 62 3.5
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because of the high concentration of proteins. A method was
proposed to restore valuable protein from poultry-handling
industry waste streams by applying membrane technology
such as the ultrafiltration process. In their study, researchers
explored the possibility of retrieving protein from poultry
wastewater via UF with an MWCO of around 30,000 kDa
along with the development of parameters for the effective
performance of the total process (Lo et al. 2005). In this per-
spective, if the ideal process circumstances are recognized, it
is extremely relevant that UF can function at peak flux in the
desired period, thus refuting the contrary results produced by
the contaminated membrane (Le Roux and Belyea 1999).

It is well-known that UF has been extensively applied to
the separation, concentration, and refinement of colloidal and
higher molecular weight constituents present in solutions (Lo
et al. 1997). Most fats in poultry streams were removed from
wastewater through the implementation of different primary
pre-treatments, including dissolved air flotation (DAF), and
the placement of a UF unit right after the physical treatment
of wastewater could greatly decrease membrane fouling.
There is a need to study the methods to recover membrane
performance by applying some special cleaning procedures to
make this process effective for cost and durability. There is
also a need to minimize the concentration of nutrients in the
effluent for downstream processing (separation, concentra-
tion, and purification) to maintain the expected quality and
functionality of the desired protein. The non-thermal UF pro-
cess keeps protein denaturation from suffering during thermal
procedures.

A diagrammatic presentation of procedures using a
polysulfone UF membrane with a molecular weight cut-off
of 30,000 Da is shown in Fig. 3 for the recovery of the desired
protein from the poultry processing wastewater in the retentate
after the membrane process. The wastewater undergoes the
pretreatment to remove the fats and other components before
passing this water from the membranes (to avoid membrane

clogging). The polymer membrane, especially one made of
polysulfone, is a commonly used UF membrane in the food
sector. The polysulfone membrane has been recognized as
having the least fouling drifts when treating skimmed milk
(Kumar et al. 2013).

A flat-sheet compartment with a membrane with a specific
area of 30 cm2 was used for the process assessment. The total
fat in the waste samples was observed through the partition-
gravimetric (PG) method (EPA Methods 5520 B).

A distinctive flux report and variation in protein concentra-
tion through the membrane process are shown in Table 8
above. It can be predicted from the table that rapid flux decline
takes place within just 20 min of filtration and continues to
decrease throughout the process. Along with a decrease in the
flux of the membrane over time, the protein content increased
from 80 to 273 mg/L (Lo et al. 1997).

UF treatment can decrease the COD in the main waste
stream by 58.86% (Lo et al. 2005). A negligible amount of
protein was found in the permeate of the membrane. Residual
COD in the permeate was normally documented with a safe
direct discharge value (200 mg/L). This high COD value of
permeate is due to the use of chemicals such as cleaners,
antiseptics and flocculants throughout the processing, espe-
cially in pre-treatment, and there is possibly residual waste
which causes a high COD value. The results obtained are in
keeping with a prior report that elaborated on the UF process
for the removal of sericin from wastewater from the silk
degumming industry (Fabiani et al. 1996). The procedure pro-
duced permeate with high COD (800mg/L). To overcome this
high value, reverse osmosis was used, after which the COD
value fell as low as 50 mg/L. Consequently, after ultrafiltra-
tion, the ecological effects of final discharge need to be
assessed in greater detail before it can be emitted into rivers
and oceans, for example.

It was shown by (Martínez et al. 2000) that pH is a highly
significant factor and has an obvious influence on the

Fig. 3 Ultrafiltration membrane process for recovery of desired protein from poultry processing wastewater (Lo et al. 2005)
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configuration of protein molecules. The properties, including
the electrical interaction of protein molecules, play a signifi-
cant part in defining their interfaces with the surface of the
membrane. Hence, for additional evaluation related to the out-
come of pH on the membrane filtration process, an isoelectric
point (pI) of protein removed from the waste stream (poultry)
was investigated using the fractionation method (Fig. 4). It is
vital to consider the optimum pH value of the solution and
isoelectric point, which can prevent the formation of the clus-
ter due to agglomeration (Honda et al. 1993; Guinee et al.
1997).

The isoelectric point of protein present in the waste stream
was located at around pH 4.6 (Fig. 4). The isoelectric point of
the desired protein was at pH 4.6, which is far from the opti-
mum pH value of 6.74 (Lo et al. 2005). pH 6.74 is favourable
for the ultrafiltration of poultry wastewater, as that pH is ef-
fective for the prevention of protein coagulation that could
cause adverse fouling and affect the overall membrane pro-
cess. Even though extreme membrane fouling was still un-
avoidable after pre-treatment, back-flushing, or sampling
flushing of the fouled membrane with chemical cleaning,
was efficient in regaining the working performance of the

membrane. An integrated approach to recovering protein from
the poultry waste stream, including microfiltration, ultrafiltra-
tion, and vacuum membrane distillation, was studied (Honda
et al. 1993).

The researcher tried to restore the desired protein in water
according to the filtration sequence already used with mem-
branes with anMWCObetween 3 and 30 kDa. Themembrane
that was chosen for the next step is based on the removal of the
COD value along with the protein retention capacity in the
retentate. The integrated membrane process, including MF,
UF, and vacuum membrane distillation (VMD), was used to
purify water and protein.

In the case of the last stated procedures, practically all the
protein obtained in the feed that is the permeate of the ultra-
filtration process can be restored in the retentate. The solution
proposed, using an integrated process, allows an almost nine-
fold decrease in the capacity of waste produced. This method
also gave the outlook to use the recovered protein concentrate
as a feed and for food production (Honda et al. 1993).

In the state-of-the-art work performed by (Lo et al. 2005),
the concentration of the protein is about 40% of the total solids
(TS) in the retentate. Direct evaporation could be helpful for
the recovery of solids present in the concentrated final prod-
uct. About 70% of the dry solid weight was recovered this
way. By the application of the ultrafiltration process
(polysulfone membrane) with an MWCO value of
30,000 Da, proteins from the poultry waste stream are con-
centrated in the final retentate, followed by a reduction in the
total COD value applicable for discharge (Iwuoha and
Umunnakwe 1997). It was proposed that, if other nutrient
loads were reduced in the effluent undergoing downstream
processing, one can avoid any impurity in the desired recov-
ered protein and prevent the protein from harsh thermal deg-
radation effects (Lo et al. 1997; Le Roux and Belyea 1999).
Researchers also tried to recover protein by applying ultrafil-
tration on the solution obtained after mechanical extraction to

Table 8 Changes in the flux of the membrane along with the
concentration of desired protein during the ultrafiltration of poultry
wastewater at specified parameters 25 °C; pH (neutral); transmembrane
pressure of 14 psi (Kumar et al. 2013)

Time (mins) Membrane flux (Lm−2/h) Protein contents (mg/L)

0 264 80

20 140 ~90

40 ~138 100

60 130 ~150

80 ~128 200

100 125 273

Fig. 4 Estimation of the
isoelectric point of protein
restored by fractionation method
(Lo et al. 2005)
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debone the turkey residue. The ultrafiltration on that solution
was done without prominent fouling (clogging) of the mem-
brane during the procedure.

Protein recovery from alfalfa-processing wastewater
using membrane technology

Leaf protein obtained from alfalfa juice is a vital protein for
animal feed and human food. Previously, the researcher rec-
ognized alfalfa juice as a competent source of good-quality
leaf proteins. The main significant features of this protein are
that they are abundant in nature with a high concentration of
protein, valuable nutritional aspects and most importantly no
animal cholesterol. Just like other food processing industries,
the alfalfa processing industry produces plenty of wastewater.
This wastewater is rich in protein, containing up to 50% of
hydrophobic proteins. The wastewater contains diluted alfalfa
juice along with cleaning detergents (Zhang et al. 2015b).
Another researcher also recognized the wastewater of alfalfa
as a source for nutrient renewal applicable to irrigation and
restoring biomolecules (Lamsal et al. 2007; Xie et al. 2008).

Different separation systems were used for the removal of
alfalfa proteins from diverse sources. The most commonly
applied methods are chromatography (Ibarra-Herrera et al.
2011) fractionation by means of solvents (Koshchuh et al.
2004), heating (Bals and Dale 2011), crystallization
(Firdaous et al. 2010), molecular sieve chromatography, cen-
trifugation (Arulvasu et al. 2014), and ion exchange technol-
ogy (Ibarra-Herrera et al. 2011). However, none of these
methods provide good removal/separation efficiency for
protein.

The ultrafiltration (UF) process shown in Fig. 5 can facil-
itate the downstream processing of protein present in alfalfa
juice, whereas the concentration of the filtration process con-
tains a protein that can be separated using precipitation for the
production of feed for animals (Zhang et al. 2015a). It can also
be effective for the production of renewable energy followed
by anaerobic digestion (Venkata Mohan et al. 2008). There is
also the possibility that permeate obtained after UF can under-
go an additional filtration through a membrane of smaller pore
size (nanofiltration or reverse osmosis), which results in drink-
ing water (Sarkar et al. 2006), and the water can also be used
to irrigate fields.

In the filtration process of alfalfa wastewater using the
UF membrane, the filtration efficiency decreases over
time because membrane fouling leads to an effect known
as concentration polarization (Ma et al. 2017). If this ef-
fect continues, the efficiency of the membrane process
faces a severe decline and results in increases in the over-
all procedure cost. To overcome this problem, a new in-
vestigation including a rotating disk membrane (RDM)
unit was applied to lessen membrane fouling and recover
flux performance. In the RDM process, the main

phenomena that overcome the concentration polarization
effect increase the shear rate (Zhang et al. 2014b).

To understand the recovery of protein along with the be-
haviour of membrane fouling during this process, (Zhang
et al. 2014b) made efforts to accomplish a four-factor and
three-level central combined response surface methodology
(CCRSM) experimental plan to understand the collective op-
eration parameters, including the significance of transmem-
brane pressure (TMP), feed flow rate, the effect of shear,
and temperature. The ideal operation settings are likely to
qualify the probable implementation of RDM for membrane
wastewater behaviour in the future (Bensadallah et al. 2016).

Table 9 illustrates COD rejection, the removal efficiency of
protein, and flux value of membranes, along with fouling,
permeability recovery after membrane cleaning, and cost be-
haviour of processed UF membranes. The PES50 membrane
showed the smallest removal of COD, rejection of protein,
and maximum flux, probably due to the larger pore size dis-
tribution. However, the average diameter of protein present in
the feed solution (60–90 nm) is bigger than that of the mem-
brane PES50 having a pore size of 10 nm. Therefore, accord-
ing to the concept, most leaf proteins should be retained by the
membrane (Zhang et al. 2015b).

Protein recovery from the dairy waste stream using
membranes

Dairy wastewater is typified by severe pH changes and typi-
cally contains high concentrations of organic matter, solids
and nutrients, as well as dissolved inorganic pollutants and
traces of cleaning agents (de Souza Santana et al. 2016). In
dairies, membrane-based technologies, and their combination
with other methods such as biological, chemical and physical
ones, are likely to be used for water recycling and resource
harvesting (de Souza Santana et al. 2016).

The study performed by (Bortoluzzi et al. 2017) demon-
strated that dairy wastewater handled bymembrane-integrated
processes can possibly meet the environmental disposal re-
quirements of treated wastewater in the collection of water,
as well as supporting the reuse of water in the dairy plant itself
as well as in cooling and heating procedures. In the above-
stated study, two stages of the integrated membrane filtration
system have been used. The integration system uses the MF +
NF process in one stage and the MF + RO system in other
stages, using different operation parameters while treating the
dairy processing waste stream. The results obtained from this
study indicate the removal of suspended solids to a large ex-
tent using the MF membrane along with the reduction of tur-
bidity and colour. The combination of the MF + NF process is
more effective in the reduction of turbidity up to 96%.
Moreover, the complete reduction of turbidity (100%) along
with colour reduction (100%) as well as TOC removal of 84%
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was observed using the MF + RO integrating system
(Bortoluzzi et al. 2017; Sert et al. 2017).

In state of the art, the use of UF membranes concerning
their pore size and surface charge for the fractionation of the
dairy components is accepted as a promising process especial-
ly in the valorisation of whey protein. However, due to the
presence of a large number of proteins such as bovine serum
albumin, ᾰ- and ß-lactoglobulin in the dairy wastewater can
limit the use of the UF membrane, which contributes towards
the severemembrane fouling (Barukčić et al. 2015; Brião et al.
2017). In a recent study (Damar et al. 2020), the whey protein
recovery was investigated using different commercially avail-
able UF membranes with different characteristics. The mem-
branes used in this study were regenerated cellulose acetate
membrane, composite fluoropolymer membrane and polye-
thersulfone membrane. All the used membranes have the
same cut-off of 10 kDa. The high roughness of the composite
fluoropolymer membrane more likely increased the rejection

of lactose and whey proteins in the retentate. The results indi-
cated that the surface hydrophobicity of composite
fluoropolymer and polyethersulfone membrane are consider-
ably involved with the fouling resistance. Despite the low
selectivity, the regenerated cellulose acetate membrane pre-
sented a better competence for the concentration of whey pro-
teins due to its high antifouling content. Table 10 presents the
membranes used for the recovery of proteins from different
wastewaters and the limitation in their usage at a larger scale.

Protein recovery from seafood processing wastewater

Over the last decades, the importance of the shrimp industry to
global economic development has been evident through
shrimp exports and imports and the associated research per-
formance. Wastewater produced in aquaculture needs an ur-
gent management process to reduce its effects on the environ-
ment (Ng et al. 2018). Research has recovered valuable

Fig. 5 Schematic representation of membrane process on the alfalfa waste stream and its applications (Zhang et al. 2015b; Gao et al. 2018)

Table 9 The distinctive parameters of permeate for several membranes at a given temperature and pressure (Zhang et al. 2017, 2019)

Used membrane Surface
material

MWCO
(kD)

1Water
permeability

COD removal
efficiency %

Protein
removal %

Fouling 4Flux Recover
permeability %

Energy
cost
(kWhm−3)

Polyethersulfone20 2PES 20 >30–40 31.52 72.92 1.6051E+
10

83.6 70.57 297.84

UH030P 3PESH 30 40-50 27.46 70.83 7.0617E+
09

153.0 80.07 162.74

PES50 PES 50 >70 25.42 66.67 7.0639E+
09

183.6 73.91 135.62

1Water permeability (L m−2 h−1 bar−1 )
2PES, polyethersulfone
3PESH, permanently hydrophilic polyethersulfone
4 Flux (L/ (m2 h))
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components such as proteins from the shrimp wastewater
using several methods. In a recent study, the protein-rich bio-
mass from shrimp boiling water (SBW) was treated with dif-
ferent flocculants at different pHs to recover protein using
flocculation and sedimentation techniques. The results obtain-
ed during this study indicated a maximum sedimentation of up
to 80% of proteins from the biomass at pH 4 (Forghani et al.
2020). In another case study, tuna processing industrial waste-
water has been subjected to hydrolysis for the purpose of
protein recovery using the fractionation process by the UF
and NF membrane cascade in a continuous industrial-scale
process. The proposedmodel was applied for the investigation
of the most suitable configuration of UF and NF membranes
in linear or dual cascades to obtain the maximum recovery of
protein from the wastewater (Abejón et al. 2018).

The increase in the consumption of fish because of its high
protein content and other nutritious values, especially tuna,
leads to an increase in the wastewater produced during the
processing in the industry. Several studies are being conduct-
ed on the recovery and separation of valuable components
from the wastewater coming from the fish processing indus-
try. The work performed includes the valorisation of tuna
processing waste biomass for the recovery of valuable pro-
teins and peptides with the integration of enzymatic hydrolysis
and the membrane fractionation process (Saidi and Ben Amar
2016). The applied method in this study is important for pro-
ducing valuable bioactive products from the tuna fish process-
ing wastewater and in lowering the organic content of the
wastewater generated from the food processing industry. In
this study, the enzymatic hydrolysis coupled with the UF and
NF membrane system leads to the biotransformation of pro-
tein present in the tuna processing industry wastewater to tuna
protein hydrolysate. The obtained results from the evaluation

of the amino acid composition and antioxidant study of the
recovered protein show the presence of many valuable amino
acids (aspartic acid, glycine, alanine, valine and leucine) in the
extracted protein (Sayari et al. 2016). All these amino acids
are found in the retentate of the NFmembrane after membrane
fractionation.

Protein recovery and membrane fouling

Membrane fouling is identified as the irreversible deposition
of sediments on the active surface of a membrane, resulting in
flux decline during the process and a loss of active operation.
This is a problem during the filtration of high organic content
wastewater such as industrial water, brackish water, and sea-
water (Penña et al. 2013; Castro-Muñoz et al. 2019). One of
the main obstacles to applying membranes for protein recov-
ery from the targeted wastewater is membrane fouling due to
the concentration polarization effect (Castro-Muñoz et al.
2019). The term concentration polarization can be defined as
the reversible fouling process, thus reducing the flux and per-
meability through the membrane (Bhattacharjee et al. 2017).
There is also another phenomenon called pore blocking that
also occurs during the recovery of proteins and is defined as an
irreversible process; the pore blocking also leads to conse-
quences such as flux decline during the membrane filtration
process (Bhattacharjee et al. 2017; Issaoui and Limousy
2019). When studying the recovery of protein from high or-
ganic content waste streams using MF and NF membranes,
the major drawback that results in reduced flux is the concen-
tration polarization effect and pore blocking with cake layer
formation on the surface of the membrane over time (Park
et al. 2017; Aghapour Aktij et al. 2020).

Table 10 Membranes used for the recovery of protein from waste sources and their limitation of the application

No. Waste source of protein Membrane specification Limitations Reference

1 Yellow fin tuna (Thunnus
albacores) viscera

UF-regenerated cellulose (RC)
membranes (76 mm in diam-
eter)

Membrane fouling with higher molecular
weight compounds

(Pezeshk et al. 2019)

2 Anti-scorpion serum
production wastes

UF (10 kDa) and electrodialysis
process

Multiple rinsing of the membrane was
essential

(Bensadallah et al. 2016;
Castro-Muñoz and
Ruby-Figueroa 2019)

3 Tuna processing
by-products

Cascade integrating UF (n.r.) and
NF (n.r.) membranes

Membrane clogging due to the high protein
contents

(Klomklao and Benjakul 2017)

4 Tilapia by-product protein
hydrolysate (TBH) sepa-
ration

Flat-sheet RCwithMWCOof 10
and 5 kDa

n.r. (Roslan et al. 2017)

5 Dairy waste in the form of
whey proteins

UF (10 kDa). membrane pore
size 200–250 nm

Whey protein (b-lactoglobulin) aggregation
leads to severe fouling

(Steinhauer et al. 2015; Ganju
and Gogate 2017)

6 Whey, a by-product of
cheese

Flat-sheet membrane
(0.0061 m2) and a spiral
membrane (0.22 m2)

Aggregation of b-lactoglobulin protein takes
place as membrane shows retention of this
moiety

(Baldasso et al. 2011; Argenta
and Scheer 2020)

n.r. not reported
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The filtration of high organic content wastewater through
membranes is prone to fouling, and that leads to a significant
increase to the cost with regard to the industrial-scale process.
Consequently, there is a vital need for the potential cleaning
procedure to minimize the membrane fouling for the efficient
process and durability of membranes (Humpert et al. 2016).
One of the most effective and useful solutions includes the
backflushing and rinsing of the membrane after and during
the procedure, and the other is chemical cleaning of the mem-
brane after each process (Wallberg et al. 2003; Bogati et al.
2015). In order to reduce the membrane fouling during the
process the membranes were rinsed with the permeate of the
filtration process, as the permeate possesses the same pH as
the original solution. Also, it is more likely that most of the
pollutants that stick on the surface of the membrane were
soluble to the permeate (Beyer et al. 2017). The other method
used for the sustainable operation of the membrane process is
chemical cleaning of both UF and NF membranes, using dif-
ferent chemical agents such as sodium hypochlorite (NaClO)
(Li et al. 2019a), which is effective for membrane fouling via
organic wastewater treatment and microbial fouling
(Malczewska and Żak 2019). Table 11 presents the cost anal-
ysis of protein recovery using membrane technology from
different waste streams.

Most of the membrane process plants designed for the pu-
rification of wastewater from several sources utilize repeated
cleaning of the membranes and their modules, using a range of
chemicals to reestablish the membrane performance to the
same level as before fouling. As mentioned in Table 11, the
chemical cleaning of the membranes has some characteristic
drawbacks, and one of the biggest is reducing the cost-
effectiveness of the overall process and putting an extra bur-
den on the atmosphere. Hence, it is now time to thoroughly
research the innovation of new strategies to overcome tradi-
tional remedies. For future studies, the researcher should fo-
cus, practice, and prioritize the more mechanical cleaning pro-
cedures, such as, e.g. the backflushing of the membrane dur-
ing and after the procedure, rather than the traditional chemi-
cal cleaning method (Bogler et al. 2017; Matin et al. 2019;
Nunes et al. 2020).

The recovery of protein from wastewater using several
techniques, including membrane technology, will always

remain an interesting topic for researchers and scientists all
over the world. New advances day by day concerning new
membrane materials and the integration of membranes with
other processes is a matter of interest when the protein recov-
ery is involved. However, we should explore the proper func-
tional and environmental benchmarks for membrane-
technology-assisted protein recovery from a variety of waste
streams to overcome the hindrance that lies within the transfer
of this process from laboratory-scale studies to the profitable
market (Shahid et al. 2020; Xiao and Zhou 2020).

Conclusion

As discussed, there are several pathways towards the promis-
ing recovery of proteins from different waste sources. A vari-
ety of wastewaters have been investigated for the efficient
recovery of protein using different techniques in the state of
the art. It was demonstrated that purple photosynthetic bacte-
ria along with microalgae are the most efficient and dominant
mediators for the removal of organic substances and nutrients
from red meat, pork- and poultry-processing wastewaters.
Microbial protein is proven to be a worthwhile and available
protein supply to satisfy the need for human as well as animal
diet stability. A simple one-step treatment using bacteria pro-
vides both benefits, including the supply of protein sources
and treatment of high-COD non-toxic organic wastewater.
The process of protein recovery by bacteria can fulfil the re-
quirement to release wastewater streams without any treat-
ment. The obtained bacteria cells contain high concentrations
of valuable molecules including proteins, polysaccharides, ca-
rotenoids, bacteriochlorophyll and coenzyme Q10. However,
there are some drawbacks to this process, including the exis-
tence of many nucleic acids in some entities, which makes its
utilization by human beings unsuitable, and these molecules
should be handled properly and within the limit range.
Moreover, post-treatment of the obtained single-cell protein
is also significant because of its susceptibility to any impuri-
ties. In the coming years, it has been predicted that microor-
ganisms will be an important source of food additives due to
their efficiency in manufacturing high-quality protein from
waste substances.

Table 11 Cost analysis of different wastewater treated using membranes

No. Wastewater Operational cost Treatment method Reference

1 Dairy waste stream
(milk protein)

64–3374 US$/cubic metre of treated effluent Oxygen injection into the physicochemical
treatment system

(Martín-Rilo et al. 2015)

2 Microalgae biomass
(extraction of protein)

0.12 US$/kg of microalgae sample Polyethersulfone membrane (Lorente et al. 2018)

3 Whey protein US$436,000 UF/RO process (Wen-qiong et al. 2019)

4 Milk protein US$322,882.40 (annual cost) RO operating system (Brião et al. 2019)
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However, to cover the future need for protein and
achieve self-sufficiency, there is still a gap to developing
new technologies for large-scale manufacturing that needs
to be overcome. The implementation of membrane technol-
ogy for protein recovery has also been proven to work
effectively. Also, the integration of MF, UF, and VMD
can allow a reduction in the volume of waste generated
that is almost nine times greater and can establish an option
to make a protein concentrate suitable for human and ani-
mal needs. The recovery of different types of proteins from
wastewaters using membranes has been discussed in detail
in this paper. The advantages associated with using mem-
branes in the recovery of proteins along with other valuable
products from the potato processing, dairy and seafood
processing industries has been taken into special consider-
ation in this study. Membrane fouling is always associated
with the process of protein recovery. The backflushing of
the membrane with available cleaning reagents was found
to be proficient in improving the restoration ability of the
membrane. The development of efficient technologies and
improvement in traditionally available techniques of protein
recovery from waste streams can provide high-quality pro-
tein and reduce the gap between the demand for and supply
of proteins, making them available for humans and animals.
However, there is still a need for more research to find new
and more potential wastes as a protein source via the im-
plementation of membranes for the sake of the long-term
stability of our system.
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