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Abstract

We introduce a decoupling method on the Wiener space to define a wide class of an-
isotropic Besov spaces. The decoupling method is based on a general distributional
approach and not restricted to the Wiener space.

The class of Besov spaces we introduce contains the traditional isotropic Besov
spaces obtained by the real interpolation method, but also new spaces that are
designed to investigate backwards stochastic differential equations (BSDEs). As
examples we discuss the Besov regularity (in the sense of our spaces) of forward dif-
fusions and local times. It is shown that among our newly introduced Besov spaces
there are spaces that characterize quantitative properties of directional derivatives
in the Malliavin sense without computing or accessing these Malliavin derivatives
explicitly.

Regarding BSDEs, we deduce regularity properties of the solution processes from
the Besov regularity of the initial data, in particular upper bounds for their L,-
variation, where the generator might be of quadratic type and where no structural
assumptions, for example in terms of a forward diffusion, are assumed. As an
example we treat sub-quadratic BSDEs with unbounded terminal conditions.

Among other tools, we use methods from harmonic analysis. As a by-product, we
improve the asymptotic behaviour of the multiplicative constant in a generalized
Fefferman inequality and verify the optimality of the bound we established.

2010 Mathematics Subject Classification. Primary 60H07, 60H10, 46E35.

Key words and phrases. Anisotropic Besov spaces, Decoupling on the Wiener Space, Back-
ward Stochastic Differential Equations, Interpolation.
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CHAPTER 1

Introduction

1.1. Background
A backward stochastic differential equation (BSDE) is an equation of type

T T
(1) Y;S :€+l f(S,Y—S,Zs)d87/t stW37

where T' > 0 is a fixed finite time horizon, W = (W});cpo,) is a d-dimensional
Brownian motion, £ : 2 — R is a given Fp-measurable terminal condition, and

F:0,T]xQxRxRY - R

is a given predictable random generator which might be non-Markovian. Given the
data (&, f), one looks for adapted solution processes (Y, Z). Backward stochastic
differential equations have a wide range of applications, for example in stochastic
control and, more generally, in stochastic modeling. In the case of a Markovian
generator, where the randomness comes from a forward diffusion, there is an im-
portant and extremely useful connection to non-linear partial differential equations
of parabolic type, the so-called (non-linear) Feynman-Kac theory. Two seminal
papers in this theory were the work of Bismut [13], and Pardoux and Peng [73].

The simulation of BSDEs is an important topic and subject to active research.
To setup simulation schemes one needs an approximation theory for BSDEs, for
example to find optimal time-grids or to obtain upper and lower rates for the speed
of convergence of these schemes measured in an appropriate way. To investigate
these approximation properties it is more or less mandatory to understand the
variational properties of the solution (Y, Z), i.e. the behavior of

¢ 3
(/ |ZT|2dr>
s p

for all 0 < s < t < T and an appropriate range of p € (0,00), where |||, =
€l @) = (E\£|p)% for a random variable £ : ) — R.

(2) 1Y: = Yillp  and (say) ‘

1.2. Outline of the main ideas

In these notes we develop an approach to estimate the variations from in terms
of the regularity of the data (&, f), where the regularity is a fractional smoothness
expressed in terms of Besov spaces. Our approach is based on an anisotropic de-
coupling of the Wiener space. Recently this decoupling was already successfully
used in [40], [41] and constitutes one of the few approaches to estimate variational
properties of non-Markovian backwards equations using only knowledge of the ini-
tial data. Let us explain the basic line of ideas to motivate the structure of these
notes.
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2 1. INTRODUCTION

If the generator in our BSDE vanishes, i.e. f =0, then one has that

Y, = E(¢FR).
Therefore, in the case f # 0 the map
Gl ey,

can be interpreted as some kind of generalized non-linear conditional expectation
along the generator f (see [74} [29), [75] for the notion of g-expectation and nonlinear
expectations). It turns out that our notion of regularity is stable with respect to
this non-linear map Gf . Moreover, since

1Y = Yillp < IV = BV Fo)llp + [E(Ye|Fs) = Yillp

and since |E(Y;|Fs)—Ys]|, can be handled by ’standard’ methods, the main question
consists in investigating the behavior of ||Y; — E(Y;|Fy)||, for s T ¢. It turns out
that this behaviour corresponds to a notion of fractional smoothness in L,, of the
random variable Y;. The crucial point here is that

(3) 1Y — E(Y,|F)p ~ IY: — Y1,

for p € [1,00), where Y;(S’t] is a decoupled version of Y; in the sense explained below.

Therefore we proceed as follows:

(a) In Chapter [2f we introduce a factorization and a method to transfer stochastic
processes from one stochastic basis to another one while keeping distributional
and measurability properties.

(b) In Chapter [3| we apply the methods from Chapter [2| to the Wiener space, in
particular to stochastic differential equations driven by the Brownian motion.

(¢) In Chapter the decoupling and the corresponding Besov spaces on the Wiener
space are introduced and investigated.

(d) In Chapter |5| we provide some tools about BMO spaces and reverse Holder
inequalities and apply them to non-Lipschitz BSDEs.

(e) In Chapter |§| we apply further the results of Chapters and [5{to BSDEs.

We proceed with some exemplary ideas and results obtained in this article:

Chapters [2] - @ The decoupling to obtain F(®?! from a random variable F : Q —
R on the Wiener space is done as follows: We start with a Wiener space built on
a d-dimensional Brownian motion W = (W;);e[o,77- Then we take a copy of this
Wiener space, denote the corresponding Brownian motion by W' = (W/)¢o,7], and
form the canonical product space carrying the 2d-dimensional Brownian motion
(Wi, Wi))iepo,r)- But the pair (W, W’) of Brownian motions is not the one we
are interested in in the sequel. Instead, we take (for example) an interval (a,b] C

(0,T] and consider the mixed Brownian motion W () = (Wt(a’b])te[oﬂ where the
increments on the interval (a,b] from W are replaced by the increments of the
independent copy W’ = (W{).c(o,1], i-e. we define

W, : 0<t<a
Wit = Wadt W/ —W! : a<t<b
Wt (W, —W)+ (W, —W,) : b<t<T

a

In other words, the Gaussian structure on (a, b] is replaced by an independent copy:
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1.2. OUTLINE OF THE MAIN IDEAS 3
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AR ol
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Now the random variables F' from the original Wiener space built on W are ex-
tended to the product space carrying (W, W’) and are transformed by a functional
mapping F — F(®! along the same map as W — W (@l is transformed.

After we have introduced the decoupling method, our next step consists in observing
that one can define anisotropic Besov spaces by imposing Holder type conditions
on a random variable £ € L,, like

(4) I = €], < cala,b)

for all 0 < a < b < T and an appropriate weight function a(-,-). These anisotropic
Besov spaces are part of a wider class of spaces containing the traditional Besov
spaces obtained by the real interpolation method. To explain the diction anisotro-
pic, let us assume d = 1 and let us formally write £ = f(WW) for an appropriate
functional f : C[0,7] — R. If  # (a,b] # (0,T], then in we compare f(T)
with f(W (@) and note that there is no constant ¢ € [0, 1] such that

EW, W " = cEW,W, forall s,te[0,T].
Now let 6 € (0,1) and define the Brownian motion W by
WP = /1—-602W, + 60w, for tel0,T].

Here the Brownian motion W (partially) decouples W uniformly in time, not only
on (a,b]. This means, that we have an isotropic decoupling. In contrast to , the

expression || f(W) — f(W9)]||, compares f(W) and f(W?), where
EW,W! =1 —02EW,W, forall s,tc|0,T].

The reader is also referred to Remark below for a more detailed example of
being anisotropic.

To explain a prototype of our Besov spaces, let us assume p,r € [2,00) and & € L.
In Chapter Ié-_ll we use inequality with

ar(a,b) == vVb—a

to define £ € IEB? * provided that

__ . _ 1€ — gl |”
||§||§Z>T =E[P + €], , <oo with [&l§, , = s S
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4 1. INTRODUCTION

The case r = 2 is treated by Theorem [.22] and includes the following situation,
where Dy o stands for the Malliavin Sobolev space and D¢ for the Malliavin deriv-
ative:

THEOREM 1.1. One has By? C Dy . Moreover, for p € [2,00) and & € Dy 5N L, it

holds )
1t ?
[€llonn e sup | (52 [ IDugPas) |
0<a<b<T —aJg

P
where ¢ > 0 depends on p only. In particular, for p = 2 we have that

1€lle,.2 ~e esssup eo 7yl Dskll2-

The impact of Theorem (Theorem[4.22)) is at least twofold: Firstly, we can access
the Malliavin derivative by the spaces B2 without using the derivative explicitly.
Secondly, the above theorem can be localized by replacing ||€ ||g v, With

P

E|§|p +  sup ||£ - f(a’b]”p g
A<a<b<B vb—a

for some 0 < A < B <T. Here £ does not need to belong to Dy o anymore.

The case r = 4 turns out to be relevant for the local time of a Brownian motion,
for example represented by

a : 1 !
LY = 161301 2—6/0 X(a—e,ate)(Ws)ds a.s.

We prove in Corollary that for all & € R and p € (1,00) one has that

Ly eBy\ | |J By
re(2,4)

BACKGROUND AND RELATED RESULTS: Our method includes with Theorem 16 a
characterization by decoupling of the real interpolation spaces (L, D1 p)s,4 for the
full range of interpolation parameters (6, ¢q) € (0,1) x [1, o0, where p € [2,00). This
directly extends [46] Theorem 3.1] to the case that the supporting Hilbert space of
the Gaussian structure of the abstract Wiener space is infinite dimensional. In [50]
Remark on p. 428] a different characterization by decoupling was given in the case
p =g, ie. for (L,,D1 )9, The case ¢ # p is of natural interest on its own, but the
full range of parameters (6,¢q) € (0,1) x [1, 00] is also crucial for the understanding
of certain phenomena in applications.

The idea to use decoupling to understand better Malliavin Sobolev spaces was used
before: The natural question, whether Malliavin Sobolev spaces are stable under
Lipschitz mapping has been raised by Watanabe in [88] and answered by Hirsch [50]
by describing (L, D1 )¢, by decoupling. Roughly speaking, any representation by
decoupling is stable under Lipschitz mappings, so our Besov spaces Bg) are stable.
Therefore Thoorcmbolow verifies as a by-product that the spaces (L, D1 )04
are stable under Lipschitz mappings for all (6,¢q) € (0,1) x [1,00] and p € [2,0).
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1.2. OUTLINE OF THE MAIN IDEAS 5

Chapter |5t Given a continuous BMO-martingale M and its Doléan-Dade exponen-
tial £(M), we introduce the sliceable numbers sly (M), that measure the distance
of M to Hy, in Deﬁnition Here H stands for the space of all continuous mean
zero martingales N with || Nz := [|(N)||sc < oo (see Definition [5.4). Denoting
by RHg(E(M)) the constant in the reverse Hélder inequality for £(M) with the
exponent 3, we prove in Theorem [5.25}

THEOREM 1.2. Let @ : (1,00) — (0,00) be a non-increasing function and let

w: {(7.8) €10,00) x (1,00) : 0 < 7 < B(8) < 0} = [0,00)
be right-continuous in its first argument and such that

\P(’Ylaﬁ) S\I](')Q,ﬂ) fOT 0§71 S’YQ <<I>(6)7

with the property that | M|lsmo < ®(8) implies RHg(E(M)) < ¥(||M|lBmo, B)-
Then, for sly(M) < ®(8) we have that

RH(EM)) < [U(siy (M), B)]".

The point of this observation is that we get explicit exponents § and explicit bounds
for RHg(E(M)) in terms of the sliceable numbers (sly(M))n>1. This is applied
to BMO-martingales obtained by the fractional gradient |Z|? of our BSDE where
6 € [0,1] is the parameter from ([5)) below that describes the degree of the BSDEs of
not being Lipschitz in the Z-component (8 = 0 corresponds to the Lipschitz case,
0 =1 to the quadratic case).

Another contribution concerns the generalized Fefferman inequality [32] Lemma
1.6] (see also [5l Theorem 1.1]). We prove with Theorem a more abstract
version using adapted random measures that yields in Corollary to

T
/ | A, By |dt
0

which improves the asymptotic behavior of the constant from p in [32] to \/p. We
also verify that the asymptotic order |/p as p — oo is optimal.

< V2| Allw, (s0) [ BllBMO(S2)
P

Chapter [6] The decoupling method for BSDEs originates from [40], where the
terminal condition did depend on finitely many increments of a forward diffusion
and the generator was Markovian and Lipschitz. The aim of this part of the notes
is the further development of this method. Motivated by the equivalence we
first decouple the BSDE in order to get a new BSDE

T T
y @ :g(a,b]+/ f(a,b](s’}/s(a,b]7Z£a,b])dS_/ 20 gyt
t

t

and aim to use a priori estimates for BSDEs to estimate

a,b
[sup, o ry [V~ Y|

p

and from above by moments of

p

’(LT |74 _ Zs\zds)%

¢—¢@ and f - et
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6 1. INTRODUCTION

Here we consider generators f : [0,7] x @ x R x R — R such that (t,w)
f(t,w,y, z) is predictable for all (y, z) and there are Ly, Lz > 0 and 6 € [0, 1] such
that

(5)  |f(t,w,y0,20) — f(t,w,y1,21)| < Ly|yo — y1| + Lz[1 + 20| + |21[]]20 — 21|

for all (¢, w,yo,¥1,20,21). Here 8 = 0 represents the Lipschitz case, § = 1 the
quadratic case, and 6 € (0,1) the sub-quadratic case. The basic stability result is
Theorem [6.3] a special case is:

THEOREM 1.3. Assume for the BSDE

T T
Yt:§—|—/ f(s,Y;,Zs)ds—/ ZdWs, t e 0,17,
t t

conditions (B1)-(B4) of Chapter[6| for 6 € [0,1] and that there is a non-increasing
sequence (sy)n>1 C [0,00) which dominates the sliceable numbers of the fractional
gradient, i.e. 1% (|Z|°) < sy for all N > 1. Suppose that conditions (B5)-(B6) of
Chapter are satisfied for p € [2,00) where in the case limy sy > 0 we additionally
assume that p > po(Lz,limy sy). Then, one has for allt € [0,T) and 0 < a < b <
T that

T 2
+ </ |Zs<a»b1—zs|2ds>
t
P

e

sup |y8(a7b] Y
s€t,T]

P

T
/ PO (5, Ye, Z2) — f(s, Ve, Z2)|ds
t

p

In order to apply Theorem |1.3| (Theorem , and because of general interest, we
discuss classes of quadratic and sub-quadratic BSDEs such that the assumptions of
Theorems and are satisfied in Section [6.3] In case of sub-quadratic BSDEs
we use the following definition:

DEFINITION 1.4.
(1) We say that a random variable & belongs to cExp provided that there are
(n,p) € (0,1) x (0,00) such that
1
Elemson = sup (T =03 [EEEIR| < oo

tel0,T)

(2) For a cadlag process Y = (Y});c[o,7] we say that Y € cExp provided that
there are (n, u) € (0,1) x (0,00) such that

Y |cExp(n,u) = Sup (jﬂ_.t)%*lmeeusupﬂanTHY%|]Q)H < 00.
tel0,T) o0
In Theorem we prove the following statement:
7 Nov 2017 05:35:26 EST Prob+Stat
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1.2. OUTLINE OF THE MAIN IDEAS 7

THEOREM 1.5. Assume for some 0 € (0,1), sup( wyejo,rxa | f(t,w, 0,0)] < oo,
and that & € cExp. Then there is a unique solution (Y, Z) to the BSDE in the
class where (Y,|Z|) € cExp x Hy(S2) E| Moreover, for this solution we have that

|Z|" € BMO(S2) for all ne€(0,1).

Theorem [I.5| enables us to apply Theorem [I.3] so that a combination with Theorem
[1.1] gives in Corollary

COROLLARY 1.6. Assume for some 0 € (0,1), sup(, .yeq0,m)x0 | f(5,w,0,0)] <
00, & € cExp, and that (Y, Z) is the unique solution to the BSDE (1) in the sense
of Theorem (1.5 Fizt € [0,T]. Then we have

(6) esssupse[o’t]HDsY}Hz

<c sup

1
(a,b]C(0,]] VO —a

with the convention that the finiteness of the right-hand side first implies Y; € Dy o
and then inequality @

T
/ sup|f(s,y,2) — f (s, y, 2)|ds
t

Y,z

[IIS — ey +

2

The assertion of Corollary [I.0] says that we only need to control directional deriva-
tives of the initial data (¢, f) on the interval (0,¢] (because the perturbations of
the original Brownian motion W are only performed on (a,b] C (0,¢]) to obtain
smoothness of ¥; and that the behaviour of (¢, f) regarding perturbations on (¢, T]
does not have any impact - in a sense, we have a smoothing effect.

Finally, let us turn to the L,-variation of a solution (Y, Z) to our BSDE. Our idea is
to use adapted time-nets obtained by a quantile method. This idea is made precise
by the following two definitions:

DEFINITION 1.7. Let p € [1,00), A = (A¢)¢cjo,r] be a measurable cadlag process
A:[0,T] x Q= R, and C = (Cy)¢ejo,r] be a measurable process C': [0,T] x Q —
R?, where R? is equipped with the Euclidean norm. For a deterministic time-net

T= () with0=1¢ty<t; <.--- <t, =T we let
t;
+ sup / |C,|2dr
1=1,...,n ti_1

DEFINITION 1.8. Letting A : [0,7] — (0, 00) be integrable and n > 1, the time-net
A consists of 0 =ty < --- < t, = T such that, for all i = 1, ...,n,

t; 1 /7
/ A(r)dr = f/ A(r)dr.
ti1 nJo

Now we obtain as part of Corollary the following result:

2

var,([4, C]|7) == sup

1=1,...,n

sup  |A; — Agl

ti—1<s<t<t;

P p

1The spaces are given in Definitions and [5.11] below.
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8 1. INTRODUCTION

THEOREM 1.9. Assume for some 0 € (0,1), sup(, .o, <0 | f(t,w, 0,0)] < oo,

v € [2,0), £ € cExp, and that
1
b ¥
< / T(r)dr
a

for some integrable Borel function T : [0,T] — [0,00). Define the weight function
A(r) =1+ f(r,0,0)]|l2 + T'(r).

T
e — @ty + / L 10 2) = £, 2

y,z)ERA+1L

2

Then one has that
sup v/nvary([Y, Z]|72) < oo

n>1
where the solution is taken from Theorem 1.5

Theorem [I.9] allows us to control the Lo-variation of non-Markovian BSDEs by
adapted time-nets where only the information of the initial data (£, f) is used.

BACKGROUND AND RELATED RESULTS: Because of applications in stochastic mod-
eling and due to the connections to non-linear PDEs, the simulation of BSDEs is of
particular importance and subject to active research (see for example [92], 17, [47],
[16], 52, [63] in the Lipschitz case, [65] [81], 26] in the quadratic case, and [33] for an
overview about various numerical methods related to BSDEs). To setup simulation
schemes, one typically considers a time discretization. First, one fixes a determin-
istic time-grid 7 = (¢;)I,, where 0 = tp < t; < --- < t, = T, and a simulation
scheme based on this grid is considered. For the Y-process this means that one
finds random variables (Y;7)i_, that are sampled and provide an approximation of
the random variables (Yz,)"_,. To study how accurate this approximation is, one
option is to consider the L,-simulation error
err,(7) := sup ||¥;, — Yff”p
0<i<n

for certain p € [2,00). For any feasible simulation scheme, the simulation error
should go to zero as the mesh-size of the grid goes to zero. Preferably there is even
a rate of convergence, which could mean that there exists a ¢, > 0, independent of
the particular grid 7, such that

i=1

%
ax |ﬁi—ti1> .

on

(7) err,(7) < ¢, (

To obtain the estimate @, it turns out to be more or less mandatory to have a
path regularity of the exact solution itself. The preferred estimate would be to have
some d;,, > 0 such that

(8) 1Y = Yillp < dp(t — 5)*

forany 0 < s <t < T, or a variant of this inequality. It is known that upper bounds
for the variation ||Y; — Y5||, also relate to differential properties of the initial data
and how these properties transfer to the solution processes. Let us review parts of
the corresponding literature:

7 Nov 2017 05:35:26 EST Prob+Stat
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1.2. OUTLINE OF THE MAIN IDEAS 9

(1) Initial data in Dq 5 or of Lipschitz type

Regularity and differential properties: Regarding Lipschitz BSDEs (the
generator is Lipschitz in z) we refer for differential properties of Y and the
representation of Z by the Malliavin derivative of Y to [34], 62, [63], [42] and
the references therein. The notion of an L..-Lipschitz functional of a forward
diffusion has been used in [92] and [9]. For quadratic BSDEs (the generator
only satisfies certain local Lipschitz conditions in z) general regularity results
are given in [2]. These general results were applied to Markovian decoupled
FBSDEs (in particular, the randomness of the data (£, f) of the BSDE is in-
duced by a forward process (X¢)icjo,r7) in [2] as well. In [27] the existence
and uniqueness of solutions to quadratic BSDEs is studied when the terminal
condition ¢ has a uniformly bounded Malliavin derivative, i.e. |D.£(+)| < ¢ a.e.
which relates to our spaces IB%;?? by Theorem The existence of solutions
to some multidimensional quadratic BSDEs, examining as a special case sub-
quadratic BSDEs, is considered in [28] under the assumption that the terminal
condition is bounded. Continuing with decoupled Markovian FBSDEs under
certain Lipschitz assumptions on the terminal condition, variational estimates
for Z can be found in [8I] and uniqueness and existence results under con-
ditions on the forward diffusion and the final time horizon 7" are obtained in

[82].

Variational properties of Y: Typically estimates of type [|V; — Y|, <
cpV/t — s (and related estimates for the Z-process) are obtained for decoupled
Markovian FBSDE. So, with terminal values of type £ = g(X7) this kind of
results can be found in [I7, Lemma 3.2], [54] Theorem 5.5] ([54] Lemma 5.1]
gives an estimate for ||D,Y; — D, Y;|,), [65, Theorem 4.4], and [26], Proposition
3.1]. The setting is more general in [92] Lemma 2.3], as there the terminal
condition is a path-dependent functional of a forward diffusion. A fully random
setting is used in [62] Corollary 2.7].

(2) Markovian decoupled FBSDEs with fractional singularities of different
types at the finite time horizon T: To handle approximation problems for sto-
chastic integrals with a singularity at time of maturity, special non-equidistant
time-nets have been used in [43] and [39]. In the context of BSDEs this idea
and these time-nets have been exploited in [48] and [87].

(3) Irregular path-dependent terminal conditions: Terminal conditions that
depend on finitely many time instances of a forward diffusion and have there
local fractional singularities have been considered in [40], the results extend
those from [48].

Now, let us indicate our contribution related to BSDEs:

(1) We improve the comparison theorem [2] Theorem 5.1] in Lemma below
where we use a generalization of Fefferman’s inequality (see Remark [5.27]).

(2) Our decoupling method can be directly applied to the above mentioned L..-
Lipschitz functionals of forward diffusions, as used in [92] and [9]: Assuming
such a functional g(X), that depends on finitely many instances of a forward
diffusion X = (X¢)¢e[o,77, we directly get the estimate

9(X) — g(X?)| < L sup [X; —X[|.
te[0,7]
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10 1. INTRODUCTION

Therefore decoupling properties of X directly transfer to & = g(X) and we may
use the results of Section L7.1] of these notes.

(3) The spaces to describe the fractional smoothness of the terminal condition in
[48] and [40] coincide with B} with ® = cI)ﬁf{_’i’i?g“’(@”’o) (in [48] with L = 1)
from Deﬁnitionbelow. So the present article generalizes results from [40] to
the fully path-dependent case where no structural assumptions on the terminal
condition nor the generator are imposed.

(4) In Sectionwe investigate the uniqueness and distributional properties of the
(Y, Z)-processes of quadratic and sub-quadratic BSDEs that are not necessarily
Markovian and that might have an unbounded terminal condition.

(5) In Section we prove that regularity properties of a BSDE in terms of
IB%:I,’ for the terminal condition £, and a similar one for the generator f, are
transferred to the solution processes (Y, Z) without structural assumptions on
(&, f). For the particular case described in item , this was partially done in
the presence of a forward diffusion in [40].

(6) Section In the literature usually estimates of the form (§), that means
estimates with the order %, are shown. This is due to Lipschitz or uniform D o
assumptions and appears in [52] Theorem 2.6, Corollary 2.7]. There regularity
results for Y and Z of the form for non-Markovian Lipschitz BSDEs were
proven under Lipschitz assumptions for the generator and under assumptions
on the Malliavin derivatives up to the second order of £ and f. In [52] Theorem
2.3] a condition M2 is used to investigate the variation of the Y-process of the
solution to a BSDE with a random linear generator. The structure of this BSDE
yields to an explicit representation of the Y process. The condition M%7 relates
to our IB%;? 2 spaces via Theorem Translated to our setting, the condition
M?1 is a condition on the predictable projection of (Dt&)¢efo,r), Whereas our
condition is a condition on (D:&)sefo,7) itself — however, the condition in [52]
is not a condition on &, but on {pr, where pr is a stochastic exponential.

Parts of our contribution are: for the regularity of ¥ we do not need to
require assumptions on the differentiability of £ (for example), secondly we can
also treat cases where we have rates in weaker than %

1.3. Notation

The spaces R™ are equipped with the Euclidean norm |z| = (327, |z;12)7 so that
[R™,|-]] becomes a Hilbert space. Given a metric space M, we let C'(M) be the space
of all continuous real valued mappings on M. For a probability space (Q, F,P) the
space of all random variables X : 2 — R, i.e. Borel measurable maps, is denoted
by Lo(£2, F,P) and equipped with the pseudo-metric

X (w) = Y(w)|
9 do(X,Y) := dP(w).
The space £,(Q, F,P), p € (0,00), consists of all random variables X : Q@ — R

on (Q,F,P) such that || X[, := ([, |X(w)|deP’(w))1/p < 00. As usual, for p = 00
we let || X|[oo 1= esssup,cq|X(w)| < oo which yields to the space Loo(Q,F,P).
By identifying two random variables X and Y on (2, F,P) when X =Y P-a.s., we
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1.3. NOTATION 11

obtain equivalence classes, denoted by [X], the quasi-normed spaces (L, (2, F,P), ||-
lp) for p € (0, 00], and the complete metric space (Lo (2, F,P),dq) with

(10) do([X],[Y)]) :=da(X,Y).

In Chapters [2| and |3| we carefully distinguish between equivalence classes and ran-
dom variables, in the later chapters we follow the standard way to identify equiv-
alence classes and random variables if there is no risk of confusion. For two real
valued random variables X and Y or R™-valued random vectors (X1, ..., X,,) and
(Y1, ...,Y,,) the notations X 2y and (X1, .., Xp) 4 (Y1, ..., Y,,) mean equality in
distribution. We shall use the Burkholder-Davis-Gundy inequalities for continuous
local martingales [80, IV.4.1] with 8, > 1 as constant, i.e. given p € (0,00) and a
continuous real-valued martingale (M;);c(o,7] vanishing at zero, we have

1 1 1
(11) — M) 21l < I sup [Me[llp < Bpll(M)7 I,
P t€[0,T]

where 3, > 1 is an absolute constant and (M)r is the quadratic variation of M
at time 7. We do not need the particular behaviour of the constants §,, so that
we use for the upper and lower bound the same constant. As conventions we use
0°:=1 and )

A~,B for EAngcA

when A, B > 0 and ¢ > 1. Finally, for a set S and A C S we define the indicator

function x4 : S — R as
() 1 :s€A
s) = :
o 0 :s¢A.
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CHAPTER 2

A General Factorization

There exist several factorization techniques for random variables and stochastic pro-
cesses that have the idea to factor a random variable or process through a canonical
space that carries the typical information about the problem one is interested in.
We will use this idea as an intermediate step to decouple in Chapter [4] the Wiener
space and to generate anisotropic Besov spaces. For the Wiener space there are two
natural choices as a canonical space: The function space of continuous functions
that yields to the Wiener measure and the sequence space RY with N = {0,1,2,....}
that yields to an infinite product of standard Gaussian measures. We use the sec-
ond approach as in [65] and [53], and extend this approach so that no particular
distribution (like the Gaussian distribution) is needed and so that it includes the
handling of the stochastic processes we work with later. The second approach is
convenient for us because we need to consider, from the very beginning, only se-
quences of real valued random variables, and furthermore, it might be generalized
to other canonical spaces than spaces of continuous functions.

Our factorization procedure yields to the operators C™ that are defined in two
steps. First, we introduce the operators C acting on random variables, then we
extend them to the operators CM acting on random continuous functions defined
on complete metric spaces, that are locally o-compact.

2.1. The operators C and C"

We shall work with two probability spaces (Q¢, F%,P%), i = 0,1, and random vari-
ables (£} )ker, &+ Q° — R, where I = {0,...,K} or I ={0,1,2,...}, and assume
that

(Cl) F&ii=0(& 1 ke,

(C2) Fi= F&i VN, where N := {A' € Fi : PP(A) = 0},

(C3) (EN)ker and (&})rer have the same finite-dimensional distributions.

If we omit the superscript i in QF, F¢ P?, (€1 )ger, or F&, then we consider one of
the both probability spaces together with the corresponding random variables and
operators introduced later. Let B(R?) be the o-algebra generated by the cylinder
sets on RY, and let P¢ be the law of the map

Jo: Q=R with  Jo(w) = (&x(w))rer-

By the assumption (C3) the measure P¢ is the same for both cases i = 0,1. More-
over, let us assume another probability space (R, R, p), and define

J:RxQ—= RxR' with J(r,w):= (1, Jo(w)).
For the construction of the operator C we start with two lemmas:

13

7 Nov 2017 05:35:26 EST Prob+Stat
Version 2 - Submitted to Memoirs of the AMS



14 2. A GENERAL FACTORIZATION

LEMMA 2.1. For any R® F-measurable random variable X : Rx ) — R there is an
R ® F¢-measurable random variable X¢ : R x Q — R with (p @ P) (X = X¢) = 1.

PRrROOF. We show that the p ® P-completion of R ® F¢ contains R ® F. It is
sufficient to prove that A x B € R®f§p®P for A€ R and B € F. We find a
B¢ € F¢ such that P(BABS) = 0. Hence (A x B)A(A x BY) = A x (BAB?) is of
p ® P-measure zero. Because of A x B¢ € R ® F¢ we can conclude the proof. [

LEMMA 2.2. The following assertions hold true:
(1) For each R ® F&-measurable random variable X : R x Q — R there exists a
random variable X : R x R — R such that

X:(RxQ) L (RxR) SR
(2) For R ® F¢9-measurable random variables X, X' : R x Q° — R with (p ®
PY)(X = X') =1 one has (p&P)(XoJ! = X’oJ) = 1 where the factorizations
X =X0J% and X' = X’ o J° are obtained by part (1).

PROOF. (1) The map J generates the o-algebra R ® F¢. Hence we apply the
functional representation from the Factorization Lemma [7, p. 62] and (1) follows.
(2) The assumption implies by a change of variables (p @ P¢)(X = X ) =1, and by
another change of variables the conclusion of assertion (2). O

The above lemma enables us to introduce the operator C that maps an equivalence
class [X] from Lo(R x Q) to the equivalence class [X o J!] in Lo(R x Q') so that
[X] and [X o J!] have the same law.

DEFINITION 2.3.
(1) We define the map C : Lo(R x Q°) — Lo(R x Q) by
C(X) = C([X]) = [X o],
where X € [X] is an R ® F*C-measurable representative of [X].
(2) We define the map Cp : Lo(Q°) — Lo(Q') by
Co(X) = Co([X]) = [X o Jg],

where X € [X] is an F&-measurable representative of [X].

Part (2) of Definition corresponds to the case where R = {r¢} is a singleton.
We gave a separate definition since Cy will play a particular role later on. Basic
properties of Cy and C are summarized in Proposition [2.5]below. For its formulation
we need a class of functionals ® : Ly(R) x - -- x Lo(R) — R that, for example in the
case (R, R,p) = ([0,1],B([0,1]), A) with A being the Lebesgue measure, excludes
Dirac functionals ®(f) := f(rg), where ro € [0, 1] is fixed.

DEFINITION 2.4. A functional ® : (Lo(R))™ — R is called consistent provided that
for all probability spaces (4, .4, Q) and jointly measurable X;,....X,, : Rx A - R
the map Fx : A — R with

FX(W) = (I)(Xl('aw)a ,Xn(7W))
is measurable and Q(Fx = Fx/) =1 if (p@Q)(X; # X[)=0fori=1,...,n.
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2.1. THE OPERATORS C AND cM 15

PROPOSITION 2.5. For X, X1,..., X, € Lo(Rx Q%) and Y; € C(X;), i =1,...,n,
the following holds true:

(1) & €Co(&y) for keI
C is a linear zsometry and bijection.

(2)
(3) (Viyooy Vo) 2 (X0, X,).
(4)

For a Borel function g : R® — R one has
g(Yl, ey n) S C(g(Xl, . ,Xn)>
(5) If ®: Lo(R) x -+ x Lo(R) = R is consistent, then
O(Y1,...,.Y,) € Co(P(X1, ..., Xpn)).

(6) If X is R @ F&C-measurable, then there is an R @ F&'-measurable Y € C(X)
such that for all r € R one has

Y (r,-) € Co(X(r,-)).
(7) ForY € Lo(RxQY) one has Y € C(X) if and only if there is a null-set N C R
such that for allr € R\ N one has

Y(Tv ) € CO(X(Ta ))

PRrROOF. (1) follows from the definition of Cy.

(2) LINEARITY: Let a,b € Rand X,Y € Lo(RxQ0), and take R ® F&-measurable
representatives X¢ € [X] and Y¢ € [Y]. Then aX® + bY* € a[X] + b[Y]. From
Lemma [2.2] we get that

X)) = XS0 %) and Yé(y) = YEoJn),

for all n € R x Q0. Defining point-wise

T :=aX? + bi//\ﬁ,
we get that T : R x R’ — R is measurable and

T(J%(n)) = aXS(n) +bY(n) forall ne RxQ°
so that T'(J) € [aX® + bY¢]. By definition of C,
T(J') = aXéo J' +bY€ o J' €ClaX +bY),

but is also an element of aC(X) + bC(Y).

ISOMETRY: Because the laws of J° and J' coincide, it follows that X and the
representatives of C(X) have the same distribution. As d(X,X’) = d(X — X’,0)
the property that C is an isometry follows immediately.

BIJECTION: Since C is an isometry, it is an injection. Now let Y € Lo(R x Q')
and take Y¢ to be an R@F*!-measurable representative of [Y]. Then there is a

measurable V¢ : R x R! — R such that
Yé(n) =YéoJ (n) forall 5eRxQ.
Now 7 +— Yéo JO(n) is R ® F& -measurable and
(V€0 JO) =y].
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16 2. A GENERAL FACTORIZATION

(3) The characteristic functions of (X1, ..., X,,) and (Y7,...,Y},,) coincide, because
for all (ty,...,t,) € R™ and Y}, € C (X}) we have

/ eizz=1tky’“d(p®Pl) _ / ez’Z};:lthkd(p@]pO)
RxQL RxQO0

where we used (2) and that C keeps the distribution invariant.

(4) We choose X¢, ..., X§ to be R ® F&-measurable representatives of the classes
[X1], ...y [Xn], so that

X{ () = X 0 1°0)

fori = 1,...,n and all n € R x Q°. Next we define the measurable functional
Tz :RxRI - Ras

T7(¢) = g(X5(Q), -, X3 (Q))
so that Ty 0 JO = g(Xf, ..., X§). By definition of C we get that

Clg(XE, ..., X)) = [Tz 0 1],
On the other side, by definition of Tz we have that
TyoJt :g()?fojl,...,)&oﬁ),
which is p ® Pl-a.s. the same as g(Y1,...,Y,), where Y; € C(X;). This concludes

the proof.
(5) We choose R® F&0-measurable representatives X* € [X;], define Y := X¢oJ?,
and get

Fye') = ®(X(, T3 ") X5 (5 T3 (@),

Fye() = @(X{(, J5@”), s Xy (I ))).

Defining ¥ : RT — R by ¥(¢) := <I>(X1£(~,C),...,Xf\,(o,§)), our assumptions yields
to a measurable map and Fye = ¥ o J§ and Fye = ¥ o J}. Consequently, Fy: €
Co(Fxe¢). Finally, our assumption yields that Fye and Fx belong to the same
equivalence class, and Fy« and Fy belong to the same equivalence class, so that
the proof is complete.

(6) We have that X = X 0 J° for some X, which implies X(r) = )?(7', JQ) for all
r € R, and define Y := X o J!. By construction this implies that Y (r) = X (r, J})
for all r € R.
(7) Choose X*¢ € [X] to be R ® F& -measurable and Y& := X¢0.J! so that

Y& eC(X) and YS(r) € Co(X5(r))

for all 7 € R. Moreover, P*(X%(r) = X(r)) =1 for r € R\ N’ where N C R is a
null-set, so that

Co(X*(r)) = Co(X (r))
for all r € R\ N’. Hence, Y&(r) € Co(X(r)) for all r € R\ N’. The claim now
follows from the fact, that for Y € Lo(R x Q') we have that Y € C(X) if and only
if PL(Y(r) = Y4(r)) =1 for all r € R\ N, where N” C R is a null-set. O
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2.2. THE OPERATORS C AND ¢ FOR STOCHASTIC PROCESSES 17

We extend our definition of C to decouple later random generators of BSDEs. Let
M be a complete metric space that is locally o-compact, i.e. there exist compact
subsets ) # K1 C Ky C ..., such that Kn = K, and M = Uflef{n. For the
following we recall that C'(M) is the space of continuous R-valued functions on M.

DEFINITION 2.6. Given a measurable space (A, A), we let f € Lo(A; C(M)) if and
only if f: A x M — R is a Carathéodory function, i.e. f satisfies that

(a) o = f(a, ) is measurable for all x € M,

(b) z — f(«,z) is continuous for all a € A.

If (A, A) is equipped with a probability measure Q, then the space Lo(A; C(M)) is
the space of equivalence classes with f ~ g if Q(f(z) = g(z),z € M) = 1.

REMARK 2.7. Equivalently, a Carathéodory function is a measurable function f :
A — C(M), when C(M) is equipped with the smallest o-algebra B(C(M)) such
that for all x € M the maps §, : C(M) — R with §,(f) := f(z) are Borel-
measurable.

The next lemma extends the operator C to C'(M)-valued random variables.

LEMMA 2.8. For f € Lo(R x Q% C(M)) there is a g € Lo(R x QY C(M)) with
g(z) € C(f(x)) for all x € M. If g1 and go satisfy this property, then g1 = g
(p @ P1)-a.s.

PROOF. Proposition [2.5implies that (f(z))zear and (h(2))scp have the same
finite-dimensional distributions for h(x) € C(f(x)), so that the result follows from

Proposition O
Now we are ready to introduce the extension CM of C that maps equivalence classes

from Lo(R x Q% C(M)) to Lo(R x Q';C(M)) while keeping the distributional
properties of the equivalence classes.

DEFINITION 2.9. We let
CM: Lo(R x Q% C(M)) — Lo(R x QY C(M))
such that CM([f]) is the unique equivalence-class whose representatives g sat-

isfy g(z) € C(f(x)) for all z € M. Moreover, we define CM(f) := CM([f]) for
€ Lo(R x Q% C(M)).

2.2. The operators C and CM for stochastic processes

In this section we specialize to stochastic processes X : [0,7] x © — R, where
T € (0,00) is fixed. This means, that we complement some results from Section
])in the case (R, R, p) = ([0, T], B([0,T]), \/T) where X is the Lebesgue measure.
Here we distinguish more clearly between the operators C and Cy from Definition
We will use the following notation:

Qy = Q Qr = [0,T] xQ
%5 = F¢ 5 = B([0,T)) @ F¢
Y = F Yr = B(0,T])®F
Py = P Pr = (AxP)/T
Co from Definition Cr = C
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18 2. A GENERAL FACTORIZATION

REMARK 2.10. One might also consider the infinite time interval [0,00) by the
choice (R,R,p) = ([0,00),B([0,00)), 1), where (for example) u is a probability
measure with the same null-sets as the Lebesgue measure.

First we show how continuity and measurability properties are transferred by the
operators Cy and Cp. Here we use the following convention:

CONVENTION 2.11. Let S € {0,T} and assume a sub-o-algebra Gs C Xg. We will
interpret Lo(Qs,Gs,Ps) as the space of equivalence classes [X] € Lo(Qgs, s, Pg)
that contain a Gg-measurable representative. Similarly, Lo(Qs,Gs,Pg; C(M)) is
the space of equivalence classes [X]| € Lg(Qg,Xg,Ps;C(M)) that contain a
(Gs, B(C(M)))-measurable representative.

PROPOSITION 2.12. Fori = 0,1 assume right-continuous filtrations G* = (G} )ie[0,1]
with gg’ C F' such that Qé contains all null-sets of F* and

Co(Lo(9°,G)) C Lo(RY,G})  for all t € 0,T).

Then the following assertions are true:

(1) If X is path-wise continuous and G°-adapted, then there ewists a path-wise
continuous G'-adapted process Y € Lo(2k) with

Y (t) € Co(X(t)) forall te]0,T).

(2) One has Cp(Lo(2},P2)) € Lo(Qf, Pr), where Pi are the predictable o-alge-
bras generated by the G'-adapted processes with paths that are left-continuous
and have limits from the right.

ProOF. (1) Taking B(t) € Co(X(t)) to be G!-measurable, Proposition 3)
implies that (8(t))¢cjo,7] and (X(t))¢cjo,r] have the same finite-dimensional dis-
tributions. For M = [0,7] we can use in the proof of Proposition the sets
Ki=Ky=---=M and Dy = A= [0,T]NQ. Furthermore, in the proof of Propo-
sition we note that Y (¢) is defined as the a.s.-limit of §;,, where we may take
now t, 1 t. By our assumption 3;, € Lo(Q',G} ), so that Y (¢) is G} -measurable.
The facts that (Y(t))ic[o,r] is continuous and a modification of (B;)icjo,r Were
proven in Proposition

(2) Applying [58] p. 133, step (b) of the proof of Lemma 2.4] we can approximate
any predictable process X € Lo(Q%,P%) by a sequence of continuous adapted
processes X" € Lo(Q%,PY) with d%(X™, X) —, 0 (first we approximate X by
bounded processes by truncation, then we use [58]). Applying part (1), we find
continuous adapted processes Y such that lim, d%-(Y"™,Y) —, 0 for Y € Cr(X).
Because of Y™ € Lo(Q}, P7) we can choose Y € Lo(QF, P7) as well. O

The next proposition is needed later for technical reasons:

PROPOSITION 2.13. The following assertions hold true:

(1) For M = R, f € Lo(Q%;C(M)), X1,...Xa € Lo(Q), g € CHM(f), and
Y, eCr(X;),i=1,....d, one has that

9~ Y () € Cr(f(, X()))-
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2.2. THE OPERATORS C AND C™ FOR STOCHASTIC PROCESSES 19

(2) Let S € {0, T} and let M be a complete metric space that is locally o-compact.
If one has that Cs(Lo(Q%,G2)) C Lo(Q%,GL) for o-algebras G C X%, then

C5' (Lo(Q28, G5; C(M))) C Lo(Qs,G5: C(M)).

PROOF. (la) First note that Lemma [A.2] implies

(f(t,X())teo1] € Lo(QF) and  (g(t, Y (1)))iepo,r) € Lo(QF).
(1b) Define for i« = 1,...,d, n > 1l,a; € R and a Borel-measurable partition
Ur—o Br = R with By, # (0 the processes

Ai(t) = iaklgk(){i(t)) and  A(t) = (A1(t), ..., Aa(t)),

Di(t) = Y alp,(Yi(t) and D(t) = (Di(t),..., Da(t)).

By Proposition we conclude
Cr ((f(t, A(t)eepo.1)

— i CT((f<t7an1>-' CLnd>1B,L1 --XBV,Ld(Xl(t)""7Xd<t)))t6[07ﬂ)

ni,...,ng=0

= nl,-gdzo CT ((f(t, Apyyeeey and))te[(),T])
Cr ((Lsm xoeox By, (X1(t), .. ,Xd(t)))te[o’T])

(g(tv Anyy-e- 7and))t€[O,T](1Bn1 XX Bnp, (Yl (t)v s >Yd(t)>)t€[0,T]

= (g(tv D(t)))tG[O,T]7
where the multiplication of equivalence classes is defined as usual.

(1c) For L, (z) := i,:lw ol k+1)(x) with z € R we let

A7 (1) == Ln(Xi(t)) and  Di(t) := Ln(Yi(t))

so that d%(A?, X;) —, 0 for i = 1,...,d. Proposition yleldb D € Cp(A?) and
d% (D7, ) = d5(Cr(AD),Cr(X;)) —n 0. Because of step (b) and because Cr is an
isometry, we obtain the estimates

dry (Cr((f(t, X (#))ieio,): [(9(t, Y ())seio,1])
di (Cr((f(t, X ())eero,m), Cr((f(t, A" (£)))eepo,11))
+dg (Cr((f(t, A™(1)))repo,m): (gt D™ (1))seior)])

(]

IN

+d1T ([( (t Dn( )))tE[O T]] [( ( (t>))t€ OT])
= dy ((f(t, X(¢ M)eeqo,r)s (f (A" ())eejo, 1))
+di ((g9(t, D™(t)))sejo,r15 (9(E, Y (£))teo,1]) -

Because f(t, A"(t)) —n f(t, X (¢)) for all (t,w) € 2%, we have that
dy ((f(t, X (1)))efo 11> (F (£ A™(£)))rego,r)) —n 0.
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20 2. A GENERAL FACTORIZATION

For the last expression we use that D* —,, Y; in probability implies the convergence
(g(t, D™(1)))tejo,1) —>n (9(t, Y (t)))tefo,r) in probability as well.

(2) From Proposition it follows that the equivalence-class C¥(f) contains a
(GL, B(C(M)))-measurable representative. O

We conclude with some comments on part (5) of Proposition

REMARK 2.14.

(1) Let Ly([0,T]) be equipped with the Borel o-algebra, obtained by the metric

of type from Section and assume a @] B(Lo([0, T]))-measurable ¥ :
(Lo([0,77))™ — R such that

(I)(fla (LX) fn) = \P([flL sy [fn]) for f17 7fn S ‘CO([OvT])

Then & is consistent.

In fact, the space Lo([0,77]) is separable so that its Borel o-algebra is gen-
erated by the open balls. We equip Lo([0,7]) with the smallest o-algebra
B(Ly([0,T7])) such that ¢ : Lo([0,T]) — Lo([0,T]) with ¢(f) := [f] is measur-
able. A measurable process X : [0,7] x A — R generates a canonical map
X : A — Lo(]0,T)) that is measurable because

| X (tw) = f(t)
{weA / T X (ha) = jﬁ”ﬁ<a}eA

for all e > 0 and f € Ly([0,T]). Hence we can finish the proof as the composi-
tion of two measurable maps is measurable.

(2) For a measurable ¢ : [0,7] x R™ — R and g = (g1, ...,9n) € (Lo([0,T]))™ we
obtain a consistent functional by

T
) :/0 Pt IOX (T 19(t,9(8) < oo} OE-

Applying Proposition[2.5{5) to the function ¢(t, z) := |z[PAL with L, p € (0, 00)
and x € R", we get that

T T
/ (Y @®)[P A L)dt € Co (/ (X ()P A L)dt)
0 0

for X(t) = (Xy(t), ..., X,,(t)) and Y( ) = (Yi(), .. Y,,( ), where X; € Lo(Q%)
and Y; € Cp(X;) for i =1,..., 1. Assuming that fo | X (t,w)Pdt < oo for all
w € QO we have

T T
Jim </O (|X(t,w)p/\N)dt> :/0 X (£, w)[Pdt

and that (fOT(|Y(t)\p A N)dt)n>1 is a Cauchy sequence in probability. As this
sequence converges for all w € Q! (possibly to infinity) we get that

(a) P'{w € Q' : [ [Y(t,w)|Pdt < oo}) =1,
() Jo YOPX G v (opasconydt € Co (Jy 1XM)]Pt).
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CHAPTER 3

Transference of SDEs

In this chapter we apply the method from Chapter [2] to the Wiener space. The
main technical result is Theorem [3.3] below and gives a functional map to move
a BSDE from one stochastic basis to another one. For this we do not need any
uniqueness of the solution of the BSDE that is moved. By using an independent
copy of the Wiener space we generate in Chapter [6] below a twisted copy of our
BSDE by this procedure. The comparison of the original BSDE with the twisted
copy will yield to the notion of anisotropic smoothness. Theorem [3.3] might also be
exploited to map a BSDE to the canonical path-space of continuous functions or
from the canonical path-space back to some other space.

3.1. Setting

For i = 0,1 assume complete probability spaces (¢, F*,P*) hosting d-dimensional
Brownian motions

W= (Wti)te[O,T] = ((Wti,lv "'7Wti,d)T)t€[0,T]7

where all paths are assumed to be continuous and W = 0. Taking the transposed
vector means also that the Brownian motion is considered as column vector. Define
the filtrations F* = (F});co,r) by F} := o(W! : s € [0,t]) VN* with N being the
P*-null-sets. Replacing F* by F; we will assume that F* = F7.. Furthermore, we
equip Lz ([0, 7]; R?) with the orthonormal basis (hy ® ei)ﬁg,i:p where (hy)?2, are
the Lo([0, 7'])-normalized Haar functions E| and ey, ..., ¢4 are the unit vectors of RY.
The corresponding systems (£})kes of random variables from Section are given
by

30

T
(12) B :={gi;:k>0,j=1,..,d} with gj; ::/ i (£)dW}
0

where we take as the representative the finite differences of the j-th coordinate of
W* generated by the Haar function hy. Because all paths of W* are continuous we
have

o(Wi;te[0,T]j=1,....d)=0(gk,; : k=0,1,2,...and j = 1,...,d).
The predictable o-algebras on (¢, F*, P’ F) are denoted by P.

1The Haar functions are based on the dyadic intervals (TIQ_—,}, TZL,] with L =0,1,2,... and
I=1,...,25).

21
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22 3. TRANSFERENCE OF SDES

2. Results
Before we state the main result we need two lemmas.

LEMMA 3.1. One has th, e Co(W, ) for j = 1,..,d and t € [0,T] so that
CO(LO(QOP/—';SO’PO)) - LO(leftlv]Pl) fOTt € [OvT]
PROOF. The construction and Propositionn(l) imply W', € Co(W7;) when-

ever t = Tk/2"™ with n = 0,1,2,... and &k = 0,...,2". For a t 6 (0,7') not of this

form we find dyadic ¢, € [0,T] with ¢, — ¢. Hence I/VtZ j = Wi fori=0,1in

probability and Proposition [2.5(2) yields W}, € Co(W};). The second part of the
statement is a consequence of the first one. ([l

LEMMA 3.2. Assume that K° € L2(Q%,P°). Then, for all j =1,...,d,

/Kd 6(30(/ KOdW3j>,

where K1 € Cr(K°) is any Pl-measurable representative.

PrROOF. Let L > 1,0 = t& < ... < t£ = T, and (@?’L)Z:L...,L such that
Le Ez(QO"FEf,l)’ and K>F = ZlL:l @?7L1(tf_17tf](t) such that

T
]EO/ |KY — KPP 2dt -0 as L — oo,
0

see [58, Lemma 3.2.4]. Using Proposition and Lemma letting <pll’L €
Co(ga?’L) and Ktl’L = Zle gall’Ll(tL ¢11(t), we get

1—1°71

T L
0 0 _ :
Co (/0 K th,j> = Jim Gy (Z - Wi N))

> lim ZgﬁlL Wik, = Wi )

L—oo

= /O Kl dWw};
where the limits are taken in Ly(Q2!) and K! is a P'-measurable process that
sati 1 (T 1,L2 OS] £ 1,L
satisfies E' [ |K} — K, "|*dt — 0. Because of Proposition (7) we have K" €
Cr(K%E) so that K' € Cr(KY) as well. O
For integers N,d > 1 and (92, F,P, W) being one of the quadruples (Q¢, F* P* W*)

we consider

T d T
(13) L=t [ fekds =Y [ g )aw,
t it

where
(S2) f and g; are (P, B(C(RY)))-measurable,
(83) L= (Lt)ico, 1), Lt : 2 — R, is continuous and F-adapted,
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3.2. RESULTS 23

(54) K = (Ky)iepo.r)s Ki : @ — RY, is P-measurable,

(95) E fy [If(t, Kol + |g<t,f<t>£dt < o0,
(56) (&, f,g9,K,L,W) satisfies (13)) for ¢t € [0,T] P-a.s.

Our main technical result is:
THEOREM 3.3. Assume that (&9, f0, g%, K°, L%, WY) satisfies (S1)-(S6). Let £' €
Co(€Y), f* e CEY(f°) and gj € C%N(g?) be (P, B(C(RN)))-measurable, L' €

C([)O’T} (L°) be F'-adapted and K}' € Cr(K}) be P*-measurable forl =1,...,N. Then
(€L, f gt KY LY, W) satisfies conditions (S1)-(S6).

PRrROOF. The existence of suitable measurable representatives can be deduced
from a combination of Lemma [3.1] and Propositions 2.12] and 2.13] Using Proposi-
tion [2.13|1) we have for ¢ € {f, gj} that (¢'(t, Kl))tem € Cr ((0°(t, K9))tefo))-
Continuing with Remark 2) yields that condition (S5) is satisfied for f1(t, K}')
and g*(t, K}). For a fixed t € [0,T] we have

Co( L) = Co (&) +co</ (s, KO)d ) Zc()(/t sKO)dWO>.

Using Remark 2) with ¢(t, z) = x, we have

T T
/ fH(s, Kl)ds € Co ( / f°<s,K2>ds>
t t

for all ¢ € [0, 7). Similarly Lemma [3.2) gives, for t € [0, T7,

T T
/t H(s, KW}, € G (/t g?(SaKS)dwﬁj)- =

Later, in our application we need that certain properties of the generator transfer.
For this purpose we use the following

REMARK 3.4. Assume that h° : Q% — C(RY) is (P°, B(C(RY)))-measurable and
ht e C?N (hO) is (P, B(C(RY)))-measurable. Then the following holds:

(1) hO(-,-,0) £ h1(-,-,0) with respect to A x PO and A x P'.
(2) Given a continuous H : RN x RN — [0, 00) such that, for all (t,w°, zg,21),

|RO(t,w®, z0) — RO(t,w°, z1)| < H(zo,x1),
then we can choose h! such that, for all (t,w!, zq,x1),
IRt (t, w, z0) — (L, W, 21)| < H(zo, 7).
PRrOOF. (1) follows from Definition and Proposition
(2) Given z € RV, we have by construction h'(x) € Cr(h°(z)), so that
(h*(z0), ' (21)) £ (h%(x0), h°(21)) for all zg,x; € RY.
This implies that
I8 (20) — B (@1) || 1o 1) = 1B (20) — B (21) || 1. 09y < H (w0, 1)

Hence, letting
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24 3. TRANSFERENCE OF SDES
010
{(t,w") €[0,T] x Q' : |h'(t,w', 20) — W' (t,wh, 21)| < H(20,21)
for all zg,z1 € RN}

{(t,w") €[0,T] x Q' : |p'(t,w', 20) — W' (t,w', 21)| < H(20,21)
for all zo,z; € QV},

we have that Q7. € P! and Pp(Q}, o) = 1. Setting
~ N
hl = XQ%’Uhl € C$ (ho)7

we obtain a (P!, B(C(RY)))-measurable map as desired.

Prob+Stat

7 Nov 2017 05:35:26 EST
Version 2 - Submitted to Memoirs of the AMS



CHAPTER 4

Anisotropic Besov Spaces on the Wiener Space

In this chapter we introduce anisotropic Besov spaces on the Wiener space by
the decoupling method from Chapter 2] The spaces are designed such that non-
linear conditional expectations, that are generated by BSDEs, map these spaces
into itself (see Chapter @ This fact will provide variational estimates for solutions
to BSDEs. Our approach to define anisotropic Besov spaces is very flexible as it
allows different types of spaces, including the classical spaces obtained by the real
interpolation method.

4.1. Classical Besov spaces on the Wiener space

In this section we introduce the classical Besov spaces on the Wiener space obtained
by the real interpolation method. To do so we first recall the real interpolation
method and the concept of Banach space valued random variables.

4.1.1. Real interpolation method. For detailed information about the real
interpolation method the reader is referred (for example) to the monographs [10],
[11], or [86]. To define the method in the general context, we say that two Banach
spaces (Ey, E1) form a compatible couple provided that there is a Banach space X
such that Fy and E; are continuously embedded into X. By this assumption we
can define Eg + Ey := {x = 29 + 21,20 € Fo,x1 € E1}, where the sum is taken in
X. Afterwards, X can be taken to be Fy + Ey if

2l B+ 2y := inf{||zoll&, + [|21]|E, : © = 20 + 21,25 € Ei},

see [11], Lemma 2.3.1]. Assuming additionally that E; is continuously embedded
into Fy, which is our typical case later, we can take X = Ej itself.

DEFINITION 4.1. Given a compatible couple (Fy, E7) of Banach spaces and x €
Ey+ Eq and t > 0, we define the K-functional

K(z,t; By, Er) := inf{||xo|| g, + tlz1l|lE, : © = 2o + 21, 2; € E;}.

For 6 € (0,1) and ¢ € [1,00] we let (Ey, E1)g,4 be the real interpolation space of
all x € Ey + E; such that

||.13||(E0’E1)97q = Ht_eK(Z‘,t;Eo,El ) < 0.

)HLQ((O,oo),%

To explain the role of the parameters (6, ¢) let us begin with some properties of the
real interpolation method:

25
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26 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

PROPOSITION 4.2 ([86l Section 1.3.3]). Let (Ey, E1) be a compatible couple of Ba-
nach spaces, 0 € (0,1), and q € [1,00]. Then one has the following:

(1) (Eo, E1)o,q = (E1, Eo)1-9,4 for 0 € (0,1) and q € [1, 00].

(2) (Eo, Er)o.q0 C (Eo, E1)g,q for 0 € (0,1) and 1 < gy < 1 < 0.

(3) If Ey is continuously embedded into Ey, then

(Eo, E1)ay,q0 € (Eo, Ev)oy,q, for 0<61 <6p<1 and qo,q1 € [1,00].

If we assume that £y = L, and that F; C L, is a subspace that describes certain
regularity properties with || - ||, < || - ||, then we are in the position of Propo-
sition 3), The parameter § becomes the main regularity parameter, and for a
fixed 6, the parameter ¢ becomes another regularity parameter, that can be inter-
preted as a fine-tuning parameter. The ordering in Proposition (3) is also called
lexicographical ordering.

4.1.2. Banach space valued random variables. Given a separable Banach
space X and a probability space (2, F,P), a map F : Q — X is measurable if it is
measurable with respect to (F, B(X)), where B(X) is the Borel o-algebra generated
by the norm open sets in X. For p € (0, 00] we define

IFlex = IFllx@) = [IFlx]],
E;((Q) = {F:Q — X measurable, ||[F|1x < oo},

and let Lff (€2) be the corresponding space of equivalence classes where we identify
random variables F, G : © — X whenever P(F = G) = 1.

4.1.3. Besov spaces on the abstract Wiener space. We assume a sepa-
rable Hilbert space H, a complete probability space (2, F,P), and an iso-normal
family of Gaussian random variables (gn)nem, gn : 2 — R, ie.

Egr, =0 and Egngr = (h,k) forall h ke H.
For ay,...,a, € R and hy, ..., h, € H this implies

Q1 Gh, + -+ nGh, = Jarhi+-anh, @8-

that means that (g)nen is a Gaussian process. W.lo.g. we may assume that
F is the completion of o(gp, : h € H). Let (h,)S2, be the normalised Hermite-
polynomials, i.e. h,, : R — R with hg = 1 and

h e 1 22 d" _a? ¢ 1

x):=(—1)"—=e?2 ez for n>1.

Letting vn be the standard Gaussian measure on RY, the Hermite polynomials
form an orthogonal basis in Ls(R,7;). Now we are in a position to define the
Wiener chaos:

DEFINITION 4.3. Let (ex)rer € H be an orthogonal basis of H. Given n > 1, the
space (of equivalence classes)

H, = span{thk(gek) : an = n} C Lo,

kel kel

where the closure is taken in Lo, is the n-th Wiener chaos. For n = 0 we let H be
space of all equivalence classes that contain a constant.
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4.1. CLASSICAL BESOV SPACES ON THE WIENER SPACE 27

The space H,, does not depend on the choice of the orthogonal basis (ex)rer C H.
Moreover, one has the fundamental Wiener chaos expansion

LQ(Qa]:a P) = @?LO:OHna
in particular the spaces H,, and H,, are orthogonal for n # m. Letting
Pn:LQ_)HngIQ

be the orthogonal projection onto the n-th chaos, we define the Hilbert space

Dy = {5 € Lot €1, , =Y (n+ DIIPLI3 < OO} :

n=0

As Malliavin derivative we take D : Dy o — L with

D (H hy, (gek)) = Zthk(gek)h;u (ge.)er-

kel lel k#l

By definition the elements of D » are equivalence classes from Lo, D is defined
on equivalence classes and maps to equivalence classes in L. When needed, we
interpret DF as an element of £(Q) or of E]gd (Qx1[0,T))if H= Lgi([(), T)). Tt is
known that

"9
Df(ghm""ghn) = Z Tiﬁ(ghl""’gh")hk
k=1

for (say) f € Cg°(R") and hq,...,h, € H. If p € (2,00), then we let
Dy = {& € Dug: €5, , == I€IF + I1DENT s < oo},

which is consistent with the case p = 2. The spaces Dy ,, are known to be Banach
spaces (as p € [2,00) one can use the completeness of Dy 5 and L,, and Fatou’s
lemma). Moreover, we set

(14) Bze),q = (LP7D1,p)9,q.
In the case dim(H) = n we identify Lo with Lo(R™, B(R™),~,,) and use the family
J(&1,eeiln) R" — R given by

9,y 5n)($1a---7$n) = §1$1 +“'+£n$n~

We denote these particular Besov spaces by ]BZQ(R”, 7). To motivate the decou-
pling method and the corresponding Besov spaces introduced in Sections and
below, we describe the spaces Bg,q(R”, ) by decoupling:

THEOREM 4.4 (|46 Theorem 3.1]). Let p € [2,00), § € (0,1), ¢ € [1,00], and
feLy,R",v,). Then
(15)

_8
2

flg) — fltg+ /1 —1t2g")

1Fll8s (ko ey ~egg 11 + H(l -

PlL,([0,1),74)

where cEa = 1 depends uniquely on (p,0,q), and g and ¢' are independent R™-
valued random variables with law y, .
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28 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

PRrROOF. To derive our formulation from that one in [46] we consider an n-
dimensional Brownian motion (W;)¢cjo,1) with respect to a filtration (F).e(o,1) and
notice (cf. Lemma below) that

(16) LF W) = E(F(WD)IF)lp ~2 [1f (W) = F(We + W] = Wi])lp,
where (W{);e[o,1] is an independent copy of (W¢)e(o,1). If we set,

Wi = W+ (W] = W),
then we obtain from [46] Theorem 3.1] and the equivalence

k—w*

(A7) I fllag e ~ Il + 7w = |

Lq([0.1),5%5)
Finally, because (W7, Wl(t’l]) and (g, tg++/'1 — t?2¢’) have the same law, we conclude
the proof. ([

Theorem generalizes results from [45]. In the formulation of Theorem we
use an isotropic decoupling, which means that the Gaussian structure ¢ is uniformly
replaced by tg++/1 — t%2¢’. Instead, the right-hand side of uses an anisotropic
decoupling in the larger Wiener space based on the Brownian motion (W).eo,1)
as the replacement of (Ws),eo,1) is (Wg(t"l])se[oﬁl], i.e. only part of the Gaussian
structure is decoupled. This anisotropic decoupling in is the key idea of [40] to
obtain estimates for the variation of BSDEs, an isotropic decoupling in the larger
Wiener space could not be used in this context as explained in Remark [I21] below.

4.2. Setting

For d > 1 and T > 0 we fix two standard d-dimensional Brownian motions W =
(Wi)eepo,ry and W’ = (W{)e(o,r], where all paths are assumed to be continuous
with Wy = 0 and W/ = 0, that are defined on complete probability spaces (2, F,P)
and (', F',P"), where F and F’ are the completions of o(W; : t € [0,T]) and
o(W/ :t € [0,T]), respectively. We let

Q=0xQ, P=PxP, 7::.}'@]:’]?

and extend the Brownian motions W and W' canonically to Q x €. Given a
measurable function ¢ : (0,7] — [0, 1], we let

(18) Wﬂ=£ﬂ—%@%ﬂm+£w@%ﬂ

and again assume continuity for all trajectories and that W, = 0. For example, for
0 <a <b<T, this definition yields to

W, + 0<t<a
WX — W, + W, —W! a<t<b P-as.

a

Wo+ (W, —Wo)+ W, —W,) : b<t<T

The process W¢ is a standard Brownian motion and (F)scjo,r will denote its
P-augmented natural filtration, i.e.

Fli=oc(Wf:5€[0,t]) VN,

7 Nov 2017 05:35:26 EST Prob+Stat
Version 2 - Submitted to Memoirs of the AMS



4.3. DEFINITION OF ANISOTROPIC BESOV SPACES 29

where N are the P-null-sets from F. Identifying a € [0, 1] with the function ¢ :
(0,T) — [0,1] that is constant a, we agree to take the versions
Wo=W and W'=W"

To apply the results from Chapter [3] we use the pairing between

(57‘;0’F7F07WO’BO) and (ﬁ"F%p?F’]F‘Ap?W(p’BLP)’
where F¥ := F£, F¥ = (F)icjo.r), and BY is defined like in for ¢ € {0, ¢}.
The corresponding operators Cg and C3 from Definitions and are denoted
by Cs(p) and CM (), respectively.
CONVENTION 4.5.
(1) If needed, we extend a random variable £ : 2 — R to E: Q=R by g(w,w’) =

¢(w). The extension ¢ is measurable with respect to F°. In this sense we can
apply the operator

CO(@) : LO(QPFO) — LO(ﬁa ‘/—Ap)
to &. To simplify the notation, E will be usually denoted by £ as well.

(2) For a random variable £ : 2 — R we denote by £¥ the elements of Cy(p)(§)
and, for 0 < a < b < T, by £ the random variable £X(b1 | i.e.

£ € Colp)(§) and 0 i gxcon,
Because of Lemma [3.1] this notation is consistent with the definition from (I8).

4.3. Definition of anisotropic Besov spaces

We start by defining the parameter space
D:={Y e L((0,T])): 0<y <1}
equipped with the pseudo—metricﬂ
(e, ¥) = Nl — Yl Lo (0,1

To define our Besov spaces we need some preparations.

LEMMA 4.6.
(1) For o, € ®, k>0, and i € {1,...,d} one has that

T
Elgf, — gt 2 < 2llhel% / (1) — (1) dr.

(2) If on, o €D are such that lim, 6(pn, ) =0, then

Ifn 2 |2 — O

liernE|g =9k

PRroOF. (1) Starting from the corresponding definitions we get
2
E'Qlf,i - g;fz|
2

= E|[ mOe.awy) - [ neie.an)

1Here we only have a pseudo-metric as we do not work with the equivalence classes.
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30 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

T
E

[ 0 VT= e 0P e, + / B () () s, W)

2

/ hk ( e“th / hk el,dW >

/ [\/1 - /1o } dt
0

T
+ / B ()2 [ () — (1)) dt

< / h(8)20(t)? — (t)2|dt + / he(8)? (1) — (1)) dt.

0

(2) If we assume that lim, d(¢n, ) = 0, then ¢, — ¢ in probability with re-
spect to the normalized Lebesgue measure on [0, 7] and therefore |2 — p?| — 0
in probability as well. The boundedness |p,(t)] < 1 and |p(¢)] < 1 yields to

lim,, fOT lo(t)? — @n(t)?|dt = 0 and we can apply part (1). O
LEMMA 4.7. Let p € (0,00) and & € L,(Q, F,P). Then §(pn,¢) —n 0 implies that
lin €7 — €[, 0.

PROOF. (a) Assume that £ is bounded. Given € > 0 we find N > 1, f €
Cyp(RY), and (7;)N.; € BY such that ||€ — f(71, ..., 7n)|lp < €. Then, by Proposition

1
;Hf% —&%p
< N8 = FOF v e IO v R) = FOF 7R Ml
HIFOF s vR) = €81l
< 2+ fO" R = SO 7R -
We can conclude by lim, || f(7{",....v%") — f Y, vm)llp = 0 which follows by
Lemma [£.6

(b) Assuming a general £ € £, we let £L:= (—=L) V&AL for L > 0 and obtain,
again by Proposition

1
;ng — &7,
< IEFm = (€9 Iy + (€M) — (€)%l + 11(E5)? — €21l

201 = €8l + 1) — (€)%l
Given £ > 0 we find an L > 0 such that 2¢ — ¢F||, < e, so that

1 . .
—limsup [|¢7 — €7, <& +1im ||(€5)7" — (€5)7 |, <<
D n

Because € > 0 was arbitrary, lim,, ||{¥ — £¥||, = 0. O

As a trivial by-product we get that £¥ = £¥ P-a.s. if ¢ = v a.e. Now it is convenient
to turn © into a complete separable metric space.
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4.3. DEFINITION OF ANISOTROPIC BESOV SPACES 31
DEFINITION 4.8. We define the metric space (A, d) as the equivalence classes of the
pseudo-metric space (D, d) with

D ={ € Lo((0,T]):0< <1} and (e, %) = [l — Yl Loc0,1))-

Fixing p € (0,00) and & € £,(Q, F,P), we obtain a well-defined map
Fep: A —[0,00) by @ = [I€—&%]p.
Directly from Lemma [4.7] we get

LEMMA 4.9. For p € (0,00) and & € L,(Q, F,P) the map Fep : A — [0,00) is
continuous.

PrOOF. For p € [1,00) and ¢,, — ¢ we get that

1§ = &2 llp = 1€ = &2lpl < 1€7™ = &7, = 0
as n — oo. In the case p € (0,1) we use
[E[lg?m — &P — [€7 — £JF]] < Bl — &7 O

DEFINITION 4.10. Let CT(A) be the space of all non-negative continuous functions
F: A — [0,00). A functional ® : C*t(A) — [0,00] is called admissible provided
that

(A1) O(F + G) O(F) + 2(G),

(A2) ®(AF) = AD(F) for A >0,

(A3) ®(F) < ()forOﬁFSG,

(Ad) ©(F) < limsup, ®(F,) for sup e [Fn(p) = F(p)] =0 0

EXAMPLE 4.11. Let A C A be non-empty and let « : A — (0,00) be an arbitrary
weight. Then the functional

is admissible. As (A1)-(A3) are obvious, we only check (A4). From F(p) <
lim sup,, F},(¢) we complete the proof by

M < lim sup [sup Fn(@b)] .

alp) = n yea a(P)

DEFINITION 4.12. For p € (0,00), & € L,(€), and an admissible ® : C*(A) —
[0, 00] we let £ € By provided that ®(¢ — [|€ — £7]|,) < oo and set

I€llzg = [BIEl + el ] with lillop = @(p = 1§ = €°1,).

PROPOSITION 4.13. For p € [1,00) the space Bg is a Banach space.

PROOF. The norm properties can be easily verified, we only verify the com-
pleteness. Assume a Cauchy sequence (§,)n>1, we obtain by the completeness
of L, a limit £ = lim,&, in L,. To show that the convergence takes place
in IB‘Sg’, let ¢ > 0 and find n. > 1 such that for all m,n > n. we have that
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32 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

[6n = &mlly + P(Fe, -, )" < € with Fep(0) = [[§ — &7lp. For all myn > 1
we have that
[Fe—gm () = Fe,—ep(0)]
= |l6n —&m — (& = &n)%llp = 160 — & = (&n — )%l
€ = &m — (€= &mn)?llp
21§ = &mllp,

so that assumption (A4) implies for n > n. that
e — €15+ B(Fe, )" < im0~ + Hmsup ®(F g, )" < 2% O

<
<

4.4. Connection to real interpolation

Besov spaces (or fractional order Sobolev spaces) on the Wiener space were studied
by various authors, see for example [88], [50], [I4, Chapter 8.6], and [46]. In this
section we relate our definition of Besov spaces to the classical Gaussian Besov
spaces obtained by the real interpolation method.

4.4.1. The isotropic case. In our intuition a functional ® : CT(A) — [0, oc]
is isotropic, provided that ® depends on the constant functions in CT(A) only.
Instead of giving a formal definition, we introduce a class of such functionals:

DEFINITION 4.14. Let p be a measure on B([0,1]), ¢ € [1,00], and let K : [0,1] —
[0,00) be measurable. Let ¢, : (0,7] — R, r € [0, 1], denote the constant function
or =r. For F € C*(A) we define

U (F) = HK(')F(@-)HLq([o,l],H) € [0, o0].

Recalling that W¥r = /1 — r2W + rW'  we use for any & € Ly(€2) the notation
EW1—=r2W +rW') :=¢¥r. For q € [1,00) Deﬁnitionyields to

1

et ([ [<etem) - e/ T=rw ) auc) ] .

1€l g om0 =

LEMMA 4.15. The functional <19 satisfies the conditions (A1), (A2), (A3), and
(A4).

PRrROOF. From the definitions it follows that the map r +— F(¢,) is continuous
so that @9 (F) is well-defined. The assumptions (A1), (A2), and (A3) are

immediate. To verify (A4), we assume F,,, F : A — [0,00) to be continuous with

sup |F77(<p) - F((,Q)| —n 0.
pEA

Then (A4) follows from the Fatou property of L,([0, 1], i), because

1K () F(e.)] Lq([0,1],1) 1i7anK(-)Fn(<p,) Lo([0.1].0)
< hm”inf HK(')Fn(SO-)||Lq([o,1],u) :
O
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4.4. CONNECTION TO REAL INTERPOLATION 33

THEOREM 4.16. For 6 € (0,1), q € [1,00], and p € [2,00) one has that
leleg, ~e €l
. - 8
with du(r) = W){(OJ)(TMT and K(r) := (1 — V1 —=72)"2x00,(r),
and where ¢ > 1 depends uniquely on (p,q,0).

PrOOF. After a change of variables the assertion is equivalent to

_8
(19) [illss, ~e el + |2 =)~ e

(W) -

)

Lq([0,1),74%)

which is the general form of . Because the proof of in [46] relies on a finite-
dimensional argument, we still need to verify . First we remark the crucial fact,
that the multiplicative constant in does not depend on the dimension n. We
use the proof of Proposition [A-4]in the appendix with the supporting Hilbert space
H = Lﬂ§d([0, T]) and take the orthonormal basis from Section |3.1} We enumerate

this tensor-basis and rename it to (e;)$2,. The o-algebras H,, are defined as in the
proof of Proposition We also set &, := E(¢|H,,) and observe the following:

(1) [K(&,8; Ly, D1,p) — K (1,8 Ly, D1 p)| < [[€ = 7llpp for §,m € Ly.
(2) I€o)nllp < ll€ollp for & € Ly.
@) € )nllp, , < l€1llpy, for & € Dy p.

Assertions (2) and (3) give
K(&n,t; Ly, Dy p) < K(&n1,t Ly, D1 ) < K(€,8 Ly, D ).
Together with (1) we obtain
K(&n,t; Ly, Dy p) T K(€,t; Ly, Dy ),
and finally [|€n[lgg T [[€]lsg - On the other side, for ¢ € [0,1) one has

20) [|En (W) = &n(tW + V1 = 2W)|p < [|6n1 (W) = Enrn (tW + V1 = £2W)],
which can be verified as follows: By Doob’s factorization theorem we may write

én = fn(gel7- .- 7gen)

where f, : R — R is a Borel function. Then we get (note that (g, )72, are
independent standard Gaussian random variables) for an independent copy (g, )7,

p

that
1. (W) — €, (tW + /1 — 2W")||2

= |falGers - Gen) = Faltge, + V1 —12g. ... tge, +/1— 12, )|

= H/fn+1 (Gers -+ Gen> €)dm1 (€ //fn+1 (tgey + V1 — 20, ...,
tge, + \/71529% te + /1 — 12€')dyi (€)dm £)HZ

< /H;/HJfn+1(ge“---,gen,§)*fn+1(tge1+mgél,---,
tge, + V1 — 2, t€+ m&’)H:d%(ﬁ)d% «)

= [€ur1(W) = Euir (tW + V1 — 2W")| 2.
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34 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

This proves . Moreover,
[[6n (W) = &a(tW + V1 = 2W')] = [E(W) — E(W + V1 = 2W)][|,
< 20 —€llp =0
as n — o0o. Together with this yields to
1€ (W) = &a(tW + V1 = 2W)[l, T [IEW) — QW + V1 = 2W)],

and

Hu — 0~ (W) — .0 + V1 - 2W)

PlIL,([0,1),44%)

(1—1)"2 [|E(W) — €EW + V1 — 2W)

Tn

Pl L, (10,1),72)

which completes the proof because for ,, the equivalence ([19) was verified in .
O

REMARK 4.17. There are other approaches to fractional smoothness on the Wiener
space: One can use the Ornstein-Uhlenbeck semi-group which also gives a link to
Mehler’s formula (see [50], [T4l Section 8.6], [I1] Section 6.7]). For relations about
this approach to Theorem the reader is referred to [46] Remark 3.5]. Another
approach can be found in [50, Theorem 13]. Tt uses an isotropic decoupling as we
do, is formulated by means of the trace interpolation method (cf. [86 Section 1.8]),
corresponds to the special choice p = ¢ in our setting, but yields to an alternative
expression compared to Theorem

4.4.2. An anisotropic example.

DEFINITION 4.18. For 0 = rg < r; < ---rp, =T, 6; € (0,1), ¢ € [1,¢], and
F e CT(A) we let

@)y 0 (F) = sup || =2 ()|

T1,..3TL =1 I
=1,...,

Loy ([ri—1,m), 75)
This functional is admissible:

LeEMMA 4.19. The functional @5?{,’??2;’”’(9““) satisfies the conditions (Al), (A2),
(A3), and (A4).

PROOF. Because the proof is a copy of the proof of Lemma [4.15] we only check
(Ad). Assume F,, F € C"(A) with sup,ea [Fn(p) — F(¢)| —n 0. Then, by the
Fatou property of the spaces Ly,

su r—t) %2R r ‘

S =) Oer) Loy (rim1,m), 2)
= su lim [(r; — t)~%/2F, r ‘

l:l,P,L n [( ! ) (X(t7 l])] L‘Zl([rl—lirl)"l‘ldit)
< sup liminf H r—t)"%2F, ”

l:l,P,L n [< 1= (e l])] Ly ([ri-1.m0), 7%5)
< liminf s H )0 2E (o ’ :
= T z=11,1.P,L [(Tl ) n(xc, l])] Lo ([ri—1,m),7%5)
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4.5. THE SPACE B2 35

which proves (A4). O

(01,41),---,(0,,qL,)
From we obtain the following result about subspaces of B, """ iso-
morphic to IB%Z{W (R%, vq):

PROPOSITION 4.20. For a measurable function f : RY — R, p € [2,00), 0 = 1y <
ri<--rp=T,0,€(0,1), ¢ € [1,00], and l =1,..., L we have

01,91),. .- 07,
Wrz - WT11> c B‘I’ill q1)~L @r-ap)

Eel Rd oy d l’ o e A T T T L S B
f € Bty (R 70) if and only if f(ﬁ

REMARK 4.21. Assume that p € [2,00), 01,...,0, € (0,1),0 =19 <11 < -+ <

rr;, =T, and
(01:50)-(01,.00)

If we let

Gi=o(Wi:te0,a)) VoW, —Wy:te[bT]) for 0<a<b<T,
then Lemma [£.23] below implies that there is a constant ¢ > 0 such that

0

(21) 1€ —E&|G")|lp < c(r — t)7 for te€r_i,m) and [=1,... L.
In other words, the conditional expectations E(§|G;") converge to { in L, with the
speed (r; — f)%l as t T r;. If §; < 1, then one can interpret this as a singularity of
order 1 — 6, at r; because (r; — t)% would be the speed for & = Wp. The concept
from was applied in [40] in the context of BSDEs to obtain path-dependent
variational estimates. The setting of BSDEs, where we have a backward equation
with a pre-given terminal condition, did require the consideration of ¢ — E(¢|G;")
rather than that one of E(§|F,,) — E(§|F:), which could have been a first attempt.
The fact that in [40] the 0; are allowed to be different from each other is one

reason to extend the isotropic spaces BY , from (14) to the spaces Bj that might
be anisotropic.

4.5. The space B}?
In this section we study the space Bg’ 2 where the functional ®5 : C*(A) — [0, o]
is given by

F(x(s
Oy(F):= sup (X( ’t])

o<s<t<T Vt—35
To describe these spaces we let, for p € (0,00) and a measurable A : [0, T] x Q — R?
with B [} [A,[2ds < oo,

”)‘HLOO([O,T];LP(Q)) = eSSSll]Dse[o,:r]|||)\s|||pa
S :
Mlysio. = su —/ As|“ds
| ||Lp(Q,L2([O,T])) 0§a<E§T b—al, |As]
P
To shorten the notation we also use ||A ||, = [[[As][lp- We already introduced L)X (€2)

when X is a separable Banach space. Above we use a different notation as we want
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36 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

to avoid a discussion about the separability of L, (€2), which is not needed here. By

the Lebesgue differentiation theorem (cf. Lemma below) one has that

Mrwqoriza@y = IMis@izaqom)

ML to,71:2,(0)) for 2 <p < oo

IN

1A 22 2522 10,77))

Moz, = IMiy@izaqomy foro<p<2

The next theorem, the main result of this section, is motivated as follows: If £ € IB%;I> 2
then £ € D 2 and the quantity ||€]|s,,, enables us to access the Malliavin derivative
of ¢ without its explicit computation. As in Corollary [I.6]of Section announced,
this can be exploited in the context of BSDEs to obtain the differentiability of the
Y -process without differentiating the BSDE.

THEOREM 4.22. One has that B3> C Dy 5 and the following assertions hold true:
(1) Forp€ [2,00) and £ € D15 N Ly, one has
D¢

||€||‘1>27;D ~e@zh(n,p H

where cEzz)(1).p = 1 depends on p only.
(2) Forpe (1,2) and £ € Dy 2 one has

L3 (9;L2([0,7))

1
I < <
6(2)’17 ||D£||Lw([O,T];LP(Q)) = ”5”‘1)247 Py C(Q)J) ”Dg‘ L;(Q;Lg([O,T])) y

where CEz3)(2).p = 1 depends on p only.
(3) There is a & € Dy o such that for all p € [1,00) one has & € L,(Q), D¢ €
Ly(% Ly([0. 7)), and € & B-.

In the inequalities of the theorem above the expressions might be infinite. For the
case p € (1,2) the result is still incomplete. However, if one is interested in good
moment estimates, then the case p € [2,00) seems to be of more interest than the
case p € (1,2). To prove Theorem we let

Gbi=o(W;:te0,a])Vao(W;—Wy:tel[bT])
for 0 < a <b < T considered as o-algebra in (2, F,P).

LEMMA 4.23. For p € [1,00], & = (&,...,&m) with &1,...,&m € L,(Q,F,P), a
norm || - || on R™, and 0 < s <t < T one has

1 ¢
5 [le =€ < |lne -
p

[ < [fne =g

where in the first and last expression &1, ...,Em are extended to Q according to
Convention [{.5 and the conditional expectation is taken coordinate-wise.

)
p

PROOF. By p — oo it is sufficient to show the assertion for p € [1,00). Assum-
ing p € [1,00) it is sufficient to consider £ = (&1,..., &) of the form

E = f(th - Wtov [x3) th - th—l)

where 0 <ty < ---t, < T and f: R — R™ is continuous and bounded. W.l.o.g.
we can assume that s and ¢ belong to the partition points. Then

g = €41, < [llg —Eell], + | IE%e — €], = 2[[Ig - E%¢

Il
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4.5. THE SPACE B2 37

and

llie — B¢

1, = 1€ — Bt

oWy ire 0, T, < [llg ==, O

PrOOF OF THEOREM [£.22] (3) For [ > 1 we take disjoint intervals (s;,t;] C
(0,T) with t; — s; = T4"! and t; < s;41. Define

Al = ZCOS(ng,l)(Wthl — ng71) and f = ZAI
=1

The sum converges in any L,, p € [1,00), as

Z lTcos(Ws, 1) (We,1 — W 1)llp < cle\/tl — 5 < 00,
1=1 =1
where ¢, := ||g|, with g ~ N(0,1). Moreover,
DAy = 1 cos(Wi, 1)X (51,6 — S (Wi 1) (W1 = W 1)X(0,9]]
so that

HDAlHLquo,TD <[Vt —si+ VTe i — s

for q € [2,00). This implies £ € Dy 5 and D¢ € L**7)(Q). On the other hand,

AL — AP,

\/tL — Sr
_ LH COS(WSL,l)(WtL,l - WSL,l - (W/)tL;l + (WI>SL71)||P

\/tL — S
2 L\/icpH cos(Ws, 1)|lp > Ly

where &, := v/2¢, inf 1071 || cos(W.1 > 0. For each L > 1 this implies
D P €[0,7] 1/ p

s L L SL,
€ — f( L’tL]”p > I 21:1(141 — Al(éL t'“])Hp _ |AL — A(LL tL]Hp
Vi — S - Vip — sp VitL —sp B
and therefore £ & By
(1) and (2) Step (a): We prove B> C Dy5. Let 0 < a < b < T, and define for

n > 1 the set
D, (a,b) :={(t1, ..., tn) € (0,T]™ : there is a k such that ¢; € (a,b]}.

Assume £ € Ly with chaos decomposition

§= ZIn(fn)

n=0
with symmetric f,, : ((0,7] x {1,...,d})™ = R, cf. [70, Example 1.1.2]. By Lemma
the condition & € B3? is equivalent to the condition

oo

Z | frXD, (a.b) ”%g < 62(b —a)

n=1
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38 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

for all 0 < a < b < T, where L} := Lo(((0,T] x {1,...,d})"™, u™) with pp := A ®
(Z?Zl 6{i}) and \ being the Lebesgue measure. For L > 1,1 =1,...,2% andn > 1
fet -1 l
ILL._ -
D;* :=D, (TQL ,T2L) )
so that
(oo}
Sl faxpye I3 < 22E.

n=1

Summing up over [ gives for all N > 1 that

N 2k
Z n! Z ”f"XDf;L ”%g <
=1

n=1
Let AL be the union of all dyadic half-open cubes
Lh—-1_4L by —1 _ln
<T2L,T2L] X oo X (T 5 ,T2L]
with Iy, ..., 1, € {1,...,2F} pair-wise distinct. Then

2L
ALc| Dyt
=1

and
card{l € {1,...,2"} : (t1,....,tn) € D'} =n forall (ti,....t,) € AL
Now we get that

N N 2L
St fuxagliy < 3 nt S Ifuxpye iy <
n=1 =1

n=1

By L — oo it follows that
N

S ntn falldy < e

n=1

Finally, N — oo gives £ € D 5.

Step (b): Let & € Dy o with chaos expansion £ = Y > I,,(f,) obtained by sym-
metric f,, and fix b € (0,T]. Consider the processes (1 (i))se[0,5) from Lemma
so that for p € (1,00) and a € [0,b) we have that

(@2)  |le—€| ~2 e ~E @I, ~em ( ab IuZ2ds> E

p

where Lemma is exploited in the first equivalence. For s € [a,b] and n > 0 let
th:=a+ (k/2")(b—a) for k=0,...,2" and

bo(s) :=inf {t} : s <t},k=0,...,2"}.
Using and Lemma we get that

1

2" n 2 2

cEi Vb —allElle., = c@m) <ZH5_E(5W:§1)HP>
k=1
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[N

12

on 3

> ( /. IMZ”(S)IZd8>
k=1 (th_1:th]
p
For p € [2,00) we continue by Fatou’s lemma to

1
12\ 3

on

2
cmVh— aléles, = liminf [ > (/( ]Iui"(s)l2d5>
= th_1th

k
2714
> liminf ( / |l (®) 2d8>
tk 1 k:

1
= liminf </ |0 (5) |2ds>
" (a,b]

P

1
2

P
1
2
P
1
2
> ||liminf / ,ug"(s)|2ds>
n (a,b]
P
1
2
> (/ lim inf ,ug"(s)|2ds>
(ap] "
P
For p € (1,2) we get
c@zo) Vb — allélle..p
12\ 2
on 3
> liminf Z (/ |ﬂ2"(s)|2ds>
e || )
P
1
2
n (a,b]
%
> ( / | i inf a2 |§ds)
(a,b]
Summarizing, this yields to
1 H — f(a ) lim infy, |MS"(S |2d8) : pE[2,00)
(23)  ll€llesp = P

C{AT0) 3
(55 Sy MmO 2d5)* e (1,2)
Now we observe that

lim [ Eu®) (i) — D(s, )¢ ds
™ J(a,b]

) b]ZkQ = DU (5D VX001 s = DIIEg-ads
@00 g=1
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40 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

= 0

which follows by dominated convergence since

L SR DA ) Kt~ Dl

a,b] h—1

< [ SR Dl ). ) s
(011]k:1 2
< llB, .-

Hence there is a sub-sequence (n;)72; such that lim, ,uZ"Z ) D(s, )¢ AQP a.e. on
(a,b] x Q. Observing that holds for the sub-sequence (n;)j°; without modifi-
cation as well, the desired lower bounds of ||{||,,, follow.

Step (c): We verify the upper bounds of (1) and (2). Let us first assume that ¢ is
smooth like in Proposition [A:4] i.e. by using the Haar system as orthogonal basis
we may assume that

E=fWi, —Wigyoos We,, = Wi, 1),

where 0 =ty < -+ < t, = T and f € C®(R") is bounded with bounded deriva-
tives of all orders (the bounds for the derivatives can depend on their order). By a
possible redefinition of f we can assume w.l.o.g. that a =t < t; = b. We get

Df _ szf(th — th ooy th - th—l)X(ti—17ti]’
i=1

where V; is the d-dimensional gradient acting on the i-block of variables. We fix
gla "'a§ka§l+17 7€n € R? and let

f§(77k+1»~~»771) = f(fla~~~,fk,77k+1w~7771,fl+17~~~afn)a

FEOrasom) = fe (nk+1\/5k+1,---,771\/5>

for 6; := t; — t;_1. Moreover, we note that
1€ = EEIGlp = [1f (Wey = Wiy wvs We,, = We, )=
Bt/ (Wey = Wegs oo, We = We ) s
where ]EﬁC 41 1s the expected value with respect to the increments
Weyr = Wy ooy Wy = Wy ).
Applying Lemma [A77] yields to
| £e(W) = Efe(W)]],
_ ‘f,? <Wtk+l | A th_1>

i 75

~Ef? (Wt’““ U W"“)

Vo Vo

p
Lk w, —w,.  w,—-w, \[\°
< ¢ . Vifo te41 tk’m’ t ti—1
2.9 2 5( Nz NG
p
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4.6. AN EMBEDDING THEOREM FOR FUNCTIONALS OF BOUNDED VARIATION 41

l
< Z 5i‘vif(£17"'7£kthk+1 - Wtk’

i=k+1

1
ceey th - th,pglﬁ*la 7€n)|2>

p
and

1€ = EEIG) I,
= ||f(Wt1 _th"'»th _th,l)_
Bl 1 fWe, = Wiy oos We, = We g

l 2
c@D < > GV (W )
i=k+1

IA

p

= @ Z/ V()
i=k+1 (ti—1,ti]

1

Now we assume the general case and let ¢ := p vV 2. Our assumptions in (1) and
(2) and under the assumption that the right-hand sides in (1) and (2ﬁre finite,

we have that £ € Dy o N L, and D¢ € LLZ([0 ™ (€2). Using Proposition |A.4 we find
smooth &, such that

&—¢ in L, and D& — D¢ in LEOTD(Q).

1
2

P

p

Therefore by approximation,

(24) I —EEG)» < c@am ([l“D£2%>

p

under the assumptions (1) and (2). Dividing by v/b — a and taking the supremum
over 0 < a < b <T gives the upper bound of ||{||®,,p- O

4.6. An embedding theorem for functionals of bounded variation

We extend the approach from Section to the functionals @, : CT(A) — [0, o0],
r € [2,00), given by

F(x(s
(25) Oo(F) = sup LX)
0<s<t<T (t —s)7

DEFINITION 4.24. A Borel function g : R — R is of bounded variation provided
that

V(g) = sup > lglar) = glax—1)| < oo

—oo<rg< <Ly <00 k=1
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42 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

It follows from the definition that a function of bounded variation is bounded. A
typical example is ¢ = X[k o) Where V(X[k,oc)) = 1. Now we get the following
embedding:

THEOREM 4.25. Letr € [2,00), p € [1,00), £ € IB%ET and g : R — R be of bounded

variation. Assume that the law of € has a bounded density p. Then, for all q €

[]" 00)7

_pt1
p

PROOF. We use [ Theorem 2.4] and get that

1

(Blg(©) — (9€)™1)" = (Blg(©) - (9(6“)I*)

g(&) € Bg’f' with 7 : qr.

Q=

P
a+1 P

1
q p+1 1_p_
345 (supp<x>) V(g)lle — e 7

z€R

IN

y

1 . .
a»+1 gives the assertion. [

Sl

Dividing by (t — s)

In view of Example [£:27] the following limiting case is important:

COROLLARY 4.26. Ifr € [2,00), € € ﬂpe[lyoo) IB%;?T has a bounded density, and if
g : R — R is of bounded variation, then

9 () ) B

g€[l,00) FE(gr,00)

4.7. Examples

4.7.1. Forward diffusions. The Malliavin differentiability of diffusions is
well investigated, see for example [70]. So the following is expected:

EXAMPLE 4.27. Let
t t
X =z —|—/ o(s, Xs)dWs +/ b(s, Xs)ds
0 0

where o : [0,7] x R? — R% x R% and b : [0,T] x R — R? are bounded and
continuous, and satisfy

lo(t,z) — o(t,y)| + |b(t, z) — b(t,y)| < Lz —y| for some L > 0.
By the proof of [40, Theorem 3] this implies for p € [2,00) that

T
X5~ Xrly < < / so(r)2d7“>
0

with ¢ = ¢(p, T, b,0) > 0. In particular, for X7 = (X4, ..., X&),

Xpe () B
p€(0,00)

2

which follows by using ¢ = x(s4 for 0 <s <t <T.
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4.7. EXAMPLES 43

4.7.2. Local time. One can look at the fractional smoothness of local times
(L$)te(0,1),acr of a one-dimensional Brownian motion from different points of view:
In [19, 18] the smoothness with respect to the state variable « is under considera-
tion, whereas in [72], [1] (with a generalization in [89]) the smoothness in w for fixed
(t,a) is investigated within the interpolation spaces generated by the Ornstein-
Uhlenbeck operator. Our result complements [I, Theorem 1]. The smoothness
obtained in [I] is strictly smaller than 1/2. In Theorem and Corollary
below we show that in the class of Besov spaces Bg’ the function ®, defined in
with » = 4 is the correct one. Interpreting ®5 as smoothness 1, the function
®,4 corresponds to the smoothness 1/2. Our approach is similar to [I]: First we
investigate the functional N and then the local time itself by Tanaka’s formula.

THEOREM 4.28. Letd =1, a € R, and
N% ::/ X{Wt>a}th~
(O7T]

Then, for all p € (1,00), one has that

NgeB\ | |J BY

rel2,4)
REMARK 4.29. (1) The natural range for the parameter r in ®,. is r € [2,00)
so that we used the condition r € [2,4) instead of the equivalent one

r € (0,4).
(2) It follows that N& € Bg‘* for all p € (0,00), but for the part N& &
Urep.a) ]B%%’"‘ our argument uses p > 1.

PROOF OF THEOREM .28 (a) Denote { = Ng. For the part N& € BY* we
only need to consider the case p € [2,00) and let 0 < a < b < T. Then, a.s.,

ab] (a,b]
¢ —gletl = /(mb] X{W,>a} dW; — /(a’b] X{Wt(a,b]>a}th

" /(b,T] [X{Wt”‘} B X{Wf“’b]>a}} W

b .
where we use that (f(O,T] X (W, >apdWe) (@t = f(O,T] X{Wt<a,b]>a}th(a I a.s. which
can be proved by approximating the stochastic integral by Riemann sums that
converge in Ly towards the original integral and to apply the -(*!l-operation to the
Riemann sums. Then, by the Burkholder-Davis-Gundy inequalities,

e = &2,

< 2 / X{Wt>a}th + / [X{Wt>a} - X{W(avb]>a}:| AWy
(a0 » Ve ‘ »
T 2 3
< By |2Vb—a+ (/b ‘X{Wt>a} - X{Wt<a,b1>a}‘ dt)
p
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44 4. ANISOTROPIC BESOV SPACES ON THE WIENER SPACE

1
2

= Bp|2Vb—a+

T
/b XIQ(Wb’Wb(a,b])(Wt — Wb)dt

q
for ¢ :==p/2 € [1,00) and

Iy (u,v) = (e —u,a — v] U (@ — v, @ — u] = (@ — max{u, v}, @« — min{u,v}].
Let —oo < A < B < 0o and define the function f4 5 : R — R by

0 x < A
fap(z) =1 (z— A)? A<z <B.
(B-—A)?+2(B-A)(zx—B) :B<«x

By the Ité-Tanaka formula and the occupation times formula (see [80, VI.1.5 and
VI.1.6]) we get that, a.s.,

T
Fan(Wr —Wy) = fa5(0) + /( an (W= Wi+ / X (Wi — Wy)dt.
b,T b

This gives that

T
t/ X(a,8) (W — Wy)dt
b

q

< fan(Wr = W) = fanO)l,+ | [ (W W)
(b,T
q
< N fhsloo [IWr = Will, + B,V T = 3]

= 2B - A)[IWr - Wll, + VT = 5]
< 48,VT —b(B — A).
Then

IN

48T =1 HWb — W H
q

T
H/ XIQ(W;, Wb(a,b])(Wt — Wb)dt
b ;

q

IN

86, VT = bWy = Wall,
882VT — bv/b — a.

IN

Summarizing gives
e =€, < 8, |20 —a+ B8V — b —a)}].
(b) Let us turn to the lower bound, where we assume p € (1,00). We obtain

1€ — gl

= /a,b X{Wt>a}th " ‘/(b,T] |:X{W1>a} B X{Wt,(aTb]>o‘}:| th
P P
— 1|7 ?
2 72517 b—a + 67 / Xla(Wb W(ﬂyb])(Wt - Wb)dt
D b ) b
q
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Let a = 0 and observe that on {Wj, < —v/b, W/ > v/b} one has that
La(Wo, W) = (0 = W}, a = W3] 2 (a— Vb, a + V).
Therefore, for b € (0,7/2),

I — £y,
1— L T :
> =20,V SF W < VEWG 2 VO | [ x g (W - Wi
p
q
1-— T :
= _Q/BP\/B+ FPP(WI S _1,W1/ Z l)z /b X(af\/g,()kk\/g)(Wt - Wb)dt
q
1 | pEe :
> —28,Vb+ ﬂ—pIP’(Wl < —1,W] >1)2 /b X(a— /Bty (We — Wy )dt

q

[N

1- 1
= 20,Vht B S LW 2 DR | [ (W
P 0

q
For the local time of the Brownian motion one has (see [80, Corollary VI.1.9])

«a : 1 !
Lt = 2%12—8/0 X(a757a+€)(Ws)d8 a.s.

Therefore, by Fatou’s Lemma,
1
3

NN .
hrlr)ll’%)nf% >, /2||L%||q > 0.

q

T
2
| Yo Wi

Because the local time L{ can be expressed by Tanaka’s formula by
1
§La = (WT — Oé)+ — (W() — Oé)+ — N%,

see [80, Theorem VI.1.2], and because (Wr — )t € B> for all p € (0,00) we
immediately get the following corollary:

COROLLARY 4.30. For all « € R and p € (1,00) one has that

Ly eBy\ | |J By
re(2,4)
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CHAPTER 5

Continuous BMO-Martingales

The theory of BMO-martingales has become an important tool in the investigation
of BSDEs. For an account on this topic the reader is referred, for example, to [32] p.
298] and [22] p. 2922]. In particular, there are two key ingredients that we will use
as well: Fefferman’s inequality and their generalizations, and the notion of reverse
Holder inequalities. In addition to these two ingredients, we exploit the concept
of sliceable BMO-martingales which can be seen as a natural enhancement for the
previous techniques. Sliceable BMO-martingales were used by Emery [35), [36] and
Schachermayer [83], and in the context of backward stochastic differential equations
by Delbaen and Tang [32] and Frei [37].

Throughout this chapter we assume a stochastic basis (A4, A, Q, (At)¢epo,17), T > 0,
where (A, A, Q) is complete, (A¢)ieo,r) is right-continuous, Ag contains all null-
sets, and A = Ar.

5.1. Continuous BMO-martingales and sliceable numbers
First we recall the notion of a BMO-martingale.
DEFINITION 5.1. A continuous martingale M = (M;).epo,) is of bounded mean

oscillation (we write M € BMO) provided that My = 0 and there is constant ¢ > 0
such that for all stopping times 7: A — [0, 7] one has that

E(|M7y — M, |*|A;) < % as..

We let || M||pmo, := inf ¢ where the infimum is taken over all ¢ > 0 as above.

Next we introduce the sliceable numbers. Without being defined explicitly, these
numbers have their origin in an article of Schachermayer [83] and will be used via
Theorem [5.25 below in our article. Before giving the definition let us recall the
notation

M = (Mo — MaAt)te[O,T]

for random times o,7: A — [0,T] with0 <o <7 <T.

47
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48 5. CONTINUOUS BMO-MARTINGALES

DEFINITION 5.2. For a (continuous) BMO-martingale M = (My)¢cjo,7) and N > 1
we let

sly(M) :=infe,
where the infimum is taken over all ¢ > 0 such that there are stopping times
O=71<m <--- <7y =T with

sup ||™ =t M™|[gmo, < €.

Moreover, we let
Sloo (M) := li]{fnslN(M).

We call sly (M) the N-sliceable number of M. The (continuous) BMO-martingale
M is called sliceable provided that sloo (M) = 0.

Before we summarise some simple properties of the sliceable numbers we need the
following lemma:

LEMMA 5.3. Let 0 <o <7 <T be stopping times and 0 =19 <7 <--- <7y =T
be a net of stopping times such that for allw € A there is a k € {1,..., N} such that

(0(w), 7(W)] € (71 (@), Th(w)]-
Then, for a (continuous) BMO-martingale N, one has that

["NT|lemo, < sup [ N™|BMmo0, -

PROOF. Let p: A — [0,T] be a stopping time. Then
E(|7Nf =7 Ny [!|4,) = E(INrvp — Novol*|4y)
= E(E(|Nrvp — Novp* [ Aovp)lA4,) .

Now we observe that (7,7) with & := oV p and 7 := 7V p shares the same property
as (0,7). Welet Ayy1:={3 =T}, and for k=1,...., N,

Ay = {(_T € [kal,’rk)}.

This gives a partition A = UkN:Jrl1 A, with A, € A5 and we have that

N
Z E(xa, Nz — N5|2|A5)
k=1

E(IN7 — N5 |*|45)

E(xa, [ Near, — Novr,_, |*1Az)

]E(XAk]E(\NfATk — Novry,_, |2|¢4&ka71)\«45)

1= 11

IA
w0

up [N o, -
LN

B
Il
—

To formulate the next result we recall the space H:
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5.1. CONTINUOUS BMO-MARTINGALES AND SLICEABLE NUMBERS 49

DEFINITION 5.4. We let H,, be the space of all continuous martingales N =
(Nt)tejo, 1) such that Ny = 0 and

| N g, = esssup,,ca(N)7r(w) < oo,

where ((N)¢):e[0,r] denotes the quadratic variation of (Ng).cjo,7) (see, for example,
[80] Section IV.1]).

It follows directly from the definition that H,, € BMO.

LEMMA 5.5. For (continuous) BMO-martingales M, My, and Ms one has the fol-
lowing:

(1) shi(M) = [[M]|mo, -

(2) sli(M) > slp(M) > --- > 0.

(3) sIny+n,—1 (M + Ma) < sly, (M1) + sly, (Mz).

(4) sloo(M) = dpmo, (M, Hy), where

dBMOg (M, HOO) = 1nf{||M — N||BM02 N € Hoo}

PROOF. (1) and (2) are obvious. To prove (3), we assume 1 > 0 and find nets
OzTé < ... ST}VI_ = T such that

T,i,l MT;c

sup i <sly, (M;) + 1.

k=1,...,N;

BMO,

Now we let (o3,)r ¢ ™! be the union of (1});%, and (77)p2, and define the new

net (73)p ¢ ™71 to be the order statistics of (a3,)p ¢!, fe.
To = mkin o =0,
TNy4Ny—1 = m]?xak =T,
Tk =

min max o
IC{l,..,Ny + Ny —2}] &l
card(I) =k
With this definition and Lemma, we get for k =1,..., Ny + Ny — 1 that
™= (M1 + Ma)™ || gppo,

Tk—1 Tk Tk—1 Tk
< ™t M*lgmo, + 1™ Ms* gyo,
1 2
1 T 2 T
< sup Tki=1 M + sup Tha =1 M, "
k1=1,...,Ny BMO,  k2=1,...,No BMO,

< sy, (My) + sly, (M) + 27.
By 1 | 0 the assertion follows.
(4) This part is exactly [83] Theorem 1.1, Corollary 1.2], where we have to ob-

serve that our setting of a bounded time interval [0, 7] does not make a difference
compared to [0, 00) from [83]. O

The next example will be used later:

EXAMPLE 5.6. For a continuous martingale M = (M;);c(o,7] assume that

t
(M)t:/ c2ds, t€[0,T], as.
0
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50 5. CONTINUOUS BMO-MARTINGALES

for some predictable process ¢ = (ct)seo,r] and that there is a § > 0 and some

k € [0, 00) such that
T B2
lIE (/ |cs|2+5ds|AT>] <K as.

for all stopping times 7 : A — [0,7]. Then, for a:= 5 — 515 >0, and N > 1,

awon < (1)

PRrOOF. For 0 < a < b < T we simply get a.s. that

T 2 i TVb
E </ X(ayb](s)|052ds|AT>] E (/ cs|2ds|AT>]
T TVa

N

1

[ TVb 2+
< |E (/ cs|2+6dsAT>] (b—a)*
TVa
_ . L
< |E (/ |cs|2+‘5ds|A7>] (b—a)®
< Ii_(b —a)”.

Choosing an equidistant partition of [0, T] consisting of N intervals concludes the
proof. O

5.2. Fefferman’s inequality and BMO(Sy) spaces

In this section we slightly change the point of view: Instead of considering martin-
gales we think in terms of the quadratic variation which is more convenient in the
sequel for us. The BMO-spaces, related to backward stochastic differential equa-
tions with generators satisfying condition (B3) of Section below, are defined as
follows:

DEFINITION 5.7. For 6 € (0,00) and an R-valued progressively measurable process
Z = (Zt)icjo,r) With EfOT |Z41?%ds < oo we let Z € BMO(Sap) provided that

T
E </ |Zs|29ds|At>
t

Before we continue we rephrase Definition in terms of BMO(S3) for the usage
in Theorem below:

2
HZHBMO(SQQ) = sup < Q.
t€(0,T]

oo

DEFINITION 5.8. For an R-valued progressively measurable process ¢ = (ct)ie(o, 17,
and N > 1, we let

sliﬁ (c) = sljs\f’A(c) = infe,
where the infimum is taken over all ¢ > 0 such that there are stopping times
O=710<1 <--- <7y =T with

(X (74— 1] (Bt tcio,77 [ BMO(S,) < E-
k=1,...,.N
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5.2. FEFFERMAN’S INEQUALITY AND BMO(S29) SPACES 51

The notation Ssy in Definition [5.7]is chosen to indicate that BMO(Say) deals with
a modified square function. For 6 € (1,00) we obtain a condition that is stronger
than the classical BMO-condition ||Z|gmo(s,), Whereas for 6 € (0,1) the condition
gets weaker. If we define

Yy = /t |Zs|*ds,
then Z € BMO(Sy) if and only if ’
sup [E(Y 7 — Y[ )l < 00
with the supremum taken over all stopping times 7 : A — [0,T]. This opens the

path to apply known results about BMO-spaces to the BMO(.S2g)-spaces. There-
fore, by the John-Nirenberg Theorem we get that Z € BMO(Sq) implies that

T
(26) /O 12,20 € Losy,

where the Orlicz space Loy is given by
”FHLCXP ;= inf {)\ >0: Ee@ < 2}

for a random variable F' taking values in R, see [84), 38, 59] and [44], Corollary 1].

For the next example the notion of a Banach function space is convenient:

DEFINITION 5.9. A map p: L (A4, A,Q) — [0, <] defined on the non-negative ran-
dom variables of Ly(A, A, Q) is a Banach function norm provided that the following
conditions are satisfied:

(1) p(X)=0if and only if X =0 a.s.
X2 7)< )+ 011)

(2)

(3) p(aX) =ap(X) for a > 0.

(4) 0 < X <Y as. implies p(X) < p(Y).

(5) 0< X, T X a.s. implies p(X,,) 1 p(X).

(6) p(1) <

(7) There is a ¢ > 0 such that || X||; < cp(X) for all X € L] (4, A4,Q).
The function p is extended to || - ||z, : Lo(A, A,Q) = [0,00] by || X| g, := p(|X])
and we let

E,:={X € Ly(4,A,Q) : | X| 5, < oo},

The spaces [E,, || - |[z,] are Banach spaces having the Fatou property, see [10}
Theorem 1.1.7].

EXAMPLE 5.10. Let T'= 1 and assume that p : Lo(4, A, Q) — [0, 0] is a Banach
function norm such that for all ¢ € (0, 1] one has that

sup{[| X : (A4, A, Q)} = o0
Then for all 0 < # < n < 1 there is a progressively measurable process Z =
(Zt)te[O,T] such that
1) J) 12>t € E,,
(2) Z € BMO(S29) \ BMO(S3y).
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52 5. CONTINUOUS BMO-MARTINGALES

PROOF. Let ¢, :=1— 5= for n > 0, take

O<e< L L
e — — —
20 2n’
and choose, for n > 1 random variables v,, : A — R that are A; -measurable and

satisfy
[onloe = 2 D[+l Byt [on]>"|| 5, < 1.

Define the stochastic process Z = (Z)sejo,1) by

Ly = Z X(tn_1,tn] () V1.

n=2
Then we get the following three estimates:
(1) For n > 2 we have

1 1 _n
1Z ]l BMO(S2y) = [0n1lloo (tn = tn_1) P = 2°[35+el2735 5 o0

as n — o0, so that ||Z||gmocs,,) = oo-
(2) We have that

oo
0 7
1ZIE 052y < D lon—1ll2(tn — tu—)
n=2

o0
- ZQ"[%”EQ_l] < 0.
n=2

(3) On the other side, we have that

T
/ \Z,|2dt
0

[e'S)
< Y MlonalPllg, (tn = 1)
n=2

oo
Z 27" < oo.
n=2

E,

IA

O

In the following we give a version of the generalized Fefferman’s inequality that
can be found in [32] Lemma 1.6], see also [5, Theorem 1.1]. Our contribution in
Theorem below consists in improving the asymptotic behavior of the constant
from p to /p in Corollary and that the left-hand side in is stronger than
the left-hand side in .

We start with the definition of the H,(S2)-spaces and continue by some elementary
lemmas.

DEFINITION 5.11. For p € (0, 00] we define H,(S2) to be the space of all progres-
sively measurable R-valued process Z = (7)o, 7] such that

T 2
12l 50y = (/0 zsms) e

p
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5.2. FEFFERMAN’S INEQUALITY AND BMO(S29) SPACES 53

LEMMA 5.12. Let p be a finite measure on B([0,T]) with p([0,T]) > 0, 8 € (0,1),
and let

= inf{t € [0, 7] : u([0,¢]) > 0}.
Then one has that

/ (0,00 diut) < 5u((0.T))".
[to,T]

The proof is standard and we leave it to the reader.

LEMMA 5.13. Let p € (1,00), v be a finite measure on B([0,T]), and f : [0,T] —
[0,00) be non-decreasing and right-hand side continuous. Then

P p—1
| feavs)| <p [ Fs)dv(s)|  F(2)dv(t)
[0,7] 0,77 |/[0,t]
PROOF. For n > 1 take the equi-spaced grid
0=ty <ty <--- <ty =T.
By dominated convergence it is enough to show that
on p
FOPHON + Y FE vty 1)
i=1
< plfOPEONIT FO)({0}) +
p—1

pZ v({0}) Z v ((t7-1,t5]) FEW(E, ).

Setting ag := f(0)v({0}) and a; := f(t?)v((tP_,,t?]) for i = 1,...,2", this reads as

p i p—1

> (Su) o«

=0 \ j=0

on

2 a

which follows by writing the left-hand side as telescoping sum and applying the
mean-value theorem from calculus. ([

REMARK 5.14. In Lemmas and the factors 1/6 and p are sharp, but one
does not have equalities in general (one can check the cases where p and v are
either the Lebesgue measure or the Dirac measure at (say) T, and f = 1).

DEFINITION 5.15. We call a map
v:AxB([0,T]) — [0,00)

adapted random measure provided that
(1) the map v(w,-): B([0,7]) — [0,00) is a measure for all w € A,
(2) the map v(-,[0,t]) : A — R is A;-measurable for all ¢ € [0,T].
Moreover, we let
[vllBymo == sup (E(w([t, )| Ae) -
t€[0,T]
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54 5. CONTINUOUS BMO-MARTINGALES

Given any non-negative, non-decreasing, left-hand side continuous, and adapted
process (f(s))sefo,], the process (f[o 9 f(s8)dv(s))efo,r) is well defined, non-decrea-
sing, right-hand side continuous, and adapted.

LEMMA 5.16. Let v be an adapted random measure, (f(t))icjo,) be non-decreasing,
adapted, non-negative, and left-hand side continuous. Then, one has that

E f(s)dv(s) <Ef(T)|v[Bmo-
(0,71
PROOF. We can assume that Ef(T)|v|Bmo < oo, otherwise there is nothing
to prove. Assuming the equi-spaced net
0=t <--- <ty =T,

it is sufficient to show that
am_1
E Y f vt th) + Ef(T)v({T}) <Ef(T) sup [E([t5, TDI Az ) [ oo-
i=0 J=0,...2m
Letting ¢’ := v([t},t7y,)) for i = 0,...,2" — 1, ¢3. := v({T'}), and a + --- + a} =
f(t?), we get that
2m—1

E Z FEw(lE t50)) + F(Tv(TY)

E| Y aiq

0<j<i<an

on
= ZIE [a;]E(q;‘ +- -+ gon \At;)}
j=0

IN

Ef(T) sup (B ([t], T])[As)lloo-

Jj=0,...,2™

O

LEMMA 5.17. Let i and v be adapted random measures such that (u(-,[0,1]))ico,1]
and (v(-,[0,t]))ie0,m are continuous processes. Let n € (0,1), p € (1,00), and

assume that ,

E < Q.

| w0ty
[0,77]
Then we have that

/ ([0, 1)) du(t)
[0,T7]

< pllp((0, TNl ¥ [[B7O-

p
ProoF. For p € (1,00) we use Lemma and Lemma to get that

p

E

/ ([0, 1)) du(t)
[0,T7]

< pE /
[0,7]

p—1

u((0, 2])"d (t)

/[0 RECEIAD
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5.2. FEFFERMAN’S INEQUALITY AND BMO(S2¢) SPACES 55

p—1

(0, TN lIvlBmo

IN

pE

| wto.shravts)
(0,71

E

IN

p

/[0 . u([0,2])"dv(t) ] 1[0, T [l B7mO-

p—1
p

. . . p
Dividing by {E‘f[om u([O,t])"dI/(t)‘ ]
(otherwise there is nothing to prove), gives the desired inequality. O

in the case this expression is positive

THEOREM 5.18. Let u, v be adapted random measures such that (u(-,[0,t]))ieo.1)
and (v(-,[0,]))¢ejo,r) are continuous processes and pu(w,{0}) > 0 for allw € A. Let
p € (1,00) and assume that

P

E < Q.

/ ([0, 4) b dw(t)
[0,T7]

Then we have that

(27) /[O,T]u([OvtDZdu(t)

< 2p|u([0, TDIIg l[¥ lB7o-
p

H | wo. o) avte
[0,T]

p

PRrROOF. For §# =1/2 Lemma gives that

<2 [Eu((0,T)E]" = 2,/Jul(0. 7).

P
Moreover, by Lemma applied to n = 1/2,

/ u([0.4)~ Hdu(t)
[0,T7]

1
< pllp((0, T2 [|pIvIBvo = py/ ([0, Tz [¥]BMo. O

/[0 RECRRE0

p

COROLLARY 5.19. Let (A¢)icio,r) and (Bt)iepo,r) be progressively measurable R-
valued processes such that IEfOT |By|?dt < 0o and p € [1,00). Then one has that
< BTl

T
/ |A;By|dt
0 p

with CEIT)p = v/2p. If the optimal constant in 1s denoted by c_p, then

(28)

Allw, (o) 1 BllBMO(S2)

opt

(29) nf BT > 0,
pE2,00) /P

i.e. the order of magnitude \/p of CEIY,p G5 P — 00 is optimal.

PROOF. (1) We verify the inequality . We first assume that thereisac > 0
such that |[As(w)| < ¢ and |Bs(w)| < ¢ for all (s,w) € [0,T] x A. For € > 0 and the
Dirac measure dy in 0 define

duc(t) := eddo(t) + AZdt and dv(t) := Bidt.
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56 5. CONTINUOUS BMO-MARTINGALES

Then, by Theorem [5.18]

T
/ | A, By dt
0

p

1

2
| A, |2dt

T t 3
a+/ Ads
0

T t -
< / s+/Agds B, Pt
0 0
2p 2p
< / |12c ([0, 4))| ™ % dpac (2) ‘ / |12 ([0, 8])| 2 dw (1)
[0.7] p 171071 »
< /20l (0. TD Il I llmvio

1

T 2
\/2p a—l—/ |A;|2dt sup
0 t€[0,T
P

By € ] 0 we get that

T T T
/ |AsBslds|| < +/2p / |A¢|dt sup ||[E / | B, |*ds|As
0 P 0 t€[0,T] t
P

whenever |A;(w)| < ¢ and |Bg(w)| < ¢ for all (s,w) € [0,7] x A. By monotone
convergence we can omit the restriction on A first, and finally we can do so for B
as well.

1
2

T
E (/ |BS|2ds|At>
t

oo

2

Nl=

o

(2) We verify the inequality and assume w.lo.g. that 7" = 1 (otherwise we
apply a re-scaling). Let A =B € BMO(SQ) and set C; := A?. Then

T T
0 0 t
p

Assume that we can choose A = B € BMO(Sg) with

(1) M = supeo,r) || E (];T CSdS|At) .
(2) and such that there exists a ¢ € [1, 00) such that for all p € [1, 00) one has

T
/ Cyt
0
p

Then we would get that 2 < ¢~ | /cE\/M for p € [2,00) and therefore
c pV "2

sup
p te [0,7]

opt
< CET9).p

< 0

< < cp.

o3

(.Ol)f \[ \f
©-19.p — m/W

Now we construct the process C. The probability space (A,.A, Q) we define by
A= {1,2,3,...} and Q({k}) := 27% for k > 1, where A is the system of all
subsets of A. The right continuous filtration is constructed in two steps. First we
set Ay, = {0, A} and A;, == o({1},...,{l}) for I > 1, where t; := 1 — 27! for
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5.2. FEFFERMAN’S INEQUALITY AND BMO(S29) SPACES 57

I =0,1,2,.... Then this is extended to (A¢)iep0,1] by Ar := Ay, if t € [t1,t141).
Finally we define the progressively measurable process (Ct).e0,1] by

Cy = ZQll(tzfl,tz](t)l{l,lﬂ,..} for te [0, 1].
=1

For & := fgl Cydt one gets Q(|¢| = k) = 55 for k =1,2,... so that (by a standard
computation using the Gamma function and Stirling’s formula) one has the two-
sided estimate £ < ||£||, < cp for all p € [1,00) and some ¢ € [1,00). On the other

hand,
1
/ / Cyds
J{ULI+1,...} ti—1

which implies that supc(o HE (];T Csds\At)

dQ <2Q({l,l+1,...}) for 1>1

‘ <2 0

REMARK 5.20. There is a connection to the Bhattacharyya coefficient (also called
Hellinger coefficient) of two measures, see [12]. Assume two Borel measures p, v
on B([0,T]) and a reference measure o such that x4 and v are absolutely continuous
with respect to . Then

dp dv
B(u,v) ::/ ——do
[0,7] do do

which is independent from the particular choice of the reference measure, is called
Bhattacharyya coefficient. Under the assumptions of Corollary [5.19] with du(t) :=
AZdt and dv(t) = B2dt, we have

T
B ).v(w.) = [ 1A @B w)lds

COROLLARY 5.21. For 6§ € (0,1], p € [1,00), and Z € H,(S2) N BMO(S30)one has

T P
E / | Z, | 0dt| < oo
0
with
’ 0 0
/O Z 0| < cgmm ol s 01 Z W0 san)-
P
REMARK 5.22. (1) For = 1 we have that BMO(S29) C H,(S2) because of

relation .

(2) In general, for 6 € (0,1) we do not have BMO(S34) C H,(S2) (here one
can take deterministic processes) nor H,(S2) € BMO(Sa) (see Example
5.10]).

(3) In general, neither the condition Z € H,(S2) implies E| fOT | Z |1 H0ds|P <
oo for 6 € (0,1], nor Z € BMO(Sa9) does for 6 € (0,1).
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58 5. CONTINUOUS BMO-MARTINGALES

5.3. Reverse Holder inequalities

So far, we assumed a stochastic basis (A, A, Q, (A¢)cpo,r7), T > 0, where (4,.4,Q)
is complete, (A¢)icjo,r) is right-continuous, Ag contains all null-sets, and A =
Ap. To be in accordance with [59], we additionally assume now that all local
martingales are continuous. As we work on a closed time-interval we have to explain
our understanding of a local martingale: we require that the localizing sequence of
stopping times 0 < 73 < 7 < --- < T satisfies lim,, P(7,, = T) = 1. So we extend
the filtration by Ar to (T,00), i.e. A; := A for t € (T, 0), and extend all local
martingales (N¢)epo,r) (in our setting) by Nz to (T',00). This yields the standard
notion of a local martingale.

The probabilistic Muckenhoupt weights provide a natural way to verify various
martingale inequalities after a change of measure, see exemplary [57), 15l [59]. This
change of measure will appear in our setting in terms of a Girsanov transformation
that removes a sub-quadratic or quadratic drift term in Z that originates from the
generator of our BSDE, see Section

DEFINITION 5.23. Assume a martingale M = (M;);co,7) With My = 0 such that
E(M) with

E(M): = M3 (M)

for t € [0,T] is a martingale as well. For g € (1,00) we let £(M) € RHg provided
that there is a constant ¢ > 0 such that for all stopping times 7 : A — [0,7] one
has that

E(|E(M)7|?|A;)7 < cE(M), as.
The smallest possible ¢ > 0 is denoted by RH(E(M)).

It is known [59, Theorem 2.3] that £(M) is a martingale for M € BMO. Moreover,
we have the following result:

PROPOSITION 5.24 ([59, Theorems 2.4 and 3.4]). Let M be a martingale with
My = 0 such that E(M) is a martingale. Then M € BMO if and only if E(M) €

Uﬂe(l,oo) RHB

Later in our application we need to know whether a certain martingale M generates
a Doléan-Dade exponential that satisfies a reverse Holder inequality. Here the
BMOs-distance to Lo, would be a natural candidate for the extreme case that the
reverse Holder inequality is satisfied for all parameters 8 € (1,00), as Kazamaki

[69] Theorem 3.8] provides the characterization M € K[BMO’H'”BMOQ] for this case.
On the other hand, Grandits [49] has shown that a positive BMOs-distance to Lo,
does not provide a reasonable estimate for the critical value of § such that one
has a reverse Holder inequality (see also the Note added in Proof of [83]). This is
our reason to use the concept sliceable (which describes the BMOs-distance to Hy,
due to the result of Schachermayer [83]) because the following observation yields
explicit estimates for the critical exponent S and the corresponding multiplicative
constants in the reverse Holder inequalities:
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5.3. REVERSE HOLDER INEQUALITIES 59

THEOREM 5.25. Let @ : (1,00) — (0,00) be a non-increasing function and let
i {(7,8) €10,00) x (1,00) : 0 £ 7 < B(B) < 00} — [0,00)
be right-continuous in its first argument and such that

\P(’Yla/B)S\P(’yQaﬂ) fOT' OS’Yl §72<(I>(6)7
with the property that

| M|lsmo, < ®(B) implies RHp(E(M))
Then, for sln(M) < ®(8) we have that RHg(E(M))

(|| M||Bmo,, B)-

<
< [w(sin (M), B)] ™.

PROOF. The proof is based on a simple recursion argument that uses the con-
cept of a sliceable BMO-martingale. For sly (M) < ®(8) we choose 0 =719 < -+ <
7n = T such that

™= M™ [lBmo, < slv(M) +n < @(B)
for some 7 > 0 and all kK =1,..., N. Therefore,
RH(E(HM™)) < U(||™* M™|lBmo,, B) < Y(sly (M) + 1, B).
Letting 7 : A — [0,T] be a stopping time and o := 7, V 7 gives that
Eu (eﬁ(MT,%<M>T))

— (eﬁ(MT—aM»)) Ea (eﬁ([MT—MT]—%[<M>T—<M>T1))

N
— <66(1w7'7%<M>T)> E.AT (H eﬂ([MUk-_M”k1]_5[<M>ak._<M)0k1]>> .
k=1

Next we observe that

(30)  Eu (eﬁ([MakfMak_l]f%KMm7<M>ak_1])) < [ (sly (M) +1,8)]°

for K =1,..., N which follows from

|71 M [Bmo, = 7™ M ™ [pmo, < sup "M ™ [smo, < slv (M) +1,

Tk—1

PR

where we use Lemma Applying inductively backwards beginning with
k = N and using the projection property of the conditional expectation gives that

RH3(E(M))® < [¥ (sln (M) +1,8)] .
We conclude by 7, | 0. (]

According to [59, Proof of Theorem 3.1] possible choices of (@, ¥) are

1 1 H
(31) B(B) = <1+ﬂ210g(1+2ﬁ_2>> 1,
5 B
(32) \IJ(’%B) = ( _ %%652[72+27]> s

where @ is decreasing with limg_,o, ®(8) = 0 and limg_,1 ®(8) = oo.
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60 5. CONTINUOUS BMO-MARTINGALES

5.4. An application to BSDEs

In this section we follow the ideas of [22] Proof of Proposition 2.3] but adapt and
extend the ideas for our purpose. Let B = (B;):c[o,r] be an n-dimensional standard
Brownian motion (where all paths are continuous) on a basis (A4, A, Q, (A¢)iepo,17)-
where (4, A, Q) is complete, (A¢):e[o,r] is the augmentation of the natural filtration
of B, and Ay = A. It is known (see [T7] Section IV.3]) that the conditions of Section
5.3 are satisfied. We consider the two backward equations

T T
YY) = 50+/ fo(s,YSO,ZS)ds—/ Z%dB;,
t t

T T
Y;l — §1+/ fl(s)dsf/ Zslst,
¢ t

where we assume the following conditions:

(D1) The processes f, Z° and Z! are predictable and the processes Y° and Y'!
continuous and adapted,

(D2) E[¢/? < oo and E [} |Z2§|2ds < oo fori=0,1, 2
(D3) E ‘fOT |f0(s,YSO7ZS)|ds) <ooand E ‘fOT |f1(s)|ds‘ < o0,
(D4) the generator f° : Q7 x R x R" — R is such that (t,w) — fO(t,w,y,2) is

predictable for all (y, 2), (y,2) — f°(t,w,y, ) is continuous for all (t,w), and
there is an Ly > 0 such that, for all (¢,w, yo, y1, 2),

|f0(taway07z) - fo(t7w7y17z)| < Ly|y0 - y1|

We let A¢ := ¢ — €9 and for s € [0, 7],

AY, = Y!-Y0
AZS - Zsl - Zsov
as = fl(s) - fO(SaY;l?Zsl)a
(s, Y2, Z1) — fO(s, Y0, 29)
ca = AZ,[? X(az.201A%s,
T
Z, = |Ag +/ lay|dr-

LEMMA 5.26. Assume that ¢ = (¢;)iejo,r) € BMO(S2) with |||c|||zmo(s,) < v < oo,
At = exp(fot csdBs — %fot |cs?ds) and py € (1,00) such that RMy (A) < p < oo
with 1 = (1/po) + (1/p}). Assume p € [2,00) with p > py such that

T P
/ |AZ,|*ds

2
0

E < 00.

Then there is a cgag) € (0,00), depending at most on (T, Ly, p,po,7,p,n), such
that for allt € [0,T] one has that

T 2
sup |AYsl|| + </ |AZS|2ds> < ¢z = p-
s€[t,T) . t
p
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5.4. AN APPLICATION TO BSDES 61

REMARK 5.27. As already mentioned before, Lemma [5.26] continues the work done
in [22] Proof of Proposition 2.3], but also the work done in [2] Theorem 5.1]. The
main new contribution consist in the fact that using the extension of Fefferman’s
inequality (Corollary we are able to get an L,-L,-estimate in contrast to a
weaker L,-L.-estimate for r» > p.

PROOF OF LEMMA [5.26l Let dQ* := Apd@Q. To distinguish between the inte-
gration with respect to Q and Q*, but not to overload the notation, we agree that
|| - ||, always means that we integrate with respect to Q. By Girsanov’s theorem,
(B%)sepo,r) With B := B, — [ ¢;dr is a standard Q*-Brownian motion. Now let
us fix ¢ € [0,7] and assume that |||, < oo, otherwise there is nothing to prove.
Additionally introducing

b = fo(sa Ysl7 Zsl) — fo(svysoﬁ Zsl)
s 1= AY, X{AY #0}>

we get that
AY;

T T T T
= A§+/ asds+/ bsAster/ <cs,AZs>dsf/ AZ.dB,
t t t t

T T T
= A§+/ asds+/ bsAsts—/ AZ,dB?
t t t

where our conditions assure that all terms are well-defined. Because of

py L
5\ P

T % N T
EQ* </ |A252d8> S (EQ/\I;«) P EQ </ |AZS|2d8> < 0
0 0

and the Burkholder-Davis-Gundy inequalities ( fg AZdBY)¢eo,1) 1s of class DL and
therefore a Q*-martingale (see [80, IV.1.7]). Applying It6’s formula implies that

T T
efot bsdsAyrt _ efoT bstAg + / gfos b,.drasds o / efcf b,,.drAZSdB;k
t t

and

T
AY; = Eg- (eftT bads A g —|—/ et br’”asds|At> .

t
Using po € (1, p) we continue with
1
AV < el Bg (2,1Ay) < 6705 p (B (F7]A) as.

By Doob’s maximal inequality,

(33) sup |AYj]

s€t,T]

<c@yl=ds
p

1

with c@g) = e(T=OLy (;:ﬁ) " Letting
Afs = fl(s) - fO(S,}/;O7Zg),

we also have that

|Afs| < las| + [bs||[AYs| + [es||AZs| < |as| + Ly |AYs| + [es||[AZ]

7 Nov 2017 05:35:26 EST Prob+Stat
Version 2 - Submitted to Memoirs of the AMS



62 5. CONTINUOUS BMO-MARTINGALES

and

T
| 1aviagas
t

T
< [ 18Yiflal + Ly|AYi] + |e[AZ.)ds
t
T T T
<  sup |AYY] |as|d5+Ly/ |AYg|2ds+/ [les||AYS||AZ||ds
s€[t,T] t t t
2
1 , 1| [T
< < swp AV 42 | [ lalds
selt,T] 2 1 J
T T
soy [ 1avPds+ [ llelav)az,as
t t
1 T 2 T
< TI? sup |AYS|2+7 / las|ds +/ [les||AYs||AZ||ds
se€lt,T] 21 J ¢

with T? := } + T'Ly. Now for S,(2)? := [, |AZ|*ds and *Y; := sup,c|, 1) |AY;|
using It6’s formula, the Burkholder-Davis-Gundy inequalities , and Corollary

[5.19] we get that
15¢:(Z) |,
T T %
< <|A£|2+2/ AY,AZ.dB; +2/ IAYsAfsld8>
t t
p
T T 2
< H<|A§|2+2/ AY,AZ,dB,| + 2I'**Y? + / as|ds]
t t
T 3
+2 [ lellav.az]as)
t P
T % T %
< 1Bl + V2 / [[es||AYS]|AZ,|]ds +\/§H/ AY,AZ,dB,
t P t g
+V2r||*Y;
p
1 T 2
< ”Et”er 26,§H|C|”]§Mo(32) </ “AYsHAZsH2d5>
t
T , 3 1 /3
+1/28 / AY,||AZ,|)?ds + V2T ||,
p/2 (t H H ” > " t )
= 1Elly + [/2cmm 5 el nocs,) + /282 %
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5.4. AN APPLICATION TO BSDES 63

2

T
< (/ [AYS|AZS|]2ds> +/ar

2

Y

p

Therefore, for k := \/2c7g7 + \/Qﬁp/g and A > 0 we obtained that

1
2

T 3
1S{ ), < |Eellp + & (/ [|AYS||AZSH2d5> +V2r||*Y,
t . »
2
< 2y + K 11MY2Se(2)]12 + V2T ||*Y;
: p
_ Ao 1 I .
< Bl + 5 || 57Ye + 57.5:(2) +VFF m
2 2
< ||_t||p+,<;\[ m||P+H\/7||St Z)|p + V2r *Yt

Choosing X := 2x? and using (33) gives that

1542l < 2, + 267 +2v2T)

p

< 20l + 262 + 2V ey el
which concludes the proof. (Il
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CHAPTER 6

Applications to BSDEs

In this chapter we consider a solution to the BSDE

T T
(34) Yi=¢ —|—/ f(s,Ys, Zs)ds —/ ZsdWs, t€0,7T], as.,
t t

and will proceed as follows: Firstly, we extend equation from (Q,F,P) to
(Q, F°,P) and follow Chapter [3|to transform this extended BSDE from (Q, 79, P)
to (Q,F%,P) and (Q, F¥,P), respectively, and consider for p € {p,7} the two
solutions

T T
35 Y/ -4 / (s, Y0, 20)ds — / 204w, te(0,T], as.
t t

Therefore describes two copies of , parametrised with ¢ and ¢, by trans-
forming the underlying Gaussian structure. Secondly, we interpret as equations
driven by the joint Brownian motion W = (Wt)te[O,T] and apply an a priori esti-
mate to obtain Theoremto describe the stability of . From the stability we
obtain non-linear embeddings for Besov spaces in Section and upper bounds
for the L,-variation of solution processes (Y, Z) to our BSDE in Section To
explain by means of Section the usage of our general framework, let us assume
for the moment that the generator f in depends only on (s,y, z). Forp € [2,00)

and 0 < s < t <T Theorem|6.24|provides an upper bound for

Supr'E[s,t] ‘Yf - YS| .
that mainly depends on [|£—£(1|| p- In other words, local estimates on £ imply local
estimates for the variation of the process Y , if local is understood as local in time.

To illustrate this further, assume a partition 0 = rg < r; < --- < rp, = T, again
p € [2,00), and suppose for I = 1,..., L that § € £, is a measurable functional of
finitely many increments Wj, — W, with (a,b] C (r;—1,7;]. Consider

5 = q(él/ s 7€L)7

where ¢ : R* — R is a Lipschitz function with constant L > 0. Then
€ = €5, < Ll — &I, whenever (s,2] € (ri—1,7).

Therefore, the variation of Y on [r;_1, 7] is mainly determined by properties of ;.
This idea was first developed in [40] and then extended to the framework of Lévy
processes in [41].

6.1. The setting

In this section we assume a stochastic basis (2, F,P, (F¢)icpo,r)) with F = Fr
satisfying the usual conditions, where F = (F);c[0,7) is the augmentation of the
natural filtration of the d-dimensional Brownian motion (W;):cjo,7). We consider

65
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66 6. APPLICATIONS TO BSDES

a solution to the BSDE under the following set of assumptions, that describe
the generators we will use and ensure that all expressions do exist:

ASSUMPTION 6.1.
(B1) The process Z is predictable such that

T
P / |Z,|?ds < 00 | = 1.
0

(B2) The process Y is adapted and path-wise continuous.
(B3) The generator f : Q7 x R x RY — R is such that (t,w) — f(t,w,y,2) is
predictable for all (y, z) and there are Ly, Lz > 0 and 6 € [0, 1] such that
‘f(t,w,ymZo) - f(t,w7y1,zl)| < LY|y0 - y1| + LZ[l + |ZO| + |21H9‘ZO - Zl‘
for all (t7 W, Yo, Y1, 20, Zl)'
(B4) P (fOT \f(s,Ys, Z,)|ds < oo) ~1.

The case 8 = 0 is the standard Lipschitz case, the case § = 1 the standard quadratic
case, and 6 € (0,1) can be seen as sub-quadratic case (see for example [28]). Our
strategy for the first step is to impose in Lemmal6.2] below conditions on the gradient
process Z and f(s,0,0), only, but not on £, in order to verify that we deal with
an Ly-solution to our BSDE. This might also help to find more general conditions
on (&, f) that ensure the existence of Ly-solutions (see Section below). Our
conditions on Z can be verified by results from Section below. In the following
we assume that p € [2, 00) because this assumption will be used in some steps of the
proofs and because this case is more interesting with respect to the tail-behavior of
|Y: — Y;| than the case p < 2.
LEMMA 6.2. In addition to the conditions (B1)-(B4) we assume for p € [2,00) that
T

(B5) f() ‘f(8v030)|d8 S LP:

(B6) (Jy 12.ds)" € £,

(BT) [ 1Z,|"*0ds € L,

T

Then [y |f(s,Ys, Zs)|ds + supyepo m |Yel € L.

Proor. We rewrite as

t t
Y, =Yy - / f<s7Y'S’ Zs)ds +/ ZsdW,
0 0

for t € [0,T]. For an integer N > 1 let
v :=inf{t € [0,T]:|Y; = Yo| =N} AT
with inf () := oo. Then

tANTN tIANTN
}/t/\TN :YO_/ f(saY&ZS)dS_F/ ZSdWS'
0 0

Because of
(36) (5,9, 2) < 1£(5,0,0)| + Lyly| + L1+ |2]]°|2|
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we conclude that

T T
Wil < Mol [ 17,0005+ L. [ 1412012 0ds
0 0
r tATN
+ sup / ZsdW } —|—Ly/ [Yinry |ds
re[0,T] [J0 0
tATN
=: A+Ly/ [Yinry |ds
0
and .
MY < A—i—Ly/ MNds
0
with
MSN = sup |Yoarn| = sup |Yi|
r€(0,s] re[0,sATN]
The process (M{)ejo,r] is continuous, adapted and bounded by |Yy| + N. The
inequality

t
1M1 < 1Al + 2, [ 1M s
implies by Gronwall’s lemma that
M7 [l < e™ T Allp.

Letting N — oo gives supycpo 1 |Y:| € £, because A € L, which follows from

conditions (B5), (B6), and (B7). Finally, using the part fOT |f(s,Ys, Zs)|ds €
L, follows. O

Condition (B5) is a condition on the initial data of the BSDE, whereas (B6) and
(B7) are implicit conditions on the solution. For § = 0 condition (B6) implies (B7).
Conversely, for § = 1 condition (B7) implies (B6). A sufficient condition for both,

1/2
(B6) and (B7), is ( I |ZS|2ds) € Latoyp

6.2. Stability of BSDEs with respect to perturbations of the Gaussian
structure

Now we substantiate the procedure explained in the beginning of this chapter: we
assume the setting of Section and follow Convention (1) to extend to
and find

T T
(37) z:g+/ f@,?;,zs)ds_/ Z.4W°,  te[o,T].
t t

We remark that for a (P, B(C(M)))-measurable h : [0, T]xQ — C (M) the extension
h:[0,T] x Q — C(M) is (P°, B(C(M)))-measurable, and that there is a Q0 € F
with P(Qo) = 1, such that (; ZdW0) (w,w') = (fot ZsdWs)(w) for t € [0,T] and
(w,w’) € Qg. Moreover, it is clear that the inequality from (B3) transfers directly.
Therefore we assume that is extended to where we simplify the notation

by denoting (5, f,Y, Z) again by (&, f,Y, Z). Using Theorem in the setting of
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68 6. APPLICATIONS TO BSDES

Section [4.2] we obtain (35). We also know that the transformed generator f* can
be taken such that (B3) is satisfied, i.e.
|fp(t7wa Yo, ZO) - fp(t7 @7 Y1, Zl)'
< Lylyo — 91| + Lz[1 + |20] + [21[]°|20 — 21| =2 H((y0, 20), (1, 21)),

which follows from Remark [3.4]

Now let us turn to our basic result. Our strategy is to impose the conditions (B1)-
(B6) and an extra condition on Z on equation in the context of the stochastic
basis (2, F, P, (F¢)tejo,r)) we did start from, and then to deduce by Lemmathe
moment estimates in the extended setting of (€2, P). For the following we remind the
reader that the number sliﬁ'A(c) for an R-valued progressively measurable process

¢, N > 1, and a filtration A was defined in Definition

THEOREM 6.3. Assume 0 € [0,1], for equation conditions (B1)-(B4), and
additionally |Z| € BMO(S29) in the case 6 € (0,1]. Suppose that there is a non-
increasing sequence (sy)n>1 C [0,00), where so = limpy sy, such that

sl (121) < s

Suppose that conditions (B5)-(B6) are satisfied for p € [2,00) where in the case
Soo > 0 we additionally assume that

O1(2v2L z55)
®=1(2v/2L z55) — 1

with the function ® defined in . Then, one has for the extended equations for
allt € [0,T] that
T
+ ( / D[ip(s),9(s)] |Zszds)
t

. 1
+ </ |Zg’—2;”ds>
t

2
T
/ F9(5, Y, 2Y) — f2 (.Y, 20)\ds
t

P> poi= € (1,00)

1
2

sup |Y20 - Y:/’|
s€[t,T]

p p

p

< @y 167 — €% +

P

where ¢, € A, Dlni,no] := 1~ /1 =ni/1 =05 —me, and cgz) > 0 depends
at most on (Ly, Lz, T, (sn)F—1,D,d).

The applications of Theorem[6.3are at least two-fold: Firstly, we obtain a non-linear
embedding theorem for Besov spaces in Section (Corollary . Secondly,
we deduce in Section [6.5| upper bounds for the L,-variation of solution processes
(Y, Z) to our BSDE
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6.2. STABILITY OF BSDES WITH RESPECT TO PERTURBATIONS 69

REMARK 6.4.

(1) The function D[n,m2] : [0,1]*> — [0,1] measures the distance between
n and 79, by projecting the vector (m1,+/1 —n?) onto the linear sub-
space generated by (12,+/1 —73), and by comparing the projection to
(12, /1 —n3). In particular, D[n,n2] = 0 if and only if 7, = 7.

(2) Because the case limy sy = 0 is of particular importance in Theorem
as it enables us to use the full range p € [2,00), we give some examples
for this situation:

(a) For 8 =0 we have that

T
1527 (1 719y < (] =
sl (121) </

if we take equidistant time-nets.
(b) Let 0 < & < n < 1 and assume that |[|Z]||pmo(s,,) < oo. Then,
similarly to Example we obtain

(X (a,6) (D) Zt] e o, | BMO(S20)

1 1
< (b=a)? "2 || (X(a,p) (DI Z¢])icio, ) IBMO(S2y)

and, by using equidistant time-nets, that

101_¢6

T 2( n)
5020 < () 1Zos.:

(3) The usage of (sl%’F(|Z|9))N21 might not be optimal in extremal cases
as we mainly need the reverse Holder inequality for the Doléan-Dade ex-
ponential in the proof of Theorem below: If one would have

R — B
fo cedWs € Lo 2, then according to the remarks following Proposi-
tion the reverse Holder inequality for all exponents would be satis-

fied. Tt is part of future work to check conditions on the gradient Z which
guarantee this. On the other hand, if fo csdW s & EBMOQ, then our ap-

proach yields explicit bounds for ¢@3) > 0 and the threshold pg in terms
of (sny)n>1 which is implicitly a novelty of this statement. As shown in
Section [6.3] below, the usage of the sliceable numbers gives so, = 0 in our
relevant cases.

(4) In [37] the sliceability condition is applied directly to &, instead of to
|Z|? as in our Theorem This is done to consider a new concept
of a solution to a BSDE, called split solution, to solve multidimensional
quadratic BSDEs.

PROOF OF THEOREM (a) By Corollary the assumptions (B6) and
I1Z1l[BMO(820) < 00 imply (B7) in the case 6§ > 0, whereas for 6 = 0 condition (B6)
implies (B7) directly. Therefore we have

T
(38) / F(s, Y, Z:)ds + sup |Vi| € £,
0 t€[0,T]

by Lemma for equation (34). This yields the validity of conditions (B1)-(B7)
and for the canonical extension to (2.
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70 6. APPLICATIONS TO BSDES

(b) Now we define hy, ho : [0,1]2 — [0,1] by
V1 =224 21— 22

hl(l',Z) = x4 2 )

V1 — 224 21— 22

VI—224/1—22
where for z = z = 0 we set hy := 1 and hg := 0, analogously for z = z = 1 we set
h1:=0 and hy := 1, so that

V1—22 z\ (hi(z,2) (1
(x/l — 22 z) (hg(:c,z)) o (1)
for all x,z € [0,1]. For p € {p, ¢} we let
Zy = (201 p%(s), ZEp(s))
(s, (22) o= [ (s,9:hl(s),9(5)z + ha(ip(s), 9(s))2)
which leads to f(s,Y£,Z%) = fr(s,YF, Z?) and

ho(z,z) =

(39) Y/ =€+ / T?”(anZS)ds— / TﬁidWs.
Observe that
1z - Z)
(40) = [ (s), 0(IZE1? + 1Z£1°] + [L = Dlg(s), ()] 28 — ZZ)?
[ ( )’w( )]|Zw_Zap|2
2 S S

|z¢ — Z¢)?
2
and therefore we get for

(41)

Y

T, Y2, 75— TP (s,Y 8, Z))

S S

o Y
Cs = X{ff#f‘f}[zs - Zs]

zt - 70
_ f%’(s’YS‘P,Z;P)_fSD(s?YSSO’Z;b) P ¥
= Z_7°p XqzsszyZs = 2]
that
|2 (s,YE, Z8) — [2(s,YE, ZY)]
o] < V2 7¢ 77| X{zg£2¢}
< VaLy[1+|2¢) +|z¢))’
< V2Lz[1+|2¢)° +|22)].

Lemma[5.5] (to come into the setting of Lemma [5.5| one can pass from an R-valued
progressively measurable process o = (a¢)¢ejo, 1) With EfOT log|?dt < oo to a mar-

tingale by, for example, M, := fot asdW s 1) gives that

(42) SIS2T L (el) < V2L [sIS2T (1) + s1527 (127 )%) + s132F (122 )9)).
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6.2. STABILITY OF BSDES WITH RESPECT TO PERTURBATIONS 71

(c) We return to the stochastic basis (€2, F,P, (Ft):epo,17), take n > 0 and find a
sequence of stopping times 0 = 79 < --- < 7y = T such that

sup N H(X(kal,‘l'k](t)|Zt‘0)t€[0,T] ||BMO(SQ) < 81}9\727F(|Z‘a) +n<sy+7.

Letting
Zf = X(Tk—lka](t)Zt7
one can quickly check that

T
E </ |Z§|29d8|ﬂ°> < (sw +n)?
t

for all deterministic ¢ € [0,77, where Z k¥ is canonically extended to (2. Assuming
an (f?)te[O’T]—stopping time 7 :  — [0, T], and using the decomposition

T T T
E ( / |Z§|2f’dsf2> ~E ( / |Z§|29ds|f£> - [ izkpas
T 0 0

and the optional stopping theorem, we may deduce that

T
E (/ |Z§|2"ds|f£> < (sy+n)

Consequently,

S (X (re1,70) D] Z2] ity IBMO(S2) < SN 41

also after extending Z and (73,)1_ to Q where the filtration F* =(F7);e(o,7] is used.
This means that

(43) SIS (1219) < s

(d) For any stopping time 7 : Q — [0, 7] relative to (2, F,P, (F¢)efo,r7) and for
p € {9, ¢} consider 7 : Q) — R and take a representative such that 77 : Q — [0, 7.
It is easy to check that 77 is a stopping time with respect to the filtration (Ff )eelo,T]-
Using E (A?|F;) = (E (A\]:to))p P-a.s. for A € £1(Q, F°,P) (which can be checked
by taking simple A that depend only on finitely many increments of the Brownian
motion W and then passing in L; to the limit), Proposition and Remark 2)

yield that
P

T T
/ X(T}fil,rﬁ](s)|z.§|26d5 = (/ X(Tk1,Tk](S)|ZS|20d$> P-a.s.
t t

and

T T
]E</t Xw,slw,s](s)zﬂwdslft) B (E </t X‘ﬂ«lmk](s)'ZS'Qeds'ftO))

< (sy+n)?

p

Therefore, we obtain s15""(|Z?|%) < sy +n as a complement of (where we use
the same optional stopping argument as in step (c)) and can continue from (42)) to

\)74_2 2
S +
,N N 7]

SIS2F (o) < V2L
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72 6. APPLICATIONS TO BSDES

and

7 T
sl o(le) < V2L [\/ N 28N

by 1] 0. In the case so, = 0 take py € (1,2), say pp := 3/2, and in the case s, > 0,
define
O 1(2v2Lz54)

d-1(2v/2L z55) — 1

o = € (1,00)

and p; := (p + po)/2 so that
1<po<pr <p<o0.
Let

t o 1 t
(44) Ay = exp (/ csdW o — f/ cs|2ds> .
0 2 Jo

We find an N > 1 such that

F T
sli%” 5(lc]) < V2Lz l\/ N 28N
This N depends at most on ((sn)%%_1,Lz,T,p). Theorem implies that

T 3N—-2
\I’<\/§Lz l“N+25N ,p&)] < 00

with W taken from (32)). By assumption (B6) we have that

T 3
(/O ZS|2ds> €L,

Finally, fixing t € [0, 7], we can assume for this ¢ that

< O(p}).

R, () <

< 0,

T
/ |fw(57Y9waZ;b)7fw(57Y:sw7Z§})|d5
t

P
otherwise there is nothing to prove. So we can apply Lemma to the equations
for p € {p, 9} and conclude by using and ([41)). O

6.3. On classes of quadratic and sub-quadratic BSDEs

In this section we present results about particular classes of quadratic and sub-
quadratic BSDEs that might be of independent interest. At the same time we
check whether we may apply Theorem [6.3] to these BSDEs and what we can say
about the critical value s.

There are various articles that describe the existence and quantitative properties
of solutions to BSDEs and provide comparison results. For the case § = 0 the
reader is referred to [21] and the references therein, and for the quadratic case we
refer to [60, 61, [62], [51], 23], 2], (24}, 25], 68, [54], [30}, 67, [6}, B1]. We are mainly
interested in the sub-quadratic and quadratic case, i.e. the case when 6 € (0,1].
In Table 1 below we describe how we will embed these cases in the framework
of this article. Table 1 should be read in the way that we first choose (&,0, f),
then we obtain the integrability of the gradient process Z = (Zi)icjo,r) and the
conclusion for s, = limy sy that are required for Theorem In the cases where
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6.3. ON CLASSES OF QUADRATIC AND SUB-QUADRATIC BSDES 73

the uniqueness of the solution is not known there exists a solution with the stated
properties. In (IV)-(V) we leave out the range for s, as we do not have general
results for these cases (see Remark below). Moreover, for (II)-(V) we need the
following additional condition:

(B8) One has sup(; w0, [f(t,w,0,0)| < oo, Ly >0, and Lz > 0,
where the constants Ly, Lz > 0 were introduced in condition (B3) of Section

K [0 [/ |12 ES
0 [€eL, 0| (B3), (B5) | Hy(5:) 0
for some p € [2,0)
(11) [[ € € cExp 0,1) | (B3), (B8) [ Ha(Ss)n N |0
n€(0,1)
BMO(S2,)
(ITD) || €lcExp(n.u) <oo for some | 1 (B3), (BY) || Hy(S2)N [0, 00)
n € (0,1], u > vebT BMO(S2,) ifn=1
(IV) | Eerlél < o (0,1) | (B3), (BS) || BMOVY(S5)
for some p > 0
(V) [ Eerlél < o 1 (B3), (BS) || BMOVY(S5)
for some p > veST

Table 1

The spaces BMON(SQ) used in (IV) and (V) are explained in Theorem and
the remark following it. We note that |Z] € BMON(SQ) also implies | Z| € Ha(S2).
The case (I) follows from [21] Theorem 4.2] that gives (B6) and Remark [6.4]2a)
yields to soc = 0. In the following we verify our contribution (II)-(V).

Notation and setting. There is a series of papers dealing with the quadratic
case where the terminal condition is unbounded, see [23), 24, 30, B1]. Below we
use the setting of the initial article [23]. For future work some extensions of [23]
done in [68] might be of interest for our context as well. To use the setting of [23]
we introduce constants o > 0 and 3, > 0 such that, for all (s,w) € [0,T] x Q,

(45) |f(87w,y,2)|§a+ﬁ|y|+%|z|2 and azg.

In our framework we suppose, for the remainder of this section, that condition
(B8) is satisfied. Moreover, we choose (o, 3,7) to be

L
(46) a = max sup |f(t,w,0,())|+LZ,—Y ,
(t,w)€Qx[0,T] 4Ly
(47) B8 = Ly,
(48) v = 4Ly

As in [23] we use the function @ : [0,00) — (0, 00) given by

o eB(T—1) _y elﬂeﬂ(T_t)

Py(y) =€’ E
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74 6. APPLICATIONS TO BSDES

Moreover, we set
— ~eBT
M =yett >y
which plays the role of a critical exponent in the case § = 1. Applying [23 Theorem
2] and inspecting its proof gives the following statement:

THEOREM 6.5 ([23]). If there exists a p > pr such that
Eeﬂ‘f‘ < 00,

then there is a solution to the BSDE such that
(1) MYl < E (®:(|¢])|F:) a.s. fort e [0,T],
(2) |Z| € Hy(Ss),
(8) for0<s<t<T ande >0 withy+e < p one has

|Z.| dr]-") < c E sup eI E) as.
</ - rels,t]

for c =2 {712 + %max{oz, g}] .
Verification of (IV)-(V). Here our main observation consists in

THEOREM 6.6. Let 6 € (0,1] and assume that p > pr if 6 = 1 and p > 0 if
0 € (0,1). If Betlél < oo, then there is a solution to the BSDE such that

T
(49) E (/ |ZT|2dT|~Fs> < C\Ifs with Vs :=E (e“|5||]-'s)

for all s € [0,T] and cEe) = c(a, B,7,T,0, 1) € (0,00), where we may assume
(Vs)sefo,m) to be path-wise continuous. Moreover, for all stopping times T : 0 —
[0,T], B € F; of positive measure, and \,v > 0, one has

T
Py / |Z,|2dr > A | < el 4+ 6P | sup U, > v ,
T s€[r,T) D

where Pg is the normalized restriction of P to B, D = D(«, 8,7,T,60,1) > 0, and
0 > 0 is an absolute constant.

In the spirit of [44] Definition 1] the inequality (49) could be abbreviated by

|||Z|||BM()\F 52)7 .

PROOF OF THEOREM Case § = 1: We choose ¢ > 0 and p € (1,00) such

that
Yte

= ppr = Hr

which implies by 5 > 0 that v+ < p. Assuming 0 < s < T and applying Theorem
[6.5] gives, a.s., that

T
E Z2drlF. | < A=E| sup OO E,
(/s|||)_.<”pﬂ |
= C.]E ( sup eP'Yly ||]_' )
rels,T)
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6.3. ON CLASSES OF QUADRATIC AND SUB-QUADRATIC BSDES 75

< B sw [B(e.06017)] 17
rels,T)
< dg| -2 E@.ez)
= '| p o 1 s S
p
2 p
S " ﬁ :‘igw]E (e”lgl |fs) ,

e =1

where k7 =€’ 7 and for (E(®,(¢])|F))rejo,7) @ continuous modification is
taken. Therefore, letting
P

02 = C2(a7ﬁ77a T? /1’) = C

b

Ko ———
Tp_1

T
E (/ |ZT|2d7“|]-'s> <AV, as.

Using an optional stopping argument, this can be extended to

T
E (/ |ZT|2dr|]:T> <AV, as.

for any stopping time 7 : Q — [0,7]. Given v > 0 we get

T T
Pg (/ | Z,|2dr > 31/) Ps </ |Z,|2dr > 362\I/T> +Pp (¥, > v)

If we define

we proved

IN

< %—HP’B (CQ\I/T >V).

W(B,v;7):==P| Bn<{ sup 32V, >v ,
relr,T]

then we can directly apply [44] Theorem 1].
Case 6 € (0,1): This case can be considered exactly as the case § = 1. In fact, with
our choice of parameters (a, ,7) in , @, and we obtain the estimate
i
F(5,0,3,2)| < v Blyl + 21el*.
But now, for any given 4 > 0 we find an & > 0 such that
T +0 < 5 Y2
o+ L0 <t L

for all z € R%. In other words, we can arrange the parameters such that p > 7eT
(and have an additional dependence of the constants on 8). (]

REMARK 6.7. Assume equation (34) with T =d = 1, f = 0, and suppose that
Eetlél < oo for all > 0. Then there is a unique solution (Y, Z) under the assump-
tion Z € Hy(S2). As we may choose any 6 € (0, 1], we are in the setting of (IV)
and (V). Given n € (0, 1], we will construct a £ as above with Z & BMO(Sy,,). This
means, without any additional assumptions one cannot expect results about finite

7 Nov 2017 05:35:26 EST Prob+Stat
Version 2 - Submitted to Memoirs of the AMS



76 6. APPLICATIONS TO BSDES

Seo in (IV) and (V) of Table 1. The construction is as follows: For a € [1,00) we
recall the definition of the Orlicz spaces Leyp, (see [10]),

Rl

Lesp, (2, F,P) := {F € Lo( F,P) : | Fl|y... :=inf{A>0:E(%)" < 2}}.

expa
VVeﬁxO<77§1<’y<2,determinea€(2,oo)by%:i—i—%.,andlettn ::1—%
forn > 0. For e >0, n > 1, and ¢, € (0,00) we set

— 2(”-‘,—1)[%-&-8}

Un(w) X{Wi,, (@)[>en}

so that [[v,|le = 9125 +¢] . We choose ¢, such that [jv,||L
as in Example the process

Zy = Z X(tn—1,t0] () V1.

n=2

The proof of Example confirms that Z ¢ BMO(Sy,). On the other hand,

< 1 and define,

expg

1 0
‘ / Z,dW, < D oW, =W, )
0 LQXP'Y n=2 Py
o0
< Z an*1| Lexp,, HWM - th71| Lexpy
n=2
- 1
= Wil D Ionille,, 5
n=2
< 0Q.

Therefore it holds that { € Lexp  with v > 1, so that Eetlél < oo for all p > 0.

Verification of (II)-(III). The next definition will allow us to deduce that
the gradient process Z belongs to BMO(S5,):

DEFINITION 6.8. For i € (0,1] and p € (0, 00) we let
1_

[Elemapi = sup (T — )57 ||B(er€l|F7)| .

te[0,T) o

In the notation cExp above, ’¢’ stands for conditional and 'Exp’ for ezponential.

REMARK 6.9.
(1) For n =1 we have that |¢[crxp(1,,) = e*I€l=.

(2) For§€L2,O<77<77<1,and0<ﬂ<u<oowithp(%—1):ﬁ(%—1)

one has |£|5Exp(ﬁ7ﬁ) < ‘ﬂgEXP(n,u)'
(3) For £ € Ly and ng,m € (0,1) one has |]crxp(ng,ue) < 00 for some pg €
(0,00) if and only if |€|crxp(n,,uy) < 00 for some py € (0,00).

PRrOOF. Part (1) is obvious, (3) follows directly from (2). The assertion (2) is
a consequence of

llcexp,p) = sup (T — t)%_1 HIE(eﬂ'g'IE)
te[0,7] o0
= sup (T — tﬁfl HE(e"%Igl\ft)H
te[0,7] 0
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6.3. ON CLASSES OF QUADRATIC AND SUB-QUADRATIC BSDES s

< sup (T )F 7 ||E(erel| 7|
te[0,T7] 00

A&

[ sup (T — )77} HE@“WHJ “

te[0,T)

I3
F

|€ CLEXP("L/J') ’

Directly from Theorem [6.6] we deduce

COROLLARY 6.10. Assume 8 = 1, n € (0,1], and in addition to the assumptions
made in Theorem that [€]cexp(y,u) < 0o for some p € (0,00). Then |Z| €
BMO(Sa,) with

I ZlleMo(82,) < @8 €] S -

PrOOF. We simply have that

T
_1
E (/ |Zr|2dr|]-"s> < cgE (e#‘f‘\fs) < cfgg) €lcmxprp (T — 5)' 77 as.

S

for all s € [0,T] and therefore, a.s.,

1

T n T
E </ |Z7,27]d'r> |]:5 < (T — S)TyflE (/ |Z,,2dr|]-'s> < C|£‘0Exp(n,u)'

S

O

The above corollary explains the case (III) from Table 1. It turns out that in the
remaining case (II) the particular choice of parameter 7 in | - |cgxp(y,,) does not
have an impact. This is reflected by the following notation:
DEFINITION 6.11.

(1) For a cadlag process Y = (Yi)sepo,r) and (n, 1) € (0,1) x (0,00) we let

YlcExp(nm = sup (T — tﬁ*1 HE(e“S“pse[thl IY:|
tel0,T)

Fi)

o0

We say that Y € cExp provided that |Y|cgxp(y,.) < 00 for some (n, u) €
(0,1) x (0, 00).

(2) We say & € cExp provided that [£]cpxpn,u) < oo for some (n, 1) € (0,1) x
(0, 00).

The definition of |Y'|cgxp(n,,) is consistent with Definition as for a random
variable & we may let Y; := & and get |Y |cuxp(n,u) = [lcExp(n,p)-

REMARK 6.12. Exactly as in Remark [6.9 one can show that for 79,71 € (0,1) one
has |Y|cgxp(no,ue) < 00 for some py € (0,00) if and only if |Y|cpxp(n,,u) < 00 for
some p1 € (0,00). Therefore, Y € cExp if and only if there is some p € (0, 00) such
that

sup (T —t) HE(e# S——
te[o,T)

]:t)H < o0.

oo
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78 6. APPLICATIONS TO BSDES

THEOREM 6.13. Assume that 8 € (0,1) and £ € cExp. Then there is a unique
solution (Y,Z) to the BSDE in the class where Y € cExp and |Z| € Ha(S2).
Moreover, for this solution we have that

(1) S0o =0 for soo defined as in Theorem[6.3,
(2) |Z| € BMO(Ss,) for alln € (0,1).

For the uniqueness in the above theorem we do not assume convexity properties of
the generator. Instead of that, we use |Z| € BMO(S39) and follow the methodol-
ogy that BMO-properties of the Z process give uniqueness, see for example [51].
The difference to previous settings is that we exploit that the generator is sub-
quadratic and get therefore a weaker condition than the standard BMO-condition
|Z] € BMO(S2). Note that according to Example the spaces BMO(Ss,) do
not coincide for different n € (0,1] in general.

Proor orF THEOREM [6.13l Existence: The condition & € cExp implies that
there are (n, 1) € (0,1) x (0,00) such that

1_
Elemapin = sup (T =77 |[E(H€|7)|| < oo.
te[0,T) 0
Because of § < 1 we use the argument for the case § € (0,1) from the proof of
Theorem [6.6] to replace («, 8,7) by (&, 3,7) such that
p> g =Pt > 4.

We apply Theorem [6.5] and obtain a solution with

(1) Vel <E(D,(|€])|F) a.s. for t € [0,T7,

(2) 2] € Ha(52),
where ®, is defined as ®; with (a, 8,7) replaced by (&, 8,7). Let p := u/fir € (1,00)
and assume ¥ + ¢ < p for some & > 0. Assuming s € [0,7T), the arguments from
the proof of Theorem [6.6] give, a.s., that

- 5P
E| sup e(7+a)|Yr||]:S ‘~ - /%Z%E(e”‘fu}'s)

rels,T) -

IA

p
1—1

p 5
517)“|£|cExp(7],u) (T - 8) K

< |z
N ‘p—l

BT
where fp := e’ 7 . Therefore, |Y | gxp(n,5+e) < 00 and Y € cExp.

Uniqueness: Assume two solutions (Y, Z%) and (Y, Z') with Y°, Y € cExp and
7% 7' € Hy(Sz). Let us fix n € (0,1) and find po, g1 € (0,00) such that

< 00.
oo

|Yi‘cEXp(n7u;) = sup (T — t)%_l HE(e‘” SiPsefr, 7] ‘Y;||]:t)
t€[0,T)
Again exploiting § < 1, we change in the parameters (o, 8,7) to (&, 3,7) such
that

g = min{pg, g1 } > 7€
Analyzing the proof of [23] Theorem 2, pp. 609-610] gives for 0 < s < T and € > 0

with 4 + € < p that
1 T 3
~2+~maX{O~Z,ﬁ}
Y Y €

T
E (/ |Z:;|2dr|fs> <2

IE( sup e(:’+5)|Y:||fs> a.s.

rels,T)
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6.3. ON CLASSES OF QUADRATIC AND SUB-QUADRATIC BSDES
1
n,

‘We continue with
E| sup e(ﬁ+€)|16?\|]:3 <E| sup e“’i‘Y:||fS <Y emxp(nu) (T —8)'™
r€ls,t] rels,t]
2], as.
T . .
/ Z;|2dr|f5> < Y cxp(nu)-

Therefore, for ¢2 := 2 {,712 + %max {d

1
T n
E (/ Z;’|2”dr> 7| <(T-s)7'E (
This implies that Z%, Z* € BMO(S2,,) for all € (0,1). In particular, we have that
Z9 Z1 € BMO(S29) and this enables us to apply Lemma Here we set
fO(Sa y.2) = [f(s,9,2),
f1(s) f(s,Yd, Z2).
are obviously satisfied, for (D3) we use that

The assumptions (D1), (D2), and (D4)
2\ 3
< C,2|||Zi|||Hz(Sz)|||Zi|9||BMO(Sz)

T .

E / |Zi M 0ds

0

where [||Z7]%||smo(s,) < oo because of |Z¢| € BMO(S29). The above definitions

guarantee that Z5 = 0. A straightforward computation gives also that

T
E( / |c82ds|ft)sﬁz3” [T+ 11210520 + 112 1 Bh0s20] 25
t

so that |c[lBmo(s,) < oo. It remains to show that py can be chosen such that
po € (1,2). Here we repeat the above argument and check, for 0 < a < b < T and

n € (0,1), that

b
E (/ |cs|2ds|]-'a>
_6
< 133% [(b —a)+(b—a) " HHZOH'QB&MO(Sg,,) + |||Z1|||%91\AO(Szn)] a.s.

This yields limp sli2 (¢) = 0 and we can choose pg € (1,2). Therefore we may apply
[l

Lemma with p = 2 and this yields uniqueness.
The conclusion s, = 0 follows by Remark (2b), which is the same reasoning as

used for limy s132(c) = 0 above.
REMARK 6.14. Theorem|[6.13]is an extension of the known case 6 = 1 (cf. [51},68]).
For # =1 and € € Lo Theoremgives a solution (Y, Z) with sup;c(o 7y [ Villoo <
oo and |Z] € BMO(S3). Assuming two such solutions, we may follow the (second
half of the) part about uniqueness in the proof of Theorem Here the difference

is that we only get some pg € (1, 00) for applying Lemma owever, |Z0 —ﬂl €

applicable for any p € (pg,00) N [2,00). Therefore, in the case # = 1 and & € Lo,

BMO(S2) implies that all moments of fOT |Z0 — Z1|?ds exist and Lemma is
the solution (Y, Z) is unique when sup,¢(o 77 [|Ytl|c < 00 and |Z| € BMO(S2).

Prob+Stat
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80 6. APPLICATIONS TO BSDES

We finish by an example illustrating ¢ € cExp.
EXAMPLE 6.15. Let d=1, n € (0,1),
©y(t) == log <1 + (T - t)l_%> for te€[0,T),
so that ¢, (t) T oo as ¢ — T and define the stopping time
Ty :=inf {t € [0,T) : Wy =, (t)} AN T.
Let .
=14V
so that ¢£(w) € (0,00) and

E (£ F) = 1+ eWran =" <24 (T — 1)1 F as.

for ¢ € [0,T). On the other hand, § & Lo, because for all ¢ > 0 one has that P(W,, >
¢) > 0. The latter fact can be checked by taking any 0 < € < ¢,(0) < ¢ < oo and
S € (0,T) with ¢ < ¢,(5) and using the known fact that P(sup,cfo g [Wi| <€) >0
so that the probability that the Brownian motion exceeds ¢, on [S, (S +T)/2] is
positive.

6.4. Settings for the stability theorem
The aim of this section is to discuss some settings for the stability Theorem [6.3}

6.4.1. Forward setting. This setting corresponds to the setting of stochastic
integration. If the generator f does not depend on Y, then the process Y computes
directly as

t t
Yt:YO—/ f(s,Zs)ds+/ ZydW,.
0 0

This enables us to construct examples to understand what the correct conditions
on Z in the quadratic case might be. Let us mention two cases:

(a) Taking Z from Example for 0 < # < n =1, we have examples where the

Z-process fails to be in BMO(.Sz) but satisfies Z € BMO(Sy9) and fOT |Zs|%ds €
Lexp. The latter enables us to apply Lemma under suitable integrability

conditions on fOT |f(s,0)|ds (note that Lex, € Ly, for all p € (0,00)).
(b) Similarly, for § = 1 we obtain an L,-solution of our BSDE under (B3), (B5), and
'l
(fOT |Zt|2dt) e Ly, (see the arguments at the end of Section . Therefore

we can take any Z € BMO(S2), in particular, Z can be an unbounded BMO-
process in the quadratic setting.

6.4.2. Potential estimates for the generator. In applications of Theorem
[6.3] one might need to estimate

from above. One way to do this (we do not consider the remaining assumptions for
Theorem [6.3) is to find a potential estimate

|f¢(5,y,2) - fw(svyvz” S |<(17 |y|a |Z|7 |Z‘1+0)’Vvs¢ - sz>|

T
/ |f¢(S7Ys¢7Z;p)_f¢(S7st7Z;p)|d8
t

p
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6.4. SETTINGS FOR THE STABILITY THEOREM 81

for all (s,y,z) where the potential (V5),ejo,7] is a predictable process
V,:Q — R

Below we illustrate some special cases for V. The general construction is as follows:
We consider a continuous

h:[0,T] x RY xR x R — R,
where N > 1, and a predictable R¥-valued process A = (At)iefo,r) on €2 to let

f(t,w,y,2) = h(t, Ai(w), y, 2).
Then f is (P,B(C(R'*?)))-measurable. Assume that A¥ = (A7)co.7) is a P¥-

measurable representative of /Nl'*’, where A is the canonical extension of A to Q. We
get that

fe(t.@,y,2) = h(t, A7 (@), y, 2)
is (P¥, B(C(R'*%)))-measurable and, for any fixed (y,2) € R4 that f¢(-,-,y,2):
[0,7] x @ — R is a representative of f¢, where f is the canonical extension
fG,y,2) 0 [0,T] x @ — R (see Proposition (4) applied to X;; = t and
(Xt2(@), ... Xy N+1(@)) = Ai(@)). Therefore we will take in the sequel as trans-
formed generator the map f¥ as defined above.
EXAMPLE 6.16. Let

f(sa w,Y, Z) = h(s7 As(w)a Y, Z)a
where h : [0,7] x R x R x R? — R is continuous with
|h(t, z0, Y0, 20) —h(t, 1,91, 21)| < Lx|vo—21|+Ly |[yo—y1|+Lz[1+|z0|+|21]]|20—21]
for all (t,70,21,Y0,%1,20,21) and (A¢)seo, 1) is @ predictable process. Then we get

|f¢($,y72)—f¢(87y72)| SLX|Af_AISZ}‘ and V:? = (LXASaOaOvO)

and

T T
/ FP(s, Y2, Z8) — f¥(s, Y2, Z9)lds| < L / AP — A|ds
t t

P
The next example indicates the case of random Lipschitz constants for y:

EXAMPLE 6.17. Assume that

f(s,w,y,2) == As(w)g(y)

where g : R — R is a Lipschitz function and (As).e[o,r is predictable and uniformly
bounded in (s,w). Then

[f2(s.9.2) = [ (5,9, 2)] < o)A — AY] < [l9(0)| + Lip(g)ly[]| AL — AY|
and V; := (|g(0)| A4s, Lip(g) As, 0,0). Here we get (for example) that

T
< 1900) H / AP — AV|ds
t

T
/ |f@(S’Y;L”Z;/’)ffw(s,YSw’Z;/’)‘ds
t

p

T
+ Lip(g) | / V2|42 — AY|ds
t

p p
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82 6. APPLICATIONS TO BSDES

T T
< 19(0)] / A — AV|ds|| + Lin(g) (), / |AF — AV|ds
t t p
T T
< o) | [ 147 — a2ias|| +Lin@) ()l | [ 142 - 42las
¢ p ¢ P1
T
< [1g(0)] + Lip(@)II*Yell] / |A? — AV|ds
t

p1

forany%:pio+iwithp<po,p1<ooand

P1
“Cy:= sup |C4l,
s€[t,T]

where we used that *(Y?), and *Y, have the same distribution which follows from

Proposition 2.53).

The last example concerns the Z component.

EXAMPLE 6.18. Assume that
f(sawa yv Z) = AS(w)|Z|1+9

with 0 € (0,1), where (As),ejo,7] is predictable and uniformly bounded in (s,w).
Then

1f9(s,y,2) = f¥(s,9,2) < |2|'T| AL — AV
and V; := (0,0,0, As). Because of

F(5,0,90,20) = flsw,m, 20| < 14, @)]|12010 = 1] |
< 1+ 01A4s(@)l|lzo] = ] [[L + l2o] + )7
< L6 As@)]z0 = z1[L + |20] + |2,

the condition (B3) is satisfied. Then an upper bound is obtained by

T
/ ‘f@(37}/8w72;11)_fw(37§2w72;b)|d5
¢ P
T
< | [ izereoiag - azias
¢ P
146 1-9
T 2 T . Pl
< (/ |Z$|2ds> (/ 47 —A;"wds>
t t
P
1 1+6 1—6
T 2 T ) 2
o) O -aea)
t t
(1+0)po P1
for any % = pio + p% with p < pg, p1 < 0o, where we use Remark 2) in the last
step.
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6.4. SETTINGS FOR THE STABILITY THEOREM 83

6.4.3. Theorem for the perturbation (¢,%) = (X(4,5,0). The impor-
tance of the pair (¢,v) = (X(a,p),0) follows from the fact that

1Y: — Y, ~o |V, — B Fo)

for p € [1, 0], i.e. the fractional smoothness of Y; is measured in terms of the speed
of convergence of the conditional expectations. In the case (¢,v) = (X(a,4,0) We
have that (38) implies two inequalities that give different information about the L,-
variation of the processes Y = (Y}):epo,r) and Z = (Z4)seo,): Firstly, for 0 <e <t
we have that

T 2
- </ |ZS—ZS(t_5’t]|2ds>
p t

T
/ (5. Yo, Z0) — fE= (s, Y, Z,)|ds
t

(0) [y v

p

<c@y |IE— 41, +

P
and, secondly,
¢ 3
oo ([ 12.Pas)
t—e
P
T
<c@y |1€— ¢, + / f(5,Ys, Zs) — fO75(s, Yy, Z)|ds
t—e
P

6.4.4. Theorem and Besov spaces. We want to transform Theorem
into an embedding theorem for the Besov spaces IB%E. As the BSDEs we con-
sider might be even quadratic we have - in some sense - a non-linear embedding
theorem. To handle the assumption on the generator we need a slight extension of
our anisotropic Besov spaces:

DEFINITION 6.19. For ¢,r € [1,00), a predictable process (A);e[o, ) with

T L
</ |AS|Tds> < 00,
0

a
for ¢t € [0,T1], and for an admissible functional ® we let

1

T ™
A5, =@ | v - (/t IAS—A?I'”d8>

q

First we show that this definition is possible:

LEMMA 6.20. The map

1

T I
b — (/ |A5—A?|’“ds>
t

is continuous as a map from A into [0,00).

q
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84 6. APPLICATIONS TO BSDES

PROOF. We fix an N > 1 and consider the truncation AY := (—N)V (4; AN).
For u :=qVr and 9,,¥ € A we get

1

T r
( | 14w A;st)
t

q

" 1 r 1
< ([ mmra) | (- o)
t . t .
T H
+ (/ \(AN A¢|Tds>
! q
T T %
= 2 ( / As — (AM),]" ds) + ( / |<AN>;”7L—<AN>;“ds>
t . t v
T = T -
< 2 (/ |As—<AN>s|Tds> egrr (/ ||<AN>fﬂ/—<AN>f||zds>
t t
q

where we used for the equality Remark [2.14{2). Applying dominated convergence

twice we get that
T %
lim </ |As — (AN)STds> =0.
N t

a
Moreover, using Proposition 2.5(7) we find a Borel set B C [0,7] of Lebesgue mea-
sure T such that A? is the transformation of A, for any ¢t € B and p € {1, 1,19, ...}.
In case ¥, — 1 we can therefore apply Lemma to conclude the proof because
this implies that

1
u

T L
nm(/ ||<AN>?n—(AN>?||st> ~o. 0
" t

Now we obtain the following embedding theorem:

COROLLARY 6.21. Assume that the assumptions of Theorem are satisfied, t €
[0,T], and that there are predictable processes (Vsl)se[t 1) such that, for all ¢ € A,

for some q; € [p,00) and r; € [1,00) E| Let ® : Ct(A) — [0,00] be admissible in
the sense of Definition[[.10. Then we have that

T
|15 v2 20— s v 2 s
t

< Z IV = (VO N, @, (it
P

Yellep + 12115, < 2¢63 [Ilé“ll«r,p + Z IIVlllfp”qL] :

=1

IThe V! may depend on (&, f,Y, Z,p,q, 7).

7 Nov 2017 05:35:26 EST Prob+Stat
Version 2 - Submitted to Memoirs of the AMS



6.4. SETTINGS FOR THE STABILITY THEOREM 85

PROOF. The statement follows directly from Theorem [6.3] applied to the pair
(0,%). O

Examples, how to obtain processes (Vsl)se[t’:p], can be found in Section For
the sake of illustration we first combine Corollary with Theorem (note
that we use conditions (B3) and (B8)) so that the assumptions of Theorem [6.3| are
automatically satisfied with p = 2 and s, = O:

COROLLARY 6.22. Assume that 8 € (0,1), t € [0,T], £ € cExp, and that (Y, Z)
is the unique solution to the BSDE obtained in Theorem . Suppose a

predictable process (Vs)sep,r) such that
< V= (V) Il ey

‘ 2

for all ¢y € A. Let ® : Ct(A) — [0,00] be admissible in the sense of Definition
[£10 Then we have that

2, 1,
1Vello.o + 121155 < 2 [lElle2 + VLY -

T
/t sup| £ (5,9, 2) — F¥ (s, 2)|ds

Y,z

Taking also Theorem [4.22] into the account we obtain another version of Corollary
that only uses that £ is locally in D; » in the sense to check perturbations of
the Gaussian structure up to time ¢ only. This confirms the smoothing effect of a
BSDE as this already implies the smoothness of Y;. More precisely we get:

COROLLARY 6.23. Assume that 6 € (0,1), t € [0,T], £ € cExp, and that (Y, Z) is
the unique solution to the BSDE obtained in Theorem . Then we have
1
<c sup

T o<a<b<t Vb—a j

with ¢ := cEa)cEzy(1),2 and cEzz)(1),2 = 1 taken from Theorem in the sense
that if the right-hand side is finite, then Y; € D1 2 and holds.

(52) esssupse[()’t]HDsYtHz

T
[||€£(a’b]|2+ / sup|f(5,y,z) 7f(a’b](57yvz)|d5
t Y,z

PRrOOF. We apply Theorems [6.9] and where for the latter we use

th(a,b] _ S/t(a/\t,b/\t] as.
because Y; is F;-measurable. O
If £ € Dy 2, then we have that

1€ — &41]|,
sup < 2cfz esssup D||2
B e setoa| Ds€l

by Corollary [6.29] but for Corollary the assumption £ € D 2 is not necessary.
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86 6. APPLICATIONS TO BSDES

6.5. On the L,-variation of BSDEs

In this section we show how Theorem can be applied in order to obtain infor-
mation about the Ly-variation of our BSDE. The link between the L,-variation of
the Y-process and the stability result Theorem consists in the observation

[Ar = Aslly < [|Ar = B(A]Fs)[lp + 1E(A|Fs) = Asllp < 3[[Ar = Asllp,

where p € [1,00], (At)sepo,r) € Ly is adapted, and 0 < s <t < T'. Our estimate for
the Z-process will follow directly from Theorem [6.3]

In Remark 1) below we show that under the conditions fOT | Z,||2dr < 0o and

fOT | f(r,Ys, Z)|lpdr < oo, and under the a-priori knowledge of the behaviour of
the functions r — ||Z,||, and r — || f(r,Y,, Z,)||, one gets a rate of 1/y/n for the
L,-variation of ¥ and Z by adapted time-nets. In Corollary below we will
deduce estimates with explicit adapted time-nets where we only assume conditions
on the initial data (&, f). Regarding the case p € (2,00) there is another aspect:
In Remark 2) we show that even for the zero generator case one might have
situations where one cannot achieve the rate 1/4/n for the variation of Y, i.e. the
variation of Y is asymptotically higher. Our sufficient conditions give cases where
one gets the rate 1/4/n for the case p € (2, 00).

In the following the random variables are considered on the product space § if
necessary. In particular, random variables defined on (2 are automatically extended
to © in the natural way when needed.

THEOREM 6.24. Suppose that the assumptions of Theorem[6.3 are satisfied. Then,
for cgzm) = cEm)[l + C,pLZ(\/T+ 1)] and 0 < s <t < T, one has

1
t 2
sup |Y, —Yi||| + (/ |ZT|2d7”>
rE(s,t] » s »
t
< ‘ / |f(7“,0,0)‘d7“ + LY(t - 8) SElpT] ||YTHP + C [1 + |||Z|9||BMO(52)] X
s P rel0,

T
X ”f - g(s’t]Hp + / |f(7"7 YT7ZT) - f(&t](rv Y,«,Z,«)|d7“

P

Proor. We fix 0 < s < t < T and remark that Hfst|f(r,0,0)|drH < 00
P

according to condition (B5). We let (g;)72; be an enumeration of the rational
numbers from (s, t] so that

= sup
m=1,2,...

sup |Y; — Y|

rel(s,t]

sup Yy — Y]

a€{q1,--sqm }

p

by monotone convergence. Using Lemma [£.23] the fact that the Y, are Fi-mea-
surable, and Theorem we obtain that
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6.5. ON THE L,-VARIATION OF BSDES

1
t 3
swp vl + ([ 1zpar)
qe{‘]l7---;‘1nz} s P
< sup Y, —EY ||| +|  sup BTV, - Y
q€{q1,--,qm} » q€{q1,--,qm} »
t 3
+ ( / |Zr|2dr>
5 P
t 3
< sup |Y}1—Yq(5’t]| + (/ |Zr|2dT)
qe{‘]lwn;‘]vn} p S P
+| sup  [EFY, -V
qE{le*--y‘]'m} p
T
< @y |lI€—- €S+ / f(r, Yy, Ze) = £, Y, Z,) | dr
8 P
+| sup [EFRY, -V
a€{q1,--sqm } »
By Corollary and we bound the last term by
sup  [E70Y, — Y|
q€{q1,---,qm} »
q
= sup Efs/ f(r,Y,, Z.)dr
q€{q1,--,qm} s »
t
< | [ 1z ar
S P
t t t
< /|f(r,0,0)|dr b Ly /|YT|dr t Ly /[1+|ZT|]9|ZT|dr
s p s p s p
t
< | [ 150,00 + Lyt =) sup i,
s p rE(s,t]
t 3 .
+LzCET0). (/ IZr|2d7”> 10,0 (ML + 120 reto,1 oy
s P
t
< | [ 1000 +rv-5) s i,
s p rel(s,t]

+ch’pc € — g(svt]”p +

<[Vt — s+ |||Z|0||BMO(SQ)]'

7 Nov 2017 05:35:26 EST
Version 2 - Submitted to Memoirs of the AMS

T
/ \f(r, Yo, Z) — U0, Y, Z,) dr

Prob+Stat

P

87



88 6. APPLICATIONS TO BSDES

As remarked in the beginning of the proof of Theorem [6.3| we have sup,.c( 7 [Yr| €
L, so that a;, := Ly sup,.¢jo 77 [|Yr[lp < oo. Therefore,

t
sp [ERY, - vi|| < / 1£(,0,0)[dr|| + ap(t — 5)
q€{q1,--,qm} » s P
T
+ 8, |l1e — e, + / Y Z,) — f50 (Y, 2, dr
s P
= VT +12/° O
for B, = Lo pegm VT + 112 lsvogss)-

The variation of our BSDE we measure by the following quantity:

DEFINITION 6.25. Let p € [1,00), A = (A¢)sepo,r) be a measurable cadlag process
A0, T]xQ — R, and C = (Cy)¢ejo,7) be a measurable process C : [0, T]xQ — R4,
For a deterministic time-net 7 = (¢;)7_, with 0 =¢o <t; <--- <t, =T we let

1

t; 2
+ sup </ |C’T2d7’>
» i=1,...,n ti_1

The variation vary([A4, C]|T) behaves sub-additive as expected:

varp([4, C]|T) == sup

i=1,...,n

sup A — A4

ti—1<s<t<t;

p

LEMMA 6.26. For p € [1,00), families ((A{,Ctj))te[oﬂ and time-nets 77, j = 0,1,
as in Definition [6.25, one has that

varp([AO + AL, 00 + CIH’TO U Tl) < varp([Ao, C0]|TO) + Vamp([Al7 C’l]|71).

PROOF. Assume that 7 = (t;)7°¢™ ! is an ordering of the union of 70 =

(), and 71 = (t})I%,. Then one has that the interval [t;_1,;] is contained in a

closed interval of 70 and, at the same time, in a closed interval of 7!, so that

1
t; 2
+ (/ |C,?+C,}|2d7«>
ti—1
p p

sup  |(AD + A}) — (AY + AL)|

ti—1<s<t<t;

ti 2
< | s ja-ao| 4 (/ |022dr>
ti—1<s<t<t; ti—1
P P
1
t; 2
+ sup 1A} — ALl + (/ |C’T1|2dr>
ti—1<s<t<t; ti—1
p P
< vary([A%, CVlr°) 4 var,([A, CH|7).
O

Now we formulate consequences of Theorem [6.24] in two different scenarios: The
first Corollary still relies on the assumptions of Theorem In the next step
Corollary will be combined with the results from Section [6.3] to guarantee the
validity of the assumptions of Theorem [6.3] This yields to Corollary [6.32

To shorten the formulation of the statements we work with the following two defi-
nitions.
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6.5. ON THE L,-VARIATION OF BSDES 89

The first definition extends the spaces BY to the initial data (£, f) of the BSDE:

DEFINITION 6.27. We say that (&, f) € BE”‘F, where p € (0,00), v € [2,00), and
I':[0,7] — [0,00) is integrable, provided that £ € L, and for all 0 <a < b < T,

< </ab1"(r)dr> ’ .

The term faT SUP(y ) era+1 | f(1, 9, 2) — f@(r y, 2)|dr is an extended random vari-

1€ — g, +

T
/ ( sup |f(7‘,y7 Z) - f(a7b] (rvyv Z)|d7"

y,z)ERIFL

p

able on (Q, F,P). Concerning the generator, the above definition reflects the sit-
uation described in Example where the generator f is obtained from some
appropriate h with

f(rv w,Y, Z) = h(ra Ar(w)v Y, Z)
The second definition recalls a well-known principle to generate adapted time-nets:

DEFINITION 6.28. Letting A : [0, 7] — (0, 00) be integrable and n > 1, the time-net
7 consists of 0 =ty < --- < t,, = T such that, for all i = 1,...,n,

ti 1 T
/ A(r)dr = f/ A(r)dr.
ti—1 n 0

The following corollary, which follows directly from Lemma and , yields to
the fundamental example for v = 2 concerning the part [|¢ — £(%%|,, in Definition
6.27 above:

COROLLARY 6.29. For p € [2,00) and § € D1 N Ly with [, 1 |D,£|2dr < oo one
has for all 0 < a < b<T that

2

)

1€ — €|, < 2c) ( /( ’ |Drs||§dr>

REMARK 6.30. For T' > 0 Definition [6.27) and Example [£.11] yield to the admissible

functional .
©,r(F):= sup Kot

0<a<b<T w/f;]:w(r)dr

that recovers the functional ®., from by I' = 1.
Our first corollary of Theorem [6.24] is

COROLLARY 6.31. Let p,y € [2,00) and T" : [0,T] — [0,00) be integrable. Suppose
the assumptions of Theorem m & f) e IB%;?”’F and fOT || f(r,0,0)||,dr < co. Then

c d
Y. 7211+ <
V&I‘p([ ) ”Tn) — n + Ql/ﬁ

for A(r) =1+ f(r,0,0)||, +T'(r) and

cgan = 20AlLqonll+ Ly sup [[Yillp],
te[0,T)
1
dgzy = 2cgzm AL o 1+ 1120 I8mocs,)] -
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90 6. APPLICATIONS TO BSDES

PROOF. For 0 < s < ¢ < T Theorem [6.24] implies that

1
t 2
sup |V, —Yi||| + (/ ZT|2dr)
reEls,t] P s »
t
< ‘ [ 0| +2vie-s) o i,
s p rel0,T]
+cE2a 1+ |HZ|0||BMO(S2)] x
T
< |le= €0ty | [ 1Y 20) = 500, 2 ar
s p
t
< [ 1 0.0ldr + Ly(t =) s Vi,
s rel0,T]

2=

t
ez [1+ 121 Issocss] ( / r(r)dr)

Assuming 0 =ty <t; <--- <t, =T we conclude by

2

ti
sup |Yt—Yé| + </ |Z,.|2d7‘>
ti—1<s<t<t; ti—1
p p
1
t; 2
< 2| sw ool 4| [ 2P
rE[ti_1,ti] » ti1
p
ti
< 2 [ I0.0)ldr 4 Ly (6~ tia) sup Vel
ti—1

rel0,T]

t; £l
+egzm [1+ 1121 Ismocsy)] (/ FWdT) ]

ti_

O

COROLLARY 6.32. Assume v € [2,00), an integrable T : [0, T] — [0,00), and that
one of the following sets of conditions is satisfied:

(1) =0, p€[2,00), £ € Ly, (B3), [J |If(r,0,0)],dr < oo, (¢, f) € By™".

(2) 6 € (0,1), £ € cExp, (B3), (B8), and (¢, f) € By

(3) =1, €€ Lo, (B3), (BS), and (&, f) € Nyep,0) By "
Define the weight function

A(r) =14 [1f(r,0,0)]« + T'(r)

where uw = p for 6 =0, u=2 for § € (0,1), and u = oo for § = 1. Then one has
that

sup /nvar,([Y, Z]|7}) < oo
n>1

forv=pif0=0,v=2if0 € (0,1), and for all v € (0,00) if 8 = 1, where for
6 = 0 the solution is taken from |21, Theorem 4.2], for 8 € (0,1) from Theorem
and for =1 from Remark[6.1]}
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PROOF. The statement follows by a combination of Table 1 (cases (I), (IT), and
(I11)) and Corollary[6.31] For part (3) we remark that we first deduce our statement
for v € [2,00) N (pg, o0) with py taken from Theorem and then (obviously) the

6.5. ON THE L,-VARIATION OF BSDES

conclusion follows for all v € (0, 00).

REMARK 6.33.

(1) For p € [2,00) assume for our BSDE the conditions fOT |1 Z,||2dr < oo and

fOT |f(r,Y:, Z)||pdr < co. Take a net 7" = (1), that satisfies

e

o
[ Wy 2ol + 12,02 = -

1

Given i € {1,...,n} we derive

IN

IA

IN

IN

where the Burkholder-Davis-Gundy inequalities were exploited. Con-

t; ti
/ 1 £, Yo, Z,) pdr + (26, + 1] ( / |Zr|2dr)
ti71 tifl

ts ti
[ 102 + 28, +1) ( / Zrn,%dr)
ti—1 ti—1

1

tn, <s<t<im

¢
/ (Yo, Z,)dr
t

1

tr 2
+ (/ |ZT|2dr>
tr

i—1

sup Yy — Y|

p p

q
/ Z,dW,
tn

i—1

+ sup
qEty 1 ,t7]

p p

ty
+ </ Z,.|2dr>
23

2

P

1
2

T
/ 117 Yoo Zo)p + 1 2,]12] dr
n Jo

2 T
(2t ( / 17 Yo Z)p + 1Z112] dr>

Jn

sequently, we have a variation of 1/+/n by taking the nets 7.

(2) However, in general for p € (2,00) such an estimate is not always possible
as shown by the following example for d = 1: Take an infinite time-net

converging to T,

and pair-wise disjoint Ay € Fy, of positive measure for k = 1,2, .... (Given
pair-wise disjoint non-empty finite intervals I, = (ag,bx) one can choose
Ay ={Wy, € L} and A = {Wy, € 1, ... Wy, & Ij—1,Ws,, € I} for

O=to<ti<tag<---,

k> 2.) For (a)72; C (0,00) and s € [0, T] define

7 Nov 2017 05:35:26 EST

oo
As 1= Z Al —1XAp_1 X(t—1,tx] (S)
k=2

Prob+Stat

Version 2 - Submitted to Memoirs of the AMS

N|=

T
/0 £ Yo Ze)lp + 1 Z012] d

p

1
2



92 6. APPLICATIONS TO BSDES

Let 0 < o < £ — 1 and arrange the ay such that

/ AdWs|| =k~
(tr—1,tx] »
which implies
p )
Bl aaw| =Y k04 <o,
(OwT] k=2
Let us assume ¢ > 0 and a sequence of time-nets 77, 0 =¢f < ... <t =

T, such that
c
Vn

Then (tg—1,t;) N 7™ = 0 for k > 2 implies that

t
||Y;? — Y}?_IHP < for Y; ::/ AsdW.
0

_1lta C
||1/tk _Y—tk—1Hp:k r < %
or, equivalently, the condition > \/Lﬁ gives (tg_1,tx) N 7" # () for
k > 2. In other words, all intervals (tx_1, tx) with

THa
2<h< (L)

C

contain at least one element of the time-net 7™. This gives a contradiction
to m > 1.

6.6. Applications to other types of BSDEs

The decoupling techniques developed in this article rely only on the existence of
solutions to BSDEs, not on their uniqueness nor on special techniques to prove exis-
tence or uniqueness. This opens the possibility to apply the results and techniques
to other types of BSDEs as well. Let us list some potential examples:
(1) MULTIDIMENSIONAL BSDES & COUPLED FORWARD-BACKWARD SDESs
Theorem is flexible enough to treat in an R"-valued process
(Lt)tejo,r) by considering its coordinates separately. This might be ap-
plied to BSDEs where the Y-process is multi-dimensional. Moreover, if in
coupled forward-backward SDEs (see for example [64]) the dependencies
in the forward diffusion on the backward component can be handled by
Theorem then our decoupling approach can be directly examined as
well.

(2) BSDES WITH SINGULAR TERMINAL CONDITIONS

Singular terminal conditions are considered for instance in [76} [3].
The general idea behind this type of singular terminal condition for BSDEs
consists in replacing the one-parametric family of equations from ¢ to T
by the two-parametric family

YthT—&—/ f(s,YS,Zs)ds—/ ZdW, for 0<t<r<T
t t
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6.6. APPLICATIONS TO OTHER TYPES OF BSDES 93

and to look for solutions (Y3, Z;):e[0,7) Where the process Y is subject to
constraints as ¢t T T'. Let us indicate how the process Y from might be
mapped into Y” like in for constraints of the form lim;7 Y; = oo on
Q7 or limypr Yy = —oo on Q™ for some OF € Fr of positive measure. With
h := arctan : [—00,00] — [~7/2,7/2] the transformed process Y :=
(h(Y?))tepo,r) is continuous and takes values in [~ /2,7/2]. This process
Y can be mapped into (Y")? as in (BF), and by changing (Y")? on a
set of measure zero we may assume as well that (Y")? takes values in
[—7/2,m/2] only. Applying h~! gives a candidate for Y.
(3) EXTENSION TO LEVY PROCESSES

Our approach in Chapter []is not restricted to particular distributions
and its general presentation is intended to apply the results in other set-
tings than the Wiener space as well. A first natural candidate are BSDEs
driven by Lévy processes. Here first results were obtained in [41], where a
decoupling is used in Ly as in [40] for the Brownian motion. Formally the
approach in [41] differs slightly from our approach, as it directly uses Ito’s
chaos expansion from [56]. To generalize [41] further along the ideas of our
notes, it might be also necessary to extend Proposition [AT] to processes
that have certain discontinuous trajectories. Moreover, generalizations
beyond the setting of Lévy processes is left to future work.
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APPENDIX A

Technical Facts

Let M # () be a complete metric space that is locally o-compact, i.e. there exist
compact subsets ) # K; C Ky C ..., such that K,, = K,, and M = U;’;’:lf(n. By
continuity of a stochastic process (X,).en : © — R we understand that © — X, (w)
is continuous for all w € Q.

PROPOSITION A.1. Let M # () be a complete locally o-compact metric space and
(X2)wen be a continuous process defined on a probability space (Q°, FO,P%), and let
(Bz)zenr be a stochastic process on a probability space (2, F1,PY) such that X and
B have the same finite-dimensional distributions. Then the following is satisfied:
(1) There exists a continuous process (Yy)zerr on (Y, FLPY), which is a modifi-
cation of (Bz)zen, i.e. PH(Yy = B,) =1 for allx € M.
(2) If there is another process Y' with this property, then P*(Y, =Y,z € M) = 1.
(3) If G! C F' is a sub-o-algebra and D C M dense, such that By is G'-measurable
for all x € D, then the process Y can be taken to be G'-measurable.

PROOF. There is a countable set Dy = {ay : k > 1} C D such that Dy C M is
dense as well. Taking a sequence (K,,)22 ; like in the definition of locally o-compact
we have therefore that Dy N K, is dense in K,, for alln =1,2, ...

(1) and (3): We prove both parts at the same time as (1) is a special case of (3) by
taking D = M and G' = F!. Let K be one of the sets K, and A := Dy N K. Since
x +— X, is continuous on M, it is uniformly continuous on K and A. Hence the set

ﬁ[j N {WilXu(w)—Xv(W)|<i}ef0

n=1m=1 d(u,v)<#
u,veEA

is of PO-measure one. By the fact that X < 3, there exists Q) € Gt withPH Q) =1
such that = — 3, (w) is uniformly continuous on A for all w € Q}. Since A is dense
in K we can define for all z € K the extension
limen -z, By (W) @ w e QY
Vot oz {1z B :
0 : we\Q}

We obtain a G'-measurable continuous process (Y, )zer. Take d > 1, xq,...,24 €
K, and a;,, € A with a;,, — z; as m — oo. Then, for (t1,...,tq) € RY,
/ e Tizt Yo gpt = lim [ e Timt bPasm gpl
01 m—0o0 (e
= lim [ & Tim1tiXesmqpo
m— 00 0o
95
7 Nov 2017 05:35:26 EST Prob+Stat

Version 2 - Submitted to Memoirs of the AMS



96 A. TECHNICAL FACTS
. d
= et Xj=1 ti Xe; gp0
QO

so the finite-dimensional distributions of ¥ and X coincide. To prove P!(Y, =
Bz) =1 for all z € K we check P! (|Y,, — 8,] > ¢€) =0 for all e > 0 and all z € K.
Let € > 0, z € K, and choose (zx)r>1 C A such that z —4 z. Then

PUY, = Bal > ) < P (Y=ol > 5) +P' (182 = Buul > 5)

— 9p° (|Xm Xy | > %) 1 0,

where we used the fact that ¥ < X < £ and the fact that X is continuous. Thus
on any compact K,, C M we have a continuous G'-measurable process (Y,"),cxk, ,
that is a modification of (8;)zck, - Up to G'-measurable null-sets the construction
is consistent in m so that we can construct a Gl-measurable continuous process
(Yy)wem (where we use M = J,-, K, that is a modification of 3.

(2) follows from the separability of M. O
The following lemma is well-known.

LEMMA A.2. Let (A, A) be a measurable space and M be a separable metric space.
Assume that f : M x A — R is such that f(x,-) is A-measurable for all x € M and
x = f(z,w) is continuous for all w € A. Then f is B(M) ® A-measurable, where
B(M) is generated by the open sets.

PROOF. Let (;);>1 € M be a dense set. We define for all n,j > 1

1
B} = {xeM:d(m,xj) < n}

and obtain a sequence of disjoint sets as follows: A} := B7, and A} := B} \
(Uf;ll A?) for k = 2,3,... Then M = J;Z, A} for all n > 1. Now we define
fr M x A— R as follows:

fn(xaw) = Z f(Ij,w)lA;} (CC)
j=1
Since f(z,) is A-measurable for all z € M and A} € B(M) for all j,n > 1, it
follows that each f™ is B(M) ® A-measurable. Moreover, for any (r,w) € M x A
we have the pointwise convergence f"(x,w) — f(z,w) as n — oo. This follows
from the facts

|fn(x’w) - f(a:,w)| = |f(x](n,:1:)aw) - f(xaw)|7

and d(z(n ), ) < % —n 0, where j(n,z) is the index such that = € A? O

n,x)"

LEMMA A.3. Let f € L1([0,T]) be non-negative. Then

1
sup
0<a<b<T b—a

b
/ ftdt = esssup;eo, 71 f-
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A. TECHNICAL FACTS 97

PROOF. The inequality

b
sup__ - / fdt < esssup;¢o, 7 f
0<a<b<T O —Qa J,

is obvious. According to [85, Theorem 3.3.8] there exists a Borel set A C [0,7]
with A(A) =T and 0 < af < s <b) <T with 0 < b5 —a’ —, 0 for s € A, such

that
" / F#ydt = f(s)
for all s € A. Hence,
fls) < / £(t)
0<a<b<T —a
for all s € A. O

Let (2, F,P) be a complete probability space, H be a separable Hilbert space
with H # {0}, and (gn)nem be an iso-normal family of Gaussian random variables
g : 2 — R. Assume that

F=o(gh:he HH)VN

where A are the null-sets from F. Let (e)res be an orthonormal basis of H with
I=A{1,..,d}or I ={1,2,...}. Then

F=0(ge, : k€I)VN.

We recall that D : Dy o — LI is a closed operator (see [T0, Proposition 1.2.1]).
Assume that <pn R — [0,00) € C§° such that ¢, (z ) =0forx <0Oand z > 1/n

and that [ on(z)dz = 1. Defining ¥, (y) := [*__ on(z)dz, we get ¢, () = 0 for
<0, Y,(x)=1 1fac >1/n,and 0 < zZJn( ) < 1. Finally, set
Yy
= / Y (x)dx
— 00
so that L (x) = 1n(x) —n X(0,00) (%) and
0<z—Ly(x)< 1
n

for & > 0 whereas L, (z) =0 for z < 0. Given ¢ € Dy 5 we get that [T — L, (€)| <
1/n and L}, (§)D§ — X(0,00)(§) D in LI Hence ¢+ € Dy 5 with

DET = X(0,00) () DE
and, for L > 0,
D(EV(=L)) = D((€ + L)" = L) = X(0,00)(§ + L)D(E + L) = X(—L,00)(§) D(&)-
From this we get

D(EAL) ==D((=§) V (=L)) = =X(~L,00) (=€) D(=&) = X(=00,1)(§) D(&)-

Finally,

D((EV(=L)AL) = X(—oo,r)(§V (=L))D((€V (-L))
= X(—o00,0)(§ V (=L))X(~L,00)(§)D(§)
= X(-L,L)(@D(f)'
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98 A. TECHNICAL FACTS

PROPOSITION A.4. Let H be a separable Hilbert space with an orthonormal basis
(ex)ker, where I = {1,....d} or I = {1,2,...}, let (gn)her, gn : & — R, be an
iso-normal family of Gaussian random variables defined on a complete probability
space (0, F,P) with F = o(gp, : h € H)VN with N being the null-sets of (2, F,P).
Letp € [2,00), € >0, and § € D1 2N L, such that D§ € Lf. Then there existn > 1
and a bounded f,, € C*°(R™) such that all derivatives are bounded (where the bound
may depend on the order of the derivative) such that for & := fn(geys .-y ge, ) ONE
has

€ = ol + [[1DE — Dﬁo”ig <eb.

ProOOF. (a) Reduction to dim(H) < oo in the case dim(H) = oco: Let H,, =
0(gey s -y Ge,, ). By martingale convergence it follows that

lim¢&, :=1lmE(|H,) =& as. and in L,.

Forn €I let P, : H— span{ey,...,e, } C H be the orthogonal projection. Then
||D£_D£nHL{f = ||PnD§_D§n+(I_Pn)D£||Lf
| PaDE = Déallnys + (I = Pa)DE] 1

A

By dominated convergence,
tim |(1 — P)DE|l 1 = 0.
On the other hand, using D¢,, = P,E(DE&|H,,) we get
|P.DE — Déulliy = |PuDE — PE(DEH) |1y < 11DE — B(DEM,) | 1y

that converges to zero as n — 0o because F = Vy>1H, V N and because of known
facts about Banach space valued closable martingales. Summing up, we obtain

lim (€ = &ll5 + 1D€ - Déal? | = 0.
(b) Reduction to a bounded &: For L > 1 define the truncation function 4, : R —
R by ¢r(z) == (x V (—L)) A L. Then
Lh—{I;o 16n = YL (&)llp =0

where &, is an approximation obtained by (a) or we take &, = £ in case dim(H) <
oo. Moreover, x(—r,1)(&n)DE, is a representative of D (1 (£y,)), so that

Llim D&, — D(wL(gn))HLf =0
—00
as well. Consequently, for all € > 0 there are n, L > 1 such that
1€ = YL E)IE + I1D€ = D(Wr(€n))llpn < &
(¢) Reduction to the smooth case: By the factorization theorem we can write

’(/}L<£n) = fn(gela -~-agen) € ]Dl,2

for a bounded Borel function f, : R®™ — R where we suppress L in the following. Let
F, :[0,1) x R™ — R be the solution of the backward heat equation with terminal
condition f, so that

lim F,(t, BY') = fo(B}) and  lim VE,(t, B}') = Dfu(BY)
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A. TECHNICAL FACTS 99

in L, and L , respectively, and a.s., where (B}')¢¢o,1) is an n-dimensional standard
Brownian motlon But this implies also that

lim F (1, VtBY) = f,(B}) and lim VI, (¢, VtBI) = Df,(B)
in L, and L;lfn, respectively. This can be seen from the estimate

1F(t, VEBY) = fu(BD)IIE EIEf.(VEBY + Bi_,) — fu(BY)I
EE|f,(VIB] + Bi_,) = fu(BY)I"
— EE|fu(BY+ B} ) — fu(BY)

IN

so that
[Fo(t, VEBY) = fu(BY)lp < 2 Fu(VE Bly) = fu(BY)lp = 0

as t — 1. The fact we used here is that (F,(t, B}'))ic[0,1] is a martingale. As
(VE,(t, Bf'))te[o,1) is a martingale as well, where we agree about D f,, =: VF,(1,"),
the same computation yields to

IVF(t, VEBY) = Dfu(BY)lln < 2| VE.(VE, Blg) = Dfu(BY)lls — 0
as t — 1. Letting f,; := F,,(t,\/t:) for t € [O 1), we get that

Dfn,t(gela ~~~ugen fz a t \[ gela 7gen))

because f,; € C?(R™) N C’(R"), and therefore
HDfn(gelvmvgen) - Dfn t(geu"-vgen)HLz{f

"9
S HDfn(gel7'“7gen Zai t \/9617 >gen))ek:
k=1 L;-I
8
8 9615 . 'agen))ek
Ly
"9
< D frn(geys - Ge,) ZT (t, \[gelr o Ge, )€k
k=1 LH
+(1 = VOIDfu(ers o geu) -
Summarizing,

}LH% “|fn,t(ge1’ ""gen) - fn(gen ""gen) 5
+ 1D fr(Geys s Ge,) — Dfn,t(geu"wgen)”ifl] =0. O

LEMMA A.5 (Stein’s martingale inequality, [66] and cf. [78, Theorem 3.2]). Let
(Q, F,P) be a probability space, p € (1,00) and let (Gx)}_, be an increasing sequence
of sub-o-algebras of F. Then one has

(Zn:|]E(fk|gk)|2> < ¢p <i|fk|2>
k=1 =

P B P
for all fi,..., fn € L, where the constant ¢, > 0 depends at most on p.
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100 A. TECHNICAL FACTS

Note that by grouping the random variables in an appropriate way in Stein’s in-
equality, we can also assume that fi, ..., f, are random vectors with values in RY,
whereas the constant ¢, > 0 does not enlarge.

LEMMA A.6. Forp € (1,00) assume a stochastic process a = (az)e[0,1] with values
in RY that has left-continuous paths and satisfies Esup, |a;|P < oco. Suppose a
filtration (Hi)iepo,1) and an (H¢)iepo,1)-adapted process (by)iecjo,1) with values in RN
and E|b|P < oo for all t € [0,1] that has left-continuous paths and such that by =
E(ai|H:) a.s. fort=k/2™ withn =0,1,2,... and k =0,...,2" — 1. Then one has

that
1 3 1 3
([wes)| = w4
0 0 ,

where C@z) > 0 is taken from Lemma @
PROOF. Let 1} = zin forn > 0 and kK = 0,...,2" — 1. Then it follows from

< @
p

Lemma that
on_q % m_q 2
( > (e — tZ)lE(athtg)IQ) < c@3) (Z (trpr — ti)laep |2>
k=0 k=0
p p

Applying twice Fatou’s lemma on the left-hand side, we derive

(e ] |

and we can conclude by dominated convergence. ([l

LEMMA A.7. Letp € (1,00), N > 1 and f: RY — R € C° where | D*f|loo <
for all multi-indices . Let vy be the standard Gaussian measure on RY. Then
one has

2" 1 2
< c[@3) limninf <Z (th1 — t)|aer 2)

k=0

- fdyn

. < o1Vl

Lyp(vn)
where the constant CER > 0 depends on p only.

PROOF. Let B = (Bi)e[0,1] be an N-dimensional standard Brownian motion
on a complete probability space (M, u) with the augmented natural filtration
(Gt)tefo,1) and that ¥ = G;. Let

F(t,z) :=Ef(x+ B1_)
so that, by Itd’s formula,

f(By) ~Ef(By) = / VE(t, B,)dB,

and, by the Burkholder-Davis-Gundy inequalities,

(/01 VF(t,Bt)|2dt)% p

and we can conclude with Lemma by a; = Vf(B1), by := VF(t,B;) and
Hi = Gt U

[f(B1) —Ef(B)ll, < ¢
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We call a function h : Q@ — R a II-step-function, where II C 2% is non-empty
system of subsets, provided that h = ZZ=1 opXxa, for some ai,...,a, € R and

Al, ceey A, eIl
THEOREM A.8. Let Q be a non-empty set and 11 be a system of subsets of 0 such
that

(i) A, B €11 implies AN B €11,

(ii)) Q eIl

Let p € [1,00) and F := o(Il). Then for all f € L,(Q, F,P) there are II-step-
functions fn, : Q@ — R such that im,, ||f — fnllp = 0.

PrROOF. Let M := {xa : A € II} so that F = o(II) = o(M). Let H be the
set of all bounded measurable f : Q — R such that there exist II-step-functions
hi : @ — R with limg || f — hill, = 0. Then H and M satisfy the assumptions of
the monotone class theorem (see [77, p. 7]). Hence any bounded F-measurable
function can be approximated in L, by Il-step-functions. Our assertion follows by
one more approximation obtained by truncation of a general element of L,,. O

THEOREM A.9. Let X = (Xt)eor), T >0, X¢ : Q — R?, be a stochastic process

such that all families (X%, — X% )NF, | with
i i—1 ’

O=th<--<th =T and Ny>1
are independent, F := 0(X), and p € [1,00). Then the following holds:

(i) The linear span of
d Ny

lgllx{x%_ngemgqqy
where for Ny = 0 the corresponding product is replaced by 1 and for N > 1
we have —oo < af < bF < oo and 0 < tF | <tF < T, is dense in L,(Q, F,P).
(ii) If X is the d-dimensional standard Brownian motion, then the linear span of

d Ny

ITTT (s -t )

k=1i=1
is dense in Lo(2, F,P), where for N, = 0 the corresponding product is replaced
by 1 and for Ny, > 1 the intervals (t& | tk], i =1, .., Ny, are pair-wise disjoint
for any fixed k.

PRrROOF. (i) The system II consisting of €2 and all possible finite intersections
of {XF — XF € (a,b)} with k€ {1,...,d}, 0<s<t<T,and —c0 < a < b < oo,
satisfies (i) and (ii) of Theorem and F = o(II). Therefore assertion (i) follows
from the same Theorem [A.8

(ii) By step (i) the random variables of form
YER N
Vii—to T Vi —tao1 )
where n > 1,0 = tg < --- < t, = T and f : R" — R is a bounded Borel

function, are dense in Lo(§2, F,P). Exploiting the orthonormal basis of Hermite
functions of Ly(R™, 7,4) we can approximate ¢ by polynomials in (th — Xfif )
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where k = 1,...,d and i = 1,...,n. It remains to approximate (X} — X*)! for [ > 2,
ke{l,..,d}and0<a<b<Thy

k k k k
Z (Xaﬂ‘lb% - Xa+(il—1)"*T“> (Xa+u L Xa+(iz—1)b%)

i1y ipe{l,..., N}
distinct

and N — oo. O

The following lemma can be proved by the generalized Clark-Ocone formula from
[71], Proposition A.1]. For completeness we include an argument based on a periodic
time-shift of the Brownian motion.

LEMMA A.10. Letp € [2,00), £ = >y Ie(f) € D1 2NL,(Q, F,P) with symmetric
kernels fr, and b € (0,T]. Then there are measurable processes (u?(i))iejo,p), © =
1,...,d, such that for all a € [0,b) one has

(1) 1€ = BT Ip ~n, ||(J 1)
(2) and that

, where K, > 1 depends on p only,
P

/ E|(i) — D(r,i)&dr
(a,b]

-/ SR (k= DAl 1, oot — D22

(a,b] . —1

PROOF. We represent our Wiener space by a different Brownian motion, ob-
tained by a permutation of the original one. For this purpose we let

- {WbH—Wb te[0,T —b]
PO\ Witro + W =W, it e [T —b,T]
and obtain a standard Brownian motion (as Gaussian process). We have that
o(Wp:te0,T)) =a(W,;:te0,T)) and G = F¥",,,. The symmetric kernels f,,
for the chaos decompositions with respect to W may be transformed to W as
(53) St i), (tnyin) = (@) 7HEL) 01), o ((€°) 7 (E0) i)
where @°(t) ;= t + (T —b) for t € (0,b] and @*(t) :=t—b for t € (b,T]. Now we get
that
€ —B(€G8) = € — BEIF ).

Let £ =307 I5( %) the chaos decomposition with respect to WP where the kernels
are obtained from the representation in terms of W by formula . Exploiting
the representation property on the Wiener space, we find progressively measur-
able (with respect to the augmentation of the natural filtration (F}V b)te[oﬂ of

(Wtb)te[O,T]) processes (Af(i))te[o’T], i=1,...,d, satisfying EfOT \/\?|2dt < oo and
¢ =F¢+ / AW as.
(0,T]

Then the processes (11§ (i))ie(o,5] are defined by

10 (0) = Ny (0)-
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A. TECHNICAL FACTS 103

By the Burkholder-Davis-Gundy inequalities we get that
b
le ~ B, = ¢ - BEF )|

T b
~ (/T b |A?.|2dr> - ( |uf.|2dr>
_bta a

P P
This proves part (1). Regarding part (2) it is sufficient to prove the equality for
¢ from a dense subset of D; 2. So we may assume § = Zszl In(fx), N > 1, with
symmetric f;, that are constant on dyadic cuboids of side-length 7/2% L > 1, and
vanish on diagonal cuboids (where at least two edges coincide). For those £ we have
the explicit formula

N=
Nl

N
A?(Z) = Z kllg—l(fllz((ta i)v ')X(O,t]kil)
k=1

where we chose the canonical representatives on the right-hand side. In this case
one can directly check part (2). O
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