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ASYMPTOTIC HÖLDER REGULARITY FOR THE ELLIPSOID

PROCESS

ÁNGEL ARROYO AND MIKKO PARVIAINEN

Abstract. We obtain an asymptotic Hölder estimate for functions satisfying
a dynamic programming principle arising from a so-called ellipsoid process. By
the ellipsoid process we mean a generalization of the random walk where the
next step in the process is taken inside a given space dependent ellipsoid. This
stochastic process is related to elliptic equations in non-divergence form with
bounded and measurable coefficients, and the regularity estimate is stable as
the step size of the process converges to zero. The proof, which requires certain
control on the distortion and the measure of the ellipsoids but not continuity
assumption, is based on the coupling method.

1. Introduction

1.1. Overview. The Krylov-Safonov [KS79] Hölder regularity result is one of the
central results in the theory of non-divergence form elliptic partial differential equa-
tions with bounded and measurable coefficients. The result is not only important
on its own right but also gives a flexible tool in the higher regularity and existence
theory due to its rather weak assumptions on the coefficients.

In this paper, we study a quite general class of what we call ellipsoid processes.
Ellipsoid processes are generalizations of the random walk where the next step in
the process is taken inside a given space dependent ellipsoid Ex, and the value
function uε satisfies the dynamic programming principle

uε(x) = −
ˆ

Ex

uε(y) dy,

as explained in detail in the next section. Their role among the discrete processes is
somewhat similar to the role of the linear uniformly elliptic partial differential equa-
tions with bounded and measurable coefficients among partial differential equations.
Our main result, Theorem 1.1, establishes an asymptotic Hölder regularity for a
value function of an ellipsoid process under certain assumptions on the distortion
and the measure of the ellipsoids but without any continuity assumption.

There is a classical well-known connection between the Brownian motion and
the Laplace equation. It was observed in the paper of Peres, Schramm, Sheffield
and Wilson [PSSW09] in discrete time that there is also a connection between the
infinity Laplace equation and a two-player random turn zero-sum game called tug-
of-war. Similarly, a connection exists between the p-Laplacian, 1 < p < ∞ and
different variants of tug-of-war game with noise [PS08, MPR12], as well as between
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2 ARROYO AND PARVIAINEN

the 1-Laplacian and a deterministic two-player game [KS06]. Our study of ellipsoid
processes is partly motivated by the aim of developing a more general approach
that would be widely applicable to problems including the tug-of-war games with
noise. The mean value principle associated to the ellipsoids has also been discussed
in the context of PDE theory for example by Pucci and Talenti in [PT76].

A more detailed overview of the proof is given in the next sections, but roughly
speaking the proof is based on suitable couplings of probability measures related to
the dynamic programming principle at different points and then look at the higher
dimensional dynamic programming principle. The underlying idea is coming from
the related stochastic processes: if we can show that with high probability the
components of the coupled process coincide at some point, this will give a regularity
estimate. In the usual random walk it is rather immediate that a good choice is
a mirror point coupling of probability measures. However, since our ellipsoids can
vary from point to point in a discontinuous fashion, finding good enough couplings
becomes a nontrivial task. At the end of the paper, we illustrate the main points
of the proof by explicit examples, and also counterexamples demonstrating the role
of the assumptions.

The coupling approach to the regularity of different variants of tug-of-war with
noise was first developed in [LP18] and applied in [PR16, AHP17, ALPR, Han].
As it turned out, for the continuous time diffusion processes and the Laplacian,
the coupling method was utilized in connection to the regularity already at the
beginning of 90’s by Cranston [Cra91], utilizing the tools developed in [LR86]. For
more recent works, see for example [Kus15, Kus17], which deal with linear PDEs
under spatial continuity assumptions on the coefficients. Actually, in continuous
time, the lack of regularity can have some fundamental consequences: Nadirashvili
showed in [Nad97] that there is not necessarily a unique diffusion, i.e. a unique
solution to the martingale problem, nor is there necessarily a unique solution to the
corresponding linear PDE with bounded and measurable coefficients. Some of the
aspects in the method of coupling are similar to those of Ishii-Lions method [IL90]
as pointed out in [PP13], but the methods seem to have developed independently.

Let us also point out that the global approach to regularity used for example
in [PS08, MPR12, LM17, Lew] seems to be hard to adapt to our situation. This
approach is based on coupling the same steps in different points so that the distance
between the points is preserved, and continuing close to the boundary of the domain.
Alternatively one can use the comparison with translated solutions. In both cases
the translation invariance is used and this is not available for the ellipsoid process.

This paper is organized as follows. In Section 1.2, we make detailed statements.
In Section 2 we review some basic notions. Section 3 presents the key lemmas in
the coupling method. Section 4 is devoted to the proof of our main result in the
case |x− z| & ε, while Section 5 deals with the remaining case |x− z| . ε. Finally
in Section 6 we give some examples showing that the assumptions are really needed
in the method used here.

1.2. Statement of the main result. Given 0 < λ 6 Λ < ∞, let us denote by
A(λ,Λ) the set of all symmetric n× n real matrices A such that

λ|ξ|2 6 ξ⊤Aξ 6 Λ|ξ|2
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for every ξ ∈ R
n. We say that the matrices in A(λ,Λ) are uniformly elliptic. We

also refer to λ and Λ as the ellipticity constants of A.

It turns out that each symmetric and positive definite matrix A determines the
shape and the orientation of an ellipsoid EA ⊂ R

n centered at the origin and given
by the formula

EA : = {y ∈ R
n : y⊤A−1y < 1} = A1/2

B,

where B denotes the open unit ball in R
n and A1/2 stands for the principal square

root of A. Moreover, the length of the principal semi-axes of EA is determined by
the square root of the eigenvalues of A (see Section 2 for more details), and thus
the distortion of EA coincides with the square root of the quotient between the
largest and the smallest eigenvalue of A. In particular, for any A ∈ A(λ,Λ), the

distortion of EA is bounded from above by
√
Λ/λ. Motivated by this, we say that

the quotient Λ/λ is the (maximum) distortion of the matrices in A(λ,Λ).

Let Ω ⊂ R
n be a domain. We denote by A : Ω → A(λ,Λ) a matrix-valued

function in Ω with measurable coefficients and values in A(λ,Λ). Given ε > 0, for
each x ∈ Ω we can define an ellipsoid Ex centered at x by

(1.1) Ex : = Eε,A,x : = x+ εA(x)1/2 B.

We also assume that the ellipsoids have the samemeasure, in other words, det{A(x)1/2}
is constant for every x ∈ Ω. This does not seriously affect the applicability of our
result as discussed at the end of Section 2.

For fixed ε > 0, in this paper we deal with solutions uε of the dynamic program-

ming principle (DPP)

(1.2) uε(x) = −
ˆ

Ex

uε(y) dy

for x ∈ Ω. That is, uε is a function whose value at a point x ∈ Ω coincides with its
mean value over the ellipsoid Ex (with respect a uniform probability distribution).

Now we are in position of stating our main result, which asserts that, assuming a
bound for the distortion of the ellipsoids, the solutions uε to (1.2) are asymptotically
Hölder continuous.

Theorem 1.1. Let Ω ⊂ R
n be a domain, n > 2 and 0 < λ 6 Λ < ∞ such that

(1.3) 1 6
Λ

λ
<

n+ 1

n− 1
.

Suppose that A : Ω → A(λ,Λ) is a measurable mapping with constant determinant

and B2r(x0) ⊂ Ω for some r > 0. If uε is a solution to (1.2), then there exists

some α = α(n, λ,Λ) ∈ (0, 1) such that

|uε(x)− uε(z)| 6 C(|x − z|α + εα),

holds for every x, z ∈ Br(x0) and some constant C > 0 depending on n, λ, Λ, r, α
and supB2r

|u|, but independent of ε.
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1.3. The ellipsoid process and heuristic idea of the proof. The ellipsoid

process can be seen as a generalization of the random walk. Let us consider a se-
quence of points {x0, x1, x2, . . .} ⊂ Ω describing the location of a particle at each
time j = 0, 1, 2, . . . Steps of the particle are decided according to the following rule:
suppose that the particle is placed at some point xj ∈ Ω, then the next parti-
cle position xj+1 is chosen randomly in the ellipsoid Exj (according to a uniform
probability distribution on Exj ). This step is repeated until the particle exits Ω
for the first time at some xτ /∈ Ω. Then the process stops and the amount F (xτ )
is collected, where F is a pay-off function defined outside Ω. The one step rule
above defines a probability measure at every point. These probability measures in-
duce a probability measure on the space of sequences according to the Kolmogorov
construction. Using this probability measure, the expected pay-off of the ellipsoid
process starting from x0 ∈ Ω is then

uε(x0) : = E[F (xτ ) |x0].

Moreover, the process is a Markov chain and by the Markov property the expected
pay-off at a point x coincides with the average of the expected pay-offs over the
ellipsoid Ex, and thus it satisfies the DPP (1.2).

Given any solution uε : Ω → R to the original DPP (1.2), we perform a change
of variables to rewrite the DPP as

(1.4) uε(x) = −
ˆ

B

uε(x+ εA(x)1/2 y) dy.

Then, we construct a 2n-dimensional dynamic programming principle by defining
G : Ω× Ω → R as

G(x, z) : = uε(x)− uε(z)

and we get that

(1.5) G(x, z) = −
ˆ

B

G(x+ εA(x)1/2 y, z + εA(z)1/2 y) dy.

Now, by means of the function G, the problem of the regularity of uε becomes a
question about the size of a solution G to (1.5) in Ω× Ω.

Observe that, due to the invariance of the unit ball B under orthogonal trans-
formations, performing an orthogonal change of variables in (1.4) for uε(z), we see
that the 2n-dimensional DPP (1.5) is equivalent to

(1.6) G(x, z) = −
ˆ

B

G(x+ εA(x)1/2y, z + εA(z)1/2Qy) dy,

for any orthogonal matrix Q. Note that the value of the integral with G does
not depend on Q. However, the choice of this matrix will become relevant in
Section 4.2, where we estimate the right-hand side of (1.6) for a certain explicit
comparison function f and show that it is a supersolution for (1.6) with a strict
inequality. We will also show that the solution G satisfies comparison principle
with the supersolution f . By the explicit structure of f , this implies the desired
regularity result.

In stochastic terms, the above proof can be described by looking at a 2n-
dimensional stochastic process induced by the ellipsoid process started at x0 and z0,
and by their probability measures coupled using the above coupling. The process
continues until either one of the particles exits Ω for the first time (and then we
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impose the pay-off 2 supΩ |uε|), or both particles occupy the same position (and we
impose the pay-off 0). In this context, the key would be to show that the latter
case occurs with a high enough probability.

Let us further illustrate the proof by taking as an example the particular case
in which both Ex and Ez are unit balls centered at x and z, respectively. In this
case the ellipsoid process reduces to a random walk. Then, a suitable choice for the
orthogonal matrix Q, i.e. the coupling, would be the matrix describing the reflection
with respect to the (n− 1)-dimensional hyperplane orthogonal to x− z and passing
through (x + z)/2.

However, in the general case where we have two different ellipsoids Ex and Ez , it
is not clear which couplings to choose. Actually, for ellipsoids with large distortion
it may happen that there is no good enough coupling that lead us to obtain the
sufficient estimates (see the examples in Section 6).

2. Preliminaries and notation

In this work, O(n) stands for the n-dimensional orthogonal group defined as

O(n) : = {P ∈ R
n×n : P⊤P = PP⊤ = I},

where P⊤ stands for the transpose of P .
Note that, since λ > 0, then every matrix A in A(λ,Λ) is, in particular, positive

definite. This together with the symmetry of A implies that there exists an orthog-
onal matrix R ∈ O(n) and a diagonal matrix D (with real and positive elements)
such that

A = RDR⊤.

We denote by D1/2 the square root of D, obtained by taking the square root of
each element in the diagonal of D. In consequence, we define the principal square

root of a symmetric and positive semidefinite matrix A as

(2.1) A1/2 : = RD1/2R⊤.

In view of (2.1), we see that the length of the principal semi-axes of the ellipsoid
EA is given by the square root of the eigenvalues of A (that is the diagonal entries
of D1/2), while the orientation of those semi-axes is given by the orthogonal matrix
R. Hence, by uniform ellipticity, the inclusions

(2.2) B√
λ ⊂ EA ⊂ B√

Λ

hold uniformly for every A ∈ A(λ,Λ). Moreover, the measure of the ellipsoid EA

can be easily computed as |EA| = |B|
√
det{A}.

As we have defined in (1.1), let us fix ε > 0 and A : Ω → A(λ,Λ), and let us
explain the connection between the ellipsoids Ex, the DPP (1.2) and the elliptic
equation in non-divergence form

(2.3) Tr{A(x)D2u(x)} =

n∑

i,j=1

aij(x)uxixj (x) = 0,

where the coefficients aij are the entries of A(x). We start by recalling the second
order Taylor’s expansion of a twice differentiable function u at x ∈ Ω,

u(x+ y) = u(x) +∇u(x)⊤y +
1

2
y⊤D2u(x)y + o(|y|2),
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for every small enough y ∈ R
n. Here we have used the notation v⊤w for the scalar

product of two (column) vectors v, w ∈ R
n. Next, we compute the average with

respect to y over the ellipsoid εA(x)1/2B of the expansion above. Then the first
order term vanishes by the symmetry of εA(x)1/2B, that is

−
ˆ

εA(x)1/2B

∇u(x)⊤y dy = ∇u(x)⊤
(
−
ˆ

εA(x)1/2B

y dy

)
= 0,

while for the second order term we first rewrite it in trace form by recalling the
equality w⊤Mv = Tr{M vw⊤}. Then we need to compute the averaged integral
over the ellipsoid of each entry in the matrix yy⊤,

−
ˆ

εA(x)1/2B

yy⊤ dy = −
ˆ

B

(εA(x)1/2 y)(εA(x)1/2 y)⊤ dy

= ε2A(x)1/2
(
−
ˆ

B

yy⊤ dy

)
A(x)1/2 =

ε2

n+ 2
A(x),

where in the first equality a change of variables has been performed and in the
last equality we have used that the averaged integral in parenthesis is equal to the
identity matrix divided by n+2. Thus, the expansion for the average of u over Ex

becomes

−
ˆ

Ex

u(y) dy = u(x) +
ε2

2(n+ 2)
Tr{A(x)D2u(x)} + o(ε2).

Therefore, we get the following asymptotic mean value property related to (2.3):
let u ∈ C2(Ω), then

Tr{A(x)D2u(x)} = 0 ⇐⇒ u(x) = −
ˆ

Ex

u(y) dy + o(ε2).

However, as already pointed out, the solutions to (2.3) with bounded and measur-
able coefficients, with no further regularity assumptions, are not necessarily unique.
By a scaling argument we may assume that the determinant of A is a constant func-
tion on Ω, and thus the ellipsoids Ex defined in (1.1) have all the same measure.

3. The coupling method for asymptotic regularity

3.1. The comparison function. One of the keys in the proof of Theorem 1.1 is
the construction of a suitable comparison function f that is a supervalue for the
function G in the 2n-dimensional DPP (1.5), and possesses the desired regularity
properties. We construct such a comparison function for the 2n-dimensional DPP
(1.5) by defining explicitly the function f1 : R2n → R by

(3.1) f1(x, z) = C|x− z|α + C̃|x+ z|2,
where α ∈ (0, 1) is a small enough exponent depending on n, λ and Λ (see (4.16)),

C̃ =
2

3r2
sup
B2r

|u|,

and

(3.2) C >
2

rα
sup
B2r

|u|

is a constant depending on n, λ, Λ, r, α and supB2r
|u| (see (4.17), (5.2) and (5.11)).

Here and in what follows, we use a shorthand u : = uε. Note that the first term
in (3.1) plays the role of the modulus of α-Hölder continuity needed for obtaining
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the regularity result, while the second is just a small correction term introduced in
order to ensure that

(3.3) |u(x)− u(z)| 6 f1(x, z) when x, z ∈ B2r \Br.

Indeed, if x, z ∈ B2r \Br such that |x− z| 6 r, then

|x+ z|2 = 2 |x|2 + 2 |z|2 − |x− z|2 > 3r2

and
|u(x)− u(z)| 6 2 sup

B2r

|u| = 3C̃r2 6 C̃ |x+ z|2 6 f1(x, z).

Otherwise, if |x− z| > r, using (3.2) we get

|u(x)− u(z)| 6 2 sup
B2r

|u| < Crα < C|x− z|α < f1(x, z).

However, due to the discrete nature of the DPP, the solutions u = uε to (1.2)
can present jumps in the small ε-scale. For that reason, we need to introduce an
additional term in the comparison function in order to control the behavior of u in
this situation. This is, an annular step function f2 defined by

(3.4) f2(x, z) =





C2(2N−i)εα if
i− 1

2
<

|x− z|√
λ ε

6
i

2
, (i = 0, 1, . . . , 2N),

0 if
|x− z|√

λ ε
> N

whereN ∈ N is a large enough constant depending on λ, Λ and C that will be chosen
later (see (4.7), (4.9) and Remark 4.2). Note that f2 = 0 whenever |x−z| > N

√
λ ε

and that sup f2 = C4Nεα is reached on the set

S0 = {(x, z) ∈ R
2n : x = z}.

3.2. The counter assumption. We choose

f(x, z) := f1(x, z)− f2(x, z).

as our comparison function. Since the terms in f1 have been chosen so that (3.3)
holds and sup f2 = C4Nεα, then

(3.5) |u(x)− u(z)| 6 f(x, z) + C4Nεα when x, z ∈ B2r \Br.

In order to check that this estimate is also satisfied inside Br, let us define a constant
K measuring the maximum difference between |u(x) − u(z)| and f(x, z) for x and
z in Br, i.e.

K : = sup
x,z∈Br

(u(x) − u(z)− f(x, z)).

Our aim is to show that there exist suitable constants C and N so that the
inequality (3.5) also holds in Br, i.e.

(3.6) |u(x)− u(z)| 6 f(x, z) + C4Nεα when x, z ∈ Br.

We proceed by contradiction. Assume that (3.6) does not hold. Then, this implies
that

(3.7) K > C4Nεα.

As a direct consequence of the counter assumption, observe that from the definition
of K together with (3.5) it holds that

(3.8) u(x)− u(z) 6 f(x, z) +K for every x, z ∈ B2r.
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3.3. Statement of the key inequalities. Let us assume that the counter as-
sumption (3.7) holds. It follows directly from the definition of K that, for any
η > 0 to be fixed later, there exist xη, zη ∈ Br such that

(3.9) u(xη)− u(zη)− f(xη, zη) > K − η.

In order to get a contradiction, we need to distinguish two different cases depending
on the distance between the points xη and zη from (3.9). The case |xη−zη| < 1

2

√
λ ε

is simpler due to a cancellation effect that happens when the distance is small.
This special case is presented in Section 5.2. Now we focus on the case in which
|xη − zη| > 1

2

√
λ ε.

Our strategy is to utilize first the counter assumption together with (3.9) in order
to obtain an inequality in terms of the comparison function f (see (3.11)). Then,
by using the explicit form of the comparison function f , we choose adequately the
constants C and N in such a way that f satisfies the opposite strict inequality
(Lemma 3.1). This then is the desired contradiction giving the main result.

Starting from (3.9) and recalling the DPP (1.2), we get

K − η 6 u(xη)− u(zη)− f(xη, zη)

= −
ˆ

B

u(xη + εA(xη)
1/2 y) dy −−

ˆ

B

u(zη + εA(zη)
1/2 y) dy − f(xη, zη)

= −
ˆ

B

[
u(xη + εA(xη)

1/2 y)− u(zη + εA(zη)
1/2Qy)

]
dy − f(xη, zη)(3.10)

6 K +−
ˆ

B

f(xη + εA(xη)
1/2 y, zη + εA(zη)

1/2Qy) dy − f(xη, zη),

where in the second equality we have performed the orthogonal change of variables
y 7→ Qy in the second integral, and in the last inequality we have recalled (3.8).
We remark that the counter assumption has been applied here when using (3.8).

Thus for any η > 0, let xη, zη ∈ Br that satisfy (3.9), it follows that

(3.11) f(xη, zη) 6 −
ˆ

B

f(xη + εA(xη)
1/2 y, zη + εA(zη)

1/2Qy) dy + η,

where Q ∈ O(n) is any fixed orthogonal matrix.
Now, the idea is to thrive for a contradiction by showing that the opposite strict

inequality for (3.11) holds for a certain choice of the coupling matrix Q. As we will
see in Section 4.2, this can only be done assuming a bound for the distortion of the
matrices in A(λ,Λ).

Lemma 3.1. Let f = f1 − f2 be the comparison function, where f1 and f2 are

the functions defined in (3.1) and (3.4), respectively. Let η = η(ε) = ε2 > 0 and

assume that Λ/λ is bounded as in (1.3). Let x, z ∈ Br such that |x − z| > 1
2

√
λ ε,

then there exists an orthogonal matrix Q ∈ O(n) such that

(3.12) f(x, z) > −
ˆ

B

f(x+ εA(x)1/2 y, z + εA(z)1/2Qy) dy + η

holds.

Observe that, choosing x and z so that x = xη and z = zη in Lemma 3.1,
we get a contradiction between (3.11) and (3.12), and this implies the falseness
of (3.7), so (3.6) holds. This, together with the short distance case presented in
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Section 5.2, yields the desired asymptotic Hölder regularity estimate and the proof
of Theorem 1.1 is complete.

We can assume without loss of generality that both xη and zη from (3.9) lie in
the first coordinate axis of Rn, i.e. xη, zη ∈ span{e1}. Furthermore, from now on
we will assume that

xη − zη
|xη − zη|

= e1,

where e1 = (1, 0, . . . , 0)⊤.
We split the proof of Lemma 3.1 into two cases depending on the size of |x− z|

in comparison with the constant N
√
λ ε, using different arguments and distinguish-

ing between the case in which f2 = 0 (Section 4) and the case in which f2 6= 0
(Section 5).

4. Case |xη − zη| > N
√
λ ε

In this section, we prove Lemma 3.1 in the case |x − z| > N
√
λ ε, and thus, as

pointed out in Section 3.3, complete the proof of the main result Theorem 1.1 in
this particular case.

Since |x− z| > N
√
λ ε, by (3.4) we have that f2(x, z) = 0. Thus

(4.1) f(x, z) = f1(x, z) = C|x − z|α + C̃|x+ z|2.
Our aim is to show that the inequality (3.12) in Lemma 3.1 holds. The idea is to
use the explicit form of the comparison function in order to estimate the right-hand
side of (3.11), and then check that, for a convenient choice of the constants, the
estimate is strictly bounded from above by f(x, z).

4.1. Taylor’s expansion for f . In this section we compute the Taylor’s expansion
of f1 in order to obtain the desired estimates for the comparison function. This is
similar to [LP18, AHP17] and [ALPR]. However, for the convenience of the reader
and expository reasons we write down the details.

Lemma 4.1. Let f be the comparison function (4.1) and suppose that x, z ∈ Br

satisfy (x − z)/|x− z| = e1. Then the inequality

(4.2) f(x+ hx, z + hz)− f(x, z)

6 C α|x − z|α−1e⊤1 (hx − hz) + 2C̃(x+ z)⊤(hx + hz)

+
C

2
α|x− z|α−2Tr

{(
α− 1 0
0 I

)
(hx − hz)(hx − hz)

⊤
}

+ (16C̃Λr2−α + 1) |x− z|α−2 ε2

holds for every |hx|, |hz| 6
√
Λ ε.

Proof. First observe that,

(4.3) |(x + hx) + (z + hz)|2 − |x+ z|2

= 2(x+ z)⊤(hx + hz) + |hx + hz|2

6 2(x+ z)⊤(hx + hz) + 4Λ ε2

6 2(x+ z)⊤(hx + hz) + 16Λr2−α|x− z|α−2ε2
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for every |hx|, |hz| <
√
Λ ε, where in the last inequality we have used that |x−z| 6 2r

and α − 2 < 0. Next, let us recall the second order Taylor’s expansion of a 2n-
dimensional function φ(x, z),

φ(x+ hx, z + hz)− φ(x, z)

= Dφ(x, z)⊤
(
hx

hz

)
+

1

2

(
h⊤
x h⊤

z

)
D2φ(x, z)

(
hx

hz

)
+ Ex,z(hx, hz),

where Ex,z(hx, hz) is the error term in the Taylor’s expansion. Developing the terms
in the expansion, we equivalently have that

(4.4) φ(x + hx, z + hz)− φ(x, z)

= Dxφ(x, z)
⊤hx +Dzφ(x, z)

⊤hz

+
1

2
Tr

{
Dxxφ(x, z)hxh

⊤
x +Dzzφ(x, z)hzh

⊤
z + 2Dxzφ(x, z)hzh

⊤
x

}

+ Ex,z(hx, hz).

We use the formulas

Dx|x| =
x

|x| and Dxx|x| =
1

|x|

(
I − xx⊤

|x|2
)
,

which, since (x− z)/|x− z| = e1 by assumption, give us that

Dx|x− z| = e1 and Dxx|x− z| = −Dxz|x− z| = 1

|x− z| (I − e1e
⊤
1 ).

Thus, differentiating |x− z|α with respect to x and z we get

(4.5) Dx|x− z|α = α|x− z|α−1e1, Dz|x− z|α = −α|x− z|α−1e1

and

Dxx|x− z|α = Dzz|x− z|α = −Dxz|x− z|α

= α|x− z|α−2
[
− (1− α)e1e

⊤
1 + (I − e1e

⊤
1 )

]

= α|x− z|α−2

(
α− 1 0
0 In−1

)
.

(4.6)

Next we estimate the error term. Since

∂3

∂t3
tα = α(1 − α)(2 − α)tα−3,

by Taylor’s theorem, whenever |x− z| > 2
√
Λ ε, then

Ex,z(hx, hz) 6
α(1 − α)(2 − α)

6

∣∣∣∣
(
hx

hz

)∣∣∣∣
3

(|x− z| − 2
√
Λ ε)α−3,

holds for every |hx| , |hz| 6
√
Λ ε. Fix

(4.7) N > 4

√
Λ

λ
,

then by hypothesis |x−z| > N
√
λ ε > 4

√
Λ ε, and since 0 < α < 1, we can estimate

(|x− z| − 2
√
Λ ε)α−3 6

( |x− z|
2

)α−3

.
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Inserting this in the estimate for the error term together with |hx|, |hz| 6
√
Λ ε we

obtain

Ex,z(hx, hz) 6
1

3
(2Λε2)3/2

( |x− z|
2

)α−3

=
29/2−α

3
Λ3/2 ε

|x− z| |x− z|α−2 ε2

< 27/2 Λ3/2 ε

|x− z| |x− z|α−2 ε2

<
27/2Λ

N

√
Λ

λ
|x− z|α−2 ε2,

(4.8)

where in the last inequality we have used |x − z| > N
√
λ ε again. Plugging (4.5),

(4.6) and (4.8) into the terms in (4.4) with φ(x, z) = |x− z|α we obtain

|(x+ hx)− (z + hz)|α − |x− z|α

= α|x− z|α−1e⊤1 (hx − hz)

+
1

2
α|x− z|α−2 Tr

{(
α− 1 0
0 I

)
(hx − hz)(hx − hz)

⊤
}

+
27/2Λ

N

√
Λ

λ
|x− z|α−2,

Thus combining this and (4.3) as in (4.1) and choosing a large enough natural
number N ∈ N such that

(4.9) N > 27/2Λ

√
Λ

λ
C,

we get (4.2). �

Remark 4.2. We could choose N ∈ N taking into account the fact that, as we will
see later in Proposition 4.7, the distortion needs to be bounded by certain constant
depending on n and α which is less than 3. Then, it is enough to choose N > 4

√
3

and N >
√
27 · 3ΛC instead of (4.7) and (4.9), respectively.

The desired estimate then follows after averaging the inequality (4.2) from the
previous Lemma.

Lemma 4.3. Let f be the comparison function (4.1) and suppose that x, z ∈ Br

satisfy (x − z)/|x− z| = e1. Then the inequality

(4.10) −
ˆ

B

f
(
x+ εA(x)1/2 y, z + εA(z)1/2Qy

)
dy − f(x, z)

6 |x− z|α−2

[
Cα

2
Tα(A(x), A(z), Q) + 16C̃Λr2−α + 1

]
ε2

holds for any fixed orthogonal matrix Q ∈ O(n), where

Tα(A1, A2, Q)

: = −
ˆ

B

Tr

{(
α− 1 0
0 I

)((
A

1/2
1 −A

1/2
2 Q

)
y
)((

A
1/2
1 −A

1/2
2 Q

)
y
)⊤}

dy.
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Proof. Replace hx = εA(x)1/2 y and hz = εA(z)1/2Qy in (4.2) and note that, by
symmetry, averaging over B, the first order terms vanish and we get (4.10). �

4.2. The optimal orthogonal coupling. In view of Lemma 4.3, we need to
ensure first the negativity of the right-hand side of (4.10) in order to show that
(3.12) holds. For that reason, in this subsection, our aim is to check that for every
pair of matrices A1, A2 ∈ A(λ,Λ) there exists an orthogonal matrix Q ∈ O(n)
(depending on A1, A2 and α) so that

(4.11) −
ˆ

B

Tr

{(
α− 1 0
0 I

)((
A

1/2
1 −A

1/2
2 Q

)
y
)((

A
1/2
1 −A

1/2
2 Q

)
y
)⊤}

dy < 0

holds.
This is equivalent to the question of which is the best coupling matrix in (1.6).

Heuristically, since α − 1 < 0, the idea is to choose the orthogonal matrix Q such

that the difference (in average) between A
1/2
1 y and A

1/2
2 Qy projected over the first

component is much larger than projected over the orthogonal subspace {e1}⊥ (see
Figure 1).

x+ εA(x)1/2y z + εA(z)1/2Qy

Ex Ez

Figure 1. Illustration of the coupling aiming at negativity of the
left-hand side in (4.11).

We start by rewriting (4.11) in a more suitable form. By the linearity of the
trace, we can integrate term by term inside the trace so we get

(4.12) −
ˆ

B

Tr

{(
α− 1 0
0 I

)((
A

1/2
1 −A

1/2
2 Q

)
y
)((

A
1/2
1 −A

1/2
2 Q

)
y
)⊤}

dy

= Tr

{(
α− 1 0
0 I

)
(A

1/2
1 −A

1/2
2 Q)

(
−
ˆ

B

yy⊤ dy

)
(A

1/2
1 −A

1/2
2 Q)⊤

}

=
1

n+ 2
Tr

{(
α− 1 0
0 I

)
(A

1/2
1 − A

1/2
2 Q)(A

1/2
1 −A

1/2
2 Q)⊤

}

=
1

n+ 2
Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}
,

where in the second equality we have used that

−
ˆ

B

yy⊤ dy =
1

n+ 2
I.

Then, (4.11) holds if and only if

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}
< 0.



ASYMPTOTIC HÖLDER REGULARITY FOR THE ELLIPSOID PROCESS 13

In order to accomplish this, our strategy is to find a matrix in O(n) minimizing the
map

(4.13) Q 7−→ Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}
,

where Q ranges the orthogonal group O(n). For that reason, first we remark that
the above map is continuous and defined on the compact space O(n). Thus, there
exists an orthogonal matrix, say Q0, depending on A1 and A2 such that

Tr

{(
α− 1 0
0 I

)
A

1/2
2 Q0A

1/2
1

}
> Tr

{(
α− 1 0
0 I

)
A

1/2
2 QA

1/2
1

}

for every Q ∈ O(n). The matrix Q0 represents the best possible coupling in (4.11).
Then, the following step will be to impose the negativity of the resulting term as
a sufficient condition for (3.12). As a consequence of this, it will be made clear the
need of imposing a bound for the distortion of the matrices A1 and A2.

We start by showing the following lemma, which is stated for any square matrix
M and it is a result of optimization over the orthogonal group by using the singular
value decomposition of matrices.

Lemma 4.4. Let n > 2 and M ∈ R
n×n. Then M⊤M is symmetric and positive

semidefinite and satisfies

(4.14) max
Q∈O(n)

Tr{MQ} = Tr{(M⊤M)1/2} > n |det{M}|1/n .

Proof. By the singular value decomposition, any square matrix M can be factorized
as M = R1S

1/2R⊤
2 , where R1, R2 ∈ O(n) and S is a diagonal matrix containing

the eigenvalues of M⊤M , which are real and non-negative since M⊤M is symmetric
and a positive semidefinite. Then, for any Q ∈ O(n),

Tr{MQ} = Tr{R1S
1/2R⊤

2 Q} = Tr{S1/2R⊤
2 QR1},

where Tr{AB} = Tr{BA} has been used in the second equality. Since O(n) together

with the usual matrix multiplication has group structure, then we can select Q̃ =
R⊤

2 QR1 ∈ O(n) and thus

max
Q∈O(n)

Tr{MQ} = max
Q̃∈O(n)

Tr{S1/2Q̃}.

Observe that, since S1/2 is a diagonal matrix with non-negative entries, the maxi-

mum in the right-hand side of the previous equations is attained for Q̃ = I, i.e.

max
Q∈O(n)

Tr{S1/2Q} = Tr{S1/2} = Tr{(M⊤M)1/2}.

Therefore, we derive the equality in (4.14). In order to show the inequality in (4.14),

let us write M̃ = (M⊤M)1/2 and recall the following inequality

Tr{M̃} > n(det{M̃})1/n,
which follows from the inequality of arithmetic and geometric means and the fact

that all the eigenvalues of M̃ are real and non-negative. Then the proof is completed

by observing that det{M̃} = |det{M}|. �
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Remark 4.5. Out of curiosity, observe that if Q ∈ O(n) and M ∈ R
n×n, the

distance between Q and M⊤ is then given by

‖M⊤ −Q‖2 = Tr{(M⊤ −Q)⊤(M⊤ −Q)}
= Tr{MM⊤ + I − 2MQ}
= ‖M‖2 + n− 2Tr{MQ}.

Therefore, the problem of finding the nearest orthogonal matrix to a given matrix
M⊤ is equivalent to the problem of maximizing Tr{MQ} among all matrices Q
in O(n). Moreover, assuming that det{M} 6= 0, the solution to this problem is
attained at the orthogonal matrix Q0 = (M⊤M)−1/2M⊤, i.e. Q0 is the nearest
orthogonal matrix to M⊤ and it satisfies

Tr{MQ} 6 Tr{MQ0} = Tr{(M⊤M)1/2}
for every Q ∈ O(n).

Next we apply the previous lemma to obtain the following estimate.

Lemma 4.6. Let 0 < λ 6 Λ < ∞ and α ∈ (0, 1). Then

(4.15) min
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}

6 2
[
(n− 1)Λ−

(
(1− α) + n(1− α)1/n

)
λ
]
.

holds for every pair of matrices A1, A2 ∈ A(λ,Λ).

Proof. First notice that the first two terms in the trace of (4.15) do not depend
on Q, so we can bound them directly by recalling the uniform ellipticity of the
matrices in A(λ,Λ), i.e.,

Tr

{(
α− 1 0
0 I

)
(A1 +A2)

}
6 2 max

A∈A(λ,Λ)
Tr

{(
α− 1 0
0 I

)
A

}

= 2
[
(n− 1)Λ− (1 − α)λ

]
.

for every pair of matrices A1, A2 ∈ A(λ,Λ). For the remaining term, we recall
Lemma 4.4 with

M = A
1/2
1

(
α− 1 0
0 I

)
A

1/2
2 .

Then,

max
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
A

1/2
2 QA

1/2
1

}
> n

∣∣∣∣det
{
A

1/2
1

(
α− 1 0
0 I

)
A

1/2
2

}∣∣∣∣
1/n

= n(1− α)1/n |det{A1} det{A2}|
1

2n

> n(1− α)1/nλ,

where in the second inequality we have used the uniform ellipticity to get that the
derminant of each matrix is bounded from below by λn. Then (4.15) follows. �

The following is the main result of this section and provides a sufficient condition
for (3.12) whenever |x − z| > N

√
λ ε, concluding the proof of Lemma 3.1 in this

case.
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Proposition 4.7. Let n > 2, 0 < λ 6 Λ < ∞ and α ∈ (0, 1) such that

(4.16) 1 6
Λ

λ
<

n(1− α)1/n + (1− α)

n− 1
.

For x, z ∈ Br such that |x− z| > N
√
λ ε, there exists a coupling matrix Q0 ∈ O(n)

and a large enough constant C > 0 such that

−
ˆ

B

f
(
x+ εA(x)1/2 y, z + εA(z)1/2Q0 y

)
dy < f(x, z)− ε2,

where f(x, z) = f1(x, z) = C|x − z|α + C̃|x+ z|2.
Proof. Select Q0 ∈ O(n) minimizing (4.13) with A1 = A(x), A2 = A(z). Then,
recalling Lemma 4.3 together with (4.12) and Lemma 4.6, it turns out that

−
ˆ

B

f
(
x+ εA(x)1/2 y, z + εA(z)1/2Q0 y

)
dy − f(x, z)

6 |x− z|α−2
(
−τC + 16C̃Λr2−α + 1

)
ε2,

where

τ = τ(n, λ,Λ) := − α

n+ 2

[
(n− 1)Λ−

(
(1− α) + n(1− α)1/n

)
λ
]
> 0

by hypothesis. Finally, since |x− z| < 2r, choosing large enough

(4.17) C >
1

τ
(16C̃Λr2−α + 4r2−α + 1)

we ensure that the right-hand side in the previous inequality is less than −ε2 and
the proof is finished. �

Remark 4.8. Note that, as a consequence of Proposition 4.7, the condition (1.3)
in the statement of Theorem 1.1 can be replaced by (4.16). Indeed, since the
right-hand side of (4.16) is decreasing on α and

n(1− α)1/n + (1 − α)

n− 1
−−−−→
α→0

n+ 1

n− 1
,

it turns out that the condition (4.16) is weaker than (1.3). Therefore, this improves
the bound for the distortion in Theorem 1.1 and it provides an explicit dependence
between the dimension, the ellipticity constants and the Hölder exponent of the
solutions.

Remark 4.9. It is worth noting that in the case of continuous coefficients (that
is, when A : Ω → A(λ,Λ) is continuous) the bound for the distortion (1.3) can be
dropped from the assumptions in Theorem 1.1. This is due to the fact that under
the continuity assumption the difference between A1 = A(x) and A2 = A(z) is
small for every x and z close enough. In other words, we can assume that A1 and
A2 are almost the same matrix. Then the negativity in (4.11) can be deduced from
the constant coefficient case A1 = A2, for which (4.11) holds independently of the
ellipticity constants.

To see this, let us first recall that one of the key steps in the proof of the
asymptotic Hölder estimate is the minimization of (4.13) among all orthogonal
matrices Q ∈ O(n), and then to deduce the conditions under which such minimum
is negative. This condition is expressed through the formula (4.16) and is only
relevant in the large distance case. In fact, in the medium and short distance cases
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we assume that Λ/λ < 3 just for convenience, but we could adapt the proof without
this assumption. In order to replace the assumption (1.3) by the continuity of A(·),
we first focus on the constant coefficients case, that is, when both A1 and A2 in
(4.13) are equal to a given fixed matrix A ∈ A(λ,Λ). Then it is possible to show
the following estimate

(4.18) min
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
(2A− 2A1/2QA1/2)

}
6 −4(1− α)λ,

which holds for every A ∈ A(λ,Λ) and α ∈ (0, 1). As a direct consequence of (4.18),
it turns out that (4.11) holds in the case A1 = A2 independently of 0 < λ 6 Λ < ∞
and α ∈ (0, 1). Moreover, by virtue of Remark 4.5, this minimum is attained for
the nearest orthogonal matrix to

A1/2

(
α− 1 0
0 I

)
A1/2.

Now, returning to the general case, if A1, A2 ∈ A(λ,Λ), we can rewrite (4.13) as
follows,

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}

= Tr

{(
α− 1 0
0 I

)(
A

1/2
1 +A

1/2
2 − 2A

1/2
2 Q)(A

1/2
1 −A

1/2
2 )

}

+Tr

{(
α− 1 0
0 I

)
(2A2 − 2A

1/2
2 QA

1/2
2 )

}
.

Since α ∈ (0, 1), by the uniform ellipticity of A1 and A2 we can estimate the first
term in the right-hand side by

4
√
nΛ ‖A1/2

1 −A
1/2
2 ‖.

Thus, taking the minimum at both sides of the inequality and recalling (4.18) with
A = A2 we get

min
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}

6 4
[√

nΛ ‖A1/2
1 −A

1/2
2 ‖ − (1− α)λ

]
.

In consequence, the desired negativity is obtained for small enough ‖A1/2
1 −A

1/2
2 ‖.

In particular, imposing the condition

‖A1/2
1 −A

1/2
2 ‖ = Tr

{
(A

1/2
1 −A

1/2
2 )2

}
6

(1− α)λ

2
√
nΛ

,

we ensure that

min
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}
6 −2(1− α)λ,

so (4.11) follows for every α ∈ (0, 1).
Finally, in the continuous coefficients case, we can always find a small enough

r > 0 such that

‖A(x)1/2 −A(z)1/2‖ 6
(1− α)λ

2
√
nΛ

for every x, z ∈ Br.
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5. Case |xη − zη| 6 N
√
λ ε

Remember that for fixed η > 0, we selected xη and zη so that (3.9) holds.
In this section we deal with the case in which the distance between these two
points is bounded by N

√
λ ε. The idea is to obtain a contradiction by using two

separate arguments depending on how large the distance between xη and zη is.
We call these the medium and the short distance case, and they happen whenever
|xη − zη| > 1

2

√
λ ε and |xη − zη| 6 1

2

√
λ ε, respectively.

As we noted in Section 3.3, by using the DPP (1.2) and the counter assumption
(3.7), the inequality (3.11) holds for xη and zη satisfying (3.9). Hence, for the
medium distance case, the contradiction will follow from Lemma 3.1 that we prove
below in Section 5.1.

On the other hand, since Lemma 3.1 is stated for |x− z| > 1
2

√
λ ε, and in order

to obtain a contradiction, for the short distance case we use a slightly different
coupling. We address this case in Section 5.2.

In contrast to the previous section where f ≡ f1, in this case the key term in our
comparison function is the step annular function f2. Hence, in what follows, it will
be enough to use the following rough estimate for the term f1 in the comparison
function.

Lemma 5.1. Let f1 be the function defined in (3.1) and x, z ∈ Br. Then

(5.1) f1(x+ hx, z + hz) 6 f1(x, z) + 3CΛα/2εα

for every |hx|, |hz | <
√
Λ ε.

Proof. First we use the concavity of t 7→ tα to estimate

|(x + hx)− (z + hz)|α − |x− z|α 6 |hx − hz|α 6 2(
√
Λ ε)α

for every |hx|, |hz| <
√
Λ ε, where α ∈ (0, 1) has been used here. On the other hand,

since x, z ∈ Br, then

|(x+ hx) + (z + hz)|2 − |x+ z|2 = 2(x+ z)⊤(hx + hz) + |hx + hz|2

6 8r
√
Λ ε+ 4Λ ε2

6 12r
√
Λ ε

6 12rΛα/2εα,

where we have recalled that
√
Λ ε < min{1, r} and 0 < α < 1. Thus, recalling (3.1)

and choosing large enough

(5.2) C > 12C̃r,

we get (5.1). �

Before moving into details, observe that, since n > 2, in this section we can
weaken the assumption (1.3) by imposing the following bounds for the distortion,

(5.3) 1 6
Λ

λ
6 3,

with no dependence on the dimension. Hence, recalling (2.2), the inclusions

(5.4) B ⊂ 1√
λ
A(x)1/2B ⊂

√
3B

hold uniformly for every x ∈ Ω.
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5.1. The medium distance case: 1
2

√
λ ε < |xη − zη| 6 N

√
λ ε. In this section,

we prove Lemma 3.1 in the case 1
2

√
λ ε < |x− z| 6 N

√
λ ε.

Recalling definition of f2 in (3.4), this function can be expressed as a finite
disjoint sum

(5.5) f2(x, z) =

2N∑

i=0

C2(2N−i)εαχSi(x, z),

where

(5.6) Si : =
{
(x, z) ∈ R

2n :
i− 1

2
<

|x− z|√
λ ε

6
i

2

}

for each i = 0, 1, . . . , 2N and χSi(x, z) stands for the function which is equal to 1
whenever (x, z) ∈ Si and 0 otherwise. By the assumptions of this section, we can
fix j = 2, 3, . . . , 2N so that (x, z) belongs to Sj . The next is the main result of this
section.

Lemma 5.2. Let f2 be the function defined in (3.4) and x, z ∈ Br such that

(x− z)/|x− z| = e1 and

1

2

√
λ ε < |x− z| 6 N

√
λ ε.

Define the vectors νx = A(x)−1/2e1 and νz = A(z)−1/2e1 and fix an orthogonal

matrix Q ∈ O(n) such that

(5.7) Q
νx
|νx|

= − νz
|νz|

.

Then

(5.8) −
ˆ

B

f2
(
x+ εA(x)1/2 y, z + εA(z)1/2Qy

)
dy > γ C2f2(x, z),

where γ ∈ (0, 1) is a fixed constant depending only on n.

Proof. For the sake of simplicity, let us write A1 = A(x) and A2 = A(z). Similarly
as in (5.5), given A1, A2 ∈ A(λ,Λ) and Q ∈ O(n) we write

f2
(
x+ εA

1/2
1 y, z + εA

1/2
2 Qy

)
=

2N∑

i=0

C2(2N−i)εαχS∗

i
(y),

where

S∗
i : =

{
y ∈ B :

(
x+ εA

1/2
1 y, z + εA

1/2
2 Qy

)
∈ Si

}
,

for i = 0, 1, . . . , 2N .
Therefore, computing the averaged integral we get that

−
ˆ

B

f2
(
x+ εA

1/2
1 y, z + εA

1/2
2 Qy

)
dy

=
1

|B|

2N∑

i=0

C2(2N−i)εα|S∗
i | >

1

|B|

j−1∑

i=0

C2(2N−i)εα|S∗
i |

> C2(2N−j+1)εα
1

|B|

j−1∑

i=0

|S∗
i | = C2f2(x, z)

1

|B|

j−1∑

i=0

|S∗
i |,
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where in the first inequality we have used that f2 > 0 to discard all terms in the
sum with i > j and in the second inequality we have used that C−2i > C−2(j−1)

for i = 0, 1, . . . , j − 1. Therefore, it only remains to show that the sum in the
right-hand side of the previous estimate has a lower bound depending only on n, λ
and Λ. Recalling the definition of the sets S∗

i together with the fact that they are
pairwise disjoint we obtain

1

|B|

j−1∑

i=0

|S∗
i | =

1

|B|

∣∣∣∣
{
y ∈ B :

∣∣x− z + ε
(
A

1/2
1 −A

1/2
2 Q

)
y
∣∣ 6 j − 1

2

√
λ ε

}∣∣∣∣

=
1

|B|

∣∣∣∣
{
y ∈ B :

∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

) 1√
λ
A

1/2
1 y

∣∣∣∣ 6
j − 1

2

}∣∣∣∣ ,

where the hypothesis (x − z)/|x − z| = e1 has been used here. Note that, letting

w = λ−1/2A
1/2
1 y and recalling (5.4) we obtain that

1

|B|

j−1∑

i=0

|S∗
i |

=
1

|λ−1/2A
1/2
1 B|

∣∣∣∣
{
w ∈ λ−1/2A

1/2
1 B :

∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

)
w

∣∣∣∣ 6
j − 1

2

}∣∣∣∣ ,

> 3−n/2 1

|B|

∣∣∣∣
{
w ∈ B :

∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

)
w

∣∣∣∣ 6
j − 1

2

}∣∣∣∣ .

Next, we claim that there exists small enough fixed constant ̺ > 0 so that the
following inequality holds

(5.9)

∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

)
w

∣∣∣∣ 6
j − 1

2
for every w ∈ B̺(− 1

3 e1).

Indeed, assuming (5.9) we have that

1

|B|

∣∣∣∣
{
w ∈ B :

∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

)
w

∣∣∣∣ 6
j − 1

2

}∣∣∣∣ > ̺n

and (5.8) follows from this and the previous estimates with γ = 3−n/2̺n.
To prove that there exists ̺ > 0 such that (5.9) holds, let Q be an orthogonal

matrix satisfying (5.7), then

A
1/2
2 QA

−1/2
1 e1 = −|νx|

|νz|
e1.

Observe that by (5.3) and the definition of νx and νz we have in particular that

(5.10)
1√
3
6

|νx|
|νz|

6
√
3.

Now fix any w = − 1
3 e1 + ̺ζ with ζ ∈ B and insert it in the left-hand side of (5.9)

to get
∣∣∣∣
|x− z|√

λ ε
e1 +

(
I −A

1/2
2 QA

−1/2
1

)
w

∣∣∣∣ 6
∣∣∣∣
|x− z|√

λ ε
− 1

3

(
1 +

|νx|
|νz|

)∣∣∣∣+ 3̺,

where the second term in the right-hand side of this inequality follows from the
rough estimate ∣∣∣ζ −A

1/2
2 QA

−1/2
1 ζ

∣∣∣ 6 1 +
√
3 < 3,
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which holds uniformly for every A1, A2 ∈ A(λ, 3λ) and ζ ∈ B. Next, recalling that
(x, z) ∈ Sj with j > 2, we use the condition in the definition of the set Sj in (5.6)
together with (5.10) to see that

(i) if
|x− z|√

λ ε
>

1

3

(
1 +

|νx|
|νz|

)
, then

∣∣∣∣
|x− z|√

λ ε
− 1

3

(
1 +

|νx|
|νz|

)∣∣∣∣−
j − 1

2
6

j

2
− 1

3

(
1 +

|νx|
|νz |

)
− j − 1

2

=
1

6
− 1

3
· |νx||νz |

6
1

6
− 1

3
√
3
< − 1

100
,

(ii) otherwise, if
|x− z|√

λ ε
6

1

3

(
1 +

|νx|
|νz|

)
, then

∣∣∣∣
|x− z|√

λ ε
− 1

3

(
1 +

|νx|
|νz |

)∣∣∣∣ −
j − 1

2
<

1

3

(
1 +

|νx|
|νz|

)
− j − 1

2
− j − 1

2
6

4

3
+

1√
3
− j.

Observe that the last term is strictly less than 2− j, so the negativity of this term
is ensured since j > 2.

Therefore, we have shown that if (x, z) ∈ Sj for some j > 2, then
∣∣∣∣
|x− z|√

λ ε
− 1

3

(
1 +

|νx|
|νz|

)∣∣∣∣ <
j − 1

2
− 1

100
.

Finally, choosing ̺ = 1
300 , the inequality (5.9) holds for every w ∈ B1/300(− 1

3e1).
This completes the proof of the lemma. �

Hence, since f = f1 − f2, combining Lemmas 5.1 and 5.2 we get

−
ˆ

B

f
(
x+ εA(x)1/2 y, z + εA(z)1/2Qy

)
dy − f(x, z)

6 3CΛα/2εα − (γ C2 − 1)f2(x, z).

Now, by definition of f2, it turns out that f2(x, z) > εα for every |x− z| 6 N
√
λ ε,

and thus choosing large enough C such that

(5.11) γ C2 − 3CΛα/2 − 2 > 0,

we ensure that the right-hand side of the previous inequality is less than −εα < −ε2.
Then (3.12) follows, so the proof of Lemma 3.1 is complete in the case |x − z| 6
N
√
λ ε.

5.2. The short distance case: |xη − zη| 6 1
2

√
λ ε. In contrast with the large

distance case and the medium distance case addressed in Section 4 and Section 5.1,
respectively, where the contradiction was obtained by proving Lemma 3.1, in this
section we thrive for a contraction in a slightly different way. The main difference
is that, in this case, we take an advantage from the full cancellation effect that
happens when the two points xη and zη are close enough.

Recall that xη, zη ∈ Br satisfy (3.9). Observe that, since

B√
λ ε(x) ⊂ Ex
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by uniform ellipticity, if the distance between xη and zη is small enough, then the
corresponding ellipsoids Exη and Ezη have non-empty intersection. Indeed, since

0 < |xη − zη| 6 1
2

√
λ ε by hypothesis, it is easy to check that

B√
λ ε/4

(
xη + zη

2

)
⊂ Exη ∩ Ezη ,

and thus

(5.12)
|Exη ∩ Ezη |

|Exη |
> γ(n, λ,Λ) :=

(
1

4

√
λ

Λ

)n

.

This means that, in the 2n-dimensional process described in Section 1.3, starting
from (xη, zη) we can choose a point y ∈ R

n belonging to both Exη and Ezη . This
choice gives a full cancellation but we also need that the measure of the ellipsoids
is the same, that is, det{A(xη)} = det{A(zη)}. In fact, this is the only place in the
paper where such an assumption is needed.

Then we repeat the argument in (3.10) but with a different coupling taking
advantage of the full cancellation where the ellipsoids overlap. Starting from (3.9)
and using the DPP (1.2) for estimating the difference u(xη)− u(zη) we get

f(xη, zη)− η 6 u(xη)− u(zη)−K = −
ˆ

Exη

u(ζ) dζ −−
ˆ

Ezη

u(ξ) dξ −K

=
1

|Exη |

[
ˆ

Exη\Ezη

u(ζ) dζ −
ˆ

Ezη\Exη

u(ξ) dξ

]
−K

=
|Exη \ Ezη |

|Exη |
−
ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

[
u(ζ)− u(ξ)

]
dξ dζ −K

6
|Exη \ Ezη |

|Exη |

[
K +−

ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

f(ζ, ξ) dξ dζ

]
−K

=
|Exη \ Ezη |

|Exη |
−
ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

f(ζ, ξ) dξ dζ − |Exη ∩ Ezη |
|Exη |

K

6 −
ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

f(ζ, ξ) dξ dζ − γK,

(5.13)

where (3.8) has been recalled in the second inequality and in the last inequality
we have used that |Exη \ Ezη | < |Exη | and (5.12). Since f = f1 − f2 6 f1 and
Ex ⊂ B√

Λ ε(x) by uniform ellipticity, we can estimate the integral part in the
right-hand side above using the estimate for f1 from Lemma 5.1:

−
ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

f(ζ, ξ) dξ dζ 6 −
ˆ

Exη\Ezη

−
ˆ

Ezη\Exη

f1(ζ, ξ) dξ dζ

6 f1(xη , zη) + 3CΛα/2εα.

For the remaining term, recalling the definition of f2 in (3.4) together with the fact

that 0 < |xη − zη| 6 1
2

√
λ ε, we have that f2(xη, zη) = C2(2N−1)εα. On the other

hand, combining this with the counter assumption (3.7) we get

K > C4Nεα = C2f2(xη, zη).
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Hence, putting all these estimates together in (5.13) we have that

f(xη, zη)− η 6 f1(xη, zη) + 3CΛα/2εα − γC2f2(xη, zη).

Let C > γ−1/2. Since f = f1 − f2 and f2(xη , zη) > εα, then

(γC2 − 1) εα 6 3CΛα/2εα + η.

Finally, we obtain a contradiction with this inequality by letting η = εα and choos-
ing large enough C so that

γ C2 − 3CΛα/2 − 2 > 0.

Therefore, this implies the falseness of the counter assumption (3.7). Thus (3.6)
holds and the proof of Theorem 1.1 is finished.

6. Examples

6.1. Diagonal case. As it has been proved in the previous sections, the inequality
(4.16) provides a sufficient condition for (3.12), from which the asymptotic Hölder
regularity of solutions uε to the DPP (1.2) follows. One of the key results for
deriving this condition is Lemma 4.4, which states that, given a matrix M ∈ R

n×n,
the following holds,

max
Q∈O(n)

Tr{MQ} = Tr{(M⊤M)1/2} > n |det{M}|1/n .

Then the idea of the proof consisted basically in obtaining a lower estimate for the
right-hand side in the previous formula (see the proof of Lemma 4.6). However,
we could try to obtain the desired estimate for the left-hand side directly with-
out using the inequality above. Therefore, using the equality max

Q∈O(n)
Tr{MQ} =

Tr{(M⊤M)1/2} we obtain

min
Q∈O(n)

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}

= Tr

{(
α− 1 0
0 I

)
(A1 +A2)− 2

[(
α− 1 0
0 I

)
A1

(
α− 1 0
0 I

)
A2

]1/2}
,

where A1, A2 ∈ A(λ,Λ) and α ∈ (0, 1). Then a stronger sufficient condition for
(3.12) to be satisfied is that the matrix inequality

(6.1)
1

2
Tr

{(
α− 1 0
0 I

)
(A1 +A2)

}

< Tr

{[(
α− 1 0
0 I

)
A1

(
α− 1 0
0 I

)
A2

]1/2}

holds for every pair of matrices A1, A2 ∈ A(λ,Λ). Inequality (6.1) can be seen
as some sort of reverse inequality of arithmetic and geometric means for traces.
Therefore, it seems reasonable to expect that the assumption on the bound of the
distortion of the ellipsoids (4.16) can be weakened. For example, let us consider the
case in which the axes of the ellipsoids are aligned with the coordinate axes. This
is the case in which both A1 and A2 are diagonal matrices in A(λ,Λ). We denote
by λ1(A1), λ2(A1), . . . , λn(A1) and λ1(A2), λ2(A2), . . . , λn(A2) the elements in the
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diagonals of of A1 and A2, respectively. Recall that all these elements coincide with
the eigenvalues of A1 and A2 and thus they are bounded between λ and Λ.

Lemma 6.1. The inequality (6.1) holds for every diagonal matrices A1 and A2 in

A(λ,Λ) if and only if

(6.2) 1 6
Λ

λ
<

(
1 + 2

√
1− α

n− 1

)2

.

Proof. InsertingA1 = diag(λ1(A1), . . . , λn(A1)) andA2 = diag(λ1(A2), . . . , λn(A2))
in (6.1) we get

− (1− α)
(
λ1(A1) + λ1(A2)

)
+

n∑

i=2

(
λi(A1) + λi(A2)

)

< 2(1− α)
√

λ1(A1)λ1(A2) + 2

n∑

i=2

√
λi(A1)λi(A2) .

Rearranging the terms we obtain

(6.3)

n∑

i=2

(√
λi(A1)−

√
λi(A2)

)2
< (1− α)

(√
λ1(A1) +

√
λ1(A2)

)2
.

Now observe that, by uniform ellipticity,
n∑

i=2

(√
λi(A1)−

√
λi(A2)

)2
6 (n− 1)(

√
Λ−

√
λ)2

and
(1− α)

(√
λ1(A1) +

√
λ1(A2)

)2
> 4(1− α)λ.

Moreover, the equality is attained in both inequalities for A1 = λ I and A2 the
diagonal matrix with entries λ,Λ,Λ, . . . ,Λ. Thus, (6.3) holds for every diagonal
matrices A1 and A2 in A(λ,Λ) if and only if

(n− 1)(
√
Λ−

√
λ)2 < 4(1− α)λ.

Hence, the bound in (6.2) follows. �

Observe that the bound in (6.2) is larger than in (4.16). However, in this result
we do not consider the whole family of ellipsoids, only the ones aligned with the
coordinate axes, and hence we can not say that (6.2) is a sufficient condition for
asymptotic Hölder regularity.

6.2. The mirror point coupling. This work is related to the results in [LR86]
except that our setting is discrete, we do not require continuity for the ellipsoids,
and our proof is written in purely analytic form i.e. we avoid the probabilistic tools.
The Lindvall–Rogers coupling (see eq. (2) in their paper), can be written without
the drift as

dXt = σ(Xt) dBt,

dX ′
t = σ(X ′

t)H(Xt, X
′
t) dBt,

where B is the Brownian motion. If we formally discretize this, we get

Xk+1 = Xk + σ(Xk)Uk,

X ′
k+1 = X ′

k+1 + σ(X ′
k)H(Xk, X

′
k)Uk,
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where U1, U2, U3, . . . is an i.i.d. sequence of uniform random variables on the ball
Bε. Above, H(Xk, X

′
k) is an orthogonal reflection matrix that can depend on the

two coupled walks. Observe that our discrete results imply similar regularity results
for the limit. Furthermore, the discrete results can also be interesting from the point
of view of discretization of PDEs.

On the other hand, it is known that the so-called mirror point reflection coupling
can be used to obtain Lipschitz estimates for functions satisfying the mean value
property with balls. If x and z denote the centers of two balls, this coupling
consists on reflecting the points of one of the balls into the other with respect to
the hyperplane orthogonal to z − x passing through (x + z)/2. Therefore, it is
reasonable to expect that the same type of coupling should work if the balls are
replaced by ellipsoids with sufficiently small distortion. In this subsection we adapt
the mirror point coupling to our setting and we study under which conditions this
coupling works. Moreover, we compare it with the optimal coupling arising from
the minimization of (4.13).

Recalling Remark 4.5, the optimal coupling matrix Q for which the minimum
of (4.13) is attained depends on A1, A2 and α, and can be explicitly written as
follows,

Q =

[(
A

1/2
1

(
α− 1 0
0 I

)
A

1/2
2

)2
]−1/2

A
1/2
1

(
α− 1 0
0 I

)
A

1/2
2 .

Observe that Q is indeed an orthogonal matrix with determinant −1, so Q can be
also seen as a reflection in the Euclidean n-dimensional space. For this choice of Q,
(4.11) holds if the condition (4.16) is satisfied.

However, it is possible to fix Q without any dependence on the matrices or
the exponent in such a way that (4.11) still holds under certain restriction on the
distortion. More precisely, this choice corresponds to the reflection matrix on the
first coordinate axis, that is

Q = J0 : =

(
−1 0
0 I

)
.

To see this, replacing

(
α− 1 0
0 1

)
= J0 + αe1e

⊤
1 we obtain

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}

= Tr
{
J0
(
A1 +A2 − 2A

1/2
2 J0A

1/2
1 )

}
+ α

∣∣(A1/2
1 −A

1/2
2 J0

)⊤
e1
∣∣2.

By uniform ellipticity we can easily obtain a bound for the second term,

α
∣∣(A1/2

1 −A
1/2
2 J0

)⊤
e1
∣∣2 6 α

(
|A1/2

1 e1|+ |A1/2
2 e1|

)2
6 4αΛ,

while for the other term, observing that J0A
1/2
2 J0 ∈ A(

√
λ,

√
Λ), we get that

Tr
{
J0
(
A1 +A2 − 2A

1/2
2 J0A

1/2
1 )

}
= Tr

{
J0(A1 +A2)

}
− 2Tr

{
J0A

1/2
2 J0A

1/2
1

}

6 2
[
− λ+ (n− 1)Λ

]
− 2nλ

= 2
[
(n− 1)Λ− (n+ 1)λ

]
.
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Putting together these estimates we have

Tr

{(
α− 1 0
0 I

)
(A1 +A2 − 2A

1/2
2 QA

1/2
1 )

}
6 2

[
(n− 1 + 2α)Λ − (n+ 1)λ

]
,

so (4.11) holds with Q = J0 if

(6.4)
Λ

λ
<

n+ 1

n− 1 + 2α
.

Comparing this with (4.16), we observe that (6.4) improves the exponent α when
the distortion Λ/λ is close enough to 1. However, for sufficiently large distortion
(but still below n+1

n−1 ), (4.16) gives a better exponent. In any case, both conditions

give the same upper bound for the distortion when α → 0, that is Λ/λ < n+1
n−1 for

every α ∈ (0, 1).
It is worth noting that, since Q was originally chosen to be the orthogonal matrix

minimizing the left-hand side in (4.11), it is reasonable to expect that a refinement
of the argument in Lemma 4.6 would produce better estimates, as it was already
pointed out in the discussion at the beginning of Section 6. In this direction, in the
following example we show (in the constant coefficients case, A1 = A2) that, even
when the distortion Λ/λ is small, the optimal choice of Q minimizing (4.13) differs
from the reflection J0.

Example 6.2. In this example we discuss the effect of choosing the mirror point
coupling in (4.11) when A1 = A2 is certain 2 × 2 symmetric matrix with given
distortion Λ/λ = δ > 1. In particular, we compare the conditions under which
(4.11) holds when Q is either J0 or the optimal coupling minimizing (4.13).

Let A be a 2 × 2 symmetric and positive definite matrix. Then the inequality
(4.11) for A1 = A2 = A is equivalent to

(6.5) Tr
{
A1/2JαA

1/2(I −Q)
}
< 0,

where we have denoted

Jα =

(
α− 1 0
0 1

)

for simplicity. Fix n = 2 and

A =

(
δ + 1 δ − 1
δ − 1 δ + 1

)
,

with δ > 1. Then A has eigenvalues λ = 2 and Λ = 2δ, so its distortion is Λ/λ = δ.
In this example we compare the conditions under which (6.5) holds when Q is
either J0 or the nearest orthogonal matrix to A1/2JαA

1/2, for which the minimum
is attained.

First, if Q = J0, then I − J0 =

(
2 0
0 0

)
and thus

Tr
{
A1/2JαA

1/2(I − J0)
}
= 2e⊤1 A

1/2JαA
1/2e1.

Computing the square root of A we get

A1/2 =
1√
2

(√
δ + 1

√
δ − 1√

δ − 1
√
δ + 1

)
,

so

Tr
{
A1/2JαA

1/2(I − J0)
}
= −(1− α)(

√
δ + 1)2 + (

√
δ − 1)2.
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Hence, (6.5) holds with Q = J0 if and only if

α < 1−
(√

δ − 1√
δ + 1

)2

,

or equivalently

Λ

λ
= δ <

(
1 +

√
1− α

1−
√
1− α

)2

.

On the other hand, by the equality in (4.14) from Lemma 4.4 with M =
A1/2JαA

1/2 we have that

min
Q∈O(n)

Tr
{
A1/2JαA

1/2(I −Q)
}
= Tr

{
A1/2JαA

1/2
}
− Tr

{[
(A1/2JαA

1/2)2
]1/2}

.

It is easy to check that

Tr
{
A1/2JαA

1/2
}
= Tr

{
JαA

}
= α(δ + 1).

For the other term we recall that

Tr{M1/2}2 = Tr{M}+ 2
√
det{M}

for every positive definite symmetric 2× 2 matrix M , so

Tr
{[
(A1/2JαA

1/2)2
]1/2}

=

√
Tr

{
(JαA)2

}
+ 2

√
det{(JαA)2},

where

Tr{(JαA)2} = α2(δ + 1)2 + 8(1− α)δ

and √
det{(JαA)2} = (1− α) det{A} = 4(1− α)δ.

Hence, replacing above we obtain

min
Q∈O(n)

Tr
{
A1/2JαA

1/2(I −Q)
}
= α(δ + 1)−

√
α2(δ + 1)2 + 16(1− α)δ,

which is clearly always negative, independently of the relation between the distor-
tion Λ/λ = δ and the exponent α.

In conclusion:

Tr
{
A1/2JαA

1/2(I − J0)
}
< 0 ⇐⇒ 1 6

Λ

λ
<

(
1 +

√
1− α

1−
√
1− α

)2

,

and

min
Q∈O(n)

Tr
{
A1/2JαA

1/2(I −Q)
}
< 0 ⇐⇒ Λ

λ
> 1 and α ∈ (0, 1).

Example 6.3. The mirror point coupling Q = J0 fails to give (4.11) when the
distortion is large. Let

A =

(
5 −12

−12 29

)
,

which is a positive definite matrix and has the following square root:

A1/2 =

(
1 −2
−2 5

)
.

Then

A1/2JαA
1/2 =

(
3 −8
−8 21

)
+ α

(
1 −2
−2 4

)
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for every α ∈ (0, 1). If we choose Q = J0, then I −Q = 2e1e
⊤
1 , and thus

Tr
{
A1/2JαA

1/2(I −Q)
}
= 2e⊤1 A

1/2JαA
1/2e1 = 2(3 + α) > 0

for every α ∈ (0, 1), so (6.5) (and thus (4.11)) does not hold in general for Q = J0.
On the other hand, for Q the optimal coupling, (6.5) follows immediately from
recalling (4.18).

6.3. Counterexamples for large distortion. The following examples show that
the bound on the distortion Λ/λ in the assumptions of our main theorem is really
needed in this method. We first remark that this bound is only needed in the case
|x−z| > N

√
λ ε. Indeed, when |x−z| 6 N

√
λ ε, the only place where the distortion

crucially appears is in the inequality (5.12), and for the proof in this case any bound
on Λ/λ is sufficient: for convenience we selected Λ/λ 6 3 there. Thus, the only
part of the paper where the bound on the distortion comes crucially into a play is
in Section 4, more precisely, in the condition (4.11).

As we explained in Section 4.2, given A1, A2 ∈ A(λ,Λ) our strategy was based
on showing (4.11) for some α ∈ (0, 1). Let us reformulate the problem by defining

the ellipsoids E1 : = EA1
= A

1/2
1 B and E2 : = EA2

= A
1/2
2 B and letting φ(y) =

A
1/2
2 QA

−1/2
1 y. Then φ maps E1 into E2. Thus, performing a change of variables

we see that (4.11) is equivalent to

(6.6) −
ˆ

E1

|P1(y − φ(y))|2 dy > −
ˆ

E1

|(I − P1)(y − φ(y))|2 dy,

where Pih stands for the projection of a vector h ∈ R
n over the i-th coordinate axis

for i = 1, . . . , n, i.e. Pih = (e⊤i h)ei = (eie
⊤
i )h. That is, the method in Section 4

works if the length of the projection on {e1}⊥ of the difference between y ∈ E1 and
φ(y) ∈ E2 is larger (in average) than the length of such projection over span{e1}.

Here, we can consider any measure preserving coupling map φ such that φ(E1) =
E2. This is the case in the following examples, which are constructed in such a way
that the condition (6.6) does not hold for any measure preserving map φ. This is
achieved by considering a pair of ellipsoids with large distortion oriented in such a
way that the largest principal axes are aligned with coordinate axes orthogonal to
e1, then the difference φ(y)−y project over the first coordinate axis will necessarily
be smaller (in average) than projected over one of the orthogonal axes to e1. In
other words, the average distance in terms of f increases, no matter which coupling
we use.

6.3.1. A counterexample in two dimensions. Let us consider an ellipse centered at
0 with its largest axis oriented in the direction of e2 and a ball,

E1 =

(
1/10 0
0 10

)
B and E2 =

(
1 0
0 1

)
B.

In this case, both the ellipses have the same area, |E1| = |E2| = π, but different

distortion: E1 has distortion
√
100 while the distortion of E2 is equal to 1. Let

φ : E1 → E2 be any measure preserving map. Let us denote y = (y1, y2)
⊤ ∈ R

2.
Since |y1| < 1

10 in E1 and |y1| < 1 in E2, it turns out that |P1(φ(y) − y)| < 11
10 in

E1, and thus

−
ˆ

E1

|P1(φ(y)− y)|2 dy 6 1.21.
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On the other hand, since |y2| < 1 in E2, then |P2φ(y)| < 1 in E1. Moreover, since
E1∩{|y2| > 5} is a non-empty subset of E1 with positive measure, we can estimate
|P2(φ(y)−y)| in E1∩{|y2| > 5} from below by 4. Indeed, by the triangle inequality,

|P2(φ(y)− y)| >
∣∣|P2φ(y)| − |y2|

∣∣ > |y2| − 1 > 4

for every y ∈ E1 such that |y2| > 5. Then, averaging we get

−
ˆ

E1

|P2(φ(y)− y)|2 dy >
1

|E1|

ˆ

E1∩{|y2|>5}
|P2(φ(y) − y)|2 dy

> 16
|E1 ∩ {|y2| > 5}|

|E1|
.

Since |E1| = π and

E1 ∩ {|y2| > 5} =

(
1/10 0
0 10

)(
B ∩ {|y2| > 1/2}

)
,

then

16
|E1 ∩ {|y2| > 5}|

|E1|
=

16

π
|B ∩ {|y2| > 1/2}| = 64

π

ˆ 1

1/2

√
1− t2 dt

= 16

(
2

3
−

√
3

2π

)
≃ 6.26 . . .

Hence,

−
ˆ

E1

|P1(φ(y)− y)|2 dy < −
ˆ

E1

|P2(φ(y) − y)|2 dy,

which contradicts (6.6).

6.3.2. A counterexample in three dimensions. In this case we consider two ellipsoids
with the same shape but with different orientations,

E1 =



1 0 0
0 100 0
0 0 1


B and E2 =



1 0 0
0 1 0
0 0 100


B.

Observe that the largest axes of the ellipsoids are aligned with e2 and e3, respec-
tively. Let us denote y = (y1, y2, y3)

⊤ ∈ R
3. Then |y1| < 1 in both E1 and E2, that

is, for any measure preserving map φ : E1 → E2, we have |y1| < 1 and |P1φ(y)| < 1,
and thus

−
ˆ

E1

|P1(φ(y)− y)|2 dy 6 4.

On the other hand, let us consider the set E1 ∩ {|y2| > 5}. Since |y2| < 1 in E2,
then the distance between a point in E2 and E1∩{|y2| > 5} is bounded from below
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by 4. In particular, |P2(φ(y)−y)| > |y2|− |P2φ(y)| > 4 in E1∩{|y2| > 5}, and thus

−
ˆ

E1

|(I − P1)(φ(y) − y)|2 dy = −
ˆ

E1

|P2(φ(y)− y)|2 dy +−
ˆ

E1

|P3(φ(y) − y)|2 dy

> −
ˆ

E1

|P2(φ(y)− y)|2 dy

>
1

|E1|

ˆ

E1∩{|y2|>5}
|P2(φ(y)− y)|2 dy

> 16
|E1 ∩ {|y2| > 5}|

|E1|
> 8.

The last inequality follows by the fact that the set {|y2| > 5} takes at least one half
of the volume of the ellipsoid. Then

−
ˆ

E1

|P1(φ(y) − y)|2 dy < −
ˆ

E1

|(I − P1)(φ(y)− y)|2 dy,

which also contradicts (6.6).
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FI-40014 Jyväskylä, Finland
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