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1 Introduction

Let us begin with the classical setting. Consider the unit ball B"(0, 1) in the n-dimensional Euclidean space
R". If u belongs to the usual Sobolev space W1(B"(0, 1)) consisting of all integrable functions whose all
first order distributional derivatives are also integrable over B"(0, 1), then u has a representative v for which
the limit

lim v(té) (11)

exists for almost every & € 0B"(0, 1). Here almost everywhere refers to the surface measure on 0B™(0, 1). In
this sense, u has a well defined trace almost everywhere on 0B"(0, 1).

Towards a more constructive definition of a trace, let us extend u to a function Eu € WH(R"). This is
possible by classical extension theorems in [5, 24]. By the version of Lebesgue differentiation theorem for
Sobolev functions [26, Section 5.14], the limit

1
lim ————— Eudm
r—0 mn(B(x, 1)) B(x,r) "

exists for H" !-almost every x. Here my is the Lebesgue measure on R"” and H" ! refers to the (n — 1)-
dimensional Hausdorff measure. It then follows from the (1,1)-Poincaré inequality that also
1

lim udm 1.2
r—0 mn(B(x, r) N B"(0, 1)) B(x,)NB"(0,1) "

exists for H" !-almost every x and also that, for almost every ¢ € 0B™(0, 1) there is a value Tu(¢) for which

. 1 ~
}EE(I) mn(B(é‘, T) n B"(O, 1)) B(£,nNB"(0,1) |u(X) - Tu(£)| dmn(X) =0 (1.3)

Thus we have three different possible traces, but it turns out that Tu(¢) coincides with the limits in (1.1)
and (1.2) (for a suitable v) almost everywhere on 0B™(0, 1). Moreover, by the (g, p)-Poincaré inequality (with
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1<g<ocowhenp >nandl1 < q < % when 1 < p < n), we may replace the term |u(x) - Tu(&)| by
[u(x) - Tu(¢)|? in (1.3) if we assume that u € WHP(B"(0, 1)). As usual, W'P(B"(0, 1)) requires p-integrability
instead of integrability, both for the function and for all the first order distributional derivatives.

Let us next consider a weighted situation when p > 1. Suppose that u € Wllo’cp (B"(0, 1)) and that

/ [Vu(x) P w(x) dmpn(x) < oo
B"(0,1)

for a positive weight function w. By again choosing a suitable representative v of u (with respect to my), one
can check that v has a limit as in (1.1) for almost every ¢ (with respect to the surface measure) provided that
w01 g integrable over B"(0, 1). This integrability condition is not necessary for the asserted existence of
limits as seen by considering the weight w defined by setting w(x) = |x|(p‘1)". If we replace the integrability
assumption on w™ Y/ -1 by the stronger requirement that w be a Muckenhoupt A,-weight, then one can again
use a Poincaré inequality to obtain analogs of (1.2) and (1.3) (with any power 1 < g < p + €(w)) and further
that Tu(&) can be chosen to be the limit from the analog of (1.1), see [4, Theorem 4.4].

There has been recent interest in establishing trace theorems for Sobolev-type functions in the setting
of a metric measure space, see [16—18] (also the references therein). In this paper we consider the particular
case of a weighted regular tree. Instead of giving the formal definition used in [2, 14, 15, 21, 22, 25], we give an
equivalent definition in Section 2 below. Let us only give an intuitive description here. Our tree is a graph G
that consists of a countable connected union of isometric copies of the unit interval [0, 1], distributed so that
two given copies either intersect at a common vertex or do not intersect at all. We require that G comes with
an integer K > 1 and a distinguished vertex, called the root 0, so that 0 is a vertex of K copies of [0, 1], and
each other vertex is a vertex of K + 1 such copies. We additionally ask that there are no loops in G : given two
vertices, there is a unique collection of copies of the unit interval that connect these vertices. When K = 1, our
regular tree is thus isometric to the interval [0, oo). The above being fixed, we call G a K-regular tree. Towards
introducing weighted K-regular trees, we consider G as equipped with the natural path metric. Then any pair
of points x, y € G are joined by a unique geodesic, denoted [x, y]. As usual, we define the boundary oG of
G to consist of all the isometric embeddings of [0, o) into G, with the requirement that the real number 0
maps to our root 0. Then our boundary points can be viewed as infinite geodesics starting from the root. We
abuse notation and refer to the image of the embedding corresponding to & € oG by [0, &). We equip oG
with the natural probability measure v as in Falconer [6] by distributing the unit mass uniformly on 9G. Let
w, A : [0, o0) — (0, o) be locally integrable functions. We define a measure yu and a metric d, on G by setting
u(a) = fA w(|z|)dg(2), di(x,y) = f[x,y] A(|z|)dg(z), where |z| is the path distance between 0 and z on G and
d;(z) is the length element on G. See Section 2.1 for the precise definitions.

Given 1 < p < oo, our space (G, d,, 1) is a metric measure space and hence one may define a Newtonian
Sobolev space N'*P(G) := NVP(G, d,, u) based on upper gradients [9, 23]. As usual, we denote by N1'P(G) the
homogeneous version of NP (G).

Given & € 0G, we refer to points x € [0, &) by x¢. We begin with our analog of (1.1).

Definition 1.1. Let G be a K-regular tree with metric d, and measure u as above. Let f be a function defined on
G. We define the arcwise trace of f at ¢ € dG (along the corresponding geodesic), denoted by Tgf (&), by setting

Trf(&) = lim f(x). (1.4)
Xe—¢&
If the limit of (1.4) exists for v-a.e ¢ € 0G, then we say that the radial trace Tgf exists.

We call Tyf the radial trace since it is an analog of (1.1). The existence of a radial trace of a given function
f € NYP(G) was studied in [2, 14, 15, 25]. In [14, Theorem 1.1-1.3], a characterization for the existence of Tgf for
all f € NVP(G) was given. In some special cases of metric d; and measure u, Tzf belongs to a Besov space,
see [2, Theorem 6.1], [15, Theorem 1.1-1.4], [25, Theorem 1.1] for more details.

Let x € G. Towards defining analogs of (1.2) and (1.3), we set

I'n:={yeG:xel0,yl}.
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Notice that I'y is also a K-regular tree if x is a vertex, obviously with root x.

Definition 1.2. Let 1 < q < oo and G be a K-regular tree with metric d; and measure u as above, with u(G) < oo.
Fix a function f defined on G. We say that the Lebesgue-point-type trace T f of f on oG exists if

GES L / £) du(y) (15)

FX{)

exists for v-a.e ¢ € 0G.
We say that the boundary trace of f of order q on 0G exists if there is a function Tqf : 0G — R so that

q =
Jim ,J(rx{)/ ) - Taf @11 p() = 16

forv-a.e & € 0G.

One can find versions of the two notions of traces in Definition 1.2 in literature under various names.
We refer the readers to [7, Chapter 2], [19, Section 6.6], [20, Section 9.6],[26, Section 3.1] for discussions in
the setting of Euclidean spaces, and [16-18] (also the references therein) for discussions in the setting of
metric measure spaces. Notice that in the setting of a Muckenhoupt Ap-weight discussed above, the analogs
of the traces Tgf, T1f and Tyf, 1 < q < p, exist and actually coincide with each other almost everywhere on
0B™(0, 1).

It is then natural to ask whether Tgf, TLf, Tqf exist (for suitable g) and coincide for a given function
f € NYP(G, d,, p). Towards this, we recall a concept introduced in [14]. Let 1 < p < co. We set

A
Ry, w) = H 17)
! W(t)I{J(t) L>([0,00))
and
Ry(A, w)—/ AOF WO KIS dt, 1<p<oo (1.8)

where j(t) is the largest integer such that j(t) < |x| + 1. Since we work with a fixed pair A, w, we will usually
refer to Rp(A, w) simply by Rp. One should view Ry, as an analog of the isoperimetric profile of a Riemannian
manifold in [11-13]. We assume in what follows that w1 € Lllo/ C(”'l)([O, o0)) to make sure that the finiteness
of Rp is a condition at infinity.

Our first result shows that the existence of any of Tif, T.f, Tef, 1 < q < p, forall f € N*P(G) is equivalent
to the finiteness of Rp. Moreovet, all these different traces of f coincide when R) < oo.

Theorem 1.3. Let 1 < p < oo and G be a K-regular tree with metric d, and measure yu as above. Assume
U(G) < o and let 1 < q < p. Then the following are equivalent:

(i) Txf exists for any f € N¥P(G).
(ii) T.f exists for any f € NYP(G).
(iii) Tof exists for any f € NP (G).
(iv) Rp < oo.

Moreover, if one of Txf, T1f, Tqf exists for each f € NVP(G), then all of them exist and coincide v-a.e on G for
agivenf.

As a direct consequence of Theorem 1.3 we see that the existence of the trace operator T, is independent
of the value of g € [1, p]. We do not know if one could even obtain this for all g € [1, p + €] for some € > O
only depending on p, Rp(4, w), A, w.

Based on the discussion in the beginning of our introduction, one should find Theorem 1.3 somewhat
surprising since it does not seem possible to extend our functions to a larger underlying nice space and the
finiteness of R, should not, in general, imply the validity of Poincaré inequalities. In fact, the validity of
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Poincaré inequalities under a doubling condition on (G, d,, ) has very recently been characterized via a
Muckenhoupt-type condition in [22]. The reason why we do not need a Poincaré inequality or a doubling
measure and do not need to move to a representative when we consider Ty is basically that our space is
locally one-dimensional.

Our second result deals with the coincidence of NVP(G) and N*?(G). Here N%P(G) is the homogeneous
version of NVP(G).

Theorem 1.4. Let 1 < p < oo and G be a K-regular tree with metric d, and measure u with u(G) < o as above.
Suppose that R < co. Then N*P(G) = N*P(G).

Consequently, Theorem 1.3 could alternatively be stated for N'*P(G). In the case where u(G) = oo, the
homogeneous version of our Sobolev space is much larger than the non-homogeneous one. However, even
under the assumption that u(G) < oo, Rp < oo is not a necessary condition for N*?(G) = N*P(G). Example 3.8
in Section 3 shows that there exists a K-regular tree (G, d,, 1) so that Ry = oo and u(G) < oo but nevertheless
NYP(G) = N*P(G).

The paper is organized as follows. In Section 2, we introduce K-regular trees and their boundaries, and
Newtonian spaces. In Section 3, we give the proofs of Theorem 1.3 and Theorem 1.4.

Throughout this paper, the letter C (sometimes with a subscript) will denote positive constants that usu-
ally depend only on our space and may change at different occurrences; if C depends on a, b, ... we write
C=C(a,b,...). Thenotation A ~ B means that there is a constant Csuch that 1/C-A < B < C-A. The notation
A < B (A Z B) means that there is a constant C such that A < C - B(A = C - B). For any function f ¢ Llloc(G)
and any measurable subset A C G of positive measure, we let f, fdu stand for ﬁ Jafap.

2 Preliminaries

2.1 Regular trees and their boundaries

A graph G is a pair (V, E), where V is a set of vertices and E is a set of edges. We call a pair of vertices x,y € V
neighbors if x is connected to y by an edge. The degree of a vertex is the number of its neighbors. The graph
structure gives rise to a natural connectivity structure. A tree G is a connected graph without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we will denote by 0.
The neighbors of a vertex x € V are of two types: the neighbors that are closer to the root are called parents
of x and all other neighbors are called children of x. Each vertex has a unique parent, except for the root itself
that has none.

A K-ary tree G is a rooted tree such that each vertex has exactly K children. Then all vertices except the
root of G have degree K + 1, and the root has degree K. We say that a tree G is K-regular if it is a K-ary tree for
some K = 1.

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K = 1. For simplicity of
notation, we let X = V U E and call it a K-regular tree. The geodesic connecting x, y € X is denoted by [x, y].
For any x,y € X, let |x — y| be the metric graph distance from x to y, that is, the metric graph length of the
geodesic [x, y] given by

x -yl =l(x, y]) = dg.
[x,y]
We denote by |x| the metric graph distance from the root O to x. Then the metric graph distance between two
vertices is the number of edges needed to connect them. Given a curve -, we say that v is an infinite geodesic
in X if v is a simple curve and I5(y) = oo.
On our K-regular tree X, we define a measure y and a metric d, by setting

du(x) = w(|x|) dg(x), da(x) = A(|x[) dg(x),
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where A, w : [0, 00) — (0, oo) are fixed with A, w € Llloc([O, o0)). For any two points x, y € X, the distance
between x and y, denoted d,(x, y), is

dilx,y) = d = A(|z)dg(2)
[x,y] [x,y]
where [x, y] is the unique geodesic between x, y. In particular, if x € [0, y] then the distance between [x, y] is
given by

Iyl
dy(x, y) = /| A

For any subset A C X, the measure of A, denoted u(A), is

H(A) = /A dy = /A w(lxdg (0.

The measure of our K-regular tree is

u(x) = /X dy = /0 T WO dr

where j(t) is the largest integer such that j(t) < ¢ + 1.

We abuse notation and let w(x) and A(x) denote w(|x|) and A(|x|), respectively, for any x € X, if there is no
danger of confusion. We refer the interested readers to [14, 21, Section 2] for a discussion on this metric and
this measure.

A tree is the quintessential Gromov hyperbolic space, and hence we can consider the visual boundary
of the tree as in Bridson-Haefliger [3]. We define the boundary of our K-regular tree X, denoted 0X, as the
collection of all infinite geodesics in X starting at the root 0. Given two points &, { € 90X, there is an infinite
geodesic (&, ¢) in X connecting & and (.

To avoid confusion, points in X are denoted by Latin letters such as x, y and z, while for points in 0X we
use Greek letters such as ¢, { and 1.

Given z € X, we define the subtree with respect to the root z, denoted Iz, by setting

I;:={yeX:zecl0,y]}.

Let oI, be the collection of & € 09X with respect to all the infinite geodesics (in X) containing z and starting
at the root 0. Then
ol,:={{e€0X:z€(0,&}.
We equip 0X with the natural probability measure v as in Falconer [6] by distributing the unit mass uni-
formly on 0X. Then for any subset A C 9X, the boundary measure of A, denoted by v(4), is

V(4) = /A dv.

For any x € X with |x| = j, if we denote by Ix (or oI) the set
{¢ € 90X : the geodesic [0, &) passes through x},

then v(Ix) = v(dT'x) = K. We refer to [2, Lemma 5.2] for more information on our boundary measure v.

Let us assume that [~ A(t)dt < eo and let &, { € 0X. We denote by (¢, {) the infinite geodesic connecting
& to {. Then (&, {) consists of the tails [x, &) and [x, {) of the geodesics [0, &) and [0, {) starting at the last
common point x of [0, &) and [0, {). We define the visual metric dj, on 90X, see [3] for more details, by setting

oo

dy(&, () := dy=2 A(t)dt
(8.4 /(f,() ! /lx(f,()l

forany ¢, { € 0X, where x &0 s the last common point of [0, £) and [0, ().
Recall that a metric space (90X, d},) is an ultrametric space if for each triple of points ¢, {, n € 0X we have

dp(§, §) < max{d,(§, n), dp(n, {)}.
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Proposition 2.1. The metric space (0X, d}) is an ultrametric space under the assumption that f0°° A(t) dt < oo
and hence any two closed balls in 0X are either disjoint or contain one another.

Proof. For any &1, &5,&3 € 0X, we let X(6.8) be the last common point of [0, &;) and [0, ¢;) for each i,j €
{1,2,3}. Let ki j = |x(g, | foreach i, j € {1, 2,3}. Then k1, = min{ki3, k23} and

dy(&;, &) = 2/ A)dt < oo
ki
for each i, j € {1, 2, 3}. It follows that

dp(&1, &) < max{d (&1, &3), dp(&>, &3)}

for any triple of points &1, &5, &5 € 0X. Thus (90X, d},) is an ultrametric space. The latter part of the proposition
is a direct consequence of the ultrametric property of 0X. The proof is complete. O

By Proposition 2.1, any two closed balls in 0X are either disjoint or contain one another. Then (X, d,, v) is
a Vitali metric measure space, i.e every subset A of 0X and for every covering B of A by closed balls satisfying

inf{r:r>0and B({,r) € B} =0

for each ¢ € A, where B(&,1) = {n € 90X : d,(&, ) < r}, there exists a pairwise disjoint subcollection € C B
such that
v (A\UgeeB) = 0.
By the Lebesgue differentiation theorem on a Vitali metric measure space in [10, Section 3.4], we obtain
the following theorem.

Theorem 2.2. Let f € L, (90X, dj, v). Assume that [;° A(t) dt < oo. Then

mnf Fdv(n) = £(&)
B(,n)

r—0

forv-a.e & € 0X, where B(&,r) = {n € 0X : d,(&, ) < 1}.

2.2 Newtonian spaces

Let 1 < p < oo and X be a K-regular tree with metric d, and measure y as in Section 2.1. Let f € L (X, dj, p).
We say that a Borel function g : X — [0, o<] is an upper gradient of f if

Ify) - f(2)] < / gd, (2.0

y
whenever y, z € X and + is the geodesic from y to z. In the setting of our tree, any rectifiable curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient defined above is
equivalent to the definition which requires that (2.1) holds for all rectifiable curves with end points z and y.

The notion of upper gradients was introduced in [9]. We refer the interested readers to [1, 8, 10, 23] for a
more detailed discussion on upper gradients.

The Newtonian space NP (X) := N“P(X, dj, u), 1 < p < oo, is defined as the collection of all the functions
f with finite N*"?-norm

IflInerce) = [Ifllogo) + ifglf 181l Lex)

where the infimum is taken over all upper gradients of u. If f € NP (X), then it is continuous by (2.1); recall
here our standing assumption that A’w~! e Lllo/ C(”’l)([o, o0)).

We define the homogeneous Newtonian spaces NLP(X),1 < P < oo, as the collection of all the continuous
functions f that have an upper gradient 0 < g € L?(X). The homogeneous N'*P-norm is given by

oz 2= UFO)] + 10 18-

Here 0 is the root of our K-regular tree X and the infimum is taken over all upper gradients of f.
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3 Proofs of Theorem 1.3-1.4

In this section, if we do not specifically mention, we always assume that 1 < p < oo and that X is a K-regular
tree with metric dy and measure y as in Section 2.1, with p(X) < oo.
Let us first prove that Ry(A, w) < oo together with u(X) < oo guarantee that our metric space is bounded.

Lemma 3.1. Suppose that pu(X) < oo and that Rp(A, w) < oo. Then f0°° A(t) dt < oo.

Proof. For p > 1, the Holder inequality gives

- - Up / poo N
/ A(t)dts( / w(t)Ki(f)dt) ( / A(t)»%w(t)ﬁ(t)K%dt) .
0 0 0

; p-1
Notice that f(;” w(t)K'Odtis precisely p(X) and that the second termis R,,” . Hence the claim follows for p > 1
since u(X) < ccand Ry < oo.For p = 1, asimilar idea gives f0°° A(t)dt < u(X)R; < oo. The proofis complete. [

Let § € 0X. In what follows, the notation x; means that x; € [0, &). We set
I'n={yeX:xel0,y]} and oIx = {& € 0X : x € [0, £)} for a given x € X.

Lemma 3.1in [14], applied to the subtree I'; where z € X, gives the following identity.

Lemma 3.2. Let u € LP(X). For any z € X, we have that

[ [ ere® ducoav) - [ jueor duco
or; J(z,¢) I,
where j(x) is the largest integer such that j(x) < |x| + 1.
We also need the following formulation of Theorem 1.1 in [14].
Lemma 3.3. Let 1 < p < co. Then Tgf exists for each f € N*P(X) if and only if R < oo.

We begin by establishing the existence of two of the asserted limits.

Lemma3.4. Let 1 < q < p.If u(X) < oo and R, < oo, then Txf and Tqf exist for any f € NV*P(X). Moreover,
Trf = Tqf v-a.e. if Tgf exists for each f € NP(X).

Proof. Suppose that u(X) < co and Rp < co. Let f € NP(X) and gr € LP(X) be an upper gradient of f. By
Lemma 3.3, we obtain that Tgf exists. To prove that T4f exists, it suffices to show that

lim][ F@) - Tef@)|7dp(y) = 0 G1)
xe—¢ 1-)({

holds for v-a.e £ € 0X. By the Holder inequality and the dominated convergence theorem, it follows from
1=q < p, (14), and (2.1) that for any x; < [0, &),

(4

1/q . 1/p
If(y)—TRf(é”)quu(y)> < lim ( ]l fy) - flze)P du@))
zg—§ Iy

£

p 1/p
< lim (][ (/ gfd,\> dy(y)) .
ze—§ r [y.z¢]

xg
Since [y, z¢] C [y, xe] U [xg, &) forany y, z; € I'x,, we have that

p 1/p
(7[ ( / gfd/\) du(y)>
Ty [y.z]

¢
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p 1/p p 1/p
< d du(y) d du(y)
( 7{}{ </[y”‘§]gf A) g y> ' ( ﬁxe ( /[Xf’f)gf A> g y)
p 1/p
= ( (/ gfd;() dﬂ()’)) +/ grdy =t H1(xg) + Ha(xy).
ly,x¢l [x¢,8)

f.
To obtain (3.1), we only need to show that

lim Hi(xg) = lim H(x;) = 0 forv-a.e { € 0X. (3.2
Xg—§ Xe—§

Suppose first that p > 1. By the H6lder inequality, a direct computation reveals that for any [x, y] in X,

8 i A) P
- @Mz )
(/[X’y]gfd/\> </[X’y]gf(z) w(z)Kl(Z)/de(Z)

_p_

p-1
= _A@ ™ IR )
( /[x,n (W(Z)Ki(z)/p) d”(z)> /[X’y] 8; @K du(z)

oo . p—l .
s<2 / A(t)p%w(t)ﬁK%dt> / @K du(z)
0 [x,yl
_op-1Rp-l /[ S au(z), (33)
XY

Since Rp < oo, substituting (3.3) into H; (&), H,(¢) yields

P < P(2)K'Pdu(z)d .
oy < f /wgf(z) W) (4)
and
Hy(xe P < P(2)K'P du(z). (3.5)
2% /[xg,s) 8t He

For p = 1, by an argument similar to (3.3), without using the Holder inequality, we also obtain that for any
[x,y]in X,

[ srdish [ g@KYdue) (6)
[x,y] [x,y]

and hence that (3.4) and (3.5) also hold for p = 1.
Applying Lemma 3.2 for I'; = X and u = gy, it follows from gy € LP(X) that

JRCCILTORE G7)
o,

for v-a.e £ € 0X. We conclude from (3.5) and (3.7) that

X{-}f
for v-a.e £ € 0X. In order to get (3.2), we next estimate H; (x‘f). By the Fubini theorem, (3.4) gives that

Hi(x) 5 ]f /F @K Ky, (2 du2)du(y)
e T xe

=$ b j(2)
H(Fxg) /Fxg gf(Z)I< (/FX{ X[y,xg](Z)d],l(y)) dy(z)

it [ SR Ui (39)
X¢ xXg
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Note that )
KOur:) _ px\x") (3.10)
KoOu(ly,)  px\ xhel)

for any z € I'y,. Combining (3.9)-(3.10) with v(oTI'y,) = K70, by Lemma 3.2, we obtain that for any y, < [0, §)
with x¢ € [y, &),

1
0¥ < or /F REE

: ][ar /[ )gf?(Z)K"(Z)du(Z)dV(n)
xXg XgsN

Sfa.r /[ )g}’(z)Kj(z)dy(z)dv(n). (3.11)
x{ y.f:rl

Note that G(n) := f[yw) gff(z)Kf(Z)dy(z) e LY(9X) for any y¢ € [0, §) by Lemma 3.2 and that f0°° A(t)dt < oo by
Lemma 3.1. Hence the Lebesgue differentiation theorem (see Theorem 2.2) gives that for each Ve € [0, &),

lim 4 Gidv(y) = G(&) = / &K du(z)
Xg—>§ Oy, ye,&)

for v-a.e & € 0X. Hence (3.11) allows us to deduce that, for each y; < [0, §),

tim M0 < [ /@K dyca

Xg—§ lye.$)
for v-a.e £ € 9X. Thanks to (3.7), letting Y¢ — &, we obtain that

Xg—&
for v-a.e ¢ € 0X. Combining (3.12) and (3.8), we obtain (3.2). Thus Txf and T,f exists for any f € NVP(X) if
Rp < oo,
Finally, if Trf exists for each f € N"P(X), then R, < oo by Lemma 3.3, and the first part of our proof gives

that T,f exists with Tyf = Tgf v-a.e for any f € N"P(X). The proof is complete. O

Lemma3.5. Let1<q < pandf € NVP(X).If Tf exists, then T.f also exists. Moreover, Tqf = T1f v-a.eif Tqf
exists.

Proof. The claim follows since

1/q
If(y) - Taf(&)|? du(y)) =0

< f F ) - Taf (O)ldu(y) < < ][
I'y Iy

¢

Tof(©) —]f ) du(y)
Xg

4

when x; — §. O
Lemma 3.6. IfRp = oo, then there exists f € N“P(X) such that T.f does not exists.

Proof. Let £ € 0X. For each n € [0, o), we denote by x»(¢) the point in [0, &) with |x,(&)| = n. It suffices to
show that there exist a function f € N*P(X) and two sequences {n;}3,, {m;}3, such that for any ¢ € 9X,

]L fdu > 2 and f fdu < 1 (3.13)
G 3 r 3

xm; (§)
for any i € N. Towards this, by Theorem 3.5 in [14], there exists a non-negative locally integrable function g
on [0, oo) so that

/ ” 2 (OWOKYdt < oo (3.14)
(0]
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and

/ ) g(OA(D)dt = oo. (3.15)
Pick nq so that ’
/0 " oAt = 1. (3.16)
Asp(X\X™) =lim), . u((X\X")N Xx"), we find I; € Nwith ny < 14 such that
HO\X™) X > 200\ x),

Since
HX\X™) = K"u(Ty, ) and p((X\ X") N X™) = K"u(y ) N X™) 317

for any ¢ € 0X and for any n, m € N with n < m, the above estimates give

(r nxh)
W@ 27 2 (3.18)
Hly, @) 3
for any & € 9X. By (3.15) we find m; with l; < m; such that
ma
/ gOADdt = 1. (319)
L

Since limy, oo p((X \ X™) N X¥1) = p(X \ X™), there exists k; with m; < k; such that
HOOX™) N X9) > 200\ X™).

Hence we have by (3.17) that
Iy, N xk)
uTy, @)
for any ¢ € 0X. We continue by choosing n, with k; < n; such that

2
= 3 (3.20)

/ " gOMDdt = 1. (3.21)

k1
By induction on nq,l;, my, ki, n, with ny < 13 < m;y < k;y < n,, there exist four sequences
{32, {2, {mi} 2y, {ki}i2, such that n; < I; < m; < k; < nyyq and

(3.18)-(3.21) hold for the corresponding pairs of indices n;, I;, m;, k;, nj.1 (3.22)
foranyi=1,2,.... Now we define a function f by setting f(x) = 1 if x € X™, and
1 if x € XU\ X"
x| . m; 1.
1- HA(t)dt  if x e X™\ X4
00 = Ji &®A®dt ifx \ (.23)
if x € xki\ xmi
MgOMBdr  ifx e XM\ Xk

fori > 1. Then by (3.16),(3.19),(3.21),(3.22),(3.23), we have that f is continuous, O < f < 1, and g is an upper gra-
dient of f. By (3.14) and the fact that u(X) < oo, it follows that f € N1'P(X). Combining (3.18),(3.20),(3.22),(3.23),
we conclude that for any ¢ € 0X, foranyi € N,

f

X)

Ty, 0 N XY)

1 2
fdyzi/ fdy=—""———>=
wo M) Jr, onx W) 3
and .
CHTy, 0N XY 1

<

1
fdy=7/ fdps1-—m@ =7 1
ﬁx“i(f) y(rxml(f)) F"mi(() H(Fxm;(f)) 3

Thus (3.13) holds. The claim follows. O
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Lemma3.7. Let1 < q < p. Ifone of Tgf, T.f, Tqf exists foreachf € NVP(X), then all of them exist and coincide
v-a.e on oX for a givenf.

Proof. By Lemma 3.3-3.6, we have that Ry, < oo if and only if one of Txf, T;f, Tqf exists for each f € N*P(X).
Then
Trf, TLf, Tqf exist if one of them exists (3.24)

for each f € NVP(X). By Lemma 3.4 and Lemma 3.5, we obtain that
Trf = Tqf = Tif v-a.eif Tgf, Tqf exist (3.25)

for each f € N*P(X). Combining (3.24)-(3.25), we conclude that Txf = Tqf = T.f v-a.e if one of Tgf, Tqf, T1f
exists. The proof is complete. O

Proof of Theorem 1.3. (i) < (iv) is given by Lemma 3.3.
(iv) = (iii) is given by Lemma 3.4.
(iii) = (ii) is given by Lemma 3.5.
(if) = (iv) is given by Lemma 3.6.
The latter part of the Theorem is given by Lemma 3.7. O

Proof of Theorem 1.4. Recalling that each f € NP(X) is continuous, we have that |f(0)| < eo and hence
NVP(X) ¢ NYP(X). We are left to show that NVP(X) ¢ NVP(X). It suffices to prove that

Il S 1Fllncx

forany f € NVP(X). Let f € N*P(X) and let g; be an upper gradient of f. For any x € X we have

[FOII = [f(0)] + / grdy (3.26)

[0,x]

where 0 is the root of X. By arguments (3.3), (3.6), it follows that for any p > 1,

p 3
( / gfd/\) <M / 2KV du(y). (3.27)
[0,x] [0,x]

where M = max{zp‘le_l, R;}. By the Fubini theorem, we have from (3.26)-(3.27) that

/ grdy
[0,x] r(X)

1p
< 1/p ; P NI
u(X)"PIf(0)] + M ( /X /[O’X]gf(y)K du(y)du(X))

If e ey <IF (0| (x) +

. ) 1/p
1001500 1 ( | g ( [ x0.00000) )
X X
1 . 1p
4007+ M ([ R )aue) )

Since I(i(y)y(F y) = uX\X V) < U(X), the above estimate gives that
1
o) < REOPIFO) + pCOYP MP |15 () -
We conclude that for any f € NVP(X),

Iflineecxy = Ifllecy + 18 ey < 1F Il g )

Thus N%P(X) ¢ NVP(X) which finishes the proof. O
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Example 3.8. Let w(t) = e PO and A(t) = e ® with e, B > 0 and B > log K + ep. Then (X, d, ) is a metric
measure space as in Section 2.1 with u(X) < oo, R = oo for any 1 < p < oo but nevertheless NVP(X) = NP (X).

It is obvious that u(X) < ec and Ry = oo for any 1 < p < o. Indeed, since (8 - log K) > ep > 0 we have that
u(X) =/ w(t)K’mdt=/ e B0 Ri0 gt ¢ oo,
0 0
Forany 1 < p < oo, as (8 — K - e€p) > 0 we obtain that
1  (B-log K-£p)j(t)
Rp —/ )l(t)p Tw(t)TP K {* t—/ eﬁng P dt =ooforp > 1,
0

and

| Aw
i H w(DKI®

_ He(ﬁ—logK—S)i(t) H - oo

£=([0,9)) L=(0.2)

As in the proof of Theorem 1.4 we have that NV?(X) ¢ N*P(X). Hence we only need to prove that NP (X)
NVP(X). It suffices to show that for any f € NVP(X),

1l S Il gano-

Let gf be an upper gradient of f. For p > 1, we have by the Hélder inequality that

F00] < F(0)] + /[O 8 =IO+ /[0 @

/p ) 516 17’%1
o+ ([ g@d@) ([ eHae)

p-1 1/p
arolcr ([ @)

for any x € X, where

C =/ etrar-P -1,
0 be

For p = 1, since d,(z) = e’sj(z)dc(z) < d;(z) we have that

IF00) < [FO)] + /[O = O+ /[O (.

p-1
p

Let C = max{C,” , 1}. By the Fubini theorem, it follows that forany p > 1,

1/p
¢( /[ seaie)
(0.4 Lr(X)

, 1p
=[fO) ) + C </X (/Xg?(z))([o,x](z)d(;(z)) efﬁ](x)d(;(x)>

) 1/p
400"+ ¢ [ 6 [ ox@e o)) deta)) (328)
X X

If e oy <IFO)| o) +

For any z € X, we have that
) /X Xio@e PP dg(x) =P / e PO a0
_eBi® / o B0 0@ gy
j@

1
" B-logK"

eﬁ](Z)K iz e -Bi®) gi(e) |*°
-B+1logK

j(2)



408 —— PekkaKoskela etal. DE GRUYTER

Since u(X) < oo, du(z) = e’ﬁj(z)d(;(z), C < oo, and B -1ogK > ep > 0, inserting this into (3.28) yields

1/p c )
”fHLP(X) < F(X) |f(0)‘ + (ﬁ ~ logK)l/P Hgf”LP(X) 5 Hf”Nl,p(X)
as desired.

Remark 3.9. By Lemma 3.1 we know that f0°° A(t) dt < oo under the assumptions that u(X) < sc and Rp < oo. In
this case, the diameter of X with respect to d, is finite and we could consider balls in X that have their centers
on 0X. Towards this, recall that (1, {) refers to the geodesic between n, { € 0X. Given ¢ € 0X and Xg € [0, &),
we let

By, = {(n,() €X:n,{eByy (5,2 N/\(t)dt>}

x|
where Byx(&, r) is the ball with radius r and center at & in (0X, d}) as in Section 2.1. Then By, is an analog of the
intersection of a domain and a ball with center ¢ at boundary in the classical setting, and

I'x; = Bx, foreach x; € [0, &)

for any & € oX in our setting. This gives us a justification to consider the traces T, Tq in Definition 1.2 to be
analogs of (1.2)-(1.3). We do not know if we could replace Bx, by Bx(&, r) in general in the definitions of our
traces. It is easy to check that one can do so if u is assumed to be doubling.
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