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1 Introduction
Let us begin with the classical setting. Consider the unit ball Bn(0, 1) in the n-dimensional Euclidean space
Rn . If u belongs to the usual Sobolev space W1,1(Bn(0, 1)) consisting of all integrable functions whose all
�rst order distributional derivatives are also integrable over Bn(0, 1), then u has a representative v for which
the limit

lim
t→1

v(tξ ) (1.1)

exists for almost every ξ ∈ ∂Bn(0, 1). Here almost everywhere refers to the surface measure on ∂Bn(0, 1). In
this sense, u has a well de�ned trace almost everywhere on ∂Bn(0, 1).

Towards a more constructive de�nition of a trace, let us extend u to a function Eu ∈ W1,1(Rn). This is
possible by classical extension theorems in [5, 24]. By the version of Lebesgue di�erentiation theorem for
Sobolev functions [26, Section 5.14], the limit

lim
r→0

1
mn(B(x, r))

ˆ
B(x,r)

Eu dmn

exists for Hn−1-almost every x. Here mn is the Lebesgue measure on Rn and Hn−1 refers to the (n − 1)-
dimensional Hausdor� measure. It then follows from the (1,1)-Poincaré inequality that also

lim
r→0

1
mn(B(x, r) ∩ Bn(0, 1))

ˆ
B(x,r)∩Bn(0,1)

u dmn (1.2)

exists for Hn−1-almost every x and also that, for almost every ξ ∈ ∂Bn(0, 1) there is a value Tu(ξ ) for which

lim
r→0

1
mn(B(ξ , r) ∩ Bn(0, 1))

ˆ
B(ξ ,r)∩Bn(0,1)

|u(x) − Tu(ξ )| dmn(x) = 0. (1.3)

Thus we have three di�erent possible traces, but it turns out that Tu(ξ ) coincides with the limits in (1.1)
and (1.2) (for a suitable v) almost everywhere on ∂Bn(0, 1). Moreover, by the (q, p)-Poincaré inequality (with
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1 ≤ q < ∞ when p ≥ n and 1 ≤ q ≤ pn
n−p when 1 ≤ p < n), we may replace the term |u(x) − Tu(ξ )| by

|u(x)− Tu(ξ )|q in (1.3) if we assume that u ∈ W1,p(Bn(0, 1)). As usual,W1,p(Bn(0, 1)) requires p-integrability
instead of integrability, both for the function and for all the �rst order distributional derivatives.

Let us next consider a weighted situation when p > 1. Suppose that u ∈ W1,p
loc (Bn(0, 1)) and that

ˆ
Bn(0,1)

|∇u(x)|p w(x) dmn(x) < ∞

for a positive weight function w. By again choosing a suitable representative v of u (with respect to mn), one
can check that v has a limit as in (1.1) for almost every ξ (with respect to the surface measure) provided that
w−1/(p−1) is integrable over Bn(0, 1). This integrability condition is not necessary for the asserted existence of
limits as seen by considering the weight w de�ned by setting w(x) = |x|(p−1)n . If we replace the integrability
assumption onw−1/(p−1) by the stronger requirement thatw be aMuckenhoupt Ap-weight, then one can again
use a Poincaré inequality to obtain analogs of (1.2) and (1.3) (with any power 1 ≤ q < p + ϵ(w)) and further
that Tu(ξ ) can be chosen to be the limit from the analog of (1.1), see [4, Theorem 4.4].

There has been recent interest in establishing trace theorems for Sobolev-type functions in the setting
of a metric measure space, see [16–18] (also the references therein). In this paper we consider the particular
case of a weighted regular tree. Instead of giving the formal de�nition used in [2, 14, 15, 21, 22, 25], we give an
equivalent de�nition in Section 2 below. Let us only give an intuitive description here. Our tree is a graph G
that consists of a countable connected union of isometric copies of the unit interval [0, 1], distributed so that
two given copies either intersect at a common vertex or do not intersect at all. We require that G comes with
an integer K ≥ 1 and a distinguished vertex, called the root 0, so that 0 is a vertex of K copies of [0, 1], and
each other vertex is a vertex of K + 1 such copies. We additionally ask that there are no loops in G : given two
vertices, there is a unique collection of copies of the unit interval that connect these vertices.When K = 1, our
regular tree is thus isometric to the interval [0,∞). The above being �xed, we call G a K-regular tree. Towards
introducing weighted K-regular trees, we consider G as equipped with the natural pathmetric. Then any pair
of points x, y ∈ G are joined by a unique geodesic, denoted [x, y]. As usual, we de�ne the boundary ∂G of
G to consist of all the isometric embeddings of [0,∞) into G, with the requirement that the real number 0
maps to our root 0. Then our boundary points can be viewed as in�nite geodesics starting from the root. We
abuse notation and refer to the image of the embedding corresponding to ξ ∈ ∂G by [0, ξ ). We equip ∂G
with the natural probability measure ν as in Falconer [6] by distributing the unit mass uniformly on ∂G. Let
w, λ : [0,∞)→ (0,∞) be locally integrable functions. We de�ne a measure µ and a metric dλ on G by setting
µ(A) =

´
A w(|z|)dG(z), dλ(x, y) =

´
[x,y] λ(|z|)dG(z), where |z| is the path distance between 0 and z on G and

dG(z) is the length element on G. See Section 2.1 for the precise de�nitions.
Given 1 ≤ p < ∞, our space (G, dλ , µ) is a metric measure space and hence one may de�ne a Newtonian

Sobolev space N1,p(G) := N1,p(G, dλ , µ) based on upper gradients [9, 23]. As usual, we denote by Ṅ1,p(G) the
homogeneous version of N1,p(G).

Given ξ ∈ ∂G, we refer to points x ∈ [0, ξ ) by xξ . We begin with our analog of (1.1).

De�nition 1.1. Let G be a K-regular tree with metric dλ and measure µ as above. Let f be a function de�ned on
G. We de�ne the arcwise trace of f at ξ ∈ ∂G (along the corresponding geodesic), denoted by TR f (ξ ), by setting

TR f (ξ ) = lim
xξ→ξ

f (xξ ). (1.4)

If the limit of (1.4) exists for ν-a.e ξ ∈ ∂G, then we say that the radial trace TR f exists.

We call TR f the radial trace since it is an analog of (1.1). The existence of a radial trace of a given function
f ∈ N1,p(G) was studied in [2, 14, 15, 25]. In [14, Theorem 1.1-1.3], a characterization for the existence of TR f for
all f ∈ N1,p(G) was given. In some special cases of metric dλ and measure µ, TR f belongs to a Besov space,
see [2, Theorem 6.1], [15, Theorem 1.1-1.4], [25, Theorem 1.1] for more details.

Let x ∈ G. Towards de�ning analogs of (1.2) and (1.3), we set

Γx := {y ∈ G : x ∈ [0, y]}.
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Notice that Γx is also a K-regular tree if x is a vertex, obviously with root x.

De�nition 1.2. Let 1 ≤ q < ∞ and G be a K-regular tree withmetric dλ andmeasure µ as above, with µ(G) < ∞.
Fix a function f de�ned on G. We say that the Lebesgue-point-type trace TL f of f on ∂G exists if

TL f (ξ ) := lim
xξ→ξ

1
µ(Γxξ )

ˆ
Γxξ
f (y) dµ(y) (1.5)

exists for ν-a.e ξ ∈ ∂G.
We say that the boundary trace of f of order q on ∂G exists if there is a function Tq f : ∂G → R so that

lim
xξ→ξ

1
µ(Γxξ )

ˆ
Γxξ
|f (y) − Tq f (ξ )|qdµ(y) = 0 (1.6)

for ν-a.e ξ ∈ ∂G.

One can �nd versions of the two notions of traces in De�nition 1.2 in literature under various names.
We refer the readers to [7, Chapter 2], [19, Section 6.6], [20, Section 9.6],[26, Section 3.1] for discussions in
the setting of Euclidean spaces, and [16–18] (also the references therein) for discussions in the setting of
metric measure spaces. Notice that in the setting of a Muckenhoupt Ap-weight discussed above, the analogs
of the traces TR f , TL f and Tq f , 1 ≤ q ≤ p, exist and actually coincide with each other almost everywhere on
∂Bn(0, 1).

It is then natural to ask whether TR f , TL f , Tq f exist (for suitable q) and coincide for a given function
f ∈ N1,p(G, dλ , µ). Towards this, we recall a concept introduced in [14]. Let 1 ≤ p < ∞. We set

R1(λ, w) =
∥∥∥∥ λ(t)
w(t)K j(t)

∥∥∥∥
L∞([0,∞))

(1.7)

and
Rp(λ, w) =

ˆ ∞

0
λ(t)

p
p−1 w(t)

1
1−p K

j(t)
1−p dt, 1 < p < ∞ (1.8)

where j(t) is the largest integer such that j(t) ≤ |x| + 1. Since we work with a �xed pair λ, w, we will usually
refer to Rp(λ, w) simply by Rp . One should view Rp as an analog of the isoperimetric pro�le of a Riemannian
manifold in [11–13]. We assume in what follows that λpw−1 ∈ L1/(p−1)

loc ([0,∞)) to make sure that the �niteness
of Rp is a condition at in�nity.

Our �rst result shows that the existence of any of TR f , TL f , Tq f , 1 ≤ q ≤ p, for all f ∈ N1,p(G) is equivalent
to the �niteness of Rp . Moreover, all these di�erent traces of f coincide when Rp < ∞.

Theorem 1.3. Let 1 ≤ p < ∞ and G be a K-regular tree with metric dλ and measure µ as above. Assume
µ(G) < ∞ and let 1 ≤ q ≤ p. Then the following are equivalent:

(i) TR f exists for any f ∈ N1,p(G).
(ii) TL f exists for any f ∈ N1,p(G).
(iii) Tq f exists for any f ∈ N1,p(G).
(iv) Rp < ∞.

Moreover, if one of TR f , TL f , Tq f exists for each f ∈ N1,p(G), then all of them exist and coincide ν-a.e on ∂G for
a given f .

As a direct consequence of Theorem 1.3 we see that the existence of the trace operator Tq is independent
of the value of q ∈ [1, p]. We do not know if one could even obtain this for all q ∈ [1, p + ϵ] for some ϵ > 0
only depending on p, Rp(λ, w), λ, w.

Based on the discussion in the beginning of our introduction, one should �nd Theorem 1.3 somewhat
surprising since it does not seem possible to extend our functions to a larger underlying nice space and the
�niteness of Rp should not, in general, imply the validity of Poincaré inequalities. In fact, the validity of
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Poincaré inequalities under a doubling condition on (G, dλ , µ) has very recently been characterized via a
Muckenhoupt-type condition in [22]. The reason why we do not need a Poincaré inequality or a doubling
measure and do not need to move to a representative when we consider TR is basically that our space is
locally one-dimensional.

Our second result deals with the coincidence of N1,p(G) and Ṅ1,p(G). Here Ṅ1,p(G) is the homogeneous
version of N1,p(G).

Theorem 1.4. Let 1 ≤ p < ∞ and G be a K-regular tree with metric dλ and measure µ with µ(G) < ∞ as above.
Suppose that Rp < ∞. Then N1,p(G) = Ṅ1,p(G).

Consequently, Theorem 1.3 could alternatively be stated for Ṅ1,p(G). In the case where µ(G) = ∞, the
homogeneous version of our Sobolev space is much larger than the non-homogeneous one. However, even
under the assumption that µ(G) < ∞, Rp < ∞ is not a necessary condition for N1,p(G) = Ṅ1,p(G). Example 3.8
in Section 3 shows that there exists a K-regular tree (G, dλ , µ) so that Rp = ∞ and µ(G) < ∞ but nevertheless
N1,p(G) = Ṅ1,p(G).

The paper is organized as follows. In Section 2, we introduce K-regular trees and their boundaries, and
Newtonian spaces. In Section 3, we give the proofs of Theorem 1.3 and Theorem 1.4.

Throughout this paper, the letter C (sometimes with a subscript) will denote positive constants that usu-
ally depend only on our space and may change at di�erent occurrences; if C depends on a, b, . . . we write
C = C(a, b, . . .). The notation A ≈ Bmeans that there is a constant C such that 1/C ·A ≤ B ≤ C ·A. The notation
A . B (A & B) means that there is a constant C such that A ≤ C · B(A ≥ C · B). For any function f ∈ L1

loc(G)
and any measurable subset A ⊂ G of positive measure, we let

ffl
A fdµ stand for 1

µ(A)
´
A fdµ.

2 Preliminaries

2.1 Regular trees and their boundaries

A graph G is a pair (V , E), where V is a set of vertices and E is a set of edges.We call a pair of vertices x, y ∈ V
neighbors if x is connected to y by an edge. The degree of a vertex is the number of its neighbors. The graph
structure gives rise to a natural connectivity structure. A tree G is a connected graph without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we will denote by 0.
The neighbors of a vertex x ∈ V are of two types: the neighbors that are closer to the root are called parents
of x and all other neighbors are called children of x. Each vertex has a unique parent, except for the root itself
that has none.

A K-ary tree G is a rooted tree such that each vertex has exactly K children. Then all vertices except the
root of G have degree K + 1, and the root has degree K. We say that a tree G is K-regular if it is a K-ary tree for
some K ≥ 1.

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K ≥ 1. For simplicity of
notation, we let X = V ∪ E and call it a K-regular tree. The geodesic connecting x, y ∈ X is denoted by [x, y].
For any x, y ∈ X, let |x − y| be the metric graph distance from x to y, that is, the metric graph length of the
geodesic [x, y] given by

|x − y| = lG([x, y]) =
ˆ

[x,y]
dG .

We denote by |x| the metric graph distance from the root 0 to x. Then the metric graph distance between two
vertices is the number of edges needed to connect them. Given a curve γ, we say that γ is an in�nite geodesic
in X if γ is a simple curve and lG(γ) = ∞.

On our K-regular tree X, we de�ne a measure µ and a metric dλ by setting

dµ(x) = w(|x|) dG(x), dλ(x) = λ(|x|) dG(x),
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where λ, w : [0,∞) → (0,∞) are �xed with λ, w ∈ L1
loc([0,∞)). For any two points x, y ∈ X, the distance

between x and y, denoted dλ(x, y), is

dλ(x, y) =
ˆ

[x,y]
dλ =

ˆ
[x,y]

λ(|z|)dG(z)

where [x, y] is the unique geodesic between x, y. In particular, if x ∈ [0, y] then the distance between [x, y] is
given by

dλ(x, y) =
ˆ |y|

|x|
λ(t)dt.

For any subset A ⊂ X, the measure of A, denoted µ(A), is

µ(A) =
ˆ
A
dµ =

ˆ
A
w(|x|)dG(x).

The measure of our K-regular tree is

µ(X) =
ˆ
X
dµ =

ˆ ∞

0
w(t)K j(t)dt

where j(t) is the largest integer such that j(t) ≤ t + 1.
We abuse notation and let w(x) and λ(x) denote w(|x|) and λ(|x|), respectively, for any x ∈ X, if there is no

danger of confusion. We refer the interested readers to [14, 21, Section 2] for a discussion on this metric and
this measure.

A tree is the quintessential Gromov hyperbolic space, and hence we can consider the visual boundary
of the tree as in Bridson-Hae�iger [3]. We de�ne the boundary of our K-regular tree X, denoted ∂X, as the
collection of all in�nite geodesics in X starting at the root 0. Given two points ξ , ζ ∈ ∂X, there is an in�nite
geodesic (ξ , ζ ) in X connecting ξ and ζ .

To avoid confusion, points in X are denoted by Latin letters such as x, y and z, while for points in ∂X we
use Greek letters such as ξ , ζ and η.

Given z ∈ X, we de�ne the subtree with respect to the root z, denoted Γz, by setting

Γz := {y ∈ X : z ∈ [0, y]}.

Let ∂Γz be the collection of ξ ∈ ∂X with respect to all the in�nite geodesics (in X) containing z and starting
at the root 0. Then

∂Γz := {ξ ∈ ∂X : z ∈ [0, ξ )}.

We equip ∂X with the natural probability measure ν as in Falconer [6] by distributing the unit mass uni-
formly on ∂X. Then for any subset A ⊂ ∂X, the boundary measure of A, denoted by ν(A), is

ν(A) =
ˆ
A
dν.

For any x ∈ X with |x| = j, if we denote by Ix (or ∂Γx) the set

{ξ ∈ ∂X : the geodesic [0, ξ ) passes through x},

then ν(Ix) = ν(∂Γx) = K−j. We refer to [2, Lemma 5.2] for more information on our boundary measure ν.
Let us assume that

´∞
0 λ(t)dt < ∞ and let ξ , ζ ∈ ∂X. We denote by (ξ , ζ ) the in�nite geodesic connecting

ξ to ζ . Then (ξ , ζ ) consists of the tails [x, ξ ) and [x, ζ ) of the geodesics [0, ξ ) and [0, ζ ) starting at the last
common point x of [0, ξ ) and [0, ζ ). We de�ne the visual metric db on ∂X, see [3] for more details, by setting

db(ξ , ζ ) :=
ˆ

(ξ ,ζ )
dλ = 2

ˆ ∞

|x(ξ ,ζ )|
λ(t)dt

for any ξ , ζ ∈ ∂X, where x(ξ ,ζ ) is the last common point of [0, ξ ) and [0, ζ ).
Recall that a metric space (∂X, db) is an ultrametric space if for each triple of points ξ , ζ , η ∈ ∂X we have

db(ξ , ζ ) ≤ max{db(ξ , η), db(η, ζ )}.
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Proposition 2.1. The metric space (∂X, db) is an ultrametric space under the assumption that
´∞

0 λ(t) dt < ∞
and hence any two closed balls in ∂X are either disjoint or contain one another.

Proof. For any ξ1, ξ2, ξ3 ∈ ∂X, we let x(ξi ,ξj) be the last common point of [0, ξi) and [0, ξj) for each i, j ∈
{1, 2, 3}. Let ki,j = |x(ξi ,ξj)| for each i, j ∈ {1, 2, 3}. Then k12 ≥ min{k13, k23} and

db(ξi , ξj) = 2
ˆ ∞

kij
λ(t)dt < ∞

for each i, j ∈ {1, 2, 3}. It follows that

db(ξ1, ξ2) ≤ max{db(ξ1, ξ3), db(ξ2, ξ3)}

for any triple of points ξ1, ξ2, ξ3 ∈ ∂X. Thus (∂X, db) is an ultrametric space. The latter part of the proposition
is a direct consequence of the ultrametric property of ∂X. The proof is complete.

By Proposition 2.1, any two closed balls in ∂X are either disjoint or contain one another. Then (X, db , ν) is
a Vitali metric measure space, i.e every subset A of ∂X and for every coveringB of A by closed balls satisfying

inf{r : r > 0 and B̄(ξ , r) ∈ B} = 0

for each ξ ∈ A, where B̄(ξ , r) = {η ∈ ∂X : db(ξ , η) ≤ r}, there exists a pairwise disjoint subcollection C ⊂ B

such that
ν
(
A \ ∪B∈CB

)
= 0.

By the Lebesgue di�erentiation theorem on a Vitali metric measure space in [10, Section 3.4], we obtain
the following theorem.

Theorem 2.2. Let f ∈ L1
loc(∂X, db , ν). Assume that

´∞
0 λ(t) dt < ∞. Then

lim
r→0

 
B̄(ξ ,r)

f (η)dν(η) = f (ξ )

for ν-a.e ξ ∈ ∂X, where B̄(ξ , r) = {η ∈ ∂X : db(ξ , η) ≤ r}.

2.2 Newtonian spaces

Let 1 ≤ p < ∞ and X be a K-regular tree with metric dλ and measure µ as in Section 2.1. Let f ∈ L1
loc(X, dλ , µ).

We say that a Borel function g : X → [0,∞] is an upper gradient of f if

|f (y) − f (z)| ≤
ˆ
γ

g dλ (2.1)

whenever y, z ∈ X and γ is the geodesic from y to z. In the setting of our tree, any recti�able curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient de�ned above is
equivalent to the de�nition which requires that (2.1) holds for all recti�able curves with end points z and y.

The notion of upper gradients was introduced in [9]. We refer the interested readers to [1, 8, 10, 23] for a
more detailed discussion on upper gradients.

TheNewtonian space N1,p(X) := N1,p(X, dλ , µ), 1 ≤ p < ∞, is de�ned as the collection of all the functions
f with �nite N1,p-norm

‖f‖N1,p(X) := ‖f‖Lp(X) + inf
g
‖g‖Lp(X)

where the in�mum is taken over all upper gradients of u. If f ∈ N1,p(X), then it is continuous by (2.1); recall
here our standing assumption that λpw−1 ∈ L1/(p−1)

loc ([0,∞)).
We de�ne the homogeneous Newtonian spaces Ṅ1,p(X), 1 ≤ p < ∞, as the collection of all the continuous

functions f that have an upper gradient 0 ≤ g ∈ Lp(X). The homogeneous Ṅ1,p-norm is given by

‖f‖Ṅ1,p(X) := |f (0)| + inf
g
‖g‖Lp(X).

Here 0 is the root of our K-regular tree X and the in�mum is taken over all upper gradients of f .
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3 Proofs of Theorem 1.3-1.4
In this section, if we do not speci�cally mention, we always assume that 1 ≤ p < ∞ and that X is a K-regular

tree with metric dλ and measure µ as in Section 2.1, with µ(X) < ∞.
Let us �rst prove that Rp(λ, w) < ∞ together with µ(X) < ∞ guarantee that our metric space is bounded.

Lemma 3.1. Suppose that µ(X) < ∞ and that Rp(λ, w) < ∞. Then
´∞

0 λ(t) dt < ∞.

Proof. For p > 1, the Hölder inequality gives
ˆ ∞

0
λ(t)dt ≤

(ˆ ∞

0
w(t)K j(t)dt

)1/p (ˆ ∞

0
λ(t)

p
p−1 w(t)

1
1−p (t)K

j(t)
1−p dt

)(p−1)/p
.

Notice that
´∞

0 w(t)K j(t)dt is precisely µ(X) and that the second term is R
p−1
p
p . Hence the claim follows for p > 1

since µ(X) < ∞ and Rp < ∞. For p = 1, a similar idea gives
´∞

0 λ(t)dt ≤ µ(X)R1 < ∞. The proof is complete.

Let ξ ∈ ∂X. In what follows, the notation xξ means that xξ ∈ [0, ξ ). We set

Γx = {y ∈ X : x ∈ [0, y]} and ∂Γx = {ξ ∈ ∂X : x ∈ [0, ξ )} for a given x ∈ X.

Lemma 3.1 in [14], applied to the subtree Γz where z ∈ X, gives the following identity.

Lemma 3.2. Let u ∈ Lp(X). For any z ∈ X, we have thatˆ
∂Γz

ˆ
[z,ξ )
|u(x)|pK j(x) dµ(x) dν(ξ ) =

ˆ
Γz
|u(x)|p dµ(x)

where j(x) is the largest integer such that j(x) ≤ |x| + 1.

We also need the following formulation of Theorem 1.1 in [14].

Lemma 3.3. Let 1 ≤ p < ∞. Then TR f exists for each f ∈ N1,p(X) if and only if Rp < ∞.

We begin by establishing the existence of two of the asserted limits.

Lemma 3.4. Let 1 ≤ q ≤ p. If µ(X) < ∞ and Rp < ∞, then TR f and Tq f exist for any f ∈ N1,p(X). Moreover,
TR f = Tq f ν-a.e. if TR f exists for each f ∈ N1,p(X).

Proof. Suppose that µ(X) < ∞ and Rp < ∞. Let f ∈ N1,p(X) and gf ∈ Lp(X) be an upper gradient of f . By
Lemma 3.3, we obtain that TR f exists. To prove that Tq f exists, it su�ces to show that

lim
xξ→ξ

 
Γxξ
|f (y) − TR f (ξ )|qdµ(y) = 0 (3.1)

holds for ν-a.e ξ ∈ ∂X. By the Hölder inequality and the dominated convergence theorem, it follows from
1 ≤ q ≤ p, (1.4), and (2.1) that for any xξ ∈ [0, ξ ),(  

Γxξ
|f (y) − TR f (ξ )|qdµ(y)

)1/q

≤ lim
zξ→ξ

(  
Γxξ
|f (y) − f (zξ )|pdµ(y)

)1/p

≤ lim
zξ→ξ

(  
Γxξ

( ˆ
[y,zξ ]

gf dλ

)p
dµ(y)

)1/p

.

Since [y, zξ ] ⊂ [y, xξ ] ∪ [xξ , ξ ) for any y, zξ ∈ Γxξ , we have that(  
Γxξ

(ˆ
[y,zξ ]

gf dλ

)p
dµ(y)

)1/p
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≤
(  

Γxξ

(ˆ
[y,xξ ]

gf dλ

)p
dµ(y)

)1/p

+
(  

Γxξ

( ˆ
[xξ ,ξ )

gf dλ

)p
dµ(y)

)1/p

=
(  

Γxξ

(ˆ
[y,xξ ]

gf dλ

)p
dµ(y)

)1/p

+
ˆ

[xξ ,ξ )
gf dλ =: H1(xξ ) + H2(xξ ).

To obtain (3.1), we only need to show that

lim
xξ→ξ

H1(xξ ) = lim
xξ→ξ

H2(xξ ) = 0 for ν-a.e ξ ∈ ∂X. (3.2)

Suppose �rst that p > 1. By the Hölder inequality, a direct computation reveals that for any [x, y] in X,( ˆ
[x,y]

gf dλ
)p

=
( ˆ

[x,y]
gf (z)K j(z)/p λ(z)

w(z)K j(z)/p dµ(z)
)p

≤
( ˆ

[x,y]

(
λ(z)

w(z)K j(z)/p

) p
p−1

dµ(z)
)p−1 ˆ

[x,y]
gpf (z)K j(z)dµ(z)

≤
(

2
ˆ ∞

0
λ(t)

p
p−1 w(t)

1
1−p K

j(t)
1−p dt

)p−1 ˆ
[x,y]

gpf (z)K j(z)dµ(z)

=2p−1Rp−1
p

ˆ
[x,y]

gpf (z)K j(z)dµ(z). (3.3)

Since Rp < ∞, substituting (3.3) into H1(ξ ), H2(ξ ) yields

H1(xξ )p .
 
Γxξ

ˆ
[y,xξ ]

gpf (z)K j(z)dµ(z)dµ(y) (3.4)

and
H2(xξ )p .

ˆ
[xξ ,ξ )

gpf (z)K j(z)dµ(z). (3.5)

For p = 1, by an argument similar to (3.3), without using the Hölder inequality, we also obtain that for any
[x, y] in X, ˆ

[x,y]
gf dλ ≤ R1

ˆ
[x,y]

gf (z)K j(z)dµ(z) (3.6)

and hence that (3.4) and (3.5) also hold for p = 1.
Applying Lemma 3.2 for Γz = X and u = gf , it follows from gf ∈ Lp(X) that

ˆ
[0,ξ )

gpf (z)K j(z)dµ(z) < ∞ (3.7)

for ν-a.e ξ ∈ ∂X. We conclude from (3.5) and (3.7) that

lim
xξ→ξ

H2(xξ ) = 0 (3.8)

for ν-a.e ξ ∈ ∂X. In order to get (3.2), we next estimate H1(xξ ). By the Fubini theorem, (3.4) gives that

H1(xξ )p .
 
Γxξ

ˆ
Γxξ
gpf (z)K j(z)χ[y,xξ ](z)dµ(z)dµ(y)

= 1
µ(Γxξ )

ˆ
Γxξ
gpf (z)K j(z)

(ˆ
Γxξ
χ[y,xξ ](z)dµ(y)

)
dµ(z)

= 1
µ(Γxξ )

ˆ
Γxξ
gpf (z)K j(z)µ(Γz)dµ(z). (3.9)
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Note that
K j(z)µ(Γz)
K j(xξ )µ(Γxξ )

= µ(X \ X|z|)
µ(X \ X|xξ |)

≤ 1 (3.10)

for any z ∈ Γxξ . Combining (3.9)-(3.10) with ν(∂Γxξ ) = K−j(xξ ), by Lemma 3.2, we obtain that for any yξ ∈ [0, ξ )
with xξ ∈ [yξ , ξ ),

H1(xξ )p . 1
ν(∂Γxξ )

ˆ
Γxξ
gpf (z)dµ(z)

=
 
∂Γxξ

ˆ
[xξ ,η)

gpf (z)K j(z)dµ(z)dν(η)

≤
 
∂Γxξ

ˆ
[yξ ,η)

gpf (z)K j(z)dµ(z)dν(η). (3.11)

Note that G(η) :=
´

[yξ ,η) g
p
f (z)K j(z)dµ(z) ∈ L1(∂X) for any yξ ∈ [0, ξ ) by Lemma 3.2 and that

´∞
0 λ(t)dt < ∞ by

Lemma 3.1. Hence the Lebesgue di�erentiation theorem (see Theorem 2.2) gives that for each yξ ∈ [0, ξ ),

lim
xξ→ξ

 
∂Γxξ

G(η)dν(η) = G(ξ ) =
ˆ

[yξ ,ξ )
gpf (z)K j(z)dµ(z)

for ν-a.e ξ ∈ ∂X. Hence (3.11) allows us to deduce that, for each yξ ∈ [0, ξ ),

lim
xξ→ξ

H1(xξ )p .
ˆ

[yξ ,ξ )
gpf (z)K j(z)dµ(z)

for ν-a.e ξ ∈ ∂X. Thanks to (3.7), letting yξ → ξ , we obtain that

lim
xξ→ξ

H1(xξ ) = 0 (3.12)

for ν-a.e ξ ∈ ∂X. Combining (3.12) and (3.8), we obtain (3.2). Thus TR f and Tq f exists for any f ∈ N1,p(X) if
Rp < ∞.

Finally, if TR f exists for each f ∈ N1,p(X), then Rp < ∞ by Lemma 3.3, and the �rst part of our proof gives
that Tq f exists with Tq f = TR f ν−a.e for any f ∈ N1,p(X). The proof is complete.

Lemma 3.5. Let 1 ≤ q ≤ p and f ∈ N1,p(X). If Tq f exists, then TL f also exists. Moreover, Tq f = TL f ν-a.e if Tq f
exists.

Proof. The claim follows since∣∣∣∣∣Tq f (ξ ) −
 
Γxξ
f (y) dµ(y)

∣∣∣∣∣ ≤
 
Γxξ
|f (y) − Tq f (ξ )|dµ(y) ≤

(  
Γxξ
|f (y) − Tq f (ξ )|q dµ(y)

)1/q

→ 0

when xξ → ξ .

Lemma 3.6. If Rp = ∞, then there exists f ∈ N1,p(X) such that TL f does not exists.

Proof. Let ξ ∈ ∂X. For each n ∈ [0,∞), we denote by xn(ξ ) the point in [0, ξ ) with |xn(ξ )| = n. It su�ces to
show that there exist a function f ∈ N1,p(X) and two sequences {ni}∞i=1, {mi}∞i=1 such that for any ξ ∈ ∂X,

 
Γxni (ξ )

fdµ ≥ 2
3 and

 
Γxmi (ξ )

fdµ ≤ 1
3 (3.13)

for any i ∈ N. Towards this, by Theorem 3.5 in [14], there exists a non-negative locally integrable function g
on [0,∞) so that ˆ ∞

0
gp(t)w(t)K j(t)dt < ∞ (3.14)
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and ˆ ∞

0
g(t)λ(t)dt = ∞. (3.15)

Pick n1 so that ˆ n1

0
g(t)λ(t)dt = 1. (3.16)

As µ(X \ Xn1 ) = liml1→∞ µ((X \ Xn1 ) ∩ Xl1 ), we �nd l1 ∈ N with n1 ≤ l1 such that

µ((X \ Xn1 ) ∩ Xl1 ) ≥ 2
3µ(X \ Xn1 ).

Since
µ(X \ Xn) = Knµ(Γxn(ξ )) and µ((X \ Xn) ∩ Xm) = Knµ(Γxn(ξ ) ∩ X

m) (3.17)

for any ξ ∈ ∂X and for any n,m ∈ N with n ≤ m, the above estimates give

µ(Γxn1 (ξ ) ∩ Xl1 )
µ(Γxn1 (ξ ))

≥ 2
3 (3.18)

for any ξ ∈ ∂X. By (3.15) we �nd m1 with l1 ≤ m1 such thatˆ m1

l1
g(t)λ(t)dt = 1. (3.19)

Since limk1→∞ µ((X \ Xm1 ) ∩ Xk1 ) = µ(X \ Xm1 ), there exists k1 with m1 ≤ k1 such that

µ((X \ Xm1 ) ∩ Xk1 ) ≥ 2
3µ(X \ Xm1 ).

Hence we have by (3.17) that
µ(Γxm1 (ξ ) ∩ Xk1 )
µ(Γxm1 (ξ ))

≥ 2
3 (3.20)

for any ξ ∈ ∂X. We continue by choosing n2 with k1 ≤ n2 such thatˆ n2

k1

g(t)λ(t)dt = 1. (3.21)

By induction on n1, l1,m1, k1, n2 with n1 ≤ l1 ≤ m1 ≤ k1 ≤ n2, there exist four sequences
{ni}∞i=1, {li}∞i=1, {mi}∞i=1, {ki}∞i=1 such that ni ≤ li ≤ mi ≤ ki ≤ ni+1 and

(3.18)-(3.21) hold for the corresponding pairs of indices ni , li ,mi , ki , ni+1 (3.22)

for any i = 1, 2, . . .. Now we de�ne a function f by setting f (x) = 1 if x ∈ Xn1 , and

f (x) =


1 if x ∈ Xli \ Xni

1 −
´ |x|
li g(t)λ(t)dt if x ∈ Xmi \ Xli

0 if x ∈ Xki \ Xmi

´ |x|
ki g(t)λ(t)dt if x ∈ Xni+1 \ Xki

(3.23)

for i ≥ 1. Then by (3.16),(3.19),(3.21),(3.22),(3.23), we have that f is continuous, 0 ≤ f ≤ 1, and g is an upper gra-
dient of f . By (3.14) and the fact that µ(X) < ∞, it follows that f ∈ N1,p(X). Combining (3.18),(3.20),(3.22),(3.23),
we conclude that for any ξ ∈ ∂X, for any i ∈ N,

 
Γxni (ξ )

fdµ ≥ 1
µ(Γxni (ξ ))

ˆ
Γxni (ξ )∩Xli

f dµ =
µ(Γxni (ξ ) ∩ Xli )
µ(Γxni (ξ ))

≥ 2
3

and  
Γxmi (ξ )

f dµ = 1
µ(Γxmi (ξ ))

ˆ
Γxmi (ξ )

fdµ ≤ 1 −
µ(Γxmi (ξ ) ∩ Xki )
µ(Γxmi (ξ ))

≤ 1
3 .

Thus (3.13) holds. The claim follows.
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Lemma3.7. Let 1 ≤ q ≤ p. If one of TR f , TL f , Tq f exists for each f ∈ N1,p(X), then all of them exist and coincide
ν-a.e on ∂X for a given f .

Proof. By Lemma 3.3-3.6, we have that Rp < ∞ if and only if one of TR f , TL f , Tq f exists for each f ∈ N1,p(X).
Then

TR f , TL f , Tq f exist if one of them exists (3.24)

for each f ∈ N1,p(X). By Lemma 3.4 and Lemma 3.5, we obtain that

TR f = Tq f = TL f ν-a.e if TR f , Tq f exist (3.25)

for each f ∈ N1,p(X). Combining (3.24)-(3.25), we conclude that TR f = Tq f = TL f ν-a.e if one of TR f , Tq f , TL f
exists. The proof is complete.

Proof of Theorem 1.3. (i)⇔ (iv) is given by Lemma 3.3.
(iv)⇒ (iii) is given by Lemma 3.4.
(iii)⇒ (ii) is given by Lemma 3.5.
(ii)⇒ (iv) is given by Lemma 3.6.
The latter part of the Theorem is given by Lemma 3.7.

Proof of Theorem 1.4. Recalling that each f ∈ N1,p(X) is continuous, we have that |f (0)| < ∞ and hence
N1,p(X) ⊂ Ṅ1,p(X). We are left to show that Ṅ1,p(X) ⊂ N1,p(X). It su�ces to prove that

‖f‖Lp(X) . ‖f‖Ṅ1,p(X)

for any f ∈ Ṅ1,p(X). Let f ∈ Ṅ1,p(X) and let gf be an upper gradient of f . For any x ∈ X we have

|f (x)| ≤ |f (0)| +
ˆ

[0,x]
gf dλ (3.26)

where 0 is the root of X. By arguments (3.3), (3.6), it follows that for any p ≥ 1,( ˆ
[0,x]

gf dλ
)p
≤ M

ˆ
[0,x]

gpf (y)K j(y)dµ(y). (3.27)

where M = max{2p−1Rp−1
p , R1}. By the Fubini theorem, we have from (3.26)-(3.27) that

‖f‖Lp(X) ≤‖f (0)‖Lp(X) +
∥∥∥∥ ˆ

[0,x]
gf dλ

∥∥∥∥
Lp(X)

≤µ(X)1/p|f (0)| + M
1
p

(ˆ
X

ˆ
[0,x]

gpf (y)K j(y)dµ(y)dµ(x)
)1/p

=µ(X)1/p|f (0)| + M
1
p

(ˆ
X
gpf (y)K j(y)

(ˆ
X
χ[0,x](y)dµ(x)

)
dµ(y)

)1/p

=µ(X)1/p|f (0)| + M
1
p

(ˆ
X
gpf (y)K j(y)µ(Γy)dµ(y)

)1/p
.

Since K j(y)µ(Γy) = µ(X \ X|y|) ≤ µ(X), the above estimate gives that

‖f‖Lp(X) ≤ µ(X)1/p‖f (0)‖ + µ(X)1/pM
1
p ‖gf ‖Lp(X).

We conclude that for any f ∈ Ṅ1,p(X),

‖f‖N1,p(X) = ‖f‖Lp(X) + ‖gf ‖Lp(X) . ‖f‖Ṅ1,p(X).

Thus Ṅ1,p(X) ⊂ N1,p(X) which �nishes the proof.
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Example 3.8. Let w(t) = e−βj(t) and λ(t) = e−εj(t) with ε, β > 0 and β > log K + εp. Then (X, dλ , µ) is a metric
measure space as in Section 2.1 with µ(X) < ∞, Rp = ∞ for any 1 ≤ p < ∞ but nevertheless N1,p(X) = Ṅ1,p(X).

It is obvious that µ(X) < ∞ and Rp = ∞ for any 1 ≤ p < ∞. Indeed, since (β − log K) > εp > 0 we have that

µ(X) =
ˆ ∞

0
w(t)K j(t)dt =

ˆ ∞

0
e−(β−log K)j(t) dt < ∞.

For any 1 ≤ p < ∞, as (β − K − εp) > 0 we obtain that

Rp =
ˆ ∞

0
λ(t)

p
p−1 w(t)

1
1−p K

j(t)
1−p dt =

ˆ ∞

0
e

(β−log K−εp)j(t)
p−1 dt = ∞ for p > 1,

and
R1 =

∥∥∥∥ λ(t)
w(t)K j(t)

∥∥∥∥
L∞([0,∞))

=
∥∥∥e(β−log K−ε)j(t)

∥∥∥
L∞([0,∞))

= ∞.

As in the proof of Theorem 1.4 we have that N1,p(X) ⊂ Ṅ1,p(X). Hence we only need to prove that Ṅ1,p(X) ⊂
N1,p(X). It su�ces to show that for any f ∈ Ṅ1,p(X),

‖f‖Lp(X) . ‖f‖Ṅ1,p(X).

Let gf be an upper gradient of f . For p > 1, we have by the Hölder inequality that

|f (x)| ≤ |f (0)| +
ˆ

[0,x]
gf dλ =|f (0)| +

ˆ
[0,x]

gf (z)e−εj(z)dG(z)

≤|f (0)| +
( ˆ

[0,x]
gpf (z)dG(z)

)1/p ( ˆ
[0,x]

e
pεj(z)
1−p dG(z)

) p−1
p

≤|f (0)| + C
p−1
p

1

( ˆ
[0,x]

gpf (z)dG(z)
)1/p

for any x ∈ X, where
C1 =

ˆ ∞

0
e
pεj(t)
1−p dt = p − 1

pε .

For p = 1, since dλ(z) = e−εj(z)dG(z) ≤ dG(z) we have that

|f (x)| ≤ |f (0)| +
ˆ

[0,x]
gf dλ ≤ |f (0)| +

ˆ
[0,x]

gf (z)dG(z).

Let C = max{C
p−1
p

1 , 1}. By the Fubini theorem, it follows that for any p ≥ 1,

‖f‖Lp(X) ≤‖f (0)‖Lp(X) +

∥∥∥∥∥C
(ˆ

[0,x]
gpf (z)dG(z)

)1/p
∥∥∥∥∥
Lp(X)

=‖f (0)‖Lp(X) + C
(ˆ

X

(ˆ
X
gpf (z)χ[0,x](z)dG(z)

)
e−βj(x)dG(x)

)1/p

=µ(X)1/p|f (0)| + C
(ˆ

X
gpf (z)

(ˆ
X
χ[0,x](z)e−βj(x)dG(x)

)
dG(z)

)1/p
. (3.28)

For any z ∈ X, we have that

eβj(z)
ˆ
X
χ[0,x](z)e−βj(x)dG(x) =eβj(z)

ˆ
Γz
e−βj(x)dG(x)

=eβj(z)
ˆ ∞

j(z)
e−βj(t)K j(t)−j(z)dt

=eβj(z)K−j(z) e−βj(t)K j(t)
−β + log K

∣∣∣∣∞
j(z)

= 1
β − log K .
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Since µ(X) < ∞, dµ(z) = e−βj(z)dG(z), C < ∞, and β − log K > εp > 0, inserting this into (3.28) yields

‖f‖Lp(X) ≤ µ(X)1/p|f (0)| + C
(β − log K)1/p ‖gf ‖Lp(X) . ‖f‖Ṅ1,p(X)

as desired.

Remark 3.9. By Lemma 3.1 we know that
´∞

0 λ(t) dt < ∞ under the assumptions that µ(X) < ∞ and Rp < ∞. In
this case, the diameter of X with respect to dλ is �nite and we could consider balls in X that have their centers
on ∂X. Towards this, recall that (η, ζ ) refers to the geodesic between η, ζ ∈ ∂X. Given ξ ∈ ∂X and xξ ∈ [0, ξ ),
we let

Bxξ =
{

(η, ζ ) ∈ X : η, ζ ∈ B∂X

(
ξ , 2

ˆ ∞

|xξ |
λ(t)dt

)}
where B∂X(ξ , r) is the ball with radius r and center at ξ in (∂X, db) as in Section 2.1. Then Bxξ is an analog of the
intersection of a domain and a ball with center ξ at boundary in the classical setting, and

Γxξ = Bxξ for each xξ ∈ [0, ξ )

for any ξ ∈ ∂X in our setting. This gives us a justi�cation to consider the traces TL , Tq in De�nition 1.2 to be
analogs of (1.2)-(1.3). We do not know if we could replace Bxξ by BX(ξ , r) in general in the de�nitions of our
traces. It is easy to check that one can do so if µ is assumed to be doubling.
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