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Highlights 

 A new triazolyl-indole was synthesized and characterized. 

 Its low temperature X-ray single crystal structure was presented. 

 Analysis of intermolecular interactions was performed using Hirshfeld calculations. 

 DFT calculations were utilized to predict its electronic and spectroscopic aspects. 

 The compound exists exclusively in the enol form. 
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Abstract: The 3-(1H-indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol 2 was 

obtained exclusively in the enol configuration starting from triazolyl-indole derivative 1 and 

alkyl halo-esters in the presence of K2CO3. Chemical structure elucidations with the aid of 

physicochemical characterizations were used to predict its molecular structure while single 

crystal X-ray diffraction technique was used to shed the light on the supramolecular structure 

of 2. DFT calculations agreed very well with the reported X-ray structure where the most 

stable form thermodynamically is the enol form. Its optimized geometry agreed very well 

with the experimental structure where the correlation coefficients between the calculated and 

experimental geometric parameters are very close to 1. Using Hirshfeld analysis, the most 

significant intermolecular contacts are the N…H, H…C(π), O…H, S…H and C…C contacts.   

Keywords: triazolyl-indole; Tautomerism; Hirshfeld surface analysis; DFT; NBO. 

  

                  



 

 

 

1. Introduction 

The 1,2,4-triazole motif connected to the indole scaffold have got remarkable attention 

in many pharmaceutical applications with diverse pharmacological effects [1,2]. 

Specifically, the 1,2,4-triazole-3-thione analogues with the amino-functionality in the fourth 

position have gain a lot of attention due to the presence of sulfur-nitrogen donor atoms which 

could bind to metals leads to enhancement of the pharmaceutical activity [3]. This scaffold 

system also can be employed as building blocks in a lot of chemical transformation including 

construction of Schiff bases and fused heterocycles [4,5]. Among the fused heterocyclic 

molecules is the s-triazolo[3,4-b]-1,3,4-thiadiazole and thiazolidines rings. In literature, this 

motif has diverse of biological properties in the recent years including anti-mycobacterial, 

antifungal, antimicrobial, antiviral, anticonvulsant, anti-HIV, anti-inflammatory, and 

anticancer activities [6-25].   

On other hand, keto-enol tautomerism was studied extensively in literature because it 

plays a crucial role particularly in the biological systems. For example, DNA consist of 

nucleobases which exist exclusively in the keto tautomeric forms, mutations might be 

occurred if a single base converted from the keto form into the enol form [26]. To design, 

synthesize, and separate either of the two tautomer in a pure form is a challenge. A literature 

survey revealed that many of the fused heterocycles based s-triazolo[3,4-b]- thiazolidines 

rings were found in the keto-form [27-30]. Unfortunately, most of these findings are based on 

routine spectroscopic techniques and no X-ray structures were reported for these examples. 

In this text, we have been reported the synthesis of 

3-(1H-indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol in the enol form. 

Additionally, the chemical insight of the synthesized compound was also investigated with 

the aid of different experimental and theoretical techniques. 

  

                  



 

 

2. Materials and Methods  

 All general notes regarding to the equipment’s utilized in this study for structure 

elucidation have been provided in the Supplementary data. 

2.1. Synthesis of the 3-(1H-indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol 2 

A mixture of triazolyl-indole derivative 1 (1.0 mmol) and potassium carbonate K2CO3 

(1.2 mmol) dissolved in 10 mL EtOH (absolute) then allowed to stir for 1 h at rt. 

Subsequently, tert-butyl bromoacetate or ethyl chloroacetate (1.2 mmol) was added and the 

reaction mixture was refluxed for 3 h then cooled. Solvent was removed under reduced 

pressure, cold water has been added and the mixture was acidified with diluted HCl. The 

formed precipitate was filtered off, dried and recrystallized from EtOH or DMF/EtOH.  

Yield: 81 %, m.p. 291-292
 o
C; 

1
H NMR (DMSO-d6, 300 MHz) δ 3.92 (s, 2 H, CH2), 7.05 

(dd, 1 H, J4,5 7.9, J5,6 7.3 Hz, H-5Indole), 7.16-7.21 (m, 2 H, H-3Indole, H-6Indole), 7.45 (d, 1 H, 

J6,7 8.1 Hz, H-7Indole), 7.64 (d, 1 H, J4,5 7.9 Hz, H-4Indole), 11.90 (br. s, 1H, NHIndole), 12.68 (br. 

s, 1 H, NHThiadiazine); 
13

C NMR (DMSO-d6, 75 MHz) δ 27.60 (CH2Thiadiazine), 102.89 

(C-3Indole), 111.87 (C-7Indole), 119.76 (C-5Indole), 120.94 (C-4Indole), 122.95 (C-2Indole), 123.17 

(C-6Indole), 127.47 (C-3aIndole), 136.71 (C-7aIndole), 143.30, 144.61 (C-3Triazole, C-5Triazole), 

164.23 (C=O), (Figs. S1-S4, Supplementary data); HRMS (EI) calcd for C12H9N5SO (M
+
): 

271.0552. Found: 271.0552. 

2.2. Experimental method for X-Ray structure determinations  

The experimental method for mounting the crystal along with the software package 

[31-33] to solve the data have been provided in the Supplementary data. Table 1 listed the 

data of the solid-state structure of the studied compound.  

2.3. Hirshfeld surface analysis  

Crystal Explorer 17.5 program employed for the topology analyses [34]. 

 

2.4. Computational methods 

                  



 

 

All software [35-39] utilized in this computational study have been provided in the 

Supplementary data.  

 

 

 

3. Results 

3.1. Synthesis of 2 

3-(1H-Indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol 2 was obtained in high 

yield from the reaction of 4-amino-5-(1H-indol-2-yl)-1,2,4-triazol-3(2H)-thione 1 with ethyl 

chloroacetate or tert-butyl bromoacetate in ethanol and K2CO3  as basic condition (Scheme 

1). The product was found in the solid state in the enol configuration. The chemical feature of 

the solid compound elucidated unambiguous by single crystal x-ray diffraction technique 

combined with a set of spectrophotometric techniques including NMR, Uv-Vis and mass 

spectra.  

  

                  



 

 

 

Scheme 1. Synthesis of the 

3-(1H-indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol 2 

                  



 

 

3.2. Structural Characterization 

1
H NMR spectra shown the two hydrogen adjacent to sulphur atom of the thiadiazine 

ring at δ 3.92 ppm, the five hydrogen of the indole scaffold shown between 7.02-7.66 ppm, 

the NH of indole ring appeared at 11.90 ppm and the HO attached to thiadiazine ring was 

found at 12.68 ppm. 
13

C NMR spectra showed the methylene carbon at 27.60 ppm, the indole 

CH carbons appeared at 102.89, 111.88, 119.77, 120.95 and 123.18 ppm. The following 

signals δ 122.95, 127.47, 136.71, 143.30, 144.61 and 164.23 ppm were assigned for the 

quaternary carbons. The correlation between vicinal protons or protons and directly attached 

carbons confirmed by COSY and 2D HMQC respectively (see Supplementary data). 

3.3. X-Ray structure descriptions 

The solid state X-ray structure of 2 is depicted in Figure 1. It crystallized in the 

orthorhombic crystal system and Pbca space group with four molecules per unit cell. The unit 

cell parameters are a = 13.6036(3) Å, b = 7.8245(3) Å, c = 21.3279(8) Å and α= β= γ =90°. 

The two fused rings of the indole moiety are nearly planar where the angle between the mean 

planes of the two fused rings is only 2.85°. In addition, the triazole moiety is slightly twisted 

from the mean plane of the indole moiety by 9.25°.  On other hand, the five atoms of the 

triazole moiety are in the same plane where if we assumed that the S1 and N1 atoms lying 

above this plane by 0.059 and 0.155 Å, respectively, the C1 atom is located below this plane 

by 0.649 Å. Further structural details are listed in Tables S1-S6 (Supplementary data). 

  

                  



 

 

 

Figure 1. ORTEP for 2.  

The structure of 2 is packed by a number of N...H and O...H hydrogen bonds. The most 

important hydrogen bond contacts are shown in the left part of Fig. 2 while the hydrogen 

bond parameters are collected in Table 2. The solid-state structure are packed in the three 

dimension by O(1)-H(1)...N(4), O(1)-H(1)...N(3), C(6)-H(6)...O(1), and C(1)-H(1B)...N(4) 

hydrogen bonds with donor-acceptor distances of 3.529(3), 2.518(3), 2.990(3), and 

3.303(4)Å, respectively. Packing of the molecular units of 2 is shown in Fig. 2 (right part). 

 

 

 

Figure 2. Hydrogen bond contacts (left) and hydrogen bond network (right) in 2. 

  

                  



 

 

Table 1. Crystal Data. 

 2 

empirical formula C24H18N10O2S2 

fw 542.60 

(Å) 1.54184  

temp (K) 120(2)  

cryst syst Orthorhombic 

space group Pbca 

a (Å) 13.6036(3)  

b (Å) 7.8245(3)  

c (Å) 21.3279(8)  

V (Å
3
) 2270.17(13) 

Z 4 

(Mo K) (mm
-1

) 2.546 

calc (Mg/m
3
) 1.588 

No. reflns. 9403 

GOOF (F
2
) 1.117 

Unique reflns. 2380 

Rint 0.0426 

R1
a
 (I  2) 0.0613 

wR2
b
 (I  2) 0.1622 

CCDC 2023823 

a
 R1 = ||Fo| – |Fc||/|Fo|.  

b
 wR2 = [[w(Fo

2
 – Fc

2
)

2
]/ [w(Fo

2
)

2
]]

1/2
. 

  

                  



 

 

Table 2. Hydrogen bonds for 2[Å and °]. 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

 O(1)-H(1)...N(4)#1 0.96 2.59 3.529(3) 165.6 

 O(1)-H(1)...N(3)#1 0.96 1.58 2.518(3) 165.6 

 C(6)-H(6)...O(1)#2 0.95 2.18 2.990(3) 142.6 

 C(1)-H(1B)...N(4)#3 0.99 2.43 3.303(4) 146.4 

Symmetry transformations used to generate equivalent atoms: 

#1 x+1/2,-y+1/2,-z+1    #2 x-1/2,-y+1/2,-z+1    #3 -x+1/2,y-1/2,z 

 

                  



 

 

3.4. Analysis of molecular packing 

The Hirshfeld surfaces of the studied compound are shown in Fig. 3. Hirshfeld 

calculations are important to quantify each intermolecular contact that held the molecular 

units in the crystal structure. It is clear that the molecular units are held together by many 

types of intermolecular contacts. The percentage of all representative contacts are drawn in 

Fig.4. The most abundant contacts are the H…H, N…H, H…C(π) and S…H interactions. On 

other hand, the most significant contacts are those presented in Figs. 5 and 6 which 

comprised the decomposed fingerprint plots and dnorm maps of these interactions. All the 

N…H, H…C(π), O…H, and C…C contacts appeared as red areas in the corresponding dnorm 

maps which confirm that these interactions have shorter distances than the vdW radii sum of 

the interacting atoms. Summary of the short intermolecular contacts as well as the 

corresponding interaction distances as acquired from the Hirshfeld calculations are 

summarized in Table 3. Small amount of C…C contacts (1.9%) was detected with shortest 

C…C distance of 3.162 Ǻ for the C2…C11 contact leave no doubt on the presence of some 

π-π interactions. In addition, Hirshfeld calculations revealed the presence of some S…H 

contacts slightly shorter (3.476 Å) than the vdW radii sum of the S and H atoms.   
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Figure 3. Hirshfeld surfaces of 2. 

  

                  



 

 

 

Figure 4. All intermolecular interactions summary of the studied compound 2.  

 

 

Figure 5. Fingerprint plots of the most important intermolecular interactions in 2. 

                  



 

 

 

Figure 6. The dnorm maps of the most important intermolecular interactions in 2. 

  

                  



 

 

Table 3. Summary of all short contacts and the interaction distances. 

Contact Distance Contact Distance 

O1…H6 2.075 N4…H1B 2.356 

N3…H1 1.555 C9…H1A 2.684 

N4…H1 2.569 C2…C11 3.164 

S1...C8 3.476 

  
 

                  



 

 

3.5. DFT studies 

The calculated molecular structure of 2 as well as the structure match between the 

experimental and calculated are depicted in Fig. 7. It was observed that both structures are 

very close to each other. There are also good squarely interrelationship among the bond 

angles and bond distances of the experimental and computed study of the compound 2 (Fig. 

8). The Cartesian coordinates of the optimized structure as well as the bond angles and 

distances compared to the acquired results experimentally are given in Table S7 

(Supplementary data). 

 

 

 

Figure 7. The geometry optimized (upper) and overlay of the solid-state x-ray structure with 

the optimized geometry (lower) for 2. 

                  



 

 

 

 

 

 

Figure 8. The straight line correlations between the calculated and experimental geometric 

parameters. 

                  



 

 

Table 4 are summarized the natural charges acquired by NBO calculation. It is clear that 

the most electropositive sites are the O-H (0.5109) and N-H (0.4472) protons as well as the 

carbon atoms (0.6018) located between N and O as strong electronegative atoms and sulphur 

atom as well (0.3483). On other hand, all N (-0.2472 to -0.5555) and O (-0.6733) atomic sites 

have the highest negative natural charge. Presentation of the molecular electrostatic potential 

(MEP) mapped over electron density showing the dipole moment vector is presented in Fig. 

9. There are red and blue areas representing the most electron rich and electron poor sites in 

2, respectively. These atomic sites are most reactive site to be attacked by an electrophile and 

nuclceophile, respectively.   

Table 4. Natural atomic charges of 2
a
. 

Atom  Charge  Atom  Charge  Atom  Charge  

S1  0.3483 C10 -0.2490 H19 0.2955 

O2 -0.6733 H11 0.2636 H20 0.2821 

H3 0.5109 C12 0.1410 C21 -0.2728 

N4 -0.2472 C13 0.3426 H22 0.2357 

N5 -0.2883 C14 0.6018 C23 -0.2127 

N6 -0.2817 C15 0.0997 H24 0.2414 

N7 -0.3873 C16 0.1666 C25 -0.2373 

N8 -0.5555 C17 -0.1004 H26 0.2389 

H9 0.4472 C18 -0.6884 C27 -0.2608 

a
Atom numbering refer to Fig. 7 

  

                  



 

 

 

Figure 9. The MEP, HOMO and LUMO of 2. 

  

                  



 

 

To study the reactivity of the molecule, the frontier molecular orbitals (HOMO, and 

LUMO) were computed [41-47]. Their energies were computed and acquired to be -5.380 

and -1.660 eV, respectively. Hence, the computed electron affinity (A), and ionization 

potential (I) are 1.6605, and 5.380 eV, respectively. Also, the electrophilicity index, and 

hardness are -3.262 and 3.720, 3.520 eV, respectively. The HOMO level is located over the 

fused triazole ring system and it represents the most favored area from which the electronic 

transition could occur. On other hand, the LUMO is distributed over most of the π-system. 

Hence, the HOMO to LUMO excitation represent mixed n-π* and π-π* transitions. The 

energy needed for this intermolecular charge transfer is 3.720 eV.  

3.6. NBO analysis 

The conjugation system play a crucial role in the electron delocalization processes from 

occupied orbitals to antibonding empty orbitals [48, 49]. These electron delocalization 

processes and the corresponding stabilization energies (E
(2)

) are summarized in Table 5. The 

compound is settled by a number of σ-σ*, n→σ*, n→π*, and π→π* intramolecular charge 

transfer (IMCT) processes. These IMCT processes stabilized the system up to 7.73, 32.13, 

12.15 and 43.34 kcal/mol, respectively. 

  

                  



 

 

Table 5: The E
(2)

 (kcal/mol) values for the charge transfer interactions in 2
a
. 

Donor NBO Acceptor NBO E
(2)

 Donor NBO Acceptor NBO E
(2)

 

σ→σ* 

  

π→π* 

  σ(O2-H3) σ*(C14 -C18) 5.46 π(N5-C12) π*(N6-C13) 11.90 

σ(N4-N7)  σ*(O2 -C14)   4.67 π(N6-C13) π*(N5-C12) 15.27 

σ(N4-C13)  σ*(S1 -C12)  4.66 π(N6-C13) π*(C10-C15) 9.45 

σ(N5-N6) σ*(S1 -C12) 7.73 π(N8-C16) π*(C10-C15) 20.48 

σ(N5-N6) σ*(C13 -C15)  5.55 π(N8-C16) π*(C21-C25) 5.39 

σ(N8-C15) σ*(C16 -C21) 4.51 π(C10-C15) π*(N6-C13) 19.41 

σ(C10-C15) σ*(C17-C23) 5.37 π(C10-C15) π*(N8-C16) 7.35 

σ(C10-C17) σ*(C13-C15) 6.24 π(C21-C25) π*(N8-C16) 32.13 

σ(C21-C25) σ*(N8-C16) 6.17 π(C21-C25)  π*(C23-C27) 16.63 

σ(C23-C27)  σ*(C10-C17)  4.56 π(C23-C27) π*(C21-C25) 19.61 

n→σ* 

  

n→π* 

  n(O2) σ*(N7-C14) 6.50 n(S1) π*(N5-C12) 17.53 

n(N5) σ*(N4-C12) 9.14 n(O2) π*(N7-C14) 43.34 

n(N5) σ*(N6-C13) 5.60 n(N4) π*(N5-C12) 41.86 

n(N5) σ*(N4-C12) 9.14 n(N4) π*(N6-C13)  40.66 

n(N5) σ*(N6-C13) 5.60 n(N4) π*(N7-C14) 22.07 

n(N6) σ*(N4-C13) 8.67 

   n(N6) σ*(N5-C12) 5.58 

   n(N7) σ*(O2-C14) 4.87 

   n(N7) σ*(N4-C12) 8.78 

   n(N7) σ*(N8-H 9) 4.47 

   n(N7) σ*(C14-C18) 12.15 

   a
Atom numbering refer to Fig. 7  

 

3.7. UV-Vis and NMR spectra 

                  



 

 

The results acquired for the UV-Vis electronic spectra of 2 experimentally in EtOH 

exhibited a broad absorption band at 313 nm and two shoulders at 333 and 309 nm (Fig. 10). 

Their assignments showing the molecular orbitals included in these electronic transitions are 

listed in Table 6 and shown in Fig. 11. The TD calculations predicted these transitions at 

310.6 nm (f=0.071), 347.5 nm (f=0.420) and 285.4 nm (f=0.311), respectively which 

corresponding to H-1→LUMO, HOMO→LUMO (96%) and HOMO→L+1 (89%), 

respectively. 

 

 

Table 6. The electronic spectra assignment of 2. 

No. (λmax)calc fosc
a 

Assignment (λmax)observ 

I 347.5 0.420 HOMO→LUMO (96%) 333 

II 310.6 0.071 H-1→LUMO (96%) 313 

III 285.4 0.311 HOMO→L+1 (89%) 309 

a
 oscillator strength 

 

 

Figure 10. The UV-Vis spectra of 2 in ethanol. 

 

                  



 

 

 

Figure 11. Origin of the UV-Vis spectral bands of 2 in ethanol as solvent. The definition of I, 

II and III refer to Table 6.  

  

                  



 

 

Table S8 provided in the Supplementary data summarized the computed of the 
1
H and 

13
C chemical shifts (C.S) and the results acquired experimentally. It is clear from Fig. 12 that 

there are also good squarely interrelationship among the computed C.s and the results 

acquired experimentally. The correlation coefficients are 0.9455, and 0.9969 for 
1
H-NMR, 

and 
13

C-NMR respectively.  

 
 

Figure 12. Correlation graphs of the 
1
H and 

13
C NMR chemical shifts between the computed 

and results acquired experimentally 

  

                  



 

 

3.8. Tautomerism in 2 

The studied molecule could exist in the two possible tautomeric structures shown in Fig. 

13. The geometry optimizations and frequency calculations for both tautomers allowed us to 

compute their energies and thermodynamic parameters. Energetically both tautomers have 

very close energies and thermodynamic parameters (Table 7). The keto form is energetically 

higher than the enol form by only 2 kcal/mol either in the gas phase or in solution of the 

compound in DMSO as solvent using B3LYP/6-31G(d,p) method. The thermodynamic 

parameters listed in Table 7 confirmed that the enol form is the thermodynamically most 

stable for the studied compound. The higher energies of the keto form may be attributed to 

the presence of some steric between the two N-H protons. Although, the results are in good 

agreement with the experimentally observed X-ray structure but still there is a possibility for 

the existence of equilibrium among the two tautomers in solution. 

 

Figure 13. Structure of the two suggested tautomers of the studied molecule. 

                  



 

 

Table 7. Energetic of both tautomers in gas phase and in solution of the compound in DMSO 

as solvent. 

Parameter  T1 T2 T1 T2 

 

Gas DMSO 

E -1209.8334 -1209.8304 -1209.8542 -1209.8511 

ZPVE 0.2044 0.2039 0.2045 0.2041 

Ecorr
a -1209.6291 -1209.6265 -1209.6497 -1209.6471 

ΔE 

 

1.6146 

 

1.6146 

H -1209.6137 -1209.6109 -1209.6344 -1209.6313 

S 121.6520 123.4450 121.3320 124.4010 

G -1209.6715 -1209.6695 -1209.6920 -1209.6904 

4. Conclusions 

The target compound 3-(1H-indol-2-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-ol 

2 was synthesized in excellent yield from coupling of triazolyl-indole derivative 1 and alkyl 

halo-ester using K2CO3 as a base. DFT calculations were used to analyze the ket-enol 

tautomerism in the studied system. It is found that the enol form which is observed 

experimentally is more stable than the keto form. Its supramolecular structure is 

quantitatively analyzed using Hirshfeld calculations. Also, calculated NMR and Uv-Vis 

spectra are in good agreement with the experimental data.  
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