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ABSTRACT Due to the ever-increasing complexities in cybercrimes, there is the need for cybersecurity
methods to be more robust and intelligent. This will make defense mechanisms to be capable of making
real-time decisions that can effectively respond to sophisticated attacks. To support this, both researchers and
practitioners need to be familiar with current methods of ensuring cybersecurity (CyberSec). In particular,
the use of artificial intelligence for combating cybercrimes. However, there is lack of summaries on artificial
intelligent methods for combating cybercrimes. To address this knowledge gap, this study sampled 131 arti-
cles from twomain scholarly databases (ACMdigital library and IEEEXplore). Using a systematic mapping,
the articles were analyzed using quantitative and qualitativemethods. It was observed that artificial intelligent
methods have made remarkable contributions to combating cybercrimes with significant improvement in
intrusion detection systems. It was also observed that there is a reduction in computational complexity,
model training times and false alarms. However, there is a significant skewness within the domain. Most
studies have focused on intrusion detection and prevention systems, and the most dominant technique used
was support vector machines. The findings also revealed that majority of the studies were published in two
journal outlets. It is therefore suggested that to enhance research in artificial intelligence for CyberSec,
researchers need to adopt newer techniques and also publish in other related outlets.

INDEX TERMS Artificial intelligence and cybersecurity, information security, machine learning, systematic
reviews.

I. INTRODUCTION
The rapid evolution of information and communication tech-
nologies, including the Internet has bred positive implica-
tions to organizations and social lives. The Internet provides
a platform that facilitates communication and networking.
It supports knowledge sharing [1] and social interaction [2]
which are important ingredients for human development.
Amidst all the benefits, it has a dark side. Its increase in
reliance on third party and/or cloud-based data storage and
applications, make it extremely difficult for organizations to
provide ‘‘total’’ security to their information systems.

For instance, current cloud infrastructure is character-
ized by a three-layer architecture. Each layer is arguably
at risk from a range of vulnerabilities introduced either by
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programmers or service providers. The disparate handling of
data makes crimes such as cybertheft and cyber-fraud more
complex to track within cyberspaces [3]. More worryingly,
ubiquitous distributed computing eliminates the importance
of geographical boundaries, and this alsomakes it possible for
criminal activities to originate from any part of the World [4].
Hence, organizations are increasingly challenged by a wide
range of cyber-attacks [5], [6]. These attacks are character-
ized by a high level of sophistication that calls for the need
of adopting Artificial Intelligence (AI) or intelligent agents
to combat them.

Accordingly, cyber defensemechanismsmust be i) increas-
ingly intelligent, ii) more flexible, and iii) robust enough
to detect a variety of threats and mitigate against them.
To achieve these requirements, organizations are adopting AI
techniques to effectively monitor and combat cyber-attacks
and cybercrimes. This, in addition, calls for the need for
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researchers and practitioners to be familiar with current
state of the art on the use of AI methods for cyber safety.
Although some existing studies have summarized and dis-
cussed issues impacting cybersecurity (CyberSec), to the
best of our knowledge none has, in a systematic manner,
focused on AI applications in CyberSec. Thus, this paper
aims to systematically review existing studies on the use of
AI techniques for combating cyber-attacks.

The next section provides a brief background on how AIs
are used in combating CyberSec issues. This is followed
by a discussion on existing related works and the current
knowledge gap. The method used for conducting the study,
the findings, discussions and conclusions are also presented.

II. BACKGROUND LITERATURE
A. ARTIFICIAL INTELLIGENCE FOR CYBERSECURITY
Information and communication technology researchers
agree that information security (InfoSec) is of primary
importance [7]. Consequently, a number of studies have
attempted to address this by adopting improved techniques
and technological artifacts; including the use of malware
detectors, intrusion detection and prevention systems (IDPS),
sophisticated firewall setups and data encryption algorithms.
Although some studies have argued that InfoSec issues can
be effectively managed by focusing on human behavior [10],
others have argued that focusing on human behavior alone
is not sufficient [3]. For example, the quantum of informa-
tion handled by most organizations necessitates considerable
automation [12]. Hence, there is the need for an appropriate
balance between humans, technology and policy manage-
ment in organizational security activities.

Conventional CyberSec prevention technologies use fix
algorithms and physical devices (such as sensors and detec-
tors), thus they are ineffective at containing new cyberspace
threats [10]. For instance, the first generation of antivirus
systems were designed to identify viruses by scanning its
bit signature. The fundamental assumption of this concept
is that a virus has the same structure and bit pattern in
all instances. These signatures and algorithms are therefore
fixed. Although the catalog of signatures is updated on a
daily basis (or whenever the device is connected to the Inter-
net), the sophistication and regular release of vast malware
make this approach ineffective. However, the introduction
of signature-less approaches that are capable of detecting
and mitigating malware attacks using newer methods such as
behavioral detections and AIs have been argued to be more
effective [12], [13].

This suggests that advancement in AI applications have
made it possible to design relatively effective and efficient
systems that automatically identify and prevent malicious
activities within cyberspaces [3]. They have been adopted
to support existing technological methods as they provide
effective standards and mechanisms to better control and pre-
vent cyber-attacks [14]. Despite all the benefits AI provides,
the rapid evolution of approaches makes it extremely difficult

for researchers to identify the most efficient technique and
its impact on cyberspace security. There is no ambiguity
that the general perception amongst InfoSec and CyberSec
researchers and practitioners suggest that AI has improved
organizational information security, yet to the best of our
knowledge, these claims are speculative and have not been
empirically substantiated. Most existing studies have either
demonstrated how their innovation outperform a selection
of existing methods or surveyed a sample of systems and
assess their performance in comparison to theirs. In all cases,
the level of selection biases is relatively high. Accordingly,
there is the need for an aggregated literature that provide sum-
maries on issues, challenges and future research directions
within the domain.

B. RELATED WORK
As mentioned earlier, existing studies have attempted to
review literature on CyberSec. For instance, Al-Mhiqani et al
[15] reviewed cases and incidents in cyber-physical systems
by describing a range of security breaches and provided solu-
tions for curtailing such breaches. Although their study pro-
vides meaningful insights to researchers, it failed to address
issues regarding AI advances in the domain. It is limited and
did not present discussions on techniques and algorithms that
are dominating the domain Li [16] provided a summary of
how AI has been used to combat cyber-attacks. However,
the study was arguably not systematic: the method used for
selecting literature was not defined, and disputably open to
researcher bias. Furthermore, Li [16] failed to provide dis-
cussions concerning the patterns and trends impacting the
performance of existing algorithms.

Other researchers focused their reviews in specific
domains, maintaining that CyberSec research is biased
towards intrusion detection and industrial control sys-
tems [19] Lun et al. [20], for instance, identified, classified
and analyzed cyber-physical security systems and concluded
that majority of CyberSec studies focus on approaches that
detect and protect power grids. Leszczyna [21] reviewed
standards of CyberSec requirements for smart grids and aug-
mented existing studies by providing evidence to consolidate
and compare current standards. Coventry and Branley [22]
and Kruse et al. [23] reviewed patterns of attacks within
healthcare cyberspace, and identified that information theft
and ransomware attacks were increasingly prevalent within
healthcare institutions. They concluded that systems and
measures for ensuring CyberSec within the healthcare indus-
tries are deficient Dilek et al. [3] reviewed AI applications
and techniques for combating cybercrime, yet their study can-
not claim to be ‘systematic’ when critically compared with
systematic review guidelines as proposed by Kitchenham and
Charters [18]. Specifically, they failed to detail the methods
adopted for study selection (i.e. inclusion and exclusion cri-
teria, search terms and phrases), the databases which were
queried, and the data extraction method used. In addition,
although they reported and explained existing AI methods
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FIGURE 1. Diagrammatic representation of the review process.

that are used in combating cybercrimes, they failed to provide
an overview of research trends in the domain.

Although the studies discussed above is not an exhaustive
list of all literature relating to cybersecurity review research,
a search from academic electronic libraries for systematic
review studies on cybersecurity failed to provide studies that
summarizes trends for AI methods in cybersecurity. Yet,
information on publication trends, dominant AI methods and
its impact on cybersecurity is crucial. This is because, such
information will provide the knowledge gaps and potential
opportunities or prospects in the domain: this is pertinent for

researchers and practitioners. This, therefore, makes it
imperative to conduct investigations in the domain using a
systematic approach. It is however emphasized that, although
systematic reviews do not guarantee bias-free literature inves-
tigations, it reduces biasness and also provides auditable
findings.

III. REVIEW METHODOLOGY
To ensure a rigorous and auditable review, a comprehensive
review protocol was developed. Review protocols reduce
researcher’s biasness and provide a framework that guides
the review process. This study adopted an existing system-
atic review method used in software engineering research as
proposed by Kitchenham and Charters [18]. The main review
process, consists of three phases, i.e. planning, conducting
and documenting phases. The protocol detailed the rationale

for the study, defined the review questions, search strategy,
databases, inclusion and exclusion criteria, data extraction
and synthesis. Figure 1 is a diagrammatic presentation of the
review process grouped into the three main phases, as sug-
gested by Kitchenham and Charters [18].

As suggested by Brereton et al. [24], review questions were
formulated during the planning stage to elicit the study goals,
which in turn formed the foundation of the study. The Goal-
Question-Metric approach (see Table 1) [25] was adopted.
This approach has been demonstrated by Lun et al. [20] to
be effective for eliciting objectives of systematic reviews.

TABLE 1. Goal-Question-Metric adopted from [25].

Within CyberSec domain, questions concerning the most
used AI methods and its effectiveness, directions of cur-
rent and future research among others remain unanswered.
Accordingly, this study seeks to explore existing studies in the
domain to address these knowledge gaps. Table 2 is a list of
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TABLE 2. Review questions and rationale.

review questions, which this study addressed and the rationale
or motivation for posing the questions.

The search terms, keywords, databases, search engines,
and the scope (time frame) were all considered and defined.
The inclusion and exclusion criteria were also defined.
To reduce biasness, a review protocol was developed sep-
arately by four members of the research team (i.e. one
principal reviewer, two secondary reviewers, and a research
methodologist).

In all instances, the members performed preliminary
searches to select the most appropriate databases and key-
words. The individual protocols were amalgamated to address
the study’s need, and the combined protocol was redefined
and reviewed by the fifth member (the advisor). The agreed
protocol was sent to an external reviewer with CyberSec
expertise for comments and amendments. After subsequent
corrections, the final protocol was developed.

The keywords or phrases considered appropriate were
made up of two categories; i.e. those relating to intelligence
systems (Artificial intelligence, Machine learning and Deep
learning) and those relating to security (Cybersecurity, infor-
mation security, internet security and network security). The
words from both categories were combined to form search
phrases including Artificial intelligence and/or Cybersecu-
rity, Machine learning and/or Cybersecurity, Deep learning
and/or Cybersecurity, Artificial intelligence and/or informa-
tion security, Machine learning and/or information security,
Deep learning and/or information security, Artificial intel-
ligence and/or internet security, Machine learning and/or
internet security, Deep learning and/or internet security, Arti-
ficial intelligence and/or network security, Machine learning
and/or network security, Deep learning and/or network secu-
rity. The search timeframe was limited to studies published
from 2008 to 2018: this allows consideration of the research
patterns over a substantial period of time. Institute of Elec-
trical and Electronics Engineers (IEEE) and Association for
Computing Machinery (ACM) digital libraries were deemed
the most appropriate databases for the review, since the pre-
liminary search indicated that other scholarly databases have
limited related studies in the domain. Arguably, IEEE and
ACM scholarly databases are considered as the two main
computer science research databases.

The search produced a total of 1145 studies. Eight hun-
dred and fifty-seven (857) studies were from IEEE research
database and the remainder (277) was from ACM Digital
Library. All studies were subjected to the inclusion and
exclusion criteria. Only peer-reviewed journal articles were
selected. Tutorials, short papers, conference proceedings, etc.
were excluded. This ensured that all selected studies had
undergone consistent revision and/or had been peer-reviewed
bymore than one external stakeholders as being of good qual-
ity. Studies that did not suggest within the title, that its content
is related to the application of AI in an area of CyberSec were
discarded. Next, studies with abstracts that did not discuss
an AI application for CyberSec were discarded. This reduced
biasness and researcher subjectivity in the selection process.

In total, 131 studies were selected. Data were extracted
from the selected studies, and 3 members of the team (i.e. the
principal and secondary reviewers) performed data extraction
separately. All members met and discussed their findings
in order to address any disparity between analysis. Studies
that produced contradictory classifications were resolved in
a group meeting attended by all members of the team. A res-
olution was driven by the other two members (i.e. the advisor
and the research methodologist) who assessed the articles.
If required, a vote was taken by team members to support or
refute any final decision.

During the data extraction process, the relevant informa-
tion needed were recorded from all the selected primary
studies (131 articles) to answer the review questions stated in
table 2. The resultant information was tabulated to find trends
and patterns in the selected studies. The extracted data was
analyzed and summarized.
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IV. REVIEW RESULTS
Information regarding the year of publication, the corre-
sponding author’s address and country and the publication
outlet, were recorded. In addition, for each article the AI
method used, and the type of security application discussed
was recorded. Studies that discussed improvement of existing
approaches were also analyzed and summarized. Below is a
discussion on the findings from the study.

A. PUBLICATION TRENDS
It was evident from the results (see Figure 2) that the num-
ber of research publications on AI methods for ensuring
cybersecurity have increased considerably in recent years.
AI techniques in CyberSec started gaining attention after
2015. Articles from 2008 to 2015 accounted for 26% of the
total selected primary studies. Since 2016, publications in
the domain have increased by a margin of almost 100% and
this forms the steepest slope of the graph. Publications in the
domain increased from seven to fourteen in 2015 and doubled
again in 2017. In 2018, fifty-seven studies were recorded: this
indicates a little more than twice what was published in the
previous year.

FIGURE 2. Trends in primary studies from 2008 to 2018.

The findings indicated that publications were also skewed
among publishing houses/outlets. Out of the 131 journal arti-
cles studied, 32 of the articles were published in IEEE Access
Journal and 26 were published at IEEE Transactions on Infor-
mation Forensics and Security Journal. These two outlets
accounted for 45% (59 publications of the total number. See
figure 3 for the chart of publication distribution according
to publication outlets). The chart indicates outlets with more
than 2 publications. The next publication outlet that recorded
the most articles was the IEEE Transactions on Industrial
Informatics and IEEE transaction on Network and Service
Management. They both recorded five studies. The rest of the
publishing outlets recorded either three or less studies.

Similarly, research in the domain was observed to be
skewed geographically. The addresses of corresponding
authors revealed that majority of the studies originated from
countries in Asia. A total of 68 articles out of the 131

FIGURE 3. Publications outlets with more than 2 articles on AI/ in
Cybersecurity.

(i.e. 52%) originated from Asia. South America and Africa
recorded one publication each. In terms of countries, China
recorded the highest publication followed by the United
States of America. See figure 4 for the distribution of articles
studied in terms of country of origin.

FIGURE 4. Distribution of publications by country of origin of the
corresponding author.

B. AI METHODS AND DOMAIN OF APPLICATION IN
CYBERSECURITY
Over 50 different algorithms were identified from the var-
ious studies that were used in the review. The dominant
algorithms were: Artificial Neural Networks (ANN), Con-
volution Neural Networks (CNN), Decision Trees (DT),
K-Means, K-Nearest Neighborhood (KNN), Adaptive Boost-
ing (AdaBoost), Q-Learning (QL), Random Forest (RF),
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Recursive Neural Networks (RNN) and Support Vector
Machines (SVM) – see Table 3.

TABLE 3. AI algorithms in cybersecurity (2008 to 2018).

Fourteen studies did not explicitly specify the algorithm
used for implementing the security measure. The most used
algorithm was SVM (24 studies) followed by CNN (14).
ANN was used in 10 studies, whereas Random forest,
K-means and Decision trees were recorded in 9, 8 and 7 stud-
ies respectively.

For convenience and simplicity, domains of application
were grouped into six: (i) intrusion detection and prevention
systems (IDPS), (ii) traffic classification systems, (iii) imag-
ing and captcha, (iv) Encryption and certification, (v) Denial-
of-service attack, and (vi) malware, virus, phishing, etc.

The study revealed that intrusion detection and preven-
tion systems (IPDS) have attracted more research attention
compared to other domains. Thirty-eight studies (i.e. 41%)
addressed issues relating to IDPS (see table 4), followed

TABLE 4. Publication and applications domains (2008 to 2018).

TABLE 5. Application domains vs AI algorithms (2008 to 2018).

by issues on malware, virus, phishing, etc. that recorded
27 studies (21%).

Studies that focused on power systems security assess-
ment, covert channels, security games, fingerprint liveness
detection, biometric verification (including facial verifica-
tion), malicious webpages, cyberbullying, false data injec-
tion, online deception review, information risk assessment,
iris recognition were all classified as others, since they were
not identified in more than 2 studies. The total number
of studies that fell under this category was 47 (i.e. 36%).
To understand how various algorithms have been used for dif-
ferent areas of application, the various methods were mapped
to different domains of application. The results indicated that
IDPS and malware, virus, phishing, etc. mostly adopt ensem-
ble techniques (i.e. uses a combination of two or more AI
algorithms). It was also observed that studies that focused on
Encryption & Certification, DoS, and Imaging and Captcha
do not prefer ensemble methods.

C. IMPACT OF AI METHODS ON CYBERSECURITY
The most significant contribution of AI in the domain is the
improvement in false alarm rates for IDPS. All studies on
IDPS reported improvement in false alert rates. For instance,
Aminanto et al. [26] explained that their approach to IDPS
recorded a remarkable false alarm rate of values around
0.012%, which is the current lowest value for impersonation
attack detection.

Computational complexity was identified as a key chal-
lenge in IDPS. Almost all studies that sought to address issues
on IDPS identified it as a challenge. It can be inferred that
this challenge has been inherited from generic AI methods
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(particularly relating to issues in machine learning). This is
because computational complexity is one of the most chal-
lenging issues in machine learning algorithms [27], [28].
It impacts computational speed and adversely affects the per-
formance of applications. Yet, a number of studies reported
some form of reduction in computational complexities. The
use of genetic algorithm-based feature selection is effective
for reducing computational complexities in IDPS. This was
demonstrated by studies conducted by Ahmed et al. [29].
With regard to network intrusion, the ability to detect new
traffic patterns and anomalies using ensembles was identified
to be one of the most effective methods. In addition, higher
IDPS accuracies, with lower rates of false positives and lower
energy consumption were observed.

Other contributions include the successful detection of
both known and unknown Controller Area Network (CAN)
attacks by Wang et al. [31]. The review revealed that AI
methods have provided effective ways of detecting mali-
cious users. The use of clickstream models, which does not
require prior knowledge or assumptions of user categories
was observed to be effective for capturing unexpected or
previously known behaviors.

Currently, systems are capable of detecting malicious
accounts through identification and coloring of similar click-
streams. Improved correctness of certification classifications,
using ANN was demonstrated by Dong et al. [32]. Again,
an improvement in accuracy, and computational efficiency
for image privacy protection, is currently possible using
deep CNN [33] and SVM [34]. Better image manipulation
detection algorithms have been developed by Bayar and
Stamm [35], and Cui et al. [37]. They improved manipulation
detection and malware image detection results respectively
using CNN. In addition, Ben Neria et al. [38] have improved
malicious webpage detection using spectral clustering.

D. FUTURE DIRECTIONS OF AI METHODS IN
CYBERSECURITY
Research directions in AI applications for cyber security
were recorded to be broad and diverging since 2008. This
divergence can be attributed to the larger spectrum of areas of
application. As explained earlier, challenges in cyber issues
continue to evolve. This makes it a challenge for studies to
focus on a specific domain. Studies within similar areas of
applications are currently experimenting with different AI
techniques and machine learning algorithms. From table 4,
algorithms that were classified as ‘‘other’’ formed 36% of the
sampled studies. These are algorithms that were identified to
have been used in less than two applications. Hence, it can
be inferred that researchers are adopting newer, and per-
haps more innovative techniques. Accordingly, future studies
may opt for novel techniques from other domains. However,
it must be emphasized that the need for applications to be
computationally efficient, reduce computational complexity
and improve performance accuracy are key issues that major-
ity of researchers in the domain advocate for. Particularly,
in IDPS the need for improvement in algorithms in complex

systems by reducing model training time was observed to be
paramount. Also, advocacy on proactive measures towards
CyberSec is dominant. Other issues such as the ability to
generalize intrusion detection models, the development of
self-tuning methods for automated network anomaly detec-
tions and advocacy for a significant reduction in detection
times were observed in most of the studies. Next is a discus-
sion of the implications of the findings from this study.

V. IMPLICATION AND DISCUSSION
A. RESEARCH TRENDS
The skewness in publication trends is visible in the var-
ious forms of the analysis (i.e. publication vendors, year
of publication, areas of applications and algorithms used).
In particular, two outlets dominated publications. This sug-
gests a critical issue that needs to be addressed. Although
there are a number of good publication outlets that seek
to discuss issues concerning CyberSec and AI, they were
not adequately represented in this study. It is intriguing to
observe that IEEE Access had 31 studies published between
2017 and 2018, yet IEEE Access started publishing papers
in 2013. This raises questions as to why some outlets are
failing to attract studies from researchers in the domain:
especially outlets that started publishing in this area but are no
longer seemingly attractive/support researcher contributions.
This trend also suggests the need for other related outlets to
consider issues in the domain. Perhaps a call for a special
issue in a related journal to draw researchers’ attention to the
relevance of the matter in their outlet. Again, no outlet was
identified with sole interest in AI application for CyberSec.
All identified outlets publishing AI and CyberSec issues were
multidisciplinary journals. Considering the relevance of the
domain with respect to the current advancement in quantum
computing and its implications on CyberSec, there is the need
for an intensified focus on AI for cybersecurity research.

It can be argued that IDPS is currently the major challenge
in CyberSec. Accordingly, majority of the studies geared
towards addressing challenges associated with IDPS. This
supports Franke and Brynielsson’s [19] assertion but refutes
that of Lun et al. [20]. Issues on IDPS are vast as they span
across physical human intrusion to virtual attacks. In addi-
tion, it is associated with other CyberSec issues since most
attackers start their attack processes by intruding into sys-
tems. Hence, addressing issues on intrusion will reduce a
myriad of CyberSec issues.

A considerable number of the studies analyzed focused
on malware, phishing and virus-related issues. This finding
supports Arshad et al. [43] argument that there is an increase
in the number of malware attacks; especially on Android
devices. Accordingly, the study found a number of malware
detection solutions that were designed for Android devices.
Out of 14 applications that were designed for malware detec-
tion, eight (8) focused on android devices. Denial of Service
attack was one of the least favored areas of interest. This
raises some concerns, considering that studies have argued
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that DoS has devastating effects on Information Technology
systems [44]. These findings, however contradict earlier stud-
ies [20] that argued that majority of CyberSec studies focus
on approaches that detect information theft and ransomware
attacks [23]. Also, even though some researchers have argued
that DoS attacks is one of the frightening CyberSec issues
that needs attention [45], the study showed that the use of
AI methods for addressing DoS issues is currently one of the
areas that is attracting less attention.

B. AI METHODS AND TECHNIQUES
As observed, support vector machine is the most preferred
algorithm for intrusion detection and preventive systems.
This supports arguments by Peker [46] that it is a robust
algorithm for classification. From the study, the application
of SVM grew exponentially between 2013 and 2018. SVMs
are capable of solving problems with small samples that are
nonlinear and also support high dimensionality. They have
become known to be a state-of-the-art algorithm for IDPS.

The study also confirmed suggestions that ensemble tech-
niques are effective for addressing IDPS [39], [40], malware,
virus, and phishing [41], [42] as most studies adopted this
technique. However, ensembles are less used in Encryption
& Certification, DoS, and Imaging and Captcha. Thus, there
is the need for investigations to ascertain why ensembles
are not preferred in Encryption & Certification, DoS, and
Imaging and Captcha, especially considering its success in
other cybersecurity issues as observed.

It was also observed that, algorithms that were preferred
previously are becoming unpopular. For instance, AdaBoost
(one of the early used algorithms) is becoming unpopular
(see table 3). Hence, although AdaBoost is considered to be
a robust algorithm [47], it is not gaining attention in cyber-
security issues. Other AI algorithms and techniques were
not considerably present in the studies reviewed. Artificial
neural network and its related algorithms, for example, have
not been adequately explored for addressing cybersecurity
issues. Yet, existing studies in machine learning have argued
that ANN and its related methods are effective [48], [49].
This calls for investigations into the prospects of ANN in
cybersecurity issues.

C. SECURING THE CYBERSPACE
AI applications for CyberSec have been generally success-
ful. Notable contributions have been made on combating
cybercrime: predominantly issues linked to IDPS. Newer
systems demonstrated improvements over previous systems:
with impacts on a range of issues including energy efficiency,
improved accuracy in predictions, reduction in computational
complexities, reduced computational speed and a reduction in
model training times.

The domain, however, faces a number of challenges. The
divergent nature of current research suggests a promising
future, yet some threats that need addressing. A significant
number of the studies sampled did not state clearly the
algorithm used or the domain of application. This does not

demonstrate a lack of focus on specific matters, but rather
propositions of generic methods. CyberSec issues are mostly
domain-specific, hence the provision of generic solutions
may be neither adequate nor effective. Also, the variety of
algorithms (almost 50) identified, suggests that researchers
are not accepting newer methods that are being introduced.
Even though it can be argued that these newer methods do
not outperform existing ones (hence less patronage), it is
necessary for researchers to investigate and improve them.
The spectrum of security issues is broad; thus, it is imperative
to consider newer algorithms to address newer challenges. So,
there is the need to investigate the reasons for not adopting
these techniques and how researchers may be persuaded to
incorporate new AI approaches?

Again, although some researchers have argued that the
use of single classifiers or algorithms are not effective in
CyberSec issues and thus proposed the use of ensemble and
hybrid methods [50], this study reveals that these methods
are not preferred. Ensemble techniques such as AdaBoost are
used less frequently. Accordingly, there is the need to develop
interest and attention in the use of hybrid and ensemble
classifiers to improve existing CyberSec measures.

VI. RESEARCH VALIDITY, LIMITATION AND CONCLUSION
This paper has presented an overview of existing research
on the application of AI for cybersecurity. To the best of our
knowledge, it is the first systematic review that considered the
entire span of AI activities and its implications in CyberSec.

As in all studies, the need to validate the methods used
is paramount. The first threat impacting the validity of this
study is the possible omission of papers in the selection
process and biasness in the data extraction process. Two
scholarly databases were considered. However, there are a
number of databases that may have related studies. Thus,
the findings of the study cannot be generalized. Yet, it pro-
vides an indication of patterns in the domain, particularly
considering that the initial search demonstrated that IEEE
and ACM digital libraries contain a vast majority of papers
required. In addition, to ensure that biasness in selection
was minimized, Kitchenham and Charter’s [18] guidelines
were applied. The search phrases, databases, and scope of the
review were performed by multiple individuals. Furthermore,
the protocol was reviewed by an external reviewer with exper-
tise in CyberSec to eliminate biases. To reduce the number of
omitted articles, two categories of search keywords relating to
intelligence systems and security were considered to facilitate
a concise research scope.

Although the use of journal articles for the review pro-
cess may present some biasness, it ensured that the studies
selected are of good quality and have been peer-reviewed.
This ensured that studies selected for this investigation are of
good quality: this is paramount. Even though the omission
of conference proceedings may present some biasness, the
ability to identify quality conference proceedings (particu-
larly those that are peer-reviewed) from the vast number of
available proceedings is a challenge. Quality assessments on
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conference proceedings are based on researcher’s assessment
of paper quality and this would have introduced additional
biases.

In conclusion, the study suggests that the application of AI
in the CyberSec domain has been promising with IDPS show-
ing improvement. AI has facilitated a reduction in computa-
tional complexity and reduced model training times. It was
also observed that there is a considerable skewness within
the domain. Moreover, researchers have focused on fewer
algorithms and as such newer algorithms are not popular.
This stands as both a challenge and also an opportunity for
researchers.

It is believed that AI applications will continue to offer
opportunities for cybersecurity. However, research must
never stand still, and researchers need to start adopting and
adapting new approaches and publish more widely.
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