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GROMEX: A Scalable and Versatile Fast
Multipole Method for Biomolecular
Simulation

Bartosz Kohnke, Thomas R. Ullmann, Andreas Beckmann, Ivo Kabadshow,
David Haensel, Laura Morgenstern, Plamen Dobrev, Gerrit Groenhof,
Carsten Kutzner, Berk Hess, Holger Dachsel, and Helmut Grubmüller

Abstract Atomistic simulations of large biomolecular systems with chemical
variability such as constant pH dynamic protonation offer multiple challenges in
high performance computing. One of them is the correct treatment of the involved
electrostatics in an efficient and highly scalable way. Here we review and assess two
of the main building blocks that will permit such simulations: (1) An electrostatics
library based on the Fast Multipole Method (FMM) that treats local alternative
charge distributions with minimal overhead, and (2) A λ-dynamics module working
in tandem with the FMM that enables various types of chemical transitions during
the simulation. Our λ-dynamics and FMM implementations do not rely on third-
party libraries but are exclusively using C++ language features and they are
tailored to the specific requirements of molecular dynamics simulation suites such
as GROMACS. The FMM library supports fractional tree depths and allows for
rigorous error control and automatic performance optimization at runtime. Near-
optimal performance is achieved on various SIMD architectures and on GPUs
using CUDA. For exascale systems, we expect our approach to outperform current
implementations based on Particle Mesh Ewald (PME) electrostatics, because
FMM avoids the communication bottlenecks caused by the parallel fast Fourier
transformations needed for PME.
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1 Introduction

The majority of cellular function is carried out by biological nanomachines made
of proteins. Ranging from transporters to enzymes, from motor to signalling
proteins, conformational transitions are frequently at the core of protein function,
which renders the detailed understanding of the involved dynamics indispensable.
Experimentally, atomistic dynamics on submillisecond timescales are notoriously
difficult to access, making computer simulations the method of choice. Molecular
dynamics (MD) simulations of biomolecular systems are nowadays routinely used
to study the mechanisms underlying biological function in atomic detail. Examples
reach from membrane channels [28], microtubules [20], and whole ribosomes [4] to
subcellular organelles [43]. Recently, the first MD simulation of an entire gene was
reported, comprising about a billion of atoms [21].

Apart from system size, the scope of such simulations is limited by model
accuracy and simulation length. Particularly the accurate treatment of electrostatic
interactions is essential to properly describe a biomolecule’s functional motions.
However, these interactions are numerically challenging for two reasons.

First, their long-range character (the potential drops off slowly with 1/r with
distance r) renders traditional cut-off schemes prone to artifacts, such that grid-
based Ewald summation methods were introduced to provide an accurate solution
in 3D periodic boundaries. The current standard is the Particle Mesh Ewald (PME)
method that makes use of fast Fourier transforms (FFTs) and scales as N · log N

with the number of charges N [11]. However, when parallelizing PME over many
compute nodes, the algorithm’s communication requirements become more limiting
than the scaling with respect to N . Because of the involved FFTs, parallel PME
requires multiple all-to-all communication steps per time step, in which the number
of messages sent between p processes scales with p2 [29]. For the PME algorithm
included in the highly efficient, open source MD package GROMACS [42], much
effort has been made to reduce as much as possible the all-to-all bottleneck, e.g.
by partitioning the parallel computer in long-range and short-range processors,
which reduces the number of messages involved in all-to-all communication [17].
Despite these efforts, however, even for multimillion atom MD systems on modern
hardware, performance levels off beyond several thousand cores due to the inherent
parallelization limitations of PME [30, 42, 45].

The second challenge is the tight and non-local coupling between the electrostatic
potential and the location of charges on the protein, in particular titratable/protonat-
able groups that adapt their total charge and potentially also their charge distribution
to their current electrostatic environment. Hence, all protonation states are closely
coupled, depend on pH, and therefore the protonation/deprotonation dynamics
needs to be taken into account during the simulation. Whereas most MD simulations
employ fixed protonation states for each titratable group, several dynamical schemes
have been introduced [8, 13, 14, 23, 33, 37] that use a protonation coordinate λ to
distinguish the protonated from the deprotonated state. Here, we follow and expand
the λ-dynamics approach of Brooks et al. [27] and treat λ as an additional degree
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of freedom in the Hamiltonian with mass mλ. Each protonatable group is associated
with its own λ “particle” that adopts continuous values in the interval [0, 1], where
the end points around λ = 0 and λ = 1 correspond to the physical protonated
or deprotonated states. A barrier potential with its maximum at λ ≈ 0.5 serves
two purposes. (1) It reduces the time spent in unphysical states, and (2) it allows
to tune for optimal sampling of the λ coordinate by adjusting its height [8, 9].
Current λ-dynamics simulations with GROMACS are however limited to small
system sizes with a small number nλ of protonatable groups [7–9], as the existing,
PME-based implementation (see www.mpibpc.mpg.de/grubmueller/constpH)needs
an extra PME mesh evaluation per λ group and suffers from the PME parallelization
problem. While these extra PME evaluations can be overcome for the case where
only the charges differ between the states, for the most general case of chemical
alterations this is not possible.

Without the PME parallelization limitations, a significantly higher number of
compute nodes could be utilized, so that both larger and more realistic biomolecular
systems would become accessible. The Fast Multipole Method [15] (FMM) is a
method that by construction parallelizes much better than PME. Beyond that, the
FMM can compute and communicate the additional multipole expansions that are
required for the local charge alternatives of λ groups with far less overhead as
compared to the PME case. This makes the communicated volume (extra multipole
components) somewhat larger, but no global communication steps are involved
as in PME, where the global communication volume grows linearly with nλ and
quadratic with p. We also considered other methods that, like FMM, scale linearly
with the number of charges, as e.g. multigrid methods. We decided in favor of
FMM, because it showed better energy conservation and higher performance in a
comparison study [2].

We will now introduce λ-dynamics methods and related work to motivate the spe-
cial requirements they have on the electrostatics solver. Then follows an overview of
our FMM-based solver and the design decisions reflecting the specific needs of MD
simulation. We will describe several of the algorithmical and hardware-exploiting
features of the implementation such as error control, automatic performance tuning,
the lightweight tasking engine, and the CUDA-based GPU implementation.

2 Chemical Variability and Protonation Dynamics

Classical MD simulations employ a Hamiltonian H that includes potential terms
modeling the bonded interactions between pairs of atoms, the bond angle inter-
actions between bonded atoms, and the van der Waals and Coulomb interactions
between all pairs of atoms. For conventional, force field based MD simulations, the
chemistry of molecules is fixed during a simulation because chemical changes are
not described by established biomolecular force fields. Exceptions are alchemical
transformations [36, 38, 46, 47], where the system is either driven from a state
A described by Hamiltonian HA to a slightly different state B (with HB) via

www.mpibpc.mpg.de/grubmueller/constpH


520 B. Kohnke et al.

a λ parameter that increases linearly with time, or where A/B chimeric states
are simulated at several fixed λ values between λ = 0 and λ = 1, as e.g. in
thermodynamic integration [24]. The A → B transition is described by a combined,
λ-dependent Hamiltonian

HAB(λ) = (1 − λ)HA + λHB. (1)

In these simulations, which usually aim at determining the free energy difference
between the A and B states, the value of λ is an input parameter.

In contrast, with λ-dynamics [16, 25, 27], the λ parameter is treated as an
additional degree of freedom with mass m, whose 1D coordinate λ and velocity λ̇

evolve dynamically during the simulation. Whereas in a normal MD simulation all
protonation states are fixed, with λ-dynamics, the pH value is fixed instead and the
protonation state of a titratable group changes back and forth during the simulation
in response to its local electrostatic environment [23, 39]. If two states (or forms)
A and B are involved in the chemical transition, the corresponding Hamiltonian
expands to

H(λ) = (1 − λ)HA + λHB + m/2λ̇2 + Vbias(λ) (2)

with a bias potential Vbias that is calibrated to reflect the (experimentally determined)
free energy difference between the A and B states and that optionally controls other
properties relating to the A � B transitions [8]. With the potential energy part V of
the Hamiltonian, the force acting on the λ particle is

fλ = −∂V

∂λ
. (3)

If coupled to the protonated and deprotonated form of an amino acid side chain,
e.g., λ-dynamics enables dynamic protonation and deprotonation of this side chain
in the simulation (see Fig. 1 for an example), accurately reacting to the electrostatic
environment of the side chain. More generally, also alchemical transformations
beyond protons are possible, as well as transformations involving more than just two
forms A and B. Equation 2 shows the Hamiltonian for the simplest case of a single
protonatable group with two forms A and B, but we have extended the framework to
multiple protonatable groups using one λi parameter for each chemical form [7–9].

2.1 Variants of λ-Dynamics and the Bias Potential

The key aim of λ-dynamics methods is to allow for dynamic protonation, but there
are three areas in which the implementations differ from each other. These are the
coordinate system used for λ, the type of the applied bias potential, and how λ is
coupled to the alchemical transition. Before we discuss the different choices, let
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Fig. 1 Simplified sketch of a protein (right, grey) in solution (blue) with several protonatable sites
(ball-and-stick representations) of which a histidine (top left) and a carboxyl group (bottom left)
are highlighted. The histidine site contains four forms (two neutral, two charged), whereas the
carboxyl group contains three forms (two neutral, one negatively charged). In λ-dynamics, the
lambdas controls how much of each form is contributing to a site. Atom color coding: carbons-
black, hydrogens/protons-white, oxygens-red, nitrogens-blue

us define two terms used in the context of chemical variability and protonation.
We use the term site for a part of a molecule that can interconvert between two or
more chemically different states, e.g. the protonated and deprotonated forms of an
aminoacid. Additionally, we call each of the chemically different states of a site a
form. For instance, a protonatable group is a site with at least two forms A and B, a
protonated form A and a deprotonated form B.

2.1.1 The Coordinate System for λ

Based on the coordinate system in which λ lives (or on the dynamical variables
used to express λ), we consider three variants of λ-dynamics listed in Table 1. The
linear variant is conceptually most straightforward, but it definitely needs a bias
potential to constrain λ to the interval [0..1]. The circular coordinate system for
λ used in the hypersphere variant automatically constrains the range of λ values
to the desired interval, however one needs to properly correct for the associated
circle entropy [8]. The Nexp variant implicitly fulfils the constraints on the Nforms
individual lambdas (Eq. 4) for sites that are allowed to transition between Nforms
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Table 1 Three variants of λ-dynamics are considered

Variant name Ref. Dynamical variable Geometric picture

Linear [9] λ λ lives on a constricted linear interval, e.g. [0..1]

Hypersphere [8] θ λ lives on a circle

Brooks’ Nexp [26] ϑ No simple geometric interpretation
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Fig. 2 Qualitative sketches of individual bias potentials (black) that fulfil some of the require-
ments (1)–(5), and resulting equilibrium distributions of λ values (green)

different forms (Nforms = 2 in the case of simple protonation), such that no
additional constraint solver for the λi is needed.

2.1.2 The Bias Potential

The bias potential Vbias(λ) that acts on λ fulfils one or more of the following tasks.

1. If needed, it limits the accessible values of λ to the interval [0..1], whereas slight
fluctuations outside that interval may be desirable (Fig. 2a).

2. It cancels out any unwanted barrier at intermediate λ values (b)
3. It takes care that the resulting λ values cluster around 0 or 1, suppressing values

between about 0.2 and 0.8 (c)
4. It regulates the depth and width of the minima at 0 and 1, such that the resulting λ

distribution fits the experimental free energy difference between protonated and
deprotonated form (c + d).

5. It allows to tune for optimal sampling of the λ space by adjusting the barrier
height at λ = 0.5 (c)

Taken together, the various contributions to the barrier potential might look like
the example given in Fig. 3 for a particular λ in a simulation.
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Fig. 3 Qualitative sketch of a
bias potential (black) that
fulfils all requirements
(1)–(5) with resulting
equilibrium distribution of λ

values (green)

0
0.00 0.25 0.50 0.75 1.00

bi
as

 p
ot

en
tia

l

2.1.3 How λ Controls the Transition Between States

The λ parameter can either be coupled to the transition itself between two forms (as
in [8, 9]), then λ = 0 corresponds to form A and λ = 1 to form B. Alternatively,
each form gets assigned its own λα with α ∈ {A,B} as weight parameter. In the
latter case one needs extra constraints on the weights similar to

∑
λα = 1, 0 ≤ λα ≤ 1, (4)

such that only one of the physical forms A or B is fully present at a time. For the
examples mentioned so far, with just two forms, both approaches are equivalent and
one would rather choose the first one, because it involves only one λ and needs no
extra constraints.

If, however, a site can adopt more than two chemically different forms, the weight
approach can become more convenient as it allows to treat sites with any number
Nforms of forms (using a number of Nforms independent λ parameters). Further, it
does not require that the number of forms is a power of two (Nforms = 2Nλ) as in
the transition approach.

2.2 Keeping the System Neutral with Buffer Sites

In periodic boundary conditions as typically used in MD simulations, the electro-
static energy is only defined for systems with a zero net charge. Therefore, if the
charge of the MD system changes due to λ mediated (de)protonation events, system
neutrality has to be preserved. With PME, any net charge can be artificially removed
by setting the respective Fourier mode’s coefficient to zero, so that also in these
cases a value for the electrostatic energy can be computed. However, it is merely
the energy of a similar system with a neutralizing background charge added. Severe
simulation artifacts have been reported as side effects of this approach [19].

As an alternative, a charge buffer can be used that balances the net charge of the
simulation system arising from fluctuating charge of the protonatable sites [9, 48].
A reduced number of nbuffer buffer sites, each with a fractional charge |q| ≤ 1e (e.g.
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via H2O � H3O+), was found to be sufficient to neutralize the Nsites protonatable
groups of a protein with nbuffer � Nsites. The total charge of these buffer ions is
coupled to the system’s net charge with a holonomic constraint [9]. The buffer sites
should be placed sufficiently far from each other, such that their direct electrostatic
interaction through the shielding solvent is negligible.

3 A Modern FMM Implementation in C++ Tailored to MD
Simulation

High performance computing (HPC) biomolecular simulations differ from other
scientific applications by their comparatively small particle numbers and by their
extremely high iteration rates. With GROMACS, when approaching the scaling
limit, the number of particles per CPU core typically lies in the order of a few
hundred, whereas the wall-clock time required for computing one time step lies in
the range of a millisecond or less [42]. In MD simulations with λ-dynamics, the
additional challenge arises to calculate the energy and forces from a Hamiltonian
similar to Eq. 2, but for N protonatable sites, in an efficient way. In addition to
the Coulomb forces on the regular charged particles, the electrostatic solver has to
compute the forces on the N λ particles as well [8] via

fλi = −∂VC

∂λi

= −∂VC(λ1, . . . , λi−1, λi , λi+1, . . . λN)

∂λi

= −
[
VC(λ1, . . . , λi−1, λi = 1, λi+1, . . . λN )

−VC(λ1, . . . , λi−1, λi = 0, λi+1, . . . λN )
]

(5)

Accordingly, with λ-dynamics, for each of the λi’s, the energies of the pure (i.e.,
λi = 0 and λi = 1) states have to be evaluated while keeping all other lambdas at
their actual fractional values.

The aforementioned requirements of biomolecular electrostatics have driven
several design decisions in our C++ FMM, which is a completely new C++
reimplementation of the Fortran ScaFaCoS FMM [5]. Although several other FMM
implementations exist [1, 50], none of them is prepared to compute the potential
terms needed for biomolecular simulations with λ-dynamics.

Although our FMM is tailored for usage with GROMACS, it can be used as
an electrostatics solver for other applications as well as it comes as a separate
library in a distinct Git repository. On the GROMACS side we provide the necessary
modifications such that FMM instead of PME can be chosen at run time. Apart
from that, GROMACS calls our FMM library via an interface that can also be
used by other codes. The development of this library follows three principles.
First, the building blocks (i.e., data structures) used in the FMM support each level
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of the hierarchical parallelism available on today’s hardware. Second, the library
provides different implementations of the involved FMM operators depending on
the underlying hardware. Third, the library optionally supports λ-dynamics via an
additional interface.

3.1 The FMM in a Nutshell

The FMM approximates and thereby speeds up the computation of the Coulomb
potential VC for a system of N charges:

VC ∝
N∑

i

∑

j<i

qiqj

|ri − rj | (6)

For that purpose, the FMM divides the simulation box into eight smaller boxes
(depth d = 1), which are subsequently subdivided into eight smaller boxes again
(d = 2) and again (d = 3, 4, . . .). The depth d refers to the number of subdivisions.
On the lowermost level, i.e. for the smallest boxes (largest d), all interactions
between neighboring boxes are directly calculated (these are called the near-field
interactions). Interactions with boxes further away are approximated by a multipole
expansion of order p (these are called the far-field interactions). A comprehensive
description of the FMM algorithm is beyond the scope of this text, however we will
shortly describe the basic workflow and the different operators used in the six FMM
stages as these will be referred to in the following sections. For a detailed overview
of the FMM, see [22]; for an introduction in our C++ FMM implementation see [12].

3.1.1 FMM Workflow

The FMM algorithm consists of six different stages, five of them required for the
farfield (FF) and one for the nearfield (NF) (Fig. 4). After setting up the FMM
parameters tree depth (d) and multipole order (p), the following workflow is
executed.

1. P2M: Expand particles into spherical multipole moments ωlm up to order p on
the lowest level for each box in the FMM tree. Multipole moments for particles in
the same box can be summed into a multipole expansion representing the whole
box.

2. M2M: Translate the multipole expansion of each box to its parent box inside the
tree. Again, multipole expansions with the same box center can be summed up.
The translation up the tree is repeated until the root node is reached.

3. M2L: Transform remote multipole moments ωlm into local moments μlm for
each box on every level. Only a limited number of interactions for each box on
each level is performed to achieve linear scaling.
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Input P2M M2M M2L L2L L2P P2P Out

synchronization
points

Fig. 4 The classical (sequential) FMM workflow consists of six stages. Only the nearfield (P2P)
can be computed completely independent of all other stages. Each farfield stage (P2M, M2M,
etc.) depends on the former stage and exhibits different amounts of parallelism. Especially the
distribution of multipole and local moments in the tree provide limited parallelism in classical
loop-based parallelization schemes

4. L2L: Translate local moments μlm starting from the root node down towards the
leaf nodes. Local moments within the same box are summed.

5. L2P: After reaching the leaf nodes, the farfield contributions for the potentials
�FF, forces FFF, and energy EFF are computed.

6. P2P: Interactions between particles within each box and its direct neighbors are
computed directly, resulting in the nearfield contributions for the potentials �NF,
forces FNF, and energy ENF.

3.1.2 Features of Our FMM Implementation

Our FMM implementation includes special algorithmical features and features that
help to optimally exploit the underlying hardware. Algorithmical features are

• Support for open and 1D, 2D and 3D periodic boundary conditions for cubic
boxes.

• Support for λ-dynamics (Sect. 2).
• Communication-avoiding algorithms for internode communication via MPI

(Fig. 9).
• Automatic tuning of FMM parameters d and p to provide automatic error control

and runtime minimization [6] based on a user-provided energy error threshold
	E (Fig. 10).

• Adjustable tuning to reduce or avoid energy drift (Fig. 11).

Hardware features include

• A performance-portable SIMD layer (Sect. 3.2.1).
• A light-weight, NUMA-aware task scheduler for CPU and GPU tasks

(Sect. 3.2.2).
• A GPU implementation based on CUDA (Sect. 3.4).
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3.2 Utilizing Hierarchical Parallelism

3.2.1 Intra-Core Parallelism

A large fraction of today’s HPC peak performance stems from the increasing width
of SIMD vector units. However, even modern compilers cannot generate fully vec-
torized code unless the data structures and dependencies are very simple. Generic
algorithms like FFTs or basic linear algebra can be accelerated by using third-party
libraries and tools specifically tuned and optimized for a multitude of different
hardware configurations. Unfortunately, the FMM data structures are not trivially
vectorizable and require careful design. Therefore, we developed a performance-
portable SIMD layer for non-standard data structures and dependencies in C++.

Using only C++11 language features without third-party libraries allows to fine-
tune the abstraction layer for the non-trivial data structures and achieve a better
utilization. Compile-time loop-unrolling and tunable stacking are used to increase
out-of-order execution and instruction-level parallelism. Such optimizations depend
heavily on the targeted hardware and must not be part of the algorithmic layer of
the code. Therefore, the SIMD layer serves as an abstraction layer that hides such
hardware-specifics and that helps to increase code readability and maintainability.
The requested SIMD width (1×, 2×, . . . , 16×) and type (float, double) is selected
at compile time. The overhead costs and performance results are shown in Fig. 5.
The baseline plot (blue) shows the costs of the M2L operation (float) without any
vectorization enabled. All other plots show the costs of the M2L operation (float)
and 16-fold vectorization (AVX-512). Since the runtime of the M2L operation is
limited by the loads of the M2L operator, we try to amortize these costs by utilizing
multiple (2× . . . 6×) SIMDized multipole coefficient matrices together with a single
operator via unrolling (stacking). As can be seen in Fig. 5, unrolling the multipole
coefficient matrices 2× (red), we reach the minimal computation time and the
expected 16-fold speedup. Additional unroll factors (3× . . . 6×) will not improve
performance due to register spilling. To reach optimal performance, it is required to
reuse (cache) the M2L operator for around 300 (or more) of these steps.

3.2.2 Intra-Node and Inter-Node Parallelism

To overcome scaling bottlenecks of a pragma-based loop-level parallelization (see
Fig. 4), our FMM employs a lightweight tasking framework purely based on C++.
Being independent of other third-party tasking libraries and compiler extensions
allows to utilize resources better, since algorithm-specific behavior and data-flow
can be taken into account. Two distinct design features are a type-driven priority
scheduler and a static dataflow dispatcher. The scheduler is capable of prioritizing
tasks depending on their type at compile time. Hence, it is possible to prioritize
vertical operations (like M2M and L2L) in the tree. This reduces the runtime
twofold. First, it reduces the scheduling overhead at runtime by avoiding costly
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Fig. 5 M2L operation benchmark for vectorized data structures with multipole order p = 10 on an
Intel Xeon Phi 7250F CPU for a float type with 16× SIMD (AVX-512). The benchmarks shows the
performance of different SIMD/unrolling combinations. E.g. the red curve (SIMD stacking 16×2)
utilizes 16-fold vectorization together with twofold unrolling For a sufficient number (around
300) of vectorized operations, a 16-fold improvement can be measured for the re-designed data
structures
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Fig. 6 The data flow of the FMM still consists of six stages. However, synchronization now
happens on a fine-grained level and not only after each full stage is completed. This allows to
overlap parts that exhibit poor parallelization with parts that show a high degree of parallel code.
The dependencies of such a data flow graph can be evaluated and even prioritized at compile time

virtual function calls. Second, since the execution of the critical path is prioritized,
the scheduler ensures that a sufficient amount of independent parallelism gets
generated. The dataflow dispatcher defines the dependencies between tasks—a data
flow graph—also at compile time (see Fig. 6). Together with loadbalancing and
workstealing strategies, even a non-trivial FMM data flow can be executed. For
compute-bound problems this design shows virtually no overhead. However, in MD
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Fig. 7 Intranode FMM benchmark for 1000 particles, multipole order p = 1 and tree depth
d = 3 on a 2x26-core Intel Xeon Platinum 8170 CPU. When using MCS locks, simultaneous
multithreading and 50 threads, the overall improvement compared to the original implementation
reaches >40%, translating into a reduction in runtime from 1.93 ms down to 1.14 ms

1 2 4 8 16 32 64 128 25610− 2

10− 1

100

101

#Nodes (1 MPI Rank per Node)

R
un

tim
e
in

s

Ideal
FMSolvr+MPI

Fig. 8 Initial internode FMM benchmark for 1,000,000 particles, multipole order p = 3 and tree
depth d = 5 with one MPI rank per compute node of the JURECA cluster

we are interested in smaller particle systems with only a few hundred particles per
compute node. Hence, we have to take even more hardware constraints into account.
Performance penalties due to the memory hierarchy (NUMA) and costs to access
memory in a shared fashion via locks introduce additional overhead. Therefore,
we extended also our tasking framework with NUMA-aware memory allocations,
workstealing and scalable Mellor-Crummey Scott (MCS) locks [35] to enhance the
parallel scalability over many threads, as shown in Fig. 7.

In the future, we will extend our tasking framework so that tasks can also be
offloaded to local accelerators like GPUs, if available on the node.

For the node-to-node communication via MPI the aforementioned concepts
do not work well (see Fig. 8), since loadbalancing or workstealing would create
large overheads due to a large amount of small messages. To avoid or reduce
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Fig. 9 Left: Intranode FMM parallelization—efficiency of different threading implementations.
Near field interaction of 114,537 particles in double precision on up to 28 cores on a single node
with two 14-core Intel Xeon E5-2695 v3 CPUs. Single precision computation as well as other
threading schemes (std::thread, boost::thread, OpenMP) showed similar excellent scaling behavior.
The plot has been normalized to the maximum turbo mode frequency which varies with the number
of active cores (3.3–2.8 GHz for scalar operation, 3.0–2.6 GHz for SIMD operation). Right:
Internode parallelization—strong scaling efficiency of a communication avoiding, replication-
based workload distribution scheme [10]. Near field interaction of 114,537 particles on up to
65,536 Blue Gene/Q cores using replication factor c. In the initial replication phase, only c nodes
within a group communicate. Afterwards, communication is restricted to all pairs of p/c groups.
For 65,536 cores, i.e. only 1–2 particles per core initially, a maximum parallel efficiency of 84%
(22 ms runtime) is reached for c = 64, and the maximal replication factor c = 256 yields an
efficiency of 73%, while a classical particle distribution (c = 1) would require a runtime exceeding
1 min due to communication latency

the latency that comes with each message, we employ a communication-avoiding
parallelization scheme [10]. Nodes do not communicate separately with each other,
but form groups in order to reduce the total number of messages. At the same time
the message size can be increased. Depending on the total number of nodes involved,
the group size parameter can be tuned for performance (see Fig. 9).

3.3 Algorithmic Interface

Choosing the optimal FMM parameters in terms of accuracy and performance
is difficult if not impossible to do manually as they also depend on the charge
distribution itself. A naive choice of tree depth d and multipole order p might either
lead to wasting FLOPs or to results that are not accurate enough. Therefore, d and
p are automatically tuned depending on the underlying hardware and on a provided
energy tolerance 	E (absolute or relative acceptable error in Coulombic energy).
The corresponding parameter set {d, p} is computed such that the accuracy is met
at minimal computational costs (Fig. 10) [6].

Besides tuning the accuracy to achieve a certain acceptable error in the Coulom-
bic energy for each time step, the FMM can additionally be tuned to reduce the
energy drift over time.
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Fig. 10 Depending on a maximum relative or absolute energy tolerance 	E, the automatic
runtime minimization provides the optimal set of FMM input parameters {d, p}. A lower requested
error in energy results in an increased multipole order p (magenta). Since the computational
complexity of the farfield operators M2M, M2L and L2L scales with p3 or even p4 (depending on
the used implementation), the tree depth d is reduced accordingly to achieve a minimal runtime
(green). With fractional depths [49], as used here, the runtime can be optimized even more than
with integer depths

Whereas multipole orders of about ten yield a comparable drift of the total energy
over time as a typical simulation with PME, the drift with FMM can be reduced to
much lower levels if desired (Fig. 11).

3.4 CUDA Implementation of the FMM for GPUs

A growing number of HPC clusters incorporate accelerators like GPUs to deliver
a large part of the FLOPS. Also GROMACS evolves towards offloading more and
more tasks to the GPU, for reasons of both performance and cost-efficiency [31, 32].

For system sizes that are typical for biomolecular simulations, FMM perfor-
mance critically depends on the M2L and P2P operators. For multipole orders of
about eight and larger their execution times dominate the overall FMM runtime
(Fig. 12).

Hence, these operators need to be parallelized very efficiently on the GPU. At the
same time, all remaining operators need to be implemented on the GPU as well to
avoid memory traffic between device (GPU) and host (CPU) that would otherwise
become necessary. This traffic would introduce a substantial overhead as a complete
MD time step may take just a few milliseconds to execute.

Our encapsulated GPU FMM implementation takes particle positions and
charges as input and returns the electrostatic forces on the particles as output.
Memory transfers between host and device are performed only at these two points
in the calculation step.
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Å

Fig. 11 Observed drift of the total energy for different electrostatics settings. Left: evolution of
the total energy for PME with order 4, mesh distance 0.113 nm, ewald-rtol set to 10−5 (black
line) as well as for FMM with different multipole orders p at depth d = 3 (see legend in the right
panel). Test system is a double precision simulation at T ≈ 300 K in periodic boundaries of 40 Na+
and 40 Cl− ions solvated in a 4.07 nm3 box containing extended simple point charge (SPC/E) water
molecules [3], comprising 6740 atoms altogether. Time step 	t = 2 fs, cutoffs at 0.9 nm, pair-list
updated every ten steps. Right: Black squares show the drift with PME for different Verlet buffer
sizes for the water/ions system using 4×4 cluster pair lists [41]. For comparison, green line shows
the same for pure SPC/E water (without ions) taken from Ref. [34]. Influence of different multipole
orders p on the drift is shown for a fixed buffer size of 8.3 Å. The GROMACS default Verlet buffer
settings yield a drift of ≈ 8×10−5 kJ/mol/ps per atom for these MD systems, corresponding to the
first data point on the left (black square/green circle)

The particle positions and charges are split into different CUDA streams that
allow for asynchronous memory transfer to the host. The memory transfer is
overlapped with the computation of the spatial affiliation of the octree box.

In contrast to the CPU FMM that utilizes O(p3) far field operators (M2M, M2L,
L2L), the GPU version is based on the O(p4) operator variant. The O(p3) operators
require less multiplications to calculate the result, but they introduce additional
highly irregular data structures to rotate the moments. Since the performance of
the GPU FMM at small multipole orders is not limited by the number of floating
point operations (Fig. 12) but rather by scattered memory access patterns, we use
the O(p4) operators for the GPU implementation.

We will now outline our CUDA implementation of the operations needed in the
various stages of the FMM (Figs. 4, 5, and 6), which starts by building the multipoles
on the lowest level with the P2M operator.
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Fig. 12 Colored bars show detailed timings for the various parts of a single FMM step on a GTX
1080Ti GPU for a 103,000 particle system using depth d = 3. For comparison, total execution
time for d = 3 on an RTX 2080 GPU is shown as brown line, whereas black line shows timings
for d = 4 on a GTX 1080Ti GPU. CUDA parallelization is used in each FMM stage leaving the
CPU mostly idle

3.4.1 P2M: Particle to Multipole

The P2M operation is described in detail elsewhere [44]. The large number of
registers that is required and the recursive nature of this stage limits the efficient
GPU parallelization. The operation is however executed independently for each
particle and the requested multipole expansion is gained by summing atomically
into common expansion points. The result is precomputed locally using shared
memory or intra-warp communication to reduce the global memory traffic when
storing the multipole moments. The multipole moments ω, local moments μ and
the far field operators A, M, and C are stored as triangular shaped matrices

ω,μ, A, C ∈ K
p×p := {

(xlm)l=0,...,p, m=−l,...,l | xlm ∈ C
}

(7)

and M ∈ K
2p×2p, where p is the multipole order.

To map the triangular matrices efficiently to contiguous memory, their elements
are stored as 1D arrays of complex values and the l, m indices are calculated on the
fly when accessing the data. For optimal performance, different stages of the FMM
require different memory access patterns. Therefore, the data structures are stored
redundantly in a Structure of Arrays (SoA) and Array of Structures (AoS) version.



534 B. Kohnke et al.

The P2M operator writes to AoS, whereas the far field operators use SoA. A copy
kernel, negligible in runtime, does the copying from one structure to another.

3.4.2 M2M: Multipole to Multipole

The M2M operation, which shifts the multipole expansions of the child boxes to
their parents, is executed on all boxes within the tree, except for the root node which
has no parent box. The complexity of this operation is O(p4); one M2M operation
has the form

ωlm(a′) =
l∑

j=0

j∑

k=−j

ωjk(a)Al−j,m−k(a − a′), (8)

where A is the M2M operator and a and a′ are different expansion center vectors.
The operation performs O(p2) dot products between ω and a part of the operator
A. These operations need to be executed in all boxes in the octree, excluding the
box on level 0, i.e. the root node. The kernels are executed level wise on each
depth, synchronizing between each level. Each computation of the target ωlm for
a distinct (l,m) pair is performed in a different CUDA block of the kernel, with
threads within a block accessing different boxes sharing the same operator. The
operator can be efficiently preloaded into CUDA shared memory and is accessed
for different ωlm residing in different octree boxes. Each single reduction step
is performed sequentially by each thread. This has the advantage that the partial
products are stored locally in registers, reducing the global memory traffic since only
O(p2) elements are written to global memory. It also reduces the atomic accesses,
since the results from eight distinct multipoles are written into one common target
multipole.

3.4.3 M2L: Multipole to Local

The M2L operator works similarly to M2M, but it requires much more transforma-
tions as each source ω is transformed to 189 target μ boxes. The group of boxes
to which a particular ω is transformed to is called the interaction set. It contains
all child boxes of the direct neighbor boxes of the source’s ω parent. The M2L
operation is defined as

μlm(r) =
p∑

j=0

j∑

k=−j

ωjk(a)Ml+j,m+k(a − r), (9)

where r and a are different expansion centers. The operation differs only slightly
from M2M in the access pattern but is of the same O(p4) complexity. As the
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M2L runtime is crucial for the overall FMM performance, we have implemented
several parallelization schemes. Which scheme is the fastest depends on tree depth
and multipole order. The most efficient implementation is based on presorted lists
containing interaction box pointers. The lists are presorted so that the symmetry
of the operator M can be exploited. In M, the orthogonal operator elements differ
only by their sign. Harnessing this minimizes the number of multiplications and
global memory accesses and allows to reduce the number of spawned CUDA blocks
from 189 to 54. However, it introduces additional overhead in logic to change
signs and computations of additional target μ box positions, so the performance
speedup is smaller than 189/54. The kernel is spawned similarly to the M2M
kernel performing one dot product per CUDA block preloading the operator M
into shared memory. The sign changing is done with the help of and additional
bitset provided for each operator. Three different parallelization approaches are
compared in Fig. 13. Considering the hardware performance bottlenecks of this
stage, the limitations highly differ for particular implementations. The naive M2L
kernel is clearly bandwidth limited and achieves nearly 500 GB/s for multipole
orders larger than ten. This is higher than the theoretical memory throughput of
the tested GPU, which is 480 GB/s, due to caching effects. The cache utilization
is nearly at 100% achieving 3500 GB/s. However, the performance of this kernel
can be enhanced further by moving towards more compute bound regime. With the
dynamical approach the performance is mainly limited by the costs of spawning
additional kernels. It can be clearly seen with the flat curve shape for multipoles

naive

dynamic

symmetric

Fig. 13 Comparison of three different parallelization schemes for the M2L operator, which is the
most compute intensive part of the FMM algorithm. The naive implementation (red) directly maps
the operator loops to CUDA blocks. It beats the other schemes only for orders p < 2. Dynamic
parallelization (blue) is a CUDA specific approach that dynamically spawns thread groups from
the kernels. The symmetric scheme (magenta) represents the FMM tree via presorted interaction
lists. It also exploits the symmetry of the M2L operator
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Fig. 14 Hardware utilization of the symmetrical M2L kernel of the GPU-FMM

smaller than 13 in Fig. 13. The hardware utilization for the symmetrical kernel
is depicted in Fig. 14. The performance of this kernel depends on the multipole
order p, since p2 is a CUDA gridsize parameter [40]. The values p < 7 lead
to underutilization of the underlying hardware, however they are mostly not of
practical relevance. For larger values the performance is operations bound achieving
about 80% of the possible compute utilization.

3.4.4 L2L: Local to Local

The L2L operation is executed for each box in the octree, shifting the local moments
from the root of the tree down to the leaves, opposite in direction to M2M. Although
the implementation is nearly identical, it achieves slightly better performance than
M2M because the number of atomic memory accesses is reduced due to the tree
traversing direction. For the L2L operator, the result is written into eight target
boxes, whereas M2M gathers information from eight source boxes into one.

3.4.5 L2P: Local to Particles

The calculation of the potentials at particle positions xi requires evaluating

�(xi) =
p∑

l=0

l∑

m=−l

μlmω̊i
lm, i = 0, . . . , Nbox , (10)
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where ω̊i
lm is a chargeless multipole moment of particle at position xi and Nbox the

number of particles in the box. The complexity of each operation is O(p2). This
stage is similar to P2M since the chargeless moments need to be evaluated for each
particle using the same routine for a charge of q = 1. The performance is limited by
register requirement but like in the P2M stage it runs concurrently for each particle
and it is overlapped with the asynchronous memory transfer from device to host.

3.4.6 P2P: Particle to Particle

The FMM computes direct Coulomb interactions only for particles in the leaves
of the octree and between particles in boxes that are direct neighbors. These
interactions can be computed for each pair of atoms directly by starting one thread
for each target particle in the box that sequentially loops over all source particles. An
alternative way that better fits the GPU hardware is to compute these interactions for
pairs of clusters of size M and N particles, with M × N = 32 the CUDA warp size,
as laid out in [41]. The forces acting on the sources and on the targets are calculated
simultaneously. The interactions are computed in parallel between all needed box-
box pairs in the octree. The resulting speedup of computing all atomic interactions
between pairs of clusters instead of using simpler, but longer loops over pairs of
atoms is shown in Fig. 15. The P2P kernels are clearly compute bound. The exact
performance evaluation of the kernel can be found in [41].

Fig. 15 Speedup of calculating the P2P direct interactions in chunks of M × N = 32 (i.e. for
cluster pairs of size M and N) compared to computing them for all atomic pairs (i.e. for “clusters”
of size M = N = 1). All needed FMM box-box interactions are taken into account



538 B. Kohnke et al.

3.5 GPU FMM with λ-Dynamics Support

In addition to the regular Coulomb interactions, with λ-dynamics, extra energy
terms for all forms of all λ sites need to be evaluated such that the forces on
the λ particles can be derived. The resulting additional operations exhibit a very
unstructured pattern that varies depending on the distribution of the particles
associated with λ sites. Such a pattern can be described by multiple sparse FMM
octrees that additionally interact with each other. The sparsity that emerges from a
relatively small size of the λ sites necessitates a different parallelization than for
a standard FMM. To support λ-dynamics efficiently, all stages of the algorithm
were adapted. Especially, the most compute intense shifting (M2M, L2L) and
transformation (M2L) operations need a different parallelization than that of the
normal FMM to run efficiently for a sparse octree. Figure 16 shows the runtime of
the CUDA parallelized λ-FMM as a function of the system size, whereas Fig. 17
shows the overhead associated with λ-dynamics. The overhead that emerges from
addition of λ sites to the simulation system scales linearly with the number of
additional sites with a factor of about 10−3 per site. This shows that the FMM
tree structure fits particularly well the λ-dynamics requirements for flexibility to
compute the highly unstructured, additional particle-particle interactions. Note that
our λ-FMM kernels still have the potential for more optimizations (at the moment
they achieve only about 60% of the efficiency of the regular FMM kernels) such that
for the final optimized implementation we expect the costs for the additional sites
to be even smaller than what is shown in Fig. 17.

Fig. 16 Absolute runtime of the λ-FMM CUDA implementation. For this example we use one λ

site per 4000 particles as estimated from the hen egg white lysozyme model system for constant-
pH simulation. Each form of a λ site contains ten particles. The tests were run on a GTX 1080Ti
GPU
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Fig. 17 As Fig. 16, but now showing relative costs of adding λ-dynamics functionality to the
regular GPU FMM

4 Conclusions and Outlook

All-atom, explicit solvent biomolecular simulations with λ-dynamics are still
limited to comparatively small simulation systems (<100,000 particles) and/or short
timescales [7, 9, 18]. To ultimately allow for a realistic (e.g., const-pH) treatment
of large biomolecular systems on long timescales, we are developing an efficient
FMM that computes the long-range Coulomb interactions, including local charge
alternatives for a large number of sites, with just a small overhead compared to the
case without λ-dynamics.

Our FMM library is a modern C++11 based implementation tailored towards the
specific requirements of biomolecular simulation, which are a comparatively small
number of particles per compute core and a very short wall clock time per iteration.
The presented implementation offers near-optimal performance on various SIMD
architectures, an efficient CUDA version for GPUs, and it makes use of fractional
tree depths for optimal performance. In addition to supporting chemical variability
via λ-dynamics, it has several more unique features such as a rigorous error control,
and based upon that, an automatic performance optimization at runtime. The energy
drift resulting from errors in the FMM calculation can be reduced to virtually zero
with a newly developed scheme that adapts the multipole expansion order p locally
and on the fly in response to the requested maximum energy error. With fixed p,
using multipole orders 10–14 yields drifts that are smaller than those observed for
typical simulations with PME. We expect the FMM to be useful also for normal
MD simulations, as a drop-in PME replacement for extreme scaling scenarios where
PME reaches its scaling limit.

The GPU version of our FMM will implicitly use the same parallelization
framework as the CPU version. In fact, GPUs will be treated as one of several
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resources a node offers (in addition to CPUs), to which tasks can be scheduled.
As our GPU implementation is not a monolithic module, it can be used to calculate
individual parts of the FMM, like the near-field contribution or the M2L operations
of one of the local boxes only, in a fine-grained manner. How much work is offloaded
to local GPUs will depend on the node specifications and on how much GPU and
CPU processing power is available.

The λ-dynamics module allows to choose between three different variants of
λ-dynamics. The dynamics and equilibrium distributions of the lambdas can be
flexibly tuned by a barrier potential, whereas buffer sites ensure system neutrality
in periodic boundary conditions. Compared to a regular FMM calculation without
local charge alternatives, the GPU-FMM with λ-dynamics is only a factor of two
slower even for a large (500,000 atom) simulation system with more than 100
protonatable sites.

Although some infrastructure that is needed for out-of-the-box constant-pH
simulations in GROMACS still has to be implemented, with the λ-dynamics and
FMM modules, the most important building blocks are in place and performing
well. The next steps will be to carry out realistic tests with the new λ-dynamics
implementation and to thoroughly compare to known results from older studies,
before advancing to larger, more complex simulation systems that have become
feasible now.
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