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Article

An Updated Guideline for
Assessing Discriminant Validity

Mikko Rönkkö1 and Eunseong Cho2

Abstract
Discriminant validity was originally presented as a set of empirical criteria that can be assessed from
multitrait-multimethod (MTMM) matrices. Because datasets used by applied researchers rarely lend
themselves to MTMM analysis, the need to assess discriminant validity in empirical research has led
to the introduction of numerous techniques, some of which have been introduced in an ad hoc
manner and without rigorous methodological support. We review various definitions of and
techniques for assessing discriminant validity and provide a generalized definition of discriminant
validity based on the correlation between two measures after measurement error has been con-
sidered. We then review techniques that have been proposed for discriminant validity assessment,
demonstrating some problems and equivalencies of these techniques that have gone unnoticed by
prior research. After conducting Monte Carlo simulations that compare the techniques, we present
techniques called CICFA(sys) and w2(sys) that applied researchers can use to assess discriminant
validity.

Keywords
discriminant validity, Monte Carlo simulation, measurement, confirmatory factor analysis, validation,
average variance extracted, heterotrait-monotrait ratio, cross-loadings

Among various types of validity evidence, organizational researchers are often required to assess the

discriminant validity of their measurements (e.g., J. P. Green et al., 2016). However, there are two

problems. First, the current applied literature appears to use several different definitions for dis-

criminant validity, making it difficult to determine which procedures are ideal for its assessment.

Second, existing guidelines are far from the practices of organizational researchers. As originally

presented, “more than one method must be employed in the [discriminant] validation process”

(Campbell & Fiske, 1959, p. 81), and consequently, literature on discriminant validation has focused

on techniques that require that multiple distinct measurement methods be used (Le et al., 2009;
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Woehr et al., 2012), which is rare in applied research. To fill this gap, various less-demanding

techniques have been proposed, but few of these techniques have been thoroughly scrutinized.

We present a comprehensive analysis of discriminant validity assessment that focuses on the

typical case of single-method and one-time measurements, updating or challenging some of the

recent recommendations on discriminant validity (Henseler et al., 2015; J. A. Shaffer et al., 2016;

Voorhees et al., 2016). We start by reviewing articles in leading organizational research journals and

demonstrating that the concept of discriminant validity is understood in at least two different ways;

consequently, empirical procedures vary widely. We then assess what researchers mean by discri-

minant validity and synthesize this meaning as a definition. After defining what discriminant

validity means, we provide a detailed discussion of each of the techniques identified in our review.

Finally, we compare the techniques in a comprehensive Monte Carlo simulation. The conclusion

section is structured as a set of guidelines for applied researchers and presents two techniques. One is

CICFA(sys), which is based on the confidence intervals (CIs) in confirmatory factor analysis (CFA),

and the other is w2ðsysÞ, a technique based on model comparisons in CFA.

Current Practices of Discriminant Validity Assessment in
Organizational Research

To understand what organizational researchers try to accomplish by assessing discriminant validity,

we reviewed all articles published between 2013 and 2016 by the Academy of Management Journal

(AMJ), the Journal of Applied Psychology (JAP), and Organizational Research Methods (ORM). We

included only studies that directly collected data from respondents through multiple-item scales. A

total of 97 out of 308 papers in AMJ, 291 out of 369 papers in JAP, and 5 out of 93 articles in ORM

were included.

The term “discriminant validity” was typically used without a definition or a citation, giving the

impression that there is a well-known and widely accepted definition of the term. However, the

few empirical studies that defined the term revealed that it can be understood in two different

ways: One group of researchers used discriminant validity as a property of a measure and con-

sidered a measure to have discriminant validity if it measured the construct that it was supposed to

measure but not any other construct of interest (A in Figure 1). For these researchers, discriminant

validity means that “two measures are tapping separate constructs” (R. Krause et al., 2014, p. 102)

or that the measured “scores are not (or only weakly) associated with potential confounding

factors” (De Vries et al., 2014, p. 1343). Another group of researchers used discriminant validity

to refer to whether two constructs were empirically distinguishable (B in Figure 1). For this group

of researchers, the term referred to “whether the two variables . . . are distinct from each other” (Hu

& Liden, 2015, p. 1110).

These definitions were also implicitly present in other studies through the use of various

statistical techniques summarized in Table 1. In the studies that assessed whether measures of

two constructs were empirically distinguishable, comparison of CFA models was the most

C2C1 C2 C1

A B

Figure 1. Two definitions of discriminant validity, as shown in the AMJ and JAP articles. (A) Items measure more
than one construct (i.e., cross-loadings). (B) Constructs are not empirically distinct (i.e., high correlation).

2 Organizational Research Methods XX(X)



common technique, followed by calculating a correlation that was compared against a cutoff.

The CFA comparison was most commonly used to assess whether two factors could be merged,

but a range of other comparisons were also presented. In the correlation-based techniques,

correlations were often calculated using scale scores; sometimes, correction for attenuation

was used, whereas other times, estimated factor correlations were used. These correlations

were evaluated by comparing the correlations with the square root of average variance

extracted (AVE) or comparing their CIs against cutoffs. Some studies demonstrated that corre-

lations were not significantly different from zero, whereas others showed that correlations were

significantly different from one. In the studies that considered discriminant validity as the

degree to which each item measured one construct only and not something else, various factor

analysis techniques were the most commonly used, typically either evaluating the fit of the

model where cross-loadings were constrained to be zero or estimating the cross-loadings and

comparing their values against various cutoffs.

Our review also revealed two findings that go beyond cataloging the discriminant validation

techniques. First, no study evaluated discriminant validity as something that can exist to a degree but

instead used the statistics to answer a yes/no type of question. Second, many techniques were used

Table 1. Techniques Used to Assess Discriminant Validity in AMJ, JAP, and ORM.

AMJ (n ¼ 27) JAP (n ¼ 73) ORM (n ¼ 5)

Techniques using correlation estimates
Scale score correlation (rSS) 7 25.9% 8 11.0% 3 60.0%
Factor correlation (rCFA) 0 0.0% 2 2.7% 1 20.0%
Disattenuated correlation (rDTR) 0 0.0% 1 1.4% 1 20.0%

Techniques to compare AVE to a certain value
AVECFA vs. Square of rCFA (AVE=SVCFA) 2 7.4% 4 5.5% 1 20.0%
AVECFA vs. Square of rSS (AVE=SVSS) 1 3.7% 1 1.4% 0 0.0%
AVECFA vs. .5 2 7.4% 1 1.4% 0 0.0%
AVEPLS vs. Square of rSS 2 7.4% 0 0.0% 0 0.0%

Techniques to show low cross-loadings
CFA (structure coefficients) 2 7.4% 0 0.0% 0 0.0%
Exploratory factor analysis 1 3.7% 0 0.0% 0 0.0%

Techniques using fit indices of CFA models
No comparison (only the proposed model) 3 11.1% 1 1.4% 0 0.0%
Compared with nested models with fewer factors
(w2ðmergeÞÞ

8 29.6% 43 58.9% 1 20.0%

Compared with model with fixed correlation of 1 (w2ð1Þ) 4 14.8% 1 1.4% 2 40.0%
Compared with model with fixed correlation of 1 (CFI(1)) 0 0.0% 0 0.0% 1 20.0%

Techniques requiring multiple measurement methods
GCES approach 0 0.0% 0 0.0% 1 20.0%
MTMM approach 0 0.0% 1 1.4% 0 0.0%
Generalizability theory approach 0 0.0% 1 1.4% 0 0.0%

Techniques that are difficult to classify
CFA results not presented in detail 1 3.7% 4 5.5% 0 0.0%
No clear evidence provided 0 0.0% 3 4.1% 0 0.0%
Comparison with existing research results 0 0.0% 2 2.7% 0 0.0%
Experimental results as expected 0 0.0% 2 2.7% 0 0.0%

Note: The sum exceeds 100% because some studies use multiple techniques. AMJ¼ Academy of Management Journal; JAP¼ Journal
of Applied Psychology; ORM ¼ Organizational Research Methods; CFA ¼ confirmatory factor analysis; AVE ¼ average variance
extracted; rCFA ¼ factor correlation obtained from CFA; rTR ¼ disattenuated correlation using tau-equivalent reliability;
AVECFA ¼ AVE obtained from CFA; AVEPLS ¼ AVE obtained from partial least squares; GCES ¼ generalized coefficient of
equivalence and stability; MTMM ¼ multitrait-multimethod. For a detailed description of the symbols, see Table 4.
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differently than originally presented. Given the diversity of how discriminant validity is conceptua-

lized, the statistics used in its assessment, and how these statistics are interpreted, there is a clear

need for a standard understanding of which technique(s) should be used and how the discriminant

validity evidence produced by these techniques should be evaluated. However, to begin the evalua-

tion of the various techniques, we must first establish a definition of discriminant validity.

Defining Discriminant Validity

Most methodological work defines discriminant validity by using a correlation but differs in what

specific correlation is used, as shown in Table 2. For example, defining discriminant validity in

terms of a (true) correlation between constructs implies that a discriminant validity problem cannot

be addressed with better measures. In contrast, defining discriminant validity in terms of measures or

estimated correlation ties it directly to particular measurement procedures. Some studies (i.e.,

categories 3 and 4 in Table 2) used definitions involving both constructs and measures stating that

a measure should not correlate with or be affected by an unrelated construct. Moreover, there is no

consensus on what kind of attribute discriminant validity is; some studies (Bagozzi & Phillips, 1982;

Hamann et al., 2013; Reichardt & Coleman, 1995; J. A. Shaffer et al., 2016) define discriminant

validity as a matter of degree, while others (Schmitt & Stults, 1986; Werts & Linn, 1970) define

discriminant validity as a dichotomous attribute. These findings raise two important questions: (a)

Why is there such diversity in the definitions? and (b) How exactly should discriminant validity be

defined?

Origin of the Concept of Discriminant Validity

The term “discriminant validity” was coined by Campbell and Fiske (1959), who presented a

validation technique based on the long-standing idea that tests can be invalidated by too high

correlations with unrelated tests (Campbell, 1960; Thorndike, 1920). However, the term was intro-

duced without a clear definition of the concept (Reichardt & Coleman, 1995); instead, the article

focuses on discriminant validation or how discriminant validity can be shown empirically using

multitrait-multimethod (MTMM) matrices. The original criteria, illustrated in Table 3, were as

follows: (a) two variables that measure the same trait (T1) with two different methods (M1, M2)

should correlate more highly than any two variables that measure two different traits (T1, T2) with

different methods (M1, M2); (b) two variables that measure the same trait (T1) with two different

methods (M1, M2) should correlate more highly than any two variables that measure two different

traits (T1, T2) but use the same method (M1); and (c) the pattern of correlations between variables

that measure different traits (T1, T2) should be very similar across different methods (M1, M2)

(Campbell & Fiske, 1959).

Generalizing the concept of discriminant validity outside MTMM matrices is not straightfor-

ward. Indeed, the definitions shown in Table 2 show little connections to the original MTMM

matrices. A notable exception is Reichardt and Coleman (1995), who criticized the MTMM-based

criteria for being dichotomous and declared that a natural (dichotomous) definition of discriminant

validity outside the MTMM context would be that two measures x1 and x2 have discriminant

validity if and only if x1 measures construct T1 but not T2, x2 measures T2 but not T1, and the two

constructs are not perfectly correlated. They then concluded that a preferable continuous defini-

tion would be “the degree to which the absolute value of the correlation between the two con-

structs differs from one” (Reichardt & Coleman, 1995, p. 516). A similar interpretation was

reached by McDonald (1985), who noted that two tests have discriminant validity if “the common

factors are correlated, but the correlations are low enough for the factors to be regarded as distinct

‘constructs’” (p. 220).
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Constructs and Measures

Discriminant validity is sometimes presented as the property of a construct (Reichardt & Coleman,

1995) and other times as the property of its measures or empirical representations constructed from

those measures (McDonald, 1985). This ambiguity may stem from the broader confusion over

common factors and constructs: The term “construct” refers to the concept or trait being measured,

Table 2. Definitions of Discriminant Validity in Existing Studies.

Category Definition/Description of Technique

1: True or estimated
correlation between
constructsa

“[T]he degree to which the absolute value of the correlation between the two
constructs differ from one.” (Reichardt & Coleman, 1995, p. 516)
“Evidence of discriminant validity exists if other constructs do not correlate
strongly enough with the construct of interest to suggest that they measure the
same construct.” (McKenny et al., 2013, p. 156)
“Discriminant validation implies that correlation between traits is low. If both
traits were identical, the correlation between the trait factors would be near
one.” (Kenny, 1976, p. 251)
“[D]iscriminant validity exists when estimates of the trait correlations were two
or more standard errors below 1.0.” (Schmitt & Stults, 1986, p. 18)
“[D]iscriminant validity consists of demonstrating that the true correlation of
[two traits] is meaningfully less than unity.” (Werts & Linn, 1970, p. 208)

2: Correlation between
measures

“[A] test [should] not correlate too highly with measures from which it is
supposed to differ.” (Campbell, 1960, p. 548)
“[A test] correlates less well or not all with tests with which theory implies it
should not correlate well.” (McDonald, 1985, p. 220)
“[T]he extent to which measures of theoretically distinct constructs are
unrelated empirically to one another.” (J. A. Shaffer et al., 2016, p. 82)
“[I]f two or more concepts are unique, then valid measures of each should not
correlate too highly.” (Bagozzi et al., 1991, p. 425)
“[T]he degree of divergence among indicators that are designed to measure
different constructs.” (Hamann et al., 2013, p. 72)
“[T]he degree to which measures of distinct concepts differ.” (Bagozzi & Phillips,
1982, p. 469)
“Measures of different attributes should . . . not correlated to an extremely high
degree.” (Nunnally & Bernstein, 1994, p. 93)
“[A] measure of a construct is unrelated to indicators of theoretically irrelevant
constructs in the same domain.” (Strauss & Smith, 2009, p. 1)

3: Correlation between
measure and other
construct

“[D]iscriminant validity is shown when each measurement item correlates
weakly with all other constructs except for the one to which it is theoretically
associated.” (Gefen & Straub, 2005, p. 92)
“Discriminant validity is inferred when scores from measures of different
constructs do not converge. It thus provides information about whether scores
from a measure of a construct are unique rather than contaminated by other
constructs.” (Schwab, 2013, p. 33)

4: Combination of categories
1 and 3.

“[T]he item’s . . . loading on constructs other than the intended one is relevant
to discriminant validity . . . . At the level of the constructs, this correlation tells us
about discriminant validity.” (John & Benet-Mart́ınez, 2000, p. 359)
Voorhees et al. (2016) classified discriminant validity into the construct-level
(i.e., low correlation) and the item-level (i.e., absence of cross-loading).

a. Many articles in this category are ambiguous on whether discriminant validity is a property of a construct or a property of a
scale from which construct correlation is estimated.
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whereas a common factor is part of a statistical model estimated from data (Maraun & Gabriel,

2013). Indeed, Campbell and Fiske (1959) define validity as a feature of a test or measure, not as a

property of the trait or construct being measured. In fact, if one takes the realist perspective that

constructs exist independently of measurement and can be measured in multiple different ways

(Chang & Cartwright, 2008),1 it becomes clear that we cannot use an empirical procedure to define a

property of a construct.

The Role of the Factor Model

Factor analysis has played a central role in articles on discriminant validation (e.g., McDonald,

1985), but it cannot serve as a basis for a definition of discriminant validity for two reasons. First,

validity is a feature of a test or a measure or its interpretation (Campbell & Fiske, 1959), not of any

particular statistical analysis. Moreover, discriminant validity is often presented as a property of “an

item” (Table 2), implying that the concept should also be applicable in the single-item case, where

factor analysis would not be applicable. Second, a factor model where each item loads on only one

factor may be too constraining for applied research (Asparouhov et al., 2015; Marsh et al., 2014;

Morin et al., 2017; Rodriguez et al., 2016). For example, Marsh et al. (2014) note that in psychology

research, the symptoms or characteristics of different disorders commonly overlap, producing non-

negligible cross-loadings in the population. Constraining these cross-loadings to be zero can inflate

the estimated factor correlations, which is problematic, particularly for discriminant validity assess-

ment (Marsh et al., 2014). Moreover, a linear model where factors, error terms, and observed

variables are all continuous (Bartholomew, 2007) is not always realistic. Indeed, a number of item

response theory models have been introduced (Foster et al., 2017; Reise & Revicki, 2014) to address

these scenarios and have been applied to assess discriminant validity using MTMM data (Jeon &

Rijmen, 2014).

Generalized Definition of Discriminant Validity

We present a definition that does not depend on a particular model and makes it explicit that

discriminant validity is a feature of a measure instead of a construct:2 Two measures intended to

measure distinct constructs have discriminant validity if the absolute value of the correlation

between the measures after correcting for measurement error is low enough for the measures to

be regarded as measuring distinct constructs.

This definition encompasses the early idea that even moderately high correlations between

distinct measures can invalidate those measures if measurement error is present (Thorndike,

Table 3. Multitrait-Multimethod Correlation Matrix and Original Criteria for Discriminant Validity.

Method M1 Method M2

Traits T1 T2 T3 T1 T2 T3

M1 T1 1 Discriminant Validity:
All MTHM > HTHM
All MTHM > HTMM
HTMM11 � HTMM31

HTMM12 � HTMM32

HTMM13 � HTMM33

T2 HTMM11 1
T3 HTMM12 HTMM13 1

M2 T1 MTHM21 HTHM24 HTHM27 1
T2 HTHM22 MTHM25 HTHM28 HTMM31 1
T3 HTHM23 HTHM26 MTHM29 HTMM32 HTMM33 1

Note: HTMM ¼ same method and different traits (heterotrait-monomethod); MTHM ¼ different methods and same trait
(monotrait-heteromethod); HTHM ¼ different methods and different traits (heterotrait-heteromethod).
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1920), which serves as the basis of discriminant validity (Campbell & Fiske, 1959). The definition

can also be applied on both the scale level and the scale-item level. Consider the proposed definition

in the context of the common factor model:

S ¼ LFL
0 þY ð1Þ

where S is the interitem correlation matrix; F is the factor correlation matrix, where all correlations

are assumed to be positive for simplicity; L is a factor pattern (loading) matrix; and Y is the item

error covariance matrix. Within this context, our definition can be understood in two equivalent

ways:

Si;j � LJL
0

i;j ð2Þ
ðL0LÞ�1L

0 ðS�YÞLðL0LÞ�1
k;l � 1 ð3Þ

where J is a unit matrix (a matrix of ones) and� denotes much less than. Equation 2 is an item-level

comparison (category 2 in Table 2), where the correlation between items i and j, which are designed

to measure different constructs, is compared against the implied correlation when the items depend

on perfectly correlated factors but are not perfectly correlated because of measurement error.

Equation 3 shows an equivalent scale-level comparison (part of category 1 in Table 2) focusing

on two distinct scales k and l. The factor correlations are solved from the interitem correlations by

multiplying with left and right inverses of the factor pattern matrix to correct for measurement error

and are then compared against a perfect correlation. Generalizing beyond the linear common factor

model, Equation 3 can be understood to mean that two scales intended to measure distinct constructs

have discriminant validity if the absolute value of the correlation between two latent variables

estimated from the scales is low enough for the latent variables to be regarded as representing

distinct constructs.

Our definition has several advantages over previous definitions shown in Table 2. First, it clearly

states that discriminant validity is a feature of measures and not constructs and that it is not tied to

any particular statistical test or cutoff (Schmitt, 1978; Schmitt & Stults, 1986). Second, the definition

is compatible with both continuous and dichotomous interpretations, as it suggests the existence of a

threshold, that is, a correlation below a certain level has no problem with discriminant validity but

does not dictate a specific cutoff, thus also allowing the value of the correlation to be interpreted

instead of simply tested. Third, the definition is not tied to any particular measurement process (e.g.,

single administration) but considers measurement error generally, thus supporting rater, transient,

and other errors (Le et al., 2009; Schmidt et al., 2003). Fourth, the definition is not tied to either the

individual item level or the multiple item scale level but works across both, thus unifying the

category 1 and category 2 definitions of Table 2. Fifth, the definition does not confound the con-

ceptually different questions of whether two measures measure different things (discriminant valid-

ity) and whether the items measure what they are supposed to measure and not something else (i.e.,

lack of cross-loadings in L, factorial validity),3 which some of the earlier definitions (categories 3

and 4 in Table 2) do.

This definition also supports a broad range of empirical practice: If considered on the scale level,

the definition is compatible with the current tests, including the original MTMM approach (Camp-

bell & Fiske, 1959). However, it is not limited to simple linear common factor models where each

indicator loads on just one factor but rather supports any statistical technique including more

complex factor structures (Asparouhov et al., 2015; Marsh et al., 2014; Morin et al., 2017; Rodriguez

et al., 2016) and nonlinear models (Foster et al., 2017; Reise & Revicki, 2014) as long as these

techniques can estimate correlations that are properly corrected for measurement error and supports

scale-item level evaluations.
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Table 4. Techniques Included in the Simulation of This Study.

Statistic/Technique Symbol Description/Criteria

Correlation estimation methods discussed in this study

Scale score correlation rSS Correlation between unit-weighted sums of scale scores
(i.e., most commonly reported)

Factor correlation rCFA Correlation obtained through confirmatory factor analysis
(CFA) (i.e., Figure 3)

Disattenuated correlation using
parallel reliability

rDPR rSS is converted to an error-adjusted correlation using
parallel reliability (i.e., the standardized alpha), also called
the heterotrait-monotrait (HTMT) ratio

Disattenuated correlation using tau-
equivalent reliability

rDTR rSS is converted to an error-adjusted correlation using tau-
equivalent reliability (i.e., the coefficient alpha)

Disattenuated correlation using
congeneric reliability

rDCR rSS is converted to an error-adjusted correlation using
congeneric reliability (i.e., the composite reliability or
omega)

Common notation for expressing correlation-related techniques

The point estimate is less than a
cutoff

rXXðcutÞ For every factor pair, the point estimate of rXX is less than
a cutoff

The confidence interval (CI) is less
than 1

CIXX(1) For every factor pair, the CI of rXX is strictly less than one

The CI is less than a cutoff CIXXðcutÞ For every factor pair, the CI of rXX is strictly less than a
cutoff

Other correlation-related techniques

Average variance extracted (AVE)
compared with the SV obtained
from factor correlations

AVE=SVCFA For every factor pair, the AVEs of the two factors are
greater than the square of rCFA (i.e., used as originally
proposed by Fornell & Larcker, 1981a)

AVE compared with the SV obtained
from scale score correlations

AVE=SVSS For every factor pair, the AVEs of the two factors are
greater than the square of rSS (i.e., common misuse)

Techniques that focus on model fit

A chi-square comparison with a
model with a fixed correlation of 1

w2ð1Þ For every factor pair, the chi-square difference between
the unconstrained model and the constrained model in
which rCFA is fixed at one is statistically significant

A chi-square comparison with a
model that merges two factors
into one

w2ðmergeÞ For every factor pair, the chi-square difference between
the unconstrained model and the constrained model in
which the two factors are merged into one is statistically
significant

A comparative fix index (CFI)
comparison with a model with a
fixed correlation of 1

CFI(1) For every factor pair, the CFI difference between the
unconstrained model and the constrained model in
which rCFA is fixed at one is greater than .002

A chi-square comparison with a
model with a fixed correlation of a
cutoff

w2ðcutÞ For every factor pair, the chi-square difference between
the unconstrained model and the constrained model in
which rCFA is fixed at a cutoff is statistically significant

A CFI comparison with a model with
a fixed correlation of a cutoff

CFIðcutÞ For every factor pair, the CFI difference between the
unconstrained model and the constrained model in
which rCFA is fixed at a cutoff is greater than .002

8 Organizational Research Methods XX(X)



Overview of the Techniques for Assessing Discriminant Validity

The techniques for assessing discriminant validity identified in our review can be categorized into

(a) techniques that assess correlations and (b) techniques that focus on model fit assessment. The

techniques and the symbols that we use for them are summarized in Table 4.

Techniques That Assess Correlations

There are three main ways to calculate a correlation for discriminant validity assessment: a factor

analysis, a scale score correlation, and the disattenuated version of the scale score correlation. While

item-level correlations or their disattenuated versions could also be applied in principle, we have

seen this practice neither recommended nor used. Thus, in practice, the correlation techniques

always correspond to the empirical test shown as Equation 3. Regardless of how the correlations

are calculated, they are used in just two ways: either by comparing the point estimates against a

cutoff (i.e., the square root of the AVE) or by checking whether the absolute value of the CI contains

either zero or one. Using the cutoff of zero is clearly inappropriate as requiring that two factors be

uncorrelated is not implied by the definition of discriminant validity and would limit discriminant

validity assessment to the extremely rare scenario where two constructs are assumed to be (linearly)

independent. We will next address the various techniques in more detail.

Factor Analysis Techniques. Factor correlations can be estimated directly either by exploratory factor

analysis (EFA) or CFA, but because none of the reviewed guidelines or empirical applications

reported EFA correlations, we focus on CFA. The estimation of factor correlations in a CFA is

complicated by the fact by default latent variables are scaled by fixing the first indicator loadings,

which produces covariances that are not correlations. Correlations (denoted rCFA) can be estimated

by either freeing the factor loadings and scaling the factors by fixing their variances to 1 (i.e., A in

Figure 2) or standardizing the factor covariance matrix (i.e., B), for example, by requesting stan-

dardized estimates that all SEM software provides. Both techniques produce the same estimate,

although the standard errors (and CIs) can be different (Gonzalez & Griffin, 2001).

Of the correlation estimation techniques, CFA is the most flexible because it is not tied to a

particular model but requires only that the model be correctly specified. Thus, cross-loadings,

nonlinear factor loadings or nonnormal error terms can be included because a CFA model can also

be used in the context of item response models (Foster et al., 2017), bifactor models (Rodriguez

et al., 2016), exploratory SEMs (Marsh et al., 2014) or other more advanced techniques. However,

1 1

=

1 1

= /
A B

Figure 2. Factor correlation estimation. (A) Fixing the variances of factors to unity (i.e., not using the default
option). (B) Fixing one of the loadings to unity (i.e., using the default option).
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these techniques tend to require larger sample sizes and advanced software and are consequently less

commonly used.

Scale Score Correlations and Disattenuated Correlations. The simplest and most common way to esti-

mate a correlation between two scales is by summing or averaging the scale items as scale scores and

then taking the correlation (denoted rSS).4 The problem with this approach is that the scores contain

measurement errors, which attenuate the correlation and may cause discriminant validity issues to go

undetected.5 To address this issue, the use of disattenuated or error-corrected correlations where the

effect of unreliability is removed is often recommended (Edwards, 2003; J. A. Shaffer et al., 2016):

r12 ¼
rXYffiffiffiffiffiffiffiffiffiffiffi
rXrY

p ð4Þ

where the disattenuated correlation (r12) is a function of the scale score correlation (rXY ) and the

scale score reliabilities (rX ; rY ). That is, a disattenuated correlation is the scale score correlation

from which the effect of unreliability is removed.6

Reliability can be estimated in different ways, including test-retest reliability, interrater reliability

and single-administration reliability,7 which each provide information on different sources of mea-

surement error (Le et al., 2009; Schmidt et al., 2003). Given our focus on single-method and one-

time measurements, we address only single-administration reliability, where measurement errors are

operationalized by uniqueness estimates, ignoring time and rater effects that are incalculable in these

designs. The two most commonly used single-administration reliability coefficients are tau-

equivalent reliability,8 often referred to as Cronbach’s alpha, and congeneric reliability, usually

called composite reliability by organizational researchers and McDonald’s omega or o by metho-

dologists.9 As the names indicate, the key difference is whether we assume that the items share the

Equal covariances

Equal variances

Equal covariances

Variances may be 

different

Covariances and 

variances may be 

different

No equality constraint= = = =

= =

T T T

A B C

A B C

X1 X2 X3

X1 10 6 6

X2 6 10 6

X3 6 6 10

X1 X2 X3

X1 11 6 6

X2 6 10 6

X3 6 6 9

X1 X2 X3

X1 11 7 6

X2 7 10 5

X3 6 5 9

Figure 3. The assumptions of parallel, tau-equivalent, and congeneric reliability. (A) parallel, (B) tau-equivalent,
(C) congeneric.
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same true score (tau-equivalent, B in Figure 3) or make the less constraining assumption that the

items simply depend on the same latent variable but may do so to different extents (congeneric, C in

Figure 3). Recent research suggests that the congeneric reliability coefficient is a safer choice

because of the less stringent assumption (Cho, 2016; Cho & Kim, 2015; McNeish, 2017).

The reliability coefficients presented above make a unidimensionality assumption, which may not

be realistic in all empirical research. While the disattenuation formula (Equation 4) is often claimed to

assumes that the only source of measurement error is random noise or unreliability, the assumption is

in fact more general: All variance components in the scale scores that are not due to the construct of

interest are independent of the construct and measurement errors of other scale scores. This more

general formulation seems to open the option of using hierarchical omega (Cho, 2016; Zinbarg et al.,

2005), which assumes that the scale measures one main construct (main factor) but may also contain a

number of minor factors that are assumed to be uncorrelated with the main factor. However, using

hierarchical omega for disattenuation is problematic because it introduces an additional assumption

that the minor factors (e.g., disturbances in the second-order factor model and group factors in the

bifactor model) are also uncorrelated between two scales, which is neither applied nor tested when

reliability estimates are calculated separately for both scales, as is typically the case. While the basic

disattenuation formula has been extended to cases where its assumptions are violated in known ways

(Wetcher-Hendricks, 2006; Zimmerman, 2007), the complexities of modeling the same set of viola-

tions in both the reliability estimates and the disattenuation equation do not seem appealing given that

the factor correlation can be estimated more straightforwardly with a CFA instead.

While simple to use, the disattenuation correction is not without problems. A common criticism is

that the correction can produce inadmissible correlations (i.e., greater than 1 or less than –1) (Charles,

2005; Nimon et al., 2012), but this issue is by no means a unique problem because the same can occur

with a CFA. However, a CFA has three advantages over the disattenuation equation. First, CFA

correlations estimated with maximum likelihood (ML) can be expected to be more efficient than

multistep techniques that rely on corrections for attenuation (Charles, 2005; Muchinsky, 1996). Sec-

ond, the disattenuation equation assumes that the scales are unidimensional and that all measurement

errors are uncorrelated, whereas a CFA simply assumes that the model is correctly specified and

identified. Third, calculating the CIs for a disattenuated correlation is complicated (Oberski & Satorra,

2013). However, this final concern can be alleviated to some extent through the use of bootstrap CIs

(Henseler et al., 2015); in particular, the bias-corrected and accelerated (BCa) technique has been

shown to work well for this particular problem (Padilla & Veprinsky, 2012, 2014).

AVE/SV or Fornell-Larcker Criterion. While commonly used, the AVE statistic has been rarely discussed

by methodological research and, consequently, is poorly understood.10 One source of confusion is the

similarity between the formula for AVE and that of congeneric reliability (Fornell & Larcker, 1981a):

AVE ¼

Xk

i¼1
l2

iXk

i¼1
l2

i þ
Xk

i¼1
s2

ei

ð5Þ

CR ¼
ð
Xk

i¼1
liÞ2

ð
Xk

i¼1
liÞ2 þ

Xk

i¼1
s2

ei

ð6Þ

The meaning of AVE becomes more apparent if we rewrite the original equation as:

AVE ¼

Xk

i¼1
s2

xi
riXk

i¼1
s2

xi

ð7Þ
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where ri ¼
l2

i

s2
xi

is the reliability and s2
xi
¼ l2

i þ s2
ei

is the variance of item i. This alternative form

shows that AVE is actually an item-variance weighted average of item reliabilities. With standar-

dized estimates, AVE reduces to an average of item reliabilities. Thus, the term “average indicator

reliability” might be more informative than “average variance extracted.”

Fornell and Larcker (1981a) presented a decision rule that discriminant validity holds for two

scales if the AVEs for both are higher than the squared factor correlation between the scales. We

refer to this rule as AVE/SV because the squared correlation quantifies shared variance (SV;

Henseler et al., 2015). Because a factor correlation corrects for measurement error, the AVE/SV

comparison is similar to comparing the left-hand side of Equation 3 against the right-hand side of

Equation 2. Therefore, AVE/SV has a high false positive rate, indicating a discriminant validity

problem under conditions where most researchers would not consider one to exist, as indicated by A

in Figure 4. This tendency has been taken as evidence that AVE/SV is “a very conservative test”

(Voorhees et al., 2016, p. 124), whereas the test is simply severely biased.

In applied research, the AVE/SV criterion rarely shows a discriminant validity problem because it

is commonly misapplied. The most common misapplication is to compare the AVE values with the

square of the scale score correlation, not the square of the factor correlation (Voorhees et al., 2016).

Another misuse is to compare AVEs against the .5 rule-of-thumb cutoff, which Fornell and Larcker

(1981a) presented as a convergent validity criterion. Other misuses are that only one of the two AVE

values or the average of the two AVE values should be greater than the SV (Farrell, 2010; Henseler

et al., 2015). The original criterion is that both AVE values must be greater than the SV. Finally, the

AVE statistic is sometimes calculated from a partial least squares analysis (AVEPLS), which over-

estimates indicator reliabilities and thus cannot detect even the most serious problems (Rönkkö &

Evermann, 2013).

Heterotrait-Monotrait Ratio (HTMT). The heterotrait-monotrait (HTMT) ratio was recently introduced

in marketing (Henseler et al., 2015) and is being adopted in other disciplines as well (Kuppelwieser

et al., 2019). While Henseler et al. (2015) motivate HTMT based on the original MTMM approach

(Campbell & Fiske, 1959), this index is actually neither new nor directly based on the MTMM
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. 48. 48. 48
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. 72 . 72 . 72

. 48. 48. 48

1

. 75

AVE = AVE =
�.

�. �.
=.5184

AVE/SV = .5184/.75 = .9216 < 1
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. 15. 15. 15
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1
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AVE = AVE =
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=.8464

AVE/SV = .8464/.91 = 1.0221 > 1
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Figure 4. The inappropriateness of the AVE as an index of discriminant validity. (A) despite high discriminant
validity, the AVE/SV criterion fails, (B) despite low discriminant validity, the AVE/SV criterion passes.
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approach. The original version of the HTMT equation is fairly complex, but to make its meaning

more apparent, it can be simplified as follows:

HTMTij ¼
sijffiffiffiffiffiffiffiffiffiffiffi
sisj

p ð8Þ

where si and sj denote the average within scale item correlation and sij denotes the average

between scale item correlation for two scales i and j. This simpler form makes it clear that HTMT

is related to the disattenuation formula (Equation 4). In fact, HTMT is equivalent to a disattenuated

correlation of unit-weighted composites using parallel reliability (i.e., the standardized alpha, proof

in the appendix). Thus, while marketed as a new technique, the HTMT index has actually been used

for decades; parallel reliability is the oldest reliability coefficient (Brown, 1910), and disattenuated

correlations have been used to assess discriminant validity for decades (Schmitt, 1996). Thus, the

term “HTMT” is misleading, giving the false impression that HTMT is related to MTMM and

obscuring the fact that it is simply a variant of disattenuated correlation. Thus, we favor a more

transparent term “disattenuated correlation using parallel reliability” (denoted rDPR) because this

more systematic name tells what the coefficient is (i.e., correlation), how it is obtained (i.e., dis-

attenuated), and under what conditions it can be used (i.e., parallel reliability).

Because the rDPR statistic is a disattenuated correlation, it shares all the interpretations, assump-

tions, and limitations of the techniques that were explained earlier. Compared to the tau-equivalence

assumption, this technique makes an even more constraining parallel measurement assumption that

the error variances between items are the same (A in Figure 3). Most real-world data deviate from

these assumptions, in which case rDPR yields inaccurate estimates (Cho, 2016; McNeish, 2017),

making this technique an inferior choice.

Model Fit Comparison Techniques

Model comparison techniques involve comparing the original model against a model where a factor

correlation is fixed to a value high enough to be considered a discriminant validity problem. Their

general idea is that if the two models fit equally well, the model with a discriminant validity problem

is plausible, and thus, there is a problem. The most common constraints are that (a) two factors are

fixed to be correlated at 1 (i.e., A in Figure 5) or (b) two factors are merged into one factor (i.e., C in

Figure 5), thus reducing their number by one.

The key advantage of these techniques is that they provide a test statistic and a p-value. However,

this also has the disadvantage that it steers a researcher toward making yes/no decisions instead of

assessing the degree to which discriminant validity holds in the data. Compared to correlation-based

techniques, where a single CFA model provides all the estimates required for discriminant validity

assessment, model comparison techniques require more work because a potentially large number of

comparisons must be managed.11 We next assess the various model comparison techniques pre-

sented and used in the literature.

w2ð1Þ. In the w2ð1Þ test, the constrained model has the correlation between two factors fixed to be 1,

after which the model is compared against the original one with a nested model w2 test. While the

nested model w2 test is a standard tool in SEM, there are four issues that require attention when w2ð1Þ
is applied for discriminant validity assessment. First, it is easy to specify the constrained model

incorrectly. As discussed earlier, SEM models estimate factor covariances, and implementing w2ð1Þ
involves constraining one of these covariances to 1.12 However, methodological articles commonly

fail to explain that the 1 constraint must be accompanied by setting the variances of the latent

variables to 1 instead of scaling the latent variables by fixing the first item loadings (J. A. Shaffer

et al., 2016; Voorhees et al., 2016). Indeed, our review provided evidence that incorrect application
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Figure 5. (A) constrained model for w2(1), (B) common misuse of w2(1), (C) constrained model for w2(merge),
(D) model equivalent to C.
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of this test may be fairly common.13 An incorrect scaling of the latent variable (i.e., B in Figure 5)

can produce either an inflated false positive or false negative rate, depending on whether the

estimated factor variances are greater than 1 or less than 1. We demonstrate this problem in Online

Supplement 1.

The second issue is that some articles suggest that the significance level of the w2 difference test

should be adjusted for multiple comparisons (Anderson & Gerbing, 1988; Voorhees et al., 2016). Their

logic is that if the Type I error of an individual test equals a, the probability that a Type I error occurs at

least once (familywise Type I error) is much greater than a when multiple tests are done. Multiple

comparison corrections address this issue by adjusting the individual test a level to keep the familywise

Type I error at the intended level. To address this issue, Anderson and Gerbing (1988, n. 2) recommend

applying the Šidák correction. Voorhees et al. (2016) further claim that the common omission of the

correction is “the most troublesome issue with the [w2ð1Þ] approach” (p. 123). These concerns are ill-

founded. Šidák and the related Bonferroni corrections make the universal null hypothesis that all

individual null hypotheses are true (Hancock & Klockars, 1996; Perneger, 1998; J. P. Shaffer, 1995).

Thus, in the context ofw2ð1Þ, the universal null hypothesis is that all factors are perfectly correlated. This

hypothesis is almost certainly always false, rendering tests that rely on it meaningless. Additionally, if

the hypothesis is of interest, fitting a single-factor model to the data (i.e., merging all factors into one)

provides a more straightforward test. While multiple comparison techniques can be useful (Castañeda

et al., 1993), there are scenarios where they should not be applied (Perneger, 1998), and the literature on

discriminant validity has failed to provide compelling reasons to do so.

The third issue is that the w2ð1Þ technique omits constraints that the perfect correlation implies: If

the correlation between two factors equals 1, their correlations with all other factors should be equal

as well. However, estimated correlations are unlikely to be exactly the same, often producing an

inadmissible solution with a nonpositive definite latent variable covariance matrix. While this is not

a problem for the w2 test itself, it produces a warning in the software and may cause unnecessary

confusion.14 This can be addressed by adding the implied equality constraints, but none of the

reviewed works did this. Moreover, it is easier to estimate an equivalent model by simply merging

the two factors as one (w2ðmergeÞ).
The fourth and final issue is that the w2ð1Þ technique is a very powerful test for detecting whether

the factor correlation is exactly 1. Paradoxically, this power to reject the null hypothesis has been

interpreted as a lack of power to detect discriminant validity (Voorhees et al., 2016). Even if the

latent variable correlation is only slightly different from 1 (e.g., .98), such small differences will be

detected as statistically significant if the sample size is sufficiently large. However, in this case, it is

difficult to interpret the latent variables as representing distinct concepts. This is a genuine problem

with the w2ð1Þ test, and two proposals for addressing it have been presented in the literature.

CFI(1). To address the issue that the w2ð1Þ test can flag correlations that differ from 1 by trivial

amounts as significant, some recent articles (Le et al., 2010; J. A. Shaffer et al., 2016) have

suggested comparing models by calculating the difference between the comparative fit indices

(CFIs) of two models (DCFI), which is compared against the .002 cutoff (CFI(1)). This idea is

adapted from Cheung and Rensvold’s (2002) proposal in the measurement invariance literature, and

the .002 cutoff is based on the simulation by Meade et al. (2008).

The idea behind using DCFI in measurement invariance assessment is that the degrees of freedom

of the invariance hypothesis depend on the model complexity, and the CFI index and consequently

DCFI are less affected by this than the w2 (Meade et al., 2008). This idea is reasonable in the original

context, but it does not apply in the context of CFI(1) comparison where the difference in degrees of

freedom is always one, leaving this test without its main justification. Indeed, CFI(1) can be proved

(see the appendix) to be equivalent to calculating the Dw2 and comparing this statistic against a
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cutoff defined based on the fit of the null model (w2
BÞ and its degrees of freedom (dfBÞ,

Dw2 > 1þ :002ðw2
B � dfBÞ ð9Þ

instead of using the .95 percentile from the w2
ð1Þ distribution, or 3.84, as a cutoff. Because the

expected value of w2
B increases with sample size in a way similar to Dw2, this comparison can be

regarded as less sensitive to sample size. However, it is unclear whether this alternative cutoff has

more or less power (i.e., whether 1þ :002ðw2
B � dfBÞ is greater or less than 3.84) because the

effectiveness of CFI(1) has not been studied.

Changing the test statistic—or equivalently the cutoff value—is an ultimately illogical solution

because the problem with the w2ð1Þ test is not that its power increases with sample size but that a

researcher is ultimately not interested in whether the correlation between two variables differs from

exactly 1; rather, a researcher is interested in whether the correlation is sufficiently different from 1.

Thus, a more logical approach is to change the null hypothesis instead of adjusting the tests to be less

powerful.

w2ðcutÞ and CFIðcutÞ. The lack of a perfect correlation between two latent variables is ultimately

rarely of interest, and thus, it is more logical to use a null hypothesis that covers an interval (e.g.,

f12>.9). This test can be implemented in any SEM software by first fitting a model where f12 is

freely estimated. If the estimate falls outside the interval (e.g., less than .9), then the correlation is

constrained to be at the endpoint of the interval, and the model is re-estimated. A significant result

from a nested model comparison means that the original interval hypothesis can be rejected. We use

the labels w2ðcutÞ and CFIðcutÞ to denote tests that depend on whether the comparison is performed

based on the w2 test or by comparing DCFI against the .002 cutoff. While the idea that a number less

than 1 can be used as a cutoff was briefly mentioned in John and Benet-Martı́nez (2000) and J. A.

Shaffer et al. (2016), we are unaware of any studies that have applied interval hypothesis tests or

tested their effectiveness.

w2ðmergeÞ and Other Comparisons Against Models with Fewer Factors. Many studies assess discri-

minant validity by comparing the hypothesized model with a model with fewer factors. This

is typically done by merging two factors (i.e., C in Figure 5), and we refer to the associated

nested model comparison as w2ðmergeÞ. As mentioned above, this test is a more constrained

version of w2ð1Þ where all pairs of correlations with either of the factors and a third factor are

constrained to be the same (i.e., D in Figure 5). Because this test imposes more constraints

than w2ð1Þ does, it has more statistical power. It also avoids the inadmissible solution issue of

w2ð1Þ. Merging two factors will always produce the same w2 regardless of how the latent

variables are scaled, and thus, this test is less likely to be incorrectly applied. However, the

test also has a major weakness that, in contrast to w2ð1Þ, this test cannot be extended to other

cutoffs (i.e., w2ðcutÞ). Thus, while the test can be applied for testing perfect overlap between

two latent variables, it cannot answer the question of whether the latent variables are suffi-

ciently distinct.

As with the other techniques, various misconceptions and misuses are found among empirical

studies. The most common misuse is to include unnecessary comparisons, for example, by testing

alternative models with two or more factors less than the hypothesized model. Another common

misuse is to omit some necessary comparisons, for example, by comparing only some alternative

models, instead of comparing all possible alternative models with one factor less than the original

model.
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Single Model Fit Techniques

Discriminant validity has also been assessed by inspecting the fit of a single model without compar-

ing against another model. These techniques fall into two classes: those that inspect the factor

loadings and those that assess the overall model fit.

Cross-Loadings. Cross-loadings indicate a relationship between an indicator and a factor other than

the main factor on which the indicator loads. Beyond this definition, the term can refer to two

distinct concepts, factor pattern coefficients or factor structure coefficients (see Table 5), and has

been confusingly used with both meanings in the discriminant validity literature.15 Structure

coefficients are correlations between items and factors, so their values are constrained to be

between –1 and 1. Pattern coefficients, on the other hand, are analogous to (standardized) coeffi-

cients in regression analysis and are directional (Thompson & Daniel, 1996). Structure coeffi-

cients are not directly estimated as part of a factor analysis; instead, they are calculated based on

the pattern coefficients and factor correlations. If the factors are rotated orthogonally (e.g., Var-

imax) or are otherwise constrained to be uncorrelated, the pattern coefficients and structure

coefficients are identical (Henson & Roberts, 2006). However, the use of uncorrelated factors

can rarely be justified (Fabrigar et al., 1999), which means that, in most cases, pattern and

structure coefficients are not equal.

While both the empirical criteria shown in Equation 2 and Equation 3 contain pattern coefficients,

assessing discriminant validity based on loadings is problematic. First, these comparisons involve

assessing a single item or scale at a time, which is incompatible with the idea that discriminant validity

is a feature of a measure pair. Second, pattern coefficients do not provide any information on the

correlation between two scales, and structure coefficients are an indirect measure of the correlation at

best.16 Third, while the various guidelines differ in how loadings should be interpreted (Henseler et al.,

2015; Straub et al., 2004; Thompson, 1997), they all share the features of relying mostly on authors’

intuition instead of theoretical reasoning or empirical evidence. In summary, these techniques fall into

the rules of thumb category and cannot be recommended.

Single-Model fit. The final set of techniques is those that assess the single-model fit of a CFA model. A

CFA model can fit the data poorly if there are unmodeled loadings (pattern coefficients), omitted

factors, or error correlations in the data, none of which are directly related to discriminant validity.

Table 5. Factor Pattern Coefficients, Correlations, and Structure Coefficients.

Definitions Numerical Example

Items

Factor Pattern
Coefficients

Factor Structure
Coefficients

Factor Pattern
Coefficients

Factor Structure
Coefficients

Factor1 Factor2 Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

x1 l11 0 l11 l11r .70 0 .70 .35
x2 l21 0 l21 l21r .60 0 .60 .30
x3 l31 0 l31 l31r .80 0 .80 .40
x4 0 l42 l42r l42 0 .90 .45 .90
x5 0 l52 l52r l52 0 .70 .35 .70
x6 0 l62 l62r l62 0 .80 .40 .80

Note: Factor correlation r ¼ :5. The factor structure coefficients are the matrix multiplication of the factor pattern
coefficients and factor correlations.
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While some of the model fit indices do depend on factor correlations, they do so only weakly and

indirectly (Kline, 2011, chap. 8). Thus, while a well-fitting factor model is an important assumption

(either implicitly—e.g., the various rD—or explicitly—e.g., CFA techniques), model fit itself will

not provide any information on whether either of the two empirical criteria shown in Equation 2 and

Equation 3 holds.

Summary: Under What Conditions Is Each Technique Useful?

Our review of the literature provides several conclusions. Overall, w2ðcutÞ and CICFA (cut) can be

recommended as general solutions because they meet the definition of discriminant validity, have

the flexibility to adapt to various levels of cutoffs, and can be extended to more complex scenarios

such as nonlinear measurement models (Foster et al., 2017), scales with minor dimensions (Rodri-

guez et al., 2016), or cases in which factorial validity is violated because of cross-loadings. Some of

the other techniques can be useful for specific purposes. w2ðmergeÞ, w2ð1Þ, and CICFA(1) can be used

if theory suggests nearly perfect but not absolutely perfect correlations. They can also be useful as a

first step in discriminant validity assessment; if any of them indicates a problem, then so will any

variant of the techniques that use a cutoff of less than 1. Disattenuated correlations are useful in

single-item scenarios, where reliability estimates could come from test-retest or interrater reliability

checks or from prior studies. These techniques could also be used in multiple item scenarios, if a

researcher does not have access to SEM software, or in some small sample scenarios (Rosseel,

2020). If the effect of measurement error can be assumed to be negligible, even using scale score

correlations can be useful as a rough check. The techniques that assess the lack of cross-loadings

(pattern coefficients) and model fit provide (factorial) validity information, which is important in

establishing the assumptions of the other techniques, but these techniques are of limited use in

providing actual discriminant validity evidence.

Monte Carlo Simulations

We will next compare the various discriminant validity assessment techniques in a Monte Carlo

simulation with regard to their effectiveness in two common tasks: (a) quantifying the degree to

which discriminant validity can be a problem and (b) making a dichotomous decision on whether

discriminant validity is a problem in the population. For statistics with meaningful interpretations,

we assessed the bias and variance of the statistic and the validity of the CIs. For the dichotomous

decision, we set .85, .9, .95, and 1 as cutoffs and estimated the Type I error (i.e., false positive) and

Type II error (i.e., false negative) rates for the conclusion that the factor correlation was at least at the

cutoff value in the population.

Simulation Design

For simplicity, we followed the design used by Voorhees et al. (2016) and generated data from a

three-factor model. We assessed the discriminant validity of the first two factors, varying their

correlation as an experimental condition. Voorhees et al. (2016) used only two factor correlation

levels, .75 and .9. We wanted a broader range from low levels where discriminant validity is unlikely

to be a problem up to perfect correlation, so we used six levels: .5, .6, .7, .8, .9, and 1. The third factor

was always correlated at .5 with the first two factors. The number of items was varied at 3, 6, and 9,

and factor loadings were set to [0.9,0.8,0.8], [0.8,0.7,0.7], [0.5,0.4,0.4], [0.9,0.6,0.3], and [0.8, 0.8,

0.8]. For the six- and nine-item scenarios, each factor loading value was used multiple times. All

factors had unit variances in the population, and we scaled the error variances so that the population

variances of the items were one. Cross-loadings (in the pattern coefficients) were either 0, 1, or 2.
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This condition was implemented following the approach by Voorhees et al. (2016); in the cross-

loading condition, either the first or first two indicators of the second latent variable also loaded on

the first latent variable. The same value was used for both loadings, and the values were scaled down

from their original values so that the factors always explained the same amount of variance in the

indicators. In the six- and nine-item conditions, the number of cross-loaded items was scaled up

accordingly. Sample size was the final design factor and varied at 50, 100, 250, and 1,000. The full

factorial (6 � 3 � 5 � 3 � 4) simulation was implemented with the R statistical programming

environment using 1,000 replications for each cell. We estimated the factor models with the lavaan

package (Rosseel, 2012) and used semTools to calculate the reliability indices (Jorgensen et al.,

2020). The full simulation code is available in Online Supplement 2, and the full set of simulation

results at the design level can be found in Online Supplement 3.

Correlation Estimates and Their Confidence Intervals

We first focus on the scenarios where the factor model was correctly specified (i.e., there were no

cross-loadings). Because rDPR and HTMT were proven equivalent and always produced identical

results, we report only the former. We also omit the two low correlation conditions (i.e., .5, .6)

because the false positive rates are already clear in the .7 condition.

Because the pattern of results is very similar for correlations and their confidence intervals, we

present both sets of results together. Table 6 shows the correlation estimates by sample size, number

of items, and factor loading conditions. Table 7 shows the coverage and the balance of the CIs by

sample size and selected values of loading condition, omitting rSS because of its generally poor

performance in the correlation results. Ideally, the coverage of a 95% CI should be .95, and the

balance should be close to zero. The CIs for rCFA were obtained from the CFAs, and for rDPR, we

used bootsrap percentile CIs, following Henseler et al. (2015). For comparison, we also calculated

the bootstrap percentile CIs for rDTR and rDCR. All bootstrap analyses were calculated with 1,000

replications.

The first set of rows in Table 6 shows the effects of sample size. Scale score correlation rSS was

always negatively biased due to the well-known attenuation effect. All disattenuation techniques and

CFA performed better, and in large samples (250, 1,000), their performance was indistinguishable.

This result was expected because all these approaches are consistent and their assumptions hold in

this set of conditions. In the smallest sample size (50), CFA was slightly biased to be less efficient

than the disattenuation-based techniques, but the differences were in the third digit and thus were

inconsequential. The number of indicators, shown in the second set of rows in Table 6, affects the

bias of the scale score correlation rSS because increasing the number of indicators increases relia-

bility and, consequently, reduces the attenuation effect. The effect for other techniques was an

increase in precision, which was expected because more indicators provide more information from

which to estimate the correlation.

The third set of rows in Table 6 demonstrates the effects of varying the factor loadings. When the

factor loadings were equal (all at .8), the performance of CFA and all disattenuation techniques was

identical, which was expected, as explained above. Table 7 shows that in this condition, the con-

fidence intervals of all techniques performed reasonably well. The balance statistics were all neg-

ative, indicating that when the population value was outside the CI, it was generally more frequently

below the lower limit of the interval than above the upper limit. In other words, all CIs were slightly

positively biased. This effect and the general undercoverage of the CIs were most pronounced in

small samples. CICFA performed slightly worse than disattenuated correlations when the sample size

was very small and the correlation between the factors was weaker. However, outside the smallest

sample sizes, the differences were negligible in the third decimals.
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Table 6. Correlation Estimates by Sample Size, Number of Items, and Loadings.

Sample Size, Indicators,
Loadingsa Technique

Factor Correlation

.7 .8 .9 1.0

M SD M SD M SD M SD

50 rCFA .694 .111 .801 .088 .897 .070 1.000 .049
rDPR .697 .108 .802 .086 .901 .066 1.003 .047
rDTR .698 .108 .804 .086 .903 .066 1.005 .048
rDCR .694 .108 .800 .087 .898 .066 1.000 .047
rSS .583 .095 .672 .080 .753 .065 .838 .045

100 rCFA .700 .076 .801 .061 .899 .045 1.000 .032
rDPR .700 .075 .802 .059 .900 .044 1.002 .031
rDTR .701 .075 .803 .060 .901 .044 1.003 .031
rDCR .699 .076 .801 .060 .899 .044 1.000 .031
rSS .588 .068 .673 .057 .755 .042 .841 .030

250 rCFA .699 .043 .799 .038 .899 .028 1.001 .019
rDPR .699 .043 .799 .037 .900 .027 1.001 .019
rDTR .700 .043 .800 .037 .900 .027 1.002 .019
rDCR .699 .043 .799 .037 .899 .027 1.001 .019
rSS .588 .039 .672 .035 .757 .027 .842 .018

1,000 rCFA .699 .023 .800 .018 .899 .014 1.000 .009
rDPR .699 .023 .800 .018 .899 .014 1.000 .009
rDTR .699 .023 .800 .018 .899 .014 1.000 .009
rDCR .699 .023 .800 .018 .899 .014 1.000 .009
rSS .589 .021 .674 .017 .756 .013 .842 .009

3 rCFA .699 .043 .799 .038 .899 .028 1.001 .019
rDPR .699 .043 .799 .037 .900 .027 1.001 .019
rDTR .700 .043 .800 .037 .900 .027 1.002 .019
rDCR .699 .043 .799 .037 .899 .027 1.001 .019
rSS .588 .039 .672 .035 .757 .027 .842 .018

6 rCFA .699 .039 .799 .030 .900 .019 1.000 .009
rDPR .699 .039 .799 .030 .900 .019 1.000 .009
rDTR .699 .039 .800 .030 .900 .019 1.000 .009
rDCR .699 .039 .799 .030 .900 .019 1.000 .009
rSS .639 .038 .731 .030 .823 .021 .914 .010

9 rCFA .699 .038 .798 .028 .899 .016 1.000 .006
rDPR .699 .038 .798 .028 .899 .016 1.000 .006
rDTR .699 .038 .798 .028 .899 .016 1.001 .006
rDCR .699 .038 .798 .028 .898 .016 1.000 .006
rSS .657 .037 .751 .029 .845 .018 .941 .007

0.5, 0.4, 0.4 rCFA .709 .156 .802 .161 .915 .157 1.012 .170
rDPR .727 .153 .819 .158 .934 .157 1.028 .168
rDTR .728 .153 .819 .158 .934 .157 1.029 .168
rDCR .711 .152 .802 .156 .917 .155 1.012 .169
rSS .288 .058 .325 .058 .369 .053 .407 .053

0.8, 0.7, 0.7 rCFA .699 .051 .803 .042 .900 .035 1.001 .028
rDPR .701 .052 .805 .043 .903 .036 1.004 .029
rDTR .702 .052 .805 .043 .904 .036 1.004 .029
rDCR .699 .051 .802 .043 .900 .036 1.001 .028
rSS .544 .043 .624 .037 .699 .033 .778 .026

(continued)
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When the loadings varied, rDTR and rDPR became positively biased. The reason for this result is

that these estimation techniques assume tau-equivalence or equal reliability of the indicators; when

this assumption does not hold, the techniques have been shown to produce negatively biased

reliability estimates, thus leading to overcorrection for attenuation and producing positive bias. The

same results are mirrored in the second set of rows in Table 7; both CIDPR and CIDTR produced

positively biased CIs with poor coverage and balance.

In summary, Table 6 and Table 7 show that the best-performing correlation estimate was rCFA,

followed by rDCR and that the corresponding confidence intervals CICFA and CIDCR outperform the

others. When the condition of being tau-equivalent was violated (e.g., the loadings were .9, .6, and

.3), rCFA and rDCR produced estimates that were more accurate than those produced by other

methods, but rCFA was slightly more precise, having smaller standard deviations. Similarly,

CICFA and CIDCR were largely unaffected and retained their performance from the tau-equivalent

condition.

Inference Against a Cutoff

Our main results concern inference against a cutoff and are relevant when a researcher wants to

make a yes/no decision about discriminant validity. We start by assessing the performance of the

techniques that can be thought of as tests of a perfect correlation or as rules of thumb. Because the

differences between rDPR (i.e., HTMT) and rDTR were negligible, only the former is reported.

Similarly, CIDTR is omitted due to nearly identical performance with CIDPR.

Table 6. (continued)

Sample Size, Indicators,
Loadingsa Technique

Factor Correlation

.7 .8 .9 1.0

M SD M SD M SD M SD

0.8, 0.8, 0.8 rCFA .699 .043 .799 .038 .899 .028 1.001 .019
rDPR .699 .043 .799 .037 .900 .027 1.001 .019
rDTR .700 .043 .800 .037 .900 .027 1.002 .019
rDCR .699 .043 .799 .037 .899 .027 1.001 .019
rSS .588 .039 .672 .035 .757 .027 .842 .018

0.9, 0.6, 0.3 rCFA .697 .062 .800 .052 .901 .047 1.000 .036
rDPR .767 .083 .879 .073 .989 .071 1.101 .065
rDTR .768 .082 .879 .073 .990 .071 1.102 .066
rDCR .698 .072 .799 .062 .901 .058 1.003 .049
rSS .453 .049 .519 .044 .586 .040 .651 .034

0.9, 0.8, 0.8 rCFA .700 .043 .797 .032 .902 .023 1.000 .014
rDPR .701 .043 .798 .033 .904 .025 1.002 .015
rDTR .701 .043 .798 .033 .904 .024 1.002 .015
rDCR .700 .043 .796 .033 .902 .024 1.000 .014
rSS .610 .040 .695 .032 .787 .024 .872 .015

Note: M¼mean; SD¼ standard deviation; Techniques: CFA¼ confirmatory factor analysis; Dxx¼ disattenuated correction
using PR ¼ parallel reliability, TR ¼ tau-equivalent reliability, and CR ¼ congeneric reliability; SS ¼ summed scale without
disattenuation.
a. When the sample size was varied, the number of indicators was 3, and all loadings were .8. When the number of indicators
was varied, the sample size was 250, and all loadings were .8. When the loadings were varied, the sample size was 250, and the
number of indicators was 3.
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Table 8 clearly shows that some of the techniques have either unacceptably low power or a false

positive rate that is too high to be considered useful. Techniques that directly compare the point

estimates of correlations with a cutoff (i.e., rCFAð1Þ, rDPRð1Þ, and rCRð1Þ) have very high false

negative rates because an unbiased and normal correlation estimate can be expected to be below the

population value (here, 1) exactly half the time. In contrast, the AVE/SV technique that uses factor

correlation following Fornell and Larcker’s (1981a) original proposal has a very high false positive

rate. As expected based on our analysis, the misused version using scale score correlation,

AVE=SVSS has a smaller false positive rate because the attenuation bias in the scale score correla-

tion worked to offset the high false positive rate of the AVE comparison. Clearly, none of these

techniques can be recommended.

Table 7. Coverage and Balance of 95% Confidence Intervals by Loadings and Sample Size.

Loadings
Sample

Size Technique

Factor Correlation

.7 .8 .9 1.0

Coverage Balance Coverage Balance Coverage Balance Coverage Balance

0.8, 0.8, 0.8 50 rCFA .905 –.057 .899 –.085 .912 –.068 .955 –.023
rDPR .921 –.037 .922 –.048 .908 –.056 .927 –.045
rDTR .922 –.040 .915 –.059 .908 –.068 .909 –.067
rDCR .927 –.027 .919 –.049 .916 –.046 .933 –.033

100 rCFA .915 –.051 .925 –.055 .936 –.046 .955 –.025
rDPR .917 –.021 .938 –.022 .944 –.030 .940 –.030
rDTR .922 –.030 .932 –.028 .940 –.042 .938 –.038
rDCR .925 –.019 .932 –.016 .943 –.027 .941 –.021

250 rCFA .966 –.016 .938 –.022 .947 –.025 .949 –.015
rDPR .967 –.011 .947 –.011 .949 –.015 .946 –.024
rDTR .968 –.008 .949 –.013 .944 –.022 .942 –.026
rDCR .967 –.005 .948 –.008 .948 –.012 .945 –.017

1,000 rCFA .949 –.001 .955 –.017 .954 –.008 .950 –.002
rDPR .938 .004 .956 –.012 .947 –.007 .947 –.007
rDTR .947 .003 .956 –.010 .952 –.004 .953 –.009
rDCR .946 .006 .956 –.008 .951 –.003 .951 –.005

0.9, 0.6, 0.3 50 rCFA .911 –.034 .919 –.030 .923 –.036 .954 .015
rDPR .851 –.143 .859 –.141 .822 –.176 .806 –.194
rDTR .852 –.142 .848 –.150 .810 –.188 .803 –.197
rDCR .964 –.017 .957 –.023 .942 –.035 .952 –.023

100 rCFA .942 –.016 .939 –.005 .949 –.019 .944 .002
rDPR .859 –.135 .843 –.157 .810 –.190 .756 –.244
rDTR .866 –.128 .842 –.158 .803 –.195 .747 –.253
rDCR .956 –.010 .943 –.007 .945 –.017 .940 –.020

250 rCFA .940 –.006 .943 –.017 .937 –.031 .964 –.002
rDPR .832 –.164 .786 –.214 .694 –.306 .581 –.417
rDTR .826 –.170 .781 –.219 .682 –.318 .568 –.430
rDCR .943 –.007 .949 –.005 .937 –.023 .942 –.012

1,000 rCFA .958 .006 .947 –.023 .950 –.008 .947 –.027
rDPR .621 –.379 .453 –.545 .279 –.721 .117 –.883
rDTR .613 –.387 .446 –.552 .264 –.736 .108 –.892
rDCR .955 –.005 .947 –.003 .951 –.017 .945 –.017

Note: Balance is the difference between frequencies for the population value above and below the confidence interval. The
number of indicators was always 3. Techniques: CFA¼ confirmatory factor analysis; Dxx¼ disattenuated correction using PR
¼ parallel reliability, TR ¼ tau-equivalent reliability, and CR ¼ congeneric reliability.
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Table 8. Detection Rates of the Discriminant Validity Problem as a Perfect Correlation by Technique.

Sample Size Technique

Loadings and Factor Correlation

0.8, 0.8, 0.8 0.9, 0.6, 0.3

.7* .8* .9* 1.0y .7* .8* .9* 1.0y

50 rCFA(1) .000 .001 .016 .513 .007 .016 .063 .503
rDPR(1) .000 .001 .016 .530 .051 .110 .258 .770
rDCR(1) .000 .000 .016 .511 .014 .031 .107 .529
CICFA(1) .013 .075 .293 .992 .108 .194 .388 .984
CIDPR(1) .016 .072 .273 .986 .410 .616 .898 1.000
CIDCR(1) .014 .066 .256 .983 .244 .397 .697 .988
AVE=SVCFA .161 .582 .968 1.000 .733 .941 .992 1.000
AVE=SVSS .014 .141 .692 .975 .178 .457 .729 .871
CFI(1) .008 .037 .160 .935 .085 .140 .249 .916
w2(1) .006 .043 .199 .967 .110 .185 .332 .968
w2ðmergeÞ .009 .056 .243 .967 .130 .210 .358 .968

100 rCFA(1) .000 .000 .002 .520 .000 .001 .028 .510
rDPR(1) .000 .000 .002 .528 .016 .059 .204 .827
rDCR(1) .000 .000 .002 .517 .001 .006 .051 .525
CICFA(1) .000 .004 .106 .990 .022 .088 .241 .985
CIDPR(1) .000 .003 .105 .984 .241 .386 .773 .999
CIDCR(1) .000 .003 .093 .980 .076 .182 .483 .984
AVE=SVCFA .063 .603 .993 1.000 .822 .980 .999 1.000
AVE=SVSS .000 .071 .690 .990 .097 .438 .728 .878
CFI(1) .000 .006 .096 .973 .028 .083 .211 .955
w2(1) .000 .002 .081 .973 .024 .086 .234 .972
w2ðmergeÞ .000 .005 .105 .970 .038 .114 .263 .977

250 rCFA(1) .000 .000 .000 .519 .000 .000 .006 .505
rDPRð1Þ .000 .000 .000 .527 .001 .016 .148 .920
rDCR(1) .000 .000 .000 .515 .000 .001 .017 .509
CICFA(1) .000 .000 .005 .983 .000 .005 .124 .984
CIDPR(1) .000 .000 .005 .984 .074 .225 .516 .999
CIDCR(1) .000 .000 .005 .982 .002 .030 .204 .980
AVE=SVCFA .009 .584 1.000 1.000 .911 .999 1.000 1.000
AVE=SVSS .000 .010 .671 .999 .028 .426 .697 .886
CFI(1) .000 .000 .019 .994 .001 .020 .133 .987
w2(1) .000 .000 .004 .974 .000 .006 .123 .976
w2ðmergeÞ .000 .000 .008 .972 .000 .014 .152 .976

1,000 rCFA(1) .000 .000 .000 .491 .000 .000 .000 .510
rDPR(1) .000 .000 .000 .495 .000 .001 .106 .997
rDCR(1) .000 .000 .000 .488 .000 .000 .000 .518
CICFAð1Þ .000 .000 .000 .983 .000 .000 .001 .985
CIDPR(1) .000 .000 .000 .981 .000 .028 .320 1.000
CIDCR(1) .000 .000 .000 .980 .000 .000 .015 .979
AVE=SVCFA .000 .583 1.000 1.000 .988 1.000 1.000 1.000
AVE=SVSS .000 .000 .666 1.000 .001 .396 .667 .900
CFI(1) .000 .000 .000 1.000 .000 .000 .017 1.000
w2(1) .000 .000 .000 .979 .000 .000 .001 .981
w2ðmergeÞ .000 .000 .000 .978 .000 .000 .003 .979

Note: Averages over all indicator numbers. Techniques:r¼ comparing the correlations against a cutoff; CI¼ comparing if a cutoff
is included in the 95% confidence interval; AVE=SV ¼ comparing the AVE statistics against the squared correlation; CFA¼
confirmatory factor analysis; Dxx ¼ disattenuated correction using PR ¼ parallel reliability, TR ¼ tau-equivalent reliability, and
CR¼ congeneric reliability; CFI¼ nested model comparison using the CFI rule; w2 ¼ nested model test; (1) ¼ two factors are
constrained to be perfectly correlated; (merge) ¼ two factors are merged into one.
*False positive rate. ytrue positive rate ¼ (1 – false negative rate).
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The various model comparisons and CIs performed better. Among the three methods of model

comparison (CFI(1), w2(1), and w2ðmergeÞ), w2(1) was generally the best in terms of both the false

positive rate and false negative rate. While the difference was small, it is surprising that w2(1) was

strictly superior to w2ðmergeÞ, having both more power and a smaller false positive rate. Our

explanation for this finding is that although w2ðmergeÞ imposes more constraints on the model,

these constraints work differently when the factors are perfectly correlated and when they are not.

When the factors are perfectly correlated, imposing more constraints means that the model can be

declared to misfit in more ways, thus leading to lower power. In contrast, when the correlation

between the factors is less than 1, the additional constraints are somewhat redundant because

constraining the focal correlation to 1 will also bias all other correlations involving the focal

variables. Thus, the amount of misfit produced by the first constraint is greater than the other

constraints that w2ðmergeÞ contributes. This phenomenon leads to a higher false positive rate

because while the additional constraints contribute degrees of freedom, they contribute less

misfit.

Another interesting finding is that although CFIð1Þ was proposed as an alternative to w2ð1Þ based

on the assumption that it had a smaller false positive rate, this assumption does not appear to be true:

the false positive rates of these techniques were comparable, and in larger samples (250, 1,000), the

false positive rate of CFIð1Þ even exceeded that of w2ð1Þ. Generalizing this finding to larger models

requires caution because the CFI comparison depends on the fit of the null model, which depends on

model size. Nevertheless, it is clear that the CFI comparison does not generally have a smaller false

positive rate than w2ð1Þ:
The performance of the CIs (CICFAð1Þ, CIDPRð1Þ, and CIDCRð1Þ) was nearly identical in the tau-

equivalent condition (i.e., all loadings at .8), but in the congeneric condition (i.e., the loadings at .3,

.6, and .9), CIDPRð1Þ had an excessive false positive rate due to the positive bias explained earlier.

CIDCRð1Þ had a larger false positive rate than CICFAð1Þ, particularly in small samples, possibly due to

violating the large sample assumption of bootstrapping. In summary, Table 8 supports the use of

CICFAð1Þ and w2ð1Þ. The former had slightly more power but a larger false positive rate than the

latter. The performance of these two techniques converged in large samples.

Table 9 considers cutoffs other than 1, using values of .85, .90, and .95 that are sometimes

recommended in the literature, showing results that are consistent with those of the previous tables.

The techniques that compared the CI against a cutoff (i.e., CICFAðcutÞ, CIDPRðcutÞ and CIDCRð1Þ)
had more power than those that compared an estimate against a cutoff (i.e., rCFAðcutÞ, rDPRðcutÞ,
and rDCRðcutÞ), especially in small samples, and between the three, CICFAðcutÞ showed a lower false

positive rate while having power similar to that of CIDPRðcutÞ and to a smaller extent CIDCRðcutÞ.
Among the techniques that compared model fit (i.e., CFIðcutÞ and w2ðcutÞ), CFIðcutÞ had slightly

more power but also a higher false positive rate in small samples than w2ðcutÞ. In larger samples, the

power of the two techniques was similar, but w2ðcutÞ generally had the lowest false positive rate.

This finding and the sensitivity of the CFI tests to model size, explained earlier, make w2ðcutÞ the

preferred alternative of the two. In summary, CICFAðcutÞ and w2ðcutÞ are generally the best tech-

niques. They have different strengths: CICFAðcutÞ has slightly more power, but w2ðcutÞ enjoys a

considerably lower false positive rate.

Effects of Model Misspecification

We now turn to the cross-loading conditions to assess the robustness of the techniques when the

assumption of no cross-loadings is violated. The results shown in Table 10 show that all estimates

become biased toward 1. rDCR was slightly most robust to these misspecifications, but the differ-

ences between the techniques were not large. Table 11 presented the detection rates of different

techniques using alterative cutoffs and over the cross-loading conditions and showed similar results.
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All techniques were again affected, and both the power and false positive rates increased across the

board when the correlation between the factors was less than one. As before, the effect was stronger

for smaller population correlations.

In the cross-loading conditions, we also estimated a correctly specified CFA model in which the

cross-loadings were estimated. Table 10 shows that the mean estimate was largely unaffected, but

the variance of the estimates (not reported in the table) increased because of the increased model

Table 9. Detection Rates by Technique Using Alternative Cutoffs.

Sample Size Technique

Cutoff and Factor Correlation

.85 .9 .95

.7* .8* .9y 1.0y .7* .8* .9y 1.0y .7* .8* .9* 1.0y

50 rCFAðcutÞ .085 .289 .784 .950 .049 .126 .517 .925 .033 .064 .193 .866
rDPRðcutÞ .121 .348 .818 .968 .075 .182 .576 .946 .051 .101 .270 .892
rDCRðcutÞ .095 .301 .785 .958 .056 .140 .524 .930 .036 .073 .212 .857
CICFAðcutÞ .694 .945 .992 .996 .413 .788 .982 .995 .216 .439 .895 .992
CIDPRðcutÞ .695 .940 .999 1.000 .477 .777 .990 1.000 .331 .522 .884 .999
CIDCRðcutÞ .669 .929 .999 1.000 .441 .746 .988 1.000 .305 .476 .858 .999
CFIðcutÞ .416 .781 .971 .992 .227 .509 .915 .987 .146 .259 .649 .977
w2ðcutÞ .541 .884 .992 .998 .301 .629 .967 .997 .192 .333 .760 .995

100 rCFAðcutÞ .041 .194 .850 .973 .023 .068 .510 .953 .015 .034 .126 .907
rDPRðcutÞ .066 .264 .878 .980 .037 .110 .582 .963 .022 .061 .206 .925
rDCRðcutÞ .044 .211 .846 .975 .022 .072 .518 .952 .014 .036 .141 .897
CICFAðcutÞ .396 .891 .996 .999 .189 .525 .987 .998 .115 .230 .734 .996
CIDPRðcutÞ .455 .888 .999 1.000 .279 .577 .989 1.000 .198 .337 .760 1.000
CIDCRðcutÞ .410 .869 .999 1.000 .236 .528 .986 1.000 .166 .280 .721 .999
CFIðcutÞ .317 .793 .987 .998 .156 .417 .952 .996 .096 .188 .617 .990
w2ðcutÞ .314 .818 .997 1.000 .169 .419 .974 .999 .114 .209 .614 .997

250 rCFAðcutÞ .016 .102 .927 .989 .008 .029 .513 .977 .004 .014 .071 .945
rDPRðcutÞ .027 .169 .942 .991 .013 .060 .589 .980 .006 .025 .143 .956
rDCRðcutÞ .015 .110 .919 .989 .008 .030 .508 .977 .004 .014 .077 .939
CICFAðcutÞ .145 .704 .998 1.000 .079 .233 .985 1.000 .049 .114 .426 .998
CIDPRðcutÞ .224 .743 .999 1.000 .139 .336 .987 1.000 .095 .192 .540 .999
CIDCRðcutÞ .168 .698 .999 1.000 .097 .262 .981 1.000 .064 .137 .468 .999
CFIðcutÞ .208 .819 .996 .999 .093 .321 .981 .998 .063 .117 .571 .996
w2ðcutÞ .134 .635 .998 1.000 .078 .210 .975 1.000 .053 .111 .381 .999

1,000 rCFAðcutÞ .002 .030 .976 .999 .000 .006 .505 .995 .000 .002 .025 .980
rDPRðcutÞ .003 .095 .980 .999 .000 .025 .622 .997 .000 .003 .093 .983
rDCRðcutÞ .002 .033 .975 .999 .000 .006 .507 .995 .000 .002 .026 .979
CICFAðcutÞ .032 .253 1.000 1.000 .016 .071 .980 1.000 .006 .033 .174 1.000
CIDPRðcutÞ .069 .378 1.000 1.000 .028 .146 .984 1.000 .011 .074 .309 1.000
CIDCRðcutÞ .036 .279 1.000 1.000 .020 .081 .979 1.000 .008 .038 .198 1.000
CFIðcutÞ .063 .846 .999 1.000 .027 .132 .995 1.000 .013 .060 .400 1.000
w2ðcutÞ .033 .238 1.000 1.000 .018 .071 .975 1.000 .007 .035 .170 1.000

Note: Averages over all indicator numbers and loading. Techniques: r ¼ comparing correlation against a cutoff; CI ¼
comparing if a cutoff is included in the 95% confidence interval, CFA¼ confirmatory factor analysis; Dxx ¼ disattenuated
correction using PR¼ parallel reliability, TR¼ tau-equivalent reliability, and CR¼ congeneric reliability; CFI ¼ nested model
comparison using the CFI rule; w2 ¼ nested model test.
*False positive rate. ytrue positive rate ¼ (1 – false negative rate).
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complexity. This effect is seen in Table 11, where the pattern of results for CFA models was largely

similar between the cross-loading conditions, but the presence of cross-loadings increased the false

positive rate. This result is easiest to understand in the context of CICFAðcutÞ; when estimates

became less precise, this also widened the confidence intervals and, consequently, increased the

frequency of results where the cutoff fell within the interval.

The cross-loading results underline the importance of observing the assumptions of the tech-

niques and that not doing so may lead to incorrect inference. However, two conclusions that are new

to discriminant validity literature can be drawn: First, the lack of cross-loadings in the population

(i.e., factorial validity) is not a strict prerequisite for discriminant validity assessment as long as the

cross-loadings are modeled appropriately. Second, while the lack of factorial validity can lead scale-

item pairs to have complete lack of discriminant validity (see Equation 2), this does not always

invalidate scale-level discriminant validity (see Equation 3) as long as this is properly modeled.

Discussion

The original meaning of the term “discriminant validity” was tied to MTMM matrices, but the term

has since evolved to mean a lack of a perfect or excessively high correlation between two measures

after considering measurement error. We provided a comprehensive review of the various discri-

minant validity techniques and presented a simulation study assessing their effectiveness. There are

several issues that warrant discussion.

Contradictions With Prior Studies

Our simulation results clearly contradict two important conclusions drawn in the recent discriminant

validity literature, and these contradictions warrant explanations. First, Henseler et al. (2015) and

Voorhees et al. (2016) strongly recommend rDPR (HTMT) for discriminant validity assessment. We

prove that the HTMT index is simply a scale score correlation disattenuated with parallel reliability

(i.e., the standardized alpha) and thus should not be expected to outperform modern CFA techniques,

which our simulation demonstrates. The different conclusions are due to the limitations of these prior

studies. While Henseler et al. (2015) explain that rDPR is a factor correlation estimate, they do not

compare it against other factor correlation estimation techniques. Thus, their results do not indicate the

superiority of rDPR but simply indicate that AVE/SV, which was their main comparison, performs very

poorly. The follow-up study by Voorhees et al. (2016) considered a broader set of techniques,

Table 10. Mean Correlation Estimate Under Model Misspecification.

Cross-Loading
Estimation Technique

Population Cross-Loadings and Factor Correlation

No Cross-Loadings 1 Cross-Loading 2 Cross-Loadings

.7 .8 .9 1.0 .7 .8 .9 1.0 .7 .8 .9 1.0

Assumed zero rCFA .699 .800 .901 1.001 .819 .878 .938 1.002 .885 .921 .957 1.000
rDPR .707 .808 .911 1.012 .808 .876 .943 1.011 .879 .922 .962 1.008
rDTR .708 .809 .911 1.013 .808 .876 .943 1.012 .879 .922 .963 1.008
rDCR .700 .800 .901 1.002 .801 .868 .935 1.002 .871 .914 .955 1.000
rSS .560 .640 .720 .801 .633 .692 .749 .801 .700 .740 .777 .805

Estimated rCFA .700 .801 .903 1.009 .694 .790 .894 1.021

Note: Averages the correlations over the conditions shown in Table 6. Techniques: CFA¼ confirmatory factor analysis; Dxx
¼ disattenuated correction using PR¼ parallel reliability, TR¼ tau-equivalent reliability, and CR¼ congeneric reliability; SS¼
summed scale without disattenuation.
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including CICFAð1Þ and w2ð1Þ. The problem in their study was that the different techniques were

applied using different cutoffs: rDPR was used with cutoffs of .80, .85, and .90, whereas the other

techniques always used the cutoff of 1 and were thus predestined to fail in a study where a correlation

of .90 was used as a discriminant validity problem condition. A more complete study would have used

the same cutoffs (.80, .85, and .90) that were applied to rDPR with w2 and CICFA as well, as we did.

Second, our results also challenge J. A. Shaffer et al.’s (2016) recommendation that discriminant

validity should be tested by a CFI comparison between two nested models (CFI(1)). The reason for

this contradiction is that their recommendation is based on the assumption that if the CFI difference

Table 11. Detection Rates by Technique Using Alternative Cutoffs Under Model Misspecification.

Cross-Loadings and
Whether
Estimated Technique

Cutoff and Factor Correlation

.85 .9 .95

.7* .8* .9y 1.0y .7* .8* .9y 1.0y .7* .8* .9* 1.0y

No cross-loadings
Assumed zero

rCFAðcutÞ .034 .152 .886 .980 .018 .055 .511 .965 .011 .026 .101 .927
rDPRðcutÞ .052 .216 .906 .986 .029 .091 .592 .973 .018 .045 .175 .941
rDCRðcutÞ .037 .161 .883 .982 .019 .060 .514 .966 .012 .029 .111 .920
CICFAðcutÞ .313 .697 .997 .999 .169 .400 .984 .998 .091 .199 .555 .997
CIDPRðcutÞ .356 .735 .999 1.000 .225 .455 .988 1.000 .152 .276 .620 1.000
CIDCRðcutÞ .315 .691 .999 1.000 .192 .400 .983 1.000 .129 .227 .558 .999
CFIðcutÞ .248 .810 .989 .998 .121 .341 .961 .996 .075 .151 .557 .991
w2ðcutÞ .251 .641 .997 .999 .137 .328 .973 .999 .086 .167 .478 .998

1 cross-loading
Assumed zero

rCFAðcutÞ .445 .837 .958 .980 .168 .442 .895 .965 .038 .098 .450 .925
rDPRðcutÞ .253 .757 .962 .986 .109 .297 .883 .974 .051 .115 .368 .938
rDCRðcutÞ .194 .739 .954 .982 .067 .229 .863 .965 .029 .067 .290 .919
CICFAðcutÞ .900 .996 .999 .999 .621 .917 .997 .999 .311 .541 .940 .997
CIDPRðcutÞ .732 .996 1.000 1.000 .469 .787 .999 1.000 .288 .462 .867 .999
CIDCRðcutÞ .727 .996 1.000 1.000 .425 .781 .999 1.000 .237 .408 .859 .999
CFIðcutÞ .912 .985 .995 .998 .596 .930 .989 .996 .214 .482 .946 .991
w2ðcutÞ .880 .995 .999 1.000 .563 .895 .997 .999 .254 .469 .918 .998

1 cross-loading
Estimated

rCFAðcutÞ .058 .191 .848 .962 .037 .088 .518 .938 .025 .051 .160 .883
CICFAðcutÞ .385 .750 .994 .998 .245 .488 .978 .996 .155 .287 .641 .994
CFIðcutÞ .367 .871 .986 .996 .216 .498 .964 .993 .147 .267 .745 .987
w2ðcutÞ .342 .711 .996 .999 .221 .433 .972 .998 .157 .264 .591 .995

2 cross-loadings
Assumed zero

rCFAðcutÞ .855 .943 .970 .977 .411 .819 .936 .961 .067 .203 .740 .918
rDPRðcutÞ .779 .940 .975 .983 .307 .761 .941 .969 .110 .230 .709 .932
rDCRðcutÞ .760 .930 .970 .979 .235 .733 .929 .961 .057 .143 .663 .914
CICFAðcutÞ .996 .998 .999 .999 .938 .996 .998 .998 .492 .773 .992 .996
CIDPRðcutÞ .997 1.000 1.000 1.000 .803 .996 .999 1.000 .459 .693 .995 .999
CIDCRðcutÞ .996 1.000 1.000 1.000 .793 .995 1.000 1.000 .397 .660 .993 .999
CFIðcutÞ .986 .994 .996 .997 .941 .984 .992 .995 .434 .858 .976 .990
w2ðcutÞ .996 .998 .999 .999 .916 .994 .998 .998 .415 .720 .989 .996

2 cross-loadings
Estimated

rCFAðcutÞ .105 .257 .791 .922 .071 .150 .530 .895 .045 .091 .239 .837
CICFAðcutÞ .510 .814 .987 .993 .384 .614 .973 .990 .291 .444 .752 .987
CFIðcutÞ .565 .921 .983 .992 .408 .704 .968 .988 .303 .466 .885 .980
w2ðcutÞ .482 .790 .992 .997 .361 .573 .971 .995 .276 .408 .709 .990

Note: Averages over all conditions. Techniques: r¼ comparing the correlations against a cutoff; CI ¼ comparing if a cutoff is
included in the 95% confidence interval; CFA¼ confirmatory factor analysis; Dxx ¼ disattenuated correction using PR ¼
parallel reliability, TR ¼ tau-equivalent reliability, and CR ¼ congeneric reliability; CFI ¼ nested model comparison using the
CFI rule; w2 ¼ nested model test.
*False positive rate. ytrue positive rate ¼ (1 – false negative rate).
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works well for measurement invariance assessment, it should also work well when discriminant

validity assessment. The assumption appears to be invalid as it ignores an important difference

between these uses: Whereas the degrees of freedom of an invariance test scale roughly linearly with

the number of indicators, the degrees of freedom in CFI(1) are always one.

Magnitude of the Discriminant Validity Correlations

In the discriminant validity literature, high correlations between scales or scale items are considered

problematic. However, the literature generally has not addressed what is high enough beyond giving rule

of thumb cutoffs (e.g., 85). Our definition of discriminant validity suggests that the magnitude of the

estimated correlation depends on the correlation between the constructs, the measurement process, and

the particular sample, each of which has different implications on what level should be considered high.

To warn against mechanical use, we present a scenario where high correlation does not invalidate

measurement and a scenario where low correlation between measures does not mean that they measure

distinct constructs.

A large correlation does not always mean a discriminant validity problem if one is expected based

on theory or prior empirical observations. For example, the correlation between biological sex and

gender identity can exceed .99 in the population.17 However, both variables are clearly distinct: sex

is a biological property with clear observable markers, whereas gender identity is a psychological

construct. These two variables also have different causes and consequences (American Psycholo-

gical Association, 2015), so studies that attempt to measure both can lead to useful policy implica-

tions. In cases such as this where the constructs are well defined, large correlations should be

tolerated when expected based on theory and prior empirical results. Of course, large samples and

precise measurement would be required to ensure that the constructs can be distinguished empiri-

cally (i.e., are empirically distinct).

A small or moderate correlation (after correcting for measurement error) does not always mean

that two measures measure concepts that are distinct. For example, consider two thermometers that

measure the same temperature, yet one is limited to measuring only temperatures above freezing,

whereas the other can measure only temperatures below freezing. While both measure the same

quantity, they are correlated only by approximately .45 because the temperature would always be out

of the range of one of the thermometers that would consequently display zero centigrade.18 In the

social sciences, a well-known example is the measurement of happiness and sadness, two constructs

that can be thought of as opposite poles of mood (D. P. Green et al., 1993; Tay & Jebb, 2018).

Consequently, any evaluation of the discriminant validity of scales measuring two related constructs

must precede the theoretical consideration of the existence of a common continuum. If this is the

case, the typical discriminant validity assessment techniques that are the focus of our article are not

directly applicable, but other techniques are needed (Tay & Jebb, 2018).

As the two examples show, a moderately small correlation between measures does not always

imply that two constructs are distinct, and a high correlation does not imply that they are not. Like

any validity assessment, discriminant validity assessment requires consideration of context, possibly

relevant theory, and empirical results and cannot be reduced to a simple statistical test and a cutoff

no matter how sophisticated. These considerations highlight the usefulness of the continuous inter-

pretation of discriminant validity evidence.

On Choosing a Technique and a Cutoff

While a general set of statistics and cutoffs that is applicable to all research scenarios cannot exist,

we believe that establishing some standards is useful. Based on our study, CICFAðcutÞ and w2ðcutÞ
appear to be the leading techniques, but recommending one over another solely on a statistical basis
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is difficult due to the similar performance of the techniques. However, we recommend CICFAðcutÞ
for practical reasons. First, CICFAðcutÞ is less likely to be misused than w2ðcutÞ. While we found

some evidence of misapplication of w2ðcutÞ due to incorrect factor scaling, we did not see any

evidence of the same when factor correlations were evaluated; these can be obtained postestimation

simply by requesting standardized estimates from the software. Second, CICFAðcutÞ makes it easier

to transition from testing of discriminant validity to its evaluation because the focal statistic is a

correlation, which organizational researchers routinely interpret in other contexts. In sum,

CICFAðcutÞ is simpler to implement, easier to understand, and less likely to be misapplied.

w2ðcutÞ is slightly more accurate, but considering that even the simpler w2ð1Þ is often misapplied,

we do not think that the potential precision gained by using w2ðcutÞ is worth the cost of risking

misapplication.

Equally important to choosing a technique is the choice of a cutoff if the technique requires one.

Of the recent simulation studies, Henseler et al. (2015) suggested cutoffs of .85 and .9 based on prior

literature (e.g., Kline, 2011). Voorhees et al. (2016) considered the false positive and false negative

rates of the techniques used in their study and concluded that the cutoff of .85 had the best balance of

high power and an acceptable Type I error rate. However, as explained in Online Supplement 5, such

conclusions are to a large part simply artifacts of the simulation design. In sum, it seems that

deriving an ideal cutoff through simulation results is meaningless and must be established by

consensus among the field.

Empirical studies seem to agree that correlations greater than .9 indicate a problem and that

correlations less than .8 indicate the lack of a problem. For example, Le et al. (2010) diagnosed

a discriminant validity problem between job satisfaction and organizational commitment based

on a correlation of .91, and Mathieu and Farr (1991) declared no problem of discriminant

validity between the same variables on the basis of a correlation of .78. However, mixed

judgments were made about the correlation values between .8 and .9. Lucas et al. (1996)

acknowledged discriminant validity between self-esteem and optimism based on rDTR of .83

(rSS ¼ :72), but Credé et al. (2017) criticized the conceptual redundancy between grit and

conscientiousness based on a disattenuated correlation of .84 (rSS ¼ :66). Thus, if there is a

threshold, it is likely to fall between .8 and .9.

Sources of Error Other Than the Random Error and Item-Specific Factor Error

Our focus on the common scenario of single-method and one-time measurements limits the

researcher to techniques that operationalize measurement error as item uniqueness either directly

(e.g., CFA) or indirectly (e.g., rDTR). However, several articles point out that this may be a simplistic

view of measurement error that only considers random and item-specific factor errors, ignoring

time-specific transient errors (Le et al., 2009; Woehr et al., 2012). Because transient error can

correlate between items and scales, they can either inflate or attenuate correlation estimates calcu-

lated using single-administration reliability estimates. While there is little that can be done about this

issue if one-time measures are used, researchers should be aware of this limitation. Of course, if

multiple measurement occasions are possible, the CFA-based techniques can also be used to model

these other sources of error (Le et al., 2009; Woehr et al., 2012), and these more complex models can

then be applied with the guideline that we present next.

A Guideline for Assessing Discriminant Validity

From a Cutoff to a Classification System

While many articles about discriminant validity consider it as a matter of degree (e.g., “the extent

to . . . ”) instead of a yes/no issue (e.g., “whether . . . ”), most guidelines on evaluation techniques,

Rönkkö and Cho 29



including Campbell and Fiske’s (1959) original proposal, focus on making a dichotomous judgment

as to whether a study has a discriminant validity problem (B in Figure 6). This inconsistency might

be an outcome of researchers favoring cutoffs for their simplicity, or it may reflect the fact that after

calculating a discriminant validity statistic, researchers must decide whether further analysis and

interpretation is required. This practice also fits the dictionary meaning of evaluation, which is not

simply calculating and reporting a number but rather dividing the object into several qualitative

categories based on the number, thus requiring the use of cutoffs, although these do not need to be

the same in every study.

To move the field toward discriminant validity evaluation, we propose a system consisting of

several cutoffs instead of a single one. Discriminant validity is a continuous function of correlation

Correlation value
0 1

The degree of 

discriminant 

validity problem

Correlation value
0 1

The degree of 

discriminant 

validity problem

Correlation value
0 1

The degree of 

discriminant 

validity problem

Correlation value
0 1

The degree of 

discriminant 

validity problem

A B

C D

Figure 6. Relationship between correlation values and the problem of discriminant validity. (A) Linear model
(implied by existing definitions), (B) Dichotomous model (existing techniques), (C) Threshold model (implied by
the definition of this study), (D) Step model (proposed evaluation technique).

Table 12. Proposed Classification and Cutoffs.

Classification CICFA (sys) w2 (sys)

Severe problem 1 � UL w2
1 � w2

org < 3:84
Moderate problem :9 � UL < 1 Not “Marginal problem” AND w2

1 � w2
org > 3:84

Marginal problem :8 � UL < :9 Not “No problem” ANDw2
:9 � w2

org > 3:84
No problem UL < :8 rCFA < :8 AND w2

:8 � w2
org > 3:84

Note: rCFA is the correlation obtained using CFA, UL is the 95% upper limit of rCFA when rCFA > 0, and the absolute value of
the 95% lower limit of rCFA when rCFA < 0, w2

org is the chi-square value of the original model, and w2
c is the chi-square value of

the comparison model where the focal correlation is fixed to c when rCFA > 0 and �c when rCFA < 0.
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values (C in Figure 6), but because of practical needs, correlations are classified into discrete

categories indicating different degrees of a problem (D in Figure 6). Similar classifications are used

in other fields to characterize essentially continuous phenomena: Consider a doctor’s diagnosis of

hypertension. In the past, everyone was divided into two categories of normal and patient, but now

hypertension is classified into several levels. That is, patients with hypertension are further sub-

divided into three stages according to their blood pressure level, and each level is associated with

different treatments.

Table 12 shows the classification system we propose. We emphasize that these are guideline

that can be adjusted case-by-case if warranted by theoretical understanding of the two constructs

and measures, not strict rules that should always be followed. Based on our review, correlations

below .8 were seldom considered problematic, and this is thus used as the cutoff for the first class,

“No problem,” which strictly speaking is not a proof of no problem, just no evidence of a problem.

When correlations fall into this class, researchers can simply declare that they did not find any

evidence of a discriminant validity problem. The next three steps are referred to as Marginal,

Moderate, and Severe problems, respectively. The Severe problem is the most straightforward:

two items or scales cannot be distinguished empirically, and researchers should rethink their

concept definitions, measurement, or both. In empirical applications, the correlation level of .9

was nearly universally interpreted as a problem, and we therefore use this level as a cutoff between

the Marginal and Moderate cases. In both cases, the high correlation should be acknowledged, and

its possible cause should be discussed. In the Marginal case, the interpretation of the scales as

representations of distinct constructs is probably safe. In the Moderate case, additional evidence

from prior studies using the same constructs and/or measures should be checked before interpreta-

tion of the results to ensure that the high correlation is not a systematic problem with the constructs

or scales.

How to Implement the Proposed Techniques

The proposed classification system should be applied with CICFA(cut) and w2ðcutÞ, and we propose

that these workflows be referred to as CICFA(sys) and w2ðsysÞ, respectively. Both workflows start by

estimating a CFA model that includes all scales that are evaluated for discriminant validity. Instead

of using the default scale setting option to fix the first factor loadings to 1, scale the latent variables

by fixing their variances to 1 (A in Figure 2); this should be explicitly reported in the article. The

covariances between factors obtained in the latter way equal the correlations; alternatively, when

using CICFA(sys), the standardized factor solution can be inspected. Next, inspect the upper limits

(lower limits for negative correlations) of the 95% CIs of the estimated factor correlations and

compare their values against the cutoffs in Table 12.19

Implementing w2ðsysÞ requires testing every correlation against the lower limit of each class in

the classification system. A correlation belongs to the highest class that it is not statistically

significantly different from. If the model tests cannot be automated, we suggest the following

alternative workflow. First, exclude all correlation pairs whose upper limit of the CI is less than

.80. Second, for the remaining correlations, determine the initial class for each by comparing

correlation estimates against the cutoffs in Table 12. For example, a correlation of .87 would be

classified as Marginal. Third, use w2ðcutÞ to compare the estimated model against a model where

the correlation is constrained to the high cutoff, .9 in the example, using a nested model w2 test. If

significantly different, the correlation is classified into the current section. If the correlation is not

significantly different, repeat the model comparison by selecting the high cutoff for the next

higher section (in this case 1).

Online Supplement 4 provides a tutorial on how to implement the techniques described in this

article using AMOS, LISREL, Mplus, R, and Stata. Because implementing a sequence of
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comparisons is cumbersome and prone to mistakes, we have contributed a function that automates

the w2ðcutÞ tests to the semTools R package (Jorgensen et al., 2020). For users of other software, we

developed MQAssessor,20 a Python-based open-source application.

What to Do When Discriminant Validity Fails?

If problematically high correlations are observed, their sources must be identified. We propose a

three-step process: First, suspect conceptual redundancy. We suggest starting by following the

guidelines by J. A. Shaffer et al. (2016) and Podsakoff et al. (2016) for assessing the conceptual

distinctiveness of the constructs (see also M. S. Krause, 2012). If two constructs are found to

overlap conceptually, researchers should seriously consider dropping one of the constructs to

avoid the confusion caused by using two different labels for the same concept or phenomenon

(J. A. Shaffer et al., 2016).

Second, scrutinize the measurement model. An unexpectedly high correlation estimate can

indicate a failure of model assumptions, as demonstrated by our results of misspecified models.

Check the w2 test for an exact fit of the CFA model. If this test fails, diagnose the model with

residuals and/or modification indices to understand the source of misspecification (Kline, 2011,

chap. 8). If the model is modified based on these considerations, the wording of the items that led to

these decisions should be explicitly reported, and how the item wordings justify the modifications

should be explained to reduce the risk of data mining.

Third, collect different data. If conceptual overlap and measurement model issues have been

ruled out, the discriminant validity problem can be reduced to a multicollinearity problem. For

example, if one wants to study the effects of hair color and gender on intelligence but samples only

blonde men and dark-haired women, hair color and gender are not empirically distinguishable,

although they are both conceptually distinct and virtually uncorrelated in the broader population.

This can occur either because of a systematic error in the sampling design or due to chance in small

samples. If a systematic error can be ruled out, the most effective remedy is to collect more data.

Alternatively, the data can be used as such, in which case large standard errors will indicate that

little can be said about the relative effects of the two variables, or the two variables can be

combined as an index (Wooldridge, 2013, pp. 94–98). If a researcher chooses to interpret results,

he or she should clearly explain why the large correlation between the latent variables (e.g., >.9) is

not a problem in the particular study.

Reporting

We also provide a few guidelines for improved reporting. First, researchers should clearly indicate

what they are assessing when assessing discriminant validity by stating, for example, that “We

addressed discriminant validity (whether two scales are empirically distinct).” Second, the corre-

lation tables, which are ubiquitous in organizational research, are in most cases calculated with

scale scores or other observed variables. However, most studies use only the lower triangle of the

table, leaving the other half empty (AMJ 93.6%, JAP 83.1%). This practice is a waste of scarce

resources, and we suggest that this space should be used for the latent correlation estimates, which

serve as continuous discriminant validity evidence. Third, if nested model comparisons (e.g.,

w2ð1Þ) are used, researchers should explicitly report that the model was rescaled from the default

option by stating, for example, “We used the w2 nested model comparison for assessing discri-

minant validity by comparing our CFA model against models that were more constrained, where

all factor loadings were freely estimated, the factor variances were constrained to 1 and each factor

correlation was constrained to 1 one at a time.” These reporting practices should considerably

reduce the ambiguity in the literature and prevent the common misapplication of the w2ð1Þ test.
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Concluding Remarks

There is no shortage of various statistical techniques for evaluating discriminant validity. Such an

abundance of techniques is positive if techniques have different advantages, and they are purpose-

fully selected based on their fit with the research scenario. The current state of the discriminant

validity literature and research practice suggests that this is not the case. Instead, it appears that

many of the techniques have been introduced without sufficient testing and, consequently, are

applied haphazardly. Because direct criticism of existing techniques is often avoided, there appears

to be a tendency in which new techniques continue to be added without clarifying the problems of

previously used techniques. This technique proliferation causes confusion and misuse. This study

draws an unambiguous conclusion about which method is best for assessing discriminant validity

and which methods are inappropriate. We hope that the article will help readers discriminate valid

techniques from those that are not.

Appendix: Proofs

Proof That the HTMT Index Is Algebraically Equivalent to Disattenuated Correlation Using Parallel Reliability
(i.e., the Standardized Alpha)

The HTMT index for scales X and Y was originally defined as follows (Henseler et al., 2015):

HTMT ¼ 1
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The equation can be simplified considerably by expressing it as a function of three algebraic

means (i.e., the sum divided by the count):

HTMT ¼ rXYffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rXX rYY

p ; ðA2Þ

where �r is the mean of nonredundant correlations.

We will now prove that the HTMT index is equivalent to the scale score correlation disattenuated

with the parallel reliability coefficient. Parallel reliability (i.e., the standardized alpha) is given as

follows:

rP ¼
k2 �s

k2 �sþ kð1� �sÞ ; ðA3Þ

where K is the number of scale items (Cho, 2016). The disattenuated correlation between two unit-

weighted composites X and Y of p and q items using parallel reliability as reliability estimates is

given as follows:

rDPR ¼
covðX ;Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðX ÞvarðY Þ
p ffiffiffiffiffiffiffiffiffiffiffi

aXaY

p ; ðA4Þ

where

covðX ; Y Þ ¼
Xp

i¼1

Xpþq

j¼pþ1

rij ¼ pqrXY ðA5Þ
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varðX Þ ¼
Xp
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Xp

j¼i

rij ¼ rXX pðp� 1Þ þ p ðA6Þ

varðY Þ ¼
Xq
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Xq
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rij ¼ rYY qðq� 1Þ þ q ðA7Þ

Substituting Equations A5, A6, and A7 into Equation A4, the equation is as follows:

rDPR ¼
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Rearranging:
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vuuut
ðA9Þ

Simplifying:

pqrXYffiffiffiffi
pq
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

prXX qrYY

p ¼
ffiffiffiffiffi
pq
p

rXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
prXX qrYY

p ¼ rXYffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rXX rYY

p ; ðA10Þ

which equals the HTMT index shown in Equation A2.

Proof That CFI(1) Is Equivalent to Alternative Critical Values for w2ð1Þ
Based on a study of measurement invariance assessment by Meade et al. (2008), J. A. Shaffer et al.

(2016) suggest that comparing the differences in the CFIs between the two models instead of w2 can

produce a test whose result is less dependent on sample size than the w2ð1Þ test. Their recommended

cutoff for the difference was .002. We will now prove that the CFI comparison is equivalent to a w2

test that uses a critical value based on the null model instead of the w2 distribution.

CFI is defined as follows:

CFI ¼ 1� w2
M � dfM

w2
B � dfB

; ðA11Þ

where M is the model of interest and B is the baseline or null model. In the CFI(1) test, both the

constrained and unconstrained models are evaluated against the same baseline. Thus, the CFI

difference can be written as follows:

DCFI ¼ 1� w2
M � dfM

w2
B � dfB

� �
� 1� w2

C � dfC

w2
B � dfB

� �
ðA12Þ

¼ ðw
2
C � dfCÞ � ðw2

M � dfM Þ
w2

B � dfB
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¼ w2
C � w2

M � 1

w2
B � dfB

¼ Dw2 � 1

w2
B � dfB

;

where C is the constrained model in which a correlation value is fixed to 1 in the model of interest

(i.e., M).

Therefore, the comparison against the .002 cutoff can be written as a Dw2 test where the reference

point is not a critical value of the w2 distribution, but discriminant validity holds conditional on the

following:

Dw2 � 1

w2
B � dfB

> :002 ðA13Þ

Dw2 � 1 > :002ðw2
B � dfBÞ

Dw2 > 1þ :002ðw2
B � dfBÞ
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Notes

1. The existence of constructs independently of measures (realism), although often implicit, is commonly

assumed in the discriminant validity literature. This assumption was also present in the original article by

Campbell and Fiske (1959) that assumed a construct to be a source of variation in the items thus closely

corresponding to the definition of validity by Borsboom et al. (2004).

2. We are grateful for the comments by the anonymous reviewer who helped us come up with this definition.

3. The desirable pattern of correlations in a factorial validity assessment is similar to the pattern in discri-

minant validity assessment in an MTMM study (Spector, 2013), so in practice the difference between

discriminant validity and factorial validity is not as clear-cut. Nevertheless, there is a clear conceptual

difference between the two. In fact, the concept of factorial validity predates discriminant validity (Guil-

ford, 1946), and neither Campbell and Fiske (1959) nor any of the reviewed articles presented discriminant
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validity and factorial validity as the same concept. Importantly, factorial validity is an attribute of “a test”

(Guilford, 1946), whereas only pairs of measures can exhibit discriminant validity.

4. Of the AMJ and JAP articles reviewed, most reported a correlation table (AMJ 96.9%, JAP 89.3%), but

most did not specify whether the reported correlations were scale score correlations or factor correlations

(AMJ 100%, JAP 98.5%). A plausible expectation is that studies that do not use SEMs report scale score

correlations and that in studies that use SEMs, the presented correlations are factor correlations. To verify

this assumption, we took a random sample of 49 studies out of the 199 studies that applied SEMs and

emailed the authors to ask for the type of correlation used in the study. The responses of the 21 available

replies were all scale score correlations. That is, a correlation that is not specified as a factor correlation can

almost always be regarded as a scale score correlation.

5. The disattenuation equation shows that the scale score correlation is constrained to be no greater than at the

geometric mean of the two reliabilities. For example, if a researcher uses the commonly used cutoff of .9 to

make a yes/no decision about discriminant validity, a no decision can never be reached unless both scales

are very reliable (i.e., the square root of the product of the reliabilities exceeds .9).

6. Different variations of disattenuated correlations can be calculated by varying how the scale score correla-

tion is calculated, how reliabilities are estimated, or even the disattenuation equation itself. The reliability

indices that we discuss assume that the scale score is calculated using equal weights. Another common

approach is to apply unit weights. In this approach, the observed variables are first standardized before

taking a sum or a mean; alternatively, a weighted sum or mean with 1=sxi
is taken as the weights (i.e.,

X ¼
P

i Xi=sxi
) (Bobko et al., 2007). Using factor scores in this context is not a good idea because the

reliability will be positively biased (Aguirre-Urreta et al., 2019), and, consequently, the correlation will be

undercorrected.

7. We use the term “single-admission reliability” (Cho, 2016; Zijlmans et al., 2018) instead of the more

commonly used “internal consistency reliability” because the former is more descriptive and less likely to

be misunderstood than the latter (Cho & Kim, 2015).

8. Strictly speaking, tau-equivalence implies that item means are equal and the qualifier essentially relaxes

this constraint. The constraint itself does not affect the value of reliability coefficients. We focus on

essentially tau-equivalent, essentially parallel, and essentially congeneric conditions, but we omit the term

essentially for convenience.

9. We follow the terminology from Cho (2016) because the conventional names provide (a) inaccurate

information about the original author of each coefficient and (b) confusing information about the

nature of each coefficient. Following Cho’s (2016) suggestion and including the assumption of each

reliability coefficient in the name will hopefully also reduce the chronic misuse of these reliability

coefficients.

10. Notably, Bagozzi (1981) wrote a critical commentary, to which Fornell and Larcker (1981b) published a

rejoinder, but neither of these articles addressed the issues that we raise in this article.

11. A full discriminant validity analysis requires the pairwise comparisons of all possible factor pairs. The

number of required model comparisons is the number of unique correlations between the variables, given

by kðk � 1Þ=2, where k is the number of factors. In large models, manually specifying all these models and

calculating model comparisons is tedious and possibly error prone.

12. If factor variances are estimated a correlation constraint can be implemented with a nonlinear constraint

(r12 ¼ f12ffiffiffiffiffiffiffiffiffiffi
f11f22

p ¼ 1Þ. Because this is complicated, w2ð1Þ has been exclusively applied by constraining the

factor covariance to be 1.

13. While it is nearly impossible to identify scaling errors without access to the actual analysis and CFA result

files or the item level covariance matrix, which would allow different specifications to be tested by

replication, there exists indirect evidence of this problem. By analyzing the relationships between the

reported item scales (e.g., 5 vs. 7 point) or variances, correlation estimates, and Dw2 values, we could find

instances where a model with estimated correlation that was not close to 1 (e.g., .8) did not fit statistically

significantly better than a model for which the covariance was constrained to be 1; however, a model with a
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correlation close to 1.0 (e.g., .95) was significantly different from the constrained model, while at the same

time the Dw2 clearly depended on the item scales. Based on this indirect evidence, we conclude that

erroneous specification of the constraint is quite common in both methodological guidelines and empirical

applications. Of course, this problem is not unique to the w2 test but applies to all nested model comparisons

regardless of which statistic is used to compare the models.

14. We thank Terrence Jorgensen for pointing this out.

15. In empirical applications, the term “loading” typically refers to pattern coefficients, a convention that we

follow. In a CFA, the model parameters are pattern coefficients, and these are also more commonly

reported in EFA applications (Henson & Roberts, 2006).

16. For example, Henseler et al. (2015) defined a cross-loading when the loading (i.e., structure coefficient)

between an item and its unintended factor is greater than the loading between the item and its intended

factor. If the pattern coefficients have no cross-loadings, this condition is equivalent to say that the factor

correlation is greater than 1 (see Table 5). This mathematical fact is why the cross-loading technique

produced strange results in their simulation, which was not explained in the original paper.

17. Consider two binary variables “to which gender do you identify” and “what is your biological sex.” If 0.5%

of the population are transgender or gender nonconforming (American Psychological Association, 2015)

and half of these people indicate identification to a gender opposite to their biological sex, the correlation

between the two variables would be .995.

18. The two hypothetical measures have a floor and ceiling effect, which leads to nonrandom measurement

errors and a violation of the assumption underlying the disattenuation. This example demonstrates that

researchers who use systematically biased measures cannot accurately assess discriminant validity. Thanks

to the reviewer for pointing this out.

19. These CIs are reported as part of the default output of most modern SEM software, but if they are not

available, they can be calculated using the estimates and standard errors as follows:

UL ¼ rCFA þ 1:96� SEðrCFAÞ and LL ¼ rCFA � 1:96� SEðrCFAÞ.
20. The software is available at https://github.com/eunscho/MQAssessor.
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Castañeda, M. B., Levin, J. R., & Dunham, R. B. (1993). Using planned comparisons in management research:

A case for the Bonferroni procedure. Journal of Management, 19(3), 707-724. https://doi.org/10.1016/0149-

2063(93)90012-C

Chang, H., & Cartwright, N. (2008). Measurement. In S. Psillos & M. Curd (Eds.), The Routledge companion to

philosophy of science (pp. 367-375). Routledge.

Charles, E. P. (2005). The correction for attenuation due to measurement error: Clarifying concepts and creating

confidence sets. Psychological Methods, 10(2), 206-226. https://doi.org/10.1037/1082-989X.10.2.206

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invar-

iance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233-255. https://doi.org/10.1207/

S15328007SEM0902_5

Cho, E. (2016). Making reliability reliable: A systematic approach to reliability coefficients. Organizational

Research Methods, 19(4), 651-682. https://doi.org/10.1177/1094428116656239

Cho, E., & Kim, S. (2015). Cronbach’s coefficient alpha: Well known but poorly understood. Organizational

Research Methods, 18(2), 207-230. https://doi.org/10.1177/1094428114555994
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