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In this article we study the linearized anisotropic Calderón problem. In a compact manifold with boundary, this

problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold is

transversally anisotropic, we show that the boundary measurements determine an FBI type transform at certain points

in the transversal manifold. This leads to proving a uniqueness result for transversal singularities in the linearized

problem. The method requires a geometric condition on the transversal manifold related to pairs of intersecting

geodesics, but it does not involve the geodesic X-ray transform which has limited earlier results on this problem.

1 Introduction

The anisotropic Calderón problem amounts to determining a conductivity matrix in a domain from current and
voltage measurements on the boundary, up to a change of coordinates fixing the boundary. It is well known that
in dimensions n ≥ 3, the problem can be formulated in terms of determining a Riemannian metric in a compact
manifold with boundary, up to a boundary fixing diffeomorphism, from Cauchy data of harmonic functions. The
problem has been solved for real-analytic metrics [LU89, LU01, LTU03] and on Einstein manifolds [GS09], and
two-dimensional versions of the problem are also well understood [Na96, LU01, ALP05]. A related conformal
anisotropic Calderón problem has been solved recently for conformally real-analytic metrics in [LLS16].

The anisotropic Calderón problem for smooth manifolds in dimensions n ≥ 3 remains an open problem.
However, there has been considerable progress in the class of conformally transversally anisotropic (CTA)
smooth manifolds. It was shown in [DKSaU09] that these manifolds may be amenable to the method of complex
geometrical optics solutions which has been very successful in the Calderón problem in Euclidean domains. For
such manifolds in a fixed conformal class, the Calderón problem has been solved in [DKSaU09] and [DKLS16]
under additional restrictions on the transversal geometry (simplicity in [DKSaU09] and injectivity of the geodesic
X-ray transform in [DKLS16]).

In this article we continue the study of [DKSaU09] and [DKLS16], with the objective of reducing further
the limitations on the transversal geometry. In particular, we wish to introduce an alternative to the geodesic
X-ray transform which has restricted the previous results.

We will only consider a linearized version of the Calderón problem on transversally anisotropic manifolds.
In this setting, we show that boundary measurements determine a FBI type transform at certain points in the
transversal manifold. This will lead to proving uniqueness result for singularities results in the transversal
manifold. The difference from the previous works [DKSaU09], [DKLS16] is that we use pairs of complex
geometrical optics solutions that concentrate near different transversal geodesics, instead of concentrating near
the same geodesic. This will provide both spatial and frequency localization in the transversal manifold, instead
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of providing integrals over geodesics. We can currently carry out this program only for the linearized problem,
and only for pairs of nontangential geodesics that only intersect at one point.

Let us now state the problem in detail. It is known that the anisotropic Calderón problem in a fixed conformal
class reduces to an inverse problem for the Schrödinger equation [DKSaU09], and we will study the Schrödinger
problem. Let (M, g) be a compact oriented Riemannian manifold with smooth boundary, and let q ∈ L∞(M).
Assume that 0 is not a Dirichlet eigenvalue of −∆g + q in M where ∆g is the (negative) Laplace-Beltrami
operator, and consider the Dirichlet problem

(−∆g + q)u = 0 in M, u|∂M = h

where h ∈ H1/2(M). The Dirichlet-to-Neumann map is the operator

Λq : H1/2(∂M)→ H−1/2(∂M), h 7→ ∂νu|∂M

where the normal derivative is defined in a weak sense. The (nonlinear) Calderón problem is to recover the
potential q from the knowledge of Λq, when (M, g) is known. We consider instead the linearization of this
problem at the zero potential q = 0. This is the statement that f can be recovered from (DΛ)0(f), where (DΛ)0

is the Fréchet derivative of q 7→ Λq at q = 0. Uniqueness in the linearized problem reduces to the following
question:

Question 1.1. Suppose that f ∈ L∞(M) satisfies∫
M

fu1u2 dV = 0

for all uj ∈ H1(M) with ∆guj = 0 in M . Is it true that f = 0?

The linearization argument leading to Question 1.1 is essentially the same as in [Ca80], where a positive
answer was also given by using complex exponentials if M is a domain in Rn with Euclidean metric ([Ca80]
considers the conductivity equation, but the Schrödinger case is similar). Question 1.1 has a positive answer if
dim(M) = 2 [GT11], or if dim(M) ≥ 3, (M, g) is a CTA manifold and additionally the geodesic X-ray transform
on the transversal manifold is injective [DKLS16]. Both [GT11] and [DKLS16] actually solve the nonlinear
Calderón problem, but the methods in these papers also settle Question 1.1 under the stated conditions. Let us
now define CTA manifolds.

Definition 1.1. Let (M, g) be a compact oriented manifold with smooth boundary and with dimension
n = dim(M) ≥ 3.

(a) (M, g) is transversally anisotropic if (M, g) ⊂⊂ (T, g) where T = R×M0 and g = e⊕ g0 and where
(M0, g0) is any compact manifold of dimension n− 1 and with smooth boundary.

(b) (M, g) is conformally transversally anisotropic (CTA) if (M, c−1g) is transversally anisotropic for some
smooth positive function c, so that g = c(e⊕ g0).

In both cases we call (M0, g0) the transversal manifold.

Let us also give definitions related to transversal geodesics.

Definition 1.2. Let (M0, g0) be a compact oriented manifold with smooth boundary.

(a) A nontangential geodesic is a geodesic γ : [a, b]→M0 such that γ(a) and γ(b) are on ∂M , γ(t) ∈M int

when a < t < b, and γ̇(a) and γ̇(b) are nontangential vectors on ∂M .
(b) A point (z0, ξ0) ∈ T ∗M0 is said to be generated by a pair of nontangential geodesics if there are two

nontangential unit speed geodesics γ1 and γ2 in M0 with γ1(0) = γ2(0) = z0 and

γ̇1(0) + γ̇2(0) = t0ξ0

for some 0 < t0 < 2. (Here ξ0 is understood as an element of Tz0M by duality.)
(c) If a pair of nontangential geodesics intersect only at one point, then the pair of geodesics is called admissible.

If the geodesics in part (b) intersect only at z0, we say that (z0, ξ0) is generated by an admissible pair of
geodesics.
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If (M, g) is a CTA manifold, we write x = (x1, x
′) for coordinates on M where x1 is the Euclidean coordinate

and x′ are coordinates on M0. If f is a function on M , extended by zero to R×M0, we write

f̂(λ, x′) =

∫ ∞
−∞

e−iλx1f(x1, x
′) dx1

for the Fourier transform with respect to x1.

Our first main theorem states that if f is orthogonal to products of harmonic functions, then f̂(λ, · ) must
be smooth at any (z0, ξ0) ∈ T ∗M0, which has a neighborhood in T ∗M0 where every point is generated by an
admissible pair of geodesics.

Theorem 1.1. Let (M, g) be a transversally anisotropic manifold, and suppose that f ∈ L∞(M) satisfies∫
M

fu1u2 dV = 0

for all uj ∈ H1(M) with ∆guj = 0 in M . Then for any λ ∈ C one has

(z0, ξ0) /∈WF (f̂(λ, · ))

whenever (z0, ξ0) ∈ T ∗M0 has a neighborhood where every point is generated by an admissible pair of
geodesics.

Remark. It is likely that an analogous statement holds for the analytic wave front set if the manifold (M0, g0)
is real-analytic. This would follow from a construction of exponentially accurate quasimodes concentrating near
a nontangential geodesic on a real-analytic manifold; since we could not find an exact statement in the literature,
we have left this case to a forthcoming work. It is likely that this would also lead to a full solution of the linearized
problem if any point (z0, ξ0) ∈ T ∗M0 has a neighborhood where every point is generated by an admissible pair of
geodesics. Note that even if (M0, g0) is real-analytic, this problem would correspond to deforming a real-analytic
potential by a smooth perturbation, and so the result would not reduce to known results in the real-analytic
case.

It was required in Theorem 1.1 that (z0, ξ0) has a neighborhood in T ∗M0 generated by admissible geodesic
pairs. The reason for this requirement is that our study of the wave front set requires small perturbations of
(z0, ξ0). We give a geometric criterion for this requirement to hold true. The condition we give is closely related
to a geometric regularity condition of [SU08]. Their condition essentially requires that any covector (x, η) has
an orthogonal covector that defines a geodesic γ without conjugate points.

In our definition we require that the point x from where we issue the corresponding geodesic γ has no
points conjugate to it. We additionally require that γ does not self-intersect, which is allowed in [SU08]. Thus
the definitions are close, but not completely the same. This is why we call our condition strict Stefanov-Uhlmann
regularity.

Definition 1.3 (Strict Stefanov-Uhlmann regularity). Let (M, g) be a manifold with boundary. Then (M, g)
satisfies the strict Stefanov-Uhlmann regularity condition at η ∈ S∗xM if there exists ξ ∈ S∗xM , with g(ξ, η) = 0,
such that the geodesic γ = γξ corresponding to ξ satisfies:

(a) The geodesic γ is nontangential and defined on the interval [−tin, tout].
(b) γ contains no points conjugate to x.
(c) The geodesic γ does not self-intersect for any time t ∈ [−tin, tout].

If (M0, g0) satisfies the conditions of Definition 1.3 at (z0, ξ0) ∈ T ∗M0, we will show in Section 3 that (z0, ξ0)
has a neighborhood generated by admissible geodesic pairs. We remark that the actual property we need the
geometry of (M0, g0) to satisfy is that a direction of interest (z0, ξ0) has a neighborhood generated by admissible
geodesics. Definition 1.3 is a condition guaranteeing that. Definition 1.3 with Theorem 1.1 gives:

Corollary 1.2. In the setting of Theorem 1.1, assume that (z0, ξ0) ∈ T ∗M0 satisfies the strict Stefanov-Uhlmann

regularity condition. Then (z0, ξ0) /∈WF (f̂(λ, · )) for any λ ∈ C.
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We now sketch the argument for proving Theorem 1.1. We consider harmonic functions in (M, g) of the
form

u1 = e−s1x1(vs1(x′) + r1),

u2 = es2x1(ws2(x′) + r2),

where sj = τ + iλj is a complex frequency, and vs1 and ws2 are quasimodes in (M0, g0) such that as τ →∞

‖(−∆g0 − s2
1)vs1‖L2(M0) = ‖(−∆g0 − s2

2)ws2‖L2(M0) = O(τ−∞),

‖vs1‖L2(M0) = ‖ws2‖L2(M0) = 1.

It is well known (see for instance [DKLS16]) that one can construct such quasimodes that concentrate near
nontangential geodesics. If the above conditions are satisfied, the Carleman estimate in [DKSaU09] allows us
to find correction terms r1 and r2 so that u1 and u2 are indeed harmonic and the correction terms satisfy
‖rj‖L2(M) = O(τ−∞). Inserting these functions u1 and u2 in the identity

∫
fu1u2 dV = 0, we obtain∫

M0

f̂(λ, · )vs1ws2 dVg0 = O(τ−∞) (1)

as τ →∞, where
λ = λ1 − λ2.

We remark that the Carleman estimate in [DKSaU09] is indeed needed to construct such solutions u1 and u2

even in the linearized problem.
In the works [DKSaU09] and [DKLS16] concerning the nonlinear problem, one takes the limit as τ →∞

and this essentially forces one to use quasimodes vs1 and ws2 that concentrate near the same geodesic. The
reason is that if the quasimodes concentrate near different geodesics only intersecting at z0, then vs1ws2 = eiτψa
where a is supported near z0 and ψ has nonvanishing gradient near z0. The resulting integral decays rapidly in
τ by non-stationary phase, and one loses information about f in the limit.

In this paper, we will

• use vs1 and ws2 that concentrate near different geodesics, and
• consider all values τ0 < τ <∞ instead of taking the limit τ →∞.

Using all values of τ would be challenging in the nonlinear problem, since one would need asymptotic expansions
of quasimodes up to high order and the unknown potential q would appear in the expansions. In the nonlinear
case the correction term needed to correct a quasimode to a solution of the Shrödinger equation with non-zero
potential is known to vanish only to order OL2(τ−1), c.f. [DKLS16, Proposition 2.2]. However, in the linearized
problem it is enough to construct the quasimodes for q = 0 and one can consider expansions to arbitrarily high
order.

We also mention that for an inverse problem where the data is measured only on a part of the boundary,
analysis of quasimodes propagating along geodesics would require additional analysis of what happens when the
geodesics reflect from the boundary. This analysis is however outside the scope of this paper.

Now, if vs1 and ws2 concentrate near nontangential geodesics γ1 and γ2 that only intersect at z0

when t = 0, then the product vs1ws2 is supported in a small neighborhood of z0 and vs1ws2 = eiτψa where
∇ψ(z0) = γ̇1(0) + γ̇2(0). This results in an FBI type transform that can be used to characterize the wave front

set of f̂(λ, · ) at any such (z0, ξ0) where ξ0 = γ̇1(0) + γ̇2(0).
One could also consider the case where vs1 and ws2 concentrate near nontangential geodesics that intersect

several times. In this case, the product vs1ws2 is supported in the union of small neighborhoods of the intersection
points, and each intersection point produces a contribution in the integral. Thus there will be several terms whose
sum is O(τ−∞), but it is not clear to us at the moment how to separate the contributions from the different
intersection points. We however remark that if the supports of vs1 and ws2 intersect several times at (zk)lk=1

and we would a priori know that f is smooth near all but one of the products R× {zk}, then we could use the
technique of this paper together with stationary phase to recover the singularity at the remaining intersection
point.

We remark that the results are given on transversally anisotropic manifolds instead of CTA manifolds. The
reason is that the standard reduction from ∆cg to ∆g as in [DKSaU09] produces a potential, and if c depends on
x1 then the potential would also depend on x1. This is not compatible with the separation of variables argument
here. However, our method applies with small modifications if the conformal factor only depends on x′, and
similarly one could include a potential only depending on x′.



The linearized Calderón problem 5

Let us conclude with some further references on the linearized Calderón problem. It seems to us that in
many cases where uniqueness is known in the linearized problem, one also knows uniqueness in the corresponding
nonlinear problem. We refer to the survey [Uh14] for references on the Calderón problem in general. Concerning
the linearized problem, [DKSjU09] solves the Calderón problem with partial data linearized at q = 0, in a
Euclidean domain Ω ⊂ Rn with measurements on a fixed subset of ∂Ω. The argument involves analytic microlocal
analysis and Kashiwara’s watermelon theorem. This result has been extended in [SU16] to the Calderón problem
linearized at a real-analytic potential with measurements on a real-analytic part of the boundary. We remark that
corresponding results are open for the nonlinear Calderón problem if n ≥ 3 (see the survey [KS14]). Linearized
Calderón type problems on Riemannian manifolds are discussed in [Sh09].

This paper is organized as follows. Section 1 is the introduction. In Section 2 we prove uniqueness result for
singularities when the transversal manifold is simple. Much stronger results are known in this case [DKSaU09],
but the discussion here illustrates our method in an easy setting. In Section 3 we show that the strict Stefanov-
Uhlmann regularity condition is sufficient for finding enough admissible geodesic pairs. Section 4 gives a
construction and parametrization of Gaussian beams. The construction is well known, but we give the argument
in detail since this will be needed later. Finally, Section 5 shows that one can recover FBI type transforms
(see [Fo89], [WZ01]) from our data, and proves Theorem 1.1.
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2 Simple transversal manifolds

As a motivation, we first consider the case where the transversal manifold is simple. In this section, we will
construct quasimodes vs and ws that concentrate near different geodesics on simple manifolds. In the simple
case we already know the full result based on injectivity of the ray transform [DKSaU09], but it will be useful
to do this in another way.

In this section, we write (M, g) instead of (M0, g0) and x instead of x′, and thus dim(M) = n− 1. We

set m = n− 1. Let (M, g) ⊂⊂ (M̂, g) where (M, g) and (M̂, g) are simple. A compact manifold (M, g) with
boundary is simple if the boundary is strictly convex, and the exponential map at any point is a diffeomorphism
onto M .

Let z ∈M int and fix ξ ∈ S∗zM . Denote by γξ(t) the geodesic starting at z in codirection ξ. We wish to
construct a quasimode vs, s = τ + iλ, concentrating near γξ of the form

vs = eisψa

satisfying ‖(−∆− s2)vs‖L2(M) = O(τ−∞) and ‖vs‖L2(M) = O(1). Here the notation that a quantity is O(τ−∞)
means that the quantity is O(τ−N ) for each N large enough with implied constants depending on N .

To do this, let p(z, ξ) = γξ(−τ̂(z,−ξ)) ∈ ∂M̂ be the point where the geodesic γξ enters M̂ (τ̂ is the time

when γ−ξ exits (M̂, g)), and choose

ψ(x; z, ξ) = dist(M̂,g)(x, p(z, ξ)).

Then ψ is smooth in (x, z, ξ) when x is near M and (z, ξ) ∈ S∗M , since p(z, ξ) ∈ ∂M̂ stays away from x (see
e.g. [MO10]), and ψ satisfies the eikonal equation |∇ψ| = 1. We compute

e−isψ(−∆− s2)vs = s2(|∇ψ|2 − 1)a− is(2〈dψ, d · 〉+ ∆ψ)a−∆a

= −2isLa−∆a

where 2L = 2〈dψ, d · 〉+ ∆ψ. We formally write

a =

∞∑
j=0

s−ja−j
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and require that

La0 = 0,

La−1 =
i

2
∆a0,

La−N =
i

2
∆a−(N−1)

...

After solving for a−j recursively, the sum can be made to converge using Borel summation as in Section 4.
To solve the transport equations near M , take polar normal coordinates (r, θ) centered at the point p(z, ξ)

where the geodesic γξ enters M̂ . Then ψ = r, L = ∂r + ∂r(log|g|1/4), and we have

Lu = f ⇐⇒ ∂r(|g|1/4u) = |g|1/4f

where |g| = det(g(r, θ)). Using this, we first choose a solution a0(r, θ) = |g|−1/4χ(θ) for some χ ∈ C∞(Sm−1),
where χ = χξ depends smoothly on γ̇ξ(t) and is supported near γ̇ξ(t) at the time t = −τ̂(z,−ξ). Since

r = ψ(x; z, ξ), θ =
1

ψ(x; z, ξ)
exp−1

p(z,ξ)(x),

we see that a0 = a0(x; z, ξ) depends smoothly on (x, z, ξ) for x near M . Integrating in r, we successively
obtain functions a−1, a−2, . . . that are independent of τ , smooth near M , depend smoothly on (x, z, ξ), vanish
when θ /∈ supp(χ), and satisfy the required equations. Using Borel summation as in Section 4 we may find
as = as(x; z, ξ), C∞ in its arguments, so that

as ∼
∞∑
j=0

s−ja−j

and that vs = eisψas satisfies
(−∆− s2)vs = OL2(M)(τ

−∞).

We have completed the construction of a quasimode concentrating near a geodesic. Now consider two
geodesics: let z ∈M int be a interior point on the (transversal) manifold, let ξ1, ξ2 ∈ S∗zM with ξ1 6= ξ2, and let
vs1 and ws2 be quasimodes as above concentrating near γξ1 and γξ2 and having the forms

vs1 ∼ eis1ψ1(a0 + s−1
1 a−1 · · · ), ws2 ∼ eis2ψ2(b0 + s−1

2 b−1 + · · · )

where ψj = ψ( · ; z, ξj) and sj = τ + iλj , j = 1, 2. We use two functions χ1, χ2 ∈ C∞(Sm−1) for the two
quasimodes.

Now, since (M, g) is simple, the two geodesics intersect only at z. Choosing χj with small enough support,
we may arrange so that vs1ws2 is supported in any given neighborhood of z. Writing y for normal coordinates
in (M, g) centered at z, the integral of interest reduces to∫

M

f̂(λ, ·)vs1ws2 dVg =

∫
Rm

f̂(λ, ·)eiτψ̃ã dy = O(τ−∞) (2)

where
ψ̃(y; z, ξ1, ξ2) = ψ(y; z, ξ1) + ψ(y; z, ξ2)

and
λ = λ1 − λ2

and
ã(y; z, ξ1, ξ2, τ, λ1, λ2) = e−λ1ψ1−λ2ψ2as1bs2 |g(y)|1/2.

The function f̂(λ, ·) is independent of z, ξ1, ξ2. That the integral (2) is indeed O(τ−∞) uses the Carleman
estimates in [DKSjU09] and the fact that vsj , j = 1, 2, are eigenfunctions up to an error of OL2(M)(τ

−∞).
Let now (z0, ξ0) ∈ S∗M be the point and direction of interest. We wish to consider two fixed covectors

(z0, ζ1), (z0, ζ2) ∈ S∗z0M , with ζ1 + ζ2 pointing in the direction of ξ0, which generate the two geodesics that we
will use in the construction above. Note that if ζ1 + ζ2 = tξ0 for some t > 0, and if also ζ1 6= ξ0 then necessarily

ζ2 = 2〈ζ1, ξ0〉ξ0 − ζ1, 0 < 〈ζ1, ξ0〉 < 1.
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Conversely, if we fix any (z0, ζ1) with 0 < 〈ζ1, ξ0〉 < 1, then ζ2 defined above will satisfy ζ1 + ζ2 = tξ0 where
t = 2〈ζ1, ξ0〉 > 0.

Assume now that we have fixed the covector (z0, ξ0) of interest and a covector (z0, ζ1) such that
0 < 〈ζ1, ξ0〉 < 1 (thus ζ1 + ζ2 = t0ξ0 where 0 < t0 < 2), so that the initial two geodesics are generated by (z0, ζ1)
and (z0, ζ2). For the characterization of the wave front set, we wish to make the two geodesics depend smoothly
on (z, ξ) near (z0, ξ0). One way to do this is as follows. The proof of the lemma is included in the Appendix. We
point out that the lemma holds also for non-simple manifolds (M, g).

Lemma 2.1. Let (M, g) be a smooth Riemannian manifold with boundary. Let (z0, ξ0) ∈ S∗zM be the point
and direction of interest, and let ζ1, ζ2 ∈ S∗z0M satisfy ζ1 + ζ2 = t0ξ0 with 0 < t0 < 2. Then, there exists a
neighborhood US of (z0, ξ0) in S∗M and a smooth mapping I : US → S∗M × S∗M , with

I(ξ) = (ω1(ξ), ω2(ξ))

so that

ω1(ξ0) = ζ1, ω2(ξ0) = ζ2,

ω1(ξ) + ω2(ξ) = t0ξ.

Let now (z0, ξ0) ∈ S∗M and let ωj : US → S∗M , j = 1, 2, be the parametrization given by the lemma above.
Let (z, ξ) ∈ T ∗M be a non-zero covector. We set

ξ̂ =
ξ

|ξ|
.

Assume that (z, ξ̂) is sufficiently close to (z0, ξ0), so that (z, ξ̂) ∈ US ⊂ S∗M . Thus, for (z, ξ) ∈ T ∗M with (z, ξ̂)
near (z0, ξ0) we can define

Ψ(y; z, ξ) :=
|ξ|
t0
ψ̃(y; z, ω1(ξ̂), ω2(ξ̂))

and

a(y; z, ξ) = ã(y; z, ω1(ξ̂), ω2(ξ̂), |ξ|/t0, λ1, λ2)χ(z, ξ)

where χ is a C∞ cutoff with χ = 1 when z is close to z0, ξ̂ is close to ξ0 and |ξ| ≥ c0, for some c0 sufficiently
large, and χ = 0 otherwise. The norm of ξ plays now the role of τ , and by writing τ = |ξ|/t0, we know that∫

Rm
eiΨ(y;z,ξ)a(y; z, ξ)f̂(λ, y) dy = O(|ξ|−∞)

for all (z, ξ̂) near (z0, ξ0) (notice that the integral is really over a small neighborhood of z0).

Integrating over ξ gives that∫
Rm

∫
Rm

eiΨ(y;z,ξ)a(y; z, ξ)f̂(λ, y) dy dξ ∈ C∞

as a function of the z variable since repeated differentiation in z of the integrand does not alter its decay
properties in |ξ| and hence its integrability. It remains to check that the operator

AΨf =

∫
Rm

∫
Rm

eiΨ(y;z,ξ)a(y; z, ξ)f(y) dy dξ

is a pseudodifferential operator with a principal symbol which does not vanish at (z0, ξ0). To do so we will
use the equivalence of phase functions, see for instance Theorem 3.2.1 in [So93]. The main point is that Ψ is
homogeneous of degree 1 in ξ, and that Ψ is of the form

Ψ(y; z, ξ) = (y − z) · ξ +O(|z − y|2|ξ|)
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To verify the later, use Taylor’s formula by noting that

∇yΨ(y; z, ξ)|y=z =
|ξ|
t0
∇yψ̃(y; z, ω1(ξ̂), ω2(ξ̂))|y=z

=
|ξ|
t0

(∇yψ(y; z, ω1(ξ̂)) +∇yψ(y; z, ω2(ξ̂)))|y=z

=
|ξ|
t0

(ω1(ξ̂) + ω2(ξ̂)) = |ξ|ξ̂

= ξ.

From the form of Ψ, we also get

|∇ξΨ(y; z, ξ)| ≥ |z − y| − O(|z − y|2) ≥ c|z − y|

if we shrink as we may the support of the amplitude a in y and z in a small support of z0. Moreover, by
construction ã is a polyhomogeneous symbol in (z, ξ) hence a ∈ S0 because χ cuts off frequencies lower than c0.
Theorem 3.2.1 in [So93] implies that AΨ is a pseudodifferential operator of order 0 and

AΨ − a(z, z,D) ∈ Op(S−1)

hence the principal symbol of AΨ is

e−λ1ψ1−λ2ψ2a0b0|g(z)|1/2 = e−λ1ψ1−λ2ψ2χ1χ2

which doesn’t vanish at (z0, ξ0) if χ1 and χ2 are chosen to equal 1 near γ̇1(t) and γ̇2(t) respectively. Note that
the exponential factor e−λ1ψ1−λ2ψ2 depends on ξ in 0-homogeneous way and that λ1 and λ2 are fixed numbers.
From the fact that AΨ is a pseudodifferential operator of order 0 with principal symbol non vanishing at (z0, ξ0)
and from

AΨf̂(λ, ·) ∈ C∞

we deduce that (z0, ξ0) does not belong to the wave front set of f̂(λ, ·).

Remark. An alternate argument is to observe that multiplying∫
Rm

eiΨ(y;z0,ξ)a(y; z0, ξ)f̂(λ, y) dy = O(|ξ|−∞)

by κ(x)e−iΨ(x;z0,ξ), where κ is a cutoff to a small neighborhood of z0, and integrating over ξ gives that∫
Rm

∫
Rm

eiϕ(x,y;ξ)P (x, y; ξ)f̂(λ, y) dy dξ ∈ C∞.

as a function of the x variable with

ϕ(x, y, ξ) := −Ψ(x; z0, ξ) + Ψ(y; z0, ξ),

P (x, y, ξ) := κ(x)a(y; z0, ξ).

By the previous computations on the phase Ψ we have the non-degeneracy of the mixed hessian Ψ′′yξ(z; z, ξ) = Id,
hence

det Ψ′′yξ(z; z0, ξ) 6= 0

for z close to z0 and we can use Kuranishi’s trick. From the equality

−ϕ(x, y, ξ) = (x− y) ·
(∫ 1

0

∇yΨ(tx+ (1− t)y; z0, ξ) dt

)
= (x− y) · η

the change of variables

η =

∫ 1

0

∇yΨ(tx+ (1− t)y; z0, ξ) dt

leads to ∫
Rm

∫
Rm

e−i(x−y)·ηP̃ (x, y; η)f̂(λ, y) dy dη ∈ C∞.

And one can check just as in the previous alternate that the principal symbol of this pseudodifferential operator
(which differs from P̃ (x, x,D) by an operator of order −1) does not vanish at (z0, ξ0).
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3 The strict Stefanov-Uhlmann regularity condition

We now shift our attention from simple (transversal) manifolds to a more general class of manifolds satisfying
the strict Stefanov-Uhlmann regularity condition of Definition 1.3. As in the case of simple manifolds, that we
studied in the previous section, we wish to probe the singularities of f̂(λ, ·) at any given point z0 ∈M on the
transversal manifold M to any given direction ξ0 ∈ S∗z0M . To simplify the notation, we denote the direction of
interest (z0, ξ0) by (x, η) ∈ S∗xM in this section.

To probe the singularities of f̂(λ, ·), our technique in the following sections requires that the direction of
interest η ∈ S∗xM is generated by a pair (γ1, γ2) of nontangential geodesics with

γ̇1(0) + γ̇2(0) = t0η

that do not intersect each other outside x. We chose to call such pairs admissible geodesic pairs in Definition 1.2.
Additionally, our technique will require that not just η is generated by an admissible geodesic pair, but that η
has a neighborhood in S∗M generated by such a pairs. In this section we show that the strict Stefanov-Uhlmann
condition at η ∈ S∗M is sufficient for these requirements to hold true.

Let η ∈ S∗xM be a given direction, and let H = {η}⊥ ⊂ T ∗xM be the orthogonal complement to η. Let
ξ⊥ ∈ S∗xM ∩H be a unit vector in the orthogonal complement. Let ε > 0 and define

ξ1 = ξ⊥ + εη and ξ2 = −ξ⊥ + εη.

Then, we have that

ξ1 + ξ2 = 2εη and ξ̂1 + ξ̂2 = t0η, (3)

where ξ̂i = ξi/|ξi| ∈ S∗M and t0 = t0(ε). We also have

‖ξ̂1 − ξ⊥‖ ∼ ε and ‖ − ξ̂2 − ξ⊥‖ ∼ ε. (4)

Here we can take ‖ · ‖ to be for example the Sasaki metric on S∗M . The above means that η is generated by

the unit covectors ξ̂i, i = 1, 2, with the property that ξ1,−ξ2 are close to ξ⊥.

Now, referring to the parametrization I of Lemma 2.1, we have that η has a neighborhood generated by
pairs I(ξ) = (ω1(ξ), ω2(ξ)) of unit covectors, with ξ close to η. The parametrization of Lemma 2.1 is continuous
and ωi(η) = ξi. By the above we have that ξ1 and ξ2 can be chosen to be arbitrarily close to ξ⊥ and −ξ⊥ (by
making ε smaller). Thus for any small neighborhood U of ξ⊥ in S∗M there is a neighborhood US of η such that

I(US) ⊂ U ×−U. (5)

We also have that ω1(ξ) 6= ω2(ξ) for ξ ∈ US . We use these observations in the lemma below.

We recall the strict Stefanov-Uhlmann regularity condition (Definition 1.3) in the setting of this section:

(a) The geodesic γξ⊥ is nontangential and defined on the interval [−tin, tout].
(b) The graph γξ⊥([−tin, tout]) of γξ⊥ contains no points conjugate to x = π(ξ⊥).
(c) The geodesic γξ⊥ does not self-intersect for any time t ∈ [−tin, tout].

An example of a manifold that satisfies the strict Stefanov-Uhlmann regularity condition for all η ∈ S∗M ,
but which is not simple, is the following. Let S3 be a three dimensional sphere and let µ be a geodesic arc
from the North Pole to the South Pole of the sphere. Let (M, g) be the closure of a neighborhood of µ. Then
(M, g) is a non-simple manifold with boundary since µ ⊂M is a geodesic containing conjugate points. The
interesting covectors are the ones orthogonal to µ. Let η be such a covector. Since n ≥ 3, there is a covector ξ⊥

orthogonal to µ such that γ⊥ξ satisfies the conditions (a) – (c) above. It follows that (M, g) satisfies the strict
Stefanov-Uhlmann regularity condition for all η ∈ S∗M .

We show next that this condition is enough for η to have a neighborhood generated by admissible geodesic
pairs.

Lemma 3.1. Let (M, g) be a compact manifold with boundary, let x ∈ Int(M) and η ∈ S∗xM , and assume that
M satisfies the strict Stefanov-Uhlmann regularity condition at η. Then there exists a neighborhood of η in
S∗M which is generated by admissible geodesic pairs.
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Proof . Let η, ξ⊥ ∈ S∗xM be as in the definition of the strict Stefanov-Uhlmann regularity condition. It is
sufficient to show that if (ξ1, ξ2) ∈ S∗M × S∗M is any pair of not equal unit covectors with π(ξ1) = π(ξ2), with
ξi both sufficiently close to ξ⊥ in S∗M , then the geodesic pair (γξ1 , γξ2) is an admissible geodesic pair. Indeed,
if this is the case, then the covector pairs I(ξ) = (ω1(ξ), ω2(ξ)), with ξ close to η, that generate a neighborhood
of η, are such that the corresponding geodesic pairs (γω1(ξ), γω2(ξ)) are admissible. (Here we used the simple
remark that if a geodesic pair (γω1(ξ), γ−ω2(ξ)) is admissible, so is (γω1(ξ), γω2(ξ)). We also used the fact that

ω1(ξ),−ω2(ξ) can be chosen to belong to an arbitrary small neighborhood of ξ⊥ by shrinking US in (5).)
Let us first reduce all considerations to a sufficiently small neighborhood of ξ⊥ in S∗M such that all the

geodesics corresponding to its covectors hit the boundary transversally, and that this happens after a time at
most T <∞ (forward and backward in time). This is possible since geodesics depend smoothly on their initial
values and γξ⊥ itself is nontangential. Let us denote γ = γξ⊥ .

To show that there is a neighborhood U of ξ⊥ in S∗M such that for all ξ1, ξ2 ∈ U with ξ1 6= ξ2 and
π(ξ1) = π(ξ2), the geodesics do not intersect outside x, we assume the opposite: Let (γkξ1 , γ

k
ξ2

) be a sequence of

geodesic pairs that intersect at times tki ,
γξk1 (tk1) = γξk2 (tk2), (6)

with at least one of tk1 and tk2 nonzero, ξk1 6= ξk2 ,

xk := π(ξk1 ) = π(ξk2 )

and

‖ξki − ξ⊥‖S∗M <
1

k
, i = 1, 2.

The times −tin(ξki ) and tout(ξ
k
i ) when the geodesic γξki enters and exits M converge to the entrance and exit

times −tin and tout of γ as k →∞. Since M is compact it has positive injectivity radius Inj(M) > 0. (Here we
have extended M to a closed manifold to speak about Inj(M). Note that xk ∈ Int(M) for k large so that the
boundary will not cause any complications here.) Thus we have

|tk1 | ≥ Inj(M) or |tk2 | ≥ Inj(M)

for all k. Otherwise γξk1 and γξk2 would intersect at a geodesic ball centered at xk. By passing to a subsequence,
we may assume without loss of generality that

|tk1 | ≥ Inj(M).

Since the intersection times tki belong to a compact interval [−T, T ], we may pass to another subsequence
so that

tki → ti, as k →∞, i = 1, 2.

Since ξki → ξ⊥ in S∗M , we have by taking limit of (6)

γ(t1) = γ(t2).

(Recall that we denote γ = γξ⊥ .) Since γ by assumption has no self-intersections, we have

s := t1 = t2 ∈ [−tin, tout]. (7)

Since |t1| ≥ Inj(M), we have s 6= 0.
Now, since by assumption γ has no points conjugate to x = π(ξ⊥), we have that there is a neighborhood

U ⊂ TM of sξ⊥ such that the “bundle version” of the exponential map

E : U →M ×M,

E(V ) = (π(V ), expπ(V )(V )), V ∈ U

is a diffeomorphism (see e.g. [Le97, Lemma 5.12]). This follows by noting that the differential DE of E at
sξ⊥ ∈ T ∗M is of the form [

In×n 0
# D expx

]
.

Here D expx is the differential of the standard exponential map expx : TxM →M , x = π(sξ⊥), which is invertible
near sξ⊥ ∈ TxM . We have that tki ξ

k
i ∈ U for k large enough and for i = 1, 2, since

ξk1 , ξ
k
2 → ξ⊥ and tk1 , t

k
2 → s.
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But now we have that

E(tk1ξ
k
1 ) = (xk, expxk(tk1ξ

k
1 )) = (xk, expxk(tk2ξ

k
2 )) = E(tk2ξ

k
2 )

for k large enough with tk1ξ
k
1 6= tk2ξ

k
2 . This is a contradiction to the exponential map E being injective on U .

Thus there exists a neighborhood U × U of (ξ⊥, ξ⊥) in S∗M × S∗M such that geodesics corresponding to
pairs of its covectors intersect the boundary transversally. Moreover, if the covectors of a pair in U × U are not
equal, the corresponding pair of geodesics do not intersect outside their starting point.

We are left to show that we may shrink U , if necessary, so that the geodesics corresponding to its covectors
do not self-intersect. We assume the opposite: there is a sequence ξk → ξ⊥ in U ⊂ S∗M such that there are
times tk < t′k when the geodesic γξk intersects itself:

γξk(tk) = γξk(t′k).

Since Inj(M) > 0, we must have that t′k ≥ tk + 2 Inj(M). Otherwise the geodesic loop γξk : [tk, t
′
k]→M would

belong to a geodesic ball of radius Inj(M).

Since tk, t
′
k belongs to a compact time interval [−T, T ], we may pass to a subsequence so that

tk → t and t′k → t′.

Since also ξk → ξ⊥, we have that

γξ⊥(t) = γξ⊥(t′),

with t′ − t ≥ 2 Inj(M) > 0. Since γξ⊥ by assumption has no self-intersections this is a contradiction. Thus we
may redefine U so that it has all the required properties. This concludes the proof.

Combining our results we record the following. The proof is just the combination of the previous lemma
and Lemma 2.1.

Proposition 3.1. Let (M, g) be a compact manifold with boundary, let η ∈ S∗xM , and assume that M satisfies
the strict Stefanov-Uhlmann regularity condition at η. Then there is a neighborhood Uη ⊂ S∗M of η and a
smooth mapping I : Uη → S∗U × S∗U such that

I(ξ) = (ω1(ξ), ω2(ξ)), ω1(ξ) + ω2(ξ) = t0ξ

with

(γω1(ξ), γω1(ξ))

an admissible geodesic pair. Here 0 < t0 < 2 is constant.

This result will imply that by using Gaussian beams traveling along γω1(ξ) and γω2(ξ) we can detect
singularities in the direction of η.

4 Gaussian beam quasimodes

In this section we discuss Gaussian beam quasimodes. Gaussian beam quasimodes are approximate eigenfunc-
tions for the Laplace-Beltrami operator ∆g on the transversal manifold (M, g), dim(M) = m = n− 1. These
were studied in [DKLS16] and we recall some facts from there.

We will first recall the Gaussian beam quasimode construction on any compact transversal manifold (M, g)
with boundary and for any nontangential geodesic γ. After this we will introduce smooth parameterizations for
the quasimodes, and products of quasimodes, by cotangent vectors ξ ∈ T ∗M .

Proposition 4.1. Let γ : [0, L]→M be a nontangential geodesic, and let λ ∈ R. There is a family of functions
(v̂s) ⊂ C∞(M), where s = τ + iλ and τ ≥ 1, such that

‖(−∆g − s2)v̂s‖L2(M) = O(τ−∞), ‖v̂s‖L2(M) = O(1)

as τ →∞.
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This result was proved in [DKLS16, Section 3] with O(τ−K) error estimates for large K > 0. We recall now
the construction and also the standard extension to O(τ−∞) error estimates using Borel summation.

To describe the quasimode v̂s, first embed (M, g) in some closed manifold (M̂, g) and extend γ as a unit speed

geodesic in M̂ . Since γ is nontangential, there is an ε > 0 such that γ(t) ∈ M̂ \M for t ∈ [−2ε, 0) ∪ (L,L+ 2ε).
Assume for simplicity that γ|[−2ε,L+2ε] does not self-intersect. (For the general case see [DKLS16].)

Choose an orthonormal frame at γ(0) with its first vector as γ̇(0). Then there exists a set of Fermi coordinates
(t, y) on a δ′-neighborhood

Uδ′ = {(t, y) ; −2ε < t < L+ 2ε, |y| < δ′} (8)

of the γ curve for some δ′ > 0. In these coordinates the geodesic curve γ(t) is mapped to (t, 0), and

gjk|y=0 = δjk, ∂ig
jk|y=0 = 0.

We write x = (t, y) where t = y1 and y = (y2, . . . , ym).
The quasimode will have the form

v̂s = eisΘ̂âs.

The phase function Θ̂ was constructed in [DKLS16] and is given in Fermi coordinates by the expression

Θ̂(t, y) = t+
1

2
H(t)y · y + Θ̃(t, y),

where (t, y) ∈ Uδ′ . The smooth (m− 1)× (m− 1) matrix function H(t) solves the Riccati equation

Ḣ(t) +H(t)2 = F (t), H(0) = H0 (9)

on the transversal manifold M , dim(M) = m = n− 1. Here F (t) is a smooth matrix function involving second
derivatives of the metric g, and H0 is some complex symmetric matrix with Im(H0) positive definite. Then

Im(H(t)) stays positive definite for all t [KKL01, Lemma 2.56]. Also, Θ̃(t, y) = O(|y|3).
Fix a function η ∈ C∞c (R) with 0 ≤ η ≤ 1, η(t) = 1 for |t| ≤ 1 and η(t) = 0 for |t| ≥ 2, and let (λj)

∞
j=0 be a

sequence with 0 < λ0 < λ1 < . . .→∞. As the amplitude âs, we choose the function

âs(t, y) = τ
m−1

4

∞∑
j=0

(1− η(τ/λj))s
−j â−j(t, y)χ(y/δ′).

The smooth functions â−j(t, y), j ≥ 0, were constructed in [DKLS16] as solutions of transport equations, and
they are independent of s. For any fixed s the above sum is finite, and thus âs ∈ C∞(M). We choose the numbers
λj to be so large so that for each j ≥ 0 and for τ ≥ 2,

max
0≤l≤j

‖(1− η(τ/λj))∇l[â−j(t, y)χ(y/δ′)]‖L∞(M) ≤ τ. (10)

Here we used that |1− η(t)| ≤ |t| for all t ∈ R. The estimate (10) implies that, for l ≥ 0,

τ−
m−1

4 |∇lâs| =

∣∣∣∣∣∣
 l∑
j=0

+

∞∑
j=l+1

 (1− η(τ/λj))s
−j∇l[â−j(t, y)χ(y/δ′)]

∣∣∣∣∣∣ ≤ Cl
with Cl independent of s. Here we used direct L∞ bound for the first sum. For the second sum we used (10)
and summation of geometric series. Similarly, if N ≥ 0 and 0 ≤ l ≤ N we have

|∇l(τ−
m−1

4 âs −
N∑
j=0

s−j â−jχ(y/δ′))| ≤
∣∣∣ N∑
j=0

η(τ/λj)s
−j∇l[â−j(t, y)χ(y/δ′)]

∣∣∣
+
∣∣∣ ∞∑
j=N+1

(1− η(τ/λj))s
−j∇l[â−j(t, y)χ(y/δ′)]

∣∣∣
which is seen to be ≤ CNτ−N by using the fact that η(t) ≤ CN t−N for all t ∈ R in the first sum and the estimate
(10) in the second sum. This shows that

τ−
m−1

4 âs(t, y) ∼
∞∑
j=0

s−j â−j(t, y)χ(y/δ′)
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in the sense of an asymptotic sum of semiclassical symbols.
From the amplitude function âs, we see that v̂s is supported on U ′δ. For future reference, we remark that

choosing δ′ smaller does not change the construction. The same functions Θ̂ and â−j will do in that case.
The above construction and [DKLS16] (see the proof of Proposition 3.1) imply that ‖v̂s‖L2(M) ≤ C with

C independent of s. The error term f = (−∆− s2)v̂s describing how v̂s departs from a true eigenfunction is of
the form f = f1 + f2, where

f1 = (−∆− s2)(eisΘ̂τ
m−1

4 (â0 + s−1â−1 + . . .+ s−Na−N )χ(y/δ′)),

f2 = (−∆− s2)(eisΘ̂[âs − τ
m−1

4 (â0 + s−1â−1 + . . .+ s−Na−N )χ(y/δ′)]).

Here ‖f1‖L2(M) ≤ CNτ
3−N

2 as in [DKLS16, Proof of Proposition 3.1], and ‖f2‖L2(M) ≤ CNτ2−N by the above
symbol estimates. After replacing N by 2N + 3, we obtain that for any N there is CN with

‖(−∆− s2)v̂s‖L2(M) ≤ CNτ−N

as required.

4.1 Parametrization of quasimodes

Next we parametrize locally the quasimodes and products of pairs of quasimodes by cotangent vectors
(z, ξ) ∈ T ∗M \ {0} corresponding to nontangential geodesics. This will be done in four steps. In steps (3) and
(4) we assume (z0, ξ0) is generated by a pair of nontangential geodesics. In the following we sometimes use the
notation ξ ∈ S∗zM to denote (z, ξ) and similarly for other covectors.

(1) We define the function v̂s by

v̂s = v̂s(ξ, F, x) = eisΘ̂(ξ,F,x)âs(ξ, F, x),

with
ξ ∈ S∗zM, F ∈ FOξ(M), x ∈M

as the Gaussian beam quasimode with complex energy s2 of Proposition 4.1 above with the following data:
The covector ξ ∈ S∗zM defines a non-tangential geodesic γξ with initial direction ξ. The orthonormal coframe

F ∈ FOξ(M) := {F = (F1, . . . , Fm) ∈ FO∗z(M) : F1 = ξ}

is an orthonormal coframe for T ∗zM with its first covector as ξ. Here FO∗z(M) denotes the set of coframes at
z. The frame F is used to define Fermi coordinates on an open δ′-neighborhood of γξ as in (8). We choose
H0 = iI(n−2)×(n−2) as the initial value for the Riccati equation (9) in the Fermi coordinates around γξ. Here i
is the imaginary unit.

The “hat” on top of the functions vs,Θ and as are here to differentiate them from the functions we introduce
next.

(2) We set for ξ ∈ T ∗zM \ {0}

ξ̂ =
ξ

|ξ|g(z)
and define the function vs by

vs(ξ, F, x) = eiτΘ(ξ,F,x)e−λΘ̂(ξ̂,F,x)as(ξ, F, x), (11)

where F ∈ FOξ̂(M), x ∈M , and

Θ(ξ, F, x) := |ξ|gΘ̂(ξ̂, F, x),

and

τ−
m−1

4 as(ξ, F, x) := τ−
m−1

4 âs|ξ|(ξ̂, F, x)

∼ â0(ξ̂, F, x) + s−1
|ξ| â−1(ξ̂, F, x) + s−2

|ξ| â−2(ξ̂, F, x) + · · ·

with
s|ξ| = τ |ξ|+ iλ.
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We call the function vs the polyhomogenization of a Gaussian beam v̂s by |ξ|g. This function is just the
result of setting the complex frequency s as the x-independent constant τ |ξ|g(z) + iλ instead of τ + iλ in the
construction of the Gaussian beam above.

The polyhomogenization is to make our presentation to be compatible with the work [WZ01], whose results
we wish to use without modifications.

(3) Let (z0, ξ0) ∈ T ∗M \ {0} be a point and direction of interest such that (z0, ξ0) has a neighborhood generated
by nontangential geodesics. Next we consider the products of Gaussian beams of complex frequency

sj = τ |ξ|g + iλj , j = 1, 2.

This results in a function of the form
eiτΦ(ξ,F ,x)Aτ,λ1,λ2

(ξ, F , x).

with phase function Φ as
Φ(ξ, F , x) = Θ(|ξ|ω1(ξ̂), F1, x) + Θ(|ξ|ω2(ξ̂), F2, x)

and amplitude function A as

Aτ,λ1,λ2
(ξ, F , x) = e−λ1Θ̂(ω1(ξ̂),F1,x)−λ2Θ̂(ω2(ξ̂),F2,x)

× as1(|ξ|ω1(ξ̂), F1, x)as2(|ξ|ω2(ξ̂), F2, x). (12)

Here the variables are as

ξ ∈ U ⊂ T ∗M, F = (F1, F2), Fi ∈ FOωi(ξ̂)(M), and x ∈M,

where ωi(ξ̂), i = 1, 2, are the component functions of the parametrization introduced in Lemma 2.1 satisfying

ω1(ξ̂) + ω2(ξ̂) = t0ξ̂. (13)

Above U is the conic extension of the neighborhood US of ξ̂0 introduced in Lemma 2.1:

U = {tξ ∈ T ∗M : ξ ∈ US , t ∈ (0,∞)}.

Thus U is a neighborhood of (z0, ξ0) in T ∗M .

(4) Lastly we parametrize the orthonormal frames Fi ∈ FOωi(ξ̂)(M), i = 1, 2, by unit cotangent vectors. We

define the function uτ (ξ, x) that corresponds to products of pairs of Gaussian beams parametrized by ξ as

uτ (ξ, x) = eiτΦ(ξ,F (ξ̂),x)Aτ,λ1,λ2(ξ, F (ξ̂), x), (14)

where
ξ ∈ U ⊂ T ∗M, x ∈M.

Here
F (ξ̂) =

(
F (ω1(ξ̂)), F (ω2(ξ̂))

)
is a parametrization of orthonormal frames given by Lemma 6.1 in the appendix. The parametrization is defined
on an open neighborhood of the direction of interest (z0, ξ̂0) in S∗M . By shrinking US of Lemma 2.1, we can
take U to be the conic extension of US as above.

We record the following facts.

Lemma 4.1. The polyhomogenization vs(ξ, F, x) of the Gaussian beam v̂s(ξ, F, x) is an approximate
eigenfunction of complex frequency

s = τ |ξ|g + iλ

in the sense that it satisfies:

‖(−∆− s2)vs‖L2(M) = O((τ |ξ|)−∞) and ‖vs‖L2(M) = O(1)

for τ |ξ| large.
Let (z0, ξ0) ∈ T ∗z0M \ {0} be a point and direction of interest. Then there is a neighborhood U of (z0, ξ0) in

T ∗M such that uτ (ξ, x) is defined on U ×M and depends smoothly on its variables ξ ∈ U , x ∈M .
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Proof . The first claim is just the construction of Gaussian beam of Proposition 4.1 with τ |ξ|g(z) + iλ in place
of τ + iλ.

For the second one, we note that the parameterizations ωi(ξ̂) and F (ωi(ξ̂)) are smooth functions of ξ 6= 0.
Likewise, the Fermi coordinates depend smoothly on this data. Gaussian beams in the corresponding Fermi
coordinates are smooth in x, and thus smooth functions in general.

Moreover, the solution of the Riccati equation used in the construction of a Gaussian beam depends smoothly
on its initial value H0 and its metric dependent coefficients. This can be seen from [KKL01, Lemma 2.56] where
the solution to the Riccati equation is given by a solution to a (linear) system of ordinary differential equations.
Solutions to that type of equation depends smoothly on the coefficients of the equation and on the initial
data (see e.g. [Ta11, Section 1.6]). The components â−j of the amplitude functions used to define uτ (ξ, x) are
constructed by solving transport equations. These equations reduce to a system of ordinary differential equations
for the “t-dependent” coefficients as can be seen from [DKLS16, Proposition 3.1]. Combining these facts proves
the claimed smoothness in ξ and x variables.

4.2 The phase and amplitude functions

We show next that the functions Φ(ξ, F (ξ), x) and Aτ,λ1,λ2(ξ, F (ξ), x) defined on U ×M are admissible phase
and amplitude functions in the sense of [WZ01] if U is generated by admissible geodesics. We begin with the
phase function.

We make the following simplifications of notation:

Φ(ξ, x) : = Φ(ξ, F (ξ), x),

Aτ (ξ, x) : = Aτ,λ1,λ2
(ξ, F (ξ), x),

Θ̂i(ξ, x) : = Θ̂(ωi(ξ̂), F (ωi(ξ̂)), x), i = 1, 2.

These notations are justified since the parameterizations of the orthonormal frames or the crossing geodesics
(Lemma 2.1) play no explicit role in what follows, and since λi ∈ R, i = 1, 2, are fixed. Combining the first and
the last, we write

Φ(ξ, x) = |ξ|g(z)(Θ̂1(ξ, x) + Θ̂2(ξ, x)), ξ ∈ U , z = π(ξ), x ∈M.

Proposition 4.2. Let (z0, ξ0) ∈ T ∗M be a point and direction of interest that has a neighborhood generated
by admissible geodesics. Then there is a neighborhood U × U of (ξ0, z0) such that the phase function Φ(ξ, x) of
uτ (ξ, x) is an admissible phase function in the sense of [WZ01] on U × U :

1. Φ is a polyhomogenous symbol of order one in ξ,

2. dxΦ|∆ = t0ξ · dx,

3. ∇2
xImΦ|∆ ∼ 〈ξ〉,

4. Φ|∆ = 0

5. ImΦ ≥ 0

Here ∆ = {(ξ, x) ∈ U × U ;π(ξ) = x} and 0 < t0 < 2 is some constant and ∇2
x is the Riemannian Hessian. The

notation ∇2
xImΦ|∆ ∼ 〈ξ〉 means that for all x ∈M there are coordinates on a neighborhood of x and a constant

C > 1 independent of x and ξ such that ∇2
xImΦ|∆/C < 〈ξ〉Im×m < C∇2

xImΦ|∆ in the sense of partial ordering
of symmetric matrices.

We remark that there is an additional assumption in [WZ01, Definition 2.1] that Φ is an elliptic symbol.
This condition was never needed in [WZ01] and can be omitted. We thank Jared Wunsch for clarifying this to
us. The reason for the conditions above is that one can write the phase function in any local coordinates near
the diagonal ∆ as

Φ = t0ξ · (x− z) + 〈Q(ξ, x)(x− z), (x− z)〉, (15)

Here Q is a symmetric matrix-valued symbol (depending on the used local coordinates) with Im(Q)|∆ ∼ 〈ξ〉.
When the conditions (1)-(5) above hold, the formula (15) follows by Taylor expanding in x around z = π(ξ).
Compare with the part (5) of the proof which follows.

Proof of Proposition 4.2. Let (z0, ξ0) ∈ T ∗M and let Φ(ξ, x) be first defined on U × U as explained in the
beginning of this section. We will need to redefine both U and U while we advance in the proof, and then
restrict Φ(ξ, x) onto the redefined sets.
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For ξ ∈ U , the phase function reads

Φ(ξ, x) = |ξ|g
(

Θ̂(ω1(ξ̂), F (ω1(ξ̂)), x) + Θ̂(ω2(ξ̂), F (ω2(ξ̂)), x)
)
.

Recall that for a unit covector σ ∈ S∗M , the function

Θ̂(σ, F (σ), x)

is the phase function of a Gaussian beam constructed for a nontangential geodesic γσ in (σ, F (σ))-Fermi
coordinates.

(1) The phase function Φ is 1-(poly)homogeneous since

ξ 7→ Θ̂(ωi(ξ̂), F (ωi(ξ̂)), x), i = 1, 2,

is 0-homogeneous by definition.

(2) Let us verify the three conditions of the behavior of Φ on the diagonal. Let ξ̂ ∈ S∗zU and F (ξ̂) ∈ FOξ̂(M).

This data defines Fermi coordinates (t, y) = (y1, . . . , ym) uniquely, where we denote y1 = t and y = (y2, . . . , ym).
In these Fermi coordinates we have

Θ̂(t, y) = t+
1

2
H(t)y · y + Θ̃(t, y)

for the phase function of the corresponding Gaussian beam, where

Θ̃(t, y) = O(|y|3).

(See the beginning of this section.) Here we have omitted ξ-dependent quantities from the presentation to
simplify the notation.

We first show that
dxΘ(ξ, F, x)|∆ = ξ · dx, (16)

for any ξ ∈ T ∗M \ {0}, F ∈ FOξ̂(M). From this it follows that

dxΦ(ξ, x)
∣∣
∆

= dx

(
Θ(|ξ|ω1(ξ̂), F (ω1(ξ̂)), x) + Θ(|ξ|ω2(ξ̂), F (ω2(ξ̂)), x)

) ∣∣
∆

= (|ξ|gω1(ξ̂) + |ξ|gω2(ξ̂)) · dx = t0ξ · dx

since
ω1(ξ̂) + ω2(ξ̂) = t0ξ̂

by the definition of ωi, i = 1, 2, in Lemma 2.1.
To show (16), we note that it is a pointwise equation in the ξ-variable. Thus we may fix ξ ∈ T ∗zM \ {0} and

calculate in (ξ̂, F (ξ̂))-Fermi coordinates (y1, . . . , ym), with y1 = t and y = (y2, . . . , ym). We have y(z) = 0, and

dyΘ(t, y)|∆ = |ξ|g(0)

m∑
i=1

∂

∂yi

(
t+

1

2
H(t)y · y + Θ̃(t, y)

)∣∣∣
y=0

dyi

= |ξ|g(0)dt = ξidy
i. (17)

Here we have used the fact that in (ξ̂, F (ξ̂))-Fermi coordinates ξ̂ = dt. The claim (3) follows.
(3) We analyze the Hessian of Φ in a similar manner. Let ξ ∈ T ∗z U \ {0}. We show first that

d2
xIm(Θ(ξ, F, x))|∆ = |ξ|gM⊥(ξ̂, x) ∈ T 2

0M, (18)

where M⊥(ξ, ·) is a local 2-tensor field on M , positive definite in the orthogonal complement

Hξ = {ω ∈ T ∗zM : g(ω, ξ) = 0}

of ξ, and M⊥(ξ, ·)(ξ, η) = 0 for all η ∈ T ∗zM . From this it will then follow that

d2
xIm Φ(ξ, x)|∆ = |ξ|gM⊥(ω1(ξ̂), x) + |ξ|gM⊥(ω2(ξ̂), x)

= |ξ|gM(ξ̂, x),
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where M(ξ, x) is a positive definite matrix field in the whole cotangent space T ∗z U since ω1(ξ̂) and ω2(ξ̂) are not
parallel.

Again, since the claim is pointwise in the ξ-variable, we calculate in (ξ̂, F (ξ̂))-Fermi coordinates. We have

d2
xΘ(ξ, F (ξ̂), x)

∣∣
∆

= |ξ|g(0)

(
∂2

∂yi∂yj

(
t+

1

2
H(t)y · y + Θ̃(t, y)

)) ∣∣∣
y=0

dyi ⊗ dyj

= |ξ|g(0)

m∑
i,j=2

H(t)ijdy
i ⊗ dyj .

Here we have used the fact that d2
xIm(Θ̃(t, y)) = O(|y|), and that in Fermi coordinates the Christoffel symbols

vanish, and metric is the identity matrix, on the corresponding geodesic. Thus, we have (18), and consequently
(4).
(4) If ξ ∈ T ∗zM \ {0} is fixed, then in the corresponding Fermi coordinates y we have y(z) = 0. The claim follows
from the formula of the phase function of a Gaussian beam in Fermi coordinates.
(5) This follows from (2)-(4): Let ξ ∈ U . We Taylor expand in local coordinates at z = π(ξ) using Φ|x=z = 0
and Im(dxΦ|x=z) = 0. (Especially the later implies (∇2ImΦ)ij = ∂i∂jImΦ on {x = z}.) We have

ImΦ = 〈∇2ImΦ(x, ξ)|x=z(x− z), (x− z)〉+Oξ(|x− z|3),

where 〈ξ〉/Cξ ≤ ∇2ImΦ(x, ξ)|x=z ≤ 〈ξ〉Cξ. Since Φ is smooth in its variables we have that there is uniform C > 1
such that 1/C ≤ ∇2ImΦ(x, ξ)|x=z if we redefine U as {tξ ∈ T ∗M : ξ ∈ US , t ∈ ( 1

2 |ξ0|,∞)}.
Thus we may write by using Taylor’s theorem with a remainder as

ImΦ = 〈∇2ImQ(x, ξ)(x− z), (x− z)〉,

where Q(x, ξ) is uniformly positive definite in its variables on a neighborhood of the diagonal ∆. Shrinking U and
U further so that π(U)× U belongs to this neighborhood, and contains (z0, z0), gives ImΦ ≥ 0 on U × U .

We continue with the amplitude function Aτ (ξ, x). We first show that this is a polyhomogenous symbol in

S
m−1

2 ,0

phg in the sense of Wunsch and Zworski [WZ01]. Later on, we will multiply Aτ with suitable powers of τ

and |ξ|, so that after these multiplications, the result is in S
3m
4 ,m4

phg as required by [WZ01]. (The τ dependence

factor m−1
2 comes from multiplying the amplitudes of two Gaussian beams with powers of τ of m−1

4 .)

Proposition 4.3. The amplitude function Aτ (ξ, x) on U × U × [τ0,∞)

Aτ (ξ, x) ∼ e−λ1Θ̂(ω1(ξ̂),F (ω1(ξ̂)),x)−λ2Θ̂(ω2(ξ̂),F (ω2(ξ̂)),x)τ
m−1

2

×
∞∑
j,l=0

sjlâ−j(ω1(ξ̂), F (ω1(ξ̂)), x)â−l(ω2(ξ̂), F (ω2(ξ̂)), x),

where

sjl =

(
1

τ |ξ|+ iλ1

)j (
1

τ |ξ|+ iλ2

)l
is a polyhomogenous symbol in the class S

m−1
2 ,0

phg . Here τ0 is sufficiently large.

Proof . We have the expansion

sjl = (τ |ξ|)−(j+l) − iλ1(τ |ξ|)−(j+l+1) − iλ2(τ |ξ|)−(j+l+1) + · · ·

Since each a−j(ωi(ξ̂), F (ωi(ξ̂)), x), j = 1, 2, . . ., i = 1, 2, is continuous in its variables, and 0-homogeneous in ξ,
we have

sjlâ−j(ω1(ξ̂), F (ω1(ξ̂)), x)â−l(ω2(ξ̂), F (ω2(ξ̂)), x)

= (τ |ξ|)−(j+l)Oj,l(1) + (τ |ξ|)−(j+l+1)Oj,l(1) + · · ·

and we can write the asymptotic sum

∞∑
j,l=0

sjlâ−j(ω1(ξ̂), F (ω1(ξ̂)), x)â−l(ω2(ξ̂), F (ω2(ξ̂)), x)
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by arranging the powers of τ |ξ| as
∞∑
j=0

τ−j |ξ|−jB−j ,

where each

B−j = B−j(ξ, x) = Oj(1)

in its both variables.

The factor

e−λ1Θ̂(ω1(ξ̂),F (ω1(ξ̂)),x)−λ2Θ̂(ω1(ξ̂),F (ω1(ξ̂)),x)

is 0-homogeneous is ξ and smooth in its variables. Thus it satisfies

|e−λ1Θ̂(ω1(ξ̂),F (ω1(ξ̂)),x)−λ2Θ̂(ω1(ξ̂),F (ω1(ξ̂)),x)| ≤ C

on U × U , where C is constant.

Set ñ = m−1
2 . It follows automatically that Aτ (ξ, x) satisfies

|Aτ (ξ, x)− τ ñ(B0 + · · ·+ τ−jB−j)| ≤ Cjτ ñ−j−1|ξ|0−j−1, for |ξ| > 1.

Thus Aτ (ξ, x) satisfies the growth condition of [WZ01, Def. 2.3.].

5 Uniqueness result for singularities

We apply Theorem 4.8 of [WZ01] to prove our main theorem, Theorem 1.1. That is, we show that if ξ0 ∈ T ∗z0M0

has a neighborhood generated by admissible geodesic pairs, and if the other assumptions of Theorem 1.1 hold,
then

(z0, ξ0) /∈WF (f̂(λ, · )).

Especially, if we ξ̂0 satisfies the strict Stefanov-Uhlmann regularity condition, we show the above to be true.

So far we have shown that multiplying Gaussian beam quasimodes, near a given point of interest z0, and
using 1, produces an integral transformation of f̂(λ, x) in the x-variable satisfying∫

M0

f̂(λ, x)uτ (ξ, x) dVg0 = O((τ |ξ|)−∞), (19)

where uτ is given in (14), ξ ∈ U and (M0, g0) is the transversal manifold.

We may define a function

kτ (ξ, x) = |ξ|m4 τ
m+2

4 uτ (ξ, x)

on U × U , and by Proposition (4.3) kτ = eiτΦBτ , where Bτ is a polyhomogenous symbol of class S
3m
4 ,m4

phg in the

sense of [WZ01]. By (19), the integral of kτ against f̂(λ, ·) is of order |ξ|m4 O((τ |ξ|)−∞).

We are ready to prove our main result. The proof is a direct application of Theorem 4.8. of [WZ01].

Proof of Theorem 1.1. Let (z0, ξ0) ∈ T ∗M0 so that ξ0 has a neighborhood in T ∗M0 generated by admissible
geodesic pairs. Thus, the argument leading to (1) combined with the construction in Section 4 implies that∫

M0

f̂(λ, x)kτ (ξ, x) dVg0(x) = O(τ−∞)

for ξ belonging to some bounded neighborhood of ξ0 in T ∗M0. By Theorem 4.8. of [WZ01] we have

(z0, ξ0) /∈WF (f̂(λ, ·)).
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6 APPENDIX

Proof of Lemma 2.1. Let (z0, ξ0) ∈ S∗z0M . Let y be coordinates near z0, and write the covector ζ1 in coordinates
y as

ζ1 = ajdy
j |z0

where (a1, . . . , an) is a unit vector in Rn. We then define the unit covectors

ζ(z) :=
ajdy

j |z
〈ajdyj |z, ajdyj |z〉1/2

and

ω1(z, ξ) :=
ζ(z)− 〈ζ(z), ξ〉ξ + c(z, ξ)ξ

[1− 〈ζ(z), ξ〉2 + c(z, ξ)2]1/2
,

ω2(z, ξ) := 2〈ω1(z, ξ), ξ〉ξ − ω1(z, ξ)

for (z, ξ) near (z0, ξ0), where c(z, ξ) is chosen so that

〈ω1(z, ξ), ξ〉 = 〈ζ1, ξ0〉.

A computation shows that the right choice for c is

c(z, ξ) := 〈ζ1, ξ0〉
[

1− 〈ζ(z), ξ〉2

1− 〈ζ1, ξ0〉2

]1/2

.

Then ω1 and ω2 depend smoothly on (z, ξ) near (z0, ξ0), and they satisfy

ω1(z0, ξ0) = ζ1, ω2(z0, ξ0) = ζ2,

ω1(z, ξ) + ω2(z, ξ) = t0ξ

where t0 = 2〈ζ1, ξ0〉 is a constant.

Another way to do the above would be the following:

Alternative proof of Lemma 2.1. Let ξ0 ∈ S∗z0M , and assume that ζi ∈ S∗M , i = 1, 2, are such that

ζ1 + ζ2 = t0ξ0 (20)

Let U be a neighborhood of z0 where the exponential map is defined. We define the parametrization I = (ω1, ω2)
as follows. We set for ξ ∈ S∗U

ωi(ξ) = P ◦
(
‖(P−1ξ)‖‖Oξζi +

1

2
(P−1ξ)⊥

)
.

Here P stands for the parallel translation S∗z0M → S∗π(ξ)M along unit speed geodesic with exp−1
z0 (π(ξ)) as initial

data for unit time t = 1, and P−1 is its inverse S∗π(ξ)M → S∗z0M . Here we have orthogonally decomposed

P−1ξ = (P−1ξ)‖ + (P−1ξ)⊥,

to the part (P−1ξ)‖ in the plane V spanned by ζ1 and ζ2 and to the part orthogonal to V . Since ζ1 + ζ2 = t0ξ0,
we have that ξ0 ∈ V . Above Oξ is the unique rotation on the plane, an element of SO(1), that takes ξ0 to be
parallel with (P−1ξ)‖. Thus Oξ satisfies

[Oξ] ξ0 =
(P−1ξ)‖

‖(P−1ξ)‖‖
. (21)

We have (
‖(P−1ξ)‖‖Oξζ1 +

t0
2

(P−1ξ)⊥
)

+

(
‖(P−1ξ)‖‖Oξζ2 +

t0
2

(P−1ξ)⊥
)

= t0

(
(P−1ξ)‖ + (P−1ξ)⊥

)
= t0(P−1ξ),

where we have used equations (20) and (21). Consequently

ω1(ξ) + ω2(ξ) = t0ξ

by linearity of the parallel translation. We also have ωi(ξ0) = ζi. The parametrization is well defined and
smooth as long as (P−1ξ)‖ 6= 0. Thus by continuity of the exponential map and of the parallel translation,
the parametrization is well defined and smooth on some neighborhood of ξ0.
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The following lemma gives a smooth local parametrization for orthonormal coframes F ∈ FOξ(M) as a
function of ξ ∈ S∗M near a given ξ0 ∈ S∗M .

Lemma 6.1. Let ξ0 ∈ S∗z0M . Then there exists an open neighborhood US of ξ0 in S∗M and a C∞ smooth
mapping F : US → FOξ(M),

F (ξ) = (ω1(ξ), . . . , ωn(ξ)),

such that
ω1(ξ) = ξ (22)

and π(F (ξ)) = π(ξ). (This latter condition just means ξ over a point z ∈M is mapped to a coframe F (ξ) over
the same point z.)

Proof . Let ξ0 ∈ S∗z0M , let F0 ∈ FO∗z0(M) be an orthonormal coframe (ω1, . . . , ωn) of T ∗z0M and let U be a
neighborhood of z0 where the exponential map is defined. For ξ ∈ S∗U , we define

F (ξ) = P ◦O0 ◦ P−1(ξ).

Here P is the parallel translation (either of a covector or a coframe) along a geodesic with initial data
exp−1

z0 (π(ξ)) ∈ T ∗z0M for a unit time.
The mapping O0 : S∗z0M → FO∗z0(M) is a unique rotation of the fixed coframe F0 defined as follows: Let

ω ∈ S∗z0M , and let Vω be the plane spanned by ω and by the first covector ω1 of the coframe F0. We define
O0(ω) to be the rotation of the coframe F0 so that ω1 is rotated to ω on the plane Vω while directions initially
orthogonal to Vω remains orthogonal to Vω under the rotation.

More precisely, we may split the cotangent space T ∗z0M as Vω ⊕Hω, where ⊕ stands for an orthogonal
direct sum. Letting (ω1, ω) be a (not necessarily orthogonal) basis for Vω, and choosing some basis for Hω, we
have a matrix representation for an element of Rω ∈ SO(n) as 0 −1

1 0
IH

 .
Now Rω induces a rotation of the frame F0, which we define to be O0(ω). The first component of this frame
satisfies

[O0(ω)]1 = ω, i.e. ω1 7→ ω.

Since Vω and its orthogonal complement Hω depend smoothly on ω and Rω is independent of the basis of Hω,
we have that O0 is well defined and depends smoothly on ω.

All the steps in the composition defining F (ξ) are smooth, and thus F (ξ) depends smoothly on ξ ∈ S∗U .
We define US = S∗U .
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[GS09] C. Guillarmou, A. Sá Barreto, Inverse problems for Einstein manifolds, Inverse Probl. Imaging 3
(2009), 1–15.

[GT11] C. Guillarmou, L. Tzou, Calderón inverse problem with partial data on Riemann surfaces, Duke
Math. J. 158 (2011), 83–120.

[KKL01] A. Katchalov, Y. Kurylev, M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys
in Pure and Applied Mathematics 123, Chapman Hall/CRC, 2001.

[KS14] C.E. Kenig, M. Salo, Recent progress in the Calderón problem with partial data, Contemp. Math.
615 (2014), 193–222.

[LLS16] M. Lassas, T. Liimatainen and M. Salo, The Calderón problem for the conformal Laplacian,
arXiv:1612.07939, (2016).

[LTU03] M. Lassas, M. Taylor, G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian
manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207–221.

[LU01] M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann
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