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ABSTRACT: The reaction of the copper(I) β-diketiminate copper complex {(Cu(BDIMes))2(μ-C6H6)} (BDI
Mes = N,N′-bis(2,4,6-

trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal β-diketiminates M(BDIDip) (M = Al or Ga; BDIDip =
N,N′-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)-
CuGa(BDIDip)}. These feature unsupported copper−aluminum or copper−gallium bonds with short metal−metal distances, Cu−Al
= 2.3010(6) Å and Cu−Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the
calculated association enthalpies can be attributed to London dispersion forces.

An understanding of the nature of metal−metal bonding in
both main group and transition metal systems is of

fundamental importance.1,2 Recently, the discovery of
compounds featuring new metal−metal bonding types has
been driven not only by curiosity but also by their many
potential applications.3−6 These include their use in C−F bond
functionalization,7 CO2 activation,8 electrochemistry,9 and
precursors to thin films for photovoltaic applications.10 Many
notable homometallic-dinuclear compounds have been iso-
lated,11,12 but scarcer heterobimetallic species have also
generated interest as a result of their potential for improved
selectivity and reactivity as catalysts.13 However, most of the
examples presented to date use bridging ligands to support the
metal−metal bonds, or such bonds are formed as part of a
cluster species.14−17 Some examples include heteroatom (e.g.,
μ-hydrido) bridges between the metal centers, as seen in the
complexes {Cu(BDIAr)(H)Au(IPr)} (BDIAr = N,N′-bis-
(pentafluorophenyl)pentane-2,4-diiminate; IPr = 1,3-
diisopropylphenylimidazol-2-ylidene) and {Zr(H)-
(Cp)2(H)2M(BDIDip)} (M = Zn, Mg, Al; Cp = cyclo-
pentadienyl; BDIDip = N,N′-bis(2,6-diisopropylphenyl)-
pentane-2,4-diiminate).18,19 Recent examples of heterobime-
tallic complexes with metal−metal bonds include the two-
coordinate Mn(0) species {Mn(L)(Mg(BDIMes))} (L =
N(C6H2{C(H)Ph2}2

iPr-2,6,4)(SiiPr3); BDIMes = N,N′-bis-
(2,4,6-trimethylphenyl)pentane-2,4-diiminate),20 as well as
the palladium complex, {Pd(H)3(Mg(BDIDip)3}.

21 Other
examples include unsupported Fe−Mn or Fe−Cr bond
formation stabilized by bulky terphenyl ligands,22 as well as
Dy−Fe and Dy−Ru bonds featuring Cp-based ligands for
single molecule magnet applications.23

A theme that has attracted increased attention is the use of
low-valent p-block compounds as “ligands” in heterometallic
species to form metal−metal bonds.24−26 Group 13 based
metal(I) ligands in particular have generated interest as
synthons for metal−metal bonded compounds.27−29 Interest-
ingly, in a recent example, a potassium aluminyl complex was

reacted with a phosphine-ligated gold iodide species which
resulted in the heterobimetallic aluminum−gold complex
{(NON)AlAu(PtBu3)} (NON = 4,5-bis(2,6-diisopropylanili-
do)-2,7-di-tert-butyl-9,9-dimethylxanthene) (III, Figure 1).8

The strong electron-donating properties of the [(NON)Al]
species afforded a highly polarized Alδ+−Auδ− bond, into which
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Figure 1. Fragments of previously reported Au−Al and Cu−Al
clusters (I and II, Cp* = C5Me5), the first reported monomeric Au−
Al unit (III, Dip = 2,6-iPr2-C6H3) and a monomeric Cu−Al unit
described in this study (IV).
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CO2 was shown to insert. This work provided the first example
of a coinage metal bonded to a low-valent aluminum species to
form a discrete bimetallic unit, though some examples of
metallic clusters featuring Al−Au bonds (e.g., [Ni-
(AuPPh3)(8−2n)(AuCl)3(AlCp*)n], n = 1, 2; Cp* = pentam-
ethylcyclopentadienyl) have been reported (I, Figure 1).30

There are two examples of compounds that feature bonds
between aluminum and copper. These are the clusters reported
by Fischer et al. in 2014.31 [(Cp*Al)4] was reacted with
[(Cu(H)(PPh3))6] to form the intermetallic cluster [(Cp*Al-
Cu)6H4]. Subsequent addition of benzonitrile resulted in
[(Cp*AlCu)6(H)3(NCHPh)] via a hydrometalation path-
way, featuring an [Al6Cu6] core (II, Figure 1).31

Analogous examples of gallium(I) species32,33 bound to
transition metals are known, but to date the only reported
instances featuring group 11 metal−gallium bonded moieties
were prepared by salt-metatheses of a gallyl anion and a
transition metal chloride, stabilized by N-heterocyclic carbene
(NHC) or bisphosphine ligands.34−37 These suggest that by
employing low-valent nucleophilic group 13 compounds at
group 11 centers, new complexes may be obtained.
Here, we report the synthesis and characterization of the first

example of a low-valent Cu−Al molecular complex {(BDIMes)-
CuAl(BDIDip)}, 4 via the reaction of a monomeric carbene-
analogue of Al with a copper(I) source stabilized by a BDI
ligand. Additionally, we report the characterization of its
heavier Cu−Ga analogue {(BDIMes)CuGa(BDIDip)}, 5.36,37

Both {(BDIMes)CuAl(BDIDip)}, 4, and {(BDIMes)CuGa-
(BDIDip)}, 5, were synthesized by the reaction of dinuclear
{(Cu(BDIMes)2(μ-C6H6)}, 1,

38 and either {Al(BDIDip)}, 2,39

or {Ga(BDIDip)}, 3,40 at room temperature in toluene
(Scheme 1). The resulting orange colored mixtures were

stirred for 12 h. Removal of the solvent under reduced pressure
gave 4 or 5 as yellow solids which were extracted in a mixture
of toluene/hexane and filtered. The filtrate was concentrated
and cooled to ca. −30 °C overnight, yielding complexes 4 or 5
as yellow crystals that were suitable for single-crystal X-ray
analysis (Figures 2 and 3). Both 4 and 5 have marginal stability
in solution; decomposition occurred at temperatures greater
than ca. 80 °C to uncharacterizable black solids. Selected bond
lengths and angles for 4 and 5 are shown in Table 1.
BDIMes was chosen as the ligand at the copper atom as a

crystallographic handle to prevent the metal centers being
indistinguishable by X-ray analysis, which would probably
ensue if BDIDip was used at both metals. Complex 4 has a
significantly shorter Cu−Al distance, 2.3010(6) Å, than the
shortest known Cu−Al bond length of 2.4134(15) Å in
Fischer’s [Al6Cu6] cluster (Figure 1), showing a shortening of
4.7%.31

The relatively short Cu(1)−Al(1) bond length in 4 is a
consequence of the 3s character of the lone pair at the Al

atom.30 The Al(+1) electron configuration can be described as
3s2, in which the 3s-orbital has a smaller radius than the 3p-
orbital. This effect was also observed by Aldridge and co-
workers in {(NON)AlAu(PtBu3)},

8 which has a shorter Al−Au
bond length of 2.4024(3) Å in comparison to the Al−Au
length of 2.596(5) Å in the Al−Au cluster (Figure 1),29 a
shortening of 7.5%.

Scheme 1. Synthetic Route to Complex 4 and 5

Figure 2. Solid-state structure of {(BDIMes)CuAl(BDIDip)}, 4, with
hydrogen atoms not shown and Mes/Dip substituents shown in
wireframe format for clarity.

Figure 3. Solid-state structure of {(BDIMes)CuGa(BDIDip)}, 5, with
hydrogen atoms not shown and Mes/Dip substituents shown in
wireframe format for clarity.

Table 1. Selected Bond Lengths and Angles for Complexes 4
and 5a

4 M = Al 5 M = Ga

Bond Lengths (Å)
Cu(1)−M(1) 2.3010(6) [2.346] 2.2916(5) [2.340]
M(1)−N(1) 1.9228(17) [1.931] 1.992(3) [2.003]
M(1)−N(2) 1.9213(17) [1.931] 1.985(3) [2.003]
Cu(1)−N(3) 1.9967(15) [2.011] 1.974(2) [1.992]
Cu(1)−N(4) 1.9863(15) [2.011] 1.967(2) [1.992]
Bond Angles (deg)
Cu(1)−M(1)−N(1) 136.04(6) [134.2] 137.36(9) [134.9]
Cu(1)−M(1)−N(2) 131.45(5) [134.2] 131.56(7) [134.9]
M(1)−Cu(1)−N(3) 131.84(5) [132.1] 131.22(7) [131.2]
M(1)−Cu(1)−N(4) 131.95(5) [132.1] 130.49(7) [131.2]
N(2)−M(1)−N(1) 92.51(7) [91.7] 91.06(11) [90.2]
N(4)−Cu(1)−N(3) 96.21(6) [95.8] 98.28(9) [97.5]

aCalculated values in square brackets.
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The Al(1)−N(1) and Al(1)−N(2) bond lengths
(1.9228(17) and 1.9213(17) Å, respectively) in 4 are shorter
than those (1.957(2) and 1.957(2) Å) in 2. In contrast, the
Cu(1)−N(3) and Cu(1)−N(4) bond lengths (1.9967(15) and
1.9863(15) Å) in 4 are much longer than those in 1 (1.931(2)
and 1.912(1) Å). The N(2)−Al(1)−N(1) bond angle in 4
(92.51(7)°), is slightly wider than in 2 (89.96(8))°. The
opposite is true for the copper fragment where there is a
narrower N(4)−Cu(1)−N(3) bond angle (96.21(6)°) in
contrast to 1 (98.9(1) and 99.39(9)°). This trend holds for
5, which has a wider N(2)−Ga(1)−N(1) bond angle
(91.06(11)°) compared to 3 (87.53(5)°) and a slightly
narrower N(4)−Cu(1)−N(3) angle (98.28(9)°).
The changes in the bond lengths and angles that occur at Al

and Cu upon the formation of complex 4 are presumably a
consequence of transfer of electron density from Al to Cu,
which increases the ionic character of the Al−N bonds causing
them to shorten and the N−Al−N angle to widen. The
opposite happens at Cu where electron density is increased
and ionic character of the Cu−N bonds is lowered.
The gallium analogue 5 has a Cu−Ga bond length of

2.2916(5) Å, which is similar to the Cu−Al distance but
slightly shorter than that reported by Jones and co-workers for
the related complex {(IMes)Cu{Ga{[N(Dip)C(H)2]}}}
(IMes = 1,3-dimesitylimidazol-2-ylidene), 2.3066(6) Å.34

The charge difference between the Ga fragments in 5 and
Jones’ {(IMes)Cu{Ga{[N(Dip)C(H)2]}}}, 0 and −1, respec-
tively, may account for the shorter Cu−Ga bond length in 5.
However, they also showed that lowering the steric bulk on the
NHC substituent in {(IPr)Cu{Ga{[N(Dip)C(H)2]}}} gave an
even shorter Cu−Ga bond length of 2.2807(5) Å. The Ga(1)−
N(1) and Ga(1)−N(2) bond lengths in 5 (1.992(3) and
1.985(3) Å) are shorter than those (2.0528(14) and
2.0560(13) Å) in 3. In comparison with the starting material
1, 5 shows significant lengthening of Cu(1)−N(3) and
Cu(1)−N(4) bonds (1.974(2) and 1.967(2) Å, respectively).
Computational studies using dispersion-corrected density

functional theory (DFT) at the PBE1PBE-D3BJ/def2-TZVP
level gave interaction enthalpies (free energies) of 221 (131)
and 192 (106) kJ mol−1 for 4 and 5, respectively.
Approximately 50% of the calculated interaction enthalpies
can be assigned to London Dispersion Forces (LDFs) between
the BDIMes and BDIDip ligands (109 and 106 kJ mol−1 for M =
Al and Ga, respectively). More detailed bonding analyses using
the extended transition state method with natural orbitals for
chemical valence (ETS-NOCV) further showed that the
electrostatic (−463 and −372 kJ mol−1) and orbital (−169
and −153 kJ mol−1) contributions greatly outweigh Pauli
repulsion (441 and 371 kJ mol−1) in 4 and 5, respectively. The
calculated orbital component consists primarily of σ-type
donation from Al/Ga to Cu (ca. 50%, Figure 4) along with
both σ and π-type back-donation from Cu to Al/Ga (ca. 30%).
The torsion angles between the N(4)−Cu(1)−N(3) and

N(2)−Al/Ga(1)−N(1) planes in 4 and 5 (54.34(7) and
54.51(1)°, respectively) suggest the presence of limited π-
overlap. This implies that both computational and exper-
imental findings are in accordance with the suggested bonding
of an s2-based lone pair on the group 13 metal, with a minor
component from back-donation from the Cu center. LDF
interactions are present between the BDIMes and BDIDip ligands
on the copper and aluminum/gallium fragments, respectively.
Selected intramolecular H···H distances between the calculated
positions of hydrogen atoms in 4 and 5 with a length shorter

than the sum of van der Waals radii (2.4 Å) include some as
short as 2.349 and 2.378 Å. It is possible that more short
contacts are present in both complexes but due to disorder of
the isopropyl groups on one side of the BDIDip ligand, which is
present in both 4 and 5, these proved difficult to determine.
Despite this, computational analyses clearly indicated signifi-
cant dispersion energies in both complexes. Interestingly,
calculations on model systems using Ph groups in place of the
Mes and Dip substituents gave rather large interaction
enthalpies (189 and 170 kJ mol−1 for M = Al and Ga,
respectively) even though the contribution from dispersion
was found to be greatly decreased (45 and 44 kJ mol−1,
respectively). This can be explained with less steric repulsion
that allows for more efficient covalent bonding and, therefore,
an even shorter calculated Cu−M bond (2.271 and Å in the
model systems vs 2.346 and 2.340 Å in 4 and 5, respectively).
In conclusion, {(BDIMes)CuAl(BDIDip)}, 4, represents the

first example of an unbridged and unsupported Cu−Al bond in
a molecular complex. Additionally, its heavier Cu−Ga analogue
{(BDIMes)CuGa(BDIDip)}, 5, has been isolated. Computa-
tional analyses at the DFT level showed that 4 and 5 are
significantly stabilized by LDFs along with a covalent
component including σ-type dative bonding from Al/Ga to
Cu and a minor back-donation component from Cu to Al/Ga.
Complexes 4 and 5 are currently under investigation for the
activation of small molecules including CO and CO2 and the
synthesis of species with Cu−(Al/Ga)−O units, which could
potentially be used as single-source precursors to deposit
copper aluminum and copper gallium oxide thin films.
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