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ABSTRACT: At elevated temperatures, N-cyanosulfoximines react with Meldrum’s acid derivatives to give sulfoximines with N-
bound 5-carbonyl-1,3-oxazine-2,4-dione groups. A representative product was characterized by single-crystal X-ray structure anal-
ysis. The product formation involves an unexpected molecular reorientation requiring several sequential bond-forming and -
cleaving processes.  

Since centuries, organic chemists have had the delight to 
discover unprecedented reaction pathways. Many of those 
have later become the basis from "name reactions".1 Seren-
dipity, rational design, and computational reaction prediction 
have all proven fruitful in expanding the preparative bounda-
ries of organic chemistry.2   

Because of their valuable chemical features and broad bio-
activity profiles, sulfoximines have continuously been investi-
gated and developed for applications in both crop protection 
and medicinal chemistry.3 For example, the N-cyano sul-
foximine sulfoxaflor (1) is an insecticide developed by Dow 
AgroSciences, which exhibits a high efficiency against a wide 
range of sap-feeding insects.4 In medicinal chemistry, Bayer 
Pharma introduced Pan-CDK inhibitor BAY 10000394 (2), 
which entered clinical trials (Scheme 1).5 

The physicochemical properties of sulfoximines can be fine-
tuned by functionalizing the S-bound nitrogen. In the series of 
the respective products, N-cyanosulfoximines 3 play a very 
particular role. They can easily be accessed by well-
established synthetic protocols,6 and their defined stability7 
allows applying them as useful intermediates in the prepara-
tion of other N-functionalized sulfoximine derivatives.6 Direct 
applications of N-cyanosulfoximines include the aforemen-
tioned use of sulfoxaflor (1) as insecticide4 and various at-
tempts to affect enzyme actions in a range of biomedical test 
systems.8 For modifying the N-cyano group of 3, several 1,3-
dipolar cycloadditions have been developed (Scheme 1) 
providing sulfoximines with various N-bound heterocyclic 
substituents such as 4-7 (Scheme 1).9-13 We now wondered 
about reactions of N-cyanosulfoximines with another type of 
cycloaddition partner: Meldrum's acid derivatives 8. 

 

Scheme 1. Bioactive Sulfoximines and N-Cyano 
Derivatives in 1,3-Dipolar Cycloaddition Reactions  

 
 

In general, Meldrum’s acid derivatives such as 8 have wide-
ly been used as acylation agents and precursors for acylke-
tenes 9.14 The latter compounds are of interest because they 
easily undergo [4+2] cycloaddition reactions.15 Accordingly, 
we expected the formation of 2-sulfoximidoyl-substituited 4H-
1,3-oxazine-4-one 10aa when 8a and N-cyanosulfoximine 3a 
were heated in toluene (Scheme 2). To our surprise, however, 
the NMR data of the product were inconsistent with the struc-
ture of 10aa suggesting that sulfoximine 11aa was formed. 
Although unexpected, the generation of 11aa appeared rea-
sonable taking into account the general reaction behavior of 
Meldrum’s acid derivatives, which also involves the cleavage  
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Scheme 2. Reactivity of Meldrum's Acid Derivatives, 
Assumed Compounds 10aa and 11aa and Obtained 
Product 13aa.16  

 
 

of ketonic components providing dipolar intermediates 12 
(Scheme 2).14,15 

In order to unequivocally confirm the product structure, an 
X-ray crystal structure analysis of the sulfoximine obtained 
from the reaction of 3a with 8a was performed (Scheme 2). 
Again, we were caught by surprise because none of the so far 
considered structures were correct. Instead of 10aa or 11aa, an 
isomer of 11aa (product 13aa) representing a sulfoximine with 
an N-bound 5-carbonyl-1,3-oxazine-2,4-dione group was 
found. 

Varying the reaction parameters revealed that 13aa could be 
obtained in 99% yield when a 1:4 mixture of 3a and 8a in 
toluene was kept for 2 h at 120 °C. Under these conditions,  
 

Scheme 3. Substrate Scope 
 

 

other Meldrum’s acid derivatives reacted with 3a analogously 
providing the corresponding products 13ab-af in yields rang-
ing from 28% to 86% yield (Scheme 3). In this series, the best 
results were obtained with substrates 8a and 8b having as R3 a 
methyl or a benzyl group, respectively. Lower yields were 
observed with Meldrum’s acid derivatives 8c-f having aryl 
substituents at that position. This was particularly true for 8d 
bearing an electron-donating ether group on the arene, which 
gave 13ad in only 28%. The moderate yield of 13af (48%) is a 
result of the water sensitivity of 8f, which rapidly hydrolyzes. 
On a 4 mmol scale, 13aa was obtained in 90% yield. 

Next, the sulfur component was varied, and several other N-
cyanosulfoximines were applied in reactions with Meldrum’s 
acid derivative 8a (Scheme 3). Again, the yields of the corre-
sponding products 13ba-ia spanned a wide range (from 15% 
to 87%). Among the S-alkyl S-aryl derivatives, S-cyclopropyl 
S-phenyl sulfoximine 3b performed best providing 13ba in 
87% yield. For unknown reasons, the presence of a para sub-
stituent on the arene reduced the product yields (13ca-ga). 
Distinct electronic effects were not identified. An interesting 
observation was made in the reaction of 8a with para-formyl 
substituted sulfoximine 3g. In this case, we expected the for-
mation of 13ga, but instead compound 14 was obtained (13% 
yield). Presumably, 14 stemmed from 13ga, which had under-
gone a subsequent aldol reaction with in-situ formed acetone 
resulting from the degradation of Meldrum's acid derivative 
8a. NMR spectroscopy suggested an exclusive formation of 
the Z isomer of 14, which contrasted observations by Bhat and 
co-workers, who found high E selectivities in related organo-
catalytic reactions providing α,β-unsaturated ketones.17 While 
the use of S,S-diphenyl sulfoximine 3h led to 13ha in 83% 
yield, S,S-dialkyl-substituted substrate 3i afforded 13ia in only 
30% yield. 

Scheme 4 shows a tentative multi-step reaction sequence 
converting N-cyanosulfoximines 3 and Meldrum’s acid  
 

Scheme 4. Proposed Reaction Mechanism 
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derivatives 8 to the observed products 13. Because none of the 
depicted intermediates A-H could be isolated or detected, the 
proposed transformation has to be taken with great care. The 
process is initiated by elimination of acetone from 8 providing 
zwitterion A. [4+2]-Cycloaddition of A with N-cyanosulfox-
imine 3 yields intermediate B. Initially, we hypothesized that 
the formation of the N-acyl group of 13 involved the addition 
of water to B (or B'). Results from reactions under strictly 
anhydrous conditions and experiments with H2

18O, however, 
which did not result in any detectable incorporation of 18O in 
the product (as determined by MS analysis), made this firstly 
assumed reaction pathway unlikely. Taking B as starting point, 
an alternative reaction path was considered beginning with a 
ring-opening of the heterocycle of B leading to diionic inter-
mediates D and E. The latter molecule could also be repre-
sented as neutral compound E'. If E rearranged to F, an acyl 
isocyanate H could be formed via G, and finally, attack of the 
ketonic oxygen of H onto the acyl isocyanate group followed 
by proton shift provided the observed product 13. 

In summary, reactions between N-cyanosulfoximines 3 and 
Meldrum’s acid derivatives 8 afforded unexpected products 
with 5-carbonyl-1,3-oxazine-2,4-dione groups at the sul-
foximine nitrogen. X-ray crystal structure analysis revealed 
the molecular details of a representative product. A multi-step 
reaction sequence starting with a [4+2] cycloaddition followed 
by several scaffold reorientations has been proposed. 
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