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Introduction

In recent years, the theory of weakly differentiable functions over an abstract metric measure
space (X,d,µ) has been extensively studied. Starting from the seminal paper [6], several (essen-
tially equivalent) versions of Sobolev space W 1,2(X,d,µ) have been proposed in [4,7,13]. The def-
inition we shall adopt in this paper is the one via test plans and weak upper gradients, which has
been introduced by L. Ambrosio, N. Gigli, and G. Savaré in [4]. In general, W 1,2(X,d,µ) is a Banach
space, but it might be non-Hilbert: for instance, consider the Euclidean space endowed with the
`∞-norm and the Lebesgue measure (cf. [4, Remark 4.7]).

Those metric measure spaces whose associated Sobolev space is Hilbert (which are said to be
infinitesimally Hilbertian, cf. [9]) play a very important role. We refer to the introduction of [11]
for an account of the main advantages and features of this class of spaces.

The aim of this manuscript is to provide a quick proof of the following result (cf. Theorem 11):

(Rd ,dEucl,µ) is infinitesimally Hilbertian for any Radon measure µ≥ 0 on Rd , (?)

where dEucl(x, y) := |x − y | stands for the Euclidean distance on Rd . This fact has been originally
proven in [10], but it can also be alternatively considered as a special case of the main result in [8].

The approach we propose here is more direct and is based upon a differentiability theorem
for Lipschitz functions in Rd with respect to a given Radon measure µ, which was proved by G.
Alberti and A. Marchese in [1] and says that it is possible to select the maximal measurable sub-
bundle V (µ, · ) of TRd (called the decomposability bundle ofµ) along which all Lipschitz functions
are µ-a.e. differentiable. In Section 2 we explain why the existence of V (µ, · ) yields (?).

Furthermore, in Section 3 we combine our techniques with a structural result for Radon
measures in the Euclidean space by G. De Philippis and F. Rindler [12], to prove the following
claim:

The Sobolev norm ‖·‖W 1,2(Rd ,dEucl,µ) is closable on C∞
c -functions =⇒ µ¿L d .

Cf. Definition 14 for the notion of closability we are referring to. This result solves a conjecture
that has been posed by M. Fukushima (according to V.I. Bogachev [5, Section 2.6]), which was
settled only for d = 1, see [5, Example 2.6.3(ii)].

Acknowledgements

The authors would like to thank the anonymous referee for the useful comments on this paper.

1. Preliminaries

1.1. Sobolev calculus on metric measure spaces

By metric measure space (X,d,µ) we mean a complete, separable metric space (X,d) together with
a non-negative Radon measure µ 6= 0.

We denote by LIP(X) the space of all real-valued Lipschitz functions on X, whereas LIPc (X)
stands for the family of all elements of LIP(X) having compact support. Given any f ∈ LIP(X), we
shall denote by lip( f ) : X → [0,+∞) its local Lipschitz constant, which is defined as

lip( f )(x) :=
{

limy→x
∣∣ f (x)− f (y)

∣∣/d(x, y) if x ∈ X is an accumulation point,

0 otherwise.

The metric space (X,d) is said to be proper provided its bounded, closed subsets are compact.
To introduce the notion of Sobolev space W 1,2(X,d,µ) that has been proposed in [4], we first

need to recall some terminology. The space C
(
[0,1],X

)
of all continuous curves in X is a complete,

C. R. Mathématique, 2020, 358, n 7, 817-825
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separable metric space if endowed with the sup-distance d∞(γ,σ) := max
{
d(γt ,σt )

∣∣ t ∈ [0,1]
}
.

We say that γ ∈ C
(
[0,1],X

)
is absolutely continuous provided there exists a function g ∈ L1(0,1)

such that d(γs ,γt ) ≤ ∫ t
s g (r )dr holds for all s, t ∈ [0,1] with s < t . The metric speed |γ̇| of γ, defined

as |γ̇t | := limh→0 d(γt+h ,γt )/|h| for L 1-a.e. t ∈ [0,1], is the minimal integrable function (in the
L 1-a.e. sense) that can be chosen as g in the previous inequality; cf. [2, Theorem 1.1.2]. A test
plan over (X,d,µ) is a Borel probability measure π on C

(
[0,1],X

)
, concentrated on absolutely

continuous curves, such that the following properties are satisfied:

• Bounded compression. There exists Comp(π) > 0 such that (et )∗π≤ Comp(π)µ holds for
all t ∈ [0,1], where et : C

(
[0,1],X

)→ X stands for the evaluation map γ 7→ et (γ) := γt .
• Finite kinetic energy. It holds that

∫∫ 1
0 |γ̇t |2 dt dπ(γ) <+∞.

Remark 1. We point out that every test plan π on (X,d,µ) is concentrated on curves that are
contained in the support of µ. In order to verify this claim, we argue by contradiction: suppose
there exists a Borel set Γ ⊆ C

(
[0,1],X

)
such that π(Γ) > 0 and γ

(
[0,1]

)
* spt(µ) for every γ ∈ Γ.

Since the set spt(µ) is closed and the curves γ ∈ Γ are continuous, we deduce that for every γ ∈ Γ
there exists t ∈Q∩ [0,1] such that γt ∉ spt(µ). This shows that Γ ⊆ ⋃

t∈Q∩[0,1] e−1
t

(
X \ spt(µ)

)
, thus

there exists t ∈Q∩ [0,1] such that e−1
t

(
X \ spt(µ)

)
has positiveπ-measure. Therefore,

0 < (et )∗π
(
X \ spt(µ)

)≤ Comp(π)µ
(
X \ spt(µ)

)= 0,

which leads to a contradiction. Consequently, the claim is proven.

Let f : X → R be a given Borel function. We say that G ∈ L2(µ) is a weak upper gradient of f
provided for any test planπ on (X,d,µ) it holds that f ◦γ ∈W 1,1(0,1) forπ-a.e. γ and that∣∣( f ◦γ)′t

∣∣≤G(γt ) |γ̇t | for (π⊗L 1)-a.e. (γ, t ).

The minimal such function G (in the µ-a.e. sense) is called the minimal weak upper gradient of
f and is denoted by |D f | ∈ L2(µ).

Definition 2 (Sobolev space [4]). The Sobolev space W 1,2(X,d,µ) is defined as the family of all
those functions f ∈ L2(µ) that admit a weak upper gradient G ∈ L2(µ). We endow the vector space
W 1,2(X,d,µ) with the Sobolev norm ‖ f ‖2

W 1,2(X,d,µ)
:= ‖ f ‖2

L2(µ)
+∥∥|D f |∥∥2

L2(µ).

The Sobolev space
(
W 1,2(X,d,µ),‖·‖W 1,2(X,d,µ)

)
is a Banach space, but in general it is not a

Hilbert space. This fact motivates the following definition, which has been proposed by N. Gigli:

Definition 3 (Infinitesimal Hilbertianity [9]). We say that a metric measure space (X,d,µ) is
infinitesimally Hilbertian provided its associated Sobolev space W 1,2(X,d,µ) is a Hilbert space.

Let us define the Cheeger energy functional ECh : L2(µ) → [0,+∞] as

ECh( f ) :=
{

1
2

∫ |D f |2 dµ if f ∈W 1,2(X,d,µ),

+∞ otherwise.
(1)

It holds that the metric measure space (X,d,µ) is infinitesimally Hilbertian if and only if ECh

satisfies the parallelogram rule when restricted to W 1,2(X,d,µ), i.e.,

ECh( f + g )+ECh( f − g ) = 2ECh( f )+2ECh(g ) for every f , g ∈W 1,2(X,d,µ). (2)

Furthermore, we define the functional Elip : L2(µ) → [0,+∞] as

Elip( f ) :=
{

1
2

∫
lip2( f )dµ if f ∈ LIPc (X),

+∞ otherwise.
(3)

C. R. Mathématique, 2020, 358, n 7, 817-825



820 Simone Di Marino, Danka Lučić and Enrico Pasqualetto

Given any f ∈ LIPc (X), it holds that f ∈ W 1,2(X,d,µ) and |D f | ≤ lip( f ) in the µ-a.e. sense. This
follows from the fact that for any absolutely continuous curve γ : [0,1] → X the function f ◦γ is
absolutely continuous and that for L 1-a.e. t ∈ [0,1] one has∣∣( f ◦γ)′t

∣∣= lim
h→0

∣∣ f (γt+h)− f (γt )
∣∣

|h| = lim
h→0

∣∣ f (γt+h)− f (γt )
∣∣

d(γt+h ,γt )

d(γt+h ,γt )

|h| ≤ lip( f )(γt ) |γ̇t |,

whence lip( f ) is a weak upper gradient of f (notice that lip( f ) is in L2(µ), as it is bounded and
compactly-supported). Then it holds ECh ≤Elip. Actually, ECh is the L2(µ)-relaxation of Elip:

Theorem 4 (Density in energy [3]). Let (X,d,µ) be a metric measure space, with (X,d) proper. Then
ECh is the L2(µ)-lower semicontinuous envelope of Elip, i.e., it holds that

ECh( f ) = inf lim
n→∞

Elip( fn) for every f ∈ L2(µ),

where the infimum is taken among all sequences ( fn)n ⊆ L2(µ) such that fn → f in L2(µ).

1.2. Decomposability bundle

Let us denote by Gr(Rd ) the set of all linear subspaces of Rd . Given any V ,W ∈ Gr(Rd ), we define
the distance dGr(V ,W ) as the Hausdorff distance in Rd between the closed unit ball of V and that
of W . Hence,

(
Gr(Rd ),dGr

)
is a compact metric space.

Theorem 5 (Decomposability bundle [1]). Let µ≥ 0 be a given Radon measure on Rd . Then there
exists a µ-a.e. unique Borel mapping V (µ, · ) : Rd → Gr(Rd ), called the decomposability bundle of
µ, such that the following properties hold:

(i) Any function f ∈ LIP(Rd ) is differentiable at µ-a.e. x ∈Rd with respect to V (µ, x), i.e., there
exists a Borel map ∇am f : Rd →Rd such that ∇am f (x) ∈V (µ, x) for all x ∈Rd and

lim
V (µ,x)3v→0

f (x + v)− f (x)−∇am f (x) · v

|v | = 0 for µ-a.e. x ∈Rd . (4)

(ii) There exists a function f0 ∈ LIP(Rd ) such that for µ-a.e. point x ∈ Rd it holds that f0 is not
differentiable at x with respect to any direction v ∈Rd \V (µ, x).

We refer to ∇am f as the Alberti–Marchese gradient of f . It readily follows from (4) that ∇am f is
uniquely determined (up to µ-a.e. equality) and that for every f , g ∈ LIP(Rd ) it holds that

∇am( f ± g )(x) =∇am f (x)±∇amg (x) for µ-a.e. x ∈Rd . (5)

Remark 6. Theorem 5 was actually proven under the additional assumption of µ being a finite
measure. However, the statement depends only on the null sets of µ, not on the measure µ

itself. Therefore, in order to obtain Theorem 5 as a consequence of the original result in [1], it
is sufficient to replace µ with the following Borel probability measure on Rd :

µ̃ :=
∞∑

j=1

µ|B j (x̄)

2 jµ
(
B j (x̄)

) , for some x̄ ∈ spt(µ).

Observe, indeed, that the measure µ̃ satisfies µ¿ µ̃¿µ.

Remark 7. Given any function f ∈ LIP(Rd ), it holds that∣∣∇am f (x)
∣∣≤ lip( f )(x) for µ-a.e. x ∈Rd . (6)

Indeed, fix any point x ∈ Rd such that f is differentiable at x with respect to V (µ, x). Then for all
v ∈ V (µ, x) \ {0} it holds that ∇am f (x) · v = |v | limh↘0

(
f (x +hv)− f (x)

)
/|hv | ≤ |v | lip( f )(x) by (4),

thus accordingly
∣∣∇am f (x)

∣∣= sup
{∇am f (x) · v

∣∣ v ∈V (µ, x), |v | ≤ 1
}≤ lip( f )(x).

C. R. Mathématique, 2020, 358, n 7, 817-825
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2. Universal infinitesimal Hilbertianity of the Euclidean space

The objective of this section is to show that the Euclidean space is universally infinitesimally
Hilbertian, meaning that it is infinitesimally Hilbertian when equipped with any Radon measure.
Let us briefly outline the strategy of our argument, which is based upon the structure of the
decomposability bundle described in Subsection 1.2. Given any Radon measure µ ≥ 0 on Rd ,
consider the associated decomposability bundle V (µ, · ). Since the Alberti–Marchese gradient ∇am

is a linear operator, its induced Dirichlet energy functional Eam on L2(µ) is a quadratic form.
Hence, the proof of the infinitesimal Hilbertianity of (Rd ,dEucl,µ) follows along these lines:

(a) The maximality of V (µ, · ) ensures that the curves selected by a test planπ on (Rd ,dEucl,µ)
are “tangent” to V (µ, · ), namely, γ̇t ∈V (µ,γt ) for (π⊗L 1)-a.e. (γ, t ). See Lemma 8.

(b) Given a compactly-supported Lipschitz function f : Rd →R, we can deduce from item a)
that the modulus of the gradient ∇am f is a weak upper gradient of f ; cf. Proposition 10.

(c) Since Lipschitz functions with compact support are dense in energy in W 1,2(Rd ,dEucl,µ)
(recall Theorem 4) we conclude from item b) that the Cheeger energy ECh is the lower
semicontinuous envelope of Eam. This grants that ECh is a quadratic form, thus accord-
ingly the space (Rd ,dEucl,µ) is infinitesimally Hilbertian. See Theorem 11.

First of all, we prove that any given test plan over the weighted Euclidean space is “tangent”
(in a suitable sense) to the Alberti–Marchese decomposability bundle:

Lemma 8. Let µ ≥ 0 be a given Radon measure on Rd . Let π be a test plan on (Rd ,dEucl,µ). Then
forπ-a.e. γ it holds that

γ̇t ∈V (µ,γt ) for L 1-a.e. t ∈ [0,1].

Proof. Let f0 be an L-Lipschitz function as in Theorem 5(ii). Set B ⊆C
(
[0,1],Rd

)× [0,1] as

B := {
(γ, t )

∣∣ γ and f0 ◦γ are differentiable at t , and γ̇t ∉V (µ,γt )
}

.

It holds that the set B is Borel measurable; we postpone the verification of this fact to Remark 9.
In order to prove the statement, it suffices to show that (π⊗L 1)(B) = 0. Indeed, by definition test
plans are concentrated on absolutely continuous curves, thus in particular both γ and f0 ◦γ are
absolutely continuous (and accordingly L 1-almost everywhere differentiable) forπ-a.e. γ.

Set Bt := {
γ

∣∣ (γ, t ) ∈ B
}

for every t ∈ [0,1]. Let G be the set of all x ∈ Rd such that f0 is not
differentiable at x with respect to any direction v ∈Rd \V (µ, x). Thus, µ(Rd \G) = 0 by Theorem 5.
We claim that the inclusion et (Bt ) ⊆ Rd \ G holds for every t ∈ [0,1]. Indeed, for every γ ∈ Bt one
has that∣∣∣∣ f0(γt +hγ̇t )− f0(γt )

h
− ( f0 ◦γ)′t

∣∣∣∣≤ ∣∣∣∣ f0(γt +hγ̇t )− f0(γt+h)

h

∣∣∣∣+ ∣∣∣∣ f0(γt+h)− f0(γt )

h
− ( f0 ◦γ)′t

∣∣∣∣
≤ L

∣∣∣γt+h −γt

h
− γ̇t

∣∣∣+ ∣∣∣∣ f0(γt+h)− f0(γt )

h
− ( f0 ◦γ)′t

∣∣∣∣ ,

so by letting h → 0 we conclude that f0 is differentiable at γt in the direction γ̇t , i.e., γt ∉ G .
Therefore, we conclude thatπ(Bt ) ≤π(

e−1
t (Rd \G)

)≤ Comp(π)µ(Rd \G) = 0 for all t ∈ [0,1]. This
grants that (π⊗L 1)(B) = 0 by Fubini theorem, whence the statement follows. �

Remark 9 (Some measurability issues). Let us verify that the set B in the proof of Lemma 8 is
Borel measurable. To do so, we first fix some notation: we denote by e: C

(
[0,1],Rd

)× [0,1] → Rd

the evaluation map e(γ, t ) := γt . Observe that e, as well as f0 ◦e are continuous functions. Denote
by D the set where both e and f0 ◦e are differentiable in the time direction, which is classical to
see that is Borel. Next consider the following functions

gh(γ, t ) := dist
(
V (µ,γt ),

γt+h −γt

h

)
;

C. R. Mathématique, 2020, 358, n 7, 817-825
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every gh is a Borel function since V (µ, · )◦e is. But then also g := liminfh→0 gh is a Borel function;
notice now that B = D ∩ {(γ, t ) : g (γ, t ) = 0}, which is clearly a Borel set, as claimed.

As a consequence of Lemma 8, we can readily prove that the modulus of the Alberti–Marchese
gradient of a given Lipschitz function is a weak upper gradient of the function itself:

Proposition 10. Let µ≥ 0 be a Radon measure on Rd . Let f ∈ LIPc (Rd ) be given. Then the function
|∇am f | ∈ L2(µ) is a weak upper gradient of f .

Proof. Letπ be any test plan over (Rd ,dEucl,µ). We claim that forπ-a.e. γ it holds

( f ◦γ)′t =∇am f (γt ) · γ̇t for L 1-a.e. t ∈ [0,1]. (7)

Indeed, for (π⊗L 1)-a.e. (γ, t ) we have that f is differentiable at γt with respect to V (µ,γt ) and
that γ̇t ∈V (µ,γt ); this stems from item i) of Theorem 5 and Lemma 8. Hence, (4) yields∣∣∇am f (γt ) · γ̇t − ( f ◦γ)′t

∣∣= lim
h↘0

∣∣∣∣ f (γt +hγ̇t )− f (γt )

h
− ( f ◦γ)′t

∣∣∣∣
≤ lim

h↘0

∣∣∣∣ f (γt +hγ̇t )− f (γt+h)

h

∣∣∣∣+ lim
h↘0

∣∣∣∣ f (γt+h)− f (γt )

h
− ( f ◦γ)′t

∣∣∣∣
≤ L lim

h↘0

∣∣∣γt+h −γt

h
− γ̇t

∣∣∣+ lim
h↘0

∣∣∣∣ f (γt+h)− f (γt )

h
− ( f ◦γ)′t

∣∣∣∣= 0,

where we denoted by L ≥ 0 the Lipschitz constant of f . This proves the claim (7). In particular, for
π-a.e. curve γ it holds ∣∣( f ◦γ)′t

∣∣≤ ∣∣∇am f (γt )
∣∣ |γ̇t | for L 1-a.e. t ∈ [0,1].

Given that |∇am f | ∈ L2(µ) by (6), we conclude that |D f | ≤ |∇am f | holds in the µ-a.e. sense. �

We are now in a position to prove the universal infinitesimal Hilbertianity of the Euclidean
space, as an immediate consequence of Proposition 10 and of the linearity of ∇am:

Theorem 11 (Infinitesimal Hilbertianity of weighted Rd ). Let µ≥ 0 be a Radon measure on Rd .
Then the metric measure space (Rd ,dEucl,µ) is infinitesimally Hilbertian.

Proof. First of all, let us define the Alberti–Marchese energy functional Eam : L2(µ) → [0,+∞] as

Eam( f ) :=
{

1
2

∫ |∇am f |2 dµ if f ∈ LIPc (Rd ),

+∞ otherwise.

Since |D f | ≤ |∇am f | ≤ lip( f ) holds µ-a.e. for any f ∈ LIPc (Rd ) by Proposition 10 and (6), we have
that ECh ≤ Eam ≤ Elip, where ECh and Elip are defined as in (1) and (3), respectively. In view of
Theorem 4, we deduce that ECh is the L2(µ)-lower semicontinuous envelope of Eam. Thanks to
the identities in (5), we also know that Eam satisfies the parallelogram rule when restricted to
LIPc (Rd ), which means that

Eam( f + g )+Eam( f − g ) = 2Eam( f )+2Eam(g ) for every f , g ∈ LIPc (Rd ). (8)

Fix f , g ∈W 1,2(Rd ,dEucl,µ). Let us choose any two sequences ( fn)n , (gn)n ⊆ LIPc (Rd ) such that

• fn → f and gn → g in L2(µ),
• Eam( fn) →ECh( f ) and Eam(gn) →ECh(g ).

In particular, observe that fn + gn → f + g and fn − gn → f − g in L2(µ). Therefore, it holds that

ECh( f + g )+ECh( f − g ) ≤ lim
n→∞

(
Eam( fn + gn)+Eam( fn − gn)

) (8)= 2 lim
n→∞

(
Eam( fn)+Eam(gn)

)
= 2ECh( f )+2ECh(g ).

C. R. Mathématique, 2020, 358, n 7, 817-825
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By replacing f and g with f + g and f − g , respectively, we conclude that the converse inequality
is verified as well. Consequently, the Cheeger energy ECh satisfies the parallelogram rule (2), thus
W 1,2(Rd ,dEucl,µ) is a Hilbert space. This completes the proof of the statement. �

Remark 12. As a byproduct of the proof of Theorem 11, we see that for all f ∈ W 1,2(Rd ,dEucl,µ)
there exists a sequence ( fn)n ⊆ LIPc (Rd ) such that fn → f and |∇am fn |→ |D f | in L2(µ).

Example 13. Given an arbitrary Radon measure µ on Rd , it might happen that

|D f | 6= |∇am f | for some f ∈ LIPc (Rd ).

For instance, consider the measure µ := L 1|C on R, where C ⊆ R is any Cantor set of positive
Lebesgue measure. Since the support of µ is totally disconnected, we know from Remark 1 that
all test plans on (Rd ,dEucl,µ) are concentrated on constant curves, thus every f ∈ L2(µ) admits the
null function as a weak upper gradient. This means that W 1,2(Rd ,dEucl,µ) = L2(µ) and |D f | = 0
µ-a.e. for all f ∈ L2(µ). However, it holds V (µ, x) = R for L 1-a.e. x ∈ C by Rademacher theorem,
whence for any f ∈ LIP(R) we have ∇am f (x) = f ′(x) for L 1-a.e. x ∈C .

3. Closability of the Sobolev norm on smooth functions

The aim of this conclusive section is to address a problem that has been raised by M. Fukushima
(as reported in [5, Section 2.6]). Namely, we provide a (negative) answer to the following question:
Does there exist a singular Radon measure µ on R2 for which the Sobolev norm ‖·‖W 1,2(R2,dEucl,µ) is
closable on compactly-supported smooth functions (in the sense of Definition 14 below)?

Actually, we are going to prove a stronger result: Given any Radon measure µ on Rd that is
not absolutely continuous with respect to L d , it holds that ‖·‖W 1,2(Rd ,dEucl,µ) is not closable on
compactly-supported smooth functions. Cf. Theorem 19 below.

Let f ∈C∞
c (Rd ) be given. Then we denote by ∇ f : Rd → Rd its classical gradient. Note that the

identity |∇ f | = lip( f ) holds. Given a Radon measure µ on Rd , it is immediate to check that

∇am f (x) =πx
(∇ f (x)

)
for µ-a.e. x ∈Rd , (9)

where πx : Rd → V (µ, x) stands for the orthogonal projection map. We denote by L2
µ(Rd ,Rd ) the

space of all (equivalence classes, up to µ-a.e. equality, of) Borel maps v : Rd →Rd with |v | ∈ L2(µ).
It holds that L2

µ(Rd ,Rd ) is a Hilbert space if endowed with the norm v 7→ (∫ |v |2 dµ
)1/2.

Definition 14 (Closability of the Sobolev norm on smooth functions). Letµ be a Radon measure
on Rd . Then the Sobolev norm ‖·‖W 1,2(Rd ,dEucl,µ) is closable on compactly-supported smooth

functions provided the following property is verified: if a sequence ( fn)n ⊆C∞
c (Rd ) satisfies fn → 0

in L2(µ) and ∇ fn → v in L2
µ(Rd ,Rd ) for some element v ∈ L2

µ(Rd ,Rd ), then it holds that v = 0.

Remark 15. We point out that in Definition 14 the requirement ∇ fn → v can be replaced by
the weak convergence ∇ fn * v . Indeed, suppose to have a sequence ( fn)n ⊆ C∞

c (Rd ) and an
element v ∈ L2

µ(Rd ,Rd ) such that fn → 0 in L2(µ) and ∇ fn * v weakly in L2
µ(Rd ,Rd ). By virtue

of Banach–Saks theorem, there is a subsequence (nk )k for which the functions f̃ k := 1
k

∑k
i=1 fni

satisfy ∇ f̃ k → v strongly in L2
µ(Rd ,Rd ). Since we also have that f̃ k → 0 in L2(µ), we deduce from

Definition 14 that v = 0.

In order to provide some alternative characterisations of the above-defined closability prop-
erty, we need to recall the following improvement of Theorem 4 in the weighted Euclidean space
case:
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Theorem 16 (Density in energy of smooth functions (Lemma 2.9 in [10])). Let µ be a Radon
measure on Rd . Then ECh is the L2(µ)-lower semicontinuous envelope of EC∞

c
: L2(µ) → [0,+∞],

EC∞
c

( f ) :=
{

1
2

∫ |∇ f |2 dµ if f ∈C∞
c (Rd ),

+∞ otherwise,

i.e., it holds that
ECh( f ) = inf lim

n→∞
EC∞

c
( fn) for every f ∈ L2(µ),

where the infimum is taken among all sequences ( fn)n ⊆ L2(µ) such that fn → f in L2(µ).

Lemma 17. Let µ be a Radon measure on Rd . Then the following conditions are equivalent:

(i) The Sobolev norm ‖·‖W 1,2(Rd ,dEucl,µ) is closable on compactly-supported smooth functions.

(ii) The functional Elip (see (3)) is L2(µ)-lower semicontinuous when restricted to C∞
c (Rd ).

(iii) The identity |D f | = |∇ f | holds µ-a.e. on Rd , for every function f ∈C∞
c (Rd ).

Proof. (i) =⇒ (ii). Fix any f ∈ C∞
c (Rd ) and ( fn)n ⊆ C∞

c (Rd ) such that fn → f in L2(µ). We claim
that ∫

|∇ f |2 dµ≤ lim
n→∞

∫
|∇ fn |2 dµ. (10)

Without loss of generality, we may assume the right-hand side in (10) is finite. Therefore, we can
find a subsequence ( fnk )k of ( fn)n and an element v ∈ L2

µ(Rd ,Rd ) such that limk
∫ |∇ fnk |2 dµ =

limn

∫ |∇ fn |2 dµ and ∇ fnk * v in the weak topology of L2
µ(Rd ,Rd ). Since fnk − f → 0 in L2(µ) and

∇( fnk − f ) * v −∇ f weakly in L2
µ(Rd ,Rd ), we deduce from item (i) that v = ∇ f (here Remark 15

plays a role). Consequently, we have that ∇ fn * ∇ f in the weak topology of L2
µ(Rd ,Rd ), thus

proving (10) by semicontinuity of the norm. In other words, it holds that Elip( f ) ≤ limn Elip( fn),
which yields the validity of item (ii).

(ii) =⇒ (iii). Let f ∈C∞
c (Rd ) be given. Theorem 16 yields existence of a sequence ( fn)n ⊆C∞

c (Rd )
such that fn → f and |∇ fn |→ |D f | in L2(µ). Therefore, item (ii) ensures that

1

2

∫
|∇ f |2 dµ=Elip( f ) ≤ lim

n→∞
Elip( fn) = lim

n→∞
1

2

∫
|∇ fn |2 dµ= 1

2

∫
|D f |2 dµ.

Since |D f | ≤ |∇ f | holds µ-a.e. on Rd , we conclude that |D f | = |∇ f | µ-a.e., thus proving item (iii).

(iii) =⇒ (i). We argue by contradiction: suppose that there exists a sequence ( fn)n ⊆C∞
c (Rd ) such

that fn → 0 in L2(µ) and ∇ fn → v in L2
µ(Rd ,Rd ) for some v ∈ L2

µ(Rd ,Rd ) \ {0}. Fix any k ∈ N such
that ‖∇ fk − v‖L2

µ(Rd ,Rd ) ≤ 1
3‖v‖L2

µ(Rd ,Rd ). In particular, ‖∇ fk‖L2
µ(Rd ,Rd ) ≥ 2

3‖v‖L2
µ(Rd ,Rd ). Let us define

gn := fk − fn ∈C∞
c (Rd ) for every n ∈N. Since gn → fk in L2(µ) and ∇gn →∇ fk − v in L2

µ(Rd ,Rd ) as
n →∞, we conclude that

‖∇ fk‖L2
µ(Rd ,Rd ) ≥

2

3
‖v‖L2

µ(Rd ,Rd ) >
1

3
‖v‖L2

µ(Rd ,Rd ) ≥ ‖∇ fk − v‖L2
µ(Rd ,Rd ) = lim

n→∞‖∇gn‖L2
µ(Rd ,Rd ),

whence Elip( fk ) > limn Elip(gn). This contradicts the lower semicontinuity of Elip on C∞
c (Rd ).

Consequently, item (i) is proven. �

The last ingredient we need is the following result proven by G. De Philippis and F. Rindler:

Theorem 18 (Weak converse of Rademacher theorem [12]). Let µ be a Radon measure on Rd .
Suppose all Lipschitz functions f : Rd →R are µ-a.e. differentiable. Then it holds that µ¿L d .

We are finally in a position to prove the following statement concerning closability:

Theorem 19 (Failure of closability for singular measures). Let µ≥ 0 be a given Radon measure
on Rd . Suppose that µ is not absolutely continuous with respect to the Lebesgue measure L d . Then
the Sobolev norm ‖·‖W 1,2(Rd ,dEucl,µ) is not closable on compactly-supported smooth functions.
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Proof. First of all, Theorem 18 grants the existence of a Lipschitz function f : Rd →R and a Borel
set P ⊆Rd such thatµ(P ) > 0 and f is not differentiable at any point of P . Recalling Theorem 5, we
see that V (µ, x) 6=Rd for µ-a.e. x ∈ P , so that for µ-a.e. x ∈ P there exists a vector v ∈Qd such that
v ∉V (µ, x). Defining Pv := {

x ∈ P : v ∉V (µ, x)
}

for every v ∈Qd , we thus have that P is contained
(up to µ-negligible sets) in the countable union

⋃
v∈Qd Pv , thus necessarily there exists v ∈ Qd

such that µ(Pv ) > 0. By inner regularity of µ, we can find a compact set K ⊆ Pv such that µ(K ) > 0.
Observe that v ∉ V (µ, x) for every x ∈ K . Now pick any g ∈C∞

c (Rd ) such that ∇g (x) = v holds for
all x ∈ K . Then Proposition 10 and (9) yield

|Dg |(x) ≤ |∇am g |(x) = ∣∣πx
(∇g (x)

)∣∣= ∣∣πx (v)
∣∣< |v | = |∇g |(x) for µ-a.e. x ∈ K ,

thus accordingly ‖·‖W 1,2(Rd ,dEucl,µ) is not closable on compactly-supported smooth functions by
Lemma 17. Hence, the statement is achieved. �

Remark 20. The converse of Theorem 19 might fail. In fact in the real line [5, Theorem 2.6.4]
gives a complete characterization for closability of ‖·‖W 1,2(R,dEucl,µ), and it requires also other
conditions on µ apart from being absolutely continuous with respect to the Lebesgue measure.

For instance, the measure µ described in Example 13 is absolutely continuous with respect
to L 1, but the Sobolev norm ‖·‖W 1,2(R,dEucl,µ) is not closable on compactly-supported smooth
functions as a consequence of Lemma 17.

Remark 21. All the results in Section 3, in particular Theorem 19 can be easily generalized to the
Sobolev norms ‖·‖W 1,p (Rd ,dEucl,µ) for any 1 < p < ∞, but we stick with the case p = 2 for ease of
notation.
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