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Abstract: We investigated how the action–sound relationships found in electric guitar 
performance can be used in the design of new instruments. Thirty-one trained guitarists 
performed a set of basic sound-producing actions (impulsive, sustained, and iterative) and 
free improvisations on an electric guitar. We performed a statistical analysis of the muscle 
activation data (EMG) and audio recordings from the experiment. Then we trained a long 
short-term memory network with nine different configurations to map EMG signal to sound. 
We found that the preliminary models were able to predict audio energy features of free 
improvisations on the guitar, based on the dataset of raw EMG from the basic sound-
producing actions. The results provide evidence of similarities between body motion and 
sound in music performance, compatible with embodied music cognition theories. They also 
show the potential of using machine learning on recorded performance data in the design of 
new musical instruments. 
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INTRODUCTION 
 
What are the relationships between action and sound in instrumental performance, and how can 
such relationships be used to create new instrumental paradigms? These two questions inspired the 
experiments presented in this paper. Our research is based upon two basic premises: It is possible 
to find relationships between the continuous, temporal shape of an action and its resultant sound 
and that embodied knowledge of an existing instrument can be translated into a new performative 
context with different instrument. Thus, we are interested in exploring whether it is possible to 
create mappings in new instruments based on measured actions on and sounds from an existing 
instrument. It is common to create such action–sound mappings based on overt motion features. 
However, in our study, we were interested primarily in exploring whether covert muscle signals 
can be used for new musical instruments. 
 
Embodied Knowledge 
 
The body’s role in the experience of sound and music is central to the embodied music 
cognition paradigm (Leman, 2008). Several studies have explored the embodiment of musical 
experiences by investigating how musicians and nonmusicians transduce what they perceive 
as musical features into body motion. Sound-tracing is one such experimental paradigm that 
has been used to study how people spontaneously follow salient features in music (Kelkar, 
2019; Kozak, Nymoen, & Godøy, 2012; Nymoen, Caramiaux, Kozak, & Torresen, 2011). 
Sound mimicry is a similar approach, based on examining how sound-producing actions can 
be imitated “in the air,” that is, without a physical interface (Godøy, 2006; Godøy, Haga, & 
Jensenius, 2005; Valles, Martínez, Ordás, & Pissinis, 2018). Several other studies have aimed 
at identifying musical mapping strategies, drawing on concepts of embodied music cognition 
as a starting point (e.g., Caramiaux, Bevilacqua, Zamborlin, & Schnell, 2009; Françoise, 2015; 
Maes, Leman, Lesaffre, Demey, & Moelants, 2010; Tanaka, Donato, Zbyszynski, & Roks, 
2019; Visi, Coorevits, Schramm, & Miranda, 2017). 

In this study, we took bodily imitation as the starting point for the creation of action–sound 
mappings. The idea was to transfer the acquired skills of playing traditional instruments to a new 
context. Here the term traditional refers to the recognizability of performance skills, what 
Smalley (1997) explained as an intuitive knowledge of action–sound causalities in traditional 
sound-making. The idea was to exploit such proprioceptive relationships between musician and 
instrument (Paine, 2009). The premise is that skill can be understood as embodied knowledge 
(Ingold, 2000) that leads to lower information processing at a cognitive level (Dreyfus, 2001). It 
also builds upon the idea that spectators can perceive and recognize skill as an embodied 
phenomenon (Fyans & Gurevich, 2011). 

One outcome of this research was aimed at developing solutions for creating musical 
instruments that can be performed in the air. However, it should be clear from the start that we 
are not interested in making “air” versions of the guitar or any other physical instrument. 
Rather, our attention is devoted to reusing the embodied knowledge of one type of instrumental 
performance in new ways (Magnusson, 2019). The lack of a haptic and tactile experience 
creates a significantly different experience when playing a physical instrument as compared to 
a touchless air instrument. According to the “gestural agency” concept of Mendoza Garay & 
Thompson (2017), the instrument is as much an agent in the musical transaction as the performer: 
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They influence each other within a musical ecosystem. In this system, the agents’ communication 
is multimodal. Therefore, the act of instrument playing accommodates not only the auditory, 
tactile, and haptic channels but also the visual, kinetic, proprioceptive, or any other kind of 
interactions that have a musical influence. The human agent becomes the participant that is 
expected to adapt; thus, any change in the environment can be seen as a creative challenge. 
 
From Body Motion to Musical Actions  
 
Gesture is employed frequently in the literature on music-related body motion (Cadoz & 
Wanderley, 2000; Gritten & King, 2011; Hatten, 2006). We understand gesture as related to 
the meaning-bearing aspects of performance actions. In this project, we focus not on such 
meaning-bearing aspects and thus will not use that term in the following discussion. Instead, 
we will use motion to describe the continuous displacement of objects in space and time, and 
force to explain what sets these objects into motion. Both motion and force are physical 
phenomena that can be captured and studied using various devices (see Jensenius, 2018a, for 
an overview of various methods for sensing music-related body motion). Hitting a guitar string 
is an example of what we call motion, which can be studied through motion capture data of the 
arm’s continuous position. Muscle tension is an example of the force involved in the sound 
production and can be studied through electromyography (EMG). 

Motion and force describe the kinematic and kinetic aspects of performance, respectively. 
These relate to—but are not the same as—the experienced action within a performance 
(Jensenius, Wanderley, Godøy, & Leman, 2010). Thus, in our research, we use action to 
describe a cognitive phenomenon that can be understood as goal-directed units of motion 
and/or force (Godøy, 2017). Many actions are based on visible motion, but an action also can 
be based solely on force. For example, some electroacoustic musical instruments are built with 
force-sensitive resistors that can be pressed by the performer, even without any visible motion. 
Hence the player’s action can change drastically over time even with no or only little 
observable body motion.  

Music-related body motion comes in various types (see Jensenius et al., 2010, for an 
overview). Here we primarily focus on the sound-producing actions. These can be subdivided 
into excitation actions, such as the right hand that excites the strings on a guitar, and modification 
actions, such as the left hand modifying the pitch. The excitation action can be divided further 
into the three main categories proposed by Schaeffer (2017), as sketched in Figure 1: impulsive, 
sustained, and iterative. An impulsive excitation is characterized by a fast attack and 
discontinuous energy transfer, while a sustained excitation has a gradual onset and continuous 
energy transfer. An iterative excitation is based on a series of discontinuous energy transfers. 

 
Action–Sound Coupling and Mappings 
 
Sound production on a traditional instrument is bound by the physical constraints of the instrument 
and the capabilities of human body. For example, although both are plucked instruments, a banjo, 
and an oud have different damping characters due to the resonant features of the instruments’ 
bodies. The physical properties of the instruments also define their unique timbre and how they are 
played. Additionally, the human body has its expressive limitations. These limitations can be in 
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Figure 1.  Illustration of the three, basic action–sound types: impulsive, sustained, and iterative 

(Jensenius, 2007; Used with permission). 
 
the form of what Godøy (2018) suggested as “effort constraints,” meaning “limits to 
endurance,” which necessitate an optimization of muscle contractions (i.e., to prevent injuries). 
He described these limitations as also leading to “coarticulation,” which results from multiple 
individual actions merging into larger units. All these levels of constraints are part of the 
transformation of biomechanical energy to sound features. We think that during the 
transformations in action–sound couplings (Jensenius, 2007), the relationships between actions 
and sounds are dictated by the laws of physics. 

When playing a traditional instrument, one must exercise muscular exertion to abide by 
the instrument’s physical boundaries. In the case of the guitar, this prevents the player from 
breaking a string due to excessive effort or not producing sound due to the lack of energy input 
(Tanaka, 2015a). After centuries of design, the construction of traditional instruments is no 
longer open to much interpretation, except for using some extended playing techniques or 
additional equipment. To the contrary, electroacoustic musical instruments are based on the 
creation of action–sound mappings. Here the constraints of hardware and/or software elements 
often are open to interpretation. In other words, the relationships between biomechanical input 
and the resultant sound are designed and may not correspond to each other. However, the 
creation of meaningful action–sound mappings is critical for how an instrument’s playing and 
its sound are perceived (Hunt & Wanderley, 2002; Van Nort, Wanderley, & Depalle, 2014). 
This is often discussed as the “mapping problem” (Maes et al., 2010), which has been a central 
research topic in the field of new interfaces for musical expression over the last decades 
(Jensenius & Lyons, 2017).  
 
New Musical Interactions 
 
The number of artists and researchers interested in using the human body as part of their musical 
instrument has been growing over the last decades. Such interests often lead to the use of gestural 
controllers, which are types of wearable sensors or camera-based devices that allow for touchless 
performance, that is, a type of performance not based on touch of physical objects. As such, these 
instruments allow for sonic interaction in the air (Jensenius, 2017). Examples of such instruments 
are the Virtual Air Guitar (Karjalainen, Mäki-Patola, Kanerva, & Huovilainen, 2006), the Virtual 
Slide Guitar (Pakarinen, Puputti, & Välimäki, 2008), and Google’s Teachable Machine, which 
lets users mimic guitar-playing in front of a web camera (Google, 2020). 
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The above-mentioned examples focus mainly on creating an air guitar. However, this is 
not the focus of our current research; rather, we seek to explore new ways of performing in the 
air. Although motion-based tracking often is employed for air instruments, we are interested 
specifically in measuring muscle tension through electromyography (EMG). When worn on 
the forearm, EMG sensors can provide muscle activation information related to the motion of 
hand and fingers (Kamen, 2013). EMG goes beyond measuring limb positions and provides 
information of the muscle articulation throughout the preparation for and execution of an action 
(Tanaka, 2019). The use of muscle activation data in musical performance was pioneered by 
Knapp & Lusted (1990) and has been practiced extensively by Tanaka (1993, 2015b). 
Mechanomyograms (MMGs), as a signal for muscle-based performance (Donnarumma, 2015), 
also have been studied.  

Performing in the air introduces several conceptual and practical challenges. For example, 
when does a sound-producing action begin and end when no physical instrument defines the 
performance space? How can one handle the use of physical effort as part of that action without 
being restricted to a physical instrument? To address such problems, we drew on what Tanaka 
(2015a) suggested as an embodied interaction strategy: He replaced constraints, such as those 
experienced while playing a traditional instrument, with “restraints,” that is, the 
“internalization of effort” (p. 299). Such restraints can help define a set of affordances that can 
replace the physical constraints found in a traditional instrument. 

Even though we are interested in creating new instrument concepts, this may not necessarily 
require developing an entirely new action–sound repertoire. Michel Waisvisz, the creator of The 
Hands (Waisvisz, 1985), focused on maintaining the action–sound mappings of his instrument. 
This helped him develop and maintain a skill set over time. We propose a design strategy based 
on what Magnusson (2019) referred to as an “ergomimetic” structure. Here ergon stands for work 
memory and mimesis for imitation. Such an ergomimetic structure may help in reusing well-
known interactions of a performer in a new performative context. Of course, such an approach 
raises some questions. For example, what types of errors and surprises emerge when a physical 
pipeline is replaced by software? We aim through our research to contribute to better 
understanding how a musician’s physical skills could transfer to new air instruments. 
 
Machine Learning 
 
Machine learning is a set of artificial intelligence techniques for tackling tasks that are too 
difficult to solve through explicit programming; it is based on finding patterns in a given set of 
examples (Fiebrink & Caramiaux, 2016). Deep learning is a subset of machine learning, where 
artificial neural networks allow computers to understand complex phenomena by building a 
hierarchy of concepts out of simpler ones (Goodfellow, Bengio, & Courville, 2016). Machine 
learning has been an important component in the design of and performance with new 
interfaces for musical expression since the early 1990s (Lee, Freed, & Wessel, 1991). Several 
easy-to-use tools have been developed over the years for artists and musicians (see, e.g., 
Caramiaux, Montecchio, Tanaka, & Bevilacqua, 2015; Fiebrink, 2011; Martin & Torresen, 
2019), and many new instruments have explored the creative potential of artificial intelligence 
in music and performance (Caramiaux & Donnarumma, 2020; Kiefer, 2014; Næss, 2019; 
Schacher, Miyama & Bisig, 2015; Tahiroğlu, Kastemaa & Koli, 2020). However, unlike the 
applications for generating music in the form of musical instrument digital interface (MIDI) 
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data (Briot, Hadjeres, & Pachet, 2020) or generating music in the wave-form domain (Purwins 
et al., 2019), the use of deep learning techniques for interactive music is rather rare. We see 
that deep learning can be particularly useful when dealing with complex muscle signals. 
 
Research Questions 
 
The brief theoretical discussion above has shown that a number of questions remain open 
regarding how musical sound is performed and perceived and how it is possible to create new 
empirically based sound-making strategies. Thus, in the current two-experiment study, we were 
interested particularly in 

1. What types of muscle signals are found in electric guitar performance and how do 
these signals relate to the resultant sound? 

2. How can we use deep learning to predict sound based on raw electromyograms? 

We begin by explaining the methodological framework that has been developed for the first 
empirical study, followed by a presentation and discussion of the results. We then reuse some of 
the data from the first experiment to pursue a preliminary predictive model for action–sound 
mappings. We conclude with a general discussion of the findings of these two experiments.  
 
 

EXPERIMENT 1: MUSCLE–SOUND RELATIONSHIPS 
 

Methods  
 
Research Design 

 
This aspect of our research is based on the outcomes of an experiment with electric guitar 
players. Each of the guitarists performed, while wearing various sensors, a set of basic sound-
producing actions as well as free improvisations. To collect the data these actions produced, 
we built a multimodal dataset of EMG and motion capture data; additionally, video and sound 
recordings of each performer were made. For this paper, we focus only on a statistical analysis 
of the EMG data and sound recordings from this first experiment, with a particular emphasis 
on similarity measures. Prior to conducting the research, we obtained ethical approval from the 
Norwegian Center for Research Data (NSD), Project Number 872789. 
 

Participants 
 
Thirty-six music students and semiprofessional musicians took part in the study. Five of the 
datasets turned out to be incomplete and these were excluded from further analysis. Thus, the 
final dataset consisted of 31 participants (30 male, 1 female, Mage = 27 years, SD = 7), all right-
handed. All the participants had some formal training in playing the electric guitar, ranging 
from private lessons to university level education. The recruitment was conducted through an 
online invitation published on a specified web site of the University of Oslo, Norway, and 
announced in various communication channels targeting music students. Participation was 
rewarded with a gift card (valued at approximately €30). 
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Data Collection  
 
The participants’ muscle activity was recorded as surface EMG with two systems: consumer-
grade Myo armbands and a medical-grade Delsys Trigno system. The former has a sample rate 
of 200 Hz, while the latter has a sample rate of 2000 Hz. Overt body motion was captured with 
a 12-camera Qualisys Oqus infrared optical motion capture system at a frame rate of 200 Hz. 
This system tracked the three-dimensional positions of reflective markers attached to each 
participant’s upper body and the instrument. A trigger unit was used to synchronize the 
Qualisys and Delsys Trigno systems. Additionally, we developed a custom-built software 
solution to capture data from the Myo armbands in synchrony with the audio. Regular video 
was recorded with a Canon XF105 camera, which was synchronized with the Qualisys motion 
capture system. Figure 2 demonstrates the two major means for gathering data: the motion-
capture configuration and the EMG system. 
 

Procedure  
 
Each participant was recorded individually. One recording session took 90-105 minutes. First, 
the participants received a brief explanation about the experiment, before they signed the 
consent form. Following the recording session, they completed a short survey regarding their 
musical background, their use of musical equipment, and their thoughts on new instruments 
and interactive music systems. 

The participants were instructed to stand at the same marked spot in the laboratory. We asked 
them to perform tasks based on well-known electric guitar techniques. The hammer-on and pull-
off are similar techniques that allow the performer to play multiple notes connected in a legato 
manner (tied together). In both techniques, the left-hand fingers hit multiple notes with a single 
excitation action. Hammer-on refers to bringing down another finger with sufficient force to hit a 
 

      
(a)                                                                               (b) 

Figure 2.  (a) A participant during the recording session. Motion capture cameras are visible hanging in the 
ceiling rig behind and on stands in front of the performer. The monitor with instructions for the performer 
can be seen below the front left motion capture camera. (b) The protocol used for placement of the EMG 
electrodes: Two Delsys EMG sensors were placed on each side of the arm corresponding to the extensor 
carpi radialis longus and flexor carpi radialis muscles, just below the Myo armbands. 
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neighboring note on the fretboard. Pull-off refers to moving the finger from one fret to another 
to modify the pitch. Bending is achieved by a finger pulling or pushing the string across the 
fretboard to smoothly increase the pitch. The given tasks were as follows: 

 A warm-up improvisation with metronome at 70 bpm  
 Task 1 

• Softly played impulsive notes B and C in 3rd and 4th octaves, respectively 
• The same task, played strongly 

 Task 2 
• Softly played iterative notes 
o Single pitch (B3) 
o Double pitches (B3–C4) 

• The same task, played strongly 
 Task 3 

• Softly played legato 
• The same task, played strongly 

 Task 4 
• Softly played bending (semi-tone) 
• The same task, played strongly 

 A free improvisation (the tone features and the use of metronome are at the 
participant’s discretion) 

We based the tasks on performing guitar-like versions of each of the three action–sound 
types. Tasks 1 and 4, for instance, lie somewhere in between classes considering that the right 
hand excites the string in an impulsive manner while the left hand keeps sustaining the tone as 
much as the construction of the instrument allows. In Task 2, participants were asked to 
alternate between single and double pitches in different takes. Finally, Task 3 presents a hybrid 
of the impulsive and sustained types. All given tasks focused on the notes B3 and C4 on the D 
string, played by index and middle fingers. 

Each task was recorded as a fixed-form track, 2 min 16 s in duration, along with a 
metronome click at 70 BPM. The participants were instructed to play for 4 bars, rest for 2 bars, 
play the variation for 4 bars, rest another 2 bars and repeat this same 12-bar pattern two more 
times. See Table 1 for a detailed list of finger and style variations. To help the participants 
perform the tasks correctly, they were standing in front of a custom-built prompter screen. On 
the screen, they could follow animated circles, which signified the beat and the bar they were 
supposed to be at with respect to the predefined form of the given task. This allowed for a more 
comfortable and efficient experiment process. For the pilot study, we used a text-based 
prompting. However, this increased the cognitive load of the participants. Thus, for the full 
experiment we implemented a simple geometry-based design. 
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Table 1.  Detailed Fingerings and Playing Styles Instructed to Participants for Particular Tasks.  

 Takes 1-3-5 Takes 2-4-6 
Impulsive Index Middle 
Iterative Index Index–middle 
Bending Middle, as fast as possible Middle, as slow as possible 
Legato Index–middle, hammer-on Middle–index, pull-off 
Note. Fingering and playing styles were organized based on the odd- and even-numbered 
takes to have a systematic approach to labeling different action features recorded within 
a single track. This approach facilitated the groupings of segmented individual takes 
during the preprocessing step. 

 
Data Acquisition  

 
Figure 3 shows the recording setup, which was based on two separate personal computers 
running the data collection software. In the first one, we used an external trigger to send the start 
pulse to the Qualisys motion capture system, which allowed an in-sync recording of the motion 
capture cameras, the Delsys Trigno EMG sensors, and the Canon video camera. The second 
computer recorded signals from the Myo armbands and the audio as line input from the guitar 
amplifier. This was accomplished using a custom-built Python program to record synchronized 
sensor data and audio. The Myo armbands were interfaced through improving the myo-to-osc 
framework for the Bluetooth API (Martin, Jensenius, & Torresen, 2018). To overcome possible 
bandwidth limitations, we implemented low-latency support for the multiple Myo armbands 
connected to the computer via individual Bluetooth Low Energy adapters. PyAudio was used for 
the audio recording (Pham, 2006). The Python interface ran as four simultaneous processes: data 
acquisition from each armband, the metronome, and the audio recording. 
 

 
Figure 3.  A simplified signal flow diagram of the experimental setup. Representative pictures of the 

equipment used, from top to bottom: Canon video camera, Qualisys Oqus infrared camera, Delsys Trigno 
electrodes, Myo armband, and Roland guitar amplifier, and Universal Audio Apollo Twin sound card. 
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Preprocessing  
 
Preprocessing of our data for further analysis and modeling purposes was handled separately 
for the data from the Delsys and Myo systems. The medical-grade Delsys system provided 
high-quality data suitable for analytical purposes, while the Myo is a consumer-grade product 
that works well for interactive applications (see Pizzolato et al., 2017, for a comparison of 
various EMG acquisition setups). For the Delsys data, preprocessing included filtering, 
segmentation, and feature extraction methods. For the Myo data, we worked on interpolation 
and alignment of the raw data instead. 
 

Synchronization 
 
We synchronized the recorded data and audio through a custom-built metronome script within 
our Python program. This script recorded the timestamps of the metronome clicks together 
with the start point of the audio recording in a CSV file. This strategy helped in two ways. First, 
we could calculate lags at less than 0.1s among the various recording channels. As a result, we 
could align all the data types, based on their start points, to the metronome timeline. The 
synchronization strategy also helped in conforming the Qualysis data captured on Computer 1 
with the line-audio recordings on Computer 2. Computer 1 ran the Qualisys software, which 
also recorded a standard video file synchronized with embedded audio.  

We first extracted the audio stream from the video recording, and then decomposed the 
signal into its percussive and harmonic components. Applying an onset detection algorithm on 
the percussive component made it possible to obtain a timeline of metronome clicks from the 
ambient audio recording. This allowed us to measure the clicks and compare them to the logged 
timestamps of the original metronome clicks from Computer 2. Because the Delsys data shared 
the same timestamps with those of the metronome onsets, and the line audio recording shared the 
same timestamps with those of the metronome logs, we were able to align all the recorded data 
and media. 
 

EMG Signal 
 
Drawing on the method proposed by De Luca, Gilmore, Kuznetsov, & Roy (2010), we recorded 
the raw EMG data at 2000 Hz using the Delsys Trigno system, which were first run through a 
high-pass filter with a cutoff frequency of 20 Hz, and a low-pass filter with a cut-off of 200 
Hz. Both filters were fourth-order Butterworth type (Selesnick & Burrus, 1998). Next, we 
segmented the synchronized and normalized EMG data into 5-beat sequences (1 bar created 
from the last beat of the previous bar in the timeline). This was to capture also muscle activation 
preceding the sound-producing action. The muscle activation necessarily precedes the motion 
of the hand and the audio onset. 

Each task was recorded as a single track that contained six takes (see Table 1). Then, we 
selected one segment from each of them following this protocol: 

1. Takes that featured the index finger on B3 were chosen from the impulsive and 
iterative tasks. In addition to an effort for narrowing the scope by focusing on the 
index finger for the impulsive task, we were interested in exploring how two motion 
types combine in the iterative task. 
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2. Takes that were played “as slow as possible” were chosen from the bending task. Slow 
bending (over a period of approximately a bar) is fairly similar to the sustained motion 
type. The guitar does not actually afford sustained performance in the same way as, for 
example, a violin does. However, the more the bending is prolonged, the more the 
damping is shortened. This results in two almost opposing input and output amplitude 
envelopes. The sustaining muscle amplitude envelope has an increased tension. The 
sound energy, on the contrary, decays quicker than that of an impulsive attack.  

3. Takes that featured the hammer-on technique were chosen from the legato task. We 
observed that a majority of the participants was more comfortable with the hammer-
on technique than a pull-off. This was also something we observed in the recorded 
data. In addition, hammer-on can be seen as a variation of the impulsive tasks played 
with both fingers. 

Finally, each segment was divided into four EMG channels (i.e., the extensor and flexor 
muscles of each forearm). This resulted in 992 segments (31 participants, 8 tasks, 4 channels) 
of EMG data. Each segment had a duration of 4.29 s. 

For the feature extraction, we were interested primarily in the amplitude envelopes. This 
was extracted as the root mean square (RMS) of the continuous signal. The moving RMS of a 
discrete signal is defined by St-Amant, Rancourt, & Clancy (1996) as 

x�1 (t) = �
1
N

� m2
t

i=t−N+1

(i)�

1/2

  

where 𝑥𝑥�  is the EMG amplitude estimate at sample 𝑡𝑡, using a smoothing window length of 𝑁𝑁. 
The recommended window length for calculating the RMS of an EMG signal is 120–300 ms 
(Burden, Lewis, & Willcox, 2014). After several trials, we noticed that shorter window lengths 
better covered the peaks of fast attacks. Thus, we used a 50 ms sliding window with 12.5 ms 
(25%) overlaps. 

Muscle onsets were calculated using the Teager-Kaiser Energy (TKE) operation to 
improve the accuracy of the detection (Li, Zhou, & Aruin, 2007). The TKE operation is defined 
in the time domain as 

y(n) = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 − 1)𝑥𝑥(𝑛𝑛 + 1) 
 

Audio Signal 
 
The sound analysis was based primarily on the RMS envelopes. Additionally, we computed the 
spectral centroid (SC) of the sound, as it has been shown to correlate with the perception of 
brightness in sound (Schubert, Wolfe, & Tarnopolsky, 2004), that is, how the spectral content is 
distributed between high and low frequencies. The RMS signal is particularly relevant in that our 
primary interest in this study is in the amplitude envelope of the sound. RMS correlates with 
perceptual loudness; people can judge whether a signal is loud, soft, or in between but cannot 
infer where a periodic signal is peaking or is at a zero-crossing (Beranek & Mellow, 2012; Ward, 
1971). Thus, for our purposes, RMS served as an appropriate feature, providing more information 
than simply identifying the peak value within a given time interval.   
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Analysis 
 
Our analysis focused on exploring similarities between the amplitude envelopes of the EMG 
signals and the sound. We achieved this by comparing the beginning and the end of the body–
sound interactions identified when playing the electric guitar. Muscle activation was 
observable at the beginning, followed by motion, and then the resulting sound. We conducted 
the entire analysis through in a custom-built toolbox programmed in Python. 
 

EMG Analysis 
 
The initial component of the EMG analysis focused on exploring the similarities between the 
RMS of each of the four channels (two per arm) and the sound RMS for each of the participants. 
We used a Pearson’s product–moment correlation, Spearman’s rank correlation, and analysis 
of variance. 

Also known as linear correlation coefficient (LCC), Pearson’s product–moment correlation is 
a parametric correlation of the degree to which the change in one variable is linearly associated 
with a change in another continuous variable. In its equation form, LCC is commonly abbreviated 
as 𝑟𝑟 while, in our case, 𝑥𝑥 and 𝑦𝑦 represent EMG and audio signals, respectively,  

𝑟𝑟 =
∑(𝑥𝑥 − 𝑥𝑥)(𝑦𝑦 − 𝑦𝑦)

�∑(𝑥𝑥 − 𝑥𝑥)2∑(𝑦𝑦 − 𝑦𝑦)2
 

where 𝐿𝐿𝐿𝐿𝐿𝐿 > 0 denotes a positive correlation while the opposite (𝐿𝐿𝐿𝐿𝐿𝐿 < 0) refers to an inverse 
correlation. The LCC approaches 0 when the correlation weakens. To our knowledge, this 
measure has not been used to compare audio and EMG signals. 

A common assumption of the Pearson’s correlation is that the continuous variables follow 
a bivariate normal distribution. In other cases, where the data is not normally distributed and 
the relationship of two variables rather seems nonlinear, the Spearman’s rank correlation (SCC) 
is suggested to measure the monotonic relationship (Schober, Boer, & Schwarte, 2018). SCC 
is fairly similar to LCC, but it calculates the ranks of the pair of values. It is abbreviated as 𝑟𝑟𝑠𝑠 
(or 𝜌𝜌) in its mathematical representation where 𝐷𝐷 is the difference between ranks and 𝑛𝑛 denotes 
the number of data pairs: 

𝑟𝑟𝑠𝑠 = 1 −
6∑𝐷𝐷2

𝑛𝑛(𝑛𝑛2 − 1) 

A positive 𝑟𝑟𝑠𝑠 denotes a covariance toward the same direction, whereas a negative 𝑟𝑟𝑠𝑠 refers to 
fully opposite directions. It is a correlation measure that is commonly used in validating EMG data 
(Fuentes del Toro et al., 2019; Nojima, Watanabe, Saito, Tanabe, & Kanazawa, 2018). 

A third approach was to calculate the pairwise t tests and one-way analysis of variance 
(ANOVA) to explore the variances of correlation values across participants and different dynamics. 
Here, we tested the assumptions of normality and homogeneity of variances of the independent 
samples in the dataset using the Shapiro-Wilk and Levene tests (Virtanen et al., 2020), respectively. 

In addition to the above-mentioned analysis strategies, we explored other representations 
of the EMG signals. Inspired by Santello, Flanders, & Soechting (2002) and González Sánchez, 
Dahl, Hatfield, & Godøy (2019), we applied the time-varying Principal Component Analysis 
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(PCA) to merge all four channels and investigate prominent features across all participants. 
The input matrix for the PCA is defined as 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 where 𝑚𝑚 is the number of participants 
and 𝑛𝑛 denotes the number of EMG channels. For each of the 8 tasks, in which half employed 
soft dynamics and the other half strong dynamics, we obtained two principal components 
(PCs), which represented a combination of both excitation and modulation actions on the 
guitar, as shown by the following equation, 

𝐸𝐸𝑀𝑀𝐺𝐺m = meanEMGm + 𝑃𝑃𝐿𝐿1 × 𝐸𝐸𝑀𝑀𝐺𝐺1m + ⋯+ 𝑃𝑃𝐿𝐿𝑛𝑛 × 𝐸𝐸𝑀𝑀𝐺𝐺𝑛𝑛m 

Additionally, we applied Singular Spectrum Analysis (SSA) to principal components of 
EMG for further signal–noise separation. SSA is a technique of time series analysis used for 
decomposing the original series by means of a sliding window into a sum of small number of 
interpretable components, such as slowly varying trend, oscillatory (periodic) components, and 
structureless noise (Golyandina & Zhigljavsky, 2013). The algorithm for SSA is similar to that 
of PCA in multivariate data. In contrast to the PCA, which is applied to a matrix, SSA provides 
a representation of the given time series in terms of a matrix made of the time series 
(Alexandrov, 2009). In this way, we applied SSA on the EMG principal components and 
extracted the trend, which is a smooth additive component that contains information about the 
time series’ global change (Alexandrov, Bianconcini, Dagum, Maass, & McElroy, 2012). This 
procedure allowed us to obtain better visualizations of the nonlinearity of relationships between 
EMG and audio waveforms. 

It should be noted that researchers in the literature have suggested a variety of specialized 
methods for choosing the SSA window length (𝐿𝐿). Knowing that it is highly difficult to define 
a universal method to find an optimal 𝐿𝐿 value for an arbitrary time series and that the 
practitioners should therefore investigate this issue with care, Khan & Poskitt (2011) suggested 
a rule as 𝐿𝐿 = (logN)c with c ∈ (1.5, 3.0) for assigning a window length that will yield near 
optimal performance. Starting from there, as the RMS segments of our interest were at a fixed 
length of N = 344, we empirically chose c = 2.5, which yielded L = 10. 
 

Video Analysis 
 

We used the Musical Gestures Toolbox (Jensenius, 2018b) to extract the sparse optical flow 
from the video recordings, with the goal of identifying to what extent participants moved 
unintentionally. This information allowed us to make comparisons with other data at hand and 
open a better understanding of unexpected muscle activations.  
 

Sound Analysis 
 
Our aim in the sound analysis was to quantify how the different dynamics influenced the overall 
brightness of the sound. To this end, we averaged the SC across all participants. Note that the 
sound data in this study is presented in approximately 4.29 s chunks. However, we also 
investigated chunks of a shorter duration in order to explore whether dynamic fluctuations of 
particularly the iterative task had an effect on the mean brightness. Moreover, considering the 
damping character of the guitar, which is relatively short in duration, we explored how decay 
times influenced the overall brightness value. 
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Results 
 
The 36 participants completed 360 tasks in total. However, we excluded five datasets due to 
incomplete data. After also excluding the improvisations—which were intended to be used in 
the modeling experiment detailed below—we analyzed 248 tasks from 31 participants. An 
overview of how muscle activation patterns transform to sound features in each task is 
illustrated in Figure 4. 
 

LCC and SCC 
 
The correlation coefficients among participants were computed using the LCC and SCC 
measures. Table 2 shows positive correlation, negative correlation, mean, and standard 
deviation for each factor. Figures 5 and 6 show the distribution of LCC and SCC correlations. 

The analysis shows to what extent the muscle activation underlying the sound-producing 
motion and the resultant sound on the same musical instrument can have similar amplitude 
envelopes. This is supported by the ANOVA results. The correlation of muscle–sound 
amplitude envelopes—whether positive, negative, or close to 0—does not exhibit a noteworthy 
variance between participants. That is, the ANOVAs for EMG–sound similarities across 
participants (for all EMG channels and tasks) are as follows: LCC, F(30,961) = 1.6, p = 0.02, 
and SCC, F(30,961) = 1.59, p = 0.02. 

The comparisons of the correlation values between left and right hands supports the 
functional distinction between the right and left actions (see Table 3). Another clear distinction 
was revealed when we compared to what extent the EMG and sound envelopes correlated with 
respect to soft and strong dynamics (see Table 4). When the participants played strongly, the 
muscle and resultant sound amplitude envelopes correlated better. 
 

PCA and SSA 
 
Figure 7 shows the waveforms of the two principal components of the combined EMG channels 
across all participants for impulsive, iterative, bending, and legato tasks, separately for soft and 
strong dynamics. Each panel shows the activation patterns for the characteristics of these tasks. 

The trends of the same principal component waveforms via signal–noise separation were 
extracted using SSA (𝐿𝐿 = 10) and have been plotted against the averaged sound RMS on the 
horizontal axis in Figure 8. Here we can observe the varying level of nonlinearities of the 
muscle–sound relationship for the tasks played at different dynamic levels. 
 

Spectral Centroid 
 
Figure 9 shows the distribution of the SC of the sound across all participants for each soft and 
strong task, separately. Although stronger dynamics show a clear strength in the upper end of the 
sound spectrum, the distribution among particular tasks varied depending on the chosen timescale. 
As such, SC values of all tasks with soft dynamics (M = 299.03, SD = 124.24), compared to the 
SC values of tasks with strong dynamics (M = 585.93, SD = 141.22), demonstrated significantly 
lower mass of the spectrum, t(246) = 16.98, p < .001 
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Im

pulsive 
soft 

Im
pulsive 

strong 
Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

LC
C

 
𝑟𝑟 

Extensor (right) 
0.66 

0.59 
0.64 

0.68 
0.60 

0.73 
0.46 

0.53 

 
 

Flexor (right) 
0.65 

0.54 
0.51 

0.86 
0.65 

0.69 
0.42 

0.55 

 
 

Extensor (left) 
0.72 

0.62 
0.74 

0.64 
0.63 

0.76 
0.44 

0.60 

 
 

Flexor (left) 
0.55 

0.55 
0.65 

0.65 
0.48 

0.63 
0.51 

0.48 

 
−
𝑟𝑟 

Extensor (right) 
–0.24 

–0.03 
–0.24 

–0.24 
–0.12 

–0.10 
–0.38 

–0.24 

 
 

Flexor (right) 
–0.34 

–0.25 
–0.10 

–0.07 
–0.34 

–0.10 
–0.33 

–0.32 

 
 

Extensor (left) 
–0.66 

–0.61 
–0.35 

–0.35 
–0.51 

–0.66 
–0.35 

–0.33 

 
 

Flexor (left) 
–0.62 

–0.62 
–0.53 

–0.51 
–0.54 

–0.46 
–0.30 

–0.53 

 
𝜇𝜇 

Extensor (right) 
0.17 

0.24 
0.28 

0.33 
0.26 

0.28 
0.00 

0.09 

 
 

Flexor (right) 
0.13 

0.23 
0.22 

0.33 
0.21 

0.27 
0.02 

0.03 

 
 

Extensor (left) 
–0.23 

–0.08 
0.21 

0.25 
0.18 

0.22 
–0.02 

0.01 

 
 

Flexor (left) 
–0.34 

–0.24 
0.20 

0.21 
0.03 

0.15 
–0.01 

–0.02 

 
𝜎𝜎 

Extensor (right) 
0.23 

0.14 
0.17 

0.18 
0.18 

0.19 
0.15 

0.20 

 
 

Flexor (right) 
0.25 

0.17 
0.17 

0.19 
0.21 

0.17 
0.13 

0.18 

 
 

Extensor (left) 
0.35 

0.36 
0.26 

0.23 
0.27 

0.24 
0.16 

0.16 

 
 

Flexor (left) 
0.28 

0.25 
0.28 

0.20 
0.14 

0.22 
0.14 

0.12 

(continued) 
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Im

pulsive 
soft 

Im
pulsive 

strong 
Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

SC
C

 
𝑟𝑟𝑠𝑠  

Extensor (right) 
0.66 

0.71 
0.68 

0.71 
0.58 

0.78 
0.55 

0.61 

 
 

Flexor (right) 
0.49 

0.71 
0.58 

0.74 
0.66 

0.74 
0.27 

0.66 

 
 

Extensor (left) 
0.65 

0.84 
0.77 

0.81 
0.81 

0.84 
0.66 

0.42 

 
 

Flexor (left) 
0.70 

0.70 
0.69 

0.63 
0.43 

0.70 
0.43 

0.34 

 
−
𝑟𝑟𝑠𝑠  

Extensor (right) 
–0.45 

–0.15 
–0.25 

–0.30 
–0.14 

–0.17 
–0.42 

–0.33 

 
 

Flexor (right) 
–0.41 

–0.43 
–0.18 

–0.04 
–0.41 

–0.19 
–0.19 

–0.42 

 
 

Extensor (left) 
–0.85 

–0.89 
–0.56 

–0.56 
–0.61 

–0.85 
–0.32 

–0.61 

 
 

Flexor (left) 
–0.77 

–0.78 
–0.50 

–0.50 
–0.62 

–0.78 
–0.55 

–0.61 

 
𝜇𝜇 

Extensor (right) 
0.08 

0.27 
0.25 

0.41 
0.27 

0.35 
–0.01 

0.10 

 
 

Flexor (right) 
0.07 

0.26 
0.17 

0.38 
0.18 

0.37 
0.01 

0.02 

 
 

Extensor (left) 
–0.27 

–0.08 
0.27 

0.35 
0.19 

0.25 
0.00 

0.00 

 
 

Flexor (left) 
–0.38 

–0.26 
0.21 

0.29 
0.04 

0.17 
0.00 

0.00 

 
𝜎𝜎 

Extensor (right) 
0.22 

0.19 
0.20 

0.23 
0.15 

0.25 
0.14 

0.25 

 
 

Flexor (right) 
0.24 

0.21 
0.19 

0.19 
0.18 

0.25 
0.12 

0.20 

 
 

Extensor (left) 
0.40 

0.46 
0.31 

0.23 
0.30 

0.24 
0.14 

0.14 

 
 

Flexor (left) 
0.31 

0.31 
0.31 

0.23 
0.16 

0.26 
0.13 

0.10 

N
ote. The zeros in the table represent rounded values that w

ere sm
aller than three decim

al places, thus a “close-to-zero” correlation. 
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Figure 5.  Pearson’s product–moment correlations between EMG and Sound RMS envelopes. LCC > 0 
denotes a positive correlation while LCC < 0 refers to the negative. The box plots show the interquartile 
ranges of correlation distribution per task, separately for soft and strong dynamics. The bar plots below show 
the distribution of p-values showing the significance of the correlations. T1, T2, T3 and T4 refer to impulsive, 
iterative, bending and legato tasks, respectively. 
 
 
Table 3.  Pairwise t tests Demonstrating How Modification (Left Forearm) and Excitation (Right Forearm) 

Actions Have Distinct EMG–Sound Amplitude Envelopes. 

 Modification action Excitation action Variance 

LCC M = 0.03, SD = 0.30 M = 0.19, SD = 0.21 t(495) = 11.41, p <.001 
SCC M = 0.05, SD = 0.34 M = 0.20, SD = 0.24 t(495) = 9.04, p <.001 
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Figure 6.  Spearman’s rank correlations between EMG and Sound RMS amplitude envelopes. SCC > 0 
denotes a covariance in the same direction while SCC < 0 refers to the opposite direction. The box plots 
show the interquartile ranges of correlation distribution per task, separately for soft and strong dynamics. 
The bar plots below show the distribution of p-values showing the significance of the correlations. T1, T2, 
T3 and T4 refer to impulsive, iterative, bending and legato tasks, respectively. 
 
 

Table 4.  Means, Standard Deviations and t-scores for LCC and SCC Metrics. 

 Soft Strong Variance 

LCC M = 0.08, SD = 0.27 M = 0.14, SD = 0.26 t(495) = 5.41, p < .001 
SCC M = 0.07, SD = 0.29 M = 0.18, SD = 0.31 t(495) = 8.33, p < .001 

Note. Pairwise t-tests show EMG–sound amplitude envelopes correlations between soft and strong dynamics. 
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Figure 7.  Two principal components (PC1 and PC2) of the combined left and right forearm EMG data of 

all participants rescaled to (0,…,1) (See the text for more information about the PCA analysis). 
 
 
Discussion 
 
The analyses showed that sound production on musical instruments is a phenomenon that involves 
many physical and physiological processes. For example, Figure 10 shows the activation patterns 
of the extensor and flexor muscles during down- and up-stroking using a plectrum. This figure 
illustrates only two muscles groups from the right forearm. However, a musical note often is 
produced as a more complex combination of both arms, as shown in Figure 4. 

 
Similarity Between EMG and Sound Shapes 

 
Our experiment results show that the relations between the muscle energy envelope and the 
envelope of the resultant sound have similarities between participants. The results show a 
significant variance when comparing attacks with soft and strong dynamics using pairwise t-tests 
(Table 4). As shown in Figures 5 and 6, the correlation values are higher, and the directionality 
is more apparent when the same task is played with strong dynamics. This may be due to two 
factors. First, greater energy input results in larger sound amplitude, which is less biased to 
base noises, such as the inherent postural instability of the human body. 
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Figure 8.  Decomposed principal components (PC1 and PC2) against resultant Sound RMS of all 

participants (SSA window length L = 10). The plots show to what extend the EMG and resultant sound 
RMS envelopes have a linear relationship at every time step. 

 
Second, we know that expert players tend to use less tension in the forearm muscles 

(Winges, Furuya, Faber, & Flanders, 2013). Most of our participants can be considered 
semiprofessionals and thus may have felt less comfortable with stronger dynamics. As a result, 
they may have employed forearm muscles more explicitly. Unfortunately, we do not have data 
to check this hypothesis.  

The results in Table 3 are in line with the conceptual distinction provided in our 
Introduction. The excitation action, which typically is performed by the right arm for right-
handed players, determines the main characteristics of the resultant sound amplitude envelope. 
The difference between the activation patterns of both forearms is also observable in Figure 4. 
The impulsive tasks noted on the top two rows, for example, show the right forearm muscles 
have envelopes similar to that of the resultant sound while the activation patterns from the left 
forearm seem to resemble a continuous sound envelope, somewhat between the sustained and 
iterative types. This is due mainly to a continuous effort exerted by the left forearm over the 
period of the given task, which is different from the right forearm that excites the string once, 
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(a) 

 
(b) 

Figure 9.  Spectral centroid (SC) of the resultant sound (a) SC distribution between soft and strong 
dynamics in chunks of 1000 ms and 250 ms duration. (b) SC envelopes averaged across all participants. 

The red vertical lines on the left sides of the plots show the cut point of 250 ms. Note that the segments are 
1 s long, which is different than 4 s segments that we initially used. Doing so removed most of the decay 

that contributes to mean SC. 
 
exerting effort for just a short period. During continuous exertion, we see that bioelectric 
muscle signals do not exhibit a smooth trend yielding a nearly iterative shape. 

Furthermore, any additional ancillary motion, such as moving parts of the body to the beat, 
or a further modification motion, such as a vibrato to add expression to the sustaining tone, 
also can be considered as possible artifacts contributing to the envelope of muscular activation. 
When inspecting the individual participants’ video recordings, we noticed that such 
spontaneous motions are fairly common. Figure 11 provides an example of this. We extracted 
the sparse optical flow by tracking certain points on a close-up video recording of a participant 
playing the impulsive task. The participant’s ancillary motion is observable in the position of 
the guitar in relation to the camera and captured possibly by the EMG sensors on the left forearm. 
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Figure 10.  EMG amplitude of the excitation motion during iterative task demonstrating distinct activation of 

extensor and flexor muscles for down and up strokes, respectively, during a series of 16th notes. 
 

 
Figure 11.  The sparse optical flow shows the trajectory of multiple points on a close-up video segment 

while a participant is performing an impulsive task. Three subsequent screenshots demonstrate the 
ancillary motion reflected on the guitar over the period of 1 bar (~3.43 s). The multicolored points  

on the left picture yield certain patterns in their trajectories reflecting participant movement patterns  
in the center and right pictures. 

 
We suggest that such ancillary motion influences more directly the ongoing muscle activation 
as compared to right forearm muscles, which were resting at that moment. 

When comparing left and right forearm muscle activation patterns, the negative directionality 
is noteworthy. This is particularly clear during the bending tasks (see Figures 5 and 6), a playing 
technique in which the right arm excitation is equivalent to the impulsive task. The left arm 
modifies the pitch and has a sustained envelope. This is unique to the guitar, as this instrument 
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does not afford sustained sound as do the bowed strings instruments. We should also mention 
that both the exerted effort and the resultant damping character of the sound would be different 
if other equipment were used, such as a harder wood and/or pickups with stronger magnets in 
instrument design, high-gain amplifiers, electronic effects units, or any other room acoustics 
resulting in greater feedback. 

Another interesting observation when comparing data from the left and right forearms is 
the similarity between positive correlation values of the Impulsive and Legato. This could 
result from coarticulation. In this task, the left hand executes two consecutive (impulsive) 
attacks. These are quite different from the impulsive task, however. Because the two 
consecutive attacks are close temporally, they merge to form one large, coarticulated shape. 

Finally, the iterative tasks showed the most idiosyncratic patterns and the least shape 
similarity. We observed that playing consecutive notes as a series of relatively fast attacks was 
the most challenging task for many of our participants. Depending on the level of expertise, each 
participant demonstrated signs of slogging to some extent, which arguably resulted in unique 
timing characteristics. Effort constraints may be a relevant topic here: Although some players are 
able to optimize their muscle contractions, others can exert more or less than optimal effort. In 
addition to the participants’ level of expertise, the iterative task may have led to muscle fatigue. 
None of the participants mentioned this condition, but the possibility deserves further exploration 
in the context of musical performance. 

 
Exploring Dimensions 

 
The main objective of this investigation was to explore the quantifiable similarities of the amplitude 
envelopes of sound-producing actions on the electric guitar. In the first part of our analysis, we 
explored such relationships between two muscle groups against the resultant sound amplitude 
envelopes from each participant. In the second, we focused on a combination of results from all 
muscles on both forearms across all participants. We performed PCA on concatenated EMG 
channels, aiming to render additional observations and visual perspectives. In this part of the 
analysis, then, we aimed at exploring the signal PCs that can reflect a combination of simultaneous 
processes. Our interpretation of the PCA is that although PC1 reflected the overall dissipating 
aspect of the excitation motion, PC2 revealed the variation in the energy input of the modulation 
motion. This is the case even though we did not specify the decomposition to be separate. 

From these observations, we can group all types of EMG patterns under two conceptual 
categories: (a) impulsive, where a single impulse or a series of impulses is applied, and (b) sustained, 
denoting a constant muscle energy. The experimental approach of decomposing the PCs using SSA 
(Figure 8) provided alternative perspectives for exploring the nonlinearities of the relationships. 
Whereas series of impulses yielded fewer regular patterns, sustaining energy showed clearer 
similarities. These findings are in line with the results presented in the previous subsection. 
 

The Resultant Sound 
 
Figure 9a demonstrates how SC was distributed across various tasks and dynamics. The main 
observation here was that stronger dynamics led to a brighter sound. We also should note that 
plucked strings have what may be called incidental nonlinearities that can have effects, depending 
on the intensity of excitation (Fletcher, 1999). Moreover, we used 1000 ms and 250 ms segments 
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in these two subplots, respectively. These durations were different from the approximately 4.29 s 
segments we relied on in our analysis. This shift was intended to remove the tail of the waveform 
during the decay, which affects the mean brightness value. So, our results support previous work 
suggesting that timescales shorter than 500 ms reflect most of the timbral features that happen 
during the attack phase of the excitation (Godøy, 2018). 

Figure 9a shows how Iterative had a brighter character than the others when the averaged 
segments are a longer duration (1000 ms). However, Iterative’s mean SC decreased when shorter 
segments (250 ms) were used for comparison. This indicated a timbral difference between the 
impulsive and iterative tasks. That is, the impulsive tasks tended to demonstrate a single peak in 
the exerted energy, reflecting in a brighter sound. The series of attacks of the latter, however, 
showed more fluctuating energy. This also revealed that during those series, the energy that was 
transduced into the attacks also made the SC change dynamically. As such, the plots of the averaged 
SC shaped over time (Figure 9b). 
 
 

EXPERIMENT 2: A PRELIMINARY PREDICTIVE MODEL 
 
Following the empirical exploration of how biomechanical energy transforms into sound, we used 
these transformations as part of a machine learning framework based on a long short-term 
memory recurrent neural network for action–sound mappings. We engaged an interdisciplinary 
approach that draws on a combination of sound theory and embodied music cognition. Our starting 
point involved an idea of developing a model that is trained solely on fundamental sound-producing 
action types. The aim this component of our research was to predict the sound amplitude 
envelopes of a freely improvised performance. We see this as a preliminary step toward designing 
an entirely new instrument concept. 
 
Conceptual Design 
 
Our motivating concept was to develop a model that allows for coadaptation, meaning the system 
not only learns from the user but the user adapts to the behavior of the system (Tanaka & 
Donnarumma, 2018). Knowing that EMG is a stochastic and nonstationary signal (Phinyomark, 
Campbell, & Scheme, 2019), even simple trigger actions are quite complex in nature. Although it 
may seem handy to use well-known machine learning methods, such as classification for 
triggering sounds or regression to map continuous motion signal (Caramiaux & Tanaka, 2013), 
we are interested in developing beyond a one-directional control. This vision is conceptually 
different from, for example, using machine learning for EMG-based control aimed at prosthetic 
research (Jaramillo-Yánez, Benalcázar, & Mena-Maldonado, 2020). 

We also were intrigued with another design concept: predictive modeling. Following 
various control structures that we had explored in previous work (Erdem, Camci, & Forbes, 
2017; Erdem & Jensenius, 2020; Erdem, Schia, & Jensenius, 2019), we were interested more 
with the ways of how the system can behave differently from interactive music systems that 
react primarily to the user (Rowe, 1992). Drawing on the work of Martin, Glette, Nygaard, & 
Torresen (2020), we began exploring the potential of artificial intelligence tools generally, and 
predictive models in particular, that facilitate not only the input–output mapping of complex 
signals in new instruments but also enable self-awareness. 
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Methods 
 

Data Preparation 
 
Our modeling process relied heavily on data from Myo armbands, as they are a cheaper and more 
portable solution than the Delsys Trigno system. As described in detail in the Methods section of 
Experiment 1, we synchronized the EMG data and audio arrays based on the recorded metronome 
timeline. The primary difference in our analysis procedure in this experiment was that we kept all 
data for modeling. That is, the data were not segmented nor did we eliminate the material collected 
in-between tasks, when the participants were waiting for the next instruction. This latter set of 
material made it possible to have the model learn to distinguish between rest and motion states. 

We applied linear interpolation to the EMG data and calculated the RMS from the audio 
signal. The data preparation process resulted in eight segments per participant of EMG and 
audio data as training examples. The preliminary architecture focused on mapping the raw 
EMG data to the RMS envelope of the sound as the target. 
 

Predictive Model 
 
We used nine model configurations based on a long short-term memory (LSTM) recurrent neural 
network (RNN) architecture. Drawing on previous research that suggested 32 or 64 LSTM units 
in each layer as the most appropriate for integrating the model into an interactive music system 
(Martin & Torresen, 2019), we wanted to test different configurations. Thus, we used models 
with one, two, and five hidden layers and each containing 16, 32, and 64 units. Each model was 
trained on sequences that were 50 data points. This window size refers to 250 ms at Myo 
armband’s 200 Hz sample rate. 

Following the LSTM layer(s), a fully connected layer passes a single data point into the 
activation layer, using a rectified linear activation (ReLU) function. From there, a final layer 
returns the mean value of the input tensor in order to map an EMG window to one data point 
of the sound RMS, a many-to-one sequence modeling problem. In short, an array of raw EMG 
signal with a dimensionality of (50,16) was fed into the network as sliding windows (e.g., 
sample N0 to N49, sample N1 to N50, etc.) to predict a single value of sound RMS at a time step 
(see Figure 12 for a simplified diagram). The training loss function was defined as 

ℒ(𝑥𝑥RMS,𝑥𝑥�RMS) =
1
𝑛𝑛
�(
𝑛𝑛

𝑖𝑖=1

𝑥𝑥RMS,i − 𝑥𝑥�RMS,i)2 , 

where 𝑥𝑥RMS are the recorded values, 𝑥𝑥�RMS are the values to be predicted, and the sliding 
window has size 𝑛𝑛. 
 

Training 
 
The dataset was limited to 160 training examples from 20 participants in which 40 examples 
were used for validation. We conducted the training using the Adam optimizer (Kingma & Ba, 
2014) with a batch size of 100. As we executed multiple trainings to test various configurations, 
we limited the trainings to 20 epochs. The duration of trainings varied from 4 to 10 hours, depending 
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Figure 12.  Sketch of the training model: A 16-channel Raw EMG as the source and sound RMS as the 

target data are passed into an LSTM cell, which then outputs a prediction. 
 
on the quantity of trainable parameters in relation to the number of hidden layers and units. Even 
though we report here the final results from training locally on a single Nvidia GeForce GTX 1080Ti 
graphics processing unit (GPU), we also ran the trainings on Google’s browser-based coding 
notebook, Colaboratory; we did not observe any remarkable difference in the training duration. 
 
Results 
 
All model configurations were generally capable of predicting the sound RMS (see Figure 13). The 
model with two hidden layers and 64 units had the best results, which can be seen in the figures of 
recorded versus predicted RMS of the impulsive (Figure 13a) and iterative tasks (Figure 13b). For 
the latter, the model could generate similar consecutive envelopes resembling a series of attacks. 

One goal in developing this preliminary model was to test the performance of the LSTM 
based on a limited dataset. In this case, the limitation refers to the type of dataset rather than its 
size. We were encouraged to see that the model could predict the general trend of the sound 
energy when tested using the free improvisation dataset (Figure 14). 
The prediction of the bending task brought an interesting result (Figure 13c). Normal guitar 
performance does not afford sustained excitation action, although it can be accomplished with a bow 
on the strings, as Led Zeppelin’s guitarist, Jimmy Page, popularized in the late 1960s. However, apart 
from using extended playing techniques—such as pressing on the strings with the hands or using 
additional equipment, such as a bow, vibrato arm, or electronic effects processing units—a player 
can only hit on a string once (impulsive) or as a series of impulses (iterative). Thus, sustained motion 
is available only for the modification action, such as bending the string with a finger on the left hand. 

In the prediction, however, we observed a longer decay as compared to an impulsive, single 
attack of the right arm. This interesting in-between result suggests a means for augmenting the 
guitar for creative purposes. 

We also tested various model sizes using Euclidean distance measure (EDM), which is a 
common method for measuring the distance between objects. EDM is calculated as the root of square 
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(a) The RMS of the recorded sound and the model prediction for the impulsive task. 

 

 
(b) The RMS of the recorded sound and the model prediction for the iterative task. 

 

 
 

(c) RMS of the recorded sound and the model prediction for the bending task. 
 

 
(d) RMS of the recorded sound and the model prediction for the legato task. 
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(e) The predicted sound RMS of impulsive playing in the air. 

 

 
(f) The predicted sound RMS of iterative playing in the air. 

Figure 13.  The performance of the model with two hidden layers and 64 units in given tasks.  
Plots a through d show the true sound RMS and predicted RMS envelopes. Because we recorded  
impulsive and iterative tasks performed in the air as test data for further exploration, plots e and f  

show only the predicted sound RMS envelope based on the EMG data of an air performance.  
The time axis is shared across all plots and predicted curves are processed with a Savitzky-Golay filter 

(Savitzky & Golay, 1964) to reflect the general shape and facilitate the visual inspection. 
 
 

 
Figure 14.  The RMS of the recorded sound and the model prediction of a free improvisation task. 

Predicted curves are filtered to reflect the general shape and facilitate the visual inspection. 
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differences between coordinates of two objects (Kang, Cheng, Lai, Shiu, & Kuo, 1996). Given 
the normalized true and predicted sound RMS vectors 𝑝𝑝��⃗ , 𝑠𝑠�⃗ ∈ ℝ𝑛𝑛, we can find the distances in 
Euclidean 𝑛𝑛-space as �(𝑝𝑝1 − 𝑠𝑠1)2 + (𝑝𝑝2 − 𝑠𝑠2)2 … (𝑝𝑝𝑛𝑛 − 𝑠𝑠𝑛𝑛)2. The distances between the true RMS 
and predicted RMS envelopes of the nine models of different configurations were calculated using 
the free improvisation recordings from 20 participants, of which given tasks were used as training 
data. This provided us with a statistical measure for evaluating the performance of different model 
configurations for mapping 16-channel raw EMG data to sound RMS envelope. Figure 15 
provides the distribution of distances together with the latency of single-threaded prediction 
processes on the central processing unit (CPU) of a MacBook Pro 2018. According to results, we 
observed a trend that the model performance increases along with additional LSTM layers and 
units; unfortunately, however, the model’s performance decreases when the model becomes too 
large. The prediction time also increases drastically with additional parameters. However, models 
with a single hidden layer have the least latency even while having a fairly large margin of error. 
Thus, according to the results, a two-layer stacked LSTM with 32 or 64 units can be seen as a 
“sweet spot” configuration. 
 

 
Figure 15.  Euclidean distances between true RMS envelope of the free improvisation task and its 

corresponding prediction of RMS envelope based on nine model configurations. The boxes display the 
interquartile ranges while the central lines show the median. The whiskers show the minimum and 

maximum values of the distribution. 
 
Discussion 
 
The implemented model can predict the overall trend of the sound energy of a freely improvised 
performance based solely on a training dataset of particular action types. As shown in Figure 13, 
some similarities are evident between the EMG signal and the sawtooth-like patterns of the 
predicted waveforms. We think this is acceptable, as these fluctuating patterns can be filtered 
easily and used as an amplitude parameter in the sound synthesis. However, considering that 
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the prediction of a single temporal feature is insufficient for capturing the complexity of 
musical sound, these patterns might cause problems. These predictions also may lead to 
unpredictable sound features that could be aesthetically pleasing in an improved model. 

Drawing on the results from the tests between different model configurations, we see that, 
as the model size increases, the distance between the true RMS and predicted RMS generally 
decreases, but the similarity tends to increase. However, larger model sizes also result in a 
larger latency, which can cause problems in real-time performance situations. We believe that 
although a lower similarity can be utilized creatively, higher similarity with a larger latency is 
much less usable.  

Another step in the future development of the system will be to conduct a thorough user 
study to test the framework. It will be particularly interesting to explore how possible it is to 
obtain near-optimal latency using the trained model and, moreover, how to use the latency 
creatively. Also relevant is the exploration of how motion data from an inertial measurement 
unit can add to the information provided by the EMG data. At its core, the question remains 
how the spatiotemporality of the performance can be further explored and evaluated. 
 
 

GENERAL DISCUSSION AND CONCLUSIONS 
 
The main research question that inspired the first experiment of the study regarded the 
relationships between action and sound in instrumental performance. To answer that, we 
performed statistical analyses on the data from an experiment in which 31 electric guitarists 
performed a set of basic sound-producing actions: impulsive, sustained, and iterative. The results 
showed clear action–sound correspondences, compatible with theories of embodied music 
cognition. These correspondences’ statistical levels varied, depending on the given task. The 
relatively less-challenging tasks, such as impulsive, yielded higher correlation values. 
Conversely, we observed how participants’ varying level of motor control resulted in unique 
EMG and audio wave-forms for the iterative tasks, which involved performing a series of 
impulsive sound-producing actions merged into a single shape. Here, the way participants used 
rhythms and structured the musical time had a determinant role in the coarticulated muscle 
activations. Thus, we can argue that complex rhythms yield unique bodily patterns. 

An important limitation of Experiment 1 was the gender imbalance. Unfortunately, only one 
female joined the study. The participants were recruited via local communication channels; thus 
the range of participants was limited to whoever volunteered. Another limitation was the 
experimental setup in a controlled laboratory environment, which may have felt unnatural to 
many participants. The same could be said about the very constrained tasks, which restricted the 
participants’ musical expression. For example, the use of physical effort is most likely quite 
different than in a live music-making situation. Also, we provided the participants with the 
instrument, which may have influenced the results. Musicians typically develop bodily habits 
based on particular instruments—including the string gauge and plectrum. Thus, unfamiliarity 
with the electric guitar used in this study could have affected the relationships between EMG and 
audio signals. Furthermore, the analyses clearly showed that these relationships contain nonlinear 
components, so we could question the reliability of using linear methods. Still, we believe that 
the use of such methods can provide an example for future work. The results were satisfactory 
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for such an exploratory study, but the choice of statistical methods for correlating bodily signals 
with sound features remains an open question. 

The second research question involved how such relationships between action and sound can 
be used to create new instrumental paradigms. Relying on the notion of imitating existing 
interactions in new instruments, we aimed in our second experiment at modeling the action–sound 
relationships found in playing the guitar. We explored some aspects of this question through a 
series of analyses in the first experiment. However, we were more focused in Experiment 2, 
employing our multimodal dataset to train LSTM networks of different configurations. Our results 
showed that the preliminary models could predict audio energy features of free improvisations on 
the guitar, relying on an EMG dataset of three distinct motion types. These results satisfied our 
expectations concerning the size and type of the training dataset. Considering the nonlinear 
components found in the analysis of the relationships between the EMG and sound RMS 
envelopes (see Figure 8), the satisfactory outcome of our model corresponded to the known ability 
of neural networks that, in theory, any continuous function can be approximated by computing 
the gradient through a neural network. This is achieved by breaking down a complex function into 
several step-functions computed by the network’s hidden neurons. How good the approximation 
is often depends on the depth or number of layers in the network and the width or number of 
neurons of each layer (Goodfellow et al., 2016). 

A caveat of our research in our second experimental setup is that even the smallest model 
configuration achieved a much higher latency (see Figure 15 for the results of our analysis on 
different model configurations) than acceptable ranges (20–30 ms) for real-time audio applications 
(Lago & Kon, 2004). Although it is possible to reduce the latency using elaborated programming 
structures, a single predicted feature would still be limited. Moreover, a similar output can be 
achieved using traditional signal processing methods. Thus, a next step in our research will include 
expanding the model with spectral, temporal, and spatial features from both motion and audio data. 
It would also be relevant to explore the potential of what such a deep learning-based framework 
can afford for musical performance and creativity in a new instrumental concept. 

In the future, we will continue to build on this two-fold strategy of combining empirical data 
collection and machine learning-based modeling. We intend to explore deep learning features for 
myoelectric control that can be applied to extracting discriminative representations of 
coarticulated sound-producing actions. We remain interested especially in exploring the creative 
potential of such models: How can artificial intelligence generally—and deep neural networks 
particularly—be used to explore the aesthetics of, and embodied interaction with, the 
transformations of biomechanical waveforms into sound? To answer such a question, we will 
emphasize exploring the conceptual and practical challenges of space and time, particularly when 
using the human body as part of the musical instrument. By conducting more user studies, we 
expect to provide valuable information about conceptual approaches of translating embodied 
knowledge of actions into the use of new musical instruments. 

 
 

IMPLICATIONS FOR RESEARCH 
 

The studies presented in this paper are situated within the interdisciplinary research field of music 
technology (see Serra, 2005). This field involves both practitioners and researchers working with 
both artistic and scientific methods. Both groups will benefit from the knowledge gained from our 
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empirical studies of basic sound-producing actions and the artificial intelligence methods developed 
for modeling relationships between muscle energy and audio energy. More broadly, the outcomes of 
applying multimodal machine learning for creative purposes opens new research activities. These 
contributions include a new multimodal dataset, the development of custom software tools, statistical 
analyses between action and sound, and an evaluation of various machine learning configurations. 
Furthermore, the study provides additional support for previous research on action–sound 
relationships and embodied music cognition. Our emphasis on EMG irregularities as a control signal 
suggests an alternative perspective for music technology research on performing arts and human-
computer interaction. These irregularities and imperfections open for new creative possibilities.   
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