
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Exploring Creativity Expectation in CS1 Students’ View of Programming

© IEEE, 2020

Accepted version (Final draft)

Isomöttönen, Ville; Lakanen, Antti-Jussi; Nieminen, Paavo

Isomöttönen, V., Lakanen, A.-J., & Nieminen, P. (2020). Exploring Creativity Expectation in CS1
Students’ View of Programming. In FIE 2020 : Proceedings of the 50th IEEE Frontiers in
Education Conference. IEEE. Conference proceedings : Frontiers in Education Conference.
https://doi.org/10.1109/FIE44824.2020.9274134

2020

Exploring Creativity Expectation in CS1 Students’
View of Programming

Ville Isomöttönen Antti-Jussi Lakanen Paavo Nieminen
Faculty of Information technology

University of Jyväskylä
Jyväskylä, Finland

ville.isomottonen@jyu.fi, antti-jussi.lakanen@jyu.fi, paavo.nieminen@jyu.fi

Abstract—Full paper in Research category: Literature provides
creativity definitions that are applicable to educational settings.
For example, the definition by Plucker et al. emphasizes the
‘social context’ in which the usefulness and novelty of a creative
outcome is evaluated, and notes that this emphasis allows stu-
dents’ coursework to be deemed creative without extraordinary
characteristics. Computing educators tend to assume that in-
coming CS course populations welcome creativity, and utilize
application contexts (e.g., games, media, arts, and robots) in
which creativity is a central attribute. Previous research also
suggests that beginner CS students may initially possess versatile
identities regarding what computing will entail. This article
seeks to provide further evidence for creativity expectation
among students starting a CS1 course, looking at how and
to what extent creativity is acknowledged. This agenda was
observed to be possible using a large data set (N=1,946, eight-
year period) in which students at the very beginning of their
computing studies characterized what programming is. Qualita-
tively different creativity-related categories were identified and
frequencies for these categories were counted in a sample of
240 respondents. Further content analysis was applied to the
remaining data by using word searches. The categories identified
were: freedom to create and express, creativity needed in problem
solving, programming as a circumstance for personalized activity,
associations with arts, creative innovations, tolerance to open-
ended situations, aesthetics and elegance of programming, and
programming as a flow-like activity. In the sample of 240, 59%
of the data was interpreted to refer to creativity, and among
the word-searched portion of the data, nearly one-third was
interpreted to indicate it. The illustrations and the numbers
of references support educators’ assumptions as they consider
introducing creativity-related education.

Index Terms—introductory programming, creativity

I. INTRODUCTION

This article reports on beginner students’ view of program-
ming by focusing on how they referred to creativity. Motiva-
tion is provided by at least two features in the computing
education literature. First, the work by Peters [1] revealed
that students entering computing programs may have versatile
views of what computing is with respect to their developing
identity. Her observation was that these initial identities may
become less versatile during the course of study. By docu-
menting creativity expectations among beginners in a large
data set, the present study explores if support is found for the
observation of students’ initial versatile views of computing.

Second, motivation is provided by the literature that re-
ports positive effects of the use of application contexts in

CS education. In a study by Greenberg et al. [2], students
who were offered a programming course in a contextualized
form showed increased intentions to take further CS courses.
Similarly, Guzdial [3] summarized several-year experiences
of media computing contextualization by emphasizing the
importance of application context. He reported that students
have welcomed the opportunity to rely on their creativity in
this setting. The present study seeks to extend evidence in this
respect.

As potential support for the lines of research above, and for
the educators’ anecdotal assumptions such as “Most people
enter the field of computer science with a desire to create
something new” [4], creativity-related considerations among
beginner students were explored. A data set initially col-
lected with a general interest in how beginners characterize
programming was observed to make this agenda possible.
This data results from a questionnaire that has been annually
issued to students at the very beginning of their introductory
programming course (CS1). A total of 240 longest data entries
out of 1,946, collected during eight years, were manually
examined and peer-checked using qualitative content analysis.
In order to yield a complete overview of the creativity aspect,
the remaining data was further explored using word searches.

Section II reports definitions of creativity and the relevant
related work in CSEd literature. Section III describes the
study context and the method. Section IV describes the result
categories and their frequencies. Conclusions and proposals
for future work are stated in Section V.

II. BACKGROUND

A. Creativity definitions

From the vast literature available on education and creativ-
ity, this section presents a few definitions that were deemed
relevant to the present study.

In Sternberg’s [5] definitions, creativity comprised three
abilities, which were synthetic, analytic, and practical. The
synthetic refers to an ability to generate new ideas. The
analytic refers to an ability to analyze and evaluate ideas. The
practical refers to an ability to put ideas into practice. These
perspectives alone seem to aptly characterize programming
as creative problem solving. Sternberg also emphasized self-
efficacy as a factor affecting how it is possible to engage
students in activities that require creativity.

Plucker et al. [6] proposed the following definition:
“Creativity is the interaction among aptitude, pro-
cess, and environment by which an individual or
group produces a perceptible product that is both
novel and useful as defined within a social context.”

This definition was informed by a review of literature regard-
ing how creativity was referred to. Plucker et al. observed
that the literature lacked a common definition, and that many
studies did not include any definition or only implicitly
described creativity. Moreover, they reported typical myths
about creativity, of which one important aspect for educators
was ‘Big C,’ that is, the conception that creativity belongs to
exceptional individuals. Their definition above included ‘social
context’ to emphasize that creativity can be looked at in a
particular setting and student ideas can be valued without
the worry of Big C. Moreover, the authors explained that
they preferred to use the term ‘aptitude’ in place of ‘trait,’
not to refer to innate characteristics that cannot be practiced.
‘Perceptible product’ was included to promote creativity as an
attribute that can be evaluated. The product referred not only
to artifacts but to a variety of outcomes such as behavior.

In educational settings, creativity is often linked with open-
ended learning situations in which the student needs to explore
space [7]. In the definition of Plucker et al [6], this can be seen
in the inclusion of both process and environment; for instance,
consider brainstorming in a particular setting.

Epstein’s [8] generative theory in the field of behavioral
sciences yielded a definition of four core competences for cre-
ativity: broadening, challenging, surrounding, and capturing.
These indicate that broadening an individual’s knowledge base
contributes to the individual’s creativity. Moreover, creativity
is stimulated by seeking challenge and changing environments,
and it occurs frequently but needs to be captured. Due to the
focus on behavior, emphasis is here not placed on a resulting
product.

We should also mention ‘flow’, which is discussed as part
of creative activity in the work of Csikszentmihalyi [9]. He
outlined flow as a condition that enables an individual to
tolerate obstacles and continue at the task.

Literature shows an agreement that creativity is found in and
can be practiced by all of us; see, e.g., [6], [8], [10]. Herbert
[10, p. 133], who studied creativity from a psychoanalytic
perspective, concluded that “Creativity is inherent to all human
beings and is not dependent on IQ or genetic inheritance.” She
continued that high IQ and genetic inheritance are likely to
contribute to the ability to be creative but are not a necessary
condition for it. Epstein [8, p. 766] summarized that “[...] with
appropriate training, almost anyone will display a high degree
of creativity.”

B. Examples of Creativity in CSEd literature

CS teachers have employed various application contexts to
enliven students’ learning experiences and refer to creativity
as one design attribute of such contextualizations. Examples
include media computing, game programming, robots, and
open data.

Media computing was designed to invite non-majors and
women to study computing [11], [12]. This CS1 course design
promoted creativity among other attributes that included col-
laboration, relevance, and hospitality of the study environment.
Greenberg et al. [2] asked CS1 students to create visual designs
using the Processing programming language, and observed that
these students were more interested in investing their time
on assignments and taking CS courses than students taking
a traditional CS1. Using media computing as their setting,
Porter et al. [4] asked students to manipulate pictures by pro-
gramming and arranged an art show where student-prepared
artistic images were presented. The goal was to emphasize the
creative side of programming to the students and promote the
study program in the campus. Actions of these kinds arguably
make explicit associations between programming and arts.

Video games have been proposed to be used as CS1 course
assignments because they allow students to develop individual
solutions and therefore introduce creativity into the course
[13]. Game programming is used as a contextualization for
CS1 [14] as well as for outreach events [15].

The work by Apiola et al. [16] illustrates the use of robots
in creative, open-ended assignments for intermediate students.
These authors observed experiences of flow and rewarding
problem-solving on the part of students who welcomed the
open-ended assignment. Students who found the setting chal-
lenging complained about the course arrangements.

Open resources (Data, APIs) have been used as a resource
for student-ideated projects [17]. In this setting also, third-
year students’ responses to the creative, open-ended project
assignment were divided. Some students reported on internal
motivation arising from self-ideated work, while others noticed
that they were used to guided work and defined themselves as
non-creative. The students also noted that the pressure to pass
courses narrowed their investment in project work regardless
of the opportunity to develop self-ideated products.

Furthermore, the locution ‘computational creativity’ is used
in the literature when creative problem solving is referred to
in the nexus of creativity thinking and computational thinking
[18]. Exercises that are said to integrate creativity and compu-
tational thinking have been accordingly termed Computational
Creativity Exercises (CCEs). These exercises seek to enhance
learning in a way that students learn to apply and find
solutions in new situations [19]. Soh et al. [20] summarized
evidence on improved learning outcomes when CCEs were
used. This exercise conceptualization leans on Epstein’s core
competences (see above) and, rather than discussing outreach
and retention, seems to characterize creativity needed in CS
problem solving and attempts to improve learning.

A potentially interesting observation is that creativity re-
ferred to in conjunction with an engaging application context
for novices is constantly preferred by teachers and in the
data examples provided from students. Subsequently in the
curriculum, with more comprehensive assignments that require
students to more substantively ideate what CS artifact is
produced, students’ reactions are nevertheless reported to be
divided [16], [17]. Another interesting perspective is found

in Peters’ [1] work on identity. She found that how students
relate to CS become narrowed along with taking computing
courses. Relatedly, in a master thesis work supervised by the
present authors [21], it was found that creativity persisted as a
key category in students’ considerations through a CS1 period
but other categories grew in quantity; we would speculate that
considerations of creativity may become ‘masked’ as students
focus on learning to program. These viewpoints suggest that
how students relate to creativity should be studied in a
longitudinal manner; the present study focuses on a starting
point of such a continuum.

C. What is programming?

Several studies have looked at how students perceive pro-
gramming: [22]–[27]. All these studies reported categories
according to the phenomenographic or phenomenological ap-
proach. There seems to be at least an overlapping ‘zone’
that starts from a mechanistic, syntax, and programming
language -related views of programming, and proceeds to the
view of programming as problem solving. Some differences
are found in what was identified as the least sophisticated
category: Bruce et al. [22] reported a “following” category,
which explains how students first make progress, whereas
the results by Eckerdal et al. [23] began from a syntax- and
language-related view. Other differences related to the most
sophisticated categories reported. Moreover, the phenomeno-
logical approach raised aspects in the perceived condition of
learning to program [26]. We speculate that the differences
between the study results arise from the contexts and the
perspectives included in the data collection measures. The
phenomenological approach naturally indicates a lens different
to the phenomenographic one. The present study began from a
full thematic analysis of 40 data incidents, which yielded a set
of categories that appears richer as compared to those reported
in the studies above. We believe this was due to the timing
of the data collection. This was before the academic courses
of the first semester had really started and the data represents
the students’ ‘visions’ of programming in both narrow and
large senses, with yet an undeveloped connection with the CS1
course they were about to study. The data contained several
perspectives solely related to creativity.

III. METHOD

A. Data Collection

The data set consists of 1,946 student writings over the
eight-year period 2010–2017. A single data incident is the col-
lection of the student’s textual answers to following questions
about programming:

• What is programming?
• What is important in programming?
• What does it take to do programming?
• Describe what you like in programming.
• Describe what you do not like in programming.
The questions were originally designed to complement each

other without a worry of overlap, to prompt a respondent
to characterize programming in a rich way; each student’s

answers to these questions were combined into a single
textual presentation before the analysis. During these years,
the questionnaire was issued to CS1 students at the very
beginning of each course instance. The course is offered bi-
annually, meaning that the eight-year period covers 16 course
instances. Students were expected to answer the questionnaire
as soon as possible, even before the first lecture, to prevent
any “pollution” of the conceptions. Response rates have not
been systematically recorded, but they are quite high, most
likely around 60–80% yearly.

The students reached by the CS1 pre-questionnaire are
computer science and information systems students and all
minors; there is no separate course for minors. The minors
can be from any faculty of the multi-disciplinary university,
while typically the majority of the minors come from science
and statistics.

B. Procedure

The work was started by the first author who applied an
initial content analysis step to a sample of 40 incidents,
extracting all low-level perspectives that illustrated students’
positions toward programming. This set of data was selected
based on practical convenience; the incidents had been recently
screened in another project, and immersion in these incidents
had occurred already. More importantly, this set was checked
to represent rich (wordy enough) incidents within the large
data set, to be able to use this initial analysis as part of the
ensuing analysis on the longest (hence, most elaborate) 240
incidents in the data. By reviewing the multitude of low-level
codes, a decision was made to focus this study on a single
perspective observable in several ways in the codes: the topic
of creativity. Such a limitation appeared necessary resource-
wise, while exploring this topic in particular was deemed
potentially interesting for computing educators.

The whole data was sorted according to the length, and
shared with the three authors: N=40 (the initial sample),
N=100, N=100. The first author revised the initial analysis
into a coding scheme—a set of categories—that was handed
to the other two. In practice, the categories became the column
titles in the sheet tabs of a spreadsheet file in which the data
and the analyses were managed; a single sheet tab represented
a shared “codebook.” Thus, the authors first analyzed mutually
different sets of data. These sets (N=40, N=100, N=100) were
also independently coded by one other analyst. Afterwards,
three sessions of 2–3 hours were arranged in which the three
analysts negotiated agreement on each data incident where
the two independent codings had differed. The data analyses
were managed be devoting one sheet tab to each analyst, and
one more tab was devoted to the peer-checked and negotiated
final analysis. Throughout this process described, a single data
incident could indicate more than one category in the coding
scheme.

The initial coding step was inductive and relied on the
theoretical sensitivity of the analyst. For example, taking into
account ‘flow’ was based on the awareness of the connection
between creativity and flow in the literature. Moreover, this

sensitivity included assumptions that student-expressed desires
to create were rather direct indications of personal favoring
of creativity in the given context of programming, and that
comparisons to arts characterized programming as creative,
artistic activity. In the agreement negotiations, any hesitations
were managed by considering the literature presented in the
previous sections, in particular the rich while concise definition
of creativity by Plucker et al. [6]. What was discussed most
was which perspective(s) of creativity were indicated. For
instance, a data segment could be interpreted to demonstrate
personal preference for freedom to create but also indirectly
some other category such as creative innovation. Altogether,
challenges were responded to by the exhaustive three-person
reviews of the codings.

The number 240 was decided by considering resources: the
goal was to analyze a considerable amount of qualitative data
and yet to peer check the analyses. For the remaining, still
a large segment of the data (1,976−240 = 1,706 incidents),
we include an approximation of the portion of incidents that
included one or more of the words or locutions that students
typically used when referring to creativity within the sample
of 240 incidents. This procedure is explained in Section IV-I.

IV. RESULTS

Overall, we found that 59% of the respondents (in the
sample of 240 respondents) conveyed creativity in their ex-
pressions in some way, while 41% did not. Of those expres-
sions that conveyed creativity, we extracted eight qualitatively
different categories that represent the aspects of how creativity
showed in the texts. The categories are sorted in descending
order based on their frequency of occurrence. Note that one
respondent’s text could represent multiple aspects; thus, a
response that manifests creativity could fall into one or more
categories. In the following, we present each of the emerged
categories along with illustrative quotations. The categories are
presented by first explaining a category as it was interpreted
from the data by the researchers and then displaying illustrative
quotation(s). The brackets within the quotations were added by
the researchers to clarify the meaning of the translated (from
Finnish to English) colloquial expressions to the reader.

76

51

18

10

9

8

7

4

0 10 20 30 40 50 60 70 80

Freedom to create and express

Creative problem-solving skill

Circumstance for personalized activity

Association with arts

Creative innovations

Preference for/tolerance to open-…

Aesthetics and elegance

Flow-like activity

Fig. 1. Categories and their frequencies.

A. Freedom to create and express (n=76)

In this category, programming is experienced or envisaged
as an activity that gives the actor freedom. This was the most
prominent category; 54% of the answers that demonstrated
creativity in some form were also included in this category.
There were three central notions in how creativity was posi-
tioned: (i) freedom to create whatever the programmer likes,
(ii) freedom to resolve unforeseen problems, and (iii) freedom
to express oneself.

Freedom to create: Programming is enjoyable or fun
because it allows creating whatever one wants. This freedom
is not bound or restricted by anyone.

Programming is one way to demonstrate creativity.
Thinking that one can create something new and
potentially useful is fascinating. (Student #49)
In programming, I am more fascinated about the
thing that you can create so much and whatever you
like. The freedom to create in programming is the
thing that made me study computer science. (Student
#216)
Creating something completely new and testing how
it works is rewarding. (Student #202)
Programming means to me certain kind of freedom.
As you manage it, human can create what ever
digital information with a laptop. (Student #165)

Freedom to resolve unforeseen or incredible problems:
It is only our imagination that bounds the possibilities in
what can be innovated, achieved, and created by programming.
This notion was often expressed by emphasizing unlimited
possibilities in programming.

In my opinion, programming is the way to make
incredible things real. (Student #235)
[I like] the thing that imagination is the only limit
as for what you can create. (Student #88)

One interesting observation in this category was that it
illustrates how beginner programmers envisage, and almost
fantasize about the do-goodism potential of the programming
activity. At the beginning stages of their studies the learning
curve is quite understandably left out of consideration.

Programming gives one the freedom to resolve small
and large problems with computer, even if [in cases]
no one else has encountered the problem at hand.
(Student #212)

Freedom to express oneself: Programming is a “language”
for personal expression. On the other hand, programming
is a way to observe and analyze others’ expressions. Some
respondents explicitly highlighted the possibility to express
one-self while others depicted this more indirectly.

The thing I like about programming is the granted
freedom to express one-self. (Student #223)
[I like] the freedom to apply, and the possibility to
create a system of your own kind. (Student #186)

Personal expression can also be understood as making a
personally relevant tool.

Personally, progamming is an opportunity to develop
[my] own tools, which have features that others
have not considered necessary. [It’s] one way of
examining the world from my perspective. (Student
#240)

B. Creative problem solving (skill) (n=51)

In this category, there were two main notions: (i) Pro-
gramming is a skill, which is essential for solving complex
problems creatively, and (ii) the task of programming is
characterized by creative problem-solving. In the present data
set, the matter of creative problem-solving was expressed both
without and with explicit use of the word creativity. The
former is illustrated by the following.

If programming nevertheless is not working out,
one needs the skill to question one’s own logic for
finding alternative conventions. (Student #218)

The illustration below includes explicit references to cre-
ativity.

As a work, programming can be described as cre-
ative problem-solving. (Student #225)
[Programming requires] creativity when encounter-
ing problems or technical constraints. (Student #214)

Respondents’ perception of what solving problems cre-
atively really means varied. Some saw it as applying “Mac-
Gyverisms” if needed, that is, using readily available compo-
nents for reaching solutions within a short time limit. This is
illustrated in the following quote.

Creativity includes the skill of hacking, that is,
implementing a thing as quickly and optimally as
possible. (Student #86)

Others took a more analytical view and suggested that
creativity stems from systematical considerations, and even
needs stubborn patience to weigh out different perspectives to
reach optimal solution.

[In programming,] pedantry, logical thinking and
creativity [are needed]; sometimes also stubborn
patience is beneficial. (Student #99)

As an aside, mere immersion in the data indicated “problem
solving” (the term was explicitly used many times in the data)
as one of the major features associated within programming.
The above explains specifically what is indicated with the term
“creative problem solving.”

C. Circumstance for personalized activity (n=18)

In this category, programming is characterized by positive
feelings when the programmer identifies one’s own hand in
the artifact. Programming is seen as personal, and the urge for
“I made it myself!” sensations are quite pronounced. The idea
is that the construction of an artifact necessitates a personal,
creative process.

In programming, you can unleash your creativity,
and you can see the result of your work very
concretely. (Student #94)

I don’t have experience in programming, but I’m
sure the most interesting will be the actual imple-
mentation, that is, experiencing and seeing my hand
concretely. (Student #137)

D. Associations with arts (n=10)

This category shows in two ways: (i) the first is the
general characterizations of programming as artistic work,
and (ii) the second is students explaining how programming
associates with specific artistic activity or abilities. The former
is illustrated by the quotations below, with the third quotation
further linking programming to human consciousness.

[...] Designing the program and understandings of
[its] larger contexts require societal and artistic vi-
sion (Student #23)
I like that programming is creative and artistic work,
that you identify the writer, although the code itself
would follow an expected format. (Student #220)
Nowadays It’s became both art and craft, being a
transhumanist, I am convinced that programming in
the future will become an element of consciousness.
(Student #235)

Artisic activies included drawing, poetry, and tinkering with
Legos. In the example below, the student compares learning
to program with knitting and learning to play the piano.

It is bit like knitting a scarf but with a computer
[...] I attempt to relate to this course similarly to
piano playing, which I have rehearsed ten years:
rehearsing is comprehensive and time consuming,
but not necessarily rocket science. (Student #118)

This quotation concurrently illustrates how the learning chal-
lenge integral to programming is cognitively tolerated by an
analog to a familiar activity. The artistic abilities included a
sense of drama, musicality, and visuality.

E. Creative innovations (n=9)

Students seemed to be motivated by the possibility of
innovations. Such indications occurred both explicitly and
implicitly. The former is illustrated below.

I understand that, in the end, it is a creative activity
[...] I am highly interested in the possibilities for
new innovations that programming makes possible.
(Student #215)

The implicit occurrences rather typically showed interest in
doing something socially useful:

I like the thing that by programming one is able
to do significant things for the benefit of people’s
every-day life. (Student #48)

F. Preference for/tolerance to open-ended situations (n=8)

This category comprises depictions where programming is
(i) acknowledged as an open-ended challenge where no correct
answers are provided to the programmer, and no single, “one-
size-fits-all” solutions exist. We paid particular attention to (ii)
the students’ tolerance to this condition.

Examples showing acknowledgment (i) are given below,
the latter highlighting agility needed to manage ever-evolving
environment.

One is challenged, because one has to figure out each
solution, and nobody gives ready-made answers.
(Student #204)
[Programming requires] ability to transform [...] One
really can’t rote learn (at least not many things).
There’s neither just one right way of making a
particular program. (Student #135)

It was interesting to notice that students’ responses to
open-ended situations, which they assigned to programming,
diverged (ii). The other was acknowledging this feature while
emphasizing the easiness of (and implicitly preference for) just
selecting one approach:

Things can be done in many ways, but the easiest
way out is to select one and adhere to it. (Student
#213)

In place of creativity, this emphasizes finding a way out
of an open-ended situation. Other considerations revealed a
respondent’s personal tolerance to, and preference for, this
openness. In the example below, this interpretation was further
reinforced by the same respondent showing personal prefer-
ence for programming allowing for creativity.

I consider it interesting how, in talking about pro-
gramming, you do not necessarily have a ’one and
only’ solution for solving and implementing a partic-
ular thing. You can also utilize your own creativity
I suppose, which to my eye is a positive thing.
(Student #219)

G. Aesthetics and elegance (n=7)

Both the students (i) with and (ii) without obvious pre-
experience in programming referred to aesthetics and elegance,
which is illustrated below, respectively.

I appreciate optimized and hacked code, so I ob-
viously consider these aspects important. [I like]
admiring and presenting finished code. (Student #87)
In the future, when I understand programming, I
very likely begin to identify and hate bad code
(Student #125)

The previous quotations were implicit locutions indicating
the category of elegance and aesthetics. The quotation below
shows enjoyment out of elegance, with an explicit reference
to it.

The bonus is the warm feeling in your heart en-
gendered by elegant code [...] I like finding stylish
solutions. (Student #213)

H. Flow-like activity (n=4)

Some parts of the literature associate flow with creative
activity (see Section II-A), an aspect also found in the students’
considerations. Such considerations originated from the stu-
dents who seemed to have experience in programming before
starting CS1, as is obvious in the example below.

[...] Thereby, for instance insufficient interface doc-
umentation readily destroys the programming flow,
which in itself is an integral element in the process
of programming. (Student #212)

The example below further explains that flow may be seen
as a desirable state in programming activity.

[..] Also, being constantly stuck, that you are not
even close to a flow-like sate in which your personal
skills/understanding and the challenge of program-
ming intersect, can be frustrating. (Student #238)

I. Approximation for the remaining of the data

For the remaining data (1,976−240 = 1,706 incidents),
we state here an approximation of the portion of incidents
that included one or more of the words or locutions that
students typically used when referring to creativity within the
sample of 240 incidents. This intends to cover the whole
data set for an overview, with an acknowledgment that this
part of the analysis is approximative. The analysis was a
combination of using the grep command line utility and
human inspection to count in only relevant hits. The search
words identified relevant were different forms and inflections
of Finnish words comparable to the English words freedom,
creativity, opportunity, imagination, what ever, one-self, new,
one’s own, art, elegant, aesthetics, beauty, flow, innovation,
figure out, express, discover — at best a simplified explanation
due to the differences between the languages.

The analysis was done by the analyst inspecting the results
of each grep application, and removing hits from this data
segment step by step, before the next search word was used.
When all the search words were used, 72 % of the data
incidents were left, meaning that a total of 28 % of the data
incidents (students) provided an indication of creativity that
reflected the categories reported in the previous sections. It is
important to note that all uncertain indications that would have
required a more detailed analysis than was possible with the
one-line context returned by grep, or were considered to ben-
efit from peer checking, were not counted as hits. For instance,
if the one-line response included references to ‘opportunities’
without enough context to decide whether this actually denoted
employment opportunities or creative opportunities, the data
item was not considered a hit. Therefore, we can approximate
that at least 28 % of this data segment included references to
creativity, but also that a more detailed human analysis would
have likely revealed a larger portion. Given that the students’
answers in this segment of the data got shorter (less elaborate),
we speculate that this amount reflects a similar tendency that
we observed in the carefully peer-checked sample of 240
items.

V. DISCUSSION

This exploratory research looked at how and to what extent
creativity was indicated in the considerations of students who
were about to study CS1. If we return to look at the nature of
the categories (Figure 1), we can identify two principal ways
in which the students referred to programming in reference

to creativity: personal and characterizing. This division is
illustratively present in the two largest categories: “Freedom to
create and express” reflects students’ personal desires, whereas
“Creative problem-solving” indicates students characterizing
programming as problem-solving in which creativity is needed
and to which it inherently belongs. Merely by looking at the
frequencies, this division seems to differentiate the respondents
rather well: a total of 61 out of the 76 students who indi-
cated the freedom category, did not simultaneously indicate
the problem-solving category. It might be that students who
personally prefer creativity focused their consideration on this
personal position.

The category “Circumstance for personal activity” is also
clearly about a personally valued experience. By selecting
those who indicated the freedom category or this circumstance
category (or both), a total of 90 out of 240 (our main research
sample) can be interpreted to convey a personal, favoring,
position on creativity. This exploratory research, applied to an
existing data set in which creativity was not explicitly probed,
does not have a reference to judge what is a “sufficient”
number of references to claim that creativity is prevailing. In
our speculations, this high number of personal positions alone
documents support for the actions many an educator has taken;
consider the creative settings in introductory programming that
promote engagement and enable personalization of learning.

The literature suggests that part of students may be troubled
when creativity is presumed in authentic settings, such as
open-ended projects, later in the curriculum [16], [17]. In such
settings, the students are required to develop ideas for what
artifact is produced altogether [17] or propose technological
visions for customers starting from a highly ill-formed settings
[28]. Perhaps relatedly, Peters [1] foregrounded a potential
narrowing influence of taking computing courses on students’
identities, whereas Isomöttönen et al. [17] reported that the
education system had likely affected some students’ prepared-
ness for open-ended settings. When we look at the present data
beyond what was reported, we see that it highlights irritating
experiences with meticulous and tedious programming work.
In effect, this obvious point was present in the illustrations of
flow (Section IV-H). On these grounds, we would formulate
that one challenge is the distance between a creativity vision
and the feasibility of that vision in programming. We pro-
pose longitudinal studies that are grounded in the creativity
expectations documented here and identify the multitude of
aspects that come on the way of students’ liking of freedom to
express and create. This research should also identify students
with unarticulated personal positions on creativity, and track
the roots and persistence of those positions.

Several other future research targets can be identified and
were also raised by insightful reviewers. Beginner students’
creativity expectations could be studied across academic disci-
plines. Thus, to develop a big picture of creativity expectations,
it would be interesting to see if such expectations are provoked
by or tightly integrated with a topic such as programming.
Further content analysis could be conducted to explore if any
changes can be observed in beginner students’ expectations

over a several-year period. Another kind of goal would be to
further clarify how beginner programmers see their potential
route to becoming programmers as artists. Yet another interest-
ing topic would be to look at how students’ epistemological
beliefs or fixed-vs-growth mindsets relate to their creativity
expectations; in the present analysis, for instance the category
of Tolerance to open-ended situations can be regarded as an
indication of a stance toward knowledge that is not fixed.

REFERENCES

[1] A.-K. Peters, “Learning computing at university: Participation and
identity: A longitudinal study,” Ph.D. dissertation, Acta Universitatis
Upsaliensis, 2017.

[2] I. Greenberg, D. Kumar, and D. Xu, “Creative coding and visual
portfolios for CS1,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’12.
New York, NY: ACM, 2012, pp. 247–252. [Online]. Available:
http://doi.acm.org/10.1145/2157136.2157214

[3] M. Guzdial, “Exploring hypotheses about media computation,” in
Proceedings of the Ninth Annual International ACM Conference
on International Computing Education Research, ACM. San
Diego, CA: ACM, 2013, pp. 19–26. [Online]. Available:
https://doi.org/10.1145/2493394.2493397

[4] L. Porter and B. Simon, “Fostering creativity in CS1 by hosting a
computer science art show,” ACM Inroads, vol. 4, no. 1, pp. 29–31,
2013. [Online]. Available: http://doi.acm.org/10.1145/2432596.2432609

[5] R. J. Sternberg, How to Develop Student Creativity. Alexandria, Va:
Association for Supervision and Curriculum Development, 1996.

[6] J. A. Plucker, R. A. Beghetto, and G. T. Dow, “Why isn’t
creativity more important to educational psychologists? potentials,
pitfalls, and future directions in creativity research,” Educational
Psychologist, vol. 39, no. 2, pp. 83–96, 2004. [Online]. Available:
https://doi.org/10.1207/s15326985ep3902 1

[7] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch,
T. Selker, and M. Eisenberg, “Design principles for tools to support
creative thinking,” Tech. Rep., 2005.

[8] R. Epstein, “Generative theory,” in Encyclopedia of Creativity, M. A.
Runco and S. R. Pritzker, Eds. San Diego, CA: Academic Press, 1999,
vol. 1, pp. 759–766.

[9] M. Csikszentmihalyi, Creativity: Flow and the Psychology of Discovery
and Invention, 1st ed. New York, NY: HarperCollins Publishers, 1996.

[10] A. Herbert, The Pedagogy of Creativity. New York, NY: Routledge,
2010.

[11] M. Guzdial, “A media computation course for non-majors,” in ACM
SIGCSE Bulletin, vol. 35, no. 3. ACM, 2003, pp. 104–108. [Online].
Available: https://doi.org/10.1145/961511.961542

[12] L. Rich, H. Perry, and M. Guzdial, “A CS1 course designed
to address interests of women,” in ACM SIGCSE Bulletin,
vol. 36, no. 1. ACM, 2004, pp. 190–194. [Online]. Available:
https://doi.org/10.1145/1028174.971370

[13] M. T. Morazán, “Functional video games in the CS1
classroom,” in International Symposium on Trends in Functional
Programming. Springer, 2010, pp. 166–183. [Online]. Available:
https://doi.org/10.1007/978-3-642-22941-1 11

[14] V. Isomöttönen, A.-J. Lakanen, and V. Lappalainen, “K-12
game programming course concept using textual programming,”
in Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education, ser. SIGCSE ’11. New
York, NY: ACM, 2011, pp. 459–464. [Online]. Available:
http://doi.acm.org/10.1145/1953163.1953296

[15] A.-J. Lakanen, “On the impact of computer science outreach events
on k-12 students,” Jyväskylä studies in computing, no. 236, 2016.
[Online]. Available: http://urn.fi/URN:ISBN:978-951-39-6634-8

[16] M. Apiola, M. Lattu, and T. A. Pasanen, “Creativity-
supporting learning environment—CSLE,” Trans. Comput. Educ.,
vol. 12, no. 3, pp. 11:1–11:25, Jul. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2275597.2275600

[17] V. Isomöttönen, M. Daniels, A. Cajander, A. Pears, and R. McDermott,
“Searching for global employability: Can students capitalize on
enabling learning environments?” ACM Transactions on Computing
Education – Special Issue on Global Software Engineering Education,

vol. 19, no. 2, pp. 11:1–11:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3277568

[18] L. D. Miller, L.-K. Soh, V. Chiriacescu, E. Ingraham, D. F.
Shell, S. Ramsay, and M. P. Hazley, “Improving learning of
computational thinking using creative thinking exercises in CS-
1 computer science courses.” in IEEE Frontiers in Education
Conference (FIE). IEEE, 2013, pp. 1426–1432. [Online]. Available:
https://doi.org/10.1109/FIE.2013.6685067

[19] M. S. Peteranetz, A. E. Flanigan, D. F. Shell, and L.-K. Soh, “Helping
engineering students learn in introductory computer science (CS1)
using computational creativity exercises (CCEs).” IEEE Transactions
on Education, vol. 61, no. 3, pp. 195–203, 2018. [Online]. Available:
https://doi.org/10.1109/TE.2018.2804350

[20] L.-K. Soh, D. F. Shell, E. Ingraham, S. Ramsay, and
B. Moore, “Learning through computational creativity.” Commun.
ACM, vol. 58, no. 8, pp. 33–35, 2015. [Online]. Available:
https://doi.org/10.1145/2699391

[21] H.-J. Niemi, “Opiskelijoiden käsitykset ohjelmointiin,” Master’s thesis,
2014, in Finnish.

[22] C. Bruce, L. Buckingham, J. Hynd, C. McMahon, M. Roggenkamp,
and I. Stoodley, “Ways of experiencing the act of learning to
program: A phenomenographic study of introductory programming
students at university,” Journal of Information Technology Education:
Research, vol. 3, no. 1, pp. 145–160, 2004. [Online]. Available:
https://www.learntechlib.org/p/111446/

[23] A. Eckerdal, M. Thuné, and A. Berglund, “What does it take
to learn ‘programming thinking’?” in Proceedings of the First
International Workshop on Computing Education Research, ser. ICER
’05. New York, NY: ACM, 2005, pp. 135–142. [Online]. Available:
http://doi.acm.org/10.1145/1089786.1089799

[24] I. Stamouli and M. Huggard, “Object oriented programming and
program correctness: The students’ perspective,” in Proceedings of the
Second International Workshop on Computing Education Research,
ser. ICER ’06. New York, NY: ACM, 2006, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/1151588.1151605

[25] M. Thuné and A. Eckerdal, “Variation theory applied to students’
conceptions of computer programming,” European Journal of
Engineering Education, vol. 34, no. 4, pp. 339–347, 2009. [Online].
Available: https://doi.org/10.1080/03043790902989374

[26] C. Rogerson and E. Scott, “The fear factor: How it affects students
learning to program in a tertiary environment,” Journal of Information
Technology Education: Research, vol. 9, pp. 147–171, January 2010.
[Online]. Available: https://www.learntechlib.org/p/111361

[27] A.-J. Lakanen and V. Isomöttönen, “What does it take to do
computer programming?: Surveying the k-12 students’ conceptions,”
in Proceedings of the 46th ACM Technical Symposium on Computer
Science Education. ACM, 2015, pp. 458–463. [Online]. Available:
https://doi.org/10.1145/2676723.2677229

[28] M. Daniels, Å. Cajander, A. Pears, and T. Clear, “Engineering education
research in practice: Evolving use of open ended group projects as
a pedagogical strategy for developing skills in global collaboration,”
International journal of engineering education, vol. 26, no. 4, pp. 795–
806, 2010.

