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OPEN AND DISCRETE MAPS WITH PIECEWISE LINEAR

BRANCH SET IMAGES ARE PIECEWISE LINEAR MAPS

RAMI LUISTO AND EDEN PRYWES

Abstract. The image of the branch set of a PL branched cover between
PL n-manifolds is a simplicial (n−2)-complex. We demonstrate that the
reverse implication also holds: an open and discrete map f : Sn → Sn

with the image of the branch set contained in a simplicial (n−2)-complex
is equivalent up to homeomorphism to a PL branched cover.

1. Introduction

A continuous mapping between topological spaces is said to be open if the
image of every open set is open and discrete if the preimages of points are
discrete sets in the domain. The canonical example of an open and discrete
map is the winding map in the plane wp(z) = zp

|z|p−1 , p ∈ Z, and the higher

dimensional analogues, wp × idRk : Rk+2 → Rk+2. An important subclass
of open and discrete maps is that of quasiregular mappings. A mapping
f : Rn → Rn is K-quasiregular for some K ≥ 1 if f ∈ W 1,n

loc (Rn) and for
almost every x ∈ Rn,

‖Df‖ ≤ K det(Df),

where ‖Df‖ is the norm of the weak differential of f and det(Df) is the Jaco-
bian determinant of f (see [Ric93]). By the Reshetnyak theorem quasiregu-
lar mappings are open and discrete ([Res89] or [Ric93, Section IV.5, p. 145])
and so open and discrete maps can be seen as generalizations of quasiregular
mappings, see e.g. [LP17] for some further discussion.

We denote by Bf the branch set of f . This is the set of points where f
fails to be a local homeomorphism.

Continuous, open and discrete maps are sometimes referred to in the
literature as branched coverings (see e.g., [Ric93] and [MS79]). This is due
to the fact that if the map is proper, then its restriction to the complement
of the preimage of the image of its branch set is a covering map. This
terminology is not standard in other fields. Specifically, in the study of
piecewise linear covering maps the term is used to mean an open and discrete
piecewise linear map with a simplicial branch set. For this reason, we will
refer to such maps as open and discrete maps.
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2 R. LUISTO AND E. PRYWES

In dimension two the branch set of open and discrete maps is well un-
derstood. By the classical Stöılow theorem (see e.g. [Sto28] or [LP17]) the
branch set of an open and discrete map between planar domains is a discrete
set. In higher dimensions the Černavskii-Väisälä theorem [Väi66] states that
the branch set of an open and discrete map between two n-manifolds has
topological dimension of at most n−2. Note that the aforementioned wind-
ing map wp : Rn → Rn gives an extremal example as the branch set of wp is
the (n− 2)-dimensional subspace

{(0, 0, x3, . . . , xn) : (x3, . . . , xn) ∈ Rn−2}.
On the other hand the Černavskii-Väisälä result is not strict in all dimen-
sions. In Section 2.3 we describe a classical example by Church and Tim-
ourian of an open and discrete map from S5 to S5 with dimT (Bf ) = 1.
It is currently not known if such examples exist in lower dimensions. For
example, the Church-Hemmingsen conjecture asks if there exists an open
and discrete map in three dimensions with a branch set homeomorphic to a
Cantor set (see [CH60] and [AP17]). In general the structure of the branch
set of an open and discrete map, or even a quasiregular mapping, is not well
understood but the topic garners great interest. In Heinonen’s ICM address,
[Hei02, Section 3], he asked the following:

Can we describe the geometry and the topology of the allowable branch sets
of quasiregular mappings between metric n-manifolds?

In the setting of piecewise linear (PL) branched covers between PL man-
ifolds the Černavskii-Väisälä result is exact in the sense that the branch set
is (n − 2)-dimensional. Furthermore, it is a simplicial subcomplex of the
underlying PL structure and the branched cover is locally a composition of
winding maps. Even without an underlying PL structure of the mapping, we
can in some situations identify that an open and discrete map between Eu-
clidean domains is a winding map. Indeed, by the classical results of Church
and Hemmingsen [CH60] and Martio, Rickman and Väisälä [MRV71], if the
image of the branch set of an open and discrete map f : Ω → Rn is con-
tained in an (n − 2)-dimensional affine subset, then the mapping is locally
topologically equivalent to a winding map. Winding maps, in turn, admit
locally a canonical PL-structure.

The following is the main theorem of this paper. For terminology on
simplicial complexes and cones we refer to Section 2.

Theorem 1.1. Let Ω ⊂ Rn be a domain and f : Ω→ Rn be an open and dis-
crete map. Suppose that f(Bf ) is contained in a simplicial (n− 2)-complex.
Then f is locally topologically equivalent to a piecewise linear map which is
a cone of a lower-dimensional PL branched cover g : Sn−1 → Sn−1.

We also prove a global version of Theorem 1.1.

Theorem 1.2. Let f : Sn → Sn be an open and discrete map such that
f(Bf ) is contained in a simplicial (n− 2)-complex. Then f is topologically
equivalent to a PL branched cover.

We formulate and prove our results in the topological setting, but a
quasiregular version of the theorem can be acquired using similar meth-
ods (see Section 7). The proofs for these theorems will be shown in Section
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4. We also remark that Theorem 1.2 holds for general compact PL manifolds
and the proof is similar.

This gives a partial answer to a question posed by Heinonen and Semmes
in [HS97, Question 28]. The previous two statements assume that f(Bf ) is
contained in a simplicial (n− 2)-complex. Since the results are stated up to
topological equivalence, Theorem 1.1 still applies when f(Bf ) is contained
in a set X such that for each point in X there exists a neighborhood U and
a homeomorphism φ : U → B(0, 1) that sends X ∩U to an (n−2)-simplicial
complex. Theorem 1.1 was shown by Martio and Srebro [MS79] in dimension
three.

A straightforward consequence of Theorem 1.1 is that when f(Bf ) is con-
tained in a codimension two simplicial complex, the topological dimension of
f(Bf ) must be exactly (n− 2). However, there are many open and discrete
maps for which the image of the branch set is complicated. Indeed, Heinonen
and Rickman construct a quasiregular map f : S3 → S3 containing a wild
Cantor set in the branch set. The set S3\f(Bf ) is not simply connected. So,
as a Cantor set with a topologically nontrivial complement, the set f(Bf )
cannot be contained in a codimension 2 simplicial complex (see [HR02] and
[HR98]). Here a wild Cantor set refers to any Cantor set C in Rn such that
there is no homeomorphism h : Rn → Rn for which h(C) ⊂ R× {0}n−1.

We also note that the hypothesis of the PL structure must be made on
the image of the branch set and not on the branch set itself. In Section 2.3
we present a classical example due to Church and Timourian [CT78] of an
open and discrete map whose branch set is a simplicial complex, but whose
image is not.

A crucial step in the proof of Theorem 1.1 is showing that the boundaries
of so-called normal domains of the mapping f are (n − 1)-manifolds. In
dimensions above three we need to study, not only the boundary of a nor-
mal domain U , but also the boundaries of the (n − 1)-dimensional normal
domains of the restriction f |∂U : ∂U → f∂U , and so forth continuing these
restrictions to boundaries of normal domains all the way down to dimension
1.

This added level of detail turns out to be natural in higher dimensions.
The complexity of a mapping is reflected in how many levels of normal
domain boundaries are manifolds. In general, the boundaries of normal
domains can be manifolds when the open and discrete map in question is not
locally a cone of a lower dimensional map. In dimension three, Martio and
Srebro [MS79] proved that the boundaries of normal domains are manifolds
exactly when the open and discrete map in question is locally a path of
lower dimensional open and discrete maps (see Sections 2 and 6 for the
terminology).

We extend this result to higher dimensions in Section 6. A crucial step
in this proof is showing that, in Euclidean spaces, codimension one mani-
fold foliations of punctured domains are necessarily spherical under certain
conditions (see Section 5). In dimensions four and above, the theorem also
generalizes naturally to state that the more levels of boundaries of lower
dimensional normal domains are manifolds, the more the mapping displays
path-like properties. A path of open and discrete maps with nonempty
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branch sets increases the topological dimension of the resulting branch set
by one. So this result gives lower bounds on the topological dimension of
the branch set of an open and discrete map (see Section 6).

The underlying motivation of this paper is to better understand the con-
nections between the behavior of an open and discrete map f and the sets
Bf and f(Bf ). From this point of view, we find the apparent “duality” be-
tween the structure of the branch set and the properties of lower dimensional
normal domains very promising.

Finally, as an application of our results, we construct examples of quasireg-
ular mappings in Section 7 in the form of the following proposition.

Proposition 1.3. For each n ∈ N there exists a non-constant quasiregular
mapping f : R2n → CPn.

As mentioned above, a large motivation for the contemporary study of
open and discrete maps comes from their subclass of quasiregular mappings.
Often quasiregular mappings in dimensions larger than 2 are difficult to
construct, but it can oftentimes be easier to construct open and discrete
maps. Thus Proposition 1.3 demonstrates that Theorem 1.1 can be applied
in some cases to enhance an open and discrete map into a quasiregular
mapping.

2. Preliminaries

We follow the conventions of [Ric93] and say that U ⊂ X is a normal
domain for f : X → Y if U is a precompact domain such that

∂f(U) = f(∂U).

A normal domain U is a normal neighborhood of x ∈ U if

U ∩ f−1({f(x)}) = {x}.
By U(x, f, r), we denote the component of the open set f−1(BY (f(x), r))
containing x. The existence of arbitrarily small normal neighborhoods is es-
sential for the theory of open and discrete maps. The following lemma guar-
antees the existence of normal domains, the proof can be found in [Ric93,
Lemma I.4.9, p.19] (see also [Väi66, Lemma 5.1.]).

Lemma 2.1. Let X and Y be locally compact complete path-metric spaces
and f : X → Y an open and discrete map. Then for every point x ∈ X there
exists a radius r0 > 0 such that U(x, f, r) is a normal neighborhood of x for
any r ∈ (0, r0). Furthermore,

lim
r→0

diamU(x, f, r) = 0.

The following Černavskii-Väisälä theorem (see [Väi66]) is fundamental in
the study of open and discrete maps.

Theorem 2.2. Let X and Y be n-dimensional manifolds. If f : X → Y
is an open and discrete map, then the topological dimension of Bf , f(Bf )
and f−1(f(Bf )) is bounded above by n − 2. In particular, Bf , f(Bf ) and
f−1(f(Bf )) have no interior points and do not locally separate the spaces X
nor Y .
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Another concept that we will use below is that of a cone.

Definition 2.3. Let X be a topological space.

(1) The cone of X is the set cone(X) := (X × [0, 1])/(X × {0}).
(2) If Y is another topological space, a cone map f : cone(X)→ cone(Y )

is a continuous map such that f([(x, t)]) = [(h(x), t)] for some h : X →
Y and for all t ∈ [0, 1]. Note that a mapping g : X → Y induces a
canonical cone map cone(X) → cone(Y ), [(x, t)] 7→ [(g(x), t)] which
we will denote by cone(g).

(3) The suspension of X, denoted S(X), is the disjoint union of two
copies of cone(X) glued together by the identity at X × {1}.

(4) The suspension map of f , denoted S(f) : S(X) → S(Y ), is defined
in a similar manner as the cone map.

Note that cone(Sk) is homeomorphic to the closed (k+ 1)-ball, and S(Sk)
is homeomorphic to Sk+1.

Definition 2.4. A mapping f : X → Y is topologically equivalent to g : X ′ →
Y ′ if there exists homeomorphisms φ and ψ such that

f = ψ−1 ◦ g ◦ φ.
In other words the following diagram commutes:

X Y

X ′ Y ′

f

φ ψ

g

.

2.1. Simplicial complexes and PL-structures. We largely follow [RS72]
in our notation and terminology. We list some of the basic definitions and
concepts in this section for the sake of completeness.

Definition 2.5. Let {v0, . . . , vk} ⊂ Rn be a finite set of points not contained
in any (k − 1)-dimensional affine subset. The k-simplex D is defined as

D =

{
k∑
i=1

λivi :

k∑
i=1

λi = 1, λi ≥ 0

}
.

We say D is spanned by {v1, . . . , vk}.
A face of a simplex D is a simplex spanned by a subset of the vertices

that span D.

Definition 2.6. A simplicial complex X is a locally finite collection of
simplices such that

(1) if D1 ∈ X and D2 is a face of D1, then D2 ∈ X, and
(2) if D1, D2 ∈ X, then D1 ∩D2 is a face of both D1 and D2.

The simplicial complex X is k-dimensional if the highest degree simplex in
X is a k-simplex.

We will often consider X as a subset of Rn. In this case we tacitly identify
X with the union of the simplices contained in X.

Definition 2.7. Let Ω ⊂ Rn be a domain. A mapping f : Ω → Rn is
piecewise linear if there exists a simplicial complex X = Ω such that f is
linear on each n-simplex in X.
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2.2. Algebraic topology. We refer to [Hat02] for basic definitions and
theory of homotopy and homology. We denote the homotopy groups and the
singular homology groups of a space X by πk(X) and Hk(X), respectively,
for k ∈ N. A closed n-manifold M is said to be a homology sphere if
H0(M) = Hn(M) = Z and Hk(M) = 0 for all k 6= 0, n.

A homology sphere need not be a sphere. The canonical example of
a nontrivial homology sphere is the so-called Poincaré homology sphere,
defined by gluing the opposing faces of a solid dodecahedron together with
a twist (see e.g. [Can78] and [KS79]). We will denote the Poincaré homology
sphere by P and note that even though the suspension S(P ) of P is not a
manifold, the double suspension S2(P ) of P is homeomorphic to S5 (see
again e.g. [Can78] and [KS79]).

An important result for us is the following celebrated theorem that is an
immediate corollary of the Hurewicz isomorphism theorem [Hat02, Theo-
rem 4.32] combined with the generalized Poincaré conjecture (see [Sma07],
[Fre82], and [KL08]).

Theorem 2.8. If M is a simply connected homology sphere, then M is
homeomorphic to the n-dimensional sphere Sn.

2.3. The double suspension of the cover S3 → P . To contrast our
results and underline the necessity of the more technical arguments, we recall
in this section a classical open and discrete map from S5 to S5 constructed
by Church and Timourian [CT78] with complicated branch behavior. This
example shares many of the properties of open and discrete maps with f(Bf )
contained in an (n− 2)-simplicial complex, but it is not a PL mapping. For
further discussion on this map see e.g. [AP17].

We note first that the Poincaré homology sphere can be equivalently de-
fined as a quotient of S3 under a group action of order 120 (see [KS79]).
The mapping f : S3 → P induced by the group action is a covering map,
and since S3 is simply connected we see that S3 is the universal cover of the
Poincaré homology sphere P . As a covering map f has an empty branch set
but the suspension of f , S(f) : S(S3)→ S(P ), has a branch set equal to the
two suspension points. By definition of the cone of a map, the preimage of
either suspension point P × {0} or P × {1} is a point and the preimage of
any other point is a discrete set of 120 points. Thus the double suspension
of f ,

S2(f) : S2(S3) ∼= S5 → S2(P ) ∼= S5

is an open and discrete map between 5-spheres and has a branch set equal to
the suspension of the two branch points of S(f). Thus the branch set BS2(f)

is PL-equivalent to S1 and so we see that S2(f) is an open and discrete map
between two spheres with a branch set of codimension four.

The image of the branch set BS2(f) is complicated since its complement
has a fundamental group of 120 elements. Furthermore even though the
branch set is PL-equivalent to S1, the image of the branch set is not PL-
equivalent to a simplicial complex even though it is a Jordan curve in S5.
Thus the map S2(f) does not satisfy the hypothesis of our main theorem.

We also remark for future comparison that for S2(f) the boundaries of
normal neighborhoods U(x0, f, r), where x0 is one of the two suspension
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points of the second suspension, are homeomorphic to S(P ). This means
that the suspension of the Poincaré homology sphere foliates a punctured
neighborhood of a point in R5, but the simply connected space S(P ) with
homology groups of a sphere is not a manifold.

3. Boundary of a normal domain

In this section we show that for an open and discrete map f : Ω → Rn
with f(Bf ) contained in a simplicial (n − 2)-complex, the boundaries of
sufficiently small normal domains are homeomorphic to a sphere. The main
step of the proof takes the form of an inductive argument where in the
inductive step we restrict an open and discrete map to the boundary of a
small normal domain and study the new map between the lower dimensional
spaces. Since we do not a priori know that the boundary of a normal domain
is a manifold, many of the results in this section are proved in a more general
setting where the domain of the mapping is not assumed to be a manifold.

We begin with a few preliminary results on the behavior of f on the
boundary of a normal domain. The following Lemma 3.1 is known to the
experts in the field (see e.g. [MS79]) but we give a short proof for the con-
venience of the reader.

Lemma 3.1. Let X be a locally compact and complete metric space and
f : X → Rn an open and discrete map. Fix x0 ∈ X and let r0 > 0 be such
that Ur := U(x0, f, r) is a normal neighborhood of x0 for all r ≤ r0. Then
the restriction

f |∂Ur : ∂Ur → ∂B(f(x0), r)

is an open and discrete map for all r < r0.

Proof. The restriction is clearly continuous and discrete, so it suffices to
show that it is an open map. Let V ⊂ ∂Ur be a relatively open set and
suppose y = f(x1) ∈ f(V ), where x1 ∈ V . Additionally, suppose that
{x1, . . . , xk} = f−1(y). For δ > 0 let Nδ(y) = B(y, δ)∩ ∂B(f(x0), r) and for
ε > 0 let Nε(xi) = B(xi, ε) ∩ ∂Ur.

Fix ε > 0 so that Nε(xi) ∩ Nε(xj) = ∅ for i 6= j and Nε(x1) ⊂ V . By
[BM17, Lemma 5.15], there exists a δ > 0 such that

f−1(B(y, δ)) ⊂ ∪ki=1B(xi, ε).

Let y′ ∈ Nδ(y). There exists a path γ connecting y to y′ in Nδ(y). By the
path-lifting properties of open and discrete maps, (see e.g. [Ric93, Chapter
II.3] for the Euclidean setting or [Lui17] for a general case), γ can be lifted
to paths γ1, . . . , γk each contained in Nε(xi). The end point of each lift x′i
maps to y′. So Nδ(y) ⊂ f(Nε(x1)) ⊂ f(V ), which means that f(V ) is open.

�

We will repeatedly choose suitably small normal neighborhoods for points
in the domain. For clarity we formulate this selection as the following lemma.

Lemma 3.2. Let X be a locally connected, locally compact and complete
metric space and f : X → Rn an open and discrete map. Then for every
x ∈ X there exists a radius r(x, f) > 0 such that for all r < r(x, f), U(x, f, r)
is a normal neighborhood of x.
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Furthermore if f(Bf ) is contained in an (n − 2)-simplicial complex we
may assume that f(Bf )∩ f(∂U(x, f, r)) = f(Bf )∩ ∂B(f(x), r) is contained
in an (n − 3)-simplicial complex (up to a global homeomorphism) for all
r < r(x, f).

Proof. The first assertion follows from Lemma 2.1.
To prove the second assertion we first note that since ∂B(f(x), r) is home-

omorphic to Sn−1, there exists a finite simplicial decomposition so that
∂B(f(x), r) becomes a finite (n − 1)-simplicial complex. We may subdi-
vide the simplicial structures of the simplicial sets that contains f(Bf ) and
∂B(f(x), r) so that their intersection forms a simplicial structure as well.

It remains to show that the dimension of the intersected structures is no
greater than n − 3. It cannot be larger than n − 2 by our hypothesis on
f(Bf ). By the local finiteness of the complex that contains f(Bf ) we may
choose r(x, f) small enough so that the complex that contains f(Bf ) is not
contained in B(f(x0, r)) for all r < r(x, f). This gives that the dimension
of the intersection is no greater than n− 3. �

3.1. Radial properties of the mapping f . In the following arguments
we need a consistent way of describing boundaries of normal domains of
mappings which are themselves restrictions of ambient mappings to bound-
aries of normal domains. To this end we define nested collections of lower
dimensional normal domains.

Definition 3.3. Let Ω ⊂ Rn be a domain and f : Ω→ Rn an open and dis-
crete map. Denote by Un−1 the collection of boundaries of normal domains
U(x, f, r) ⊂ Ω with r < r(x, f) as in Lemma 3.2. For k = n − 1, . . . , 2 we
similarly define Uk−1 to be the collection of boundaries of normal domains
U(x, f |V , r) ⊂ V , V ∈ Uk, with r < r(x, f |V ) as in Lemma 3.2. We call
these collections as lower dimensional normal domains.

By Lemma 3.2, in the case where f(Bf ) is contained in an (n−2)-simplicial
complex we may assume that for given 1 ≤ k ≤ n− 1 and V ∈ Uk that the
set f(Bf ) ∩ f(∂U(x, f |V , r)) is contained, up to a homeomorphism, in an
(n− 3)-simplicial complex for r < r(x, f |V ).

Lemma 3.4. Let Ω ⊂ Rn be a domain and f : Ω → Rn be an open and
discrete map with f(Bf ) contained in an (n − 2)-simplicial complex. Then
for any k = n− 1, . . . , 1 and V ∈ Uk, f(V ) is homeomorphic to a sphere.

Proof. By using an inductive argument we see that it suffices to study the
case where f(V ) ⊂ f(U) with U ∈ Uk+1 and f(U) is a (k+1)-sphere. In this
setting we may apply Lemma 3.2 to see that V = ∂W , for a normal neigh-
borhood W . Additionally, f(W ) is homeomorphic to a ball of dimension
k+ 1. Since W is a normal neighborhood, the set f(V ) is homeomorphic to
a sphere of dimension k. �

We now prove the main proposition needed for the proof of Theorem 1.1.
It captures the fact that for open and discrete maps with f(Bf ) contained
in an (n−2)-simplicial complex, the branching should occur “tangentially”,
i.e., inside the boundaries of normal domains. Some of the steps of the proof
are described in Figure 1.
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Proposition 3.5. Let Ω ⊂ Rn be a domain and f : Ω→ Rn be an open and
discrete map such that f(Bf ) is contained in an (n− 2)-simplicial complex.
Then for any x0 ∈ Ω, there exists a sufficiently small r < r(x0, f) so that
for v ∈ Sn−1, the path

β : [0, r]→ B(f(x0), r), β(t) = (r − t)v + f(x0)

has a unique lift starting from any point z0 ∈ U(x0, f, r) ∩ f−1({β(0)}).
Proof. Choose r small enough so that f(Bf ) ∩B(f(x0), r) is contained in a
codimension-2 radial set. That is, there exists an (n− 2)-simplicial complex
D containing f(Bf ), such that D ∩B(x0, r1) = r1

r2
(D ∩B(x0, r2)).

Suppose towards contradiction that the claim is false. Then there exist
two different lifts of β, say α1, α2 : [0, r]→ U(x0, f, r) satisfying,

α1(0) = α2(0) = z0 and α1(s0) 6= α2(s0),

for some s0 ∈ (0, r). Set

t0 = inf{t ∈ [0, r] | α1(t) 6= α2(t)}.
So α1(t) = α2(t) for all t ∈ [0, t0], but for s ∈ (t0, t0 + ε) for small ε,
α1(s) 6= α2(s). Without loss of generality we may assume that t0 = 0 and
that

α1(t0) = α2(t0) = z0.

(see top part of Figure 1).
Fix a radius R < r(z0, f) such that B(f(z0), R) ⊂ B(f(x0), r(x0, f)) (see

middle part of Figure 1). Let s0 ∈ (t0, t0 + ε), we may assume that ε is
sufficiently small so that β(s0) ∈ B(f(z0), R). We now let U(α1(s0)) and
U(α2(s0)) be normal neighborhoods of α1(s0) and α2(s0) respectively. Let ζ
be a line segment that has one endpoint at β(s0) and intersects f(Bf ) only
at β(s0). Additionally, suppose that ζ is small so that

ζ ⊂ fU(α1(s0)) ∩ fU(α2(s0)).

Since everything is contained in the image of normal neighborhoods we can
lift ζ to γ1 ⊂ U(α1(s0)) and γ2 ⊂ U(α2(s0)) from the points α1(s0) and
α2(s0), respectively – note though that these lifts might not be unique. Let
γ3 be a path connecting γ1 and γ2 that lies outside of f−1(f(Bf )). The path
f(γ1 ∪ γ2 ∪ γ3) will be a loop based at β(s0) that consists of a line segment
and a loop. The loop will lie outside of f(Bf ) (see bottom part of Figure
1).

By Lemma 2.1, for any sufficiently small radius ρ, there exists a normal
neighborhood of z0 that maps onto B(f(z0), ρ). So we may choose a suffi-
ciently small normal neighborhood of z0, which we denote by V , for which
image of the branch set in V is also radial with respect to f(z0). The point
β(s0) lies on a path between f(z0) and f(x0) so the image of the branch set
will be radial at β(s0) with respect to small enough normal neighborhoods
as well. Indeed, for any w ∈ B(f(z0), R) that does not lie in the simplicial
complex containing f(Bf ), the line segments [w, f(z0)] and [w, f(x0)] will
not belong to the simplicial complex that contains the image of the branch
set (not including f(z0) and f(x0)). Additionally, for each w′ ∈ [w, f(z0)],
the line [w′, f(x0)] will not be in the simplicial complex containing f(Bf )
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Figure 1. Showing that radial lifts are unique.

and so we conclude that the simplicial complex containing f(Bf ) does not
intersect [w, β(s0)] except at β(s0).

Define a homotopy that consists of the straight line from each point in
f(γ1 ∪ γ2 ∪ γ3) to β(s0). Due to the argument mentioned in the previous
paragraph, we see that the homotopy will take f(γ1∪γ2∪γ3) to an arbitrar-
ily small neighborhood of β(s0) without intersecting f(Bf ). Additionally,
the end loop will be contained in the image of the normal neighborhoods,
U(α1(s0)) and U(α2(s0)).

The homotopy can be lifted uniquely since it avoids f(Bf ). The resulting
loop of the homotopy will be lifted separately to the normal neighborhoods
of α1(s0) and α2(s0). This gives a homotopy from a connected curve to two
disconnected loops, which is a contradiction. �
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The previous proposition allows us to uniquely lift radial paths in normal
neighborhoods. We would also like to be able to lift radial paths uniquely
in lower dimensional normal neighborhoods U ⊂ V with V ∈ Uk for any k.

Let f : Ω→ Rn be an open and discrete map such that f(Bf ) is contained
in an (n− 2)-simplicial complex. Let x0 ∈ V ∈ Uk. By Lemma 3.4, f(V ) ∼=
Sk. Up to homeomorphism we can assume that f(V ) minus a point maps
to a k-dimensional plane. In this case f |V will have the image of the branch
set contained in a (k − 2)-simplicial complex.

Proposition 3.6. Let Ω ⊂ Rn be a domain and f : Ω→ Rn be an open and
discrete map such that f(Bf ) is contained in an (n− 2)-simplicial complex.
Let V ∈ Uk. For any x0 ∈ V , there exists a sufficiently small r < r(x0, f |v)
so that for v ∈ Sn−1, the path

β : [0, r]→ B(f(x0), r), β(t) = (r − t)v
has a unique lift starting from any point z0 ∈ U(x0, f |V , r) ∩ f |−1V ({β(0)})
that is contained in V .

Proof. By Proposition 3.5 we know that β has a unique lift in Ω starting
from any preimage of β(0). Thus we only need to show that such a lift is
contained V . By assumption, x0 is a preimage of β(0) in V and the lift of
β under f |V starting from this preimage is contained in V . �

Proposition 3.7. Let Ω ⊂ Rn be a domain and f : Ω → Rn an open and
discrete map with f(Bf ) contained in an (n−2)-simplicial complex. Suppose
k = n−1, . . . , 2 and W ∈ Uk. Then for any x0 ∈W and all normal domains
U(x0, f |W , r) with r < r0 := r(x0, f) (as in Lemma 3.2) there exists a
parameterized collection of homeomorphisms

ht : ∂U(x0, f |W , r0)→ ∂U(x0, f |W , t),
t ∈ (0, r0) such that the mapping

H : (0, r0)× ∂U(x0, f |W , r0)→ U(x0, f |W , r0) \ {x0},

H(t, x) = ht(x)

is also a homeomorphism and U(x0, f |W , r0) ∼= cone(∂U(x0, f |W , r0)).
Proof. For t ∈ (0, r0) and any given point x ∈ ∂U(x0, f |W , t), we define the
homeomorphism ht to map x to the endpoint of the unique lift, guaranteed
by Proposition 3.6, of the straight line segment containing f(x) that has
f(x0) as an endpoint and another endpoint in B(f(x0), r0). Since the lifts
are unique, ht is well-defined.

Let y ∈ ∂U(x0, f |W , t). Then f(y) ∈ B(f(x0), t) and there is a unique
lift of the straight line segment from f(x0) through f(y) to B(f(x0), r0).
The definition of ht gives that if x is the endpoint of the unique lift, then
ht(x) = y. So the map ht is surjective. It is injective since otherwise the lifts
of two disjoint line segments would intersect. So there exists an inverse map
for ht. Since these two maps can be both defined by lifts of line segments,
it suffices to show that ht is continuous to prove the claim.

Suppose that there exists a sequence {aj}j∈N such that aj ∈ ∂U(x0, f |W , r0)
and limj→∞ aj = a ∈ ∂U(x0, f |W , r0). This would imply that there is a ra-
dial line segment I, connecting f(a) to f(x0), together with a sequence (Ij)
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of line segments, connecting f(aj) to f(x0), converging to I. We must show
that the unique lifts αj of Ij converge to the unique lift α of I. If we con-
sider the paths αj as sets in Rn, the compactness of the Hausdorff metric
(see e.g. [BH99, pp. 70–77]) implies that {αj}j∈N must have a converging
subsequence. So by taking a subsequence suppose that limj→∞ αj = β.
Additionally, β will be connected since for each j ∈ N, αj is connected.

We can parametrize the Ij by a time parameter t in the obvious way.
Similarly, we can parametrize αj so that f ◦ αj(t) = Ij(t). By [BH99,
Lemma 5.32], for every x ∈ β, there exists a sequence {αj(t)}j∈N so that
limj→∞ αj(tj) = x. Since f is continuous and f(αj(tj)) ∈ Ij , we have that
f(x) ∈ I. So β ⊂ α. Note that β cannot be contained in a different preimage
of I by f since limj→∞ aj = a ∈ α and β is connected.

If x ∈ α, then there exists a sequence of points yj ∈ Ij such that
limj→∞ yj = f(x). The point yj has a unique preimage xj ∈ αj for all
j ∈ N. By [BH99, Lemma 5.32] there exists a subsequence {xjk}k∈N such
that limk→∞ xjk = x′ ∈ β ⊂ α. So f(x′) ∈ I and by uniqueness of lifts
we have that x = x′. This gives that β = α. The argument shows that
every subsequence of {αj}j∈N must limit to α and so limj→∞ ht(aj) = ht(a),
which gives that ht is continuous.

Finally, it is straightforward to check that H is also a homeomorphism,
which implies that U(x0, f |W , r0) = cone(∂U(x0, f |W , r0)). �

The previous Proposition 3.7 shows that we can foliate the small punc-
tured lower dimensional normal domains with their boundaries. Note that
this does not a priori imply that the boundaries are spheres, see again the
example in Section 2.3.

3.2. Boundaries of normal domains are homeomorphic to spheres.
We wish to show that the boundary of a normal domain is homeomorphic
to a sphere for an open and discrete map f with f(Bf ) contained in an
(n − 2)-simplicial complex. The proof is based on an inductive argument
on the dimension of the lower dimensional normal domains. Most of the
complications in the statements and proofs of the following proposition arise
from the fact that we need to study the restriction of f to the boundary of
a normal domain before showing that the boundary is a manifold.

We first compute the homology groups of the boundary of a lower dimen-
sional normal neighborhood.

Lemma 3.8. Fix k ∈ {2, . . . , n − 1}. Let U be a normal neighborhood of
dimension k centered at a point x ∈ Rn. Let also ∂U = V ∈ Uk. If U is
sufficiently small, then

Hl(V ) = Hl(Sk)
for 0 ≤ l ≤ k, where Hl is the singular homology group.

Proof. By Proposition 3.7, U ∼= cone(V ) and therefore U \ {x} ∼= V × (0, 1).
If k < n − 1, since V ∈ Uk we know that U is a normal neighborhood

contained in some W ∈ Uk+1. By Proposition 3.7 there exists an open
set containing U in W that is homeomorphic to U × (0, 1). Removing the
point x ∈ U thus gives rise to a neighborhood of U \ {x} homeomorphic to
(U \ {x})× (0, 1) ∼= V × (0, 1)2.



OPEN AND DISCRETE MAPS WITH PL BRANCH SET IMAGES 13

We can continue inductively to find an open set containing U in the top
level normal neighborhood (which is a domain in Rn) that is homeomor-
phic to U × (0, 1)n−k−1. Furthermore, U \ {x} is contained in an open set
that is homeomorphic to V × (0, 1)n−k. These are now open sets in Rn
and are therefore manifolds. Recall that U ∼= cone(V ) and therefore U is
contractible. So U × (0, 1)n−k−1 is also contractible.

By extending U to an open domain in Rn the point x ∈ U is extended
radially. Therefore {x} × (0, 1)n−k−1 ⊂ U × (0, 1)n−k−1 is an (n − k − 1)-
submanifold. For 1 ≤ l < k, consider a map

γ : Sl → (U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1).

Since U × (0, 1)n−k−1 is contractible, there is a homotopy H that takes γ to
a point x′ 6= x. The dimension of Sl × (0, 1) is l + 1 and

(l + 1) + (n− k − 1) < n,

since l < k ≤ n− 1. So we claim that the image of H can be guaranteed to
avoid {x}× (0, 1)n−k−1. To prove this claim note that H can be assumed to
be smooth since U×(0, 1)n−k−1\({x}×(0, 1)n−k−1) is an open set and hence a
smooth manifold. By the compactness of the image of H, there exists an ε >
0 so that the ε-neighborhood of H lies in U×(0, 1)n−k−1)\({x}×(0, 1)n−k−1).
Smooth functions are dense in the uniform topology. Therefore there exists
a smooth function H̃ : Sl × [0, 1] → U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)

such that ‖H − H̃‖ < ε. A straight-line homotopy takes H to H̃ and hence
the claim is shown.

We can also assume that the image of H is transverse to the submanifold
{x} × (0, 1)n−k−1 (see [GP74, Chapter 2]). Since the dimensions add up
to a number less than n, the transversality condition implies that they are
actually disjoint. The entire homotopy is disjoint from the removed set and
thus

πl((U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)) = 0

for 1 ≤ l < k. By the above argument, πl(V ) = 0 for 1 ≤ l < k. The lemma
now follows by the Hurewicz theorem [Hat02, p. 366] for this index range.

It remains to show that Hk(V ) = Hk(S
k). We show this case by the

use of the Mayer-Vietoris theorem. Let M = U × (0, 1)n−k−1 and let L =
{x} × Rn−k−1. Note that

M \ L = (U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1).

The Mayer-Vietoris theorem implies that

· · · → Hk+1(M ∪ (Rn \ L))→ Hk(M ∩ (Rn \ L))→ Hk(M)⊕Hk(Rn \ L)

→ Hk(M ∪ (Rn \ L))→ · · ·
is an exact sequence. We have that M and M ∪ (Rn \ L) are contractible.
Additionally,

M ∩ (Rn \ L) = M \ ({x} × (0, 1)n−k−1).

So

0→ Hk(M \ ({x} × (0, 1)n−k−1))→ Hk(Rn \ L)→ 0.
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This implies that

Hk(V ) = Hk((U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)

∼= Hk(Rn \ L) ∼= Hk(S
k).

�

We next show that the boundary of normal domains are homeomorphic
to spheres.

Proposition 3.9. Let k ∈ {2, . . . , n− 1}. If V ∈ Uk, then V ∼= Sk.

Proof. By Lemma 3.8, H0(V ) ∼= H0(Sk) and therefore V is connected.
We now continue to prove the main claim in the proposition. Suppose

first that k = 1 and fix V ∈ U1. We denote the restriction f |V : V → fV
by g. By Lemma 3.4, gV is homeomorphic to a circle. At this level the
intersection of f(Bf ) with g(V ) is at most a finite set of points. Since V
is the boundary of a normal neighborhood we can therefore conclude that
actually

g(V ) ∩ f(Bf ) = ∅.
This implies that V ∩Bf = ∅ and

g : V → g(V ) ∼= S1

is a covering map. Since the map f is finite-to-one in any normal domain, we
see that g is a finite-to-one cover of S1. This implies that V is homeomorphic
to S1.

Suppose next that the claim holds true for some k < n−1 and V ∈ Uk+1.
Fix a point x ∈ V and take a normal neighborhood W of x such that
∂W ∈ Uk. By the inductive assumption ∂W is homeomorphic to Sk. By
Proposition 3.7,

W ∼= cone ∂W ∼= cone Sk ∼= Bn.

The point x has a neighborhood in V homeomorphic to a ball and therefore
V is a closed k-manifold. By Lemma 3.8,

Hl(V ) ∼= Hl(Sk)
for 0 ≤ l ≤ k. In the proof of Lemma 3.8, we also showed that πl(V ) = 0
for 1 ≤ l ≤ k − 1. Combining these we see that V is a simply connected
homology k-sphere and so V ∼= Sk by Theorem 2.8. �

4. PL cone mappings

In this section we prove Theorems 1.1 and 1.2. We divide the proof into a
local and global part. An open and discrete map f : Sn → Sn is called locally
PL with respect to a simplicial decomposition A of Sn if, for all x ∈ Sn, there

exist an open set U ⊂ U ⊂ Sn containing x and an open set U ′ ⊂ U
′ ⊂ Sn

with a homeomorphism

φ : U ′ → U ⊂ Sn

such that f ◦ φ is a PL mapping. Additionally, if U ′ is given a simplicial
decomposition defined by f ◦ φ, a suitable subdivision of the k-simplices in
U ′ are mapped to k-simplices in a subdivision of A.
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Lemma 4.1. Let g : Sn → Sn be an open and discrete map whose branch
set is contained in an (n − 2)-simplicial complex. Let A be a simplicial
decomposition of Sn that contains g(Bg) in its (n−2)-skeleton. Additionally,
suppose that g is locally PL with respect to A. Under these conditions, there
exists a homeomorphism

Φ: Sn → Sn

such that g ◦ Φ is a PL mapping and the k-simplices defined by g ◦ Φ are
mapped to k-simplices in A.

We remark that the proof here uses ideas from the proof in [BM17, Lemma
5.12].

Proof. The strategy of the proof will be to pull back the simplicial structure
A by g. The set Sn can be covered by finitely many open sets U that satisfy
the conditions in the definition of the local PL property of g. We refine A
so that g maps the simplices in U ′ to simplices in A, where φ : U ′ → U is a
homeomorphism as described above.

In the spirit of pulling back A by g, let B be the set of simplices σ such
that g(σ) ∈ A and g|σ is a homeomorphism onto its image. To show that
this is a simplicial structure for Sn it suffices to show that every point lies
in the interior of a unique simplex and that the intersection of two simplices
is a face of those simplices.

We first show that every point lies in the interior of a unique simplex.
Let x ∈ Sn and y = g(x) ∈ ∆o

k, where ∆k is a k-simplex in B and ∆o
k is

the interior of ∆k. Let U be an open set containing x such that there exists
a homeomorphism φ : U ′ → U satisfying that g ◦ φ is a PL mapping. By
our assumption, x′ = φ−1(x) is contained in a simplex D that is mapped by
g ◦ φ onto a simplex in A. Since g ◦ φ(x′) = y ∈ ∆o

k, the simplex D must be
a degree k simplex and x′ ∈ Do. Additionally, Do = (g ◦ φ)−1(∆o

k) ∩ U ′.
The map g ◦φ is a PL branched cover. Therefore it is locally injective on

Do. So g defines a covering map from the component τ of g−1(∆o
k) containing

x to ∆o
k. Since ∆k is simply connected, g is actually a homeomorphism from

τ to ∆o
k.

We claim that g extends to a homeomorphism from σ = τ to ∆k. It
suffices to show that g−1 : ∆o

k → σ extends continuously to the boundary.
Let {yn}n∈N be a sequence of points such that yn → y ∈ ∂∆n. Then there
exists a sequence of points {xn}n∈N such that g(xn) = yn. Let a and b be
accumulation points of {xn}n∈N. Let an be a subsequence that converges to
a and bn a subsequence that converges to b.

By [BM17, Lemma 5.15], for all ε > 0, there exists δ > 0 so that

g−1(B(y, δ)) ⊂ ∪z∈g−1(y)B(z, ε).

By choosing ε sufficiently small, the sets B(z, ε) will be pairwise disjoint for
z ∈ g−1(y). However, for large n, g(an) and g(bn) will be in B(y, δ). If an
and bn are connected by a path γ, then g−1(γ) must be a path connecting
an ∈ B(a, ε) and bn ∈ B(b, ε). So g−1(γ) lies outside ∪z∈g−1(y)B(z, ε), which

gives a contradiction if a 6= b. Thus g−1 extends continuously to ∂∆k and
g defines a homeomorphism from σ to ∆k. This shows that σ defines a
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k-simplex in B and that x ∈ σ. This shows that every x is in a simplex
defined by B.

Let σ1 and σ2 be simplices in B and suppose σ1 ∩ σ2 6= ∅. If σo1 ∩ σo2 6= ∅,
then they must both be k-simplices and by construction must be mapped
homeomorphically onto the same k-simplex ∆k ∈ A. This is not possible
since ∆k is simply connected.

If σo1 ∩ σo2 = ∅, then suppose τ is a simplex such that τ o ∩ σ1 ∩ σ2 6= ∅. It
follows that g(τ) ⊂ g(σ1) ∩ g(σ2). The map g defines an inverse on g(τ)o,
which must agree with the inverses that it defines on g(σ1)

o and g(σ2)
o. So

the entirety of τ must be contained in σ1 ∩ σ2. This implies that σ1 ∩ σ2 is
comprised of the union of finitely many simplices.

Finally, we claim that A and B can be refined so that the intersection
of two simplices is a face. Let σ1 and σ2 be k-simplices. Suppose that
σ1 ∩ σ2 6= ∅ and that there are two (k − 1)-simplices whose interiors are
in σ1 ∩ σ2. We apply a barycentric subdivision A. Then g pulls back this
decomposition to a refinement of B and the new simplices in σ1 and σ2
cannot share more than one (k − 1)-simplex. We may now proceed by
repeated barycentric subdivision to rule out the cases when σ1 ∩ σ2 contain
more than one interior of lower degree shared simplices. At the end of this
process, the refined B must be a simplicial decomposition of Sn.

The construction implies that g is a simplicial map from SnB to SnA. Thus
there exists a PL map from SnB to SnA that is topologically equivalent to g
with respect to A. �

Lemma 4.2. Let f : Sn → Sn be an open and discrete map with f(Bf )
contained in a simplicial (n−2)-complex. Let A be a simplicial decomposition
of Sn that contains f(Bf ) in its (n− 2)-skeleton. Then f is locally PL with
respect to A.

Proof. We proceed by induction on n. The base case, n = 2, follows from
Stöılow’s theorem (see [Sto28] or [LP17]) as f is topologically equivalent to
a rational map S2 → S2 and rational maps are topologically equivalent to
PL mappings.

We now suppose that f : Sn → Sn is defined as in the statement of the
lemma. Then there exists a Euclidean simplicial decomposition A (when Sn
is viewed as Rn ∪{∞}) such that f(Bf ) is contained in the (n− 2)-skeleton
of A.

Fix x ∈ Sn. For a small radius r0, there exists a ball B(f(x), r0) that
is radially symmetric with respect to the simplicial decomposition A. More
precisely, for any simplex ∆ ∈ A,

∆ ∩ ∂B(f(x), r) =
r

s
(∆ ∩ ∂B(f(x), s))

for 0 < r, s ≤ r0, where r/s is the dilation mapping the s-sphere at f(x0) to
the r-sphere.

By Proposition 3.7 and Proposition 3.9, for sufficiently small r0, the nor-
mal neighborhood U(x, f, r0) ∼= cone(V ), where V = ∂U(x, f, r0), is homeo-
morphic to Sn−1. Let g = f |V . By the construction of the homeomorphism
in Proposition 3.7, f is topologically equivalent to cone(g) : cone(V ) →
B(f(x), r0). By the choice of B(f(x), r0), the map g : V → ∂B(f(x), r0)
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sends its branch set into the (n − 3)-skeleton of B(f(x), r0) induced by A.
The induction hypothesis gives that g is locally a PL mapping which re-
spects the simplicial decomposition A. By Lemma 4.1 it is globally a PL
mapping, which respects the simplicial decomposition A.

The set B(f(x), r0) was chosen to be radially symmetric. Therefore, the
map cone(g) also respects the simplicial decomposition A on Sn. Thus f
satisfies the conclusion of the lemma. �

Theorem 1.1 follows immediately from Lemma 4.2. The combination of
Lemmas 4.1 and 4.2 proves Theorem 1.2.

5. Homotopic properties of foliations

In Section 3 we showed that the boundaries of normal neighborhoods
locally foliate a punctured normal neighborhood. Furthermore, when the
image of the branch set is a simplicial (n− 2)-complex, this foliation is the
trivial one, i.e., it consists only of spheres. The proof in Section 3 relied
strongly on the fact that by Proposition 3.7 the boundaries are homeomor-
phic. This enabled us to show that the boundaries are not only manifolds
but even spheres.

In this section we show that the existence of the homeomorphisms given
by Proposition 3.7 is not needed if we a priori assume the boundaries to be
manifolds. Compare these results to the example in Section 2.3, where we
noted that the boundaries of normal neighborhoods of the double suspension
map are not manifolds but do foliate a punctured domain in S5. For clarity
we state the results here as concerning codimension 1 closed submanifolds
in Rn instead of focusing on boundaries of normal neighborhoods. We prove
that the only topological codimension 1 manifold foliations of punctured
domains in euclidean spaces are the trivial spherical ones. We have not
been able to find this statement recorded in the literature in this generality,
but we do not assume it to be unknown to the specialists in the field. See
however [MS79, Theorem 3.7 and Lemma 6.2] for the three dimensional case
and compare to the Reeb Stability Theorem [CC00, Theorem 2.4.1, p. 67]
for a related claim in the smooth setting. Compare also to the Perelman
stability theorem in [Per91] (see also [Kap07]) from which a similar result
could be deduced in the smooth setting.

We do not assume that leaves in foliations are homeomorphic, which arises
from unique path lifts in the setting of Section 3. Rather, we rely here on
the fact that in manifolds with positive injectivity radius homotopy argu-
ments can be essentially reduced to discrete homotopy. Note that the above-
mentioned Perelman stability theorem, [Per91], requires the assumption of
a lower bound to the Ricci curvature, and such a lower bound also gives rise
to a lower bound for the injectivity radius of a closed Riemannian manifold.

Definition 5.1. Let {Ut}, t ∈ (0, 1), be a family of compact n-dimensional
connected manifolds with boundary contained in Rn. If ∂Ut = Xt, then
X := {Xt}, t ∈ (0, 1) is a topological foliation if the following conditions
hold.

(F1) Xt ∩Xs = ∅ when t 6= s.
(F2) 0 ∈ Ut ⊂ Us for all t ≤ s.
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(F3) 0 /∈ Xt for all t ∈ (0, 1) and diam(Xt)→ 0 when t→ 0.
(F4) U := {0} ∪⋃tXt is an open neighborhood of the origin.

By the above properties, there exists a parameter t0 ∈ (0, 1) and a radius
r0 > 0 such that Ut0 ⊂ B(0, r0) ⊂ U . We call the pair (t0, r0) a break point
of the foliation.

We remark that the assumption that Ut is a manifold with boundary seems
unnecessary to us. We believe that instead it should suffice to assume that
Xt are closed, connected (n − 1)-submanifolds in Rn along with (F1)-(F4)
should suffice for the results that follow.

The aim of this section is to show that the definition above always leads
to a trivial foliation.

Theorem 5.2. For any topological foliation X = {Xt} there exists a break
point (t0, r0) with t0 ∈ (0, 1), r0 > 0 such that Xt is a topological sphere for
all t ≤ t0.

To prove this claim we will need several auxiliary results. For the purposes
of the upcoming proofs we denote

AX (a, b) =
⋃

t∈(a,b)

Xt

and call such sets foliation annuli. For subintervals I of (0, 1) we similarly
use the notation AX (I).

Lemma 5.3. Let X = {Xt}t∈(0,1) be a topological foliation. Then for any

a, b ∈ (0, 1), a < b, the foliation annulus AX (a, b) is an n-manifold.

Proof. We show that AX (a, b) is an open subset of Rn. To this end, fix a
point x0 ∈ AX (a, b).

By condition (F2) in Definition 5.1, we have that x0 ∈ Ub ∩ (Rn \Ua). So
there exists an ε > 0 so that B(x0, ε) ⊂ Ub ∩ (Rn \ Ua). For x ∈ B(x0, ε)
let tx = inf{t : x ∈ Ut}. The set is nonempty set since x ∈ Ub. From this
definition we see that x ∈ Xtx . Additionally, a < tx < b by our choice of ε.
Therefore B(x0, ε) ⊂ AX (a, b).

�

Lemma 5.4. Let X be a metric space and let M be a compact topological
manifold embedded in Rn. There exists a δ > 0 such that for any contin-
uous maps f, g : X → M , if supx∈X ‖f(x) − g(x)‖ < δ, then f and g are
homotopic.

Proof. By [Hat02, Theorem A.7], there exists an open neighborhood N ⊂ Rn
of M such that M is a retract of N . If δ is sufficiently small, then for all p ∈
M , Bδ(p) ⊂ N . So the image of the homotopy H(t, x) = (1− t)f(x)+ tg(x),
for t ∈ (0, 1), is contained in N . Let r : N → M be the retraction map.
Then r ◦H is a homotopy from f to g lying in M . �

Motivated by this lemma we fix some terminology on discrete approxima-
tions of homotopies in the setting of manifolds.

Definition 5.5. Let M be a compact n-manifold and let δ be the parameter
given in Lemma 5.4. By Lemma 5.4, if X is a metric space, then any two
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mappings f, g : X → M with supx∈X ‖f(x) − g(x)‖ < δ are homotopic. In
such a setting we say that a discrete homotopy approximation of a continuous
map f : [0, 1]k → M is a discrete collection of points D ⊂ [0, 1]k together
with a mapping g : D → M such that there is a continuation g̃ of g that
satisfies supx∈[0,1]k ‖f(x)− g̃(x)‖ < δ.

We next show that any homotopy performed in the union of a foliation
X can be ‘pulled’ within one of the leaves. For the sake of clarity and
readability we state the main proposition for a general mapping instead of a
homotopy. Note that with minor modifications this argument could be used
with more general topological foliations that are not converging to a point.

Proposition 5.6. Let X = {Xt} be a topological foliation. Then for any
k ∈ N and any continuous mapping

f : Sk × [0, 1]→ AX (0, 1)

there exists a continuous mapping

g : Sk × [0, 1]→ Xt0

such that f and g are homotopic in AX (0, 1).

Proof. Fix k ∈ N and note that for any mapping

f : Sk × [0, 1]→ AX (0, 1)

there is a positive distance from the image of f to the boundary of AX (0, 1).
We define I to be a maximal, possibly trivial, subinterval of (0, 1) such

that for any mapping

f : Sk × [0, 1]→ AX (I)

there exists a mapping

g : Sk × [0, 1]→ Xt0

such that f and g are homotopic. We wish to show that in fact I = (0, 1),
which will prove the claim. In order to show this we demonstrate that I is
non-empty and both open and closed.

Since {t0} ⊂ I, the interval is clearly non-empty. To show that I is open,
we fix s0 ∈ I and cover the (n−1)-dimensional manifold Xs0 with open sets
that form an atlas. Let δ′s0 be the Lebesgue number of this open cover. Next

we cover Xs0 with charts of the n-manifold AX (0, 1) ⊃ Xs0 and denote by
δ′′s0 the Lebesgue number of this open cover. We set δs0 = 8−1 min{δ′s0 , δ′′s0}
and fix ε > 0 such that AX (s0 − ε, s0 + ε) ⊂ Bn(Xs0 , δs0).

Fix now a mapping

f : Sk × [0, 1]→ AX (I ∪ (s0 − ε, s0 + ε)).

Since the domain of f is compact, f is uniformly continuous, so there exists
δ > 0 such that ‖f(x) − f(y)‖ < ε/4 for all x, y with d(x, y) < δ. Let
D ⊂ Sk× [0, 1] be a discrete set such that B(D, δ/4) = Sk× [0, 1] and denote

f̂ := f |D. By our selection of ε we can now define a mapping

ĝ : D → Xs0

such that d∞(f̂ , ĝ) < ε/4, where d∞ denotes the supremum norm.
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Now, since ε < δ′s0/8, we see that the mapping ĝ can be extended through
affine continuations in the charts of Xs0 into a continuous map

g : Sk × [0, 1]→ Xs0 .

We immediately see that we also have d∞(f, g) < ε/2 and so by the definition
of ε we see that f and g are homotopic as we can use the affine line homotopy
within the charts of AX (0, 1) ⊃ Xs0 . Thus we conclude that

(s0 − ε, s0 + ε) ⊂ I
and so I is open.

Finally we need to show that I is closed. We may suppose that b ∈ (0, 1) is
such that (b−ε, b) ⊂ I for some ε > 0. Suppose f : Sk× [0, 1]→ AX ([b−ε, b])
is a continuous map. Then f maps into Ub. Since Ub is a manifold with
boundary, there exists a number δ′ > 0 such that we can form an atlas for
Ub with Lebesgue number δ′. The same argument as above gives a discrete
set D ⊂ Sk × [0, 1], with B(D, δ) = Sk × [0, 1], and a map

ĝ : D → AX (b− ε, ε)
such that ĝ is uniformly close to f̂ := f |D. That is, if d(x, y) < δ/4, then
‖ĝ(x)− ĝ(y)‖ < δ′/2. Since Ub is a manifold with boundary we can extend
ĝ to a map

g : Sk × [0, 1]→ AX (b− ε, b).
Note that if Ub were just an open set and not a manifold with boundary, it
would not be clear that the image of g would not intersect Xb. Since Ub is
a manifold with boundary, the extension can be done affinely in the charts
near the boundary and therefore will not intersect the boundary.

We still have that f and g are uniformly close and so f is homotopic to
g. Thus we can conclude that b ∈ I, and the proof is complete.

�

Corollary 5.7. Let X = {Xt} be a topological foliation with (t0, r0) its break
point. Then for any k = 1, . . . , n− 2 and t ≤ t0, πk(Xt) = 0.

Proof. Fix t < t0 and let α : Sk → Xt, k ∈ 1, . . . , n− 2. Denote by ι : Xt →
B(0, r0) the inclusion map. Since πk(B(0, r0) \ {0}) = 0, there exists a
homotopy

H := Sk × [0, 1]→ B(0, r0) \ {0}
taking α to the constant map α(0). By Proposition 5.6 there exists a homo-
topy

H̃ := Sk × [0, 1]→ Xt

such that H and H̃ are homotopic; especially the homotopy H̃ takes α to
the constant map as a homotopy in Xt. Thus πk(Xt) = 0. �

We are finally ready to prove the main result of this section.

Proof of Theorem 5.2. As closed (n− 1)-submanifolds of Rn, the spaces Xt

are all orientable (see [Hat02, Theorem 3.26]) so Hn−1(Xt) = Z for all
t ∈ (0, 1). On the other hand by Corollary 5.7, if t ≤ t0 for (t0, r0) a break
point of X , then πk(Xt) = πk(Sn−1) for k = 0, . . . , n − 2. This, combined
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with the Hurewicz isomorphism theorem implies that the spaces Xt with
t ≤ t0 are homotopy spheres, and thus topological spheres by Theorem
2.8. �

6. Reverse implication

A crucial step in the proof of our main result, Theorem 1.1 was to detect
that the boundaries of sufficiently small normal domains are manifolds when
the image of the branch set has a PL-structure. Conversely the regularity
of the boundaries of normal domains is strongly connected to the structure
of both the branch set and the mapping in general. This was noted already
by Martio and Srebro in dimension three.

We begin with a simple example demonstrating that we cannot hope the
PL property of f(Bf ) to be equivalent to the property of boundaries of
normal domains being manifolds.

Example 6.1. Let w : R3 → R3 be the standard 2-to-1 winding around the
z axis. Denote by h : R3 → R3 a homeomorphism that takes the z-axis to
the image of the function t 7→ (0, t2 cos(t−1), t). Also define f := w ◦ h ◦ w.
The branch set of f is the z-axis union with the preimage by h of the z-
axis. So the image of the branch set of f is the z-axis union with the image
of w ◦ h of the z-axis. This set will be homeomorphic to infinitely many
connected circles converging to the origin and in particular it will not be an
(n − 2)-dimensional simplicial complex. However, the mapping f has the
property that the boundaries of sufficiently small normal neighborhoods are
manifolds.

Figure 2. The image of the branch set in Example 6.1.

The branch set and its image in the example above do have some regularity
– even though f(Bf ) does not have a PL structure, it is a CW-complex. We
remark that the regularity of f(Bf ) being a CW-complex is not enough
for our main results. The quasiregular mappings constructed by Heinonen
and Rickman in [HR02] and [HR98] also have CW-complex branch sets but
otherwise behave pathologically. In particular, the boundaries of normal
domains are not manifolds in those examples.

Example 6.1 demonstrates that with just the assumption that the bound-
aries of normal domains are manifolds we cannot deduce that the mapping
is locally a cone-type map. Instead we need to study a weaker notion of the
mapping being locally a path-type map.

Definition 6.2. Let Ω ⊂ Rn be a domain and let f : Ω → Rn be an open
and discrete map. We say that f is a path-type mapping at x0 ∈ Ω or that f
is a path of open and discrete maps at x0 ∈ Ω if there exists a radius r0 > 0
and a path t 7→ ft of open and discrete maps ft : Sn−1 → Sn−1 such that

f(x) = ‖x0 − x‖f‖x0−x‖
(

x− x0
‖x− x0‖

)
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for all x ∈ B(x0, r).
We use similar terminology also when f and the mappings in the path

are quasiregular mappings.

With the aid of the results in Section 5 we can now prove the following
proposition.

Proposition 6.3. Let Ω ⊂ Rn be a domain and let f : Ω→ Rn be an open
and discrete map (or a quasiregular mapping.) Suppose that for any x ∈ Ω
and for all r < rx small enough U(x, f, r) is a manifold with boundary. Then
for every x0 ∈ Ω, f is a path of open and discrete maps (or quasiregular
mappings) at x0.

Proof. For any fixed x0 ∈ Ω it is immediate to see that for small enough r0 >
0 the boundaries ∂U(x0, f, r) with r < r0 form a topological foliation since
we assumed them to be manifolds. Thus by Theorem 5.2 each ∂U(x0, f, r) is
a topological sphere and we may set ft = f |∂U(x0,f,r). After conjugating by
homeomorphisms (ft) becomes a path of open and discrete maps between
spheres and thus a path-type map at x0. �

In higher dimensions it is again natural to ask about the structure and
behavior of the boundaries of lower dimensional normal domains.

Lemma 6.4. Let Ω ⊂ Rn be a domain and let f : Ω → Rn be an open and
discrete map. Suppose that for some k ∈ {2, . . . , n − 2} all the (k + 1)-
dimensional normal domains are manifolds with boundary. Then for any
V ∈ Uk+1 the restriction f |∂V is locally a path-type map.

Proof. The proof is identical to the proof of Proposition 6.3. �

The above lemma has a natural corollary when more ‘levels’ of lower
dimensional normal domains are manifolds. To state the corollary we define
that a mapping f : Ω → Rn is a 2-repeated path at x0 ∈ Ω if f is a at x0
a path of path-type open and discrete maps. Likewise a mapping f is a
k-repeated path if it is locally a path of (k − 1)-repeated paths.

Corollary 6.5. Let Ω ⊂ Rn be a domain and let f : Ω → Rn be an open
and discrete map. Suppose that for k consecutive integers all the normal
domains of those dimensions are manifolds with boundary. Then f is an
k-repeated path at x0.

Note that for path-type maps, since open and discrete maps are locally
uniformly continuous, we necessarily have for any t0 that ft → ft0 uniformly
when t→ t0. This in particular implies by basic degree theory (see [Ric93])
that if xt ∈ Bft for all t > t0 and xt → x0 as t → t0, then x0 ∈ Bft0 .
Similarly we see that if x0 ∈ Bft0 , then there must exist a continuous path
t 7→ xt ∈ Bft such that xt → x0 as t → t0. So if f is a path-type map
at x0 ∈ Bf , then dimT (Bf ) ≥ 1, and a similar conclusion holds under the
assumptions of Lemma 6.4. Moreover, we can deduce the following:

Corollary 6.6. Let Ω ⊂ Rn be a domain and let f : Ω → Rn be an open
and discrete map. Suppose that for some k = 2, . . . , n − 2 all the normal
domains of dimension less than or equal to k are manifolds with boundary.
Then dimT (Bf ) ≥ k.
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7. Construction of a quasiregular mapping

Our main results, Theorem 1.1 and Theorem 1.2, can be used to produce
examples of quasiregular mappings between manifolds. We give one such
construction in this section.

Proof of Theorem 1.3. We first note that the manifold CP1 is homeomor-

phic to Ĉ and (Ĉ)n is quasiregularly elliptic via e.g. the Alexander mapping,
see [Ric93]. Additionally, the composition of quasiregular mappings is still
quasiregular. Thus in order to prove quasiregular ellipticity of CPn, it suf-
fices to construct a quasiregular mapping (CP1)n → CPn.

We first construct an open and discrete map f : (CP1)n → CPn. Consider
the polynomial

p(u, v) = (z1u+ w1v) . . . (znu+ wnv).

The coefficients of each term are homogeneous polynomials in ([zi : wi])
n
i=1,

so in particular the coefficients define a continuous map f : (CP1)n → CPn.
By the definition of the mapping, f is locally injective outside the set

Bf = {([z1 : w1], . . . , [zn : wn]) : [zi : wi] = [zj : wj ] for i 6= j}
and at each point x ∈ Bf , f is k-to-1 for some k = k(x) < ∞. Thus f is
discrete. To see that f is open, we note that away from Bf the mapping is
open by local injectivity and on the branch set Bf , f is locally equivalent
to a polynomial, and is thus an open map. Thus we conclude that f is an
open and discrete map.

Again by the definition of f , it is clear that Bf has locally a simplicial
structure. Since f is locally a polynomial, we see that f(Bf ) is also locally
topologically equivalent to an (n − 2) simplicial complex in CPn. Thus by
Theorem 1.1 f is locally equivalent to a PL mapping and hence topologically
equivalent to a quasiregular mapping. A similar argument as in Lemma 4.1
implies that there exists PL structures on (CP1)n and CPn so that f is

equivalent to a PL map. That is, there exists a map, f̃ : X → Y such that
X and Y are PL manifolds and the following diagram commutes:

(CP1)n CPn

X Y

f

φ ψ

f̃

where the mappings φ and ψ are homeomorphisms. The spaces X and Y
have a PL structure and so they also have a quasiconformal structure. When
the dimension is not 4, that is, n 6= 2, by [Sul79] there is in fact a unique
quasiconformal structure. Thus we can identify X and Y with ×ni=1CP

1

and CPn, respectively. In the case n = 4, a direct computation of the maps
shows the same result. Thus we conclude that there exists a quasiregular
mapping

f̃ : (CP1)n → CPn

and we conclude this implies that CPn is quasiregularly elliptic for all n ≥
2. �
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Remark 7.1. In [HR98] Heinonen and Rickman ask the following: Let f : S3 →
S3 be an open and discrete map. Do there exist homeomorphisms h1, h2 : S3 →
S3 such that h1 ◦ f ◦ h2 is a quasiregular mapping? The methods in this
section offer an advance in the understanding of the problem; indeed, the
techniques here can be used to show that for n ≥ 4 any open and discrete
map f : Sn → Sn with fBf contained in a simplicial (n− 2)-complex is, up
to a conjugation by homeomorphisms, a quasiregular mapping.
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