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DETERMINING A RANDOM SCHRÖDINGER OPERATOR: BOTH

POTENTIAL AND SOURCE ARE RANDOM

JINGZHI LI, HONGYU LIU, AND SHIQI MA

Abstract. We study an inverse scattering problem associated with a Schrödinger system
where both the potential and source terms are random and unknown. The well-posedness
of the forward scattering problem is first established in a proper sense. We then derive
two unique recovery results in determining the rough strengths of the random source and
the random potential, by using the corresponding far-field data. The first recovery result
shows that a single realization of the passive scattering measurements uniquely recovers the
rough strength of the random source. The second one shows that, by a single realization of
the backscattering data, the rough strength of the random potential can be recovered. The
ergodicity is used to establish the single realization recovery. The asymptotic arguments
in our study are based on techniques from the theory of pseudodifferential operators and
microlocal analysis.

Keywords: inverse scattering, random source and medium, ergodicity, pseudodifferential
operators, microlocal analysis
2010 Mathematics Subject Classification: 35Q60, 35J05, 31B10, 35R30, 78A40

1. Introduction

1.1. Mathematical formulations. In this paper, we are mainly concerned with the fol-
lowing random Schrödinger system





(
−∆− E + q(x, ω)

)
u(x,

√
E, d, ω) = f(x, ω), x ∈ R

3, (1.1a)

u(x,
√
E, d, ω) = αei

√
Ex·d + usc(x,

√
E, d, ω), (1.1b)

lim
r→∞

r

(
∂usc

∂r
− i

√
Eusc

)
= 0, r := |x|, (1.1c)

where i :=
√
−1, and ω in (1.1a) is a random sample belonging to Ω with (Ω,F ,P) being

a complete probability space, and f(x, ω) and q(x, ω) are independently distributed gener-
alized Gaussian random fields with zero-mean and are supported in bounded domains Df

and Dq, respectively. E ∈ R+ is the energy level. In the sequel, we follow the convention to

replace E with k2, namely k :=
√
E ∈ R+, which can be understood as the wave number.

In (1.1b), d ∈ S
2 := {x ∈ R

3 ; |x| = 1} signifies the incident direction of the plane wave, and
α takes the value of either 0 or 1 to impose or suppress the incident wave, respectively. usc

in (1.1b) is the scattered wave field, which is also random due to the randomness of the
source and potential. The limit (1.1c) is the Sommerfeld Radiation Condition (SRC) [10]
that characterizes the outgoing nature of the scattered field usc. The random system (1.1)
describes the quantum scattering [13, 16] associated with a source f and a potential q at
the energy level k2.
f and q in equation (1.1a) are assumed to be generalized Gaussian random fields. It

means that f is a random distribution and the mapping

ω ∈ Ω 7→ 〈f(·, ω), ϕ〉 ∈ C

is a Gaussian random variable whose probabilistic measure depends on the test function
ϕ. The same notation applies to q. There are different types of generalized Gaussian
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random fields [32]. In our setting, we assume that f and q are two microlocally isotropic

generalized Gaussian random (m.i.g.r. for short) functions/distributions; see Definition 2.1
in the following. The m.i.g.r. model has been under intensive studies; see, e.g., [8, 23–
25]. Two important parameters of a m.i.g.r. distribution are its rough order and rough

strength. Roughly speaking, the rough order, which is a real number, determines the degree
of spatial roughness of the m.i.g.r. distribution, and the rough strength, which is a real-
valued function, indicates its spatial correlation length and intensity. The rough strength
also captures the micro-structure of the object in interest [24]. We shall give a more detailed
introduction to this random model in Section 2.2.

In this work, we denote the rough order of f (resp. q) as −mf (resp. −mq), and the
rough strength as µf (x) (resp. µq(x)). The main purpose of this work is to recover the
rough strengths of both the source and the potential using either passive or active far-field
measurements associated with (1.1).

1.2. Statement of the main results. In order to study the inverse scattering problem,
i.e., the recovery of µf and µq, we first need to have a thorough understanding of the direct
scattering problem. For the case where both the source and the potential are determinis-
tic and L∞ functions with compact supports, the well-posedness of the direct problem of
system (1.1) is known; see, e.g., [10,13,29]. Moreover, there holds the following asymptotic
expansion of the outgoing radiating field usc as |x| → +∞,

usc(x) =
eik|x|

|x| u
∞(x̂, k, d) +O

(
1

|x|2
)
.

u∞(x̂, k, d) is referred to as the far-field pattern, which encodes information of the potential
and the source. x̂ := x/|x| and d in u∞(x̂, k, d) are unit vectors and they respectively
stand for the observation direction and the impinging direction of the incident wave. When
d = −x̂, u∞(x̂, k,−x̂) is called the backscattering far-field pattern.

In the random setting, however, due to the randomness inherited in the source and
potential terms, the regularities of the corresponding scattering wave field are much worse
[8, 24]. This makes those standard PDE theories invalid for the direct problem of system
(1.1). To tackle this issue, we shall reformulate the direct problem and show that the
direct problem is still well-posed in a proper sense. Therefore, our direct problem can be
formulated as

(f, q) → {usc(x̂, k, d, ω), u∞(x̂, k, d, ω) ; ω ∈ Ω, x̂ ∈ S
2, k ∈ R+, d ∈ S

2}.

The well-posedness of the direct scattering problem enables us to explore our inverse
problems. Due to the fact that the precise values of a random function provide little
information about its statistical properties, we are interested in the recovery of the rough
strengths of the source and the potential by knowledge of the far-field patterns.

In the recovery procedure, we recover µf and µq in a sequential way by knowledge of the
associated far-field pattern measurements u∞(x̂, k, d, ω). By sequential, we mean that µf
and µq are recovered by the corresponding far-field data sets one-by-one. In addition to this,
in the recovery procedure, both the passive and active measurements are utilized. When
α = 0, the incident wave is suppressed and the scattering is solely generated by the unknown
source. The corresponding far-field pattern is referred to as the passive measurement. In
this case, the far-field pattern is independent of the incident direction d, and we denote
it as u∞(x̂, k, ω). When α = 1, the scattering is generated by both the active source and
the incident wave, and the far-field pattern is referred to as the active measurement, and is
denoted as u∞(x̂, k, d, ω).
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With the above discussion, our inverse problems can be formulated as
{
Mf (ω) := {u∞(x̂, k, ω) ; ∀x̂ ∈ S

2, ∀k ∈ R+ } → µf ,

Mq(ω) := {u∞(x̂, k,−x̂, ω) ; ∀x̂ ∈ S
2, ∀k ∈ R+ } → µq.

The data set Mf (ω) (abbr. Mf ) corresponds to the passive measurement (α = 0), while
the data set Mq(ω) (abbr. Mq) corresponds to the active measurement (α = 1). Different
random samples ω generate different data sets. Our study shows that in certain general
scenarios the data sets Mf (ω), Mq(ω) with a fixed ω ∈ Ω can uniquely recover µf and µq,
respectively.

With the potential term being unknown, the inverse source problem, i.e., the recovery
of µf , becomes highly nonlinear and thus more challenging. One possibility to tackle this
situation is to put some geometrical assumption on the locations of the source and the
potential. In what follows, we assume that there is a positive distance between the convex
hulls of the supports of f and q, i.e.,

dist(CH(Df ), CH(Dq)) := inf{ |x − y| ; x ∈ CH(Df ), y ∈ CH(Dq) } > 0, (1.2)

where CH means taking the convex hull of a domain. Therefore, one can find a plane which
separates Df and Dq. In what follows, in order to simplify the exposition, we assume that
Df and Dq are convex domains and hence CH(Df ) = Df and CH(Dq) = Dq. Moreover, we
let n denote the unit normal vector of the aforementioned plane that separates Df and Dq,
pointing from the half-space containing Df into the half-space containing Dq.

In system (1.1), both the source and the potential are assumed to be unknown. Moreover,
the source and the potential are generalized random functions of the same type. These issues
make the decoupling of µf and µq far more difficult. However, some a-priori information
about the rough orders of f and q can help us to achieve the recoveries. Now we are ready
to state our main recovery results of the inverse problems.

Theorem 1.1. Suppose that f and q in system (1.1) are m.i.g.r. distributions of order

−mf and −mq, respectively, satisfying

2 < mf < 4, mf < 5mq − 11. (1.3)

Assume that (1.2) is satisfied and n is defined as above. Then, independent of µq, the

data set Mf (ω) for a fixed ω ∈ Ω can uniquely recover µf almost surely. Moreover, the

recovering formula is given by

µ̂f (τ x̂) =





lim
K→+∞

4
√
2π

K

∫ 2K

K
kmfu∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk, x̂ · n ≥ 0,

µ̂f (−τ x̂), x̂ · n < 0,

(1.4)

where τ ≥ 0 and u∞(x̂, k, ω) ∈ Mf (ω).

Remark 1.1. In Theorem 1.1, µf can be uniquely recovered without a-priori knowledge of q.
Moreover, since α = 0 in Mf (ω), Theorem 1.1 indicates that µf can be uniquely recovered
by a single realization of the passive scattering measurement. Due to the requirement
x̂ · n ≥ 0, only half of all the observation directions are needed. Besides, for the sake of
simplicity, we set the wave number k in the definition of Mf to be running over all the
positive real numbers. But, according to (1.4), it is sufficient to let k be greater than
any fixed positive number. These remarks also apply to Theorem 1.2 in what follows.
Moreover, it is noted that in the definition of m.i.g.r. distribution (cf. Definition 2.1), µ
is defined as a real-valued function. Therefore, µ̂f in Theorem 1.1 (and µ̂q in Theorem
1.2 below) is a conjugate-symmetric function. It is worth mentioning that the a-priori
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requirement 2 < mf < 4 comes from (3.22)-(3.23) and (4.6), while the a-priori requirement
mf < 5mq − 11 comes from (4.8) in our subsequent analysis.

To recover µq, the active scattering measurement shall be needed in our recovery proce-
dure.

Theorem 1.2. Under the same condition as that in Theorem 1.1 with an additional as-

sumption that mq < mf , and independent of µf , the data set Mq(ω) for a fixed ω ∈ Ω can

uniquely recover µq almost surely. Moreover, the recovering formula is given by

µ̂q(τ x̂) =





lim
K→+∞

4
√
2π

K

∫ 2K

K
kmqu∞(x̂, k,−x̂, ω)u∞(x̂, k+ τ

2 ,−x̂, ω) dk, x̂ · n ≥ 0,

µ̂f (−τ x̂), x̂ · n < 0,

(1.5)

where τ ≥ 0 and u∞(x̂, k,−x̂, ω) ∈ Mq(ω).

Remark 1.2. It is emphasized that the recovery result in Theorem 1.2 is independent of µf .
Moreover, we only make use of a single realization of the active backscattering measurement.
We would also like to point out that the additional a-priori requirement mq < mf comes
from (5.9) in our subsequent analysis.

1.3. Discussion and connection to the existing results. There is abundant liter-
ature for inverse scattering problems associated with either passive or active measure-
ments. Given a known potential, the recovery of an unknown source term by the cor-
responding passive measurement is referred to as the inverse source problem. We refer
to [2–4,9,15,18–20,22,33,36] and references therein for both theoretical uniqueness/stability
results and computational methods for the inverse source problem in the deterministic
setting. The simultaneous recovery of an unknown source and its surrounding potential
was also investigated in the literature. In [21, 27], motivated by applications in thermo-
and photo-acoustic tomography, the simultaneous recovery of an unknown source and its
surrounding medium parameter was considered. This type of inverse problems also arise
in the magnetic anomaly detections using geomagnetic monitoring [11, 12]. The studies
in [11, 12, 21, 27] were confined to the deterministic setting and associated mainly with
the passive measurement. For the random/stochastic case, the determination of a random
source by the corresponding passive measurement was also recently studied in [1,25,28,35].
In [25], the homogeneous Helmholtz system with a random source is studied. Compared
with [25], system (1.1) in this paper comprises of both unknown source and unknown po-
tential, making the corresponding study radically more challenging. The determination of
a random potential by the corresponding active measurement, with the source term being
zero, was established in [8]. We also refer to [5–7, 23, 24] and references therein for more
relevant studies on random inverse medium problems.

We are particularly interested in the case with a single realization of the random sam-
ple, namely the ω is fixed in the recovery of the source and potential; see the recovery
formulae (1.4)-(1.5). In our approach, we assume that the backscattering far-field data
u∞(x̂, k,−x̂, ω) for different observation directions are generated by a single realization of
the random sample [8]. Intuitively, a particular realization of f or q provides us little
information about their statistical properties. However, our study indicates that a single

realization of the far-field measurement can be used to uniquely recover the rough strength
in certain scenarios. A crucial assumption to make the single realization recovery possible
is that the randomness is independent of the wave number k. Indeed, there are variant ap-
plications in which the randomness changes slowly or is independent of time [8,24], and by
temporal Fourier transforming into the frequency domain, they actually correspond to the
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aforementioned situation. The single realization recovery has been studied in the literature;
see, e.g., [8, 23,24,26]. The idea of this article is mainly motivated by [8, 26].

Compared with our previous work [26], the result of this paper has two major differences.
First, the random models are different. In [26], the random part of the source is assumed to
be a Gaussian white noise, while in system (1.1), the potential and the source are assumed
to be m.i.g.r. distributions. The m.i.g.r. distribution can fit larger range of randomness by
tuning its rough order. Second, in system (1.1), both the source and potential are random,
while in [26], the potential is assumed to be deterministic. These two facts make this work
much more challenging than that in [26]. The techniques used in the estimates of higher
order terms (see Section 3) are pseudodifferential operators and microlocal analysis, which
are more technically involved compared to that in [26].

The rest of this paper is organized as follows. In Section 2, we first give an introduction
to the random model and present some preliminary and auxiliary results. Then we show
the well-posedness of the direct scattering problem. Section 3 establishes the asymptotics
of different terms appeared in the recovery formula. In Section 4, we recover the rough
strength of the source. Section 5 is devoted to the recovery of the rough strength of the
potential.

2. Mathematical analysis of the direct problem

In this section, we show that the direct problem is well-posed in a proper sense. Before
that, we first present some preliminaries for the subsequent use and give the introduction
to our random model.

2.1. Preliminary and auxiliary results. For convenient reference and self-containedness,
we first present some preliminary and auxiliary results in what follows. In this paper, we
mainly focus on the three-dimensional case. Nevertheless, some of the results derived also
hold for higher dimensions and in those cases, we choose to present the results in the general
dimension n ≥ 3 since they might be useful in other studies.

The Fourier transform and inverse Fourier transform of a function ϕ are respectively
defined as

Fϕ(ξ) = ϕ̂(ξ) := (2π)−n/2

∫
e−ix·ξϕ(x) dx,

F−1ϕ(ξ) := (2π)−n/2

∫
eix·ξϕ(x) dx.

Set

Φ(x, y) = Φk(x, y) :=
eik|x−y|

4π|x− y| , x ∈ R
3\{y}.

Φk is the outgoing fundamental solution, centered at y, to the differential operator −∆−k2.
Define the resolvent operator Rk,

(Rkϕ)(x) :=

∫

R3

Φk(x, y)ϕ(y) dy, x ∈ R
3, (2.1)

where ϕ can be any measurable function on R3 as long as (2.1) is well-defined for almost
all x in R

3.
Write 〈x〉 := (1 + |x|2)1/2 for x ∈ R

n, n ≥ 1. We introduce the following weighted
Lp-norm and the corresponding function space over Rn for any δ ∈ R,

‖ϕ‖Lp
δ (R

n) := ‖〈·〉δϕ(·)‖Lp(Rn) =
( ∫

Rn

〈x〉pδ|ϕ|p dx
) 1

p ,

Lp
δ(R

n) := {ϕ ∈ L1
loc(R

n) ; ‖ϕ‖Lp
δ (R

n) < +∞}.
(2.2)
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We also define Lp
δ(S) for any subset S in R

n by replacing R
n in (2.2) with S. In what

follows, we may write L2
δ(R

3) as L2
δ for short without ambiguities. Let I be the identity

operator and define

‖f‖Hs,p
δ (Rn) := ‖(I −∆)s/2f‖Lp

δ (R
n), H

s,p
δ (Rn) = {f ∈ S

′(Rn); ‖f‖Hs,p
δ (Rn) < +∞},

where S ′(Rn) stands for the dual space of the Schwartz space S (Rn). The space Hs,2
δ (Rn)

is abbreviated as Hs
δ (R

n), and Hs,p
0 (Rn) is abbreviated as Hs,p(Rn). It can be verified that

‖f‖Hs
δ (R

n) = ‖〈·〉sf̂(·)‖Hδ(Rn). (2.3)

Let m ∈ (−∞,+∞). We define Sm to be the set of all functions σ(x, ξ) ∈ C∞(Rn,Rn;C)
such that for any two multi-indices α and β, there is a positive constant Cα,β , depending
on α and β only, for which

∣∣(Dα
xD

β
ξ σ)(x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β|, ∀x, ξ ∈ R
n.

We call any function σ in
⋃

m∈R S
m a symbol. A principal symbol of σ is an equivalent class

[σ] = {σ̃ ∈ Sm ; σ − σ̃ ∈ Sm−1}. In what follows, we may use one representative σ̃ in [σ] to
represent the equivalent class [σ]. Let σ be a symbol. Then the pseudo-differential operator
T , defined on S (Rn) and associated with σ, is defined by

(Tσϕ)(x) := (2π)−n/2

∫

Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ

= (2π)−n

∫∫

Rn×Rn

ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ, ∀ϕ ∈ S (Rn).

In the sequel, we write L(A,B) to denote the set of all the bounded linear mappings from
a normed vector space A to a normed vector space B. For any mapping K ∈ L(A,B), we
denote its operator norm as ‖K‖L(A,B). We also use C and its variants, such as CD, CD,f ,
to denote some generic constants whose particular values may change line by line. For two

quantities, we write P . Q to signify P ≤ CQ and P ≃ Q to signify C̃Q ≤ P ≤ CQ, for

some generic positive constants C and C̃. We write “almost everywhere” as “a.e.” and
“almost surely” as “a.s.” for short. We use |S| to denote the Lebesgue measure of any
Lebesgue-measurable set S.
2.2. The random model. As already mentioned in Section 1.1, a generalized Gaussian
random field maps test functions to random variables. Assume h is a generalized Gaussian
random field. Then both 〈h(·, ω), ϕ〉 and 〈h(·, ω), ψ〉 are random variables for ϕ, ψ ∈ S (Rn).
From a statistical point of view, the covariance between these two random variables,

Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉), (2.4)

can be understood as the covariance of h, where the Eω means to take expectation on the
argument ω. Formula (2.4) induces an operator Ch,

Ch : ϕ ∈ S (Rn) 7→ Chϕ ∈ S
′(Rn),

in a way that

Chϕ : ψ ∈ S (Rn) 7→ (Chϕ)(ψ) = Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉) ∈ C.

The operator Ch is called the covariance operator of h. See also [8, 24] for reference.
We adopt the definition of the m.i.g.r. distribution from [8] with some modifications to

fit our mathematical setting.

Definition 2.1. A generalized Gaussian random function h on R
n is called microlocally

isotropic (m.i.g.r.) with rough order −m and rough strength µ(x) in D, if the following
conditions hold:
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(1) the expectation Eh is in C∞
c (Rn) with suppEh ⊂ D;

(2) h is supported in D a.s.;
(3) the covariance operator Ch is a pseudodifferential operator of order −m;
(4) Ch, regarded as a pseudo-differential operator, has a principal symbol of the form

µ(x)|ξ|−m with µ ∈ C∞
c (Rn;R), suppµ ⊂ D and µ(x) ≥ 0 for all x ∈ R

n.

Here, µ(x)|ξ|−m is a representative of the principal symbol of Ch. Throughout this work,
the principal symbol of the covariance operator of the f(·, ω) in (1.1) is assumed to be
µf (x)|ξ|−mf and that of the q(·, ω) in (1.1) is denoted as µq(x)|ξ|−mq .

Lemma 2.1. Let h be a m.i.g.r. distribution of rough order −m in D. Then, h ∈ H−s,p(Rn)
almost surely for any 1 < p < +∞ and s > (n−m)/2.

Proof of Lemma 2.1. See Proposition 2.4 in [8]. �

Lemma 2.1 shows the regularity of h according to its rough order.

By the Schwartz kernel theorem (see Theorem 5.2.1 in [17]), there exists a kernel Kh(x, y)
with suppKh ⊂ D ×D such that

(Chϕ)(ψ) = Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉) =
∫∫

Kh(x, y)ϕ(x)ψ(y) dxdy, (2.5)

for all ϕ, ψ ∈ S (Rn). It is easy to verify that Kh(x, y) = Kh(y, x). Denote the symbol of
Ch as ch, then it can be verified [8] that the equalities





Kh(x, y) = (2π)−n

∫
ei(x−y)·ξch(x, ξ) dξ, (2.6a)

ch(x, ξ) =

∫
e−iξ·(x−y)Kh(x, y) dx, (2.6b)

hold in the distributional sense, and the integrals in (2.6) shall be understood as oscillatory
integrals. Despite the fact that h usually is not a function, intuitively speaking, however,
it is helpful to keep in mind the following correspondence,

Kh(x, y) ∼ Eω

(
h(x, ω)h(y, ω)

)
.

2.3. The well-posedness of the direct problem. We first derive two important quan-
titative estimates.

Theorem 2.1. For any 0 < s < 1/2 and ǫ > 0, when k > 2,

‖Rkϕ‖Hs
−1/2−ǫ

(R3) ≤ Cǫ,sk
−(1−2s)‖ϕ‖H−s

1/2+ǫ
(R3), ϕ ∈ H−s

1/2+ǫ(R
3).

Theorem 2.2. Assume that q(·, ω) is microlocally isotropic of order −m. Then in any

dimension n ≥ 3 and for every s > (n −m)/2 and every ǫ ∈ (0, 3/2], q : Hs
−1/2−ǫ(R

n) →
H−s

1/2+ǫ(R
n) is bounded almost surely,

‖q(·, ω)ϕ(·)‖H−s
1/2+ǫ

(R3) ≤ Cǫ,s(ω)‖ϕ‖Hs
−1/2−ǫ

(Rn), ϕ ∈ H−s
1/2+ǫ(R

n), a.e. ω ∈ Ω.

The random variable Cǫ,s(ω) is finite almost surely.

The arguments in proving Theorems 2.1 and 2.2 are inspired by [8] and [§29, 13].

Proof of Theorem 2.1. Define an operator

Rk,τϕ(x) := (2π)−3/2

∫

R3

eix·ξ
ϕ̂(ξ)

|ξ|2 − k2 − iτ
dξ, (2.7)
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where τ ∈ R+. Fix a function χ satisfying




χ ∈ C∞
c (Rn), 0 ≤ χ ≤ 1,

χ(x) = 1 when |x| ≤ 1,

χ(x) = 0 when |x| ≥ 2.

(2.8)

Write Rψ(x) := ψ(−x). Fix p ∈ (1,+∞), we have

(Rk,τϕ,ψ)L2(R3)

=

∫

R3

Rk,τϕ(x)ψ(x) dx =

∫

R3

F{Rk,τϕ}(ξ) · F{Rψ}(ξ) dξ

=

∫ ∞

0

(1− χ2(r − k))

r2 − k2 − iτ
dr ·

∫

|ξ|=r
ϕ̂(ξ) · R̂ψ(ξ) dS(ξ)

+

∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2

[〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)] dS(ω)

+

∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2

{[〈r〉
−1
2p ϕ̂(rω)][〈r〉

−1
2p R̂ψ(rω)]

− [〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)]}dS(ω)

=: I1(τ) + I2(τ) + I3(τ). (2.9)

Now we estimate I1(τ). By Young’s inequality we have

ab ≤ ap/p + bq/q ⇒ (p1/pq1/q)a1/pb1/q ≤ a+ b (2.10)

for a, b > 0, p, q > 1, 1/p + 1/q = 1. Note that |R̂ψ(ξ)| = |ψ̂(ξ)|, one can compute

|I1(τ)| ≤
∫ ∞

0

1− χ2(r − k)

1 · |r − k| dr ·
∫

|ξ|=r
|ϕ̂(ξ)| · |R̂ψ(ξ)|dS(ξ)

≤
∫ ∞

0

1− χ2(r − k)

1 · p1/pq1/q(r + 1)1/p(k − 1)1/q
dr ·

∫

|ξ|=r
|ϕ̂(ξ)| · |ψ̂(ξ)|dS(ξ) (by (2.10))

≤ Cpk
−1/q

∫ ∞

0
〈r〉−1/p dr ·

∫

|ξ|=r
|ϕ̂(ξ)| · |ψ̂(ξ)|dS(ξ)

≤ Cpk
1/p−1‖ϕ‖

H
−1/(2p)
δ (R3)

‖ψ‖
H

−1/(2p)
δ (R3)

, (2.11)

where 1 < p < +∞ and δ > 0 and the Cp is independent of τ .

We next estimate I2(τ). One has

I2(τ) =

∫

S2

[〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)]

∫ ∞

0

〈r〉
1
p r2χ2(r − k) dr

r2 − k2 − iτ
dS(ω). (2.12)

Let τ0 ∈ (0, 1) be a fixed number whose value shall be specified later. Write pτ (r) := p(r) =
r2 − k2 − iτ . Recall that χ(r − k) = 0 when |r − k| > 2. When τ0 ≤ |r − k| ≤ 2, we have

|p(r)| ≥ |ℜp(r)| = |r − k||r + k| ≥ τ0(2k − 2) ≥ τ0k. (2.13)

Write Γk,τ0 := {r ∈ C; |r − k| = τ0,ℑr ≤ 0}. When r ∈ Γk,τ0 , we have

∀τ ∈ (0, τ0), |pτ (r)| ≥ |r − k| |2k + (r − k)| − τ0 = τ0(2k − τ0)− τ0 ≥ τ0k. (2.14)

Combining (2.13) and (2.14), we conclude that ∀τ ∈ (0, τ0),∀k > 2,

|pτ (r)| ≥ τ0k, ∀ r ∈ {r ∈ R+; 2 ≥ |r − k| ≥ τ0} ∪ Γk,τ0 , ∀τ ∈ (0, τ0). (2.15)
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By using Cauchy’s integral theorem, we change the integral domain w.r.t. r in (2.12) from
R+ to {r ∈ R+; 2 ≥ |r − k| ≥ τ0} ∪ Γk,τ0 . Combining this with the estimate (2.15) and
noting that χ(r − k) = 1 when r ∈ {r ∈ R; |r − k| ≤ 1}, we have

|I2(τ)| ≤
∫

|ξ|=k
〈ξ〉

−1
2p |ϕ̂(ξ)| · 〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫

{r∈R+ ; 2≥|r−k|≥τ0}

〈r〉
1
p (r/k)2

τ0k
dr

)
dS(ξ)

+

∫

|ξ|=k
〈ξ〉

−1
2p |ϕ̂(ξ)| · 〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫

Γk,τ0

(1 + |r|2)
1
2p (|r|/k)2

τ0k
dr

)
dS(ξ) (2.16)

for all τ ∈ (0, τ0) and for all k > 2.
Note that in {r ∈ R+; 2 ≥ |r − k| ≥ τ0} we have

〈r〉2s ≤ 5s〈k〉2s, 1 ≤ (r/k)2 ≤ 4. (2.17)

For r ∈ Γk,τ0 the complex number (1 + r2) can be expressed as R(r)eiθ(r) for real valued
functions R(r) and θ(r). Now we choose τ0 small enough such that |θ(r)| < π

10 in Γ2,τ0 ,
then |θ(r)| < π

10 in Γk,τ0 for all k ≥ 2. This can be easily seen from the geometric view.

Thus (1 + r2)s is well-defined for all |s| ≤ 2, and

∀r ∈ Γk,τ0 , |(1 + r2)s| = |1 + r2|s ≤ (1 + |r|2)s ≤ 〈k + τ0〉2s ≤ Cτ0〈k〉2s (2.18)

for some constant Cτ0 independent of τ when 0 < τ < τ0. Similarly, we have

∀r ∈ Γk,τ0 , |r/k|2 ≤ (k + τ0)
2/k2 ≤ Cτ0 (2.19)

for some constant Cτ0 independent of τ . Hence by (2.17), (2.19) and Remark 13.1 in [13],
we can continue (2.16) as

|I2(τ)| ≤ Cτ0

∫

|ξ|=k
〈ξ〉

−1
2p |ϕ̂(ξ)|〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫

Γk,τ0
∪{r∈R+;2≥|r−k|≥τ0}

〈k〉1/p
τ0k

dr
)
dS(ξ)

≤ Cτ0k
1/p−1‖〈·〉−1/(2p)ϕ̂(·)‖H1/2+ǫ(R3)‖〈·〉−1/(2p)ψ̂(·)‖H1/2+ǫ(R3)

≤ Cτ0,ǫk
1/p−1‖ϕ‖

H
−1/(2p)
1/2+ǫ

(R3)
‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)
, (2.20)

where the constant Cτ0,ǫ is independent of τ . It should be pointed out that the presence
of the infinitesimal number ǫ in ‖·‖H1/2+ǫ in (2.20) comes from the requirement that the
order of the Sobolev space should be strictly greater than 1/2; see Remark 13.1 in [13] for
more relevant discussion. Here, in deriving the last inequality in (2.20), we have made use
of (2.3).

Finally, we estimate I3(τ). Denote F(rω) = Fr(ω) := 〈r〉−1/(2p)ϕ̂(rω) and G(rω) =

Gr(ω) := 〈r〉−1/(2p)
R̂ψ̄(rω). One can compute

|I3(τ)| =
∣∣
∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2

(FrGr − FkGk) dS(ω)
∣∣

≤
∫ ∞

0

〈r〉1/pχ2(r − k)

|r2 − k2| · ‖Fr‖L2(S2r)
·
(
r2

∫

S2

|Gr −Gk|2 dS(ω)
) 1

2 dr

+

∫ ∞

0

〈r〉1/pχ2(r − k)

|r2 − k2| ·
(
r2

∫

S2

|Fr − Fk|2 dS(ω)
) 1

2 ·
( r
k

)2‖Gk‖L2(S2k)
dr, (2.21)

where S
2
r signifies the central sphere of radius r. Combining both Remark 13.1 and (13.28)

in [13] and (2.3) and (2.10), we can continue (2.21) as

|I3(τ)| ≤ Cα,ǫ

∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|(r + k)
· ‖F‖H1/2+ǫ(R3) · |r − k|α · ‖G‖H1/2+ǫ(R3) dr
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≤ Cα,ǫ,p

∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|1−α(r + 1)1/p(k − 1)1−1/p
dr · ‖F‖H1/2+ǫ(R3)‖G‖H1/2+ǫ(R3)

≤ Cα,ǫ,pk
1/p−1

∫ ∞

0

χ2(r − k)

|r − k|1−α
dr · ‖ϕ‖

H
−1/(2p)
1/2+ǫ

(R3)
· ‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)

≤ Cα,ǫ,pk
1/p−1‖ϕ‖

H
−1/(2p)
1/2+ǫ

(R3)
· ‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)
, (2.22)

where the ǫ can be any positive real number and the α satisfies 0 < α < ǫ, and the constant
Cα,ǫ,p is independent of τ .

Combining (2.9), (2.11), (2.20) and (2.22), we arrive at

|(Rk,τϕ,ψ)L2(R3)| ≤ |I1(τ)|+ |I2(τ)|+ |I3(τ)| ≤ Ck1/p−1‖ϕ‖
H

−1/(2p)
1/2+ǫ

(R3)
‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)
,

which implies that

‖Rk,τϕ‖H1/(2p)
−1/2−ǫ

(R3)
≤ Ck1/p−1‖ϕ‖

H
−1/(2p)
1/2+ǫ

(R3)
(2.23)

for some constant C independent of τ .

Next we study the limiting case lim
τ→0+

Rk,τϕ. For any two positive real numbers τ1, τ2 < τ̃ ,

we study |Ij(τ1)− Ij(τ2)| for j = 1, 2, 3.
Similar to our previous derivation, we have

|I1(τ1)− I1(τ2)| ≤
∫ ∞

0

|τ1 − τ2|(1− χ2(r − k))

|r2 − k2| · p
1
p q

1
q (r + 1)

1
p (k − 1)

1
q

dr ·
∫

|ξ|=r
|ϕ̂(ξ)| · |ψ̂(ξ)|dS(ξ)

≤ τ̃ Cpk
1/p−1‖ϕ‖

H
−1/(2p)
δ (R3)

‖ψ‖
H

−1/(2p)
δ (R3)

, (2.24)

and

|I2(τ1)− I2(τ2)| ≤ C

∫

|ξ|=k
〈ξ〉

−1
2p |ϕ̂(ξ)|〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫

{r∈R+;2≥|r−k|≥τ0}

|τ1 − τ2|〈k〉
1
p

(τ0k)2
dr

)
dS(ξ)

+ C

∫

|ξ|=k
〈ξ〉

−1
2p |ϕ̂(ξ)|〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫

Γk,τ0

|τ1 − τ2|〈k〉
1
p

(τ0k)2
dr

)
dS(ξ)

≤ τ̃ Ck1/p−1‖ϕ‖
H

−1/(2p)
1/2+ǫ

(R3)
‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)
. (2.25)

To analyze I3(τ) as τ goes to zero, we note that by (2.10) one has

Cβ(ℜz)β(ℑz)1−β ≤ |z|, ∀z ∈ C,

which holds for all β ∈ (0, 1) and some constant Cβ. Without loss of generality, we assume
τ1 ≤ τ2. Hence we can compute

∣∣ 1

r2 − k2 − iτ1
− 1

r2 − k2 − iτ2

∣∣ ≤ 1

|r2 − k2| ·
Cτ2

|r2 − k2|β · τ1−β
2

≤ Cτβ2
|r2 − k2|1+β

.

Thus

|I3(τ1)− I3(τ2)|

. τβ2

∫ ∞

0

〈r〉
1
pχ2(r − k)

|r − k|1+β(r + 1)
1
p (k − 1)1−

1
p

· |r − k|α · ‖F‖
H

1
2+ǫ(R3)

· ‖G‖
H

1
2+ǫ(R3)

dr

. τ̃βk1/p−1‖ϕ‖
H

−1/(2p)
1/2+ǫ

(R3)
‖ψ‖

H
−1/(2p)
1/2+ǫ

(R3)
, (2.26)

where the last inequality holds when 0 < β < α.
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From (2.24), (2.25) and (2.26) we arrive at

‖Rk,τ1ϕ−Rk,τ2ϕ‖H−1/(2p)
−1/2−ǫ

(R3)
. τ̃‖ϕ‖

H
−1/(2p)
1/2+ǫ

(R3)
, ∀τ1, τ2 ∈ (0, τ̃ ), (2.27)

and thus Rk,τ̃ϕ converges and

lim
τ̃→0+

Rk,τ̃ϕ = Rkϕ in H
1/(2p)
−1/2−ǫ(R

3). (2.28)

The relationships (2.27) and (2.28) sometimes refer to as the limiting absorption principle.
Hence from (2.23) and (2.28) we conclude that

‖Rkϕ‖H1/(2p)
−1/2−ǫ

(R3)
≤ Cǫ,pk

−(1−1/p)‖ϕ‖
H

−1/(2p)
1/2+ǫ

(R3)

holds for any 1 < p < +∞ and any ǫ > 0.
The proof is complete. �

Proof of Theorem 2.2. Let ϕ,ψ ∈ S (Rn) and define 〈qϕ, ψ〉 := 〈q, ϕψ〉. Choose a function
χ such that χ ∈ C∞

c (Rn) and χ(x) = 1 when x ∈ supp q. Choose s′ satisfying −s′ < (m −
n)/2 and p, p′ satisfying 1 < p < +∞, 1/p′ + 1/p = 1. Then according to [Proposition 2.4,
8], ‖q‖H−s′,p′(Rn) < +∞ almost surely. Denote ‖q‖H−s′,p′ (Rn) as Cs(ω). One can compute

|〈qϕ, ψ〉| = |〈q, (χϕ)(χψ)〉| = |〈(I −∆)−s′q, (I −∆)s
′(
(χϕ)(χψ)

)
〉|

≤ ‖q‖H−s′ ,p′(Rn) · ‖(I −∆)s
′(
(χϕ)(χψ)

)
‖Lp(Rn)

= Cs(ω)‖(I −∆)s
′(
(χϕ)(χψ)

)
‖Lp(Rn). (2.29)

According to the fractional Leibniz rule [14], when 1/p = 1/2 + 1/q, one has

‖(I −∆)s
′(
(χϕ)(χψ)

)
‖Lp(Rn) ≤ Cs(ω)

(
‖χϕ‖L2(Rn)‖χψ‖Hs′,q(Rn)

+ ‖χψ‖L2(Rn)‖χϕ‖Hs′,q(Rn)

)
. (2.30)

By (2.29)-(2.30) and noting the Sobolev embedding Hs(Rn) →֒ Hs′,q(Rn) when s − n/2 ≥
s′ − n/q, s > s′, we can continue (2.29) as

|〈qϕ, ψ〉| . Cs(ω)
(
‖χϕ‖L2(Rn) · ‖χψ‖Hs′,q(Rn) + ‖χψ‖L2(Rn) · ‖χϕ‖Hs′,q(Rn)

)

. Cs(ω)‖χϕ‖Hs(Rn) · ‖χψ‖Hs(Rn). (2.31)

Because 1 < p′ < +∞ and s′ > −m−n
2 , the real number s should satisfy

s ≥ s′ +
n

2
− n

q
= s′ +

n

2
− n(

1

p
− 1

2
) = s′ + n− n

p
= s′ +

n

p′
≥ s′ >

n−m

2
.

Next we adapt the proof of Lemma 3.7 in [8] to show that

‖χϕ‖Hs(Rn) ≤ C‖ϕ‖Hs
−2(R

n), ϕ ∈ S (Rn). (2.32)

Rewriting the right-hand side of (2.32) in terms of the L2-norm form, we obtain

‖χϕ‖Hs(Rn) ≤ C‖〈·〉−2(I −∆)s/2ϕ‖L2(Rn).

Write ψ(x) := 〈x〉−2(I − ∆)s/2ϕ(x). Obviously, ϕ ∈ S (Rn) is equivalent to ψ ∈ S (Rn).
Define Taψ := χ · (I −∆)−s/2(〈·〉2ψ). Then χϕ = Taψ and (2.32) is equivalent to

‖Taψ‖Hs(Rn) ≤ C‖ψ‖L2(Rn). (2.33)

Ta is a pseudo-differential operator with

a(x, ξ) := χ(x)
(
〈x〉2〈ξ〉−s − 2ix · ∇ξ〈ξ〉−s −∆ξ〈ξ〉−s

)
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as its symbol. It is easy to see that a ∈ S−s, and thus according to the properties of
pseudo-differential operators [13], (2.33) holds, and so does (2.32).

We can continue the estimates in (2.31) as

|〈qϕ, ψ〉| . Cs(ω)‖χϕ‖Hs(Rn) · ‖χψ‖Hs(Rn) . Cs(ω)‖ϕ‖Hs
−2(R

n) · ‖ψ‖Hs
−2(R

n)

≤ Cs(ω)‖ϕ‖Hs
−1/2−ǫ

(Rn) · ‖ψ‖Hs
−1/2−ǫ

(Rn), ∀ϕ,ψ ∈ S (Rn),

where 0 < ǫ ≤ 3/2, which implies that

‖qϕ‖H−s
1/2+ǫ

(Rn) ≤ Cǫ,s(ω)‖ϕ‖Hs
−1/2−ǫ

(Rn), ∀ϕ ∈ S (Rn). (2.34)

We proceed to show that S (Rn) is dense in Hs
−1/2−ǫ(R

n). Fix a function ϕ satisfy-

ing (2.8). It is clear that ϕ ∈ Hs
−1/2−ǫ(R

n), and hence we have 〈·〉−1/2−ǫ(I − ∆)s/2ϕ ∈
L2(Rn). Then for any δ > 0 there exists a constant M , depending on ϕ, such that

‖〈·〉−1/2−ǫ(I −∆)s/2ϕ− ϕ(1)‖L2(Rn) <
δ
2 , where ϕ

(1) = ϕ(·/M)〈·〉−1/2−ǫ(I − ∆)s/2ϕ. Note

that ϕ(1) ∈ L2(Rn) with a compact support. Furthermore, there exists a sufficiently small
constant ζ ∈ R+ such that ‖ϕ(1) − ϕ(2)‖L2(Rn) <

δ
2 , where ϕ

(2) = ( 1
ζnϕ(

·
ζ )) ∗ ϕ(1). The

function ϕ(2) is in C∞(Rn) with a compact support, thus is in S (Rn). Write ϕ(3) =

(I −∆)−s/2
(
〈·〉1/2+ǫϕ(2)

)
. Hence ϕ(3) ∈ S (Rn) and

‖ϕ− ϕ(3)‖Hs
−1/2−ǫ

(Rn) = ‖〈·〉−1/2−ǫ(I −∆)s/2ϕ− 〈·〉−1/2−ǫ(I −∆)s/2ϕ(3)‖L2(Rn)

≤ ‖〈·〉−1/2−ǫ(I −∆)s/2ϕ− ϕ(1)‖L2(Rn) + ‖ϕ(1) − ϕ(2)‖L2(Rn)

< δ/2 + δ/2 = δ.

Therefore S (Rn) is dense in Hs
−1/2−ǫ(R

n). Since Hs
−1/2−ǫ(R

n) is a Banach space, and hence

by a density argument, the inequality (2.34) can be extended to all ϕ ∈ Hs
−1/2−ǫ(R

n).

The proof is complete. �

We are now in a position to study the well-posedness of the direct scattering problem.
To that end, we reformulate (1.1) into the Lippmann-Schwinger equation formally (cf. [10])
to obtain

(I −Rkq)u
sc = αRkqu

i −Rkf. (2.35)

Theorem 2.3. When k is large enough such that ‖Rkq‖L(H−s
1/2+ǫ

(R3),H−s
1/2+ǫ

(R3)) < 1, there

exists a unique stochastic process usc(·, ω) : R3 → C such that usc(x) satisfies (2.35) almost

surely. Moreover,

‖usc(·, ω)‖H−s
1/2+ǫ

(R3) . ‖αRkqu
i −Rkf‖H−s

1/2+ǫ
(R3) a.s. (2.36)

for any ǫ ∈ R+.

Proof. The condition (1.3) impliesmq > 2, and hence there exists s ∈ (max{(3 −mq)/2, 0}, 1/2)
such that Theorem 2.1 can apply. By Theorems 2.1 and 2.2, we know

F := αRkqu
i −Rkf ∈ H−s

1/2+ǫ(R
3).

From Theorems 2.1 and 2.2, we also know that the operator I − Rkq is invertible from
H−s

1/2+ǫ(R
3) to itself, and the right-hand side of (2.35) belongs to H−s

1/2+ǫ(R
3).

Let usc := (I −Rkq)
−1F ∈ H−s

1/2+ǫ(R
3), then usc fulfills the requirements of the theorem.

The existence of the solution is proved. (2.36) can be verified easily from Theorems 2.1, 2.2
and (2.35). The uniqueness follows readily from (2.36).

The proof is complete. �
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3. Asymptotic analysis of high-order terms

We intend to recover µf , µq from the data via the correlation formula of the following
form

1

K

∫ 2K

K
kmu∞(k, ω)u∞(k + τ, ω) dk, (3.1)

where u∞(k, ω) stands for the far-field pattern u∞(x̂, k, ω) ∈ Mf in the case of α = 0 and
stands for u∞(x̂, k,−x̂, ω) ∈ Mq in the case of α = 1. The Lippmann-Schwinger equation
corresponding to (1.1) is

(I −Rkq)u
sc(k, ω) = αRkqu

i−Rkf. (3.2)

When k is large enough such that ‖Rkq‖L(Hs
−1/2−ǫ

,Hs
−1/2−ǫ

) < 1, from (3.2) we obtain

usc(k, ω) = −
∑

j≥0

Rk

(
(qRk)

jf
)
+ α

∑

j≥0

Rk

(
(qRk)

jqui
)
, (3.3)

u∞(k, ω) = (4π)−1
∑

j=0,1,2

Fj(x̂, k, ω) + α(4π)−1
∑

j=0,1,2

Gj(x̂, k, ω), (3.4)

where 



Fj(x̂, k, ω) := −
∫

R3

e−ikx̂·z[(qRk)
jf

]
(z) dz, j = 0, 1

F2(x̂, k, ω) := −
∑

j≥2

∫

R3

e−ikx̂·z[(qRk)
jf

]
(z) dz,

Gj(x̂, k, d, ω) :=

∫

R3

e−ikx̂·z[(qRk)
jqui

]
(z) dz, j = 0, 1

G2(x̂, k, d, ω) :=
∑

j≥2

∫

R3

e−ikx̂·z[(qRk)
jqui

]
(z) dz.

(3.5)

Substituting (3.4) into (3.1), we obtain several crossover terms comprised by Fj and Gj . To
recover µf and µq, it is necessary to establish the asymptotics of Fj and Gj in terms of k.
The asymptotic analyses of Gj (j = 0, 1, 2) are established in [8].

This section is devoted to the asymptotic analysis of F1 and F2, which are given in
Lemmas 3.3 and 3.5, respectively. These two lemmas shall play key roles in the proofs to
Theorems 1.1 and 1.2.

3.1. Asymptotics of F1. In order to establish the asymptotics of F1, we need to derive
two auxiliary lemmas. First, let us recall the notion of the fractional Laplacian [30] of order
s ∈ (0, 1) in R

n (n ≥ 3),

(−∆)s/2ϕ(x) := (2π)−n

∫∫
ei(x−y)·ξ |ξ|sϕ(y) dy dξ, (3.6)

where the integration is defined as an oscillatory integral. When ϕ ∈ S (Rn), (3.6) can be
understood as a usual Lebesgue integral if one integrates w.r.t. y first and then integrates
w.r.t. ξ. By duality arguments, the fractional Laplacian can be generalized to act on wider
range of functions and distributions (cf. [34]). It can be verified that the fractional Laplacian
is self-adjoint.

In the following two lemmas, we present the results in a more general form where the
space dimension n can be arbitrary but greater than 2, though only the case n = 3 shall be
used subsequently.
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Lemma 3.1. For any s ∈ (0, 1), we have

(−∆ξ)
s/2(eix·ξ) = |x|seix·ξ

in the distributional sense.

Proof. For any ϕ ∈ S (Rn), because (−∆ξ)
s/2 is self-adjoint, we have

(
(−∆ξ)

s/2(eix·ξ), ϕ(ξ)
)
=

(
eix·ξ, (−∆ξ)

s/2ϕ(ξ)
)

=

∫
eix·ξ ·

[
(2π)−n

∫∫
ei(ξ−y)·η|η|sϕ(y) dy dη

]
dξ

=

∫
eix·ξ ·

{
(2π)−n/2

∫ [
(2π)−n/2

∫
ei(ξ−y)·η|η|s dη

]
ϕ(y) dy

}
dξ

= (2π)−n/2

∫
eix·ξ ·

∫
F−1{| · |s}(ξ − y) · ϕ(y) dy dξ

= (2π)−n/2

∫∫
eix·ξF−1{| · |s}(ξ − y) · ϕ(y) dy dξ

=

∫ [
(2π)−n/2

∫
eix·ξF−1{| · |s}(ξ − y) dξ

]
· ϕ(y) dy

=

∫
eix·y

[
(2π)−n/2

∫
e−i(−x)·ξF−1{| · |s}(ξ) dξ

]
· ϕ(y) dy

=

∫
eix·yFF−1{| · |s}(−x) · ϕ(y) dy

=

∫
|x|seix·y · ϕ(y) dy

=
(
|x|seix·ξ, ϕ(ξ)

)
.

It is noted that in the derivation above, some integrals should be understood as oscillatory
integrals. �

Lemma 3.2. For any m < 0, s ∈ (0, 1) and c(x, ξ) ∈ Sm, we have

|
(
(−∆ξ)

s/2c
)
(x, ξ)| ≤ C〈ξ〉m−s,

where the constant C is independent of x, ξ.

Proof. The proof is divided into two steps.

Step 1: The case |ξ| ≥ 1.

In this step, we set |ξ| to be greater than 1. By the definition (3.6), we have

(
(−∆ξ)

s/2c
)
(x, ξ) ≃

∫∫
ei(ξ−η)·γ |γ|s c(x, η) dη dγ

=

∫∫
e−iη·γ |γ|s c(x, η + ξ) dη dγ

=

∫∫
e−iη·γ∣∣ γ

|ξ|
∣∣s c(x, |ξ|η + ξ) d(|ξ|η) d(γ/|ξ|)

≃ |ξ|−s

∫∫
e−iη·γ |γ|s c(x, |ξ|(η + ξ̂)) dη dγ, (3.7)

where ξ̂ = ξ/|ξ|. Fix a function χ0 ∈ C∞
c (R) with χ0(|x|) ≡ 1 when 1/2 ≤ |x| ≤ 3/2 and

χ0(|x|) ≡ 1 when |x| ≤ 0 or |x| ≥ 2. We can continue (3.7) as

(
(−∆ξ)

s/2c
)
(x, ξ) ≃ |ξ|m−s

∫∫
e−iη·γχ0(|η|)|γ|s c(x, |ξ|(η + ξ̂)) |ξ|−m dη dγ
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+ |ξ|m−s

∫∫
e−iη·γ(1− χ0(|η|)

)
|γ|s c(x, |ξ|(η + ξ̂)) |ξ|−m dη dγ

:= |ξ|m−s(B1 + B2). (3.8)

We estimate B1, B2 seperately. For B1, one can compute

B1 =

∫∫
e−i(η−ξ̂)·γχ0(|η − ξ̂|)|γ|s c(x, |ξ|η) |ξ|−m dη dγ

=

∫
eiξ̂·γ |γ|s

( ∫
e−iη·γχ0(|η − ξ̂|) c(x, |ξ|η) |ξ|−m dη

)
dγ

=:

∫
eiξ̂·γ |γ|sJ(γ; |ξ|, x) dγ, (3.9)

where J(γ; |ξ|, x) =
∫
e−iη·γχ0(|η − ξ̂|) c(x, |ξ|η) |ξ|−m dη. We claim that the J(γ; |ξ|, x) is

rapidly decaying w.r.t. |γ|, that is
∀N ∈ N, |γ|2N |J(γ; |ξ|, x)| ≤ CN < +∞, (3.10)

for some constant CN independent of γ, ξ and x. This can be seen from

|γ|2N |J(γ; |ξ|, x)| ≃
∣∣
∫

∆N
η (e−iη·γ) · χ0(|η − ξ̂|) c(x, |ξ|η) |ξ|−m dη

∣∣

=
∣∣
∫
e−iη·γ ·∆N

η

(
χ0(|η − ξ̂|) c(x, |ξ|η)

)
|ξ|−m dη

∣∣

≤
∫

1
2
≤|η−ξ̂|≤2

|∆N
η

(
χ0(|η − ξ̂|) c(x, |ξ|η)| · |ξ|−m dη

.

∫

1
2
≤|η−ξ̂|≤2

∑

|α|≤2N

|(∂αξ c)(x, |ξ|η)| · |ξ||α|−m dη

.
∑

|α|≤2N

∫

1
2
≤|η−ξ̂|≤2

(1 + |ξ| |η|)m−|α| · |ξ||α|−m dη

=
∑

|α|≤2N

∫

1
2
≤|η−ξ̂|≤2

(|ξ|−1 + |η|)m−|α| dη, (3.11)

where N is an arbitrary non-negative integer. The condition |ξ| ≥ 1 gives

(|ξ|−1 + |η|)m−|α| ≤
{
(1 + |η|)m−|α|, when |α| ≤ m,

|η|m−|α|, when |α| > m.
(3.12)

By (3.11) and (3.12), we obtain (3.10). Therefore, J(γ; |ξ|, x) is indeed rapidly decaying.
Now, combining (3.9) and (3.10), we arrive at

|B1| .
∫

|γ|≥1
|γ|s dγ +

∫

|γ|>1
|γ|s|γ|−4 dγ ≤ C < +∞, (3.13)

for some constant C independent of x, ξ.
To estimate B2, we split B2 into two terms, say, B21 and B22, in the following way,

B2 =

∫∫

γ≤1
e−iη·γ(1− χ0(|η|)

)
|γ|s c(x, |ξ|(η + ξ̂)) |ξ|−m dη dγ

+

∫∫

γ>1
e−iη·γ(1− χ0(|η|)

)
|γ|s c(x, |ξ|(η + ξ̂)) |ξ|−m dη dγ

=: B21 + B22. (3.14)
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Define the differential operator L := (γ/|γ|2)·∇η . The term B21 can be estimated as follows,

|B21| ≤
∫

|γ|≤1
|γ|s ·

∣∣
∫
e−iη·γ(1− χ0(|η|)

)
c(x, |ξ|(η + ξ̂)) |ξ|−m dη

∣∣dγ

≃
∫

|γ|≤1
|γ|s ·

∣∣
∫
Ln(e−iη·γ)

(
1− χ0(|η|)

)
c(x, |ξ|(η + ξ̂)) |ξ|−m dη

∣∣dγ

.

∫

|γ|≤1
|γ|s|γ|−n ·

∣∣
∫
e−iη·γ ∇n

η

((
1− χ0(|η|)

)
c(x, |ξ|(η + ξ̂))

)
|ξ|−m dη

∣∣dγ

≤
∫

|γ|≤1
|γ|s−n

∫ ∣∣∣∇n
η

((
1− χ0(|η|)

)
c(x, |ξ|(η + ξ̂))

)∣∣∣ · |ξ|−m dη dγ

.

∫

|γ|≤1
|γ|s−n

∫

|η|6∈( 1
2
, 3
2
)
(1 + |ξ| · |η + ξ̂|)m−n · |ξ|n−m dη dγ

=

∫

|γ|≤1
|γ|s−n

∫

|η|6∈( 1
2
, 3
2
)
(|ξ|−1 + |η + ξ̂|)m−n dη dγ

≤
∫

|γ|≤1
|γ|s−n

∫

|η|6∈( 1
2
, 3
2
)
|η + ξ̂|m−n dη dγ

≤ C < +∞, (3.15)

for some constant C independent of x, ξ. Here, it is noted that in (3.15) n is the space
dimension. The last two inequalities in (3.15) make use of the following three facts: s−n >
−n, m− n < −n, and the restriction |η| 6∈ (1/2, 3/2) that makes |η + ξ̂| ≥ 1/2.

To estimate B22, we proceed in a way similar to (3.15), but replacing Ln with Ln+1,

|B22| .
∫

|γ|>1
|γ|s−1−n

∫ ∣∣∣∇n+1
η

((
1− χ0(|η|)

)
c(x, |ξ|(η + ξ̂))

)∣∣∣ · |ξ|−m dη dγ

.

∫

|γ|>1
|γ|s−1−n

∫

|η|6∈( 1
2
, 3
2
)
(|ξ|−1 + |η + ξ̂|)m−1−n dη dγ

≤
∫

|γ|>1
|γ|s−1−n

∫

|η|6∈( 1
2
, 3
2
)
|η + ξ̂|m−1−n dη dγ

≤ C < +∞, (3.16)

for some constant C independent of x, ξ. Also, the last two inequality in (3.16) take
advantage of the following three facts: s− 1−n < −n, m− 1−n < −n, and the restriction
|η| 6∈ (1/2, 3/2) that makes |η + ξ̂| ≥ 1/2.

Finally, by (3.8), (3.13), (3.14), (3.15) and (3.16), we arrive at

|
(
(−∆ξ)

s/2c
)
(x, ξ)| ≤ C|ξ|m−s, for all |ξ| ≥ 1. (3.17)

Step 2: The case |ξ| < 1.

In this step, |ξ| is set to be smaller than 1. We differentiate
(
(−∆ξ)

s/2c
)
(x, ξ) formally

w.r.t. ξ, and follow the arguments similar to (3.15)-(3.16),

|∂ξj
(
(−∆ξ)

s/2c
)
(x, ξ)| ≃ |∂ξj

∫∫
ei(ξ−η)·γ |γ|s c(x, η) dη dγ|

. |
∫∫

|γ|≤1
L1+n(ei(ξ−η)·γ)|γ|sγj c(x, η) dη dγ|

+ |
∫∫

|γ|>1
L2+n(ei(ξ−η)·γ)|γ|sγj c(x, η) dη dγ|
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.

∫

|γ|≤1
|γ|s−n

∫
〈η〉m−1−n dη dγ

+

∫

|γ|>1
|γ|s−1−n

∫
〈η〉m−2−n dη dγ

≤ C < +∞, (3.18)

where the constant C is independent of x and ξ. Therefore,
(
(−∆ξ)

s/2c
)
(x, ξ) is con-

tinuous w.r.t. ξ in R
n. Moreover, the gradient w.r.t. x and ξ is bounded. Therefore,(

(−∆ξ)
s/2c

)
(x, ξ) is uniformly bounded for all x ∈ R

n and all |ξ| ≤ 1. Combining this with
(3.17), we arrive at the conclusion.

The proof is complete. �

By the commutability between (−∆ξ)
s/2 and differential operators, we can readily obtain

the following corollary.

Corollary 3.1. For any m < 0 and s ∈ (0, 1), we have
(
(−∆ξ)

s/2c
)
(x, ξ) ∈ Sm−s for any c(x, ξ) ∈ Sm.

Proof. Write c̃(x, ξ) = (−∆ξ)
s/2c(x, ξ). Then

∂αx ∂
β
ξ c̃(x, ξ) ≃ ∂αx∂

β
ξ

∫∫
ei(ξ−η)·γ |γ|s c(x, η) dη dγ

≃ ∂αx∂
β
ξ

∫
eiξ·γ |γ|sFξ→γ{c}(x, γ) dγ

≃ ∂αx

∫
eiξ·γ|γ|s γβFξ→γ{c}(x, γ) dγ

≃ ∂αx

∫
eiξ·γ|γ|s Fξ→γ{∂βξ (c)}(x, γ) dγ

≃ ∂αx

∫∫
ei(ξ−η)·γ |γ|s (∂βξ c)(x, η) dη dγ

=

∫∫
ei(ξ−η)·γ |γ|s (∂αx ∂βξ c)(x, η) dη dγ

=
(
(−∆ξ)

s/2(∂αx ∂
β
ξ c)

)
(x, ξ).

Applying Lemma 3.2, we obtain

|∂αx ∂βξ c̃(x, ξ)| ≤ Cα,β〈ξ〉β .
The proof is complete. �

Recall the definition of the unit normal vector n after (1.2). The asymptotic estimate
associated with the term F1 is established in the following lemma.

Lemma 3.3. We have

E(|F1(x̂, k, ·)|2) ≤ Ck−4, ∀ k > 1, (3.19)

for all x̂ with x̂ · n ≥ 0, and the constant C in (3.19) is independent of x̂, k.

In what follows, we shall use C(·) and its variants, such as ~C(·), Ca,b(·) etc., to represent
some generic smooth scalar/vector functions, within C∞

c (R3) or C∞
c (R3×4), whose particular

definition may change line by line.
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Proof of Lemma 3.3. Using (2.5) and (2.6), one can show that

E(|F1(x̂, k, ·)|2)

= E
( ∫

R3

e−ikx̂·yq(y, ·)
∫

R3

eik|y−s|

4π|y − s|f(s, ·) ds dy

·
∫

R3

eikx̂·zq(z, ·)
∫

R3

e−ik|z−t|

4π|z − t|f(t, ·) dt dz
)

≃
∫
e−ikx̂·(y−z) e

ik(|y−s|−|z−t|)

|y − s| · |z − t| · E
(
q(y, ·)q(z, ·)

)
· E

(
f(s, ·)f(t, ·)

)
d(s, y, t, z)

≃
∫
eikϕ(y,s,z,t)

( ∫
ei(z−y)·ξcq(z, ξ) dξ

)( ∫
ei(t−s)·ηcf (t, ξ) dη

)
· C · d(s, y, t, z), (3.20)

where ϕ(y, s, z, t) := −x̂ · (y − z)− |y − s|+ |z − t|, and the d(s, y, t, z) is a short notation
for ds dy dt dz. We omit the repeated integral symbols and the integral domain in the
calculation for simplicity. The term C(y, z, s, t) in (3.20) belongs to C∞

c (R3×4) due to the
fact that q and f are compactly supported and dist(CH(Df ), CH(Dq)) > 0.

Next we are about to differentiate the term eikϕ(y,s,z,t) by two differential operators, in
order to obtain the decay w.r.t. the argument k. To that end, we introduce the aforesaid
two differential operators with C∞-smooth coefficients as follows,

L1 :=
(y − s) · ∇s

ik|y − s| , L2 = L2,x̂ :=
∇yϕ · ∇y

ik|∇yϕ|
,

where ∇yϕ = s−y
|s−y| − x̂. The operator L2,x̂ depends on x̂ because ∇yϕ does. Due to the

fact that y ∈ Dq while s ∈ Df , the operator L1 is well-defined. It can be verified there is a
positive lower bound of |∇yϕ| for all x̂ ∈ {x̂ ∈ S

2 : x̂ · n ≥ 0}. It can also be verified that

L1(e
ikϕ(y,s,z,t)) = L2(e

ikϕ(y,s,z,t)) = eikϕ(y,s,z,t).

By using integration by parts, one can compute

E(|F1(x̂, k, ·)|2)

=

∫ (
L2
1L

2
2

)
(eikϕ(y,s,z,t)) ·

( ∫
ei(z−y)·ξcq(z, ξ) dξ

)

·
( ∫

ei(t−s)·ηcf (t, η) dη
)
· C(y, z, s, t) d(s, y, t, z)

≃ k−4

∫

D
eikϕ(y,s,z,t)

[
J1 (K1 C + ~K2 · ~C +

∑

a,b=1,2,3

K3;a,b Ca,b)

+
∑

c=1,2,3

J2;c (K1 Cc + ~K2 · ~Cc +
∑

a,b=1,2,3

K3;a,b Ca,b,c)

+
∑

a′,b′=1,2,3

J3;a′,b′(K1 Ca′,b′ + ~K2 · ~Ca′,b′ +
∑

a,b=1,2,3

K3;a,b Ca,b,a′,b′)
]
d(s, y, t, z), (3.21)

where the integral domain D ⊂ R
3×4 is bounded and

J1 :=

∫
ei(t−s)·η cf (t, η) dη, K1 :=

∫
ei(z−y)·ξ cq(z, ξ) dξ,

~J2 := ∇s

∫
ei(t−s)·η cf (t, η) dη, ~K2 := ∇y

∫
ei(z−y)·ξ cq(z, ξ) dξ,

J3;a,b := ∂2sa,sb

∫
ei(t−s)·η cf (t, η) dη, K3;a,b := ∂2ya,yb

∫
ei(z−y)·ξ cq(z, ξ) dξ,
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and J2;c (resp. K2;c) is the c-th component of the vector ~J2 (resp. ~K2).

For the case with s 6= t, these three quantities, J1, ~J2 and J3;a,b, can be estimated as
follows,

|J1| = |
∫
ei(t−s)·η cf (t, η) dη| = |s− t|−2 · |

∫
∆η(e

i(s−t)·η) cf (t, η) dη|

= |s− t|−2 · |
∫
ei(t−s)·η(∆ηcf )(t, η) dη| ≤ |s− t|−2

∫
|(∆ηcf )(t, η)|dη

. |s− t|−2

∫
〈η〉−mf−2 dη . |s− t|−2, (3.22)

and

| ~J2;c| = |∂sc
∫
ei(t−s)·η cf (t, η) dη| = |

∫
ei(t−s)·η · cf (t, η)ηc dη|

= |s− t|−2 · |
∫

∆η(e
i(t−s)·η) cf (t, η)ηc dη| = |s− t|−2 · |

∫
ei(t−s)·η∆η(cf (t, η)ηc) dη|

. |s− t|−2

∫
〈η〉−mf+1−2 dη . |s− t|−2, (3.23)

and similarly

J3;a,b ≃
∫
ei(t−s)·η · cf (t, η)ηaηb dη ≃ |s− t|−2

∫
∆η(e

i(t−s)·η) · cf (t, η)ηaηb dη

= |s− t|−2

∫
ei(t−s)·η ·∆η(cf (t, η)ηaηb) dη. (3.24)

Here, in deriving the last two inequalities respectively in (3.22) and (3.23), we have made use
of the a-priori requirement mf > 2 in (1.3); see also the discussion at the end of Remark 1.1.

Now, if we further differentiate the term ei(t−s)·η in (3.24) by i(s−t)·
|s−t|2 ∇η and then transfer

the operator ∇η onto ∆η(cf (t, η)ηaηb) by using integration by parts, we would arrive at

|J3;a,b| . |s− t|−3

∫
|∇η∆η(cf (t, η)ηaηb)|dη ≤ |s− t|−3

∫
〈η〉−mf−1 dη.

The term
∫
〈η〉−mf−1 dη is absolutely integrable now, but the term |s− t|−3 is not integrable

at the hyperplane s = t in R
3. To circumvent this dilemma, the fractional Laplacian can

be applied as follows. By using Lemmas 3.1 and 3.2, we can continue (3.24) as

|J3;a,b| ≃ |s− t|−2 ·
∣∣|s− t|−s

∫
(−∆η)

s/2(ei(t−s)·η) ·∆η(cf (t, η)ηjηℓ) dη
∣∣

= |s− t|−2−s · |
∫
ei(t−s)·η · (−∆η)

s/2
(
∆η(cf (t, η)ηjηℓ)

)
dη|

. |s− t|−2−s

∫
〈η〉−mf+2−2−s dη = |s− t|−2−s

∫
〈η〉−mf−s dη, (3.25)

where the number s is chosen to satisfy max{0, 3−mf} < s < 1, and the existence of such
a number s is guaranteed by noting that mf > 2. Therefore, we have

{ −mf − s < −3, (3.26a)

−2− s > −3. (3.26b)

Thanks to the condition (3.26a), we can continue (3.25) as

|J3;a,b| . |s− t|−2−s

∫
〈η〉−mf−s dη . |s− t|−2−s. (3.27)
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Using similar arguments, we can also conclude that
{
|K1|, |~K2| . |y − z|−2,

|K3;a,b| . |y − z|−2−s.
(3.28)

Combining (3.21), (3.22), (3.23), (3.27) and (3.28), we arrive at

E(|F1(x̂, k, ·)|2)

. k−4

∫

D
(|J1|+ | ~J2|+

∑

a′,b′=1,2,3

|J3;a′,b′ |) · (|K1|+ |~K2|+
∑

a,b=1,2,3

|K3;a,b|) d(s, y, t, z)

. k−4

∫

D
|s− t|−2−s · |y − z|−2−s d(s, y, t, z)

. k−4

∫

D̃
|s− t|−2−s ds dt ·

∫

D̃
|y − z|−2−s dy dz (3.29)

for some sufficiently large but bounded domain D̃ ⊂ R
3×2 satisfying D ⊂ D̃ × D̃. Note

that the integral (3.29) should be understood as a singular integral because of the presence
of the singularities occuring when s = t and y = z. By (3.29) and (3.26b), we can finally
conclude (3.19).

The proof is complete. �

3.2. Asymptotics of F2. The following lemma is necessary for the estimates of F2(x̂, k, ω).

Lemma 3.4. Assume that ǫ > 0. For ∀s ∈ R, ∀k ∈ R and ∀x̂ ∈ S
n−1, we have

‖e−ikx̂·(·)ϕ‖Hs
−1/2−ǫ

≤ Cs,ϕ〈k〉s, ∀ϕ ∈ C∞
c (Rn),

where the constant Cs,ϕ depends on s and ϕ, but is independent of x̂, k.

Proof. By the Plancherel theorem and Peetre’s inequality, one has

‖e−ikx̂·(·)ϕ‖2Hs
−1/2−ǫ

=

∫
〈x〉−1−2ǫ|(I −∆)s/2

(
e−ikx̂·(·)ϕ

)
(x)|2 dx

≤
∫

|(I −∆)s/2
(
e−ikx̂·(·)ϕ

)
(x)|2 dx

≃
∫

〈ξ〉2s|F
{
e−ikx̂·(·)ϕ

}
(ξ)|2 dξ =

∫
〈ξ〉2s|ϕ̂(ξ + kx̂)|2 dξ

=

∫
〈ξ − kx̂〉2s|ϕ̂(ξ)|2 dξ ≤ 〈k〉2s

∫
〈ξ〉2|s||ϕ̂(ξ)|2 dξ.

ϕ̂ is rapidly decaying because ϕ ∈ C∞
c (Rn). Thus, the integral

∫
〈ξ〉2|s||ϕ̂(ξ)|2 dξ is a finite

number depending on s, ϕ. The proof is done. �

Lemma 3.5. For every s ∈ (
3−mq

2 , 12 ), there exists a subset Ωs ⊂ Ω with P(Ωs) = 0 such

that for ∀ω ∈ Ω\Ωs, the inequality

|F2(x̂, k, ω)| ≤ Cs(ω)k
5s−2 (3.30)

holds uniformly for ∀x̂ ∈ S
2 and ∀k > 1, where Cs(ω) is finite almost surely.

Proof. First, we note that the condition (1.3) implies (3−mq)/2 < 1/2, and hence (
3−mq

2 , 12)

is a non-empty open interval. We define χq (resp. χf ) as a function in C∞
c (R3) with
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χq(x) = 1 (resp. χf (x) = 1) for ∀x ∈ supp q (resp. ∀x ∈ supp f). From (3.5), Theorems
2.1, 2.2 and Lemma 3.4, one can compute

|F2(x̂, k, ω)| ≤
∑

j≥2

∣∣
∫

R3

e−ikx̂·zχq(z)
[
(qRk)

jf
]
(z) dz

∣∣

≤ ‖e−ikx̂·(·)χq‖Hs
−1/2−ǫ

∑

j≥2

‖(qRk)
j(f · χq)‖H−s

1/2+ǫ

≤ Cs · 〈k〉s · Cǫ,s(ω)
∑

j≥2

k−j(1−2s)‖f · χq‖H−s
1/2+ǫ

≤ Cǫ,s(ω) · 〈k〉s · k−2(1−2s)‖f · χq‖H−s
1/2+ǫ

≤ Cǫ,s(ω)k
5s−2‖χq‖Hs

−1/2−ǫ
, (3.31)

with a random variable Cǫ,s(ω) that is finite almost surely. The last inequality in (3.31)
utilizes the fact that f(·, ω) is microlocally isotropic of order mf so that Theorem 2.2 holds
for f(·, ω). Let ǫ = 1/2 in (3.31), we arrive at (3.30).

The proof is complete. �

4. Recovery of the source

In this section, we focus on the recovery of µf (x) associated with the random source term.
In the recovering procedure, only a single realization of the passive scattering measurement
is used. Thus, α in (1.1) is set to be 0, and the random sample ω is fixed. The data set
Mf (ω) is used to achieve the unique recovery.

We first present the following auxiliary lemma.

Lemma 4.1. For any stochastic process {g(k, ω)}k∈R+ satisfying
∫ +∞

1
km−1

E(|g(k, ·)|) dk < +∞,

it holds that

lim
K→+∞

1

K

∫ 2K

K
kmg(k, ω) dk = 0, a.s. ω ∈ Ω.

Proof. By
∫ +∞
1 km−1

E(|g(k, ·)|) dk < +∞ and Fubini’s Theorem, we know
∫ +∞

1
km−1|g(k, ω)|dk < +∞, a.s. ω ∈ Ω, (4.1)

which implies that g(k, ω) is almost everywhere finite in terms of k. Now we define a

function gK(k,w) :=
χ(K,2K)(k)

2K kmg(k, ω), where χ(K,2K)(k) is the characteristic function of
the interval (K, 2K). For almost surely every fixed ω, we have

lim
K→+∞

gK(k, ω) = 0 a.e. k ∈ [1,+∞).

Moreover, the function series {gK(k, ω)}K is dominated, in the argument k, by the function
km−1g(k, ω). Thus, from (4.1) and the dominated convergence theorem, we can conclude

lim
K→+∞

∫ +∞

1
gK(k, ω) dk = 0 a.s. ω ∈ Ω.

The proof is complete. �

We are ready to establish the recovery of µf (x).
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Proof of Theorem 1.1. This proof depends on Lemma 3.3, which requires x̂ ·n ≥ 0. Hence,
we assume that x̂ · n ≥ 0 unless otherwise stated.

Recall the definition of Fp (p = 0, 1, 2) in (3.5). As already mentioned at the beginning
of Section 3, we correlate the data in the following form

1

K

∫ 2K

K
kmf 16π2u∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk

=

2∑

p,q=0

1

K

∫ 2K

K
kmfFp(x̂, k, ω)Fq(x̂, k + τ, ω) dk

=:
2∑

p,q=0

Ip,q(x̂,K, τ, ω). (4.2)

According to Corollary 4.4 in [8], for ∀τ ≥ 0 and ∀x̂ ∈ S
2, there exists Ω0,0

τ,x̂ ⊂ Ω, with

P(Ω0,0
τ,x̂) = 0, such that

∀ω ∈ Ω\Ω0,0
τ,x̂, lim

K→+∞
I0,0(x̂,K, τ, ω) = (2π)3/2µ̂f (τ x̂), (4.3)

which also implies that

∀ω ∈ Ω\Ω0,0
τ,x̂, lim

K→+∞
1

K

∫ 2K

K
kmf |F0(x̂, k, ω)|2 dk = (2π)3/2µ̂f (0). (4.4)

We next estimate the higher order terms. The Cauchy-Schwarz inequality yields

|Ip,q| ≤
( 1

K

∫ 2K

K
kmf |Fp(x̂, k, ω)|2 dk

) 1
2 ·

( 1

K

∫ 2K

K
kmf |Fq(x̂, k + τ, ω)|2 dk

) 1
2 . (4.5)

Recall that mf < 3. From the condition (1.3) and Lemma 3.3 we have
∫ +∞

1
kmf−1

E(|F1(x̂, k, ·)|2) dk .

∫ +∞

1
kmf−1k−4 dk < +∞. (4.6)

By (4.6) and Lemma 4.1, we conclude that

lim
K→+∞

1

K

∫ 2K

K
kmf |F1(x̂, k, ω)|2 dk = 0 a.s. ω ∈ Ω. (4.7)

For every s ∈ ((3 −mq)/2, 1/2), Lemma 3.5 gives

1

K

∫ 2K

K
kmf |F2(x̂, k, ω)|2 dk ≤ Cs(ω)

K

∫ 2K

K
kmf k2(5s−2) dk ≤ Cs(ω)

K4−mf−10s . (4.8)

Recalling the condition (1.3), we know (3−mq)/2 < (4−mf )/10.
Choosing any s ∈

(
(3−mq)/2, (4−mf )/10

)
, we have 4−mf − 10s > 0. Combining this

with (4.8), we conclude that

lim
K→+∞

1

K

∫ 2K

K
kmf |F2(x̂, k, ω)|2 dk = 0 a.s. ω ∈ Ω. (4.9)

Formula (4.9) easily implies that

lim
K→+∞

1

K

∫ 2K

K
kmf |F2(x̂, k + τ, ω)|2 dk = 0 a.s. ω ∈ Ω, (4.10)

for every fixed τ ∈ R.
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Write A := {(p, q) ; 0 ≤ p, q ≤ 2}\{(0, 0)}. By (4.5), (4.4), (4.7) and (4.10) we have that,
for ∀τ ≥ 0 and ∀x̂ ∈ S

2 there exists Ωp,q
τ,x̂ ⊂ Ω : P(Ωp,q

τ,x̂) = 0, Ωp,q
τ,x̂ depending on τ and x̂,

such that
∀(p, q) ∈ A, ∀ω ∈ Ω\Ωp,q

τ,x̂, lim
K→+∞

Ip,q(x̂,K, τ, ω) = 0. (4.11)

Write Ωτ x̂ := ∪(p,q)∈A∪{(0,0)}Ω
p,q
τ,x̂, thus P(Ωτ x̂) = 0. Then (4.11) gives

∀ω ∈ Ω\Ωτ x̂, ∀(p, q) ∈ A, lim
K→+∞

Ip,q(x̂,K, τ, ω) = 0. (4.12)

Combining (4.2), (4.3) and (4.12), we arrive at the following statement:

∀ y ∈ R
3, ∃Ωy ⊂ Ω: P(Ωy) = 0, s.t. ∀ω ∈ Ω\Ωy, we have

lim
K→+∞

1

K

∫ 2K

K
kmf 16π2u∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk = (2π)3/2µ̂f (τ x̂).

(4.13)

To prove Theorem 1.1, the logical order between y and ω should be exchanged. Denote
the usual Lebesgue measure on R

3 as L and the product measure L × P as µ, and con-
struct the product measure space M := (R3 ×Ω,G, µ) in the canonical way, where G is the
corresponding complete σ-algebra. Define

Z(y, ω) := lim
K→+∞

1

K

∫ 2K

K
kmf 16π2u∞(ŷ, k, ω)u∞(ŷ, k + |y|, ω) dk − (2π)3/2µ̂f (y).

Write A := {(y, ω) ∈ R
3 × Ω ; Z(y, ω) 6= 0}. Then A is a subset of M. Set χA as the

characteristic function of A in M. By (4.13) we obtain
∫

R3

( ∫

Ω
χA(y, ω) dP(ω)

)
dL(y) = 0. (4.14)

By (4.14) and Corollary 7 in Section 20.1 in [31], we obtain
∫

M

χA(y, ω) dµ =

∫

Ω

( ∫

R3

χA(y, ω) dL(y)
)
dP(ω) = 0. (4.15)

Since χA(y, ω) is nonnegative, (4.15) implies

∃Ω0 : P(Ω0) = 0, s.t. ∀ω ∈ Ω\Ω0,

∫

R3

χA(y, ω) dL(y) = 0. (4.16)

Formula (4.16) further implies for every ω ∈ Ω\Ω0,

∃Sω ⊂ R
3 : L(Sω) = 0, s.t. ∀ y ∈ R

3\Sω, Z(y, ω) = 0. (4.17)

Now Theorem 1.1 is proved by (4.17) for the case where x̂ · n ≥ 0.

Note that µf is real-valued, and hence µ̂f (τ x̂) = µ̂f (−τ x̂) when x̂ · n < 0.
The proof is complete. �

5. Recovery of the potential

This section is devoted to the recovery of µq(x) associated with the the random potential.
The data set Mq(ω) is utilized to achieve the recovery. Throughout this section, α in (1.1)
is set to be 1.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, the case where x̂ ·n < 0 can be
proved by utilizing the fact that µq is real-valued. In what follows, we assume that x̂ ·n ≥ 0
unless otherwise stated.

From (3.4) we have

1

K

∫ 2K

K
kmq16π2u∞(x̂, k,−x̂, ω)u∞(x̂, k + τ,−x̂, ω) dk
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=

2∑

p,q=0

1

K

∫ 2K

K
kmq

2∑

p=0

[Fp(x̂, k, ω) +Gp(x̂, k, ω)] ·
2∑

q=0

[Fq(x̂, k + τ, ω) +Gq(x̂, k + τ, ω)] dk

=:
∑

p,q=0,1,2

[
I ′p,q(x̂,K, τ, ω) + Jp,q(x̂,K, τ, ω) + L1

p,q(x̂,K, τ, ω) + L2
p,q(x̂,K, τ, ω)

]
, (5.1)

where 



I ′p,q(x̂,K, τ, ω) :=
1

K

∫ 2K

K
kmqFp(x̂, k, ω)Fq(x̂, k + τ, ω) dk,

Jp,q(x̂,K, τ, ω) :=
1

K

∫ 2K

K
kmqGp(x̂, k, ω)Gq(x̂, k + τ, ω) dk,

L1
p,q(x̂,K, τ, ω) :=

1

K

∫ 2K

K
kmqFp(x̂, k, ω)Gq(x̂, k + τ, ω) dk,

L2
p,q(x̂,K, τ, ω) :=

1

K

∫ 2K

K
kmqGp(x̂, k, ω)Fq(x̂, k + τ, ω) dk.

(5.2)

Note that I ′p,q differs from Ip,q, defined in (4.2), in that the power of k in the definition of

I ′p,q is mq while that of Ip,q is mf .

It is shown in [8] that there exists ΩJ ⊂ Ω: P(ΩJ) = 0 such that

∀ω ∈ Ω\ΩJ , lim
K→+∞

J0,0(x̂,K, τ, ω) = (2π)3/2µ̂q(2τ x̂), (5.3)

∀ω ∈ Ω\ΩJ , lim
K→+∞

Jp,q(x̂,K, τ, ω) = 0, (p, q) ∈ A. (5.4)

We conclude that there exists ΩI′ ⊂ Ω: P(ΩI′) = 0 such that

∀ω ∈ Ω\ΩI′ , lim
K→+∞

2∑

p,q=0

I ′p,q(x̂,K, τ, ω) = 0. (5.5)

The reason for (5.5) to hold is that

∣∣
2∑

p,q=0

I ′p,q(x̂,K, τ, ω)
∣∣ ≤ 1

Kmf−mq

2∑

p,q=0

[( 1

K

∫ 2K

K
kmf |Fp(x̂, k, ω)|2 dk

) 1
2

·
( 1

K

∫ 2K

K
kmf |Fp(x̂, k + τ, ω)|2 dk

) 1
2

]
. (5.6)

By (4.4), (4.7) and (4.9)-(4.10), as well as a similar argument that exchanges the logical
order between ω and y, we can prove that there exists Ω0 : P(Ω0) = 0 such that for every
ω ∈ Ω\Ω0, one can find Sω ⊂ R

3 : L(Sω) = 0 fulfilling that for ∀y ∈ R
3\Sω, there holds





lim
K→+∞

1

K

∫ 2K

K
kmf |F0(ŷ, k, ω)|2 dk = (2π)3/2µ̂f (0), (5.7a)

lim
K→+∞

1

K

∫ 2K

K
kmf |Fj(ŷ, k, ω)|2 dk = 0, (j = 1, 2), (5.7b)

lim
K→+∞

1

K

∫ 2K

K
kmf |F2(ŷ, k + |y|, ω)|2 dk = 0. (5.7c)

Combining (5.6)-(5.7), we arrive at (5.5).

We next analyze
∑2

p,q=0L
1
p,q(x̂,K, τ, ω),

∣∣
2∑

p,q=0

L1
p,q(x̂,K, τ, ω)

∣∣ ≤ 1

Kmf−mq

2∑

p,q=0

[( 1

K

∫ 2K

K
kmf |Fp(x̂, k, ω)|2 dk

) 1
2



DETERMINING A RANDOM SCHRÖDINGER OPERATOR 25

·
( 1

K

∫ 2K

K
kmf |Gp(x̂, k + τ, ω)|2 dk

) 1
2

]
. (5.8)

By (5.2)-(5.4), (5.7) and (5.8) and the a-priori requirement mq < mf , we conclude that

lim
K→+∞

∣∣
2∑

p,q=0

L1
p,q(x̂,K, τ, ω)

∣∣ . lim
K→+∞

|µ̂f (0)|
Kmf−mq

= 0, a.s. (5.9)

Similarly, we can show

lim
K→+∞

∣∣
2∑

p,q=0

L2
p,q(x̂,K, τ, ω)

∣∣ = 0, a.s. (5.10)

Combining (5.1), (5.3)-(5.5) and (5.9)-(5.10), we arrive at

lim
K→+∞

1

K

∫ 2K

K
kmq16π2u∞(x̂, k,−x̂, ω)u∞(x̂, k + τ,−x̂, ω) dk = (2π)3/2µ̂q(2τ x̂).

The proof is complete. �
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[23] M. Lassas, L. Päivärinta, and E. Saksman, Inverse problem for a random potential, Contemp. Math.,

362, Amer. Math. Soc., Providence, RI, 2004.
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