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1 Introduction

During the inflationary epoch, scalar fields characterized by mass scales well below the
Hubble rate exhibit large-scale fluctuations. When these fields do not take part in driving
the inflationary expansion, they are commonly referred to as spectator fields.

The behaviour of spectator fields in de Sitter space has been analysed in refs. [1–7]. De-
scribing the behaviour of a light and interacting field in de Sitter space often requires field
theory methods beyond the usual perturbative approach [8–20]. Alternatively, it is possible
to employ the classical stochastic methods laid out in refs. [21, 22] to derive a one-point
equilibrium probability distribution of the spectator field values. Arbitrary two-point cor-
relation functions, as well as power spectra, are obtained via a spectral expansion [23, 24].
The former define the size of the domains into which a spectator field fragments, with each
domain characterized by a coherent field value drawn from the equilibrium distribution.
Recent works employing the stochastic formalism include refs. [25–41].

In modulated reheating scenarios spatial modulations of the inflaton decay width affect
the local duration of the reheating process, which sources curvature perturbations [42, 43].
The modulated reheating scenario has been widely explored in different set-ups including
both direct and indirect couplings between the inflaton and the spectator. See e.g. [44] for
the general formalism and [45–50] for models connected to the Higgs field. See also [51–55]
for related scenarios. Most works employ the mean field approach which works well when
the spectator is displaced far from the equilibrium during inflation.

As shown in ref. [23], when the spectator is in its equilibrium a full stochastic approach
is required for reliable analysis and the outcome may substantially differ from the mean field
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results. In this work we demonstrate that light spectator fields in their equilibrium generally
induce significant modulation of the Cosmic Microwave Background (CMB) even in absence
of any direct coupling to the inflaton field. For definiteness, we call this mechanism indirect
modulation. As the spectator field acquires fluctuations comparable to or exceeding the
inflaton mass scale, these interactions induce field dependent effective masses that can
kinematically block the inflaton decay channels [46, 47]. Because of spectator fluctuations,
the kinematic blocking is released at different times at different locations, resulting in a
spatial modulation of the reheating temperature.

To introduce the stochastic approach in the indirect modulation mechanism, we first
consider a simple model consisting of an inflaton field, a spectator field and a fermion,
analyzing the consequences of the indirect modulation mechanism. We then analyze the
case of the standard model (SM) of particle physics extended with right-handed neutrinos,
which provide a suitable decay channel for the inflaton and where the Higgs boson plays the
role of light spectator field. As a result, the indirect modulation mechanism constitutes a
novel way in which CMB observations can constrain the SM physics through the reheating
dynamics.

The paper is organized as follows: in section 2, we sketch the stochastic treatment
of spectator fields. In section 3 we make use of the δN formalism to compute the power
spectrum of curvature perturbations. The implementation of the stochastic approach to
the indirect modulation mechanism is addressed in section 4, where we apply it to a phe-
nomenological Yukawa model. Section 5 analyzes the case of the SM, demonstrating that
all ingredients required for indirect modulation are present once neutrino phenomenology
is addressed. Finally, we present our results in section 6 and conclude by summarizing our
work in section 7.

2 Spectator fields

We start by providing an introduction to the physics of spectator fields in the stochastic
approach. For more details we refer the reader to the refs. [23, 24].

The fluctuations of a light scalar field h in de Sitter space can be shown to obey a
Fokker-Planck equation, equivalent to the following eigenvalue problem:[

1
2

(
∂2

∂h2 − v
′(h)2 + v′′(h)

)
+ 4π2Λn

H3

]
ψn(h) = 0 . (2.1)

Here H is the Hubble rate, Λn are the eigenvalues, v := 4π2

3H4V (h), with V (h) being the
spectator field potential and a prime indicates differentiation with respect to the field value.
The eigenfunctions ψn(h) form an orthonormal and complete basis, which can be used to
determine the equilibrium probability distribution of the spectator field values as [21, 22]

Peq(h) = ψ2
0(h) ∝ exp

{
− 8π2

3H4V (h)
}
. (2.2)

For a theory with V (h) = (λ/4)h4 a convenient dimensionless variable is x := h(H/λ1/4)−1,
which provides useful insights for practical calculations we will frequently make use of: the
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region with |x| & 1 is exponentially suppressed and can often be ignored. This is visible
in (2.2) for ψ0 and is also true for the higher order eigenfunctions.

A spectator field exhibits sizeable fluctuations in de Sitter space if the condition
V ′′(h)� H2 holds. Otherwise, the field begins to evolve classically according to its poten-
tial and quickly settles to its minimum value.

The computation of a generic temporal two-point correlation function proceeds by
demarginalization of the two-field joint probability distribution function in terms of the
equilibrium one-field distribution and the related conditional probability distribution (the
transfer matrix of ref. [23]). The expression for the temporal correlator is then extended to
arbitrary two-point functions by means of the de Sitter invariance. For instance, the purely
spatial correlators Gf (x,x′) = 〈f(h(t,x)), f(h(t,x′))〉 relevant for the present analysis are
obtained via the eigenfunctions and eigenvalues of eq. (2.1) as

Gf
(
x,x′

)
=
∞∑
n=0

f2
n (a rH)−

2Λn
H . (2.3)

As we can see, the correlation function depends on the comoving separation between the
points r := |x− x′| and the contribution of each eigenfunction is given by the coefficients

fn :=
∞∫
−∞

dhψ0(h) f(h)ψn(h) . (2.4)

The power spectrum of Gf (x,x′) is defined via a Fourier transformation. It is often
the case that one is interested only in the large scale limit, where the spectrum has the
following form1

Pf (k) = k3

2π2

∫
d3xe−ik·x〈f(h(0))f(h(x))〉 ' 2

π
f2
dΓ
(

2− 2Λd
H

)
sin
(Λdπ
H

)(
k

aH

) 2Λd
H

' 2Λd
H

f2
d

(
k

aH

) 2Λd
H

+O(Λ2
d/H

2) , (2.5)

and the subscript ‘d’ indicates the dominant contribution to be determined from eq. (2.1).
Even though the calculation above is for de Sitter space, it is believed to be a good

approximation for the inflationary period as long as the Hubble rate H is slowly varying.
The power spectrum at the end of the inflationary epoch is then obtained by setting
a = aend and Hend in eq. (2.5), where a subscript ‘end’ indicates that the quantity is to be
evaluated at the end of inflation.

3 Deriving the power spectrum with the δN formalism

The full power spectrum of curvature perturbations can be computed using the δN for-
malism. In this method,2 at the leading order in spatial gradients, the evolution of coarse

1For more complicated potentials such as the double well investigated in ref. [24], the first non-zero
coefficient can remain subdominant until scales much larger than the ones relevant in cosmology.

2We refer the reader to ref. [44] for the treatment of reheating modulation within the alternative mean
field approach.
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grained super-horizon regions is regulated by local Friedmann equations evaluated sepa-
rately for each of these patches [56–60].

For definiteness we assume that inflation is driven by a single scalar field φ, the inflaton,
slowly rolling along its potential. We furthermore assume that h is the only light scalar
spectator field present and that it remains energetically subdominant until it eventually
thermalizes after reheating. Hence we neglect the corresponding contribution in writing
the Friedman equations that regulate the evolution of super-horizon regions. For the sake
of the present discussion we assume an implicit dependence of reheating dynamics on h,
writing for the corresponding energy density ρreh = ρreh(h). The origin of such relation is
analyzed in detail in the forthcoming section.

The expansion for each super-horizon region, from an initial time tin during inflation
to a final time with fixed reference energy ρf after reheating, can be quantified in the local
number of e-folds as

N(x) =
ρend∫

ρin(φ̄(x))

H

ρ̇
dρ+

ρreh(h̄(x))∫
ρend

H

ρ̇
dρ+

ρf∫
ρreh(h̄(x))

H

ρ̇
dρ . (3.1)

Here φ̄(x) and h̄(x) denote the local initial field values at tin, while ρend and ρreh are the
values of the energy density at the end of inflation and reheating, respectively. We remark
that N depends on the spectator field value only through ρreh = ρreh(h̄).

In order to evaluate the above integrals, we use the leading order slow-roll approxi-
mation 3Hφ̇ = −V ′(φ) over the range [tin, tend], and assume a perfect fluid equation of
state with constant w for the interval [tend, treh]. As for the last term, which models the
contribution after reheating, we assume a radiation dominated universe and thus obtain

N(x) = −
φend∫
φ̄(x)

1√
2εMPl

dφ− 1
3(1 + w) ln ρreh(h̄(x))

ρend
− 1

4 ln ρf

ρreh(h̄(x))
. (3.2)

The curvature perturbation on uniform density slices at super-horizon scales is there-
fore computed as

ζ(x) := N(x)− 〈N(x)〉 , (3.3)

where the gauge choice is imposed by setting the final energy density after reheating to a
fixed reference value ρf = 〈ρ〉, independent of x. Using eq. (3.2) yields

ζ(x) = ζφ(x)− 1− 3w
12(1 + w)

[
ln ρreh(h̄(x))−

〈
ln ρreh(h̄(x))

〉]
, (3.4)

where the first term is the usual inflaton contribution. Notice that if the spectator contri-
bution to local Friedmann equations is negligible, consistently with eq. (3.2), there are no
isocurvature perturbations present after reheating and ζ(x) remains constant in time.

By defining δρreh(x) := ρreh(h̄(x)) − 〈ρreh(h̄(x))〉 and expanding to leading order in
δρreh/〈ρreh〉, eq. (3.4) becomes

ζ ' ζφ(x)− 1− 3w
12(1 + w)

δρreh(x)
〈ρreh〉

. (3.5)
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The δN expression for the curvature perturbation is by construction independent of the
initial time tin, which labels a spatially flat hypersurface, as long as it is after the horizon
exit of all modes of interest [61]. Here we choose a time tin, at which h̄(x) (and φ̄(x)) are
evaluated, just before the end of inflation.3

Since the fields h̄(x) and φ̄(x) are mutually uncorrelated, the spectrum of the curvature
perturbation Pζ is given by the sum of the inflaton and spectator field power spectra:

Pζ = P(φ)
ζ +

( 1− 3w
12(1 + w)〈ρreh〉

)2
Pδρ ≡ P

(φ)
ζ + P(h)

ζ . (3.6)

We observe that for w = 1/3, corresponding to the inflaton oscillating in a quartic potential
V (φ) ∝ φ4, the contribution from the spectator field vanishes identically: ζ = ζφ. In fact,
in this case every super-horizon patch transitions to a radiation dominated regime as the
inflationary expansion concludes, regardless of the local value of h. However, for w 6= 1/3
the second term does not vanish and its contribution can be important.

4 Indirect modulation

4.1 A simple model with Yukawa interactions

To demonstrate the mechanism of indirect modulation we consider a simple model consist-
ing of an inflaton field φ, a light spectator field h and a fermion Ψ

L = 1
2(∂φ)2 − 1

2m
2
φφ

2 + iΨ̄(/∂ −mΨ)Ψ + 1
2(∂h)2 − λ

4h
4 − yφΨ̄Ψφ− yhΨ̄Ψh , (4.1)

where all coupling constants are assumed to be real and the considered inflaton potential
is meant to describe solely the reheating dynamics that follows the initial expansion epoch.
For the spectator field, we take a positive quartic coupling λ > 0 that induces an effective
field-dependent mass µ2

h = 3λh2 > 0. The fermion Ψ is also characterized by an effective
mass µΨ = mΨ + yhh, but no contribution from the inflaton is present since the field
is rapidly oscillating around a vanishing field value. We will consider a regime where
yhh� mΨ, so we can safely take µΨ ' yhh.

Reheating proceeds via the perturbative decay of the inflaton into Ψ pairs with a
corresponding decay width given by

Γ(h) =
y2
φmφ

8π

[
1− (2yhh)2

m2
φ

]3/2

, (4.2)

however, the process is kinematically allowed only if mφ > 2yhh. In terms of the spectator
field value, this defines the characteristic scale

hkin := mφ

2yh
, (4.3)

such that the decay of the inflaton field, and thus reheating, can proceed only for h < hkin.
3Setting tin = tend would define a uniform inflaton field gauge through ε(φend) = 1, therefore we choose

the spatially flat slice tin slightly before tend.
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Figure 1. The continuous lines show numerical solutions of the spectator field equation of motion
in eq. (4.4). The approximation in eq. (4.5) is indicated by the dashed lines. The red lines are for
a quartic coupling λ = 1, while the black ones correspond to λ = 10−7.

Neglecting spatial gradients, the equation of motion of the spectator field reads

ḧ+ 3Hḣ+ λh3 = 0 , (4.4)

where the background scales as dust (w = 0) when the inflaton potential during reheating
is quadratic [62]. For the initial conditions h = h̄ and ḣ = 0 eq. (4.4) has the approximate
solution h = h̄ until H = Hosc :=

√
3λh̄, after it begins a series of damped oscillations as

shown in figure 1.
During inflation, the spectator field is fragmented into domains each characterized

by a coherent local value h̄(x) with the probability distribution in eq. (2.2) and a size
determined by the two-point correlation function [24]. The spatial gradients are typically
small and can be ignored [22], so after inflation the evolution of each local value h̄(x) can
be determined separately from the homogeneous equation of motion in eq. (4.4). From
now on for simplicity we will omit the x-dependence from the initial value h̄.

Given an initial condition h̄ the evolution of the spectator during its first half oscillation
can be faithfully tracked by using the following expression:

h = h̄

(
1− 3

2e
− 27

4
H√
3λh̄

)
, (4.5)

indicated by the dashed lines in figure 1. The approximation, which works exceptionally
well across a large range of scales, was obtained by realising that the logistic function is
often used to approximate the solution of similar differential equations [63]. The coefficients
are determined through a fit of the numerical result.4

4Replacing the time derivatives in eq. (4.4) with derivatives with respect to H, the spectator field
equation of motion in terms of y := h/h̄ becomes H4y′′ + 4

27H
2
oscy

3 = 0, which provides an educated guess
for the coefficient in the exponential.
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The magnitude of the initial spectator field fluctuation scale relative to the scale hkin
defines two scenarios:

• h̄ ≤ hkin — no kinematic blocking. In this case the spectator field cannot block the
inflaton decay but can only modulate weakly through the mass dependence of the
decay rate.

• h̄ > hkin — kinematic blocking. In this case the large spectator field can initially
completely block the inflaton decay, therefore reheating can only occur after the
spectator has relaxed below the critical value hkin.

For the modulation in the second case to take place, the spectator itself should of
course not decay before the threshold hkin is reached. The Lagrangian in eq. (4.1) in
principle also allows for the decay of the spectator field, however the process is generally
negligible. The spectator field is much lighter than the inflaton, so the same kinematic
blocking factor forces the spectator field to decay after the inflaton. Quantitatively, for the
model in eq. (4.1), the spectator field is stable if 4y2

h/(3λ) > 1.
In the following we focus on the case where h̄ > hkin, which we expect to result

in a stronger modulation effect because of the presence of kinematic blocking. Due to
fluctuations of the initial field value h̄, the threshold is reached at different times at different
locations. We also simplify the computation of the power spectrum by neglecting potential
additional modulation contributions from the region h̄ < hkin. Because spectator field
fluctuations are typically of the order O(Hend), Yukawa couplings of O(1) naturally result
in an effective mass of the same order as the typical effective inflaton mass at reheating,
mφ ∼ O(Hend). Consequently, we expect the kinematic blocking of the inflaton decay to
be present in a large part of the parameter space of the model.

Modulated reheating through similar kinematic blocking has been investigated earlier
in e.g. [46, 47]. The crucial new ingredient here is the non-perturbative analysis of equilib-
rium spectator fields using the eigenvalue expansion of the stochastic approach discussed
in section 2. For example, as discussed in [23] for equilibrium spectators in de Sitter space
the standard mean field approach fails to give the correct spectral tilt and non-perturbative
resummation techniques are required for their reliable analysis.

4.2 Power spectrum from indirect modulation

A detailed calculation of the reheating dynamics is often a challenging problem, with
possible non-perturbative aspects requiring the use of numerical methods [64]. However,
for our purposes, it is sufficient to use the approximation where the inflaton instantaneously
decays at the moment the decay channel opens during the first oscillation of the spectator
field, valid for

Γ(h) ' Γ0 :=
y2
φmφ

8π � Hkin , (4.6)

where we have neglected the effective fermion mass by taking mφ � yhh. In the above,
Hkin is defined as the Hubble rate at the threshold h = hkin.

– 7 –
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At this stage we need to find the explicit form of Hkin. Inverting the eq. (4.5) evaluated
at h = hkin then approximately yields the Hubble rate at the decay instant,

Hkin(h̄) = 4
27
√

3λh̄ ln
(

3h̄
2(h̄− hkin)

)
. (4.7)

As we can see, the Hubble rate at the inflaton decay time has spatial dependence induced
by the spectator field value h̄. We remark that the approximation used for Hkin requires a
marginal modification of the modulation condition hkin < h̄ into

hkin
1− (3/2) e−27/4 < h̄ , (4.8)

where the new lower bound ≈ 1.0018hkin ensures that Hkin < Hosc, as required for consis-
tency.

As hkin sets the lower bound for a fluctuation to block the decay, in parameter regions
characterized by a wide range of h̄ values above this threshold, we may approximately
assume h̄� hkin and neglect hkin in eq. (4.7) in order to derive the condition for successful
reheating in eq. (4.6)

h̄

Hend/λ1/4 <
9
√

3mφy
2
φ

32πHendλ1/4 ln (3/2)
, (4.9)

written in terms of the dimensionless variable h̄(Hend/λ
1/4)−1. The further h̄ is from the

bound in eq. (4.9) the better the condition in eq. (4.6) is satisfied. In order to avoid
parameter regions where the approximation breaks down we will only include cases where
the right hand side of (4.9) is larger than unity. As discussed in section 2 the bulk of the
probability distribution in eq. (2.2) lies in the range h̄(Hend/λ

1/4)−1 . 1 so with this choice
we include only cases where our approximation correctly captures the relevant field values.

Our approach is not suited for non-perturbative effects that possibly occur when the
spectator field rapidly oscillates, so we restrict our analysis to the case in which the inflaton
field decays during the first half oscillation cycle. By using eq. (4.5) we then compute

t(h=0)∫
t(hkin)

Γ(h)dt ≈ Γ0∆t =
3
√

3mφy
2
φ

16πh̄
√
λ

 1
ln
(

3
2

) − 1
ln
(

3h̄
2(h̄−hkin)

)
 ≈ 3

√
3m2

φy
2
φ

32π ln2(3/2)h̄2yh
√
λ
,

(4.10)

and ensure the robustness of our results by requiring that Γ0∆t > 1, or

h̄2

H2
end/
√
λ
<

3
√

3m2
φy

2
φ

32πH2
endyh ln2 (3/2)

. (4.11)

Note that the right-hand side of the above equation is independent of λ, unlike the condition
in eq. (4.9). When presenting our results in section 6 we label as ‘non-perturbative’ all
regions where the right-hand side of eq. (4.11) is smaller than unity.

When the bounds discussed in this section are satisfied, we can confidently use our
approximations to calculate the spatial modulation of the reheating energy density ρreh

– 8 –
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with the help of sections 2 and 3, induced through the dependence of the Hubble parameter
at the inflaton decay on the spectator field value:

ρreh(h̄(x)) = 3M2
PlH

2
reh(h̄(x)) , (4.12)

where for clarity we explicitly write the x-dependence of h̄.
The results are summarized in the following expression for the Hubble rate at the

reheating era

Hreh(h̄(x)) :=

Hkin if hkin
1−(3/2)e−27/4 ≤ h̄ ≤

9
√

3mφy2
φ

32π
√
λ ln(3/2) ,

Γ(h) ' Γ0 elsewhere.
(4.13)

The correlation function〈
δρreh(0)
ρreh

δρreh(x)
ρreh

〉
= 〈H

2
reh(h̄(0))H2

reh(h̄(x))〉 − 〈H2
reh〉2

〈H2
reh〉2

(4.14)

then yields the modulated component in the power spectrum of scalar perturbations de-
termined by eq. (3.6).

In order to compare to the CMB observations, we compute the power spectrum of
scalar perturbations at the pivot scale k∗ = a∗H∗ through eqs. (3.6) and (2.5) for a matter
dominated regime (w = 0), obtaining for the modulated component

P(h)
ζ (k∗) = f2

2
72π〈H2

reh〉2
Γ
(

2− 2 Λ2
Hend

)
sin
( Λ2π

Hend

)
e
−2Λ2
Hend

N∗ , (4.15)

where the dominant contribution for a spectator field with quartic potential in de Sitter
space is provided by the second eigenvalue Λ2 = 0.28938

√
λHend which is also determines

the spectral tilt in de Sitter as d lnP(h)
ζ /d ln k∗ = 2Λ2/Hend [23]. In the above formula

N∗ = ln(aend/a∗) is the number of e-folds at Hubble crossing of the pivot scale k∗, while
the prefactor is determined by the following integrals:

f2
〈H2

reh〉
=
∫

dh̄ ψ0H
2
rehψ2∫

dh̄ ψ0H2
rehψ0

=
∫ kc1

0 dxψ0ψ2 +
∫∞
c2

dxψ0ψ2 + γ
∫ c2
kc1

dxψ0ψ2f(x)∫ kc1
0 dxψ0ψ0 +

∫∞
c2

dxψ0ψ0 + γ
∫ c2
kc1

dxψ0ψ0f(x)
(4.16)

≈
∫ kc1

0 dxψ0ψ2 + γ
∫∞
kc1

dxψ0ψ2f(x)∫ kc1
0 dxψ0ψ0 + γ

∫∞
kc1

dxψ0ψ0f(x)
; for c2 & 1 , (4.17)

where

c1 := mφλ
1/4

2Hendyh
; k := 1

1− (3/2)e−27/4 ;

γ := 1024π2

243
H2

end
√
λ

y4
φm

2
φ

; c2 :=
9
√

3mφy
2
φ

32πHendλ1/4 ln (3/2)
, (4.18)

and

f(x) := x2 log2
[ 3x

2(x− c1)

]
. (4.19)

The integrals in eq. (4.16) are expressed in terms of the dimensionless variable x :=
h̄(Hend/λ

1/4)−1 and the eigenfunctions must be evaluated numerically from eq. (2.1). The
term in the numerator proportional to γ sources the modulation, which vanishes in the
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limit where the modulation window disappears, kc1 ∼ c2, because ψ0 and ψ2 are orthog-
onal. The effect also disappears for c1 & 1 since the probability of such high field values
is exponentially suppressed. Similarly, since we consider only parameter regions where the
right-hand side of eq. (4.9) is larger than unity i.e. c2 & 1, integrals extending from c2 to
infinity yield only negligible contributions.

When kinematic blocking occurs but the right-hand side of eq. (4.11) is smaller than
unity strong modulation is expected. However, the inflaton decay process concludes only
after the first oscillation cycle of the spectator field. The analysis of this regime needs to
take into account possible resonant and non-perturbative effects [65] that require methods
beyond the scope of the present paper. For the sake of clarity we highlight these regions
of the parameter space when presenting our results, expecting however that resonant and
non-perturbative effect modify our results gradually as we enter these regions. At least for
the cases we considered, the regions where the right-hand sides of both (4.9) and (4.11)
are smaller than unity largely overlap. This can be traced back to an identical scaling in
terms of yφ.

The indirect modulation mechanism can be quite potent, leading to tight bounds when
taking into account the observed amplitude of the CMB perturbations Pζ ' 2.1×10−9 [66].
As an example, for Yukawa couplings yφ = yh = 1, an inflaton mass mφ = 2Hend and a
quartic coupling λ = 10−5, eq. (4.15) yields P(h)

ζ ∼ 10−5 for the modulated component,
demonstrating the importance of the effect.

5 Indirect modulation in the Standard Model

We now demonstrate indirect modulation in the SM once non-vanishing neutrino masses
are included.

The observations of solar and atmospheric neutrinos unequivocally show the existence
of two distinct mass scales in the neutrino sector, that source the measured flavour oscil-
lation probabilities. It is then necessary to extend the SM particle content with (at least)
two right-handed neutrino fields, which combine with the usual left-handed states to define
the neutrino mass eigenstates.

Since right-handed neutrinos are necessarily singlets under the SM gauge group it is
possible to include a Majorana mass term in the Lagrangian allowing for a lepton-number
violating interaction that may be tested experimentally. The absence of such a signal would
imply that neutrinos are Dirac fermions and acquire masses through the Higgs mechanism
like the rest of the SM particles.

In order to accommodate non-vanishing neutrino masses and allowing for three right-
handed neutrinos with corresponding Majorana masses, the SM Lagrangian is then ex-
tended to

L = LSM + 1
2 (∂φ)2 + (DµH)†(DµH) + i¯̀L /D`L + iNR/∂NR −

1
2m

2
φφ

2 − λ(H†H)2

− µ2H†H +
{
−1

2N
c
RMNR −

Yφ
2 φN c

RNR − Yh ¯̀LNRH̃ + H.c.
}
, (5.1)
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where H̃ = iσ2H
†, with H being the SM Higgs doublet, σ2 is the second Pauli matrix

and LSM includes the remaining SM Lagrangian terms not written explicitly. As before,
the field φ represents the inflaton field which oscillates in a quadratic potential. We have
left implicit the indices for the SM and right-handed neutrino generations, so each lepton
doublet denoted by `L = (νL, eL)T interacts with a right-handed neutrino NR through a
complex matrix of Yukawa couplings Yh. Similarly, the right-handed neutrinos couple to
the inflaton φ through their own set of Yukawa couplings collected in Yφ. The Majorana
mass M vanishes for Dirac neutrinos.

In order to show how the model detailed in eq. (4.1) is straightforwardly recovered,
we simplify the discussion by focusing on the case of one SM generation. We also neglect
the Higgs mass term µ and value at the electroweak minimum since the typical scale of
inflation is much higher than v = 246GeV. In the unitary gauge, the Higgs doublet reads
H = (0, h/

√
2)T (so that H̃ = (h/

√
2, 0)T ) where h is a real scalar field.

By gathering neutrino fields in arrays of definite chirality

nL :=
(
νL
N c

R

)
; nR :=

(
νcL
NR

)
, (5.2)

we can then write the mass terms in matrix form

L ⊃ −1
2 n̄R MnL + H.c.; M :=

 0 Yhh√
2

Yhh√
2 Yφφ+M

 . (5.3)

The mass matrix M receives contributions from both the inflaton and the Higgs field.
However, as the inflaton oscillates rapidly around the origin of its potential, the mass
contribution averages to a vanishing value. The scale associated with the right-handed
neutrinos Majorana mass is instead a free parameter of the model. The requirement of
successful leptogenesis generally forces it to lie in a wide range that goes from a few KeV
to the grand-unification scale, depending on the specifics of the chosen mechanism. In
spite of that, the thermalization of right-handed neutrinos in the early Universe requires
a reheating temperature that exceeds the Majorana mass scale, suggesting that generally
M < Hend. The fluctuations of spectator fields are usually comparable to the Hubble rate
at the end of inflation such that the condition yhh�M is naturally satisfied. In this case,
the mass matrix M can be approximated with

M −−−−−→
Yhh�M

 0 Yhh√
2

Yhh√
2 0

 , (5.4)

and neutrinos recover the pure Dirac limit. By defining the Dirac neutrino field

Ψ =
(
νL
NR

)
, (5.5)

in the limit Yhh�M the Lagrangian in eq. (5.1) reads

L → LSM+ 1
2 (∂φ)2+ 1

2(∂h)2− 1
2m

2
φφ

2−λ4h
4+iΨ̄

(
/∂ − Yhh√

2

)
Ψ−Yφ2 φ

(
ΨcPRΨ + ΨPLΨc

)
.

(5.6)
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The above Lagrangian then clearly resembles that of the model discussed in section 4, after
the Higgs field is identified with the spectator field. An explicit computation of the decay
width for the φ→ ΨΨ process at the massless limit, Γ0 from eq. (4.6) however differs by a
factor of 1/2: the coupling of the inflaton to right-handed neutrinos forces it to decay via
lepton number violating processes that yield pairs of neutrinos and antineutrinos, resulting
in a reduction of 1/2 in the available phase space. The conclusions of the previous section
can then be applied to the SM case by simply identifying

yφ ←→
Yφ√

2
and yh ←→

Yh√
2
. (5.7)

6 Results

We describe now the results obtained for the parameters used in the simple model of
section 4. From the discussion above, it is clear that the same conclusions hold for the SM
case if the spectator field is identified with the Higgs boson and the corresponding Yukawa
couplings are properly rescaled. In figure 2 we present two representative exclusion plots
for the couplings, showing the regions where the spectrum of curvature perturbations from
indirect modulation P(h)

ζ given by eq. (4.15), is larger than the observed value Pζ = 2.1×
10−9 at the pivot scale k∗ = 0.05 Mpc−1 [67]. For the inflaton mass we take5 mφ = 2Hend
and assume that the pivot scale exits the horizon N∗ = 60 e-folds before the end of inflation.
In the right panel the non-perturbative region, where the right-hand side of eq. (4.11) is
smaller than unity, is shaded red.

As one can see from figure 2, in some regions the amplitude of perturbations sourced
by the indirect mechanism alone coincides with the one observed. However, interacting
spectator fields in their vacuum state yield a blue-tilted spectrum [11] and hence it is not
possible to generate the observed CMB perturbations in this way.

The left panel in figure 3 highlights the behaviour of P(h)
ζ as a function of the spectator

self coupling λ. The sharp feature seen here, and already visible in figure 2, is due to the
sign changing eigenfunction contributions in the integrals in eq. (4.16). CMB constraints
for the couplings of the Lagrangian (4.1) from the indirect modulation are summarised
in the right panel of figure 3. Coupling values above the (yh, yφ, λ) surface depicted in
the figure are excluded as the resulting P(h)

ζ is above the observed level. Decreasing the
value of λ increases the exclusion area as it yields larger spectator fluctuations and hence
bigger P(h)

ζ . Again, we have marked in the figure the non-perturbative regime where our
simplified approximations of the decay process start to become inaccurate.

The theory described by eq. (5.1) that we used to study the CMB modulation due
to the Higgs-like spectator field is nothing but the usual SM extended to accommodate
the observed non-vanishing neutrino masses, leptogenesis and inflation. This Lagrangian
has been extensively studied over the past decades and the parameter space that can
successfully generate the light neutrino masses via the seesaw mechanism [68] and the
baryon asymmetry of the Universe via the leptogenesis [69] has been identified. More

5For example, quadratic inflation yieldsmφ=1.4Hend, while Starobinsky inflation results inmφ=3Hend.
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Figure 2. The amplitude of perturbations at the pivot scale N∗ = 60 from indirect modulation.
The hatched regions correspond to perturbations larger than Pζ(k∗) = 2.1 × 10−9. The region
where non-perturbative effects are important coming from eq. (4.11) is shaded red.

10−7 10−5 10−3 10−1

λ

10−10

10−8

10−6

10−4

10−2

P(h)
ζ (k∗)

2.1× 10−9

yφ = 1.0, yh = 1.0

yφ = 1.0, yh = 0.5

yφ = 1.0, yh = 0.1

yφ = 0.5, yh = 0.1

10−3 10−2 10−1 100
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10−1

100

yφ

Non-perturbative

P(h)
ζ (k∗) > 2.1× 10−9

10−9

10−7

10−5

10−3

10−1

λ

Figure 3. (Left) The amplitude of perturbations at N∗ = 60 and with mφ = 2Hend for a set of
choices for (yφ, yh). (Right) The parameter regions excluded by CMB observations with the same
assumptions as in the left panel, where again areas where non-perturbative effects are important
are shaded red.

recently, the discovery of the Higgs boson by the LHC experiments [70, 71] revealed a
surprising feature of the SM— the criticality of the Higgs potential. Namely, at high energy
scales relevant for the seesaw mechanism, leptogenesis and inflation the Higgs boson quartic
coupling λ as well as its beta-function approximately vanish, implying a metastable vacuum
for the SM [72–74]. Using the most recent values of the SM parameters, mt = 172.9 ±
0.4GeV, αs(MZ) = 0.1179±0.0010, mh = 125.10±0.14GeV, and two-loop renormalization
group equations employed in [75], we find that λ runs negative at Λ ∼ 5× 1011 GeV. This
result is most sensitive to the actual top-quark mass. Reducing its value by 1σ results
in Λ ∼ 5 × 1012 GeV, while within 3σ uncertainties the scale of Higgs criticality can be
extended up to the Planck scale. Alternatively, the SM vacuum stability can be improved
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by coupling the Higgs boson to additional scalar singlet(s), such as the potentially allowed
large Higgs coupling to inflaton, which prevents λ from running negative [72]. Such studies
are beyond the scope of the present paper and we adhere to the SM results in the following.

Interestingly, the allowed SM and seesaw parameter ranges are non-trivially restricted
by the constraints presented in figures 2 and 3. In particular, as seen in the right panel of
figure 3, the CMB constraints from the indirect modulation imply a lower bound on the
Higgs boson quartic coupling which depends on the right-handed neutrino Yukawas, all
evaluated at the scale of inflation Hend. The constraints are unaffected upon varying the
value of Hend provided that the ratio mφ/Hend does not change and hold for any Hend &
Mλ1/4/yh. The first point follows from eq. (4.16) and the second from our assumption
yhh̄ � M , that lead to eq. (5.6), after setting h̄ . Hend/λ

1/4. For yh < 1, the observed
neutrino masses imply an upper bound M < 1013 GeV on the right-handed neutrino mass
scale through the seesaw formula mν = (Yhv)2/(2M). Successful leptogenesis, instead,
requiresM > 109 GeV [76] for non-degenerate right-handed neutrinos. For example, taking
yh = Yh/

√
2 = 0.03 and yφ = Yφ/

√
2 = 1.0 (see eq. (5.7)), we estimate 109 GeV < M <

1010 GeV from leptogenesis and neutrino masses, respectively, and λ(Hend) & 10−7 from
figure 3. For the present central value of top-quark mass measurement, this is compatible
with the SM running6 of λ provided that Hend . 5 · 1011 GeV, close to currently favoured
scenarios such as the Starobinsky or Higgs inflation. On the other hand, for larger values of
yh the bound λ > λc in figure 3 rapidly becomes impossible to satisfy for the SM running
of couplings, assuming a minimally coupled Higgs sector with no direct couplings to the
spacetime curvature or to the inflaton.

7 Summary and outlook

In this work we have studied modulated reheating from spectator fields in their equilib-
rium with no direct couplings to the inflaton. The reliable analysis of equilibrium spectators
requires non-pertrubative resummation which we implemented using the eigenvalue expan-
sion in the stochastic approach. We found that the indirect modulation from equilibrium
spectators leads to significant production of curvature perturbations. Our results provide
novel constraints for particle physics even in the absence of direct coupling between the
inflaton and the spectator field.

To set up the formalism, we focused on a particular phenomenological setting where
the inflaton and the spectator couple to the same fermion field via two separate Yukawa
terms. The effective fermion mass varies due to the spectator fluctuations, and for large
enough fluctuations the inflaton decay is blocked until the spectator field falls below a
kinematic threshold. Consequently, the reheating completes at different times in different
locations of the universe sourcing curvature perturbation. We computed the spectrum of
curvature perturbations from the indirect modulation with equilibrium spectators using
the stochastic formalism combined with the δN approach. We find that for Yukawas close
to unity, the spectrum of the curvature perturbations exceeds the observed level by four

6Notice that for such values of the right-handed neutrino Yukawa couplings yh their contribution to the
running of Higgs quartic coupling λ is completely negligible.
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orders of magnitude. Notably, the perturbation amplitude does not directly depend on the
scale of inflation.

As a concrete example, we studied the indirect modulation in the Standard Model
extended by right-handed neutrinos and a singlet inflaton, assuming a minimally coupled
Higgs sector with a vanishing coupling to spatial curvature and no direct couplings to the
inflaton. In this setup, the Higgs is a light spectator and modulates the inflaton decay
through the neutrino masses. The main results of our analysis are shown in figures 2
and 3 which constrain the most natural parameter space of the seesaw mechanism and
leptogenesis that is commonly considered in phenomenological studies. Requiring that
perturbations from the modulation do not exceed the observed CMB amplitude sets a
lower bound on the Higgs quartic coupling λ(H) at the scale of inflation. The bound
shown in figure 3 strongly depends on the right-handed neutrino Yukawa couplings yh and
yφ. For yh = 0.03 and yφ = 1.0, the bound is compatible with the SM and H < 1011–12 GeV
but for yh of order unity the constraint on λ(H) can no longer be satisfied assuming the
SM running and the minimally coupled Higgs sector. In conclusion, our results constrain
and specify the high-energy parameters of the SM, neutrino physics and inflation for the
most natural and interesting values of the relevant parameters. We reiterate that the
constraints apply when the Higgs is a light spectator during inflation which implies that
its non-minimal coupling and possible couplings to the inflaton are assumed to be small.

An interesting question is whether the indirect mechanism in the SM with right handed
neutrinos could be responsible for the observed curvature perturbation. From our results
it is clear that the observed amplitude of curvature perturbations can be obtained through
indirect modulation. However, reproducing the correct spectral tilt requires a modification
of the setup, which we will address in a forthcoming paper [77].

Acknowledgments

This work was supported by the Estonian Research Council grants PRG356, PRG803,
MOBTT86, MOBJD381, MOBTT5 and by the EU through the European Regional De-
velopment Fund CoE program TK133 “The Dark Side of the Universe”. This project has
received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No. 786564. AR was funded
by the U.K. Science and Technology Facilities Council grant ST/P000762/1 and Institute
for Particle Physics Phenomenology Associateship.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time,
Ann. Inst. Henri Poincaré Phys. Theor. A 9 (1968) 109 [INSPIRE].

[2] J.S. Dowker and R. Critchley, Effective Lagrangian and Energy Momentum Tensor in
de Sitter Space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].

– 15 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/literature/53162
https://doi.org/10.1103/PhysRevD.13.3224
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD13%2C3224%22


J
H
E
P
1
1
(
2
0
2
0
)
1
5
3

[3] T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization
by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

[4] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, in Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1984).

[5] A.D. Linde, Scalar Field Fluctuations in Expanding Universe and the New Inflationary
Universe Scenario, Phys. Lett. B 116 (1982) 335 [INSPIRE].

[6] B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

[7] B. Allen and A. Folacci, The Massless Minimally Coupled Scalar Field in de Sitter Space,
Phys. Rev. D 35 (1987) 3771 [INSPIRE].

[8] B.L. Hu and D.J. O’Connor, Symmetry Behavior in Curved Space-time: Finite Size Effect
and Dimensional Reduction, Phys. Rev. D 36 (1987) 1701 [INSPIRE].

[9] D. Boyanovsky, H.J. de Vega and N.G. Sanchez, Quantum corrections to slow roll inflation
and new scaling of superhorizon fluctuations, Nucl. Phys. B 747 (2006) 25
[astro-ph/0503669] [INSPIRE].

[10] J. Serreau, Effective potential for quantum scalar fields on a de Sitter geometry, Phys. Rev.
Lett. 107 (2011) 191103 [arXiv:1105.4539] [INSPIRE].

[11] M. Herranen, T. Markkanen and A. Tranberg, Quantum corrections to scalar field dynamics
in a slow-roll space-time, JHEP 05 (2014) 026 [arXiv:1311.5532] [INSPIRE].

[12] F. Gautier and J. Serreau, Infrared dynamics in de Sitter space from Schwinger-Dyson
equations, Phys. Lett. B 727 (2013) 541 [arXiv:1305.5705] [INSPIRE].

[13] F. Gautier and J. Serreau, Scalar field correlator in de Sitter space at next-to-leading order in
a 1/N expansion, Phys. Rev. D 92 (2015) 105035 [arXiv:1509.05546] [INSPIRE].

[14] J. Tokuda and T. Tanaka, Statistical nature of infrared dynamics on de Sitter background,
JCAP 02 (2018) 014 [arXiv:1708.01734] [INSPIRE].

[15] T. Arai, Nonperturbative Infrared Effects for Light Scalar Fields in de Sitter Space, Class.
Quant. Grav. 29 (2012) 215014 [arXiv:1111.6754] [INSPIRE].

[16] M. Guilleux and J. Serreau, Quantum scalar fields in de Sitter space from the nonperturbative
renormalization group, Phys. Rev. D 92 (2015) 084010 [arXiv:1506.06183] [INSPIRE].

[17] T. Prokopec and G. Rigopoulos, Functional renormalization group for stochastic inflation,
JCAP 08 (2018) 013 [arXiv:1710.07333] [INSPIRE].

[18] G. Moreau and J. Serreau, Backreaction of superhorizon scalar field fluctuations on a
de Sitter geometry: A renormalization group perspective, Phys. Rev. D 99 (2019) 025011
[arXiv:1809.03969] [INSPIRE].

[19] G. Moreau and J. Serreau, Stability of de Sitter spacetime against infrared quantum scalar
field fluctuations, Phys. Rev. Lett. 122 (2019) 011302 [arXiv:1808.00338] [INSPIRE].

[20] D. López Nacir, F.D. Mazzitelli and L.G. Trombetta, To the sphere and back again: de Sitter
infrared correlators at NTLO in 1/N , JHEP 08 (2019) 052 [arXiv:1905.03665] [INSPIRE].

[21] A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes
Phys. 246 (1986) 107 [INSPIRE].

[22] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the
de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

– 16 –

https://doi.org/10.1098/rspa.1978.0060
https://inspirehep.net/search?p=find+J%20%22Proc.Roy.Soc.Lond.%2CA360%2C117%22
https://doi.org/10.1017/CBO9780511622632
https://doi.org/10.1017/CBO9780511622632
https://doi.org/10.1016/0370-2693(82)90293-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB116%2C335%22
https://doi.org/10.1103/PhysRevD.32.3136
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD32%2C3136%22
https://doi.org/10.1103/PhysRevD.35.3771
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD35%2C3771%22
https://doi.org/10.1103/PhysRevD.36.1701
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD36%2C1701%22
https://doi.org/10.1016/j.nuclphysb.2006.04.010
https://arxiv.org/abs/astro-ph/0503669
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0503669
https://doi.org/10.1103/PhysRevLett.107.191103
https://doi.org/10.1103/PhysRevLett.107.191103
https://arxiv.org/abs/1105.4539
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.4539
https://doi.org/10.1007/JHEP05(2014)026
https://arxiv.org/abs/1311.5532
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.5532
https://doi.org/10.1016/j.physletb.2013.10.072
https://arxiv.org/abs/1305.5705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.5705
https://doi.org/10.1103/PhysRevD.92.105035
https://arxiv.org/abs/1509.05546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.05546
https://doi.org/10.1088/1475-7516/2018/02/014
https://arxiv.org/abs/1708.01734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.01734
https://doi.org/10.1088/0264-9381/29/21/215014
https://doi.org/10.1088/0264-9381/29/21/215014
https://arxiv.org/abs/1111.6754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6754
https://doi.org/10.1103/PhysRevD.92.084010
https://arxiv.org/abs/1506.06183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.06183
https://doi.org/10.1088/1475-7516/2018/08/013
https://arxiv.org/abs/1710.07333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.07333
https://doi.org/10.1103/PhysRevD.99.025011
https://arxiv.org/abs/1809.03969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.03969
https://doi.org/10.1103/PhysRevLett.122.011302
https://arxiv.org/abs/1808.00338
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.00338
https://doi.org/10.1007/JHEP08(2019)052
https://arxiv.org/abs/1905.03665
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03665
https://doi.org/10.1007/3-540-16452-9_6
https://doi.org/10.1007/3-540-16452-9_6
https://inspirehep.net/search?p=find+J%20%22Lect.Notes%20Phys.%2C246%2C107%22
https://doi.org/10.1103/PhysRevD.50.6357
https://arxiv.org/abs/astro-ph/9407016
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9407016


J
H
E
P
1
1
(
2
0
2
0
)
1
5
3

[23] T. Markkanen, A. Rajantie, S. Stopyra and T. Tenkanen, Scalar correlation functions in
de Sitter space from the stochastic spectral expansion, JCAP 08 (2019) 001
[arXiv:1904.11917] [INSPIRE].

[24] T. Markkanen and A. Rajantie, Scalar correlation functions for a double-well potential in
de Sitter space, JCAP 03 (2020) 049 [arXiv:2001.04494] [INSPIRE].

[25] G. Rigopoulos, Thermal Interpretation of Infrared Dynamics in de Sitter, JCAP 07 (2016)
035 [arXiv:1604.04313] [INSPIRE].

[26] J. Tokuda and T. Tanaka, Can all the infrared secular growth really be understood as increase
of classical statistical variance?, JCAP 11 (2018) 022 [arXiv:1806.03262] [INSPIRE].

[27] D. Cruces, C. Germani and T. Prokopec, Failure of the stochastic approach to inflation
beyond slow-roll, JCAP 03 (2019) 048 [arXiv:1807.09057] [INSPIRE].

[28] D. Glavan, T. Prokopec and A.A. Starobinsky, Stochastic dark energy from inflationary
quantum fluctuations, Eur. Phys. J. C 78 (2018) 371 [arXiv:1710.07824] [INSPIRE].

[29] R.J. Hardwick, V. Vennin, C.T. Byrnes, J. Torrado and D. Wands, The stochastic spectator,
JCAP 10 (2017) 018 [arXiv:1701.06473] [INSPIRE].

[30] V. Vennin and A.A. Starobinsky, Correlation Functions in Stochastic Inflation, Eur. Phys. J.
C 75 (2015) 413 [arXiv:1506.04732] [INSPIRE].

[31] I. Moss and G. Rigopoulos, Effective long wavelength scalar dynamics in de Sitter, JCAP 05
(2017) 009 [arXiv:1611.07589] [INSPIRE].

[32] J. Grain and V. Vennin, Stochastic inflation in phase space: Is slow roll a stochastic
attractor?, JCAP 05 (2017) 045 [arXiv:1703.00447] [INSPIRE].

[33] H. Firouzjahi, A. Nassiri-Rad and M. Noorbala, Stochastic Ultra Slow Roll Inflation, JCAP
01 (2019) 040 [arXiv:1811.02175] [INSPIRE].

[34] L. Pinol, S. Renaux-Petel and Y. Tada, Inflationary stochastic anomalies, Class. Quant.
Grav. 36 (2019) 07LT01 [arXiv:1806.10126] [INSPIRE].

[35] R.J. Hardwick, T. Markkanen and S. Nurmi, Renormalisation group improvement in the
stochastic formalism, JCAP 09 (2019) 023 [arXiv:1904.11373] [INSPIRE].

[36] J. Fumagalli, S. Renaux-Petel and J.W. Ronayne, Higgs vacuum (in)stability during
inflation: the dangerous relevance of de Sitter departure and Planck-suppressed operators,
JHEP 02 (2020) 142 [arXiv:1910.13430] [INSPIRE].

[37] M. Jain and M.P. Hertzberg, Eternal inflation and reheating in the presence of the standard
model Higgs field, Phys. Rev. D 101 (2020) 103506 [arXiv:1910.04664] [INSPIRE].

[38] G. Moreau and J. Serreau, Unequal Time Correlators of Stochastic Scalar Fields in de Sitter
Space, Phys. Rev. D 101 (2020) 045015 [arXiv:1912.05358] [INSPIRE].

[39] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, Stochastic inflation beyond slow roll,
JCAP 07 (2019) 031 [arXiv:1905.06300] [INSPIRE].

[40] T. Prokopec and G. Rigopoulos, ∆N and the stochastic conveyor belt of Ultra Slow-Roll,
arXiv:1910.08487 [INSPIRE].

[41] G. Franciolini, G.F. Giudice, D. Racco and A. Riotto, Implications of the detection of
primordial gravitational waves for the Standard Model, JCAP 05 (2019) 022
[arXiv:1811.08118] [INSPIRE].

[42] L. Kofman, Probing string theory with modulated cosmological fluctuations,
astro-ph/0303614 [INSPIRE].

– 17 –

https://doi.org/10.1088/1475-7516/2019/08/001
https://arxiv.org/abs/1904.11917
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11917
https://doi.org/10.1088/1475-7516/2020/03/049
https://arxiv.org/abs/2001.04494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04494
https://doi.org/10.1088/1475-7516/2016/07/035
https://doi.org/10.1088/1475-7516/2016/07/035
https://arxiv.org/abs/1604.04313
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.04313
https://doi.org/10.1088/1475-7516/2018/11/022
https://arxiv.org/abs/1806.03262
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.03262
https://doi.org/10.1088/1475-7516/2019/03/048
https://arxiv.org/abs/1807.09057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09057
https://doi.org/10.1140/epjc/s10052-018-5862-5
https://arxiv.org/abs/1710.07824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.07824
https://doi.org/10.1088/1475-7516/2017/10/018
https://arxiv.org/abs/1701.06473
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.06473
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://arxiv.org/abs/1506.04732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.04732
https://doi.org/10.1088/1475-7516/2017/05/009
https://doi.org/10.1088/1475-7516/2017/05/009
https://arxiv.org/abs/1611.07589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.07589
https://doi.org/10.1088/1475-7516/2017/05/045
https://arxiv.org/abs/1703.00447
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00447
https://doi.org/10.1088/1475-7516/2019/01/040
https://doi.org/10.1088/1475-7516/2019/01/040
https://arxiv.org/abs/1811.02175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02175
https://doi.org/10.1088/1361-6382/ab097f
https://doi.org/10.1088/1361-6382/ab097f
https://arxiv.org/abs/1806.10126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10126
https://doi.org/10.1088/1475-7516/2019/09/023
https://arxiv.org/abs/1904.11373
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11373
https://doi.org/10.1007/JHEP02(2020)142
https://arxiv.org/abs/1910.13430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13430
https://doi.org/10.1103/PhysRevD.101.103506
https://arxiv.org/abs/1910.04664
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04664
https://doi.org/10.1103/PhysRevD.101.045015
https://arxiv.org/abs/1912.05358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.05358
https://doi.org/10.1088/1475-7516/2019/07/031
https://arxiv.org/abs/1905.06300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.06300
https://arxiv.org/abs/1910.08487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08487
https://doi.org/10.1088/1475-7516/2019/05/022
https://arxiv.org/abs/1811.08118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08118
https://arxiv.org/abs/astro-ph/0303614
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0303614


J
H
E
P
1
1
(
2
0
2
0
)
1
5
3

[43] G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density
perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].

[44] K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial Curvature Fluctuation
and Its Non-Gaussianity in Models with Modulated Reheating, Phys. Rev. D 78 (2008)
063545 [arXiv:0807.3988] [INSPIRE].

[45] T. Kobayashi, F. Takahashi, T. Takahashi and M. Yamaguchi, Dark Radiation from
Modulated Reheating, JCAP 03 (2012) 036 [arXiv:1111.1336] [INSPIRE].

[46] T. Fujita and K. Harigaya, Hubble induced mass after inflation in spectator field models,
JCAP 12 (2016) 014 [arXiv:1607.07058] [INSPIRE].

[47] S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011
[arXiv:1907.07390] [INSPIRE].

[48] K.-Y. Choi and Q.-G. Huang, Can the standard model Higgs boson seed the formation of
structures in our Universe?, Phys. Rev. D 87 (2013) 043501 [arXiv:1209.2277] [INSPIRE].

[49] A. De Simone, H. Perrier and A. Riotto, Non-Gaussianities from the Standard Model Higgs,
JCAP 01 (2013) 037 [arXiv:1210.6618] [INSPIRE].

[50] Y.-F. Cai, Y.-C. Chang, P. Chen, D.A. Easson and T. Qiu, Planck constraints on Higgs
modulated reheating of renormalization group improved inflation, Phys. Rev. D 88 (2013)
083508 [arXiv:1304.6938] [INSPIRE].

[51] A. Chambers and A. Rajantie, Lattice calculation of non-Gaussianity from preheating, Phys.
Rev. Lett. 100 (2008) 041302 [Erratum ibid. 101 (2008) 149903] [arXiv:0710.4133]
[INSPIRE].

[52] A. Chambers and A. Rajantie, Non-Gaussianity from massless preheating, JCAP 08 (2008)
002 [arXiv:0805.4795] [INSPIRE].

[53] A. Chambers, S. Nurmi and A. Rajantie, Non-Gaussianity from resonant curvaton decay,
JCAP 01 (2010) 012 [arXiv:0909.4535] [INSPIRE].

[54] T. Fujita, K. Harigaya and M. Kawasaki, Large Scale Cosmic Perturbation from Evaporation
of Primordial Black Holes, Phys. Rev. D 88 (2013) 123519 [arXiv:1306.6437] [INSPIRE].

[55] T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter, and
density perturbation from primordial black holes, Phys. Rev. D 89 (2014) 103501
[arXiv:1401.1909] [INSPIRE].

[56] D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A New approach to the evolution of
cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527
[astro-ph/0003278] [INSPIRE].

[57] A.A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation of
Perturbations, JETP Lett. 42 (1985) 152 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 124]
[INSPIRE].

[58] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in
inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

[59] M. Sasaki and E.D. Stewart, A General analytic formula for the spectral index of the density
perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71
[astro-ph/9507001] [INSPIRE].

[60] M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar inflation, Prog. Theor.
Phys. 99 (1998) 763 [gr-qc/9801017] [INSPIRE].

– 18 –

https://doi.org/10.1103/PhysRevD.69.023505
https://arxiv.org/abs/astro-ph/0303591
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0303591
https://doi.org/10.1103/PhysRevD.78.063545
https://doi.org/10.1103/PhysRevD.78.063545
https://arxiv.org/abs/0807.3988
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.3988
https://doi.org/10.1088/1475-7516/2012/03/036
https://arxiv.org/abs/1111.1336
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.1336
https://doi.org/10.1088/1475-7516/2016/12/014
https://arxiv.org/abs/1607.07058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07058
https://doi.org/10.1007/JHEP02(2020)011
https://arxiv.org/abs/1907.07390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.07390
https://doi.org/10.1103/PhysRevD.87.043501
https://arxiv.org/abs/1209.2277
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.2277
https://doi.org/10.1088/1475-7516/2013/01/037
https://arxiv.org/abs/1210.6618
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.6618
https://doi.org/10.1103/PhysRevD.88.083508
https://doi.org/10.1103/PhysRevD.88.083508
https://arxiv.org/abs/1304.6938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.6938
https://doi.org/10.1103/PhysRevLett.100.041302
https://doi.org/10.1103/PhysRevLett.100.041302
https://arxiv.org/abs/0710.4133
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.4133
https://doi.org/10.1088/1475-7516/2008/08/002
https://doi.org/10.1088/1475-7516/2008/08/002
https://arxiv.org/abs/0805.4795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.4795
https://doi.org/10.1088/1475-7516/2010/01/012
https://arxiv.org/abs/0909.4535
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.4535
https://doi.org/10.1103/PhysRevD.88.123519
https://arxiv.org/abs/1306.6437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.6437
https://doi.org/10.1103/PhysRevD.89.103501
https://arxiv.org/abs/1401.1909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.1909
https://doi.org/10.1103/PhysRevD.62.043527
https://arxiv.org/abs/astro-ph/0003278
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0003278
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C42%2C152%22
https://doi.org/10.1103/PhysRevD.42.3936
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD42%2C3936%22
https://doi.org/10.1143/PTP.95.71
https://arxiv.org/abs/astro-ph/9507001
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9507001
https://doi.org/10.1143/PTP.99.763
https://doi.org/10.1143/PTP.99.763
https://arxiv.org/abs/gr-qc/9801017
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9801017


J
H
E
P
1
1
(
2
0
2
0
)
1
5
3

[61] D.H. Lyth, K.A. Malik and M. Sasaki, A General proof of the conservation of the curvature
perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].

[62] M.S. Turner, Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28
(1983) 1243 [INSPIRE].

[63] H. Tunc and M. Sari, A local differential transform approach for the cubic nonlinear duffing
oscillator with damping term, Sci. Iran. 26 (2019) 879.

[64] G.N. Felder and I. Tkachev, LATTICEEASY: A Program for lattice simulations of scalar
fields in an expanding universe, Comput. Phys. Commun. 178 (2008) 929 [hep-ph/0011159]
[INSPIRE].

[65] K. Enqvist, S. Nurmi, S. Rusak and D. Weir, Lattice Calculation of the Decay of Primordial
Higgs Condensate, JCAP 02 (2016) 057 [arXiv:1506.06895] [INSPIRE].

[66] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.
641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

[67] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.
641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

[68] P. Minkowski, µ→ eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977)
421 [INSPIRE].

[69] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174
(1986) 45 [INSPIRE].

[70] ATLAS collaboration, Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1
[arXiv:1207.7214] [INSPIRE].

[71] CMS collaboration, Observation of a New Boson at a Mass of 125GeV with the CMS
Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[72] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass
implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222
[arXiv:1112.3022] [INSPIRE].

[73] G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP
08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

[74] D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089
[arXiv:1307.3536] [INSPIRE].

[75] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann,
Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys.
Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

[76] S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from
leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

[77] A. Karam, T. Markkanen, L. Marzola, S. Nurmi, M. Raidal and A. Rajantie, in preparation.

– 19 –

https://doi.org/10.1088/1475-7516/2005/05/004
https://arxiv.org/abs/astro-ph/0411220
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0411220
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD28%2C1243%22
https://doi.org/10.24200/sci.2018.4934.1000
https://doi.org/10.1016/j.cpc.2008.02.009
https://arxiv.org/abs/hep-ph/0011159
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011159
https://doi.org/10.1088/1475-7516/2016/02/057
https://arxiv.org/abs/1506.06895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.06895
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06211
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06209
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0370-2693(77)90435-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB67%2C421%22
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(86)91126-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB174%2C45%22
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.7235
https://doi.org/10.1016/j.physletb.2012.02.013
https://arxiv.org/abs/1112.3022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.3022
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
https://arxiv.org/abs/1205.6497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6497
https://doi.org/10.1007/JHEP12(2013)089
https://arxiv.org/abs/1307.3536
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.3536
https://doi.org/10.1103/PhysRevD.89.015017
https://doi.org/10.1103/PhysRevD.89.015017
https://arxiv.org/abs/1309.6632
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.6632
https://doi.org/10.1016/S0370-2693(02)01735-5
https://arxiv.org/abs/hep-ph/0202239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0202239

	Introduction
	Spectator fields
	Deriving the power spectrum with the delta N formalism
	Indirect modulation
	A simple model with Yukawa interactions
	Power spectrum from indirect modulation

	Indirect modulation in the Standard Model
	Results
	Summary and outlook

