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This paper presents the Systemic Mapping Study results of the Ethics of Artifi-
cial Intelligence (AI) research. AI ethics is an emerging and versatile topic inter-
esting to different domains. This paper focuses on understanding the role of 
Explainable AI in the research field and how the topic has been studied.  

Explainable AI refers to AI systems that are interpretable or understanda-
ble to humans. It aims to increase the transparency of systems and make sys-
tems more trustworthy. Non-transparent AI systems are have already shown 
some of their weaknesses, such as in some cases favoring men over women in 
the hiring process. 

The research fields of AI ethics and Explainable AI lack a common frame-
work and conceptualization. There is no clarity of the field’s depth and versatil-
ity; hence a systemic approach to understanding the corpus was needed. The 
systemic review offers an opportunity to detect research gaps and focus points. 
A Systemic Mapping Study is a tool to performing a repeatable and continuable 
literature search. 

This paper contributes to the research field with a Systemic Map that visu-
alizes what, how, when, and why Explainable AI has been studied in AI ethics. 
Within the scope is the detection of primary papers in AI ethics, which opens 
possibilities to continue the mapping process in other papers. The third contri-
bution is the primary empirical conclusions drawn from the analysis and reflect 
existing research and practical implementation. 
 
Keywords: AI Ethics, Explainable AI, Artificial Intelligence, Systemic Mapping 
Study 
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1 INTRODUCTION 

Artificial Intelligence (AI) is one of the most prominent and influential technol-
ogies of modern days. The importance of AI-empowered applications is pre-
dicted to grow in the future. Already today, AI is affecting the everyday life of 
common people from social media feed modifications and shopping recom-
mendations to manipulation of people’s voting preferences. The speed of de-
velopment and the race between nations and companies to build robust AI tools 
increases the need to set the ethical guidelines and principles for AI develop-
ment and deployment.  

AI ethics is based on computer ethics, which is interested in human and 
machine interaction, and machine ethics, which is interested in moral agents 
and how morality can be programmed to the machines. AI ethics is often bro-
ken down to principles from which five of the most frequently required are 
transparency, justice, and fairness, non-maleficence, responsibility, and privacy 
(Jobin, Ienca and Vayena, 2019). Transparency, per se, can be seen as a pro-
ethical principle, the enabler of ethical AI (Turilli and Floridi 2009). Explainable 
AI (later XAI) is aiming to solve the issues with transparency. XAI refers to the 
interpretable system that provides an understandable explanation to the system 
output (Adadi & Berrada, 2018). This paper aims to understand the research 
field of XAI and its role in AI ethics research. 

1.1 Motivation 

The subject of AI Ethics is versatile, ranging from the worries about conscious 
machines and their capability to replace people with machine workers, to more 
technical challenges such as designing ethical autonomous vehicles or settling 
the requirements of developing explainable machine learning algorithms. The 
field is broad and research areas vary from highly technical issues to under-
standing human behavior; hence it is a relevant research topic for social scien-
tists, philosophers, economists, information system scientists, data scientists, 
mathematicians, and researchers from other domains. Multidisciplinary re-
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search is required to understand the research field's depth and extend and re-
veal potential research gaps. 

Due to the novelty of the research area, it still lacks clarity and structure. 
AI ethics and XAI are both suffering from the lack of commonly agreed defini-
tions of core concepts (Došilović, Brčić & Hlupić, 2018; Jobin et al., 2019). This 
paper aims to understand how XAI is researched from the perspective of AI 
ethics. This perspective requires first the understanding of the research field of 
AI ethics. 

AI ethics is not just a future concern but a relevant issue of the real-world. 
Unfair non-transparent algorithmics are already in use (O’Neil, 2016). Mistakes 
by such algorithms may have long and unexpected consequences such as deni-
als of university access (Evgeniou, Hardoon and Ovchinnikov, 2020). The issues 
are not just technical challenges, but a broader perspective is required. It is es-
sential to understand the connection between real-world problems and academ-
ic research.  

To understand what is researched in AI ethics and how XAI is presented 
in the research field, a study on the research corpus of AI ethics is required. 
This paper uses Systemic Mapping Study (later SMS) to map the research litera-
ture of AI ethics. The research question of this paper is: What is the role of XAI in 
the research field of AI ethics? divided into sub-questions: 

[R1] What is researched in the AI ethics research field with empiric evidence? 
[R2] What is the current state of XAI in the research field of AI ethics? 
[R3] What are the research gaps in the field?  

The sub-questions are opened and motivated in the following chapter, and the 
research method of SMS is shortly introduced next. 

1.2 Research questions 

This paper's research question “What is the role of explainable AI in AI ethics' re-
search field?” requires an overview of the overall corpus of academic literature 
on AI ethics. As this paper is more focused on concrete issues rather than philo-
sophical discussion, the focus is on the research with empirical evidence. To 
answer the research question, it is required first to answer the research question 
of [R1] What is researched in the AI ethics research field with empiric evidence? To 
profoundly answer this question, more in-depth research is required than what 
is possible to perform in a master’s thesis. In this paper, the question is studied 
at a superficial level to offer enough background to understand the main re-
search question. The major topics are noted, the research field's size, and the 
proportion of empiric research from the existing academic literature Further 
study is required to fully understand the full empiric research corpus of aca-
demic literature of AI ethics. 

The second question is [R2] What is the current state of XAI in the research 
field of AI ethics? The research with XAI's focus is mirrored to a full dataset of 
empiric studies to understand XAI's role and importance in AI ethics. More pro-
found analysis and classification are performed to papers focusing on XAI to 
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understand when, what, how, and why it has been studied. The analysis in-
cludes investigation of research methods, contributions, focus, and pertinence 
to XAI. In addition, the annual changes in the research field are studied to re-
veal trends. The connection to real-world issues is also reviewed.  

The third dimension of the research question is to understand what has 
not been researched. The question [R3] What are the research gaps in the 
field? aims to answer that question based on background literature review and a 
profound SMS. Background literature review brought out gaps, such as the lack 
of understanding of the role of humans in XAI (Adadi and Berrada, 2018) that 
were also highlighted in SMS analysis. Other gaps were revealed, such as a lack 
of research of implementation in practice and the current state of XAI in organi-
zations.  

1.3 Research method 

The research method applied in this work is the Systematic Mapping Study, 
SMS. The method is shortly introduced here and more profoundly explained 
simultaneously with the reporting of SMS used in the AI ethics research area. 
That allows the reader to follow SMS's theoretical framework and mirror it to 
this paper's application. Several SMS studied, and guidelines are utilized. How-
ever, the major contributing papers for this study are the guidelines of Petersen, 
Feldt, Mujtaba, and Mattsson (2008), and the SMS of Paternoster, Giardino, Un-
terkalmsteiner, Gorschek, and Abrahamsson (2014). This paper continues the 
SMS of Vakkuri and Abrahamsson (2018). 

SMS is a form of Systematic Literature Review (SLR), which is a more 
commonly used literature review method. SLR and SMS are secondary studies 
where the attention is on analyzing the evidence of previous research. SLR aims 
to find and evaluate the relevant papers, which are called primary studies, on a 
specific research area. Broader SMS aims to identify and categorize the existing 
literature. (Kitchenham, Budgen, and Brereton, 2011). 

Standardly SLR has a specific, well-defined research question that can be 
answered with empiric research, wherein SMS typically has a broader view of 
the research topic. Another essential difference between SMS and SLR is that 
SLR has a stronger emphasis on the research outcomes of primary papers and 
analyzes their consistency. Wherein an SMS typically aims only to classify and 
categorize the relevant literature, and only the classification data is collected. 
The expected result of SMS is “a set of papers related to a topic area categorized 
in a variety of dimensions and counts of the number of papers in various cate-
gories.” (Kitchenham et al., 2011).  

To understand the role of XAI in the research field of AI ethics, SMS 
methodology served better than SLR. The freshness and incoherence of the AI 
Ethics research area advocated the use of SMS. The size of the research area was 
unknown, and the role of XAI new. Conceptual ambiguity of the research area 
(Jobin et al., 2019) supported SMS usage. 



9 

The benefit of SMS is the possibility of continuing the study to more in-
depth SLR. That, though, requires the SMS to be a recent or updated well-
reported high-quality work. To guarantee the quality, SMS must follow a strin-
gent search process, snowball the primary study references, and have a well-
defined calcification schema and process. SMS needs to be updated if it is not 
continued shortly after. The updating needs to follow the same procedure used 
in the original SMS. High-quality SMS can have a significant benefit for the re-
search area in establishing the baselines for future research. (Kitchenham et al., 
2011). 

SMS is a highly time-consuming and rather challenging research method; 
hence it is not typically used in master’s theses (Petersen et al., 2018). Under-
graduates tend to lack the skills and academic understanding to produce high-
quality SMS with future study opportunities. To guarantee the paper's quality, 
the topic must be carefully chosen to ensure a manageable number of included 
papers (Petersen et al., 2018). This paper was done in close collaboration and 
supervision of University of Jyväskylä’s (JYU) AI Ethics Labs’ research group to 
ensure the academic quality and validity. The literature search was performed 
with Vakkuri and Abrahamsson (2018) framework that ensured the quality of 
material gathering. The research area was significantly larger than expected, 
which challenged the rigor of the work. Part of the literature search and inclu-
sion process was performed by a research assistant to keep the work-load man-
ageable without jeopardizing the work's rigor and quality. 

1.4 Structure of work 

The first part of the paper serves as a background for the SMS. It presents the 
technologies AI and Machine Learning. Next, the ethical foundations and the 
principals for ethical AI are introduced. Following the introduction of XAI and 
related issues such as transparency and black box problem are described. At the 
end of the chapter, there is a short conclusion of the background study and the 
research area's analyses. This background chapter aims to provide the reader 
with an understanding of the topic of AI ethics and how the research area is 
interpreted.  

The second part of the study reports the literature search process. The 
chapter starts with a theoretical framework of SMS and continues with report-
ing the use of SMS in this paper. The literature search is performed only for the 
year range of 2018-2020 to update the SMS by Vakkuri and Abrahamson (2018). 
After the literature search, the sample of 2018-2020 was 1975 papers.  

In chapter three, the inclusion and exclusion criteria and the process is re-
ported. The inclusion process was done during four screening rounds of the 
papers. After the first screening round, the sample of 2018-2020 (n=1532) was 
combined with a separately screened sample of 2012-2017 (n=403). After four 
screening rounds, the final dataset was 76 papers. 

The identified primary studies (n=76) were analyzed during the next two 
chapters. Chapter four presents the classification schema and the numeric re-
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sults of classification. In chapter five, the results are analyzed and compared, 
and the annual trends and the venues of publications are investigated. Chapter 
six is the Discussion where is proposed theoretical and practical implications of 
primary empirical conclusions. In Conclusions, the results are mirrored to the 
research questions, and the limitations of this study are analyzed—finally, fu-
ture research topics are suggested. 
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2 BACKGROUND 

The purpose of this background chapter is to present the main themes related to 
this study and highlight the current discussion around XAI. In addition, the aim 
is to provide the needed background knowledge for the reader. First, AI and 
related technologies are presented and followed by the ethical foundations and 
principles of AI. Next, XAI and related themes are shortly described. The chap-
ter ends with conclusions and the motivation to proceed with the SMS. 

2.1 Artificial Intelligence 

The unambiguous definition of Artificial Intelligence is challenging. AI is used 
as an umbrella term for many technologies such as machine learning, machine 
vision, and autonomous machines. On the other hand, AI can be seen as part of 
the broader framework of digitalization. In academia, AI is a cross-disciplinary 
research area of engineering, economics, and humanistic sciences. In short, AI 
could be defined as, a tool that enables machines, programs, systems, and ser-
vices to function rationally according to the task and situation (Russell & 
Norvig, 1994).  

European Commission has taken an initiative to frame and regulate the 
use of AI. Their High-Level Expert Group on Artificial Intelligence, AI HLEG 
group, (Rossi et al., 2019) defines AI as follows: 

“Artificial intelligence (AI) systems are software (and possibly also hardware) systems de-
signed by humans that, given a complex goal, act in the physical or digital dimension by per-
ceiving their environment through data acquisition, interpreting the collected structured or un-
structured data, reasoning on the knowledge, or processing the information, derived from this 
data and deciding the best action(s) to take to achieve the given goal. AI systems can either 
use symbolic rules or learn a numeric model, and they can also adapt their behavior by ana-
lyzing how the environment is affected by their previous actions. As a scientific discipline, AI 
includes several approaches and techniques, such as machine learning (of which deep learning 
and reinforcement learning are specific examples), machine reasoning (which includes plan-
ning, scheduling, knowledge representation and reasoning, search, and optimization), and ro-
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botics (which includes control, perception, sensors and actuators, as well as the integration of 
all other techniques into cyber-physical systems).” 

 
Technology has been one of the fundamentals of economic growth ever 

since the industrial revolution. In the center of technological innovations are 
general-purpose technologies, such as a steam engine or electricity, that have 
the power to catalyze other complementary innovations. With the capability to 
improve itself without human intervention, AI is a general-purpose technology, 
making it a fascinating study subject. (Brynjolfsson & McAfee, 2017). 

AI has a long history and has roots in the 60s, so it is far from being a new 
technology. During its history, AI has had its ups and downs in the hype curve, 
making it appear brand-new in public discussion. Despite the lack of hype in 
the industrial sector, AI has been a standard part of the industrial repertoire 
ever since the 80s (Bryson, 2019). However, it was not until 2007 that the intro-
duction and generalization of smartphones and social media channels started to 
generate large amounts of data, which affected machine learning by providing 
it the training material and target applications (Bryson, 2019). Together with 
easier mass data access, the progress in computing power, and the development 
of Machine Learning algorithms the so-called Second Machine Age started. 
That brought AI back to the media spotlight and the top of the hype curve. 

In general, the AI field suffers from overly high expectations regarding the 
speed of development and over-promised AI applications’ capabilities. Even 
though technological development and increase in computing speed are con-
stantly progressing, more time is required to get prominent AI systems from 
research laboratories to deployment-ready applications. Thus, too high expecta-
tions can cause disappointments and decrease interest in investments. The me-
dia and entertainment industries are filled with images of generally intelligent 
machines. However, generally intelligent AI is far from today’s narrow AI ap-
plications trained to execute specific tasks (Brynjolfsson & McAfee, 2017). Still, 
the usage of AI has had a significant role in the rise of some of the most success-
ful companies like Apple, Alphabet (parent company of Google), and Amazon 
(Bryson, 2019); hence the high expectations are entitled to some extent.  

It is predicted that the effects of AI will be magnified in the coming dec-
ades when AI applications are implemented in various industries (Brynjolfsson 
& McAfee, 2017). That will force the companies to transform their core process-
es and business models. To stay in the competition, companies today are de-
ploying AI systems to be more efficient. Based on Brynjolfsson and McAfee 
(2017), “Over the next decade, AI won’t replace managers, but managers who 
use AI will replace those who don’t”. 

2.1.1 Machine Learning   

As the most common form of Artificial Intelligence today, machine learning has 
been coded to learn either by human supervision or by its own with training 
data. By the definition of Alpaydin (2014, p. 1-2), machine learning refers to a 
computer program that is programmed to optimize its performance by using 
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example data or past experience. To learn and understand the provided data 
set, the machine learning model applies different algorithms. Machine learning 
models can be used to make future predictions or to gain knowledge from the 
past. If machine learning methods are applied to large databases, it is called 
data mining. (Alpaydin, 2014, p. 1-4).  

The types of machine learning are determined by how feedback is used in 
the training process. The three main types are unsupervised learning, rein-
forcement learning, and supervised learning. In supervised learning, the ma-
chine has training data with test examples consisting of inputs and outputs, and 
the machine learns a function that maps inputs to outputs. Reinforcement learn-
ing the model is taught with rewards and punishments. The correct outputs are 
not provided, but the feedback is given after the machine provides the output. 
In unsupervised learning, the expected inputs or outputs are not provided, and 
the feedback is not explicit. The machine learns by detecting patterns in the 
training data. One of the most common tasks for unsupervised learning is clus-
tering, which means recognizing patterns from the unlabeled data set. (Russel 
& Norvig, 2010, s.694-695). 

Historically in computer science, the emphasis has been on developing 
better algorithms. However, within the last decades, the interest has shifted 
more to collect and create usable data (Russel & Norvig, 2010, p. 694-695). To 
train a machine learning model, the data is the key. Even though the amount of 
data is growing at exponential speed, the major challenge is the usability of the 
data, as the raw data is unlabeled or unstructured and requires much effort for 
refining. To create more powerful machine learning models, the solution is not 
a new specific algorithm, but the usable example data and sufficient computing 
power. (Alpaydin, 2016, p. 16-17).  

Techniques like deep learning can be used as part of a solution, as deep 
learning requires a smaller training data set. A deep learning model can be fed 
with raw data, and it can be used for detection and classification. The models 
using unsupervised deep learning are expected to become more critical in the 
future. Deep learning can be used for more complex tasks like natural language 
understanding and imitation of human vision, and in the future combine it with 
complex reasoning. (LeCun, Bengio & Hinton, 2015). 

Besides AI and machine learning, there are a couple of other essential con-
cepts to understand this paper's research area. When talking about AI, people 
often think about robotics, bots, and autonomous machines. Robotics refers to 
AI's embodiment, and bots refer to virtual entities, usually powered by machine 
learning, such as virtual assistants or chatbots. Autonomous machines, such as 
vehicles, robots, or production machinery, differ from automation with the ca-
pability to learn and make decisions fully or semi-autonomously without hu-
man supervision. 
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2.2 AI Ethics 

Due to the AI systems' capability to learn and make decisions autonomously 
and the broad interest to deploy AI in various fields, the interest and need for 
ethical research and guidelines have increased. In academia, the discussion and 
research of AI ethics have been running for decades, but it rarely crosses with 
the development of AI systems (Vakkuri & Abrahamsson, 2018). The research 
of AI ethics has been focusing on the potential of AI on a theoretical level and 
on finding technological solutions, even though often a broader perspective is 
required (Brundage, 2014). AI ethics is a continually evolving research area that 
is interesting for several domains like computer science, economics, philosophy. 
The research consists of a large variety of papers from different areas concern-
ing AI ethics, which makes the definition of the field of AI ethics a challenging 
task (Vakkuri & Abrahamsson, 2018). AI ethics is also important from a societal 
perspective, and institutions like the European Union are putting effort to es-
tablish ethical guidelines of AI usage. Also, for private organizations, AI ethics 
is a concerning issue, as they are responsible for the acts of the incorporated AI 
systems.  

Ethics (also called moral philosophy) is a research area of philosophy that 
aims to define the concept of right and wrong and resolve questions of human 
morality. Ethics is divided into three subject areas: 

1. Metaethics that investigates the origin of ethical principles. 
2. Normative ethics with a more practical viewpoint to determine a 

moral course of action. 
3. Applied ethics examines controversial issues in domain-specific 

situations aiming to determine the obligated or permitted actions. 
(Fisher, 2020). 

Applied ethics include environmental concerns and human rights (Fisher, 
2020), and it often concerns real-life situations that require quick decision mak-
ing (Ala-Pietilä et al., 2019). One sub-field of applied ethics is computer ethics 
that includes AI ethics, which involves the ethical issues raised by the devel-
opment, deployment, and use of AI (Ala-Pietilä et al., 2019).  

Computer ethics studies the moral questions associated with the devel-
opment, application, and use of technology (van den Hoven, 2009). Computer 
ethics has its roots in the 1940s, but the subject boomed in the late 1970s when 
the first significant problems, like computer crimes and invasions of privacy, 
became public concerns (Bynum, 2001). During 1990, computer ethics merged 
with information ethics that studies the moral questions connected to the avail-
ability, accessibility, and accuracy of informational resources (Floridi, 2009). 
Within the last three decades, the field of computer ethics has grown radically, 
and it is assumed to gain further importance in the future, as technology is be-
coming more and more globally significant and ultimately an undivided part of 
people's everyday lives (Bynum, 2001).  

Besides computer ethics, which focuses on how humans use computers, 
the other important sub-field of AI ethics is machine ethics. According to Moor 
(2006), machine ethics is interested in moral embedded into machines. The core 
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concept in machine ethics is ethical agents that can make ethical decisions. An 
average adult human is a full ethical agent. A machine can be seen as an ethical 
impact agent that has an ethical impact to its surroundings, or as an implicit 
ethical agent that is coded to follow a particular ethical framework in executing 
a specific task, or as an explicit ethical agent that makes ethical decisions in 
complex fast-changing situations (Moor, 2006). A machine that could behave 
like a full ethical agent would probably require the development of Artificial 
General Intelligence, AGI, that refers to the level of intelligence comparable 
with human intelligence, or superintelligence that refers to machine surpassing 
human intelligence.   

2.2.1 Principles of AI ethics 

The ethics of AI is often defined by using a list of principles, laws, or guidelines 
for AI developers or implementors to follow. Often, in the base of ethics of AI is 
the reference to Isaac Asimov's (1942) imaginary laws in science fiction litera-
ture: 

1.    The robot must not harm or endanger humans 
2.   The robot must obey the human command unless the command con-

flicts with the first law. 
3.    The robot must protect its existence unless it conflicts with laws 1 or 2. 
  

In this research's scope, it is not interesting to focus on the ethical problems of 
the future, such as the construction of the moral code of the conscious machine, 
but on the challenges that are encountered today. It is yet relevant to under-
stand the base and roots of AI ethics. 

Jobin et al. (2019) mapped the corpus, including the grey literature, such 
as corporations’ white papers and reports, of AI ethical guidelines and princi-
ples revealing the five primary principles: transparency, justice and fairness, 
non-maleficence, responsibility, and privacy. The interpretation of these princi-
ples varies depending on the domain, actors, and issue. Transparency was in-
terpreted as explicability, understandability, interpretability, communication, 
disclosure, and showing. Justice was most often interpreted as fairness, con-
sistency, inclusion, equality, equity, (non-)bias, and (non-)discrimination. Most 
often, non-maleficence referred to general security, safety, and causing of fore-
seeable or unintentional harm. Responsibility and accountability referred to 
liability and integrity, or to the different actors named as accountable for AI's 
actions. Privacy in AI ethics means both a value to uphold and a right to be pro-
tected. (Jobin et al., 2019). 

The most frequent requirement in the AI ethics literature was transparen-
cy, followed by justice and fairness (Jobin et al., 2019). Transparency and fair-
ness are required to ensure the system's ethical function. Without transparency, 
fairness cannot be evidenced in the system. A third, closely connected issue is 
accountability. Together these three constructs the FAT (fairness, accountability, 
and transparency) theorem.   
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2.2.2 AI Ethics in Practice 

Within the last years, the questions about responsibility and transparency in 
autonomous systems have been visible in mainstream media due to pedestrian 
fatalities with self-driving cars. In situations like that, it might be challenging to 
detect why the mistake occurred and who is responsible: the driver, the car de-
veloper, or maybe the pedestrian themself? Humans design AI systems and, 
therefore, it is a matter of human responsibility (Bryson, 2019); hence the car 
itself cannot be responsible for an overrun. In these situations, transparency of 
the system is required to fix the system and prevent future accidents.  

Autonomous driving is a broadly discussed topic in the AI ethics field. It 
has opened the venue to non-practitioners to join the conversation and under-
stand the issues related to AI ethics. MIT's research Moral Machine collected 40 
million answers to their online experiment, which studied the decisions in ethi-
cal situations related to autonomous driving (Awad, Dsouza, Kim, et al. 2018). 
The discussion around autonomous vehicles and autonomous driving has satu-
rated, and it might take the focus away from more relevant issues. Still, during 
the last years the discussion around AI ethics has opened to concern a broader 
scope of topics.  

Cathy O’Neil’s popular book, Weapons of Math Destruction: How Big Da-
ta Increases Inequality and Threatens Democracy (2016), brought algorithmic 
inequality and biased algorithms to a broader audience outside academia and 
data science fields. The book showcases problems, especially in US legal and 
public systems. Racial factors can determine the futures of mortgage applicants 
or convicted criminals, even if racial information is not accessible to the algo-
rithm (O'Neil, 2016). One commonly known discriminative case was Amazon's 
AI recruiter, who preferred male applicants in technical positions due to the 
historical data and dominance of men in technical roles (Dastin, 2018). If the 
systems are not transparent, discrimination and biased decisions cannot be 
tracked and fixed.  

Regulators like the European Commission are increasingly interested in 
the topic. In 2018, European commission assembled a High-Level Expert Group 
on Artificial Intelligence, AI HLEG, with the core purpose to support the im-
plementation of the European Strategy on Artificial Intelligence. The commis-
sion's vision is to increase investments in AI, prepare for socio-economic 
change, and ensure an appropriate ethical and legal framework. European 
Commission's AI HLEG (2019) has identified 'Trustworthy AI' as the EU's 
foundational ambition for ethical AI. Trustworthy AI has three components, 
each of them necessary but not sufficient in achieving Trustworthy AI. The AI 
system should be Lawful: compliant with all applicable laws and regula-
tions, Ethical: ensure adherence to ethical principles and values, and Robust, 
from a technical and social perspective, because even with good intentions, AI 
systems can cause unintentional harm. Even though it is desirable to have all 
three components working in harmony, it is not always possible in real life. 
(Ala-Pietilä et al., 2019). 

World Economic Forum (WEF 2016) has clustered the open questions in 
AI ethics with the following categories: 
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1. Rising of unemployment due to job loss for machines 
2. Inequality of incomes and whether the use of AI increases the concen-

tration of incomes 
3. Humanity and AI's effect on human behavior and interaction 
4. Protection of errors and flaws in AI systems 
5. If the use of AI magnifies the human biases 
6. Protection of AI systems from malicious actors 
7. Avoidance of unwanted side effects 
8. Potential singularity and protection against powerful machines 
9. The machine's rights for conscious beings. 
This paper focuses on today's issues connected to the explainability and 

understandability of AI algorithms and algorithmic decision making. These is-
sues are connected to points 4, 5, and 7. 

Companies and private organizations are also establishing their ethical 
frameworks and principles. In 2019, the Finnish governmental initiative The 
Age of AI released a challenge for AI's ethical development. Seventy companies 
participated in the challenge including many of Finland's largest corporations 
(Ministry of economic affairs and employment of Finland, 2020). Large practi-
tioner organizations, such as Google, Intel, and Microsoft, have also presented 
their guidelines concerning ethics in AI (Vakkuri, Kemell, and Abrahasson, 
2019). 

In academia, guidelines and principles aim to structure the research field. 
One notable example is IEEE guidelines for Ethically Aligned Design (The IEEE 
Global Initiative on Ethics of Autonomous and Intelligent Systems, 2019). In 
2018 two closely topic-related conferences were launched; AAAI/ACM Confer-
ence on AI, Ethics, and Society (AIES), that gathers researchers and authors from 
different disciplines to elaborate on the impact of AI on modern society 
(AAAI/ACM, 2017) and FAT* conference that gathers a diverse community of 
scholars to tackle the issues with algorithmic fairness, accountability and trans-
parency in socio-technical systems (ACM FAccT Conference, 2020). Here FAT 
refers to the fairness, accountability, and transparency theorem that was men-
tioned earlier. 

The frameworks' challenge is that they tend to lack the practices to im-
plementing them into practice and require more work to be production-ready 
(Morley et al. 2019). The principles and guidelines are a good starting point for 
ethical discussion but, unfortunately, the principles presented in the literature 
are not actively used in practice (Vakkuri, Kemell, Kultanen, and Abrahamsson, 
2020). This paper investigates the current research corpus with empirical evi-
dence to understand the AI ethics research field closer to real-world issues. The 
interest is in transparent systems, one of the key challenges in AI ethics in prac-
tice (Jobin et al., 2019) and governance (Ala-Pietilä et al., 2019). Transparency is 
investigated together with fairness, as fairness often requires transparency from 
the system. The next chapter provides the background of transparency and ex-
plainable AI systems. 
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2.3 Explainable AI  

Machine and deep learning techniques are used to automate decisions for better 
or faster decision-making processes. Unfortunately, the use of complex tech-
niques, such as deep learning, makes the decisions hard to understand for hu-
mans. To ensure the right for explanations, legislation, such as GDPR, is permit-
ting individuals a right for a meaningful explanation for decisions made by au-
tomated systems. Explainable AI (XAI) refers to an AI system that can explain 
its decisions. (Schneider & Handali, 2019). 

The AI models are expected to be interpretable, which means that it can 
explain the decision in understandable terms to a human (Holm, 2019). A so-
phisticated knowledge extraction and preference elicitation is required to ex-
tract a meaningful explanation from the raw data used in the decision process 
(Schneider & Handali, 2019). This often means that a tradeoff must be made 
between accuracy, effectivity, and interpretability (Adadi & Berrada, 2018).  

Interpretability is merely not just a technical problem. To gain interpreta-
bility of machine learning systems, it is required to focus on humans, rather 
than technical aspects, and provide personalized explanations for individuals 
(Schneider & Handali, 2019). Understanding of human decision-making and 
explanation-defining provides a good ground for XAI. That requires multidis-
ciplinary collaboration and the use of existing research from social sciences such 
as philosophy, psychology, and cognitive science (Miller, 2018).  

Besides social science and artificial intelligence, the scope of XAI includes 
Human-Computer Interaction, which studies the relationship between humans 
and machines. More precisely XAI is only one of the challenges in the scope of 
Human-Agent Interaction, which studies the relationship between humans and 
AI powered machines. The problem sphere of collaboration and interaction be-
tween humans and exponentially developing thinking machine agents is much 
greater than just the challenges with interpretability. (Miller, 2018). 

Interpretability might not be expected from AI systems that do not have 
significant consequences of a wrong decision or if users trust the system even if 
it is known to be imperfect (Holm, 2019). For example, if a non-interpretable AI, 
like a world-famous AlphaGo, can beat a human in the Go game, the explana-
tions of the tactical game decisions are not important (Samek, Wiegand, & Mül-
ler, 2017). Or if the AI system detects cancer cells, perhaps the system's benefits 
are larger than the potential pitfalls caused by a lack of interpretability.  

In many cases though, interpretability is required. The reasons for the 
need for XAI vary. Based on Wachter, Mittelstadt, and Russell (2018) the rea-
sons might be: 

1.    to inform the subject of the reasoning of a particular decision, explain 
the reasons for rejection, or 

2.    to understand how the decision-model needs to be changed to receive 
the desired decisions in the future. 
 
Of course, the application area and purpose impact the need for interpretability. 
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Explainable and understandable systems are required for society to trust 
and accept the algorithmic decision-making systems (Wachter, Mittelstadt, and 
Russell, 2018). Better explanations can also improve existing models and open 
new opportunities, such as the use of machines for teaching humans (Schneider 
& Handali, 2019). XAI is also a potential tool to detect flaws in the system, de-
crease biases in the data, and gain new insights into the problem at hand 
(Samek et al.,2017). Explainability is also important when assigning responsibil-
ity in case of a system failure (Samek et al., 2017), such as in the case of an over-
run of a self-driving car. 

Explainability is essential and beneficial yet challenging a challenging 
task. To understand the overall topic of XAI, other concepts are needed to ex-
plain. The following chapters tell about transparency, the black box problem, 
and algorithmic bias, which are closely connected to XAI. The last chapter of the 
background study concludes the literature review and justifies the motivation 
for Systemic Mapping Study. 

2.3.1 Transparency 

Both the EU AI Ethics guidelines (AI HLEG 2019) and EAD guidelines (The 
IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems 2019) 
consider transparency an essential ethical principle. Even though transparency 
is named as one of the primary principles of AI ethics (Jobin et al., 2019), actual-
ly transparency can be seen as the pro-ethical circumstance, which makes the 
implementation of AI ethics possible in the first place (Turilli and Floridi, 2009). 
Without understanding how the system works, it is impossible to understand 
why it malfunctioned and, consequently, establish who is accountable for the 
malfunctions' effects. 

The meaning of transparency varies depending on the subject, which 
makes the concept vague and misinterpretations likely. In the discipline of in-
formation management, transparency often refers to the form of information 
visibility, such the access to information. In computer science and IT disciplines, 
transparency often refers to a condition of information visibility, such as com-
puter application's transparency to its user, and how much and what infor-
mation is made accessible to a particular user by the information provider. In 
this paper, the term transparency is used in the meaning of the condition of in-
formation visibility. (Turilli and Floridi 2009). 

Even though transparency is often required, the issue is not that simple. 
The information provider (e.g., companies or public institutions) must define 
who has the right to access the information and accessibility conditions (Turilli 
and Floridi 2009). Legislation, such as GDPR, might control the access and shar-
ing of a specific type of information between users. Especially in medicine and 
health, the full transparent access to patient's data across the organization or the 
country borders could accelerate the speed of development, such as drug dis-
coveries. However, in the other hand it could lead to ethical challenges and 
misuse of highly sensitive personal data.  
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Instead of seeing transparency as an ethical principle, it would be more 
accurate to treat it as an ethically enabling or impairing factor, the pro-ethical 
condition. Information transparency enables ethical implementation when the 
system provides the information necessary for the endorsement of ethical prin-
ciples or when it provides details on how information is constrained. Transpar-
ency can impair ethical principles if it gives misinformation or inadequate in-
formation or exposes an excessive amount of information. The impairing of eth-
ical principles could lead to challenges with e.g., discrimination, privacy, and 
security. (Turilli and Floridi 2009). 

2.3.2 Black box problem  

It is called a "black box" when the AI model is not understandable and cannot 
provide a suitable explanation for its decision (Adadi & Berrada, 2018). A black 
box refers to a model that is either too complicated for any human to compre-
hend or proprietary to someone (Rudin, 2019). Typically, deep learning models 
belong to the first category. To understand the black box, the model needs to be 
built to be interpretable or create a second model that explains the first black-box 
model (Rudin, 2019). Interpretability in AI context refers to the capability to 
understand the overall work logic in machine learning algorithms, not just the 
answer (Adadi & Berrada, 2018). The terms interpretability and explainability 
are often used as synonyms (Adadi & Berrada, 2018), which can be challenging 
as the level of required understandability is different. In the public discussion, 
the term Explainable AI is more used than Interpretable AI, whereas in academ-
ic discussion, the situation is the opposite (Adadi & Berrada, 2018). Current AI 
regulation, such as GDPR, requires the right to explanation, not an interpretable 
model, which might cause problems in certain areas (Rudin, 2019).  

A second post-hoc explainable model might provide explanations that do 
not make sense or that are not detailed enough to understand what the black 
box is doing. If the provided explanation would give a full understanding of the 
model, that would make the system interpretable. Secondary explanatory mod-
els are often not compatible with information outside the black box. The lack of 
transparency in the whole decision process might prevent the interpretation by 
human decision-makers. Secondary models can also lead to overly compilated 
decision pathways when the transparency is required actually from two mod-
els: the original black box and the explanatory model. (Rudin, 2019). 

Neither of the interpretable machine learning models is challenge-free. 
First, because it is a computational challenge to build one. Second, the AI sys-
tem's total transparency can jeopardize the system owner's business logic, as the 
system owner must give out part of their intellectual property. Constructing the 
interpretable model is often expensive as it requires domain-specific 
knowledge, and there are no general solutions that would work in different use 
cases. Creating an interpretable model is a challenge to find the balance be-
tween interpretability and accuracy, as interpretable models tend to reveal hid-
den patterns in data, which are non-relevant to the subject. (Rudin, 2019).  
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2.3.3 Accountability and Algorithmic Bias 

Besides interpretable machine learning and black box problems, core concepts 
around XAI include AI's accuracy, a performance metric to compare the number 
of correct predictions to all predictions, and Responsible AI (Adadi & Berrada, 
2018). Responsible AI consists of three main pillars: transparency (described in 
the previous chapter), responsibility which requires "to link the AI system's deci-
sions to the fair use of data and to the actions of stakeholders involved in the 
system's decision", and accountability, which requires that the "decisions must be 
derivable from, and explained by, the decision-making algorithms used" (Dig-
num, 2017).  

Accountability refers to an actor who is accountable for the decisions 
made by AI. To establish accountability, the system must be understandable. 
The lack of transparency and accountability of predictive models can cause se-
rious problems, such as discrimination in the juridical system, endangering 
someone's health, or misuse of valuable resources (Vakkuri, Kemell, Kultanen, 
and Abrahamsson, 2020). One of the recent incidents with the lack of transpar-
ency and accountability was an algorithm used to determine the final grades for 
International Baccalaureate students. The grades were inconsistent and worse-
than-expected, which harmed the university selection of the individuals 
(Evgeniou et al., 2020). 

Based on Vakkuri et al. (2020) 's research, transparency is the enabler for 
accountability, and together transparency and accountability motivate the re-
sponsibility. Finally, responsibility produces fairness. The fairness is often 
linked with algorithmic biases. AI system might repeat and magnify biases in 
our society, like to segregate groups with a history of discrimination, such as 
preferring men over women or discriminating against people of color.  

Machine learning bias is defined as "any basis for choosing one generaliza-
tion over another, other than strict consistency with the instances" (Mitchell, 
1980). Machine learning systems are neutral and do not have opinions, but the 
models are not used in voids, which makes them vulnerable to the biases of 
humans. The reason for discrimination and unfairness with machine learning 
models can be caused by unfairness in the data and the collection and pro-
cessing of data, or the selected machine learning system. The practical deploy-
ment of the system might reveal biases invisible during the development pro-
cess. There is no easy solution to ensure fairness of algorithmic decisions. (Vaele 
and Binns, 2017). 

Vaele and Binns (2017) identified three distinctive approaches to ensure 
fairer machine learning. First is the third-party approach, where another organ-
ization is managing data fairness. Second is the collaborative knowledge base 
approach, where linked databases containing fairness issues are flagged by re-
searchers and practitioners. A third approach is an exploratory approach, 
where exploratory fairness analysis is performed to the data before training the 
model or before the practical implementation of the model.  

In this paper, the interest is in the exploratory approach because it is con-
nected to the black box problem (Vaele and Binns, 2017). In this paper, the bias-
es are studied from XAI's perspective, which aims to bring transparency to the 
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AI system. Less emphasis is dedicated to research on how data collected or pro-
cessed to avoid biases.  

2.4 Conclusion of Background Study  

The research of AI ethics lacks harmony and standard agreement on defining 
the core principles (Jobin et al., 2019).  This paper aims not to solve the issue of 
definitions for fairness and transparency but instead to investigate the existing 
research connected to transparency as understood in this paper, a requirement 
from the AI system to provide an understandable explanation if required in the 
context of the application.  This requirement applies to systems that are non-
explainable due to the training method or biased due to training data. This pa-
per takes no stand upon ranking the principles. Instead, it aims to provide a 
more in-depth understanding of one of them: transparency.  

 The research field of XAI studied as a subfield of AI ethics, is researching 
the challenges and looking for a potential solution for transparent machine 
learning models, and therefore enable the fulfillment of ethical principles such 
as accountability, responsibility, and fairness. XAI can benefit a broad range of 
domains relying on AI systems. Especially in domains such as legal, finance, 
military, and transportation, the need for XAI is emphasized (Adadi & Berrada, 
2018). In such domains, the AI systems are in direct influence on people and can 
cause injuries (Adadi & Berrada, 2018).  In other domains, transparency might 
not be required. There is no one-for-all framework or solution available for 
transparency issues; hence the domain-specific solutions and frameworks are 
required. 

The research field is short of the knowledge of industrial practice's current 
state with AI ethics (Vakkuri et al., 2020). Rudin (2019) is concerned that the 
XAI field suffers from the distancing of real-world problems. Based on Rudin 
(2019), the recent work in the field is more concerning the explainability of 
black boxes than the interpretability of the model. On the other hand, Adadi 
and Berrada (2018) were concerned that interpretable machine learning takes all 
the attention and leaves other promising explainable models under-explored. 
Their research also showed that XAI's impact is spanning in a broad range of 
application domains. However, the lack of formalism regarding problem for-
mulation and clear, unambiguous definitions burdens the research field. Be-
sides, they noted that the human's role is not sufficiently studied. A recently 
published paper recognized the same challenge with the lack of user-centric 
design in XAI (Ferreira and Monteiro 2020). Došilović et al. (2018) stated that 
XAI is a complex study field lacking common vocabulary and formalization.  

AI ethics and XAI are broad, versatile topics with increasing importance.  
This paper aims to give a holistic view of the research field through a profound 
literature review. It is required to understand what is studied in AI ethics re-
search to understand the role of explainable AI. More systemic research is re-
quired for that purpose, and in the next chapters, Systemic Mapping Study is 
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used to understand the study field of AI ethics and how XAI is manifested in 
the research. 
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3 LITERATURE SEARCH FOR PRIMARY STUDIES 

The literature review is conducted by using a systematic mapping study (SMS). 
The SMS continues an SMS of Vakkuri and Abrahamsson (2018) that studied 
the AI ethics research field's key concepts. In this paper, the existing dataset 
was complemented with the latest research. The existing dataset included the 
papers from 1/2012-7/2018. Vakkuri's and Abrahamson's (2018) goal was "to 
identify and categorize keywords used in academic papers in the current AI 
ethics discourse and by that take first steps to identify, define and compare 
main concepts and terms used in discourse." Their goal is aligned with this pa-
per's goal of identifying the role of explainable AI in the research field of AI eth-
ics. After the primary search, the datasets were combined to a database for 
which the following process steps were performed. 

The research area of the Ethics of Artificial Intelligence is emerging. Due to 
the research area's emerging nature, this literature review is done cumulatively 
to better understand the state of research. The primary goal for cumulative re-
view in Information Systems is to evaluate and understand the size and scope 
of existing literature (Templier & Paré, 2015). As the research area is fragmented 
across various domains and databases, the cumulative research approach offers 
tools, such as thematic analyzes, to understand the data and summarize the 
prior research material (Templier & Paré, 2015). In this paper, the cumulative 
research approach is made by conducting a Systemic Mapping Study, SMS.  

The main focus for SMS is to "provide an overview of a research area, and 
identify the quantity and type of research and results available within it" (Pe-
tersen, Feldt, Mujtaba & Mattsson, 2008). SMS is traditionally used in medical 
research, but it has become a popular study method in Information Technology 
(Budgen, Turner, Brereton & Kitchenham, 2008). SMS is well suited in situa-
tions where the research area and topics are more open than traditional system-
ic literature reviews. These fields might lack high-quality primary studies 
(Budgen et al., 2008). SMS gives an overview of the research topic, and later it 
can be complemented with a systematic literature review to investigate the state 
of evidence in a specific focus area (Petersen et al., 2008). There are high-quality 
studies about AI ethics, but the research field is fragmented under different 
domains. AI technologies are emerging, which leads to constant change with 
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ethical concerns. The SMS can give structure and help to conceptualize the re-
search area.  

SMS suits well situations in which a particular research area is studied 
from a new perspective. For this paper, the SMS results are analyzed to under-
stand the role of explainable AI in AI Ethics literature, and what topics are con-
nected to explainability. In the following chapters, SMS methodology and the 
process of the literature search are explained and visualized.  

3.1 Defining the research question and the research process 

The SMS aims to identify the potential research gaps and trends, including the 
understudied topics and research types. The expected outcome is "an inventory 
of papers on the topic area, mapped to a classification" (Petersen et al. 2015). 
The research question defines the scope of the research and sets the goals for 
the research. Typically, the main goal of an SMS is to create an overview of a 
particular research area and identify and visualize the quantity and type of re-
search and results available. The research questions should reflect those goals. 
(Petersen et al., 2008).  

From the perspective of this paper, SMS's goal is to understand which eth-
ical concerns are covered in AI literature and to analyze the topics connected to 
explainable AI. This paper aims to understand the practical implementation 
and connection to real-world issues; hence the focus is on empirical studies. 
Based on Petersen et al. (2008), papers with the goal of 'Identify Best and Typi-
cal Practices' typically focus on analyzing empirical studies to determine the 
work in practice.  

 The research question for SMS can be quite a high level and cover issues 
such as what the addressed topics are, what empirical methods are used, and 
what sub-topics are sufficiently empirically studied (Kitchenham et al., 2011). 
This guideline forms the basis of the research question, "What is the role of ex-
plainable AI in AI ethics' research field?" divided into three sub-questions. The 
questions are: 

[R1] What is researched in AI ethics research field with empiric evidence? 
[R2] What is the current state of XAI in the research field of AI ethics? 
[R3] What are the research gaps in the field?  
The focus is to understand the coverage of XAI related topics and what are 

potential research gaps. It is first required to understand AI ethics' research area 
to answer the second research question [R2]. Hence the literature research is 
performed in the AI ethics research field. More profound analyses, classifica-
tion, and mapping are performed only to papers related to XAI. 

The processes of building SMS is cumulative, and it includes several 
rounds of screening the papers. The process steps and outcomes are presented 
in Figure 1. The headline of each block tells the process step, and the body re-
flects this research. The figure walks the reader through the whole study. The 
process model is based on The Systematic Mapping Process by Petersen et al., 
2018. 
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FIGURE 1 SMS Process based on Petersen et al (2018). 

Because SMS's goal is not to give evidence, the quality of the chosen articles is 
not highly important, and articles are not evaluated based on their quality (Pe-
tersen et al., 2008). The articles do not need in-depth examination, so the num-
ber of articles included can be larger (Petersen et al., 2008). In this paper, the 
total number of papers included from five databases was 1975, and after apply-
ing the inclusion and exclusion criteria, the sample was narrowed to 76 papers. 
In the following chapters, each process step is further explained based on the 
theoretical framework. 

3.2 Primary search  

The first step in SMS is to identify the primary studies that contain relevant re-
search results (Budgen et al., 2008). The search string and primary inclusion cri-
teria were established in order to execute the literature search. As the literature 
search aims to find all the relevant papers, the inclusion criteria are not too nar-
row. The literature search identifies the primary studies using search strings on 
different scientific databases (Petersen et al., 2008). The literature search includ-
ed a manual screening of databases to exclude papers that were not in this re-
search scope but were shown in the search string results. 

PICO (Population, Intervention, Comparison, and Outcomes) can be used 
as a guideline to develop a search string. The population refers to the main topic 
area researched, which in this paper refers to studies related to AI. 
The intervention refers to a topic that has an impact in the research area, which 
in this paper are topics connected to ethics and morals. There is no ex-
act comparison in this study, as AI ethics is studied as a phenomenon. The search 
outcome is to understand the state of academic research related to the topic; 
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hence, only peer-reviewed papers were included. (Kitchenham and Charters, 
2007). 

This paper follows up the study of Vakkuri & Abrahamsson (2018), and 
the search strings and selected databases are adopted from their research. With 
the original research question of "What topics are covered in AI ethics re-
search?"  the search string consists of two parts: AI, and its synonyms (robotics, 
artificial, intelligence, machine, and autonomous) and Ethics and its synonyms 
(moral). The final search string is: 

· (AI OR artificial* OR auto* OR intelligen* OR machine* OR robo*) AND 
(ethic* OR moral*) 

Alternatively, split into three search strings that were required for IEEE: 
· (AI OR artificial* OR auto* OR intelligen* OR machine*) AND (ethic*) 
· (AI OR artificial* OR auto* OR intelligen* OR machine*) AND (moral*) 
· (robo*) AND (ethic* OR moral*) 

The search was narrowed to conclude only the headline and the abstract to find 
papers that focused on AI ethics. The databases, search strings, and search re-
sults from 2018-2020 are presented in Table 1. The Table shows the total papers 
found with the search string, the papers after applying the filters, related papers 
that met the criteria of inclusions, and finally, the included papers that present 
the number of papers included per database after deleting the duplicates per 
database. 
 
TABLE 1 Search Results 2018-2020 

Results of primary search 

Database Search String 
Total 
papers: 

Filtered 
papers: 

Related 
papers: 

Included 
papers: 

IEEE 
Xplore 

(AI OR artificial* OR auto* OR intelli-
gen* OR machine*) AND (ethic*) 
(AI OR artificial* OR auto* OR intelli-
gen* OR machine*) AND (moral*) 
(robo*) AND (ethic* OR moral*) 4247 938 413 280 

ACM Digital 
Library 

(AI OR artificial* OR auto* OR intelli-
gen* OR machine* OR robo*) AND 
(ethic* OR moral*) 1227 579 457 457 

Scopus 

(TITLE-ABS-KEY (ai OR artificial* 
OR auto* OR intelligen* OR ma-
chine* OR robo*) AND TITLE-ABS-
KEY (ethic* OR moral*))  51142 6,029 1457 1449 

ProQuest 

noft((AI OR artificial* OR auto* 
OR intelligen* OR machine* OR 
robo*)) AND noft((ethic* OR mor-
al*)) 172296 2,144 198 198 

Web of 
Science 

(TS=((AI OR artificial* OR auto* OR 
intelligen* OR machine* OR robo*) 
AND (ethic* OR moral*))) 19,856 3,775 563 543 

Totals  248768 13465 3088 2927 
As SMS screens a large number of papers, the selection of databases is essential. 
The search is performed in five electronic databases. Databases represent the 
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two central databases of information system science: IEEE and ACM, and three 
large multidisciplinary databases Scopus, ProQuest, and Web of Science. In to-
tal, there were 248,768 results in the five databases. For the literature search, the 
inclusion criteria consist of three filters; publication year (2012-2020), document 
type (peer-reviewed articles and proceeding papers), and language (English).  

Due progression in the development of AI in early 2010, the research that 
has been done before 2012 is often nonrelevant today. The field has changed 
radically due to the invention of deep learning and other modern AI tech-
niques. Only the years between 2012-2020 are interesting for this research. As 
the research continues the work started in 2018, only the missing years 2018-
2020 were now included in the study. After the literature search, the extraction 
of papers from 2012-2018, and the extraction of papers from 2018-2020 was 
compounded. This paper presents only the literature search results of the year 
range 2018-2020.  

The search with three filters (document type, publication year, and lan-
guage) performed in five databases IEEE, ACM, Scopus, ProQuest, and Web of 
Science resulted in 13,465 papers. All the resulted papers were screened manu-
ally during May and June 2020. The effectivity of the filters is presented in Table 
2.  The numbers indicated the number of papers in a column. The filters were 
always applied in the same order; document type, year, language; hence the 
language column shows the final number of papers after applying all three fil-
ters. 
 
TABLE 2 Effectivity of Applied Filters 

Effectivity of Applied Filters Filter 
Date Database Before Filters Document type Year  Language  

5.5.2020 IEEE (search string 1) 1724 1619 405 405 

5.5.2020 IEEE (search string 2) 1624 1581 328 328 

6.5.2020 IEEE (search string 3) 899 808 205 205 

15.5.2020 ACM 1227 779 579 579 

5.6.2020 Scopus 51,142 35,847 6,654 6,029 

12.6.2020 ProQuest 172,296 11,352 2,377 2,144 

19.6.2020 Web of Science 19,856 16,987 4,392 3,775 
 
 
In manual screening, the papers that did not meet the inclusion criteria were 
excluded. For example, papers that examine the use of AI systems to fix a par-
ticular ethical problem, such as detecting fake news in social media, were ex-
cluded from the study. In this paper, the interest is in ethical questions related 
to the use of AI. The manual screening was performed only to the abstracts. The 
final numbers of papers after each process step are presented in Table 3. 
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TABLE 3 Total Papers Included in Different Process steps 

Number of papers after each search process steps Papers 

Results with the search string 243,294 

Filtered papers 13,423 

Manually included papers 3088 

After deletion of duplicates in separate datasets 2927 

After deletion of duplicates cross datasets 1975 
 
 
Manual screening narrowed the scope into 3088 papers. After screening each 
database, the duplicates were deleted, which narrowed the scope to 2927 pa-
pers. Next, the included papers from the separate databases were conducted 
into one database, and duplicates were excluded, resulting in a total of 1975 
papers included in the second round of the SMS process. 

3.3 Inclusion and Exclusion 

The primary search resulted in 1975 papers. The second step of SMS is to exam-
ine the selected papers and find the primary studies (Budgen et al., 2008). This 
process requires defining more narrowing inclusion criteria. The reason for the 
inclusion criteria is to exclude studies that are not relevant for answering the 
research question (Petersen et al., 2008). A paper needs to fulfill all inclusion 
requirements and none of the exclusion requirements to fit the inclusion crite-
ria.  

The inclusion process is guided by the research's goal and the desirable 
contribution (Paternoster, Giardino, Unterkalmsteiner, Gorschek, Abra-
hamsson, 2014). This study aims to map the relevant research area of ethics of 
AI in the domain of Information system science; hence only the papers focusing 
on the ethics of AI (I1) were included.   Due to a large number of included pa-
pers after the primary search, it was decided to include only the papers with 
full access (I5). Papers without access to full texts can be excluded from SMS 
(Petersen et al., 2008). The inclusion criteria from the primary search (year range 
(I2), academic peer-reviewed papers (I3), and language (I4) were cross-checked 
during the inclusion process. To guarantee the high quality of the included pa-
pers, only white literature, papers were included (I6). White literature refers to 
full papers published in venues of a high control and credibility, and it excludes 
pre-prints, technical reports, blogs, and other types of publications that are re-
ferred as grey and black literature (Garousi, Felderer, and Mäntylä, 2019).  

In SMS studies, exclusion criteria might include excluding papers that on-
ly mention the main interest area in the abstract. General concepts are often 
used in abstracts, even if the paper focuses on something else (Petersen et al., 
2008). The first exclusion criteria (E1) is the exclusion of papers that are not con-
tributing to the AI ethics research and only mention the potential ethical issues 
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related to AI in the general introduction. Moreover, in this paper, the interest is 
in practical AI implementation rather than a philosophical concern; hence, the 
papers without empirical research were excluded from the study (E2). In the 
final screening, papers not focusing on XAI or related topics were excluded 
(E3). Inclusion and exclusion criteria are presented in Figure 2. 
 

 
FIGURE 2 Inclusion and Exclusion Criteria  

The inclusion and exclusion criteria were established and defined during the 
screening process, and the JYU AI Ethic Lab supported the process. Inclusion 
criteria provided the general boundary and quality conditions, and exclusion 
criteria the more detailed limitations to distinguish the sample relevant for this 
paper. The purpose of the screening was to exclude papers that did not fit the 
inclusion and exclusion criteria. The inclusion and exclusion were done during 
several screening rounds to narrow the scope after each round and enable more 
in-depth inspection in the following round with a smaller sample. The process 
is further described in the next chapter. 

3.3.1 Inclusion of academic papers with empiric research 

For the first screening round of only three inclusion rules were applied; lan-
guage [I4], access to full text [I5], and sufficiently used references [I6], which 
indicates the academic quality of the paper. The first round narrowed the total 
number of papers to 1532. After the first screening round, the dataset was com-
bined with the dataset of 2012-2017 (n=403), which was separately screened to 
be equivalent to the dataset of 2018-2020. The combining of the datasets grew 
the database to 1935 papers. Later in this paper, it is only utilized the full da-
taset of 2012-2020 (n=1935).  

The inclusion process is presented in Table 4 and later visualized in Figure 
3. Table 4 shows the criteria applied in the screening round and the number of 
papers after the screening round. The screening rounds are closer described in 
this chapter. 
 
TABLE 4 Screening Rounds in Inclusion and Exclusion Process 

INCLUSION & EXCLUSION PROCESS 
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In the next round, the papers were screened to exclude papers that did not fo-
cus on the Ethics of AI. Similar exclusion criteria have been used in other SMSes 
because the primary purpose of an SMS is to find the most relevant papers from 
a particular field (Vakkuri & Abrahamson (2018); Paternoster et al. (2014). Dur-
ing the second screening round, the quality of the paper was validated. Short 
papers, student works, course descriptions, workshops, or panel descriptions 
were excluded and papers that, for some other reason, did not meet the aca-
demic peer-review standards. The number of excluded papers is presented in 
Table 5, where is shown the number of excluded papers per inclusion and ex-
clusion criteria. 
 
TABLE 5 Excluded Papers 
Excluded papers 
Reason of exclusion Number of papers 

No Full Access [5] 332 

Not in English [I4] 9 

Non-academic paper / grey literature [I3, I6] 311 

Not focusing AI ethics [I1, E1] 734 

No empirical evidence [E2] 852 

Not related to XAI [E3] 133 
 
 
The included papers were clustered into two categories; idea and data, to sepa-
rate the empirical papers that are meaningful for this paper's goal. The empiri-
cal papers were manually separated during the screening, as it was the most 
liable way to ensure the sample of all the relevant papers. That would not have 
been possible if the primary search string contained the criteria for empiric ma-
terial, as the search string would have become too complex due to all variations 
of search words needed to include. From the total 1065 papers that met the in-
clusion criteria, 212 papers were using empirical material. The "idea" papers 

Round Criteria N 
Screening 1: Review of 
reference list, language 
and paper type 

Inclusion of Academic papers written in English and access to full 
text. Exclusion of workshop/keynote/newsletter introductions  

1935 
Screening 2: Review of 
abstract, keywords and 
scanning of full text 

Inclusion of papers focusing on AI ethics, exclusion of papers 
mentioning or shortly describing issues related to AI ethics. Exclu-
sion of non-peer reviewed papers like doctoral programs, course 
presentations and student posters 1065 

Screening 3: Review of 
method chapter 

Inclusion of papers with empirical data 
212 

Screening 4: Review of 
abstract, keywords and 
scanning of full text 

Inclusion papers related to XAI, Exclusion: grey and black litera-
ture  

76 
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consist of reports, philosophical papers, reviews, problem descriptions, and 
proposals. Systemic literature reviews were categorized into idea papers, as 
only primary research was included in this study.  

In this paper, no further quality inspection was performed for the papers 
in the idea category. The idea category sample might include papers that are 
ideas, concepts, technical reports, or blog posts that are categorized as grey or 
black literature (Garousi, et al. 2019). Without any further examination, the ratio 
of idea papers represents 80% of the full sample. Future research is required to 
better understand the variety of theoretical papers better, but it is out of this 
paper's scope. After the exclusion of the idea category papers, the sample was 
212 papers. The dataset (n=212) can be found in appendix 1. 

3.3.2 Inclusion of high-quality papers focusing on Explainable AI 

Next screening round the paper quality was examined, and grey and black lit-
erature papers were excluded from the sample. Exclusion of grey and black lit-
erature from SMS is crucial, as SMS aims to present the study field of AI ethics, 
and grey literature is often opinion or experience-based. Moreover, it might 
present results that are potentially prejudiced (Garousi et al., 2019). White liter-
ature was in the scope already in the preliminary literature search, which was 
limited to peer-reviewed papers. In previous screening rounds, other than aca-
demic papers were excluded. Excluded papers did not have sufficient refer-
ences, were produced as student work, or were significantly short or narrow, 
such as workshop presentations and doctoral programs. In the third screening 
round, the papers were manually reviewed for grey and black literature. In the 
dataset of empirical data papers, this meant mainly excluding grey literature 
such as preprints, technical reports, lectures, data sets, and blogs (Garousi et al., 
2019). At this stage, one working paper and two preprints were excluded from 
the sample. 

The papers were skimmed and tagged based on the focus area to find the 
papers connected to XAI. As described in the background section, XAI is a 
vague concept, and there is no commonly agreed framework on what topics are 
considered to be included under the term. In the sample, XAI was the focus in 
20 papers, but several papers focused on themes, such as transparency, that are 
closely connected to XAI. The papers focusing on responsible AI, algorithmic 
bias, or black box were included to ensure the inclusion of all relevant papers. 
In total, 76 papers were included in the final examination. The whole screening 
process is visualized in Figure 3, using similar visualities as in SMS of Belmon-
te, Morales, & Fernández-Caballero (2019). The inclusion side's sample size 
shows the included sample after each step and, in the exclusion side, the sample 
of excluded papers. 
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FIGURE 3 SMS Process Based on Belmonte et al (2019) 

The final sample (n=76) included in SMS is further classified and analyzed in 
the following. A short analysis was performed to the sample of papers with 
empiric evidence (n=212) to understand the overall field of AI ethics. The analy-
sis merely touched the surface of the full material, but a more profound investi-
gation was out of the scope of this study. 
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3.4 Short analysis of AI ethics research field with empiric evi-
dence 

Future studies are required to understand the research area of AI ethics fully, 
but the short analyzes give sufficient background to mirror the role of XAI to 
the full sample of AI ethics research with empiric evidence (n=212). The empiric 
papers represent 20% of the whole sample of manually included papers 
(n=1065). This finding forms the first empirical conclusion.  
 

EC1: Most of the research papers in the field of AI ethics do not use empir-
ic evidence. Only 20% of the papers provide empirical evidence. 

 
Two dimensions were observed with the whole sample; emerging themes and 
the year of publication. The theme analysis was done during the keywording 
process described in the next chapter. A more profound analysis would require 
a more systematic approach.  

As the research area is young and emerging, the year of a publication can 
provide insight into the research area's growth. The papers published per year 
are visualized in Figure 4.  The size of the bar presents the number of papers 
published each year. 
 

 
FIGURE 4 Annual changes in publication of empiric papers in AI ethics research area 

The visualization reveals significant growth between the years 2017 and 2018. 
There is a clear correlation to public discussions as the discussion around AI 
ethics peaked in media in 2018 (Ouchchy, Coin, & Dubljević, 2020). This finding 
forms the second empirical conclusion.  

 
EC2: Empiric Research of AI ethics grew significantly in 2018,  
following the trend in public discussion. 
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Year 2018 also saw the launch of two large conferences, AIES and FAT*, that 
might have an impact on the topic. Overall, 54 papers, 25,8% from the whole 
sample (n=212) is published in AIES. The impact of FAT* is less significant, 
with only five papers published in there.  

The papers related to XAI (n=76) represent 35,85% of the full sample of 
empirical papers (n=212). This finding forms the first primary empirical conclu-
sion: 
 
 

PEC1: Explainable AI is significant research focus on the study field  
of AI Ethics. From the empiric research papers published after 2012,  

36.2% is related to Explainable AI. 
 
 
A short analysis of themes was performed to the sample of 136 excluded empir-
ic research papers. These papers were excluded due not having a relation XAI. 
The most frequent theme amongst these papers was Autonomous Vehicles that 
was the focus in 31 papers. Other frequent themes were Human-Robot Interac-
tion (focus on 17 papers), Health/Care Robotics (focus on ten papers), 
Bots/Virtual Assistants (focus on seven papers), and Education (focus on six 
papers). Seventeen papers proposed a technical, mathematical, or design solu-
tion to solve an ethical issue in AI. Sixteen papers studied people’s attitudes 
towards robots, autonomous vehicles, or other AI systems. As the inclusion of 
XAI did not require a full pertinence, the number of papers focusing on XAI are 
not comparable with other emerging themes. No further examination was per-
formed to excluded papers.  
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4 CLASSIFICATION 

During the final screening, papers were tagged based on the main focus of the 
paper. The main focus was deduced based on the keywords, abstract, and the 
headline of the study. Also, papers were tagged based on the research method 
and the type of data used in the study. This was an initial step towards a key-
wording process used to build a classification scheme, which helps arrange the 
papers into meaningful groups. Classification uses a systematic process where 
the classification schema is evolving and specifying during the process (Pe-
tersen et al., 2008). The classification process based on Petersen et al. (2008) is 
visualized in Figure 5. 
 

 
FIGURE 5 Classification Process Based on Petersen et al., 2008. 

Keywording reduces the time required for building the classification schema 
and ensures that the classification schema represents the existing studies (Pe-
tersen et al., 2008). The first step of keywording was to identify the keywords, 
concepts, and the context of the research (Petersen et al., 2008). The process was 
started during the last stage of the inclusion process and continued with the 
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final sample n=78 during the classification. The following chapters present the 
classification schema, classification results, and the overview of the final sam-
ple. 

4.1 Classification schema 

For the classification schema, the papers were examined in four facets adopted 
from SMS of Paternoster et al. (2014). The facets are research, contribution, fo-
cus, and pertinence. The facets are presented next. The summary of the classifi-
cation schema is presented in Figure 6. 

(1) Research facet. Research type is used to distinguish between different 
types of studies and chosen research methodology. A research type proposal of a 
solution refers to papers proposing a novel solution technique and argues for its 
relevance, without full justification, providing at maximum a narrow proof of 
concept. Validation research papers investigate the properties of their own or 
others’ proposals of solutions that are not implemented in practice. The investi-
gation is performed in a methodologically sound research setup. Philosophical 
papers propose new conceptual frameworks and structures. Opinion papers, ex-
pressing personal opinions without relying on related work or research meth-
ods. Experience papers are describing the implementation in practice, such as lists 
of lessons learned. The experience might be either the author’s own experience 
or the experience of the person studied. (Wieringa, Maiden, Mead, and Rolland, 
2006) 

(2) Contribution facet. The aim is to identify the tangible contribution of 
the paper. That can be an operational procedure for development or analysis to 
provide a new, better way to do something, such as a design framework. Alter-
natively, a model representing the observed reality and structuring the problem 
area, or an implemented computational tool to solve a particular problem or 
a specific solution for a specific application problem. Alternatively, the contribu-
tion can be a piece of generic recommendation advice with a less systematic ap-
proach than the model. It often focuses on one example case and is more vague-
ly directive than the procedure. The contribution facet is based on the research 
of Shawn (2003). 

(3) Focus facet. Keywording that was performed during the last screening 
round revealed focus-themes that were highlighted during the classification 
process. The focus themes detected were algorithmic bias, the challenges with 
fairness due biased and discriminative training data or model, black 
box, challenges with non-transparent systems, 
and accountability, papers studying when and how the accountability of non-
transparent system is divided. Some papers focused on understanding the atti-
tudes, expectations, and trust towards non-transparent systems. These papers 
were categorized as attitude.  

(4) The pertinence facet shows the level of relation to XAI, which is the re-
search focus of this paper. The levels are full: XAI or transparency issues are the 
main focus of the paper, partial: the paper is partially related to XAI or transpar-
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ency and marginal: if the paper’s primary research focus is out of transparency 
or XAI themes. 

 

 
FIGURE 6 Classification Schema Based on Paternoster et al. (2014) 

In all facets, the same paper might fit into several categories. In these situations, 
the best possible fit was chosen. The process was highly opinion-based, and the 
evaluation of one individual might impair the study's quality and liability. The 
classification schema was presented and evaluated by two viewers to ensure the 
research quality, but the classification was performed alone. 

4.2 Results of Classification 

When the classification scheme is established, the actual data extraction takes 
place, and the articles are sorted into different classes (Petersen et al., 2008). 
Typically, the classification schema evolves during the data extraction when the 
papers are further exanimated (Petersen et al., 2008). In this paper, the main 
framework was kept the same through the classification. However, some of the 
class names and definitions were modified, and the additional layer of impact 
(presented in Table 6) was added to the classification schema. The classification 
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was performed in a spreadsheet with comments and notes from previous paper 
reviews. The cleaned version of the spreadsheet is presented in Table 7. 

In the classification, a significant portion of papers focused on biased algo-
rithms. These papers were classified in pertinence facet to “full” if the papers 
focused on making the whole system more transparent. Papers that focus on 
cleaning and fixing the biased datasets are classified as having a “partial” perti-
nence towards XAI. They were considered to have the main focus more on data 
science.  The pertinence facet helped to understand if the paper has a strong 
focus on XAI and transparency issues. Around half of the papers (53%) had full 
focus on XAI. Papers with a marginal focus to XAI were seen to contribute to 
the topic even if the main focus was elsewhere and, therefore, they were kept in 
the sample.  

After the classification, the papers in different classes were calculated. The 
classification results are presented in Table 6 with the number of papers in each 
facet’s class and the percentage of the class compared to the full sample (n=76). 
This method visualizes what has been emphasized in past research, the research 
gaps, and the possibilities for future research (Petersen et al., 2008). 
 
TABLE 6 Results of Classification 

Results of Classification 
Research facet  

Proposal 46 61% 

Philosophical 17 22% 

Experience  10 13% 

Validation 3 4% 

Contribution facet  

Model 26 34% 

Tool 29 38% 

Procedure 12 16% 

Advice 8 11% 

Specific solution 1 1% 

Focus facet  

Bias 37 49% 

Black Box 18 24% 

Accountability 2 3% 

Attitudes 18 24% 

Pertinence facet  

Full 40 53% 
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Partial 26 34% 

Marginal 10 13% 
 
 
In the research facet, the proposal class was significantly emphasized, with 61% 
of the studies proposing a technical, mathematical, or design solution. The 
number of philosophical papers structuring and framing the problem area was 
the second-largest class. Experience papers and validation were less frequent, 
which indicates the immaturity of the research field, as many issues are not yet 
implemented or studied in practice. 

The main contribution classes were models (structuring the problem area) 
and tools (computational solutions to a particular problem). Many of the papers 
proposing a new computational tool were proposing a new algorithm or math-
ematical solution. Also, procedures (proposals of design methods and frame-
works) and advices (more directive proposals than ready solutions) were visible 
in the sample. Solutions to specific application problems were proposed only in 
two papers, which could again indicate the study field's immaturity.  

Papers focused mainly on bias algorithms (49%) and black boxes and other 
non-transparent systems (24%). Papers where the main focus was to understand 
developers' and users' expectations, attitudes, and trust towards the explainable 
AI systems represented 24% of the whole sample. There were two more papers 
studying users, but those papers' main focus was in black-box models; hence, 
they were categorized into black-box. From the Attitudes category, only six pa-
pers (8% of the whole sample) focused on practitioners' expectations and opin-
ions, and the rest 12 papers focused on understanding how the general public is 
seeing the issue. Accountability was the main focus only in two papers but was 
a secondary focus in several papers. The results are visualized in Figure 7, 
which shows the number of papers in each category. More indebted visualiza-
tions and analyzations are provided in the following chapter. 
 
 

 

46

17

10

3

20

29

17

8
2

37

18

2

18

40

26

10

0
5

10
15
20
25
30
35
40
45
50

Proposal

Philo
so

phica
l

Ex
perie

nce

Vali
dati

on
Model

To
ol

Proce
dure

Report 
/ad

vic
e

Sp
ecif

ic s
olutio

n
Bias

Blac
k B

ox

Acco
untab

ilit
y

Attit
udes

Fu
ll

Part
ial

Marg
inal

Number of papers in each category



41 

FIGURE 7 Visualization of Results of Classification 

Together with the classification, the paper's social impact was studied with two 
filters; the type of data used (real-world data vs. synthetic data) and if the paper 
paid attention to societal issues or the interest was purely in technical challeng-
es. The impact classification results are presented in Table 7, where the number 
refers to the number of papers in each row and the percentage to the portion of 
the whole sample (n=76). 
 
TABLE 7 Research of Connection to Real-World Issues 

Results of Classification 

Impact 

Use of real-world data 67 88% 

Contributing societal issues 66 87% 
 
 
Sixty-seven papers used either real-world datasets or collected the data in their 
research. That is the majority of papers, 88%. Societal issues were in the center 
of attention in 66 papers, 87% of the whole sample (n=76%). The strong empha-
sis on societal issues is not surprising because the papers were selected to the 
sample if they focus on AI's ethical issues.  The amount of real data used is an 
interesting factor, as it indicates the close connection to real-world problems. 

4.3 Overview of final sample  

The overview of the final sample (n=76) with the classification results is pre-
sented in Table 8. The only document identifier shown is the first author and 
the year of publication to simplify the visualization. The Classification columns 
show the primary category in each classification facet. The Impact columns 
show the usage of data used (real vs. synthetic) and if the paper takes a stand 
on societal issues (yes vs. no). All the papers are found in the reference list at 
the end of this paper. 
 
 
TABLE 8 Classified Dataset 

Paper Classification  Impact 

1st Author Research Contribution Focus Pertinence Data Societal 

Caliskan et al (2017) Proposal Model Bias Partial  Real Yes 

Babu et al (2018) Proposal Tool Bias Partial  Real Yes 

Calmon et al (2018) Proposal Tool Bias Partial  Real Yes 
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Dixon et al (2018) Proposal Tool Bias Full Real No 

Ehsan et al (2018) Proposal Tool Black box Full Real No 

Flexer et al (2018) Validation Model Bias Full  Real Yes 

Grgić-Hlača et al (2018) Proposal Procedure Bias Full Real Yes 

Grgic-Hlacaet al (2018) Experience  Model Attitudes (public)  Partial  Real Yes 

Henderson et al (2018) Philosophical Model Bias Partial  Real Yes 

Iyer et al (2018) Proposal Tool Black box Full Real Yes 

Raff et al (2018) Proposal Tool Bias Full Real Yes 

Shank et al (2018) Philosophical Model Attitudes (public)  Marginal  Real Yes 

Srivastava et al (2018) Proposal Procedure Bias Full Real Yes 

Veale et al (2018) Experience  Model Attitudes (developers)  Full Real Yes 

Yang et al (2018) Proposal Tool Bias Full Real Yes 

Zhang et al (2018) Proposal Tool Bias Full Real No 

Zhou et al (2018) Philosophical Model Attitudes (public)  Marginal Real Yes 

Abeywickrama et al (2019) Proposal Procedure Accountability  Partial Real Yes 

Addis et al (2019) Experience  Advice Attitudes (developers) Full Real Yes 

Aïvodji et al (2019) Proposal Tool Black box Full Real Yes 

Ali et al (2019) Proposal Tool Bias Full Real Yes 

Amini et al (2019) Proposal Tool Bias Partial Real Yes 

Barn (2019) Philosophical Model Attitudes (public)  Marginal Real Yes 

Beutel et al (2019) Proposal Tool Bias Partial Real No 

Bremner et al (2019) Proposal Tool Black box Partial  Real Yes 

Brunk et al (2019) Proposal Model Black box  Full Real Yes 

Cardoso et al (2019) Proposal Tool Bias Full Synthetic Yes 

Celis et al (2019) Validation Model Bias Partial  Real Yes 

Coston et al (2019) Proposal Tool Bias Full Real Yes 

Crockett et al (2019) Philosophical Model Attitudes (public)  Partial Real Yes 

Garg et al (2019) Proposal Tool Bias Partial Real Yes 

Goel et al (2019) Proposal Tool Bias Partial Real Yes 

Green et al (2019) Philosophical Advice Attitudes (public)  Marginal  Real Yes 

Heidari et al (2019) Philosophical Advice Bias Partial  Real Yes 

Hind et al (2019) Proposal Procedure Black box Full Synthetic No 

Kim et al (2019) Proposal Tool Black box Full  Real Yes 

Lai et al (2019) Philosophical Model Attitudes (public)  Partial Real Yes 

Lakkaraju et al (2019) Proposal Procedure Black box Full Real Yes 
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Lux et al (2019) Proposal Tool Bias Full Real Yes 

Mitchell et al (2019) Proposal Procedure Bias Full Synthetic Yes 

Noriega-Campero et al (2019) Proposal Tool Bias Full Real Yes 

Radovanović et al (2019) Proposal Specific solution Bias Partial  Real Yes 

Raji et al (2019) Validation Tool Bias Full  Real Yes 

Rubel et al (2019) Philosophical Model Accountability  Full Real Yes 

Saxena et al (2019) Philosophical Advice Attitudes (public)  Marginal  Real Yes 

Sivill (2019) Philosophical Advice Bias / av Partial  Real Yes 

Srinivasan et al (2019) Proposal Tool Bias Partial Real Yes 

Teso et al (2019) Proposal Procedure Black box Full Real Yes 

Ustun et al (2019) Proposal Tool Bias Partial Real Yes 

Vakkuri et al (2019) Experience  Procedure Attitudes (developers) Marginal Real Yes 

Vanderelst et al (2019) Philosophical Advice Attitudes (public)  Marginal Real Yes 

Vetrò et al (2019) Philosophical Advice Bias Partial  Real Yes 

Webb et al (2019) Philosophical Model Attitudes (public)  Full Real Yes 

Wolf et al (2019) Proposal Model Black box Full Synthetic No 

Wouters et al (2019) Experience  Model Attitudes (public)  Partial  Real Yes 

Yilmaz et al (2019) Proposal Tool Black box Full Synthetic Yes 

Balachander et al (2020) Proposal Specific solution Black box Full Real Yes 

Brandão et al (2020) Proposal Procedure Bias Full Real Yes 

Chen et al (2020) Proposal Tool Bias Full Synthetic No 

Clavell et al (2020) Experience  Tool Bias Full Real Yes 

Cortés et al (2020) Proposal Procedure Bias Full Synthetic Yes 

He et al (2020) Proposal Tool Bias Full Real No 

Jo et al (2020) Experience  Procedure Bias Marginal Real Yes 

Karpati et al (2020) Philosophical Advice Black box Full  Real Yes 

Lakkaraju et al (2020) Proposal Procedure Black box  Full Real Yes 

Madaio et al (2020) Experience  Model Attitudes (developers)  Marginal  Real Yes 

Mitchell et al (2020) Proposal Procedure Bias Partial Real Yes 

Nirav et al (2020) Philosophical Procedure Attitudes (public)  Marginal Real Yes 

Orr et al (2020) Experience  Model Attitudes (developers)  Partial Real Yes 

Schelter et al (2020) Proposal Procedure Bias Partial Real Yes 

Sendak et al (2020) Philosophical Model Black box Full Real Yes 

Sharma et al (2020a) Proposal Procedure Black box Full Synthetic No 

Sharma et al (2020b) Proposal Tool Bias Partial Real Yes 
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Shulman et al (2020) Proposal Tool Black box Full Synthetic No 

Slack et al (2020) Proposal Procedure Black box Full Real Yes 

Vakkuri et al (2020) Experience  Model Attitudes (developers)  Partial  Real Yes 
 
 
In the following chapter, the classified data is analyzed and visualized. The 
analysis aims to better understand the study field of XAI and its role in AI eth-
ics research. Before moving to analyzes, one more perspective from the classifi-
cation is presented. 

4.4 Explainability vs Interpretability in Black Box Papers 

As described in this paper's background section, there are two approaches to 
ensure the transparency in black box systems; explainability (provide an under-
standable explanation) and interpretability (transparency of the whole decision 
process). A short analysis was performed to understand how the topic was in-
terpreted in the sample of this paper. The evaluation was performed separately 
from the classification as it was only performed to papers with the main focus 
in black box because the rest of the papers did not take a stand on the issue. The 
papers focusing on Black box issues were evaluated to see if they focus more on 
explainability or interpretability. This categorization does not take a stand on 
whether the paper is providing a solution or pointing out challenges in the area 
of focus or not. Table 9 presents the results of the categorization. 
 
TABLE 9 Perspective in Black Box Papers 

Perspective in Black Box papers 
1st Author Perspective 

Wolf et al (2019) explainability 

Hind et al (2019) explainability 

Teso et al (2019) explainability 

Aïvodji et al (2019) explainability 

Sharma et al (2020) explainability 

Slack et al (2020) explainability 

Shulman et al (2020) explainability 

Iyer et al (2018) interpretability 

Lakkaraju et al (2019) interpretability 

Yilmaz et al (2019) interpretability 

Kim et al (2019) interpretability 

Bremner et al (2019) interpretability 
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Sendak et al (2020) interpretability 

Balachander et al (2020) interpretability 

Karpati et al (2020) interpretability 

Brunk et al (2019) user study 

Lakkaraju et al (2020) user study 
 
 
Two of the papers researched the effect of transparency on the users and did 
not take a stand on how the explanations were generated. These are categorized 
as user studies in this section. From the remaining 15 papers, seven papers fo-
cused on explainability and eight papers to interpretability. The result indicates 
that when the focus of AI ethics is present in the research, and the research uses 
empiric material, both approaches (explainability and interpretability) are 
equally present in the corpus.  
 

EC3: The Black Box problem is researched equivalently from the perspec-
tives of interpretability and explainability. 

 
No further analyzes were performed on this sub-part of classification. The ana-
lyzes of full classification are presented next. 
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5 SYSTEMIC MAP 

There are several ways to visualize the results of systemic mapping study. The 
two most common are bar plots and bubble plots (Petersen et al., 2015). To illus-
trate the number of studies for a combination of categorizations, bubble plots 
visualization is exceptionally well suited (Petersen et al., 2015). Because the 
classification schema applied in this study includes several categories, the bub-
ble diagrams were built to visualize the number of papers in different classes 
and investigate correlations between them. The SMS is not tied in bubble and 
bar plots, and further visualization alternatives can be found in statistics, Hu-
man-Computer Interaction field, and information visualization fields (Petersen 
et al., 2008). As there were four main facets in the classification schema, it was 
required to create several diagrams to avoid over-complicating the view. Dif-
ferent types of visualizations were constructed based on the area of inspection. 
In the next chapters, the results of classification schema, pertinence, impact, an-
nual change, and the venue of the study field are visualized and analyzed. 

5.1 Systemic Map in the Bubble Plot Visualization  

A bubble plot diagram helps to give a quick overview of the research field and 
support the analyzes better than the frequency tables. The bubble plot diagram 
is built by using summary statistics from Table 5 presented in the previous 
chapter. The diagram visualizes the frequencies and correlations between cate-
gories and facets. The bubble plot diagram is two x-y scatterplots with bubbles 
in category intersections. The same idea is used twice, on the opposite sides of 
the same diagram, to show the intersection with the third facet on the x-axis. In 
this case, contribution and research facets are compared to the focus facet. The 
size of a bubble indicates the number of papers that are in the intersection of the 
coordinates. Next to a bubble, there is the percentage of the total amount (n=76) 
in the represented category of the x-axis. The bubble plot is presented in Figure 
8. (Petersen et al., 2008). 
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FIGURE 8 Visualization of Systemic Map in the Form of Bubble Plot  

The bubble plot diagram shows the emphasis on focus facets in each research 
and contribution facets. The bubble plot reveals that the most significant em-
phasis on the research facet is in proposals solving algorithmic biases.  
 

EC4: The most popular paper type in the research facet is a proposal for 
solving algorithmic bias.  

 
Also, the proposals for black-box issues are highlighted. Proposal researches 
study new, novel techniques to solve a particular issue. If compared with the 
validation research, which studies a specific solution that has already been im-
plemented in practice, the size of the proposals bubble is much larger, which 
again points to the research field's freshness. Either there are no proper practical 
solutions to fix the ethical issues related to XAI, or these solutions are not yet 
implemented in practice, or the practical implementation is not yet studied. 
Probably the reason for scarcity in validation research is partly due to all the 
reasons mentioned above. 

From the Contribution facet, the largest bubble can be found in the inter-
section of bias and tool. Little less than a third (22 papers) of the whole sample 
contributes to the research field with a computational solution to solve algo-
rithmic biases.  

 
EC5: Almost a third of the papers in the whole sample contribute to the re-
search field with a computational solution to solve algorithmic biases. 

 
A computational tool to solve black-box issues has been proposed in 7 papers. 
In the intersection of the attitude facet and the model facet is the second-largest 
bubble with 12 papers. The bubble visualizes how the research field is modeled 
and structured by providing a better understanding of users and practitioners. 
Procedures, contributing with a new way to solve issues such as design frame-
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works, have been quite frequent in the focus areas of bias algorithms and black-
box problems. 
 
 

PEC2: In the study field of Explainable Ethical AI, the most common  
type of empiric research is to study a novel technique that can  

solve a computational challenge. 
 
 

There is no precise weighting on any of the contribution types in the black 
box's focus category. Compared to the Bias category with apparent weight in 
the contribution of computational tools and attitudes category with an apparent 
weight in modeling the problem area. From the focus category of bias with 37 
papers (49% of the whole sample), 20 papers (26% of the whole sample) are in 
the research category proposal and contribute with a computational tool. That 
is the most distinctive type of papers in this research. 

 
EC6: The most distinctive paper type is a computational tool  
proposing a solution to a problem with bias. 
 
As a conclusion of the bubble plot, the most common type of paper is a 

computational tool proposing to solve a problem with biases, and in general, 
the majority of the papers look for novel techniques and solutions to computa-
tional problems. The results might indicate that the focus is slightly monoto-
nous. Papers concerning black boxes, accountability, or attitudes are more dis-
tinctive except the strong emphasis on proposals as a research type in the black 
box category. Also, the results indicate the immaturity in the research field. 
 

EC7: The research field seems a bit monotonous and immature in consid-
ering the variety of topics, used research methods and contributions of the 
papers. 

5.2 Pertinence Mapped in Par Plot 

As the pertinence indicates the accuracy with XAI's topic, the pertinence was 
visualized with a bar plot corresponding to the focus facet. This visualization 
aims to understand in which focus areas the research field has full pertinence 
on XAI and transparency-related topics, and in which focus areas the pertinence 
is elsewhere. The bar plot is in Figure 9. The size of the plot presents the num-
ber of papers from the full sample (n=76) in each category. 
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FIGURE 9 Pertinence of Focus Areas 

Not surprisingly, most of the papers (17 out of 18 papers) focusing on the black 
box were categorized to have a full focus on XAI. The black box is one of the 
core concepts in XAI research (Adadi & Berrada, 2018).  
 

EC8: From the papers focusing on black box (n=18) 94,5% had full perti-
nence on XAI. 

 
From the papers focusing on algorithmic biases, 19 had full focus, 18 partial 
focus, and one marginal focus to XAI. Many of the papers with partial focus 
had the main focus on cleaning data and fixing the datasets that are causing the 
discriminative and unfair decisions. These papers were considered to have the 
main pertinence in data science and fairness rather than in XAI. Accountability 
was the main focus in only two papers, so no interpretation is possible to make. 

Interestingly only three papers focused on the attitudes and expectations 
of practitioners, users, and the public had full pertinence towards XAI. It is im-
portant to note that two more papers were categorized with black box focus, 
but that had a strong focus on understanding people’s perceptions and atti-
tudes. With Attitudes as the main focus, six papers had partial and nine papers 
marginal relation to XAI. The results indicated a research gap in understanding 
people’s perceptions of the topic. 
 

 
PEC3: The human perspective towards Explainable AI is not well-known.  

There is a lack of research about the practitioners' and user's  
expectations and attitudes towards Explainable AI. 
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Compared to autonomous vehicles, another widely researched ethical is-
sue of AI, the research field of XAI differs. There are several profound studies in 
the autonomous vehicles field, such as Moral Machine (Awad et al., 
2018), aiming to understand human morality and expectations towards auton-
omous systems. The research field of XAI seems to be a bit distant from users' 
expectations. Especially the attitudes and expectations of practitioners and de-
velopers have not been profoundly studied. Only two papers with the main 
focus on the expectations of practitioners had a full pertinence to XAI. Based on 
these findings, it is assumed that in the research of XAI in AI ethics, there is a 
lack of understanding of the issues related to practical implementation and 
practitioners' attitudes. Only one paper studied the current state of industrial 
implementation of AI ethics in general, and none with full pertinence to XAI. 
No paper studied the managerial or business perspective of XAI. 

 
 

 
PEC4: Industrial implementation of Explainable AI is not profoundly  
studied in the research field of AI ethics. There is a research gap in the  

managerial perspective and the business implications of Explainable AI. 
 

 
In conclusion, the pertinence is strongest in black box research, strongly 

present in the bias category, and in the accountability category, which is so 
small that any interpretations cannot be drawn. The attitudes category had a 
relatively weak connection to XAI. This indicates a need to understand better 
how people, both the practitioners, businesses, and the public, perceive XAI. 

5.3 Analysis of Synthetic Data Use and Societal Perspective 

To understand if the study field focuses on real-world problems, the papers 
were evaluated based on if they were taking a stand on societal issues, and if 
the data used was real-world data or synthetic data. As mentioned at the end of 
chapter four, only 12% (9 papers) used synthetic data. All the papers using syn-
thetic data had a proposal as the research type, and all had full pertinence to 
XAI. The focus varied between Black Box (5 papers) and Bias (4 papers), and the 
contribution of the papers was a model (1 paper), procedure (4 papers), or tool 
(4 papers). Four papers took a stand on societal issues, and five papers were 
purely technical. The results are visualized in Figure 10. The number in each 
section refers to the number of papers from the sample of synthetic data papers 
(n=9). 
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FIGURE 10 Number of Papers Using Synthetic Data (n=9) 

Interestingly, 27,7% of papers focusing on the black box (18 papers in total fo-
cused on the black box) used synthetic data. Compared to papers focusing on 
bias where the percentage of papers using synthetic data is only 10,8% (5 papers 
out of a total of 37 papers focused on the bias).  
 

EC9: Papers focusing on the black boxes more often use synthetic data 
than papers that focus on biases. 

 
This could indicate that the black box problem is researched more as a technical 
challenge, and algorithmic bias research closer to the real-world. Alternatively, 
there might be a wider variety of real-world datasets available to study algo-
rithmic fairness.  

The societal perspective had a strong presence in the research field. Only 
13%, ten papers, did not take a stand on societal issues. Similarly, as with syn-
thetic data use, all of these papers had the proposal as a research type. Nine out 
of ten papers had full pertinence to XAI. 50% (5 papers) had a focus on Biases 
and 50% in Black Box. In seven papers, the contribution was a tool. In two pa-
pers, it was the procedure, and in one a model. The tool category's emphasis 
could indicate that papers providing a computational solution more rarely take 
a stand on societal issues. From a total of 29 papers with a contribution to a tool, 
this is 24,1%. Wherein the two papers contributing to a procedure, that is only 
11,8% of the total of procedure papers (17 papers). In five papers, real data was 
used, and in five papers, synthetic. The results are visualized in Figure 11. The 
number in each section refers to the number of papers from the sample of no 
societal contribution (n=10). 
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FIGURE 11 Number of Papers with No Contribution on Societal Issues (N=10) 

Notably, only one paper focusing on biases without societal contribution used 
synthetic data. That is 2,7% of total papers in the bias category (n=37). That in-
dicates that papers with the focus on biases were closely connected to real-
world problems, either by using real-world data or by contributing to real-
world societal issues. Similarly, papers focusing on attitudes and accountability 
only used real-world data and always took a stand on societal issues. Four pa-
pers focusing on the black box used synthetic data and did not take a stand on 
societal issues. That represents 22.2% of the papers focusing on the black box 
(n=18).  
 

EC10: Around a fifth, (22,2%) of the papers focusing on black boxes used 
synthetic data and were not contributing to societal issues, hence had a 
distant connection to the real-world problems. 
 

Overall, the research field is close to real-world problems and interested to con-
tribute to society. 
 
 

PEC5:  Explainable AI researchers are interested in real-world  
applications, not only technical aspects of the topic. The empiric  

research area of Explainable AI has a close connection to real-world  
problems when the research is related to AI ethics. 

 
 

In conclusion, there is a strong connection to real-world and societal issues 
in the research area. The only area with a slight indication of distancing from 
the real-world issues was the research area focusing on the black box. If XAI's 
research area were studied independently without the association with AI eth-
ics, the connection to real-world problems might have been different. 
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5.4 Visualization of Annual Changes in the Research Field 

The year range for the SMS performed in this paper was 2012-2020, but none of 
the papers from 2012-2016 were included in the study after inclusion and exclu-
sion. From 2017 only one paper was included, 2018 16 papers, 2019 39 papers, 
and from the first half of the year 2020 20 papers. The annual changes are visu-
alized in Figure 12, where the plot's size presents the number of papers pub-
lished per year (n=76). The results indicate the growth of the research field and 
XAI's freshness in the AI ethics research field with empirical results. 
 

EC11: Explainable AI is young but growing empiric research area in the 
field of AI ethics. 

 
 

 
FIGURE 12 Yearly distribution of included papers 

To visualize further the annual changes in the research field, two Bubble plots 
were created. Figure 13 shows the annual changes and evolution in the contri-
bution and research facets. Figure 14 shows the annual changes in the focus and 
pertinence facets. The plot's number refers to the number of papers in the inter-
section and the percentage next to the plot compared to the full sample (n=76). 
The motivation for bubble plots was to detect trends in the research field. Alt-
hough, as the research field is young, the trends might be only seasonal chang-
es. Moreover, because the year 2020 cannot be evaluated entirely, the results per 
year are not fully comparable.   
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FIGURE 13 Annual Changes in the Research and Contribution Facets 

The bubble plot reveals that the proposal has been the most popular category 
from the research facet every year. Experience papers seem to be getting more 
popular as the research field matures, and in 2020, more experience papers have 
been published than philosophical papers. The research trend seems to be to-
wards more practical understanding and less philosophical framing and struc-
turing of the focus area.  

 
EC12: The trend is towards more practical implications and  
less philosophical framing of the focus area. 
 
In the contribution facet, the division between categories is more even. 

The strongest growth is in procedures, which are proposals of better ways to do 
something. Interestingly the tools, the computational solutions, seem to have 
been decreasing in 2020. That could indicate that the research field is evolving 
to become more holistic and not as intensely focused on finding technical solu-
tions. However, more research is required to verify the conclusion. Another ex-
citing factor is that advice papers seem to be decreasing even though the re-
search field is maturing. 
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FIGURE 14 Annual Changes in Focus and Pertinence Facets 

The bubble plot visualizing annual changes in pertinence and focus facets 
shows a slight trend towards Full pertinence in XAI in 2020. That could indicate 
that AI ethics research focusing on XAI is also growing independently, not only 
because of the growth in related fields, such as the research of avoiding biases 
by detecting flaws in the dataset. However, the sample is too small, and the re-
search field too young to confirm that the trend is not just a seasonal variation.   

The focus category bias has doubled between 2018 and 2019, and if the 
pace of publication stays the same, it is assumed to double in 2020. Black box 
research seems to accelerate, as in the first six months of 2020, already seven 
papers are published, which is almost as much as in 2019 when nine papers 
with black box focus were published. That could indicate the black box research 
to grow almost as large as bias research in 2020. The results imply that black 
box research is the fastest growing trend in the research area of XAI. 
 

EC13: Black box research seems to be the fastest-growing focus area in the 
research field of Explainable AI. 

 
The number of papers focusing on attitudes seems to stay relatively simi-

lar in 2020 as in 2019, with no expected growth. From the attitude papers, the 
annual division of papers focusing on understanding the developers and practi-
tioners is: 1 paper in 2018, 2 papers in 2019, and 4 papers in 2020. Understand-
ing the expectations, needs, and opinions of practitioners seems to be a growing 
trend. That could indicate that the research field is more and more interested in 
practical implementation.  

 
EC14: There is a growing interest in practical implementation and under-
standing of the needs and expectations of users and practitioners. 
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In conclusion, the amount of papers is growing annually. Especially the 
proposal research type is getting more popular, and the popularity of papers 
with the contribution of a procedure or a tool is growing. Papers focusing on 
the black box seem to reach the popularity of focus on the bias. More papers 
with full focus on XAI every year indicate that the research area is shifting from 
a secondary focus area to become a primary focus area of research. 

 
EC15: In the field of AI ethics, the research area with a primary interest  
in Explainable AI is growing. 

5.5 Venue of the research 

The research venue was studied to understand the quality and depth of the re-
search area. All the papers were published either in conferences or journals. 
Journals are typically the premier publication venue in software engineering; 
thus, the papers published in journals should include the most mature research 
(Ivarsson & Gorschek, 2010). Also, a higher degree of empirical evidence is ex-
pected from papers published in journals than from the conference of workshop 
proceedings (Ivarsson & Gorschek, 2010). 

The majority of the papers, 59 out of 76 (77,3%), were conference proceed-
ings. The rest 17 papers (22,4%) were published in journals. The most popular 
venue was AAAI/ACM Conference on AI, Ethics, and Society (AIES). Nearly 
half, 43,4%, 33 papers, of the total sample (n=76), was published in AIES. 
 

 
PEC6: In the corpus of explainable ethical AI, the publication  

venue of empirical research is monotonic, with 43,4% of  
the papers published in one conference. 

 
 

The second most popular venue was the Conference on Fairness, Ac-
countability, and Transparency (FAT*) with five paper publications. There were 
no other conferences with more than one or two proceedings from the sample. 
The journal papers were all published in different journals except for two pa-
pers published in Emerald's Journal of Information Communication & Ethics in 
Society, but in different volumes.  

The line chart in Figure 15 visualizes the annual growth in the publication 
venue. The black line represents the number of papers published each year in 
conferences (n=59), and the grey line shows the papers published in journals 
(n=17). The growth in conference proceedings has been slightly faster than the 
growth in journal publications, but the comparison between journals and con-
ference proceedings seems regular. 
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FIGURE 15 Annual Changes in Publication Venue 

Interestingly, out of 17 papers published in journals, eight focused on attitudes. 
That is a large proportion of Attitude papers; 44,4% to be exact (n=18). As the 
rigor in journal publications is higher (Ivarsson & Gorschek, 2010), this indi-
cates that even though the field lacks in a plurality of studies in human's role 
and attitudes, the quality of that type of research is high.  

  
EC16: The studies of the role of humans are rare but high-quality  
research. 
  
This reflection might be explained with the type of data used in the re-

search. User research usually requires a more time-consuming research method; 
hence the originality and quality of the evidence are higher, which fits better 
with the publication criteria of journals. Compared to the black box papers 
where only 11,1% (2 papers) were published in journals and the bias papers 
where 16,2% (6 papers) were published in journals. From the focus category of 
accountability, one paper was published in the journal, and one was a confer-
ence proceeding.  

In conclusion, the publication venue's reflection reveals a monotony in the 
publication, as nearly half of the papers were published in the same venue.  The 
ratio between journal publications and conference proceedings seems to be 
aligned. Nevertheless, the focus areas were not equally presented in journals, 
where the strong emphasis was on attitude studies, wherein from black box 
papers, only 11,1% were published in journals.  

 
EC17: Black Box research in the AI ethics field is rarely published  
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in journals. 

5.6 Summary of empirical conclusions 

This chapter summarizes the empirical conclusions and primary empirical con-
clusions of this paper. This paper's main theoretical contribution is mapping the 
research area, which supports future research by framing and visualizing the 
existing research. The secondary contribution is the primary empirical conclu-
sions (PEC) derived from the maps. Primary empirical conclusions are supple-
mented with empirical conclusions (EC). Empirical conclusions that were high-
lighted from the text body in pervious chapters are listed in Table 9. 
 
TABLE 10 List of Empirical Conclusions 
List of Empirical Conclusions 

Identifier Empirical Conclusion 

EC1 
Most of the research papers in the field of AI ethics do not use empiric evidence. Only 
20% of the papers provide empirical evidence. 

EC2 
Empiric Research of AI ethics grew significantly in 2018, following the trend in public 
discussion. 

EC3 
The Black Box problem is researched equivalently from the perspectives of interpreta-
bility and explainability. 

EC4 
The most popular paper type in the research facet is a proposal for solving algorithmic 
bias.  

EC5 
Almost a third of the papers in the whole sample contribute to the research field with a 
computational solution to solve algorithmic biases. 

EC6 
The most distinctive paper type is a computational tool  
proposing a solution to a problem with bias. 

EC7 
The research field seems a bit monotonous and immature when considering the varie-
ty of topics, used research methods, and contributions of the papers. 

EC8 From the papers focusing on the black box (n=18), 94,5% had full pertinence on XAI 

EC9 
Papers focusing on the black boxes more often use synthetic data than papers that 
focus on biases 

EC10 

Around a fifth, (22,2%) of the papers focusing on black boxes used synthetic data and 
were not contributing to societal issues, hence had a distant connection to the real-
world problems. 

EC11 Explainable AI is a young but growing empiric research area in the field of AI ethics 

EC12 
The trend is towards more practical implications and less philosophical framing of the 
focus area 

EC13 
Black box research seems to be the fastest-growing focus area in the research field of 
Explainable AI. 

EC14 
There is a growing interest in practical implementation and understanding of the 
needs and expectations of users and practitioners. 

EC15 
In the field of AI ethics, the research area with a primary interest in Explainable AI is 
growing 

EC16 The studies of the role of humans are rare but high-quality research. 
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EC17 Black Box research in the AI ethics field is rarely published in journals. 
 
 
The primary empirical conclusions are listed in Table 10. In previous chapters, 
the primary empirical conclusions were boxed from the text body to bring them 
into the reader's attention and ensure easy findability when skimming the pa-
per. Primary empirical conclusions are written in a context-enriched manner to 
support the understanding of the readers that are not familiar with the full pa-
per. 
 
TABLE 11 List of Primary Empirical Conclusions 
List of Primary Empirical Conclusions 

Identifier Primary Empirical Conclusion 

PEC1 
Explainable AI is significant research focus on the study field of AI Ethics. From the 
empiric research papers published after 2012, 36.2% is related to Explainable AI. 

PEC2 
In the study field of Explainable Ethical AI, the most common type of empiric research 
is to study a novel technique that can solve a computational challenge. 

PEC3 

The human perspective towards Explainable AI is not well-known. There is a lack of 
research about the practitioners' and user's expectations and attitudes towards Ex-
plainable AI. 

PEC4 

Industrial implementation of Explainable AI is not profoundly studied in the research 
field of AI ethics. There is a research gap in the managerial perspective and the busi-
ness implications of Explainable AI. 

PEC5 

Explainable AI researchers are interested in real-world applications, not only technical 
aspects of the topic. The empiric research area of Explainable AI has a close connec-
tion to real-world problems when the research is related to AI ethics.  

PEC6 
In the corpus of explainable ethical AI, the publication venue of empirical research is 
monotonic, with 43,4% of the papers published in one conference. 

 
 
Theoretical and practical implications of the primary empirical conclusions are 
evaluated next in Discussion. 
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6 DISCUSSION 

This chapter lists the proposals for the theoretical and practical implications for 
the Primary Empirical Conclusions (PEC), which were the SMS process out-
comes. In theoretical implications, PEC’s are mirrored to the existing research. 
The practical implications are proposals and ideas, how these conclusions could 
be implemented in practice. 

6.1 Theoretical Implication 

The main theoretical implication of this paper is the mapping of the research 
area presented in chapter 6. The key outcomes of the analysis of the mapping 
process are in this chapter mirrored with existing research. Primary empirical 
conclusions are mirrored to the existing research and evaluated if they contra-
dict or correspond to the existing research or provide a novel perspective. As 
the focus of this paper is to understand the research area's scope and depth, ra-
ther than the quality of the articles, the primary empirical conclusions are relat-
ed to those factors.  

The significant proportion of papers related to XAI in the empiric research 
of AI ethics (PEC1) corresponds to the research of Jobin et al. (2019), which not-
ed that the transparency is the most frequently highlighted principle in AI eth-
ics. Besides, the result reflects the overall importance and interest of XAI. Simul-
taneously it reflects XAI's connection to real-world problems as it is studied 
with empirical methods.   

As far as the author knows, there is no previous research that analyzes the 
type of research done in the field yet, so the relation to existing research might 
be shallow. The interest in proposing novel computational solutions (PEC2) 
shows the freshness in the field without practical results to validate. The re-
search area of AI ethics is interested in finding technical solutions to ethical 
problems (Brundage, 2014), which correlates with a broader perspective. 

Human's role and perspective are understudied subjects, both the user 
and the practitioners' point of view (Ferreira and Monteiro 2020; Adadi and 
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Berrada, 2018). The same finding was done in this SMS (PEC3). Concerning the 
lack of research on users' and practitioners' expectations, there was a more spe-
cific gap with the lack of research on XAI's industrial implementation (PEC4). 
Vakkuri et al. (2020) pointed out the same dilemma with AI ethics. Their re-
search is the only paper in this SMS with current state research in the practical 
implementation of ethical principles. 

Unlike black box problems, where the research field is distancing from re-
al-world problems (Rudin, 2019), the XAI has a strong contribution to real-
world problems (PEC5). The slight distancing in black box research was also 
reflected in the results of this research. Still, the vast majority of the papers fo-
cusing on the black boxes were contributing to societal issues and/or using re-
al-world data in their research. 

SMS's somewhat surprising reflection was the monotony in the research 
venue of empiric research (PEC6). The research field of AI is interdisciplinary, 
similar to that of AI ethics (Russell & Norvig, 1994; Vakkuri & Abrahamsson, 
2018). The fragmentation of the field even makes studying the field rather chal-
lenging. Therefore, it was not expected that almost half of the papers in empiric 
research of ethical XAI would be published in the same conference, AIES, even 
though the conference is cross-disciplinary. The result does not imply that the 
AIES is not a suitable venue for publication, quite the opposite. It does imply 
that a large amount of academic discussion within the research area is held on a 
single venue, making the research area less versatile and inclusive. The sum-
mary of the results is presented in Table 12. 
 
TABLE 12 Theoretical implications 
Theoretical relations of Primary Empirical Conclusions 

Identifier Primary Empirical Conclusion Relation to existing research 
PEC1 Explainable AI is significant research fo-

cus on the study field of AI Ethics. From 
the empiric research papers published 
after 2012, 36.2% is related to Explaina-
ble AI.  

Corresponding. The number of XAI papers 
implies the importance of the research field 
and the emerging nature of interest. Re-
sults are corresponding to the importance 
of transparency issues (Jobin et al. 2019)  

PEC2 In the study field of Explainable Ethical AI, 
the most common type of empiric re-
search is to study a novel technique that 
can solve a computational challenge. 

Novel. The lack of validation study shows 
the freshness of the research field.  

PEC3 The human perspective towards Explain-
able AI is not well-known. There is a lack 
of research about the practitioners' and 
user's expectations and attitudes towards 
Explainable AI. 

Corresponding. The same challenge was 
noted in previous research of Adadi and 
Berrada (2018) 

PEC4 Industrial implementation of Explainable 
AI is not profoundly studied in the re-
search field of AI ethics. There is a re-
search gap in the managerial perspective 
and the business implications of Explain-
able AI. 

Corresponding. Related to PEC3 and to 
observations of Vakkuri et al, (2020) in the 
research area of AI ethics in general. 

PEC5 Explainable AI researchers are interested 
in real-world applications, not only tech-
nical aspects of the topic. The empiric 

Contradicting. Even though black box re-
search is distancing from the real-world 
problems (Rudin, 2019) XAI research is 
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research area of Explainable AI has a 
close connection to real-world problems 
when the research is related to AI ethics.  

close to real-world problems. 

PEC6 In the corpus of explainable ethical AI, the 
publication venue of empirical research is 
monotonic, with 43,4% of the papers pub-
lished in one conference. 

Contradicting. AI and AI ethics are cross-
disciplinary research areas studied in sev-
eral domains (Russell & Norvig, 1994; 
Vakkuri & Abrahamsson, 2018). Still, the 
publication of empiric research related to 
XAI is often published in the same venue. 

 
 
This paper has brought some novel perspectives to the research area, contribut-
ed to existing research, and contradicted some perspectives. It is important to 
remember that in SMS, the papers are not studied as profoundly as in SLR. To 
form a more in-depth conclusion, the research should be continued with SLR, 
which could provide new insights. 

6.2 Practical Implication 

Some of the PEC's only had a clear theoretical contribution; hence they are not 
analyzed by their relevance to practitioners. The research field has a close con-
nection to the real-world by contributing to social issues and using real-world 
data (PEC5). The research provides knowledge and perspective to regulators 
and communicators by contributing and tiding the research into societal issues. 
For practitioners looking for specific solutions, the research area offers open-
source models tested with real-world data, that practitioners can benchmark 
and modify to fit their needs (PEC2 and PEC5). There are many practical solu-
tions and models built in academia; hence the collaboration potential between 
academia and practitioners is significant (PEC2). 

On the other hand, as the research field is new and emerging, the lack of 
practical implementation is visible (PEC3 and PEC4). The lack of research on 
attitudes, expectations, or needs of users and practitioners might distant the 
solutions from the practical needs. There is no guarantee that the research area's 
solution proposals have the potential to serve practitioners' and users' and ever 
be implemented into practice (PEC3). The current practical implementation lev-
el is unknown, as well as the expectations or interest of business decision-
makers. As long as the decision-makers do not understand XAI's need, the prac-
tical implementation in businesses is not likely to happen on a bigger scale 
(PEC4). The summary of results is presented in Table 13. 
 
TABLE 13 Practical Implications 
Practical Implications of Primary Empirical Conclusions 

Identifier Primary Empirical Conclusion Practical implications 
PEC2 In the study field of Explainable Ethical 

AI, the most common type of empiric 
research is to study a novel technique 

The field is still in the research phase, and 
the practical implementation and validation 
are missing. There are several open-source 
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that can solve a computational chal-
lenge.  

solution proposals modifiable to fit the com-
pany needs. There is significant potential for 
collaboration between academia and indus-
try. 

PEC3 The human perspective towards Ex-
plainable AI is not well-known. There is a 
lack of research about the practitioners' 
and user's expectations and attitudes 
towards Explainable AI. 

The solutions proposed in the research 
papers might not have practical implemen-
tation potential due to the lack of under-
standing the practical needs. The regulation 
of the field is challenging without the under-
standing of expectations and needs. 

PEC4 Industrial implementation of Explainable 
AI is not profoundly studied in the re-
search field of AI ethics. There is a re-
search gap in the managerial perspec-
tive and the business implications of 
Explainable AI. 

It is required to understand if and how the 
XAI solutions are needed and understood 
by business decision-makers to find the 
best solutions and enable practical imple-
mentation. 

PEC5 Explainable AI researchers are interest-
ed in real-world applications, not only 
technical aspects of the topic. The em-
piric research area of Explainable AI has 
a close connection to real-world prob-
lems when the research is related to AI 
ethics.  

The research serves the practitioners look-
ing for a specific solution, as the research is 
done with real-world data. The research is 
contributing to the societal and regulatory 
discussion. 

 
In conclusion, the analyzes of practical implementation revealed the potential of 
even closer collaboration between practitioners and academia. On the other 
hand, the research gap of understanding the practitioners, users, or business 
decision-makers can harm the practical implementation of XAI solutions. Over-
all, more research is required to move forward. 
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7 CONCLUSIONS 

In this paper, the Systemic Mapping Study method was utilized to visualize 
how Explainable AI is researched in the field of AI ethics. SMS was chosen to 
have a broader perspective with AI ethics to have a more profound understand-
ing of the research area and the role of XAI in the research area. The expected 
findings included mapping of the covered topic and analysis on when, how, 
and why the research has done to reveal potential research gaps. This chapter 
concludes the findings of this study, discusses the limitations, and proposes 
future research areas. 

7.1 Answer to Research Question 

The research question was What is the role of XAI in the research field of AI eth-
ics? To answer the question, it was required to understand what is researched 
in AI ethics and how XAI is emphasized in the research field. Besides, it was 
required to understand what, how, when, and why XAI was researched. Be-
cause this paper focused on practical solutions and implementation, the re-
search was narrowed to empirical papers. To answer these questions, the re-
search question was divided into sub-questions: 

[R1] What is researched in the AI ethics research field with empiric evidence? 
[R2] What is the current state of XAI in the research field of AI ethics? 
[R3] What are the research gaps in the field?  

Next, each of the questions is answered based on the data and analyses of SMS.  

7.1.1 What is researched in the AI ethics research field with empiric evi-
dence? 

This paper is interested in XAI's practical implications; hence, the research was 
narrowed to empiric papers. The short analyzes of the dataset of empiric re-
search in AI ethics (Chapter 3.4) revealed that only 20% of the AI Ethics papers 
use empiric material. Overall, the AI ethics research is rather theoretic.  
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Empiric research grew significantly in 2018. In the same year, the topic be-
came popular in media and public discussion. In this paper, the reason for the 
growth is not studied.  Since 2018 the empiric research has kept on growing 
every year. Similarly, the research focus in XAI grew significantly in 2018 and 
has kept on growing since. 

There were specific emerging themes in the sample of empiric research 
(n=213), such as the emphasis on autonomous vehicles, Human-Robot Interac-
tion, and health and care robotics. 36.19% of the sample was contributing to is-
sues related to XAI. The percentage includes papers with a partial or a marginal 
contribution to XAI. Overall, the interest in XAI and related issues is a signifi-
cant area in AI ethics research, especially in empiric papers. 

7.1.2 What is the current state of XAI in the research field of AI ethics? 

In chapter 5, the research area was mapped to visualize and analyze the papers' 
focus, research type, contribution, and pertinence. Also, the annual changes and 
publication venues were analyzed. Based on the analysis, the Primary Empirical 
Conclusions were noted and mirrored to existing research in chapter 6. Also, 
practical contributions were proposed.  

In conclusion, XAI research's current state is close to real-world problems, 
published in the last three years, and often proposing a novel computational 
solution to technical problems. The research is published in both conferences 
and journals. The venue of publication is monotonous, which might harm the 
diversity and inclusivity of the research area. The research area is growing, and 
each year there are more papers with full focus on XAI. 

XAI is still mainly interpreted as an academic challenge, even though 
transparency issues are often emphasized in companies' or institutions' ethical 
principles for AI development. The majority of the papers were interested more 
in the technical or design perspective of the problem than in the practical chal-
lenges in implementation. Only one paper studied the current state of industrial 
implementation of AI ethics, and none of the papers studied the industrial im-
plementation of XAI. 

7.1.3 What are the research gaps in the field?  

Even though the research area is close to real-world problems, it is still theoreti-
cal and lacks the implementation in practice or the research of the implementa-
tion. There was a lack of understanding of the users' and practitioners' expecta-
tions, needs, and attitudes towards XAI. There was no research on the manage-
rial perspective of XAI. A more profound understanding of the current imple-
mentation level is needed to ensure that the research has value for practitioners. 

The SMS also revealed a research gap with a profound understanding of 
AI ethics's research area. This paper only touched the surface of the AI ethics 
field with empiric material, and the theoretical research of AI ethics has not 
been studied. A better understanding of the research area could reveal research 
gaps, and it could visualize what topics are well covered in the overall corpus, 
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what type of research is done, and for what purposes. The practical implemen-
tation of AI ethics also requires more studies from different industries and pub-
lic sectors. 

7.2 Limitations  

A common bias that systematic reviews suffer is that positive outcomes are 
more likely to be published than negative ones (Kitchenham and Charters, 
2007). Especially in the corpus of empiric research, this might lead to a lack of 
validation studies and leave out solutions that were not working as expected. 
The inclusion of conference proceedings is one solution to avoid publication 
bias (Kitchenham and Charters, 2007) used in this paper. 

The research question's framing had two limitations to the study—first, 
the challenge with complexity with terms. As the focus of this paper is to un-
derstand the research field of AI ethics and the role of XAI in the field, this pa-
per provides the mapping to this specific viewpoint. This viewpoint has its 
challenges, as this definition leaves out all the research papers with a focus on 
AI's interpretability without clear visible relation to ethical concerns. To under-
stand the full corpus related to XAI, a separate mapping is needed. Even 
though XAI is closely related to ethical issues, it is also studied independently. 
A second limitation with research questions was that the final form of questions 
was defined during the SMS, which challenged the literature and inclusion pro-
cess, making it a bit more labor-intensive than expected. The overall goal and 
main focus stayed the same; hence, the definition did not compromise the re-
search's accuracy.  

A challenge with the scope was the unexpectedly large sample size from 
the primary search, which made the literature search and inclusion process la-
bor-intensive and reduced accuracy. The time invested in each paper had to be 
cut to a minimum. To ensure the quality and manageable workload, the litera-
ture search and inclusion process were divided with two student researchers 
and were closely supervised by the JYU AI Ethics Lab.  

During the primary search, some limitations were faced. Each database 
was screened, starting from the oldest papers to track its potential changes dur-
ing the screening process. In Scopus, only the 2000 first articles were allowed to 
be screened without changing the settings, which required to screen the articles 
with year range starting with the 2000 oldest and then continue towards the 
newest. There is a possibility that some of the articles were missed in the screen-
ing due to this re-organizing and inaccurate date information. In ProQuest, sim-
ilar challenges were faced, which required re-ordering the search results. Also, 
200 hits in the ProQuest database were excluded from the literature search due 
to technical problems in ProQuest. 

After the primary search, the sample size was larger than expected, which 
limited the amount of attention dedicated to each paper during the screening 
process. In other SMSes, the initial take-in from separate databases has been 
significantly lower; 1062 papers (Vakkuri & Abrahamson, 2018), 1769 papers 
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(Paternoster et al., 2014) or 2081 papers (Belmonte, Morales, & Fernández-
Caballero, 2019). The largest sample in the SMS papers benchmarked for this 
paper was 5082 papers, which was computationally analyzed (Petersen, Vak-
kalanka, and Kuzniarz, 2015). 

Due to the large sample, the literature search and inclusion processes were 
conducted mostly by one viewer per paper; hence there is a chance of humane 
mistakes and false classification during the screening process. If the screener felt 
uncertain with the paper, the paper was tagged, and another screener provided 
a second opinion. That ensures a better quality of the paper. Out of the full 
sample of 1935 papers, two viewers evaluated 150 papers during the second 
screening round. During the final screening round, 22 out of 213 papers were 
evaluated by two viewers. The included papers after each screening round were 
re-evaluated during the screening rounds. The papers excluded or misclassified 
as idea papers during the first and second screening round were not further 
evaluated, increasing the possibility of missing a suitable paper from the final 
study due to manual labeling failure.  

There were some limitations in the classification process. The classification 
can be challenging for undergraduates who are not confident working with ti-
tles and abstracts of the papers (Budgen et al., 2008). The main limitation with 
the keywording and classification was the author's inexperience as a researcher. 
The classification process was highly opinion based which impairs the quality 
and liability of the study. To ensure the research quality, the classification 
schema was presented and evaluated by two viewers, but the classification was 
performed alone. If the classified material is used in future studies, perhaps re-
evaluating the sample and classification is needed before utilizing it. 

7.3 Future Research 

There is potential to continue the SMS composed in this paper to gain a more 
in-depth understanding of the AI ethics research field. There is no profound 
mapping of the research field, and this SMS could provide a base for future re-
search. The literature search and inclusion process were performed with clear 
guidelines, disciplinary following a stringent search process, which enables the 
future use for the research material (Kitchenham et al., 2011). Future research 
requires updating the material, and to increase the quality. Snowballing of the 
primary study references could reveal more fitting papers. 

The SMS revealed research gaps in the existing corpus. There is a need to 
study how humans perceive XAI, and what are they expecting from XAI sys-
tems, or do they even value them. That knowledge could guide the research 
area to look for solutions that are needed. Perhaps cross-disciplinary research 
between computer scientists and humanists could provide exciting insights into 
the field. 

Another research gap was the lack of industrial implementation. There 
were no studies of the current state of implementation outside software engi-
neering, and only one study focusing on the implementation of AI ethics in 
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companies in software engineering. The research field could benefit the 
knowledge of the current state in practical implementation if there are any. Fur-
thermore, how and who in the companies is now managing the issues with 
XAI.  

Future research is needed to understand the managerial perspective of 
transparent systems in companies using AI solutions. The top managers are the 
final decision-makers and accountable for their products' actions, and they are 
the gatekeepers for funding for development. To ensure the solutions proposed 
in papers to be implemented in practice, it is required to understand what busi-
ness decision-makers want and where they are ready to invest.  
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