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ABSTRACT 

Liu, Jia 
Electrophysiological brain activity fluctuations during a long period of task 
engagement 
Jyväskylä: University of Jyväskylä, 2020, 67 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 333) 
ISBN 978-951-39-8457-1 (PDF) 
 
Humans generally fail to maintain their task performance during a long period 
of task involvement, leading to performance declines and mental fatigue 
increases. This phenomenon is called the time-on-task effect or vigilance 
decrement. It is still unclear whether the impairment of time-on-task is task-
specific or not. Although some theoretical frameworks of vigilance decrement 
have been proposed in the literature, there is still no agreed framework 
generalizing to all fatigue-related findings. To address these questions, we 
conducted a selective visual attention task for 2 hours 20 minutes and provided 
monetary rewards in the early and late blocks. We also adopted the 80-minute 
sustained attention EEG dataset with motivation manipulation in the interval of 
60-80 minutes. We explored the effects of time-on-task on selective attention and 
sustained attention, and investigated the modulations of motivation in these 
studies. We also examined the differences between vigilance and congruency. 
For data analysis methods, we applied the ERP, time-frequency analysis, 
automatic dynamic function connectivity detection approach, temporal PCA, 
and single-trial analysis, obtaining indicators of ERPs (e.g., N1, P2, N2, P300), 
ERSP (e.g., delta and theta bands), frequency-specific dynamic functional 
connectivity (fdFC) across different studies. Our results found that cognitive 
functions in selective attention were impaired by time-on-task and partially 
restored by motivation manipulation. Similarly, cognitive processes involved in 
sustained attention were degraded by vigilance decrement and partially and 
transiently improved by providing rewards. We also demonstrated different 
influences between vigilance and congruency in conflicting tasks. Overall, this 
dissertation elucidates the effects of prolonged task involvement on different 
types of attentional tasks and provides evidence for the theoretical framework of 
motivational control and energetical costs.  
 
Keywords: mental fatigue, time-on-task, vigilance decrement, selective attention, 
sustained attention, congruency.  
 
 
 
 
 
 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Liu, Jia 
Elektrofysiologiset aivotoiminnan vaihtelut pitkän sitoutumisen aikana 
Jyväskylä: University of Jyväskylä, 2020, 67 s. (+artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 333) 
ISBN 978-951-39-8457-1 (PDF) 
 
Ihmiset eivät yleensä pysty keskittymään kunnolla pitkien tehtävien suorittami-
seen ja tämä johtaa suorituskyvyn heikkenemiseen ja henkisen väsymyksen li-
sääntymiseen. Tätä ilmiötä kutsutaan aikatehtävävaikutukseksi tai valppauden 
heikentymiseen. Edelleen on epäselvää, liittyykö tehtävän suorittamisen kesto 
heikentymiseen tehtäväkohtaisesti vai ei. Kirjallisuudessa on ehdotettu teoreetti-
sia puitteita valppauden heikkenemiseen, mutta vielä ei ole sovittua kehystä, 
joka yleistää kaikki väsymykseen liittyvät havainnot. Näiden kysymysten ratkai-
semiseksi tässä väitöskirjassa on toteutettu valikoivan visuaalisen tarkkailuteh-
tävä ja analysoitu siihen osallistuvia henkilöitä.  Tehtävässä seurattiin aikatehtä-
vän vaikutuksia valikoivaan huomioon ja jatkuvaan tarkkailuun, ja lisäksi tutkit-
tiin erilaisten motivaatiotekijöiden vaikutuksia. Tietojen analysoinnissa käytet-
tiin ERP:tä, aikataajuusanalyysiä, automaattisen dynaamisen toimintoyhteyden 
havaitsemisen lähestymistapaa, ajallista PCA:ta ja yhden kokeen analyysiä. Työn 
tuloksista havaitaan, että selektiivisen tarkkaavaisuuden kognitiiviset toiminnot 
heikkenivät tehtävän suorittamisen aikana ja osittain palautuivat palkkioilla. 
Vastaavasti kognitiiviset prosessit, joihin liittyy jatkuva huomio, heikentyivät 
valppauden heikkenemisellä ja parantuivat osittain ja ohimenevästi tarjoamalla 
palkkioita. Työssä on näytetty myös erilaisia vaikutuksia valppauden ja yhden-
mukaisuuden välillä ristiriitaisissa tehtävissä. Kokonaisuudessaan tämä väitös-
kirja selvittää pitkäaikaisten tehtävien osallistumisen vaikutuksia erityyppisiin 
tarkkaavaisuustehtäviin ja tarjoaa todisteita motivaation merkityksestä pitkäai-
kaisissa tehtävissä. 
 
Avainsanat: henkinen uupumus, tehtävän aika, valppauden vähennys, valikoiva 
huomio, jatkuva huomio, yhdenmukaisuus. 
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Mental fatigue is a common feature in modern life and usually impairs our task 
performance. The impairment of mental fatigue is pronounced especially in 
industries such as transportation, aviation, manufacturing factories, health care, 
military, and many public services (S. K. L. Lal & Craig, 2001). Mental fatigue can 
lead to serious consequences in these industries, for example, driver fatigue is 
one of the crucial factors contributing to traffic accidents and medical staff fatigue 
is an important element resulting in medical accidents. In fact, mental fatigue is 
a complex process of our body and can be affected by many factors such as sleep 
duration, personality, mood, and working time. While there is a bulk of evidence 
for mental fatigue detection and mechanism analysis, the term fatigue still lacks 
an agreed definition, and little is known about its mechanism. 

It has been known that a long period of task involvement in cognitive tasks 
impairs neurobehavioral performance. However, the deficits of specific cognitive 
functions remain to be established in different cognitive tasks. In general, mental 
fatigue impairs plenty of cognitive functions, for instance, attention resources, 
cognitive control, working memory, and motor movement or inhibition, et.al. 
The way how these cognitive functions are impacted by long durations of task 
engagement needs to be characterized.  

To explore the effects of mental fatigue on cognitive tasks, behavioral 
measures (e.g., response time, accuracy, and the number of errors) are the earliest 
indices in the literature though behavioral performance is only the external 
manifestation of a cascade of cognitive functions. Advances in neuroimaging and 
electrophysiological techniques such as functional magnetic resonance imaging 
(fMRI) and electroencephalogram (EEG) have allowed for a deep understanding 
of specific cognitive functions. Especially, EEG is one of the most popular 
techniques for mental fatigue detection and mechanism analysis owing to its 
property of low costs, high temporal resolution, and portability. By utilizing EEG, 
researchers have detected many neuromakers for mental fatigue, consisting of 
oscillatory brain activity, event-related potential (ERP), functional connectivity 
(FC), and so on. Nevertheless, developing the effectiveness and robustness of 

1 INTRODUCTION 
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neuromakers in different cognitive tasks is still challenging in mental fatigue 
studies.  

In this chapter, we first figure out the definition and theories of mental 
fatigue. We then summarize the effects of long-term duration of task engagement 
on different cognitive tasks and outline the neuromarkers commonly used in 
fatigue studies. Finally, we illustrate the aim of the present research.  

1.1 Mechanisms of fatigue and theories of vigilance decrement 

1.1.1 Concepts of mental fatigue 

Fatigue is a ubiquitous and complex phenomenon, which involves many 
behavioral and psychological processes and is related to many factors such as 
sleep duration, prolonged task involvement, nutrition, health, and environment.  
As a result, there are many concepts used in fatigue-related research. According 
to different health conditions of individuals, fatigue can be defined as acute and 
chronic fatigue (Shen, Barbera, & Shapiro, 2006). Acute fatigue, mainly pointing 
to healthy individuals, is typically considered as a protective function of our 
bodies and brains. It is generally alleviated after a rest and exercise. In contrast, 
chronic fatigue usually occurs in disordered patients (e.g., cancer disease), and it 
is generally not recovered by using traditional restoration techniques. Regarding 
different emphases of fatigue on muscle and brain, fatigue is typically divided 
into physical (physiological) and mental (psychological) fatigue (Aaronson et al., 
1999) although mental fatigue also affects physical performance reported in an 
earlier study (Marcora, Staiano, & Manning, 2009). Physical fatigue represents 
the decreased performance of muscular movement and power, therefore, it is also 
called muscular fatigue. For instance, in strenuous exercise, the chemical 
substances (e.g., sugar and phosphorous) are consumed to provide energy and 
decomposed into lactic acid and carbon dioxide leading to feelings of acidic for 
muscular tissue (Grandjean, 1979). On the contrary, mental fatigue is a feeling of 
tiredness and can be induced by a prolonged duration of mental or cognitive 
tasks. Mental fatigue is an accumulate process and accompanies reduced 
motivation and deteriorated task performance. Moreover, mental fatigue can be 
caused by many factors, among which the sleep-related factors and a long period 
of task involvement are the most important ones (May & Baldwin, 2009). Based 
on these two causal factors, mental fatigue is usually studied in sleep-related and 
task-related research (Dawson, Ian Noy, Härmä, Kerstedt, & Belenky, 2011). In 
the sleep-related studies, researchers have explored the effects of sleep 
deprivation and circadian rhythm on vigilant performance and found the 
impairments of them on vigilant attention (Lim & Dinges, 2008; Van Dongen, 
Maislin, Mullington, & Dinges, 2003). Among many synonymous terms (e.g., 
sleepiness, drowsiness, and wakefulness) of fatigue, “sleepiness” and 
“wakefulness” are typically interchanged with fatigue in the sleep-related 
studies. In the task-related studies, on the other hand, long task engagement 
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hours can lead to mental fatigue increases and performance deteriorations. 
According to the workload of task and environment, task-related fatigue has also 
been explored using the concepts of passive fatigue and active fatigue (Thiffault 
& Bergeron, 2003). Passive fatigue is usually resulted from a monotonous 
environment in the underload conditions, whereas active fatigue is mainly 
associated with the high density environment in the overload conditions. In fact, 
acute fatigue and mental fatigue aforementioned are the major origins of severe 
traffic and medical accidents. As reported in previous studies, task-related 
fatigue detection and countermeasure can effectively avoid the occurrence of 
traffic accidents (Lin et al., 2006; May & Baldwin, 2009).  

Existing concepts of fatigue have been considered particularly following 
dualistic lines, but generalizing the concepts across conditions and tasks is still 
challenging. It is much difficult to define the type of fatigue because many factors 
overlap together. It is likely that mental fatigue emphasizes subjective feelings 
and common phenomena. The ambiguity and disagreement concepts of fatigue 
hinder the wide promotion of fatigue-related research, particularly in 
psychology and neuroscience fields. In essence, when humans engage in 
cognitive tasks for a long period of time, they will experience mental fatigue 
increases and motivation decreases to continue performing tasks along with 
more committed errors and diminished performance goals. This effect is defined 
as time-on-task effect or vigilance decrement in the fields of psychology and 
neuroscience (D R Davies; & Parasurman, 1982; Lim & Dinges, 2008; Mackworth, 
1948; Reteig, van den Brink, Prinssen, Cohen, & Slagter, 2019; See, Howe, Warm, 
& Dember, 1995). In the present study, the terms “time-on-task” and “vigilance 
decrement” are used interchangeably with “mental fatigue”, stating the 
neurobehavioral performance fluctuations affected by a long-term duration task 
involvement.  

1.1.2 Theoretical frameworks of vigilance decrement 

Theoretical frameworks explaining the mechanism of vigilance decrement have 
been widely studied in decades of research. Three theoretical frameworks of 
underload, overload, and motivational control have already prevailed. The 
underload theoretical framework argues that typical vigilance tasks are 
monotonous and simple enough without capturing attention, resulting in 
humans to disengage from the current task and fail to maintain task performance 
(Manly, Robertson, Galloway, & Hawkins, 1999). When humans shift their 
attention from the primary task, they are occupied by task-unrelated thoughts, 
and the mind-wandering occurs (Smallwood & Schooler, 2006). Additionally, the 
overload theoretical framework states that cognitive resources are limited and 
they are depleted during an extended period of task involvement (Helton & 
Warm, 2008). The monitoring of relevant information in external surroundings 
requires cognitive resources, and long-term monitoring and processing steadily 
exhaust the limited resources, causing task performance reductions. Furthermore, 
the theoretical framework of motivational control insists that vigilance 
decrement is the mental analysis of costs and benefits, and humans are in a 
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motivated state when they maintain their task performance  (Kurzban, 
Duckworth, Kable, & Myers, 2013). When the costs outweigh the benefits during 
task performance, the level of vigilance decreases along with task performance 
declines.  

Recent research has found that these three theoretical frameworks 
aforementioned still have limitations to explain all phenomena in daily life and 
experimental settings, and these frameworks are not mutually exclusive. 
Therefore, some synthesized theoretical frameworks are proposed based on these 
three frameworks. For example, the “resource-control” theory states that 
vigilance decrement cannot be explained by either overload or underload on its 
own, but should be described by a function of time-on-task (attention resources 
declines) combining theories of mind-wandering (Thomson, Besner, & Smilek, 
2015). Alternatively, some researchers find that mind-wandering is closely 
related to motivation, suggesting that low motivated participants have more 
task-unrelated thoughts (Seli, Cheyne, Xu, Purdon, & Smilek, 2015). Moreover, 
vigilance decrement is also attributed to the framework of motivational control 
and energetical costs stating that humans will balance the rewards and costs and 
further consider their limited resources (Boksem & Tops, 2008).  

Taken together, although many theoretical frameworks have been 
proposed in previous studies, the mechanisms of vigilance decrement still need 
to be established in an agreed theoretical framework.  

1.1.3 Neurophysiological aspects of mental fatigue and vigilance 

The reticular formation, located in the brainstem, is closely related to the degree 
of vigilance (Grandjean, 1979). The reticular formation comprises of the 
ascending reticular activating system (ARAS) and the descending tracts to the 
spinal cord (Jones, 2008). Specifically, the ARAS plays an important role in 
regulation of wakefulness or arousal levels and awake-sleep transactions. The 
ARAS includes some neural circuits linking the posterior midbrain and anterior 
pons to the cerebral cortex through different pathways that central to the 
thalamus and hypothalamus (Brudzynski, 2014). With the decrease of vigilance, 
the activation level of the reticular formation generally increases.  

In addition, the limbic system has also been reported to associate with 
motivation, emotion, and level of vigilance (Grandjean, 1979). The limbic system 
located deep through the brain, which is above the brainstem and underneath 
the cerebral cortex. It contains the cingulate gyrus, parahippocampal gyrus, 
hippocampus, amygdala, hypothalamus, nucleus accumbens, et al. The level of 
vigilance is linked to the limbic system for circadian rhythms and motivation, 
and is also related to dopamine (Mistlberger & Mumby, 1992).  

Apart from the activating reticular and limbic systems, the inhibiting 
system in the interbrain and medulla also has close relationships with vigilance 
or sleep-related functions (Grandjean, 1979). Besides, the autonomic nervous 
system controlling the activating and inhibiting functions has close links to the 
level of vigilance (Grandjean, 1979).  
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In the review of the synthesized theoretical frameworks combining 
motivational control and energetical costs (Boksem & Tops, 2008), researchers 
show that the neuropsychological brain structures involved in reward systems 
are intimately related to mental fatigue, consisting of the midbrain dopamine 
neurons, orbitofrontal cortex, basolateral amygdala, insula, anterior cingulate 
cortex (ACC), and nucleus accumbens. When humans deal with goal-directed 
tasks, they will evaluate the potential rewards and aversive results and adjust 
their task performance by complex interactions between these neural 
substructures in the reward system. The dopamine neurons in the ventral 
tegmental area project dopamine to the prefrontal cortex carrying information on 
reward value (Leon & Schultz, 1999). The expected appetitive and aversive value 
of actions is coded by the orbitofrontal cortex, basolateral amygdala, and insula. 
The reward coding information is transmitted to the ACC, in which the reward 
information is compared to the costs to perform tasks expecting to realize the 
least aversive and largest reward. The determined strategy is relayed to the 
behavioral output through the dopamine projections from ACC to nucleus 
accumbens. The ACC integrates the reward and costs information with the 
energetical resources to allow for optimal decision making and action outcomes.  

1.2 Modulations of time-on-task on cognitive functions 

A long-term task involvement leads to mental fatigue increases, causing deficits 
in a series of cognitive functions. Previous experimental studies using different 
cognitive tasks have demonstrated the effects of time-on-task on specific 
cognitive processes such as selective attention (Boksem, Meijman, & Lorist, 2005; 
Faber, Maurits, & Lorist, 2012), sustained attention (B.S.Oken, M.C.Salinsky, 2006; 
Reteig et al., 2019; Sun, Lim, Kwok, & Bezerianos, 2014), cognitive control (Lorist, 
Boksem, & Ridderinkhof, 2005), action monitoring or error detection (Boksem, 
Meijman, & Lorist, 2006; Lorist et al., 2005), decision making (Lorist, Klein, & 
Nieuwenhuis, 2000), working memory (Gergelyfi, Jacob, Olivier, & Zénon, 2015), 
and response execution and inhibition (Guo et al., 2018; Kato, Endo, & Kizuka, 
2009; Möckel, Beste, & Wascher, 2015). Especially, the impairment of time-on-
task on attention and cognitive control can lead to severe consequences in many 
fields of practical situations. What is more, attention plays a pivotal role during 
all perceptual and cognitive functions (Chun, Golomb, & Turk-Browne, 2011). 
Therefore, the deficits of attention and cognitive control should be emphasized 
during long lasting task engagement.  

1.2.1 Effects of time-on-task on attention 

Although attention is ubiquitous in our daily life, the colloquial and general 
understanding has hampered its development in scientific research. In essence, 
“attention”, in the field of psychology, has a broad range of meanings (Lim & 
Dinges, 2008). A large body of taxonomies has been proposed to separate 
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component parts of attention. As one of the earliest psychologists, William James 
states that “attention” is not a unitary process, and it includes independent 
attentional processes of voluntary and involuntary (James, 1890). These two 
attentional processes are probably equivalent to the classificatory processes, 
labeled in recent years, of top-down and bottom-up (Corbetta & Shulman, 2002; 
Sarter, Givens, & Bruno, 2001). The top-down processes embody the knowledge-
driven mechanisms, which facilitates the contrast between signal and distractors 
and enhances the processing of task-relevant information (Sabine & Ungerleider, 
2000). On the contrary, the bottom-up processes are driven by the sensory context 
and characteristics of stimulus (Sarter et al., 2001). It will be interesting to analyze 
the effects of time-on-task on these top-down and bottom-up processes to 
untangle more detailed information in attention. However, top-down and 
bottom-up processes are only conceptual principles instead of dichotomous 
constructs or anatomical system, and they are generally interact with each other 
to implement an optimization attentional performance (Egeth & Yantis, 1997; 
Sarter et al., 2001). At the level of neuropsychology, it is hard to dissociate the 
influences of time-on-task on these two attentional component processes owing 
to the difficulty of teasing apart these two processes.  

From another point of view, “attention” has also been subcategorized into 
components of intensity and selective aspects (Posner & Boies, 1971; Sturm & 
Willmes, 2001). The intensity aspects contain the alertness and sustained 
attention, whereas the selective aspects include focussed and divided attention, 
namely selective attention. Comparable to the intensity aspects, the selective 
aspects are more complex including orienting and executive functions in 
addition to the alerting function (Fan, Mccandliss, Sommer, Raz, & Posner, 2002). 
Similarly, Parasuraman showed that, according to the different requirements of 
attentional resources, vigilance tasks could be fallen into two types of tasks 
representing successive and simultaneous discrimination tasks (Parasuraman, 
1979). The successive tasks are required to contrast the current stimuli with a 
standard one maintained in working memory to separate the target from non-
target stimuli. Instead the simultaneous tasks are instructed to distinguish the 
targets from non-targets based on the properties of stimuli not the memory of 
signal features (Parasuraman, 1979; Warm, Parasuraman, & Matthews, 2008). 
Obviously, the successive tasks are more complex than simultaneous tasks, 
which contains less working memory demanding. The successive and 
simultaneous tasks are likely corresponding to the selective and intensity aspects, 
respectively. Evidence has amassed from successive and simultaneous research 
that the impairment of vigilance or time-on-task presents a greater degree on 
successive tasks than simultaneous tasks might because of more working 
memory resource demanding in successive discrimination (Warm et al., 2008). 
Whether a long period time of task involvement elicits discrepancies between 
sustained and selective attention remains an interesting research topic. It should 
also be noted that sustaining attention to the current tasks is the precondition 
while carrying out more complex selective attention tasks, and thus the more 
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resources demanding tasks should also consider the attention lapses during task 
performance (Lim & Dinges, 2008).  

1.2.2 Influences of time-on-task on cognitive control 

Cognitive control, also called executive functions or executive control, contains a 
series of top-down cognitive functions. Cognitive control is necessary when 
humans dealing with the novel stimulus and when they resisting irrelevant 
temptations (Diamond, 2013). As opposed to the bottom-up cognitive functions, 
the cognitive control is effortful because it is resource consuming to respond to a 
novel stimulus rather than a familiar one. In general, cognitive control is 
comprised of three core components: inhibitory control—including interference 
control (cognitive inhibition and selective attention) and self-control (behavioral 
inhibition), working memory, and cognitive flexibility (also named as mental set 
shifting) (Lehto, Juujärvi, Kooistra, & Pulkkinen, 2003; Miyake et al., 2000). 
Furthermore, higher-order cognitive control also involves the processes of 
problem solving, reasoning, and decision making (Collins & Koechlin, 2012).  

As one of the core cognitive control components, inhibitory control involves 
the control contents of attention, thoughts, and behavior. Inhibitory control of 
attention illustrates that humans selectively attend to the goal-directed stimuli 
and suppress the other stimuli. The process has also been termed as focused or 
selective attention, attentional control, attentional inhibition, as well as executive 
attention (Theeuwes, 1991). Interference control of thoughts and mental 
representations is also called cognitive inhibition (Diamond, 2013). This control 
process includes suppressing unwanted or extraneous thoughts/memories such 
as intentional forgetting (Anderson & Levy, 2009). The cognitive inhibition 
typically coheres with working memory instead of other inhibitory functions. 
Inhibitory control of behavior, also named as self-control, enables humans to 
resist temptations and impulsive actions. Previous studies have explored the 
time-on-task effect on these processes such as selective attention (Boksem et al., 
2005; Faber et al., 2012) and cognitive control (Lorist et al., 2005).   

The other aspect of core cognitive control components is working memory, 
which indicates the process of retaining information in the mind and working 
with the information (Anderson & Levy, 2009). Working memory is closely 
associated with other cognitive functions even seemingly unrelated things, and 
it integrates other functional elements together. Dissociating working memory 
and inhibitory control is an important question to learn the effects of other factors 
such as time-on-task on a specific function. Specifically, there are close 
relationships between working memory and inhibitory control, suggesting that 
they generally emerge simultaneously and interact with each other (Diamond, 
2013). The solution to this question is that one function should be minimized or 
controlled instead of cancelling their interactions. In fact, working memory is not 
just a subcomponent of cognitive control, and it is broadly defined in the 
literature (Conway & Engle, 1994; Kane & Engle, 2000). In that way, the working 
memory is approximately synonymous with cognitive control. Although 
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working memory is a significant part in implement tasks, not many studies have 
focused on the effects of time-on-task on working memory (Gergelyfi et al., 2015).  

The third component of cognitive control is cognitive flexibility, which is 
usually realized based on the two cognitive control components aforementioned 
(Diamond, 2013). This process enables humans to adjust their task performance 
according to changed task priorities and demands and to employ unexpected 
chances. The task-switching paradigms are ordinarily used for exploration of 
cognitive flexibly. For instance, the Wisconsin Card Sorting Task, where 
participants are asked to adjust their sorting specification based on the feedbacks 
and to switch the sorting criterions whenever new feedbacks emerge (Stuss et al., 
2000). An earlier study has used a switching task to explore the effects of mental 
fatigue on planning and preparation (Lorist et al., 2000).  

Taken together, these processes involved in cognitive tasks are essential for 
successful task performance in experimental settings and practical environment. 
Therefore, the effects of long-term task engagement on cognitive control should 
be studied and the improvement methods (e.g., training (Karbach & Kray, 2009) 
and practice (Erickson & Kramer, 2009)) for it still need to be addressed to reduce 
all modes of risks in practical tasks.  

1.3 Indices of mental fatigue and vigilance decrement 

From the past decades of research, abundant studies have emerged seeking to 
measure indices reflected in mental fatigue and level of vigilance. These indices 
involve behavioral performance, perceptual, psychological, electrophysiological, 
and biochemical measurements (S. K. L. Lal & Craig, 2001), obtained from 
different techniques such as self-reported questionnaires (e.g., Karolinska 
Sleepiness Scale,  KSS (Åkerstedt & Gillberg, 1990)), behavioral measurements 
(e.g., accuracy and response time (RT)), electrophysiological and neuroimaging 
modalities (e.g., EEG, fMRI, electrooculography (EOG), electrocardiogram 
(ECG) ), eye-tracking, and video images. In all categories of techniques, 
electrophysiological and neuroimaging modalities are more precise compared 
with other techniques because these techniques can directly record the 
neurophysiological activities of humans. In particular, owing to the advantage of 
high temporal resolution, low costs, potable and convenient, EEG is one of the 
most reliable techniques for mental fatigue studies. It is also promising to 
combine information from different techniques to search for reliable indices for 
mental fatigue.  

1.3.1 Indicators from EEG 

EEG is an electrophysiological technique used to record electrical activities that 
voltage fluctuations arising from ionic current within the neurons in the brain 
(Ernst Niedermeyer & Silva, 2005). EEG is usually non-invasive, and it records 
the electrical impulses with a small flat electrical conductor also named 
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electrodes attached to the scalp. EEG signals are rhythmic activities, which are 
differentiated into different bands according to frequency ranges. The frequency 
bands typically consist of delta (0.5-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta, 
(14-31 Hz) and gamma (>32 Hz) (Klimesch, 1999). Some researcher also analyzed 
the frequency bands in sub-bands in terms of specific study, for example, a 
waking-sleeping transition study using alpha 1 (7.6-9.4 Hz), alpha 2 (9.6-11.4 Hz), 
and alpha 3 (11.6-13.4 Hz) (Tanaka, Hayashi, & Hori, 1997). Practical and 
experimental applications mainly focus on spectral content and ERP of EEG 
(Ernst Niedermeyer & Silva, 2005; Luck, 2005). Spectral content is applied for 
investigating brain rhythmic activities in the frequency domain, whereas ERP is 
used to explore the potential changes time-locked to an event in the time domain.   

1.3.1.1 Spectral content 

Delta band has been found associated with a long time task involvement and 
slow-wave sleep (Hobson & Pace-Schott, 2002; Saroj K.L. Lal & Craig, 2002). In 
particular, researchers have revealed an increase in delta band along with mental 
fatigue increases, and the delta oscillations generally occur  in frontal and central 
brain regions (Saroj K.L. Lal & Craig, 2002; Santamaria & Chiappa, 1987). 
Converging evidence has shown that delta band have close linkages with brain 
reward system (Knyazev, 2012).   

Similarly, theta band has also been reported related to drowsiness and sleep, 
and further linked to decline of information processing (S. K. L. Lal & Craig, 2001). 
The close relationships between increases of frontal and/or parietal theta 
oscillations and mental fatigue increases have been revealed in earlier studies 
(Saroj K.L. Lal & Craig, 2002; Trejo, Kubitz, Rosipal, Kochavi, & Montgomery, 
2015). Theta band has also been pointed reflecting active cortical functioning and 
encoding of new information (Cavanagh & Frank, 2014; Klimesch, 1999).  

In contrast to all frequency bands, alpha as well as theta oscillations are 
likely the most sensitive bands used for detecting fatigue, vigilance deteriorates 
or arousal levels (Åkerstedt & Gillberg, 1990; Trejo et al., 2015). Alpha activity, 
typically emerging from occipital cortex, increases evidently during eye closure 
and decreases during eye opening (Okogbaa, Shell, & Filipusic, 1994). Previous 
work has demonstrated that alpha band decreases during long-term task 
involvement, but the activations of alpha band are different, located at parietal 
(Trejo et al., 2015) and frontal brain regions (Saroj K.L. Lal & Craig, 2002), 
respectively. However, there are still some findings showing that alpha band 
increase during a long period of driving tasks or after shift work (Akerstedt, 
Kecklund, & Knutsson, 1991; Eoh, Chung, & Kim, 2005).  

In terms of beta band, it has close association with arousal, alertness, and 
excitement (S. K. L. Lal & Craig, 2001). The increase of beta along with mental 
fatigue increase and shift work has been found in earlier research (Eoh et al., 2005; 
Saroj K.L. Lal & Craig, 2002). Especially, one study has found that beta activity is 
most useful indicator of vigilance decrement (Belyavin & Wright, 1987). Gamma 
band is seldom applied for fatigue-related studies.  
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In addition, a number of combining indicators have been investigated on 
the basis of four frequency bands aforementioned. For example, the indices of  
𝛽𝛽 𝛼𝛼⁄  and (𝛼𝛼 + 𝜃𝜃) 𝛽𝛽⁄  have been used for drowsiness detection after sleep 
deprivation (Eoh et al., 2005). Other indices of 𝜃𝜃 𝛽𝛽⁄ , (𝛼𝛼 + 𝜃𝜃) (𝛼𝛼 + 𝛽𝛽⁄ ), and 𝜃𝜃 𝛼𝛼⁄  
have also been used in fatigue or level of alertness detection (Jagannathan et al., 
2018; Jap, Lal, Fischer, & Bekiaris, 2009). Moreover, the indicator of alpha 
spindles, defined as short bursts in the alpha band, has also been used to assess 
the sleepiness of drivers after sleep-deprivation (Jap et al., 2009).  

1.3.1.2 ERP 

Although EEG has proved to be a useful technique in applications of scientific 
and clinics, its coarse measure of brain activity makes it difficult to estimate the 
highly specific cognitive and neural processes in the field of cognitive 
neuroscience (Luck, 2005). The EEG embodies the mixed up conglomeration from 
numerous neural activities, which means that brain response to a single event is 
not typically visible. Therefore, by means of a simple averaging approach, the 
neural responses mirroring specific cognitive functions can be extracted. These 
neural responses locked to a specific stimulus are corresponding to ERP. In 
contrast with EEG, ERP has a higher signal-to-noise ratio (SNR). In the research 
of fatigue or vigilance decrement during cognitive tasks, ERP might be an 
efficient approach to reveal the mechanisms underlying the effects of fatigue on 
specific neural processes or cognitive functions. Different component can be 
identified from ERP, and each ERP component is corresponding to specific 
cognitive function. By exploring whether ERP components are modulated by 
fatigue or not, researchers can infer which cognitive functions are impaired or 
enhanced by long period of task engagement.  

In terms of P1 component, it usually occurs in the temporal window of 60-
130 ms after stimulus-onset and at the lateral occipital brain regions (Luck, 2005). 
P1 has been reported in many attention-related studies, for example, an 
inseparable relationship between P1 and spatial attention (Luck & Vogel, 1998). 
Furthermore, previous work has detected attention-related P1 is not modulated 
by time-on-task (Boksem et al., 2005; Reteig et al., 2019), although an earlier study 
found its linkage with arousal states (Luck & Vogel, 1998).  

P1 is followed by N1, which peaks around 100-200 ms stimulus-onset. The 
visual N1 is a useful index for discrimination process in focused attention (Luck 
& Vogel, 1998). In a sustained attention task for 60 minutes, no change of N1 was 
detected with time-on-task (Reteig et al., 2019).  But in a visual-selective attention 
task during 3 hours, a decrease of N1 amplitude was found (Boksem et al., 2005). 
In fact, N1 is usually consisted of two subcomponents, with an earlier one peaks 
around 100-150 ms at anterior electrode sites and a later one peaks around 150-
200 ms at posterior electrode sites, which might result in the fatigue-related 
fluctuations in different tasks.  

P2 component, activated in anterior and central brain areas, is not usually 
reported in fatigue-related studies. But the links between auditory P2 and sleep 
has been summarized in a previous review work (Crowley & Colrain, 2004).  
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Compared to these ERP components listed above, N2 and P3 (or P300) 
components have been well acknowledged. N2 has many different 
subcomponents in this time range, for instance, N2a also called mismatch 
negative associating with deviant task-irrelevant stimuli especially the auditory 
modality, and N2b relating to deviant task-relevant processing (Luck, 2005). N2 
is a negative wave emerged at frontal and central scalp topography, which 
reflects the neural processes of cognitive control and conflict processing (Borja-
Cacho & Matthews, 2008; Kałamała, Szewczyk, Senderecka, & Wodniecka, 2018). 
The modulations of N2 by prolonged task engagement have been found in 
response selection during a Simon task (Möckel et al., 2015), in an action 
monitoring task (Boksem et al., 2006), and in response processes during a No-
NoGo task (Kato et al., 2009). 

There are some distinguishable ERP components in P3 time range. 
Especially, P3a and P3b are widely used in the literature, with P3a occurring in 
anterior electrode sites in an earlier time window and P3a occurring in posterior 
electrodes in the latter time window (Demiralp, Ademoglu, Comerchero, & 
Polich, 2001; Polich, 2007; Polich & Criado, 2006). Besides, other subcomponents 
such as novelty P3 (nP3) and slow wave (SW) have also been illustrated in 
previous studies (Barry et al., 2020; Linden, 2005; Polich, 2020). The effects of 
mental fatigue or sleep-deprivation on P3 (including latency and amplitude of 
P3, P3a, P3b) have been widely studied previous studies (Guo et al., 2018; 
Hopstaken, van der Linden, Bakker, & Kompier, 2015; Käthner, Wriessnegger, 
Müller-Putz, Kübler, & Halder, 2014; Kato et al., 2009). These properties of P3 
might be one set of the most reliable indicators for mechanisms of mental fatigue 
and vigilance decrement.  

1.3.2 Indicators from brain regions and functional connectivity 

Comparable to traditional univariate approaches such as spectral analysis, in 
recent years, converging evidence has displayed that the multivariate FC may 
provide a new profile for dissociating mechanisms of mental fatigue. Recent 
studies have proven that mental fatigue is closely associated with the diverged 
reorganization of FC among different brain regions (Qi et al., 2019; Sun et al., 
2014). In the laboratory experimental studies, the neural fluctuations during 
sustained attention have been widely used for exploration of time-on-task effect 
or vigilance decrement because of its validity and reliability. Both high spatial 
resolution fMRI and high temporal resolution EEG have been widely used to 
study the effects of vigilance.  

By utilizing the arterial spin labeling (ASL) perfusion fMRI during 20 
minutes psychomotor vigilance test (PVT), Lim and colleagues found the 
involvement of fronto-parietal attention network, sensorimotor regions as well 
as basal ganglia, and further detected a decrease of attention network with time-
on-task (Lim et al., 2010). Based on these results above, Rao and his group blood 
oxygen level-dependent (BOLD) fMRI during a similar test for 20 minutes (Gui 
et al., 2015). They disclosed that the amplitudes of low-frequency fluctuation 
(ALFF) reduced in the default mode network (DMN) and increased in the 
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thalamus, and the anti-correlations between the right middle prefrontal brain 
areas and posterior cingulate cortex (PCC) reduced after a long period of task 
involvement.  

The FC in specific frequency band using EEG has also been used for mental 
fatigue analysis.  Sun et al. analyzed the graph theoretical indices from FC in the 
lower alpha band during a long period of PVT (Sun et al., 2014). By contrasting 
the FC maps between the first and last 5 minutes, he found that the weighted 
characteristic path length (CPL) increased in the last 5 minutes task performance 
and the asymmetrical pattern of FC changed in the fronto-parietal brain regions 
with mental fatigue increases. Georgios and colleagues compared the effect of 
mental fatigue on FC alterations using EEG between PVT and driving tasks 
(Dimitrakopoulos, Member, & Kakkos, 2018). They contrasted the CPL and 
clustering coefficient (CC) from the theta band; and found that the CPL increased 
following mental fatigue increases both in the vigilance and driving tasks, 
whereas the CC increased with prolonged task performance only in the driving 
task.  

Although the brain networks and FC have been used in mental fatigue 
studies in recent decades, it is a promising approach to reveal the mechanisms 
underlying vigilance decrement, and an efficient prevention method for fatigue-
related human errors in the practical application.  

1.3.3 Indicators from other techniques 

In addition to EEG and fMRI, other techniques (e.g., EOG, eye-tracking and ECG) 
can also provide promising indicators for fatigue and vigilance decrement. EOG 
and eye-tracking mainly assess the activity from eye movement, which is also an 
important sign of drowsiness (S. K. L. Lal & Craig, 2001), and its application in 
mental fatigue detection has been promoted in recent studies. The indicators 
extracted from eye movement involves the saccades, fixations, and blinks 
(Salvucci & Goldberg, 2000). Especially, indicators of the saccade velocity, 
duration of fixation, and blink interval and duration have been used in mental 
fatigue detection (Hirvonen et al., 2010; Schleicher, Galley, Briest, & Galley, 2008). 
The heart rate variability from ECG has also been reported reflecting the mental 
states of individuals during task performance (S. K. L. Lal & Craig, 2001). The 
indices of cardiac output has been successfully used in mental fatigue study 
(Marcora et al., 2009). Some other techniques such as galvanic skin responses, 
respiration rate, and systolic and diastolic blood pressure have also been used for 
fatigue detection. Some studies combing indicators from different types of 
techniques have also emerged in the literature (Eoh et al., 2005; Marcora et al., 
2009; Papadelis et al., 2007).  
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1.4 Aim of this research 

This research aims to explore the mechanism of mental fatigue or vigilance 
decrement during attentional cognitive tasks. To realize the purpose, we 
investigate the effects of prolonged task engagement on the selective attention 
tasks and sustained attention tasks, respectively; we also compare different 
neural responses modulated by vigilance (high vs. low vigilant states) and 
congruency conditions (congruent vs. incongruent conditions). In addition to 
traditional behavioral performance and ERP analysis, we also extend the analysis 
to event-related spectral perturbation (ERSP), dynamic FC, and single-trial 
classification. Especially, the principal components analysis (PCA) is used for 
separating ERP components, and the tensor component analysis (TCA) is applied 
to extract task-related dynamic FC. Based on these objectives, I have been 
working on four articles. The aim of each specific article is listed below.  

For Article I, we explore the effect of vigilance decrement on selective visual 
attention and the modulations of motivation on it in different vigilant states by 
using behavioral measurements, ERP, and ERSP. 

For Article II, we investigate the influences of vigilance decrement and 
motivation on sustained attention through extracting task-related FC using the 
TCA pipeline, which is composed of weight phase lag index (wPLI) and TCA.  

For Article III, we develop a single-beat automatic detection and localization 
system used to detect different heart diseases. This automatic detection system 
at the level of single-trial is used in Article IV.  

For Article IV, we contrast the discrepancies between vigilance and 
congruency using temporal PCA and single-trial analysis. The developed single-
trial detection method in Article III is used in this article to obtain the single-trial 
classification results from high vs. low vigilance and congruent vs. incongruent 
conditions.  

 



 
 

Apart from the conventional behavioral performance (e.g., accuracy, RT, and the 
number of omitted responses or omissions) and ERP measurements, the 
temporal PCA for ERP separation, ERSP, dynamic FC analysis assisting with 
TCA, and single-trial analysis have also been applied in our research. Although 
ERP has been well-established in the field of neuropsychology, ERP components 
usually overlap together making it difficult to identify the constituent 
components. PCA has been identified as an efficient tool to separate specific ERP 
components (Dien, 2012). To supplement the limited information in time-domain 
time- and phase-locked ERP, we apply the ERSP that providing two-dimensional 
information including time and frequency domain. Both ERP and ERSP are 
univariate approaches, and the FC analysis is a multivariate approach that can 
provide neural information from whole brain regions. Taking advantage of the 
high temporal resolution and frequency information of EEG, the frequency-
specific dynamic FC is extracted using the TCA pipeline to illustrate the effects 
of mental fatigue. We focus on not only averaged responses but also single-trial 
analysis to understand the real-time neural fluctuations because the brain acts in 
a way of real-time cognitive processing instead of an average one (Stokes & Spaak, 
2016).  

In summary, in contrast to conventional analysis, these sophisticated 
approaches make it feasible to explore some new findings and to provide more 
evidence for mechanisms of mental fatigue. This chapter briefly describes these 
approaches and their applications.  

2.1 PCA for ERP separation 

ERP reflects the electrophysiological activities from neural generators and these 
activities sum up and volume conduct to cortical electrodes (Rose & Woolsey, 
1949). Therefore, the associations between ERP and underlying neural activities 
are not really known and different neural activities mixing together forming 

2 METHODS 
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overlapping ERP components. To solve this problem, PCA has been applied to 
identify a sequence of ERP components, separate specific ERP components for 
inferential testing, and improve the localized information for ERP sources  (Dien, 
2010, 2012). When applying the PCA to ERP, we usually conceptualize the ERP 
waveforms as an ordered sequence of electrical potentials. According to different 
ordering domains such as the channels (spatial) or the time (temporal), the PCA 
can be categorized into spatial PCA and temporal PCA, respectively (Kayser & 
Tenke, 2003). Compared with the spatial PCA, temporal PCA is better at 
charactering the topography information but worse at charactering the temporal 
information (Dien, 1998, 2010). Previous studies have found that temporal PCA 
commonly performs better than spatial PCA in the ERP separation analysis (Dien, 
1998, 2012). Thereupon the temporal PCA has been widely used in ERP 
separation analysis (Barry et al., 2020; Bowers, Buzzell, Bernat, Fox, & Barker, 
2018; Dien, Spencer, & Donchin, 2003).  

For the temporal PCA approach, a group of ERP waveforms (also called the 
cases, determined by multiplying the scalp electrodes, experimental conditions, 
and participants), with each waveform containing some discrete time points (also 
called the variables, determined by the sampling rate and the segmented epochs) 
are decomposed into a linear combination of principal component coefficients 
(named as factor loadings) and the corresponding weights (named as factor 
scores) (Kayser & Tenke, 2003). The factor loadings represent the invariant 
loading patterns or component waveforms with respect to the cases, and the 
factor scores represent the contribution of each case. To obtain a reliable PCA 
decomposition, it is typically recommended the number of cases is larger than 
that of variables, and the ratio of cases to variables is suggested to larger than 5 
(Gorsuch, 1983). However, one work by Guadagnoli challenged the rules for 
producing stable solutions but proposed that component saturation, absolute 
sample size, the number of variables per component (to a less degree) were 
critical factors in determining stability (Guadagnoli & Velicer, 1988).  

In addition to the input variables, the type of association matrix, the manner 
of factors rotation, and the criterion for the principal components (PCs) to be 
extracted should also be considered for the application of temporal PCA (Picton 
et al., 2000). In terms of the association matrix, the correlation, cross-products, 
and covariance matrix are generally used, with different types of matrix resulting 
in serious implications for PCA results. Although Kayser shows the best 
performance of the unrestricted, unstandardized covariance-based PCA (Kayser 
& Tenke, 2003), there are still some arguments on which type of association 
matrix should be used in the practical application.  

The manner of factors rotation simplifies the interpretation of the extracted 
components (Picton et al., 2000). The rotation includes the Varimax, Promax, 
Informax, Oblimin, and so on (Dien, 2010). Especially, the Varimax rotation has 
been widely used in ERP studies because it maximizes the loading variance, 
minimizes component overlap, and retains the orthogonality of component 
factors (Kayser & Tenke, 2003; Picton et al., 2000). However, some studies argue 
that the Informax is most suitable for spatial PCA and the Promax rotation is 
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most effective for temporal PCA (Dien, Khoe, & Mangun, 2007). Compared to the 
Varimax rotation, the Promax rotation adds relaxations to the orthogonal of 
factors considering that the PCs have some correlations between each other 
owing to the volume condition (Dien, 2012; Dien et al., 2007). Other rotations such 
as Oblimin is not usually used in ERP analysis.  

The ERP waveforms are generally decomposed into an infinite number of 
PCs, and the maximum number of PC is determined by the minimum number of 
cases and variables. These PCs explain the percentage of the variance in the data, 
for instance, the first PC explains the largest percentage of the variance. Evidence 
from Fava and Velicer has verified that under-extraction and over-extraction of 
the true number of components can induce decreased and unstable factors, and 
thus produce inaccurate results (Fava & Velicer, 1992, 1996). The proposals for 
the number of PCs extracted have been widely used. For example, a scree plot 
proposed by Cattell displaying the eigenvalues of PCs in a line plot (Cattell, 1966); 
Kaiser suggested that only the first PC accounting for the average variance of the 
original variables could be used for PCA solutions (Kaiser, 1960); Some 
researchers also recommended that the properties  of ERP (e.g., temporal and 
topological information) and the prior knowledge of the paradigm should be 
considered to select the PCs of interest (Kayser & Tenke, 2003; Spencer, Dien, & 
Donchin, 2001).  

2.2 Time-frequency analysis 

As we introduced in section 1.3.1, the spectral content is an important indicator 
of mental fatigue; therefore, taking into consideration of spectral information in 
cognitive tasks enables us to obtain comprehensive understandings. It has been 
widely accepted that cortical rhythmic activity includes on-going or spontaneous, 
evoked, and induced oscillations, and they mirror different neural processes 
(David, Kilner, & Friston, 2006). The oscillatory activities in situations of rest, 
naturalistic stimulus, and sensory event stimulus are different. For the brain 
responses to sensory or cognitive stimulus, these exist all three types of cortical 
oscillatory activities.  

The pre-stimulus spontaneous oscillations affect the post-stimulus ERP 
including the amplitude and latency (Herrmann, Rach, Vosskuhl, & Strüber, 
2014). The post-stimulus oscillatory activities are usually analyzed using evoked, 
induced oscillations, and the summation of them. The evoked oscillations are 
time- and phase-locked to the stimulus but the induced ones are only time-locked. 
The summation of evoked and induced power is the total power or ERSP. 
Operationally, the ERSP is obtained by applying time-frequency transformation 
(TFT) to each trial and then averaging the power across trials; the evoked power 
is estimated by first averaging the waveforms across trials and then conducting 
the TFT; the induced power is indirectly calculated by subtracting the evoked 
responses and background components from the total power (David et al., 2006).  
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TFT is a signal processing method used for the representation of the signals 
simultaneously in the time and frequency domain. Fourier transform is the basis 
of time-frequency analysis and transforms the time series into the spectrum 
based on the assumption that the input signals are stationary. The short-time 
Fourier transform (STFT), a basic TFT approach, is an extension of the Fourier 
transform through extracting brief segments of data using time windows, to 
address the limitations of stationarity assumption. There are many types of time 
windows used for STFT, consisting of Hamming, Hann, and Gaussian (Cohen, 
2014).  Nevertheless, the selection of time window length is a trade-off process, 
indicating that a longer time window causes low temporal resolution, and a short 
time window induces low spatial resolution.  

A more sophisticated approach of wavelet transform (Chui, 1992; 
Daubechies, 1990) has been proposed considering the temporally localized 
changes, the limitations of time windows, and the computational complexity. 
The continuous wavelet transform (CWT) is used for TFT, providing 
representation of signals by varying the translation and scale parameters 
continuously (Phillies, 1996). To realize the CWT, the input signal is convolved 
by the function of the mother wavelet, which is similar to the time window 
function in the STFT, and the transformation is calculated for different segments 
of data in the field of time (translation factor 𝑏𝑏) and frequency (dilatation factor 
𝑎𝑎) (Quotb, Bornat, & Renaud, 2011). The CWT can be described as: 

                      CWT𝜓𝜓𝑎𝑎,𝑏𝑏
{𝑥𝑥(𝑡𝑡)} = ∫ 𝑥𝑥(𝑡𝑡) • 𝜓𝜓𝑎𝑎,𝑏𝑏

+∞
−∞ (𝑡𝑡)𝑑𝑑𝑑𝑑                                       (1) 

                               𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) = 1
√𝑎𝑎2 𝜓𝜓(𝑡𝑡 − 𝑎𝑎

𝑏𝑏
)                                                           (2) 

where 𝑥𝑥(𝑡𝑡) is the time series,  𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) represents the mother wavelet, and 𝜓𝜓 (𝑡𝑡) is 
a wave-like oscillation or window function with an amplitude begins at zero. The 
𝜓𝜓 (𝑡𝑡) can be defined by scaling filter, scaling function, and wavelet function. For 
the wavelet function, the Morlet and Meyer wavelets are widely used in previous 
studies (Daubechies, 1990; Jagannathan et al., 2018). By utilizing the 𝑎𝑎, 𝑏𝑏, and 
𝜓𝜓 (𝑡𝑡), the CWT realizes the multiresolution analysis.  

2.3 Functional connectivity analysis 

In the area of cognitive neuroscience, how the human brain network develops, 
functions, and supports cognition is an increasingly important topic (Sporns, 
2010). Functional networks work at multiple spatial and temporal scales (Varela, 
Lachaux, Rodriguez, & Martinerie, 2001) . From the most intuitive point of view, 
FC is referred to as a statistical interdependency between recorded neuroimaging 
signals at spatially separate brain areas. For fMRI studies, FC usually refers to the 
correlation of BOLD signals. However, the definition of FC is quite broader for 
EEG and magnetoencephalography (MEG). The rich spatio-temporal natures of 
EEG and MEG data enable FC to be estimated in many different ways 
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(Schölvinck, Leopold, Brookes, & Khader, 2013). Many studies have shown that 
oscillatory synchronization might be a key mechanism by which neural 
populations transmit information and form larger networks (Fries, 2005; Fries & 
Str, 2015; Salinas & Sejnowski, 2001). Engel and colleagues reviewed the literature 
of functional connectivity, in which two types of intrinsic coupling modes were 
suggested (Engel, Gerloff, Hilgetag, & Nolte, 2013). One of them is the envelope-
based coupling that measures the relation of power between pairs of signals. 
Another is the phase-based coupling that assesses the synchronization of the 
signals based on the phase. These two types of coupling metrics focus on 
different aspects of EEG signals and tend to reveal different parts of the broader 
functional connection diagram (Schölvinck et al., 2013). Amplitude-based 
methods tend to be more similar to the long-range connections measured in fMRI 
signals relative to the phase-based connectivity (Brookes et al., 2011; Tewarie et 
al., 2016), which is probably proven by invasive recordings where amplitude 
correlation appears to be longer range than correlations of the raw time series 
(Leopold, Murayama, & Logothetis, 2003). However, this does not mean that 
phase-based methods are useless in the analysis of electrophysiological FC since 
they have been successfully applied for a variety of electrophysiological studies 
(Gross et al., 2001; Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012; Kujala 
et al., 2007). Recent studies have shown the advantages of multi-metric analysis 
(combining amplitude and phase connectivity measurements), in which the 
combination of simultaneous phase and amplitude assessment could be better to 
predict the network patterns measured in fMRI than either amplitude or phase 
methods individually (Tewarie et al., 2016). In the current thesis, we use the 
phase-based methods to assess the FC in cognitive tasks.  

2.3.1 Dynamic functional connectivity analysis 

Although a great number of previous studies have well described the spatial 
signatures of neural connectivity (Bastos & Schoffelen, 2016; O’Neill et al., 2018), 
most of them have not considered the temporal structure of the data, for instance, 
when and how the amplitude of connections between spatially separate regions 
or electrodes fluctuates across the experimental stimuli. A dominant mechanism 
is that the neuronal communication between regions across the whole brain 
supports the functions of human cognition, and such communication is assumed 
to be coordinated by neural oscillations at certain frequencies (i.e.,  
communication through coherence) (Fries, 2005; Fries & Str, 2015). Since such 
modulation of neural oscillations is very rapid (Bola & Sabel, 2015), it thus 
accompanies that connectivity should also vary quickly, especially in response to 
sensory and cognitive events. It would be crucial for characterizing the dynamic 
FC to allow us to clarify the essence of how the functional network supports 
cognitive operations. For instance, the time-locked neural response in classical 
experiments generally lasts on the scale of hundreds of milliseconds to a few 
seconds. The formation of these stimuli-related responses is important for 
recognizing them as top-down or bottom-up, or as the feedforward or feedback 
process (O’Neill et al., 2018). Static FC analysis has been commonly used to 
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examine the communication of brain areas during a specific cognitive process 
(Liddle et al., 2016; Peled et al., 2001). However, compared to dynamic 
connectivity measures, such static analysis is not time-resolved or frequency-
resolved and cannot untangle the route of information processing in the human 
brain. Thence, a dynamic connectivity technique could provide a deep insight to 
the integration of information processing in the brain. Thus, we here exploit 
excellent temporal resolution and good spatial coverage of EEG for measuring 
neuronal oscillations and directly assessing rapid changes in neuronal coherence, 
which is the core of brain dynamic communication. 

2.3.2 Identification of repeated patterns of connectivity 

When examining dynamic FC, it is common to assess connectivity between all 
pairs of brain regions within lots of time windows. This requires an automatic 
approach to assist the analysis of large data due to the estimates of massive 
connectivity matrices. In the last decade, lots of approaches have been developed 
to extract features from massive connectivity matrices to find interpretable and 
functionally meaningful network patterns. Many of those approaches rely on the 
assumption that functional connectivity is expressed in repeating or recurrent 
temporal or spatial patterns (O’Neill et al., 2018). These automatic identification 
approaches includes K-means clustering (Hassan et al., 2015), matrix 
decomposition (e.g., PCA and ICA) (O’Neill et al., 2017), Tensor decomposition 
(Zhu et al., 2020) , and hidden Markov models (Vidaurre et al., 2018).   

Amongst these approaches, tensor decomposition, a high order extension 
of matrix decomposition, can be used to reduce dimensions of multi-way data 
(e.g. from spectral, spatial and temporal modes of data) and extract low-
dimensional, interacted descriptors. For example, in a previous EEG study, three 
tensor modes repressents the time, frequency, and electrodes (Mørup, Hansen, 
Herrmann, Parnas, & Arnfred, 2006). In the neurophysiological measures, the 
different modes can correspond to the neuron, time, and trials (Williams et al., 
2018). Here for studying connectivity, tensor component analysis (TCA) has been 
increasingly used to a variety of connectivity data structures (Escudero, Acar, 
Fernández, & Bro, 2015; Mahyari & Aviyente, 2014; Ozdemir, Bernat, & Aviyente, 
2017; Pester, Ligges, Leistritz, Witte, & Schiecke, 2015). Such technique has 
recently been used to M/EEG data and to derive the frequency-specific network 
dynamics during repeated task (Zhu et al., 2020) and naturalistic stimuli (Zhu, 
Liu, Mathiak, Ristaniemi, & Cong, 2019). In these cases, TCA was applied to atlas-
based M/EEG data over connections, time, and frequency to derive separate 
components with low-dimensional features, corresponding to a pattern of FC 
with rapidly temporal dynamics and specific spectal mode.   
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2.4 Single-trial analysis 

When implementing a cognitive task, our brain requires constant involvement 
and real-time perception, processing, and response (Stokes & Spaak, 2016). These 
real-time cognitive processes can also be modulated by many external and 
internal factors such as the practice (Clark, Gregory Appelbaum, van den Berg, 
Mitroff, & Woldorff, 2015), lapses of attention (Adam, Mance, Fukuda, & Vogel, 
2015), and mental fatigue (Gergelyfi et al., 2015), resulting in the fluctuation 
changes of cognitive processes. Instead of analyzing the brain responses in an 
average manner, the single-trial analysis operates in a single trial level and 
provides new sights for understanding the neural dynamics and neural basis of 
task performance.  

With the development of the brain-computer interface, single-trial analysis 
has been an important branch in the field of neuroscience. The single-trial 
analysis usually includes three parts, namely the feature extraction, feature 
selection, and pattern recognition (Chaudhary, Birbaumer, & Ramos-
Murguialday, 2016; Wolpaw et al., 2000). The key to precisely perform the single-
trial analysis is extracting reliable and efficient indices from low SNR single-trial 
signals, which are corrupted by artifacts and background oscillatory activities. 
Before conducting these three parts, the single-trial data are usually preprocessed 
to improve the SNR by utilizing the band-pass and spatial filters. The temporal 
filter based on wavelet transform has been proven to enhance the performance 
of the single-trial analysis (Hu et al., 2011; Jia, Peng, & Hu, 2015). Different spatial 
filters have also been verified as efficient approaches to improve the SNR, for 
example, the common average reference and the Laplacian methods (McFarland, 
McCane, David, & Wolpaw, 1997), the data-driven and unsupervised approaches 
of independent component analysis (ICA) (Stewart, Nuthmann, & Sanguinetti, 
2014). In particular, the data-driven and supervised approach of common spatial 
patterns (CSP) plays an important part in spatial filters and is widely used in the 
literature (Ramoser, Müller-Gerking, & Pfurtscheller, 2000). Apart from the 
single temporal or spatial filter application, both of them can be applied to the 
single-trial analysis to improve the SNR to a great degree (Hu et al., 2011). 

After the procedure of preprocessing, features are extracted from the single-
trial data. There are many types of features, among which the typical features are 
from the time and frequency domain. The features in the time domain mainly 
include the ERP amplitude and latency, the maximum, minimum, mean, and 
median values, the variance, the skewness, and the parameters of Hjorth 
(Blankertz, Lemm, Treder, Haufe, & Müller, 2011; Liu, Zhang, Ristaniemi, & 
Cong, 2019). The features in the frequency domain involves the frequency band 
energy, the power ratio of different frequency bands, the power spectral density 
(PSD), the peak frequency and peak value of PSD (Zhou, Gan, & Sepulveda, 2008), 
and the event-related synchronization and desynchronization(Jia et al., 2015). 
Some other complex features have also been applied in the single-trial analysis, 
such as nonlinear features (e.g., fractal dimension), autoregressive models, 
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entropy indices (e.g., approximate entropy and sample entropy) (Zhang, Wang, 
& Fu, 2014), and high-order spectrum (Zhou et al., 2008). In recent years, 
functional connectivity from different brain regions has emerged as an efficient 
feature (Krusienski, McFarland, & Wolpaw, 2012). In addition to the features in 
the format of vector, the features in a format of tensor combing discrete wavelet 
packet transform (DWPT) and multilinear principal components analysis (MPCA) 
has been used in the single-trial analysis(He, Tan, & Xing, 2019; Liu et al., 2020). 
In the practical application, many types of features are generally used together to 
achieve good performance but also induce the high dimensionality impairing the 
classification performance.  

The feature selection or dimensionality reduction procedure is applied to 
select a set of representative features and reduce the dimensionality of the feature 
space, solving the problem of curse-of-dimensionality and saving the processing 
and storage of the data (F. Lotte et al., 2018). A total of three types of feature 
selection approaches have been determined representing the filter, wrapper, and 
embedded methods (Fabien Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 
2007). The filter method measures the relationship between features and target 
class regardless of the classifier to be applied. The linear complexity of the filter 
approach is associated with the number of features, and the filter method can 
lead to redundant features (McFarland et al., 1997). The wrapper and embedded 
methods take into consideration of the classifier, but at a cost of longer 
computation time. The wrapper method separates the features from the classifier, 
whereas the embedded method integrates the feature selection and the 
evaluation. Many feature selection methods have been proposed attributed into 
these three types, such as the maximal mutual information (filter method) (Ang, 
Chin, Wang, Guan, & Zhang, 2012), linear regression for knowledge extraction 
(wrapper method) (Liang & Bougrain, 2012), and the stepwise linear 
discriminant analysis (embedded method) (Krusienski et al., 2006).  Based on a 
public BCI competition dataset, researchers have tested many feature selection 
methods and finally verified a good performance of three methods, namely the 
correlation-based feature selection, information gain, and 1R ranking (F. Lotte et 
al., 2018).  

The low-dimensional and representative features obtained from the feature 
selection procedure are input into classifiers to recognize specific mental state or 
subject groups. Conventional classification methods are generally 
subcategorized into five main families of classifiers including the linear classifiers 
(e.g., linear discriminant analysis), non-linear Bayesian classifiers (e.g., hidden 
Markov models), neural network (e.g., multi-layer perceptron), nearest 
neighbour classifiers (e.g., k-nearest neighbour algorithm), and combination 
classifiers (consisting of boosting, stacking, and voting combinations) (F. Lotte et 
al., 2018; Fabien Lotte et al., 2007). Although conventional methods have made 
great progress for single-trial analysis, the single-trial classification still faces 
many challenges such as the low SNR of single-trial data, non-stationarity of data 
across trials, tasks, or participants, a limited number of samples for training (Ahn 
& Jun, 2015; B. F. Lotte, 2015). In recent years, the adaptive classifiers have been 
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proposed which aims to cope with the non-stationary properties in single-trial 
classification. The adaptive classifiers achieve a good performance and more 
advanced adaptive classifiers have been developed in the practical application (F. 
Lotte et al., 2018; Shenoy, Krauledat, Blankertz, Rao, & Müller, 2006). Advances 
in deep learning also allow for its application in single-trial classification because 
deep learning can learn the features and classifiers directly and achieve a good 
performance. It has been widely used in single-trial analysis but mostly offline 
because of the long training time and computational complexity of deep learning 
networks (F. Lotte et al., 2018; Yin & Zhang, 2017; Yin, Zhao, Wang, Yang, & 
Zhang, 2017).  



 
 

3.1 Study 1: The dissociable effects of motivation on a selective 
visual attention task in different vigilance states 

I. Liu, J., Zhang, C., Zhu, Y., Liu, Y., Sun, H., Ristaniemi, T., Cong, F. and 
Parviainen, T., 2020. Dissociable effects of reward on P300 and EEG 
spectra under conditions of high vs. low vigilance during a selective visual 
attention task. Frontiers in human neuroscience, 14, p.207. 

 
Motivation 
 
Prolonged task engagement leads to behavioral performance deteriorates and 
mental fatigue increases. However, the mechanism of this phenomenon is still 
unknown. Previous studies have proposed many theoretical frameworks of 
mental fatigue or vigilance decrement, for example, the underload, overload, 
motivational control, and combinations of every two of them. Although great 
efforts into this mechanism, there is still no agreed conclusion on the theoretical 
framework.  

We experience selective attention in daily life and in some critical situations. 
As pointed in Robert’s study (Robert & Duncan, 1995), to successfully implement 
a selective attention task, humans need to filter out task-irrelevant stimuli and 
employ limited resources to process the task-relevant stimuli. The attentional 
process fluctuations after a long period of selective visual attention task 
involvement remain to be explored.  

In this study, we conduct a selective visual attention task (Flanker task) for 
2 hours 20 minutes and provide monetary rewards in the high and low vigilance 
states. We aim to explore the effects of mental fatigue on selective visual attention 
and the influences of motivation on it in the high vs. low vigilance states.  
 
  

3 SUMMARIES OF STUDIES 
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Methods 
 
Twenty healthy participants (12 females, aged 21.9 ± 2.4 years) from the 
university population were recruited to perform a version of Eriksen Flanker task 
(Eriksen & Eriksen, 1974) for 2 hours 20 min without rest. In the Flanker task, 
participants responded the central letter M or N with their right or left finger and 
ignored the flankers around the central letter. The paradigm of the task and the 
experimental procedure are shown in Figure 1. During the formal experiment, 
participants conducted the task for seven blocks (20 min/block), each block 
containing 400 trials, a total of 2800 trials. The monetary reward was set in blocks 
2 and 6. The 64-channel EEG data and behavioral data were recorded during the 
whole task performance.  

The EEG data were preprocessed following procedures of filter, visual 
inspection, removing direct current, removing spikes using wavelet threshold 
method (Zhang et al., 2018), re-reference, and removing ICA artifact components 
(Himberg & Hyvärinen, 2003). Next, we extracted the behavioral measurements 
(e.g., accuracy, RT, and omissions) from seven blocks and electrophysiological 
measurements of ERP (e.g., P300 amplitude and latency) and ERSP (e.g., delta 
and theta bands) from blocks 1, 2, 5, 6 or NRHV, RHV, NRLV, RLV. We 
conducted 2×2 (vigilance states×motivation states ) repeated-measures analysis 
of variances (ANOVAs) to explore the effects of vigilance decrement on 
bahavioral and electrophysiological measurements in the no-reward and reward 
conditions, and the impacts of motivation on them in the high and low vigilance 
states.  

 

  

FIGURE 1  The overview of the experimental procedure and the illustration of one trial 
structure in the Flanker task.  

Results 
 
We found that accuracy decreased, RT and omissions increased after a long 
period of task performance indicating participants’ mental fatigue increases and 
vigilance decrement. The influence of vigilance decrement and motivation on 
P300 is depicted in Figure 2. For the P300 amplitude, there was a main effect of 
reward state and an interaction effect between reward state and vigilance state; 
the P300 amplitude declined following vigilance decrement only in the no-
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reward condition not in the reward condition, and it was improved by 
motivation only in the low vigilance state not in the high vigilance state. For the 
P300 latency, there was a main effect of vigilance state and an interaction effect 
between two factors; the P300 latency more lagged with mental fatigue increases 
in both the no-reward and reward conditions, but it was not modulated by 
motivation either in the low or in the high vigilance states. As shown in Figure 3, 
The ERSP results found that the delta band power degraded with the decrement 
of vigilance in the no-reward condition but not in the reward condition, and the 
improvement of motivation on the delta was only observed in the low vigilance 
state but not in the high vigilance state; the theta band power declined with 
vigilance decrement in both no-reward ad reward conditions, and no modulation 
of motivation on the theta was found in any vigilance state.  
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FIGURE 2  The P300 waveforms and topographies in four conditions (A), and a signifi-
cant main effect of reward state on P300 amplitude and a significant main ef-
fect of vigilance state on P300 latency (B). The bars shows the changes of P300 
amplitude (C) and latency (D) affected by four conditions and two main fac-
tors. The four conditions include no-reward high vigilance (NRHV), reward 
high vigilance (RHV), no-reward low vigilance (NRLV), and reward low vig-
ilance (RLV). The two main factors represent reward state: no-reward (NRe-
ward) and reward (Reward) and vigilance state: high vigilance (HighV) and 
low vigilance (LowV).  
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FIGURE 3  The spectral waveforms and corresponding topographies of delta band (a) 
and theta band (b) modulated by four conditions. 

3.2 Study 2: Sustaining attention for a prolonged time affects dy-
namic functional connectivity 

II. Liu, J., Zhu, Y., Sun, H., Ristaniemi, T. and Cong, F., 2020. Sustaining 
Attention for a Prolonged Duration Affects Dynamic Organizations of 
Frequency-Specific Functional Connectivity. Brain Topography, pp.1-16. 

 
Motivation 
 
When sustaining attention for a long duration, humans generally failed to 
maintain task performance. To successfully conduct a sustained attention task, 
humans should employ a series of fundamental cognitive functions. It is still 
unknown which fundamental processes and how these processes are affected by 
prolonged task engagement. As reported in previous studies, the ability to 
perform a cognitive task is supported by dynamic brain networks in specific 
frequency bands (Hillebrand et al., 2012; Kujala et al., 2007; O’Neill et al., 2018). 
Therefore, we aim to explore the fluctuations of frequency-specific dynamic FC 
(fdFC) affected by vigilance decrement. To realize the extraction of sustained-
attention modulated fdFC, we employ an automatic approach to characterize the 
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spectral, temporal, and spatial features from EEG data during a sustained 
attention task.  

 
Methods 
 
We adopted a public 64-channel EEG dataset (Reteig et al., 2019) recorded during 
80 min sustained attention task without rest. The EEG data were obtained from 
twenty-one participants (eleven females, aged 21.6±3.4 years ). In the last 20 min, 
participants were provided with rewards for motivation. Figure 4 shows the 
experimental procedure and the trial structure. After preprocessing, the 
segmented epochs were binned into three conditions including the correct 
rejections, hits, and misses. We analyzed the trials in eight 10 minutes blocks in 
the correct rejections condition, and in the four 20 minutes blocks in the hits and 
misses conditions. We also considered the number of trials across blocks in each 
condition.  
 

 

FIGURE 4  Outline of experimental procedure and structure of one trial in a sustained 
attention task. 

To obtain spectral, temporal, and spatial signatures of electrophysiological 
frequency-specific dynamic FC, we proposed the analysis pipeline comprised of 
wPLI and TCA, and applied the pipeline (Figure 5) to characterize the repeating 
fdFC in the three conditions of the sustained attention task. The task-modulated 
fdFCs were selected using prior knowledge and the association with behaviral 
measurements (e.g., RT, accuracy or ACC, and hit rate or Hit). The effects of time-
on-task (6 or 3 blocks) and motivation on these fdFCs were statistically analyzed 
using one-way ANOVA and pair-wise comparisons, and these results were 
corrected by false discover rate (FDR) (Y Benjamini & Yekutieli, 2001; Yoav 
Benjamini & Yekutieli, 2005). 
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FIGURE 5  The analysis pipeline comprised of balancing trial number, wPLI tenor for-
mation, applying TCA, and selection of task-related fdFC. 

Results 
 
As shown in Figure 6, in the correct rejections condition, we obtained four types 
of task-modulated fdFCs, in the temporal order of the pre-stimulus alpha right-
lateralized parieto-occipital FC (I), the post-stimulus theta fronto-parieto-
occipital FC (II), delta fronto-parieto-occipital FC (III), and beta right and left 
sensorimotor FCs (IV and V). Using the same criterion, in the hits condition, three 
types of fdFCs were extracted similar to these in the correct rejection condition, 
but without the beta right/left sensorimotor FCs. In the misses condition, only 
these two fdFCs in the alpha and theta bands were detected. These fdFCs 
occurred in different conditions with different fundamental fdFCs involvement. 
All fdFCs were impaired by prolonged task involvement but they are modulated 
differently by rewards. These fdFCs, apart from the beta left network, were 
restored by motivation. The restoration by motivation on the beta right network 
was transient.  
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FIGURE 6  Five TCA components extracted from a sustained attention task in the correct 
rejections condition. Each row indicates one TCA component, consisting of 
six columns: the temporal course (A), spectrum (B), connectivity in the for-
mat of matrix (C) and 2-D visualization (D), and features (E). These compo-
nents are correlated with behavioral measurements (e.g., RT, ACC, and Hit).  

3.3 Study 3:  The separable modulations of vigilance and congru-
ency in a conflict task 

III. Liu, J., Zhang, C., Zhu, Y., Ristaniemi, T., Parviainen, T. and Cong, F., 2020. 
Automated detection and localization system of myocardial infarction in 
single-beat ECG using Dual-Q TQWT and wavelet packet tensor 
decomposition. Computer Methods and Programs in Biomedicine, 184, 
p.105120.  

 
IV. Liu, J., Zhu, Y., Chang, Z., Hämäläinen, T. and Cong, F., 2020. Congruency 

and vigilance produce separable changes in the late positive complex 
during a Flanker task.   

 
 



42 
 
Motivation 
 
In a conflict task, humans usually need longer RT to process the incongruent 
stimuli than the congruent stimuli. Similarly, humans generally have slower 
responses in the low vigilance state than the high vigilance state. There is still an 
argument whether neural responses in conflict processing origins from true 
conflict processing or longer RT (Grinband et al., 2011; McKay, van den Berg, & 
Woldorff, 2017). Based on these questions, the purpose of the study is to reveal 
the neural differences between congruency (congruent vs. incongruent) and 
vigilance (high vs. low vigilant), and also to explore whether the neural 
fluctuations between incongruent vs. congruent are related to true conflict 
processing or not.  
          To address these questions, we adopted the same dataset as Article I. 
Instead of focusing on the vigilance state and motivation state, this study 
emphasizes the differences between congruency and vigilance. To identify more 
detailed information in a Flanker task, we apply the temporal PCA in addition to 
conventional ERP analysis. Considering the neural fluctuations across trials and 
blocks, we also try to explore the neural activity at the single-trial level. The 
single-beat automatic detection system developed in Article III was used in Article 
IV to obtain the single-trial classification results in different vigilant and 
congruent conditions. In the automatic detection system, the features containing 
spectral, temporal, and spatial information were extracted using DWPT, and 
high-dimensional features were dimensionality reduced using MPCA.  
 
Methods 
 
In this study, the same EEG dataset as study 1 obtained from twenty healthy 
participants (12 females, aged 21.9±2.4 years) during performing a version of 
Eriksen Flanker task were re-analyzed. According to the RT titration process 
(McKay et al., 2017), we examined the robust behavioral effect in the congruency 
state (RT is longer in the incongruent than congruent condition) and vigilance 
state (RT is longer in the low vigilant than the high vigilant state) for each 
participant. After this process, the averaged ERPs from channels, participants, 
and conditions were decomposed using temporal PCA to extract separate ERP in 
four conditions (e.g., high vigilance congruency or HVCon, high vigilance 
incongruency or HVIncon, low vigilance congruency or LVCon, low vigilance 
incongruency or LVIncon).  

Additionally, we also explored the discrepancies of single-trial responses in 
the congruency and vigilance using the feature extraction and classification 
approaches. According to the flowchart in Figure 7, we applied the DWPT to 
extract multidimensional features and reconstructed the features in the temporal 
domain, and then we used the MPCA for feature reduction. The effectiveness of 
the combination of DWPT and MPCA for feature extraction and selection has 
been successfully applied in single-beat ECG analysis in Article III. The 
representative features were classified using the support vector machine (SVM).  
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FIGURE 7 The flowchart of single-trial analysis for binary classification. DWPT are used 
to extract features from balanced trials in two conditions. These features are 
dimensionality reduced using MPCA and then input into SVM classifier.  

Results 
 
By utilizing the temporal PCA, we extracted six ERP components, accounting for 
the variance of 94.74%, as illustrated in Figure 8. These six components were 
identified in the temporal order of N1, P2, N2, and three LPC components, 
namely the P3a, P3b, and positive slow wave (SW). Statistical results revealed 
that there was a main effect of congruency on P3a and P3b; there was a main 
effect of vigilance on P2, P3a, and SW. No main effect was found in N1 and N2. 
No interaction was found in any of these extracted components.  

For the single-trial analysis, we conducted four binary classifications: 
HVCon vs. HVIncon, LVCon vs. LVIncon, HVCon vs. LVCon, HVIncon vs. 
LVIncon to reveal the differences between congruent vs. incongruent and high 
vs. low vigilant. By using the framework in Figure 8, we achieved the accuracies 
of 61.93%, 61.44%, 72.57%, and 75.12% for these four classifications, respectively. 
The classification performance of vigilance was better than that of congruency. 
There was no difference in congruency contrast between high and low vigilance 
states. However, the vigilance contrast in the incongruent condition was better 
than that in the congruent condition.  
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FIGURE 8 The results of temporal PCA, including the lambda ratio, factor loadings, fac-
tor information, and factor scores  



 
 

The dissertation investigated the fluctuations of brain activity in attentional 
cognitive tasks after a long period of time, examined the theoretical frameworks 
of mental fatigue or vigilance decrement, and also explored the neural differences 
between vigilance and congruency. This dissertation consisted of four articles to 
explore three studies, including study 1: the effects of vigilance decrement on 
selective visual attention (Article I), study 2: the influences of decrease of 
vigilance on sustained attention (Article II), and study 3: the differences of 
underlying functions between vigilance and congruency (Article III and IV). 
Specially, Article I  conducted a version of Eriksen Flanker task (Eriksen & Eriksen, 
1974) for 2 hours 20 minutes and provided monetary reward in intervals of 20-40 
and 100-120 minutes. By analyzing the amplitude and latency of P300 and the 
delta and theta bands from ERSP, this article found that these 
electrophysiological measurements impaired by vigilance decrement only in the 
non-motivation state but not in the motivation state; the P300 amplitude and 
delta band were improved by motivation but only in the low vigilant state, 
whereas the P300 latency and theta band were not modulated by motivation 
either in the low and high vigilant state. Article II analyzed the EEG data from 80 
minutes (the last 20 minutes provided with rewards) sustained attention task 
(MacLean et al., 2009; Reteig et al., 2019)  by extracting dynamic FC patterns. This 
article detected four types of fdFCs—pre-stimulus alpha FC, post-stimulus theta 
FC, post-stimulus delta FC, and post-stimulus right and left FCs—corresponding 
to different fundamental functions, and found that these fdFCs were impaired by 
vigilance decrement but were differently modulated by motivation. Article IV 
revealed the differences between vigilance and congruency using temporal PCA 
and single-trial analysis (developed in Article III), and demonstrated that there 
were differences between vigilance and congruency, especially in the late 
positive complex (LPC). Overall, the prolonged task engagement impaired the 
neural functions involved in both selective attention and sustained attention, and 
the motivation played an important role in cognitive processes in the fatigue state.  

4 DISCUSSION 



46 
 
4.1 Impacts of vigilance decrement on cognitive functions 

As mentioned in the Introduction, “attention” can be divided into successive and 
selective attentional aspects (Posner & Boies, 1971; Sturm & Willmes, 2001), and 
the effects of vigilance decrement on two aspects may be different showing that 
the successive tasks are more sensitive to time-on-task (Warm et al., 2008).  
Articles I and IV investigated respectively the effects of prolonged task 
engagement on selective attention and conflict processing, and Article II explored 
the impacts of time-on-task on sustained attention.  

In Article I, we conducted a Flanker task for a long time and analyzed the 
effects of vigilance decrement on selective attention. The electrophysiological 
indicators from ERP (e.g., P300 amplitude and latency) and ERSP (e.g., the delta 
and theta bands) were used to explore the neural activities modulated by mental 
fatigue. The P300 amplitude has been reported as an index of attentional capacity 
(Polich, 2007) and P300 latency has been identified as an indicator of the timing 
of stimulus evaluation and information processing in visual tasks (Käthner et al., 
2014; Polich & Kok, 1995; Verleger, 1997). In this article, P300 amplitude and 
latency were impaired by vigilance decrement. These impairments suggest that 
prolonged task involvement degrades attentional capacity and deteriorates the 
cognitive process of stimulus evaluation or information processing. Furthermore, 
the delta and theta bands were also weakened by prolonged task engagement. 
The involvement of delta and frontal theta bands have also been found in visual 
attention tasks, indicating that the delta band is associated with attention 
allocation (Keller, Payne, & Sekuler, 2017) and frontal theta is related to internal 
processing (Harmony et al., 1996). The changes of delta and theta bands are likely 
interpreted that mental fatigue impairs the neural functions of attention 
allocation and internal stimulus processing.  

In Article II, we adopted a sustained attention EEG dataset recorded for 80 
minutes to examine the influences of vigilance decrement on sustained attention. 
In fact, successfully performing a sustained attention task requires a series of 
cognitive processes such as attentional preparation, attention stability, working 
memory, and responses (Clark et al., 2015; Reteig et al., 2019; Rosenberg et al., 
2016; Slagter, Prinssen, Reteig, & Mazaheri, 2016). The indicators of ERP (e.g., 
P1/N1), theta oscillations, and pre-stimulus alpha power were reported in the 
original paper, and only the theta oscillations were sensible to time-on-task and 
motivation (Reteig et al., 2019). In the present article, taking advantage of the high 
temporal resolution of EEG, we applied the indicators of fdFC based on the 
hypothesis that whole brain regions interact at a rapid temporal scale through 
specific frequency band (Fries & Str, 2015; O’Neill et al., 2017; Seli et al., 2015). 
The dynamic FCs were computed using the wPLI  (Vinck, Oostenveld, Van 
Wingerden, Battaglia, & Pennartz, 2011), which was robustness for the noise and 
volume conduction. We then applied the TCA rather than matrix decomposition 
to extract the repeating fdFC patterns, without stacking and concatenating data 
together (Zhu et al., 2019, 2020). Based on prior knowledge of cognitive processes 
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and close relationships with behavioral data, we identified four types of fdFCs in 
the temporal order of the pre-stimulus alpha right-lateralized parieto-occipital 
FC, post-stimulus theta fronto-parieto-occipital FC, post-stimulus delta fronto-
parieto-occipital FC, and post-stimulus right and left sensorimotor FCs. These 
four types of fdFCs are likely corresponding to the cognitive processes of 
attentional preparatory, attentional stability, working memory, and response 
inhibition. This article found that vigilance decrement impaired all of these fdFCs. 
When checking the neural activities corresponding to these FC in a specific 
frequency band, these findings may indicate that the decrease of vigilance 
impairs a cascade of cognitive functions during a sustained attention task.  

In Article IV, we re-analyzed the EEG data from the Flanker task in the 
direction of vigilance and congruency. We also took into consideration a series of 
fundamental functions involved in a Flanker task. By utilizing the temporal PCA, 
we obtained some ERP components in the latency order of N1, P2, N2, P3a, P3b, 
and SW. We demonstrated that the P2, P3a, and SW decreased with mental 
fatigue increases. The P2 component has a close linkage with the functions of the 
identification of target features in the stimuli (Luck, 2005). N2 component has 
been widely reported to indicate conflict processing (Folstein & Van Petten, 2008), 
although many recent findings have argues that the P3a is a replacement 
indicator for conflict processing (Alderman, Olson, Brush, & Shors, 2016; 
Kałamała et al., 2018; Smith, Mattick, & Sufani, 2015). The P3b and SW have been 
demonstrated reflecting the functions of working memory and subsequent 
processing (Strüber & Polich, 2002). Our results seem to state that vigilance 
decrement affects the target stimuli process, the conflict stimulus process, and 
the subsequent further processing in a selective attention task. We further found 
the effects of congruency of ERP components of P3a and P3b. There were 
amplitude differences (e.g., P2, P3b, and SW) between vigilance and congruency. 
We also detected differences between these two main factors using the single-
trial analysis.  

Taken together, prolonged task engagement affects the fundamental 
cognitive functions involved either in a selective attention task or in a sustained 
attention task.  

4.2 Theoretical framework of vigilance decrement 

In the literature, many theoretical frameworks have been proposed including the 
underload (Manly et al., 1999), the overload (Helton & Warm, 2008), and 
motivational control (Kurzban et al., 2013), and the “resource-control” 
framework (Thomson et al., 2015), the synthesized theoretical frameworks 
combining the motivation and task unrelated thoughts (Seli et al., 2015), and the 
frameworks combining the motivational control and energetical costs  (Boksem 
& Tops, 2008). However, no agreed theoretical framework has been determined 
until now.  



48 
 

In Article I, all indicators of ERP and ERSP in selective attention were 
weakened by time-on-task. In Article II, similarly, the indicators of fdFCs in 
sustained attention were impaired by prolonged task involvement. These results 
may indicate that the overload theoretical framework indicating that cognitive 
resources were limited and these resources were depleted during the long-lasting 
performance. These results may also verify the motivational control theoretical 
framework stating that task performance declines and mental fatigue increases 
when the costs outweigh the benefits. After manipulating motivation in the low 
vigilant state, the P300 amplitude and delta band power increased, but the P300 
latency and theta band power were not modulated by motivation (Article I); some 
fdFCs were improved after providing rewards, but the beta left sensorimotor 
network was not restored from impairment. Although the beta right 
sensorimotor network was restored by the motivation, the restoration was 
transient showing that the improved network declined again in the last 10 
minutes (Article II). These results seem to disagree with the overload theoretical 
framework because task performance and neural responses were improved after 
manipulating motivation. These restoration results seem to support the 
theoretical framework of motivational control owing to the role of motivation 
played on cognitive tasks in the fatigue state. However, partial restorations and 
transient improvement by motivation probably reaffirm that the motivational 
control framework cannot explain all these changes from Articles I and II. Our 
results are likely to provide evidence for the synthesized theoretical framework 
of motivational control and energetical costs.  

4.3 Limitations 

Mental fatigue is a subjective feeling of humans and it is a complex phenomenon 
affected by many factors, such as sleep, durations of task engagement, health 
situation, emotion, and nutrition, and environment. To explore the mechanism 
of mental fatigue, we should focus on one or two factors at the same time 
controlling confusion from other unrelated factors, which is such a hard problem. 
Besides, there is still no agreed definition of mental fatigue in the literature. In 
Articles I and IV, we regarded the early and late blocks as high vigilant and low 
vigilant states, respectively. In fact, the state of fatigue or vigilance dynamically 
varied during cognitive tasks even in a few seconds or minutes. Therefore, we 
should determine the vigilance states at the level of single-trial in both early and 
late blocks. In addition, subjective questionnaires and other modality data such 
as eye-tracking and ECG should also be used together to provide more evidence 
for mental states. Article II applied the TCA to extract fdFCs during a sustained 
attention task. In fact, the stability of the TCA is still a key question. To widely 
promote this method, the stability of TCA should be further studied. In this 
article, more appropriate approaches to select the task-related FC patterns remain 
to be established. Limited to the spatial resolution of EEG, we only analyze the 
activity in the sensor level rather than the source level, and we could not give 
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more explanations on the neuroimaging activations. Article III proposed an 
automatic single-trial identification system using prepocrssing, DWPT feature 
extraction, and MPCA dimensionality reduction methods, more efficient and 
generalized methods across participants and tasks should be developed in 
cognitive studies.  

4.4 Future directions 

To explore the mechanism of mental fatigue, we will consider as many factors 
(e.g., the experience working on specific tasks, different populations) related to 
fatigue state and control unrelated factors when conducting fatigue-related 
experiments.  

Considering the complex of mental fatigue, we will also extend the EEG 
research to MEG, which has a higher spatial resolution relative to EEG data. We 
can analyze the data at both the sensor level and source level, providing 
underlying neural responses in rapid time scales and in brain regions.  

To provide more indicators for the state of fatigue, we will also adopt other 
modality data such as eye-tracking, ECG, EOG, EMG, and video images. It is also 
recommended to fusion some modality data to provide precise results. However, 
the fusion approaches and the complexity should be considered and well 
developed in practical application. 

Instead of averaged response exploration, we will also extend the mental 
fatigue analysis to single-trial responses. The averaged responses cannot reveal 
the transient changes during cognitive tasks and may leave out some important 
information after averaging. 

Furthermore, subjective questionnaires should also be used because the 
mental fatigue is a subjective feeling. It should be noted the duration of providing 
questionnaires since the interruption of answering questionnaires can cause the 
fluctuations of mental state. 

The sleep deprivation is closely related to the task performance of humans. 
Sleep deprivation should also be considered in studies of mental fatigue. In fact, 
lapses of attention usually emerge during task performance, we should also 
distinguish the differences between lapses of attention and too tiredness to 
conduct tasks  

In this dissertation, we only observe the effects of prolonged task 
engagement on selective and sustained attention, and we will also extend the 
effects to other types of cognitive tasks (e.g., auditory tasks).  
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YHTEENVETO (SUMMARY IN FINNISH) 

Tässä väitöskirjassa on tutkittu henkisen uupumuksen mekanismien vaikutuksia 
valikoivaan huomiota ja jatkuvaa huomiota liittyviin aika-tehtäviin. Lisäksi 
työssä on tutkittu myös hermostollisia eroja valppauden ja kongruenssin välillä.  

Selektiivisessä visuaalisen tarkkailun tehtävässä selvitettiin aika-tehtävän 
vaikutuksia valikoivaan tarkkailuun ja tutkittiin myös motivaation modulaati-
oita valikoivaan tarkkailuun korkeassa ja matalassa valppaana olotilassa. Hyö-
dyntämällä P300-amplitudin ja -viiveen elektrofysiologisia indikaattoreita ja 
ERSP:n delta-ja teeta-alueita on havaittu, että nämä indikaattorit heikensivät pit-
käaikaista tehtävään sitoutumista, mikä osoitti, että tarkkaavaisuuden resurssit 
heikkenivät henkisen väsymyksen lisääntyessä. Rahallisten palkkioiden tarjoa-
misen jälkeen osittaiset indikaattorit (esim. P300-amplitudi ja delta-alue) palaut-
tivat väsymystilasta, mutta eivät hälytystilasta, mikä viittaa siihen, että motivaa-
tio parantaa tarkkaavaisuusresursseja väsymystilassa jossain määrin. Väitöskir-
jan tulokset tarjoavat näyttöä motivaatiokontrollin ja energiakustannusten teo-
reettisesta kehyksestä.  

Jatkuvan tarkkailun tehtävässä on tutkittu valppauden vähentämisen vai-
kutuksia jatkuvaan tarkkaavaisuuteen ja motivaation modulaatioita siihen mata-
lassa valppaustasossa. Jatkuvan tarkkaavaisuuden EEG-tietojoukko on julkaistu 
ERP:n ja aikataajuusanalyysin kanssa aikaisemmassa tutkimuksessa. Dynaami-
sen toiminnallisen liitettävyyden indikaattorit on johdettu tensorihajotuksella 
monitiefunktionaalisen liitettävyyden purkamiseksi ottaen huomioon samanai-
kaisesti dynaamisten vaihteluiden, oskillaattorisynkronoinnin ja aivojen aluei-
den vuorovaikutuksen ominaisuudet. Tuloksena on neljän tyyppinen taajuus-
kohtainen toiminnallinen liitettävyys jatkuvassa tarkkailutehtävässä, mukaan lu-
kien stimuloinnin edeltävät alfa-FC, stimulanjälkeiset teeta-, delta- ja beeta-FC:t. 
Nämä neljä toiminnallista liitäntätyyppiä heikensivät valppauden heikkenemistä 
ja palautuivat osittain ja ohimenevästi motivaatiomenetelmillä. Tämä osoittaa, 
että jatkuvan huomion taustalla olevat kognitiiviset perustoiminnot heikkeni, 
mutta osittaiset toiminnot palautuivat ja osa palautuksista oli ohimeneviä. Nämä 
havainnot vahvistavat motivaation merkityksen tehtävän ohjaukseen.  

Saman valikoivan tarkkailutehtävän aikana kerätyn tiedon kanssa analysoi-
tiin neurologisia eroja valppauden ja yhdenmukaisuuden välillä. Päähavaintona 
oli, että sekä henkinen väsymys että konfliktien käsittely voivat johtaa pidempiin 
vasteaikoihin konfliktitehtävissä. Tässä analysoitiin myös yhtäläisten ja epäyh-
denmukaisten olosuhteiden hermovasteita sekä korkeaa ja matalaa valpasta tilaa. 
Käyttämällä ajallista PCA:ta otettiin sarjan ERP:tä ajallisessa järjestyksessä N1,P2, 
N2, P3a, P3b ja SW. Tästä huomattiin, että P2, P3a, SW olivat herkkiä valppaan 
tilan heikkenemiselle, kun taas P3a ja P3b olivat herkkiä muutoksille. Tässä ha-
vaittiin myös erot valppauden ja yhdenmukaisuuden välillä yhden kokeen ta-
solla.   

Yhteenvetona väitöskirja osoittaa pitkäaikaisen tehtävän sitoutumisen mer-
kittävät vaikutukset erilaisiin tarkkaavaisuustehtäviin valikoivassa tarkkailussa 
ja jatkuvassa tarkkailussa. Tulokset vaikuttavat teoreettiseen kehykseen, jonka 
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mukaan valppauden vähennys liittyy motivaatioon ja energiakustannuksiin. 
Tämä mahdollistaa vertailun valppauden ja yhdenmukaisuuden välillä, mikä 
osoittaa, että hermosolujen perusta on erilainen valppauden vähennyksen ja kon-
fliktien käsittelyn välillä. Kaikki väitöskirjassa tehdyt havainnot tarjoavat työka-
luja sen ymmärtämiseen, mitä vaikutuksia on työstä toiseen siirtymisellä tai valp-
pauden heikkenemisellä.   
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The influence of motivation on selective visual attention in states of high vs. low
vigilance is poorly understood. To explore the possible differences in the influence of
motivation on behavioral performance and neural activity in high and low vigilance
levels, we conducted a prolonged 2 h 20 min flanker task and provided monetary
rewards during the 20- to 40- and 100- to 120-min intervals of task performance.
Both the behavioral and electrophysiological measures were modulated by prolonged
task engagement. Moreover, the effect of reward was different in high vs. low vigilance
states. The monetary reward increased accuracy and decreased the reaction time (RT)
and number of omitted responses in the low but not in the high vigilance state. The
fatigue-related decrease in P300 amplitude recovered to its level in the high vigilance
state by manipulating motivation, whereas the fatigue-related increase in P300 latency
was not modulated by reward. Additionally, the fatigue-related increase in event-related
spectral power at 1–4 Hz was sensitive to vigilance decrement and reward. However,
the spectral power at 4–8 Hz was only affected by the decrease in vigilance. These
electrophysiological measures were not influenced by motivation in the state of high
vigilance. Our results suggest that neural processing capacity, but not the timing of
processing, is sensitive to motivation. These findings also imply that the fatigue-related
impairments in behavioral performance and neural activity underlying selective visual
attention only partly recover after manipulating motivation. Furthermore, our results
provide evidence for the dissociable neural mechanisms underlying the fatigue-related
decrease vs. reward-related increase in attentional resources.

Keywords: vigilance, mental fatigue, motivation, selective visual attention, event-related potential, event-related
spectral perturbation
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HIGHLIGHTS

- Time-on-task impairs performance in a selective visual
attention task.

- Lower vigilance is associated with decreased amplitude and
increased latency of P300.

- Monetary rewards improve P300 amplitude, but not
P300 latency.

- The event-related spectral power at 1–4 Hz is sensitive to
vigilance decrement and reward, whereas the spectral power
at 4–8 Hz is sensitive only to vigilance decrement.

- Reward improves P300 amplitude and spectral power at
1–4 Hz only in the low and not in the high vigilance state.

INTRODUCTION

Although we are subjected to constant visual information in
daily life, our visual capacity to process this information is
limited. To perform in an efficient and goal-directed manner,
we need to continuously distinguish the relevant information
from the visual environment and allocate our limited attentional
capacity to the selected target objects, a phenomenon referred
to as selective visual attention (Moore and Zirnsak, 2017).
As outlined by Robert and Duncan (1995), selective visual
attention is characterized by two basic phenomena: the ability
to filter out task-irrelevant stimuli and the limited capacity for
task-relevant information processing, both of which leading
to reduced accuracy when the target number increases. We
experience selective visual attention in many daily activities.
For example, customers find the target objects among colorful
irrelevant sales; car drivers filter out irrelevant surroundings
and detect the relevant road marks and traffic lights. However,
prolonged engagement in selective attention tasks inevitably
leads to increased errors, deactivated performance goals,
diminished motivation to continue performing the task
(Boksem et al., 2005), and an increase in mental fatigue
(Kok, 2001; Lal and Craig, 2001; Gergelyfi et al., 2015;
Benoit et al., 2019).

Mental fatigue is caused by prolonged cognitive task
performance (Gergelyfi et al., 2015). It is considered a related
concept but distinct from arousal, which often refers to a
physiological state and is closely linked with the transition
between wakefulness and sleep (Shen et al., 2006). Mental
fatigue is a cumulative process, accompanied by a feeling of
indolence, reduced motivation, and impaired performance (Lal
and Craig, 2001). What is more, mental fatigue exhibits more
cognitive elements than arousal. Based on different causal
factors, two types of mental fatigue can be identified: sleep-
and task-related (May and Baldwin, 2009). The former results
from accumulated sleep debt, whereas the latter from prolonged
task engagement (May and Baldwin, 2009). In the present
study, we aimed to examine the task-related mental fatigue,
specifically related to attentional resources. The attention-
requiring task performance over a prolonged duration pointedly
refers to vigilance decrement (Mackworth et al., 1964), which
is likely identical or very closely related to mental fatigue
(Oken et al., 2006). For this reason, both terms have been

used interchangeably in previous studies (Taya et al., 2018;
Reteig et al., 2019).

Vigilance decrement has been reported as a major factor
in a large proportion of road crashes due to the reduction of
attentional resources. Although the risks of vigilance decrement
have received much attention, the underlying neurophysiological
mechanisms have not yet been established (Lorist et al., 2005;
Tops et al., 2006; Benoit et al., 2019). In earlier research,
three core concepts around vigilance decrement or mental
fatigue have emerged, namely, active fatigue, passive fatigue,
and motivational control. Active fatigue is a result of an
excessive workload—needed to carry out a task over a prolonged
duration, resulting in the depletion of cognitive resources
(Helton and Warm, 2008). Passive fatigue is a result of a
lower workload—needed to engage in prolonged, but relatively
easy tasks (May and Baldwin, 2009). Motivational control plays
an important role in vigilance decrement, as it reflects the
level of willingness to perform a task. Motivational control is
linked with the process of subconscious balancing between costs
and benefits to expend or conserve energy (Kurzban et al.,
2013a). For instance, Kurzban and colleagues suggested that
people experienced performance reductions over time when the
costs outweighed the benefits (Kurzban et al., 2013b). Recent
studies recognize that these three core concepts are not mutually
exclusive, and there are still limitations in the core concepts
account for changes induced by fatigue (Boksem and Tops,
2008; Seli et al., 2015; Thomson et al., 2015). Therefore, the
hybrid models synthesizing different concepts have emerged to
complement the limitations. For example, Boksem and Tops
(2008) proposed a framework of mental fatigue that integrated
the motivational control and energetical costs, suggesting that
people would no longer maintain their performance when the
energetical resources depleted, although the costs outweighed
the benefits. All in all, it is still unclear why task performance
deteriorates with time-on-task.

The influence of motivation on prolonged task performance
has been studied by subsequently providing monetary rewards.
The effects on response selection (Möckel et al., 2015), action
monitoring (Boksem et al., 2006), and sustained attention (Reteig
et al., 2019) have been previously shown. Although numerous
studies have demonstrated that monetary rewards can improve
performance when provided after long-term tasks (Lorist et al.,
2005; Boksem et al., 2006; Hopstaken et al., 2015), the neural
mechanisms upon which this improvement builds on are not
established. Moreover, the effect of reward on performance
in different (i.e., high vs. low) vigilance states has rarely
been approached.

To explore the effects of motivation on behavioral
performance and brain electrophysiology in high and low
vigilance states, we conducted a 140-min selective visual
attention task and provided monetary rewards for successful task
performance in the early stage (during the 20- to 40-min interval)
and in the late stage (during the 100- to 120-min interval;
Figure 1). By utilizing brain electrophysiological measures
derived from high-temporal-resolution electroencephalograms
(EEGs), we focused on time domain [event-related potential
(ERP) P300 amplitude and latency] and time-frequency
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domain [event-related spectral perturbations (ERSPs)] variables
as electrophysiological markers of visually induced neural
activations. We further quantified the degree of recovery
of behavioral and electrophysiological measures in the low
vigilance state after motivation manipulation.

The stimulus-locked ERP component P300 has received
much attention as a potential indicator of mental workload
in a selective visual attention task (Faber et al., 2012). The
amplitude of P300 was proved to be a useful measure of
processing capacity that correlates positively with the accuracy
of the memory search task (Kok, 2001). Furthermore, the
latency of P300 was suggested to be an indicator of mental
chronometry as demonstrated by its positive correlation with
reaction time (RT; Verleger, 1997). While reports about the
effect of time-on-task on the P300 component are diverse,
the study of Faber et al. (2012) did not find a significant
decrease in the P3b amplitude during prolonged engagement
in a selective visual attention task. Boksem et al. (2006) also
showed that the P300 amplitude did not change with time-on-
task, but the P300 latency increased with vigilance decrement.
Although the P300 amplitude and latency have been widely used
in studies on vigilance (Kato et al., 2009; Käthner et al., 2014;
Hopstaken et al., 2015), most results are limited to conventional
ERP analysis.

It is also valuable to explore how the oscillatory dynamics
reflect changes in attentional allocation and information
processing during a selective visual attention task. Frontal
theta oscillations have been shown to be related to the
allocation of attention to task-relevant visual and auditory
stimuli (Keller et al., 2017). Oscillations in the delta band
have been implicated in attention and salience detection and
are associated with vigilance levels and motivation (Knyazev,
2012). It has also been suggested that EEG delta oscillations
are an indicator of attention to internal processing during
the performance of mental tasks (Harmony et al., 1996).
Compared with traditional time- and phase-locked ERP analysis,
the changes in spectral power provided by two-dimensional
time-frequency analysis could provide a better account of the
neural mechanisms involved in selective visual attention. In the
current study, besides the evoked P300 component, we will
analyze the ERSPs.

We hypothesize that vigilance decrement induced by
prolonged engagement in a selective visual attention task impairs
behavioral performance and neural activity and is evident
in P300 latency and amplitude. We further hypothesize that
monetary rewards improve the behavioral performance and
neural activity in the low vigilance state. We apply a variant
of the Eriksen Flanker Task conducted over 2 h 20 min
(seven blocks) and assume that the subjects are in a lower
vigilance state at the end of the task (blocks 5 and 6) than
at the beginning (blocks 1 and 2). To compare the effects of
motivation on performance in states of high vs. low vigilance,
we introduce rewards in block 2 (during 20–40 min after task
onset) and block 6 (during 100–120 min after task onset).
The behavioral performance, evoked ERPs, and ERSPs were
compared between high and low vigilance states with and
without rewards.

MATERIALS AND METHODS

Subjects
Twenty healthy participants (eight males), ranging from 18 to
28 [mean = 21.9, standard deviation (SD) = 2.4] years of
age, were recruited from the university population. Participants
reported that they had no history of smoking, sleep problems,
or use of prescription medication. None worked the night shift.
Furthermore, they all had normal or corrected-to-normal visual
acuity, and they were right-handed according to their own report.
The participants were compensated for their participation. The
study was conducted in accordance with the Declaration of
Helsinki and was approved by the ethics committee of Liaoning
Normal University. Informed consent was obtained from each
subject prior to the study.

Measures
Task and Stimuli
A version of the Eriksen Flanker Task (Eriksen and Eriksen,
1974) was adopted. A five-letter string stimuli with a central
target letter (M/N) and four-remaining flanker letters (N/M)
were used. The letters M and N were more similar with increased
complexity in comparison to the original version with the letters
H and S (Gulbinaite et al., 2014). In congruent trials (MMMMM
or NNNNN), the target letter (the middle letter in the five-letter
string) was identical to the flankers, whereas in incongruent
trials (MMNMMor NNMNN), the target letter differed from the
flankers. The participants were instructed to press the left button
with the left index finger if the target was M and the right button
with the right index finger if the target was N as soon as possible
while maintaining a high level of accuracy.

All stimuli were presented as white against a black
background on a computer screen. At the beginning of the
task, there was a fixation cross in the center of the screen
(0.32◦ × 0.32◦). Each letter of the string had a height and
width of 0.24◦ visual angle. The letters were 0.05◦ apart to
increase the error rates (Boksem et al., 2008). After 1,000 ms, the
fixation cross was replaced by the five-letter string. The stimuli
disappeared after 200 ms and—for the subjects to provide the
response—were followed by a time interval, which elapsed until
the response button was pressed or until 600 ms. An additional
200-ms interval was provided for the subjects to realize a
possible erroneous response. Finally, the feedback indicating task
performance was presented for 1,000–1,500 ms, depending on
the response time. Feedback was presented with given responses
(‘‘Correct,’’ ‘‘Error,’’ or ‘‘Miss’’) at a width of 0.5 cm. Each trial
lasted 3 s in total. The trial structures are depicted in Figure 1.
Congruent (60%) and incongruent (40%) trials were presented
in random order (Tops et al., 2006).

Reward
Although individuals present differences in sensitivity to reward,
the monetary reward has been corroborated to be an effective
means of motivation manipulation (Paschke et al., 2015).
Participants were told that in one or some blocks, for each correct
response, they would receive bonus money, and they would not
lose money for errors or misses. Participants could earn up to
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FIGURE 1 | The procedure of experiment design and the trial structure of flanker task.

100 RMB (approximately 12.8e) in addition to a basic sum of
50 RMB (approximately 6.4e) payment. The amount of money
was evaluated proportionally to students’ monthly expenses
when manipulating motivation. To maintain the effectiveness of
the reward, it was stressed that they would receive the bonus if
the average accuracy of the reward blocks was more than 90%;
otherwise, they would lose it. For the feedback in the reward
blocks, the correct responses ‘‘Correct’’ coupled with ‘‘+ RMB’’
were 1 cm in width, and the ‘‘Error’’ or ‘‘Miss’’ responses were
similar to the nonreward blocks (Figure 1).

Procedure
The participants were informed that they should abstain from
alcohol, tea, and coffee for 24 h before the experiment. After
arriving at the laboratory, they were given the written task
instructions. They were asked to leave their watches and mobile
phones outside the laboratory so that they had no indication
of time during the measurement. The participants were then
seated in front of a 19-inch PC monitor (1,280 × 1,024 pixels)
at a distance of 0.9 m in a dimly lit, sound-attenuated, and
electrically shielded room. Participants practiced the task before
the formal experiment day to achieve an accuracy of 90% (those
with an accuracy of <90% were not included in this study).
Moreover, the reward was introduced in the practice experiment
to build the association between task performance and monetary
reward already prior to the experiment to avoid different time
of reward exposure in high vs. low vigilance states in the formal
experiment. On the experiment day, prior to the start of the
formal experiment, participants performed the task for 10 min
(200 trials) to adapt to the task. In the formal experiment, they
were instructed to respond to the target letter presented in seven
blocks of 20 min, for a total of 2 h 20 min (2,800 trials). Among
the seven blocks, the monetary reward was introduced in blocks
2 and 6. The procedures can be found in Figure 1. The task
blocks 1–4 were performed to induce vigilance decrement. To
avoid any anticipatory effect of experiment ending, the additional
no-reward block 7 was performed after the rewarded block 6.
There was no rest during the experiment or any subjective
questionnaires to maintain task performance and avoid the

effects of short breaks alleviating fatigue. Prior studies have
shown that even short breaks can increase task performance,
making it difficult to evaluate whether the performance recovery
results from motivation or the short break (Helton and Russell,
2015; Lim and Kwok, 2016). To maintain task performance,
subjects were asked to focus their attention on the target letter
presented in the center of the screen. The subjects were informed
of the beginning and end of the reward blocks by instructions
displayed on the screen. At the end of the task, the average
accuracy of reward blocks was calculated to determine whether
they would receive the bonus money or not.

EEG Recording and Processing
The EEGs were recorded using 64 Ag/AgCl electrodes attached
to an electro cap according to the International 10-20 System.
An ANT Neuro EEG amplifier was used to record EEG signals
sampled at a digitization rate of 500 Hz. Horizontal and vertical
electrooculograms were recorded from the outer canthi of the
eyes and above and below the left eye. The electrode impedance
was kept below 10 k�, and the EEG was online referenced to the
CPz channel.

In the offline analysis, EEG data were notch filtered at 50 Hz.
Next, a digital high-pass filter of 0.5 Hz and a low-pass filter
of 30 Hz were applied. After removing the direct current (DC)
component, the EEG signals were denoised using the wavelet
threshold method (Zhang et al., 2018), wherein the wavelet
coefficient threshold was set to abs (mean ± 3 × SD). If the
absolute value of the wavelet coefficients exceeded the threshold,
the coefficients were reset to one-quarter of the average value.
The data were re-referenced to the average of the mastoid
references (M1, M2). The ERP epochs from 200 ms before to
800 ms after stimulus onset were extracted. Finally, by using the
Icasso software (Himberg and Hyvärinen, 2003), independent
artifact components (e.g., blinks, movements, etc.) were removed
through visual inspection.

Data Analysis
To study the effects of the reward state (i.e., no-reward vs.
reward) on the behavioral and electrophysiological measures
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in the states of high vs. low vigilance, four blocks (blocks 1,
2, 5, and 6) were selected. The subjects were provided with
monetary rewards in blocks 2 and 6. In both high (blocks
1 and 2) and low (blocks 5 and 6) vigilance states, the reward
blocks were introduced after the no-reward blocks. In summary,
the analysis was based on 2 × 2 comparisons, representing
the no-reward high vigilance (NRHV) condition in block 1,
reward high vigilance (RHV) condition in block 2, no-reward low
vigilance (NRLV) condition in block 5, and reward low vigilance
(RLV) condition in block 6.

Behavioral Performance
For each participant, the accuracy, mean RT, and number of
omitted responses were calculated. Only responses occurring
between 100 and 600 ms were included in the RT analysis.
A response time equal to zero was regarded as an omitted
response. The accuracy was calculated as the percentage of
correct responses in each block. We addressed the main effects
and interactions of the vigilance state and the reward state
on task performance. In addition, the effect of congruency
(congruent vs. incongruent) was also tested for accuracy, RT, and
omitted responses.

Event-Related Potentials
ERPs were analyzed with MATLAB 2015b. First, the individual
correct trials whose amplitude was out of range (max >75 μv,
baseline max >30μv) were rejected, and then the baseline 200 ms
before stimulus onset was subtracted from the waveforms.
Next, trials were averaged across blocks for each subject. The
mean (with SD in parentheses) number of trials across all
subjects for NRHV, RHV, NRLV, and RLV were 236 (82), 232
(65), 234 (64), and 238 (64), respectively. The P300 amplitude
and latency were quantified for further analysis. Based on
some earlier studies (Polich and Kok, 1995; Kuba et al., 2012;
van Dinteren et al., 2014) and topographic activations in our
study, eight electrodes (FC1, FC2, FCz, C1, C2, Cz, CP1,
and CP2) were chosen for the P300 analysis. A time window
of 440–660 ms for the P300 component was selected. The
P300 latency values were calculated as the time of maximum
amplitude within the time window of the P300 component
(Luck, 2005).

EEG Spectra
The EEG spectral power was assessed by calculating the ERSP
using the continuous wavelet transform (CWT; Zhang et al.,
2018). The complex Morlet wavelet was adopted for the CWT
analysis, by which the time-dependent signals were evaluated at
each sampling instant with a central frequency band of 1.5 Hz
covering frequencies from 1 to 30 Hz, with a frequency step
of 0.5 Hz. Additionally, we normalized the power spectra with
the subtraction change from −1,000- to 0-ms baseline. For
quantifying the oscillatory dynamics, we focused on separate
time windows in the analysis of two frequency bands (Figure 5).
According to the maximum power of the different frequency
bands, statistical analysis was performed within the time window
of 440–660 ms for the delta band (1–4 Hz) and within the
time window of 300–600 ms for the theta band (4–8 Hz). In
order to account for the effect of phase-locked (evoked response)

activity in the induced oscillations, we also analyzed the induced
activations by subtracting the averaged evoked response from
each epoch prior to the wavelet analysis. The results of this
analysis are provided in the Supplementary Materials.

Statistical Analysis
Data were analyzed using the IBM SPSS software (version 22.0),
Chicago: SPSS Inc. The significance level p < 0.05 was used,
and all results were reported under the 2-tailed condition.
One-way repeated-measures analysis of variance (ANOVA) with
the blocks 1, 3, 4, and 5 was used to test the hypothesis that
behavioral performance deteriorates with time-on-task. Blocks
2 and 6 with an additional influence of motivation and block
7 with an effect of approaching the end of the task were excluded
to capture the changes purely due to time-on-task. Moreover,
behavioral, time domain, and time-frequency domain data were
subjected to 2 × 2 [vigilance states (high and low) × reward
states (no-reward and reward)] repeated-measures ANOVA. In
case of significant interaction and/or main effects, a follow-up
ANOVA was applied to separately test the effect of the vigilance
state in no-reward and reward conditions (NRLV vs. NRHV
indicates the effects of vigilance decrement) and the effect of
reward in low and high vigilance states (RHV vs. NRHV and
RLV vs. NRLV indicate the effects of motivation in the high
and low vigilance states, respectively). The Greenhouse–Geisser
correction was used as the adjusted report, and the effect size was
determined using adjusted partial η2 (η2ap; Mordkoff, 2019).

The effect of congruency was initially tested with
2 × 2 × 2 ANOVA (congruency, vigilance state, and reward
state). However, as no interaction was found for congruency,
the effects of the reward and vigilance states were tested
with congruent and incongruent trials integrated together.
The correlations between performance (accuracy, RT, and
omitted response) and ERPs (P300 amplitude and latency) were
calculated using the Pearson Correlation Coefficient to study
the association between the behavioral and electrophysiological
measures in different vigilance and reward states.

RESULTS

Behavioral Performance
Figure 2 illustrates the alterations of behavioral performance
(accuracy, RT, and number of omitted responses) with
time-on-task. Based on the one-way repeated-measures
ANOVA, we found that the accuracy significantly decreased
(F(1.37,25.93) = 4.44, p = 0.02, η2ap = 0.15) with time-on-task.
Meanwhile, the RT (F(2.37,44.99) = 3.97, p = 0.03, η2ap = 0.13) and
the number of omitted responses (F(2.55,48.45) = 4.12, p = 0.02,
η2ap = 0.14) significantly increased along with the prolonged
task performance.

Accuracy
In the 2 (vigilance states) × 2 (reward states) ANOVA
analysis, there was a significant main effect of the reward
state (F(1,19) = 6.02, p = 0.03, η2ap = 0.21 and a significant
vigilance state × reward state interaction (F(1,19) = 7.38, p = 0.01,
η2ap = 0.24). When the vigilance states were contrasted separately
for reward and no-reward conditions, the accuracy was lower
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FIGURE 2 | The mean values and standard deviations (SDs)/sqrt (subjects) of (A) the accuracy (ACC), (B) the reaction time (RT), and (C) the omitted responses
(OMIT) in seven blocks. B indicates block (e.g., B1 is block1); B2 and B6 were introduced with monetary rewards.

FIGURE 3 | (A) The P300 waveforms (left) averaged from electrodes of FC1, FC2, FCz, C1, C2, Cz, CP1, and CP2, the topographies (middle) in the four conditions,
and P300 waveforms coalesced for the reward vs. non-reward states (right). (B) Mean values and standard error of the P300 amplitude in the four conditions (left)
and in the two main factors (right). HighV (high vigilance blocks) = (NRHV + RHV)/2, LowV (low vigilance blocks) = (NRLV + RLV)/2, NReward (no-reward
blocks) = (NRHV + NRLV)/2, and reward (reward blocks) = (RHV + RLV)/2. Analysis of variance (ANOVA) results were marked by ∗p < 0.05 and ∗∗p < 0.01.

in the low vigilance state than in the high vigilance state in the
no-reward condition (NRLV: mean = 0.88, SD = 0.12, NRHV:
mean = 0.93, SD = 0.06, F(1,19) = 5.24, p = 0.03, η2ap = 0.17).

There was no difference between the rewarded low and high
vigilance states (RLV: mean = 0.94, SD = 0.05, RHV: mean = 0.94,
SD = 0.05, F(1,19) = 0.00, p = 1.00, η2ap = 0.00). The monetary
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FIGURE 4 | (A) P300 waveforms coalesced for the high vs. low vigilance states. (B) Mean values and standard error for the P300 latency in the four conditions (left)
and for the two main factors (right). The ANOVA results were marked by ∗p < 0.05 and ∗∗p < 0.01.

reward played a role only in the low vigilance state. The accuracy
was higher in the rewarded than in the no-rewarded low vigilance
condition (F(1,19) = 7.37, p = 0.01, η2ap = 0.24), although there
was no significant difference between the rewarded and the
no-rewarded high vigilance conditions (F(1,19) = 0.47, p = 0.50,
η2ap = −0.03).

Reaction Time
There was a significant main effect of the reward state on the RT
(F(1,19) = 10.95, p < 0.01, η2ap = 0.33). The follow-up ANOVA
indicated that the RT increased with vigilance decrement in the
no-reward condition (NRLV: mean = 319.22, SD = 49.15, NRHV:
mean = 311.02, SD = 46.42, F(1,19) = 5.52, p = 0.03, η2ap = 0.18).
There was no significant difference between the low and high
vigilance states in the reward condition (RLV: mean = 308.58,
SD = 45.25, RHV: mean = 309.83, SD = 47.25, F(1,19) = 0.21,
p = 0.65, η2ap = −0.04). When rewards were provided in the states
of low and high vigilance, the RT was faster in the low vigilance
state (F(1,19) = 8.38, p = 0.01, η2ap = 0.27) but was not improved in
the high vigilance state (F(1,19) = 1.75, p = 0.20, η2ap = 0.04).

Omitted Responses
There was a significant main effect of the reward state on
the number of omitted responses (F(1,19) = 9.22, p = 0.01,
η2 = 0.29). The follow-up ANOVA revealed that the omitted
responses increased with the decrease in vigilance in the no-
reward condition (F(1,19) = 5.39, p = 0.03, η2ap = 0.18). No
difference was found between low and high vigilance states in
the reward condition (F(1,19) = 0.07, p = 0.80, η2ap = −0.05).
The number of omitted responses decreased in the state of low
vigilance (F(1,19) = 10.94, p = 0.01, η2ap = 0.33) after motivation
manipulation, although it did not change in the state of high
vigilance (F(1,19) = 1.97, p = 0.18, η2ap = 0.05).

Congruency
Regarding the congruency (congruent × incongruent), we
found significant main effects of congruency on accuracy
(F(1,19) = 18.07, p< 0.01, η2ap = 0.46), RT (F(1,19) = 32.75, p< 0.01,
η2ap = 0.61), and omitted responses (F(1,19) = 9.65, p = 0.01,
η2ap = 0.30). The congruent condition showed a higher accuracy
(congruent: mean = 0.94, SD = 0.01, incongruent: mean = 0.91,
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FIGURE 5 | The time-frequency representations in the four conditions averaged over subjects.

SD = 0.02), faster RTs (congruent: mean = 306.93, SD = 10.08,
incongruent: mean = 315.28, SD = 9.84), and less omitted
responses (congruent: mean = 2.98, SD = 0.69, incongruent:
mean = 5.45, SD = 1.31) than the incongruent condition.
However, no significant interaction between congruency and
vigilance state or between congruency and reward state was
observed in behavioral performance.

Event-Related Potentials
P300 Components
Amplitude
The left part of Figure 3A shows the averaged ERP amplitude
waveforms with the time window of interest (P300 response
at 440–660 ms after stimulus onset) depicted by a gray
rectangle. Themiddle part of Figure 3A shows the corresponding
topographies in the four experimental conditions, whereas
Figure 3B illustrates the differences in P300 amplitude between
the four conditions (left) and between the two main factors of
vigilance state and reward state (right).

The repeated-measures ANOVA showed a significant main
effect of the reward state on the P300 amplitude (F(1,19) = 7.08,
p = 0.02, η2ap = 0.23) and a significant interaction between
the vigilance state and reward state (F(1,19) = 6.78, p = 0.02,
η2ap = 0.22). The follow-up ANOVA revealed that the
P300 amplitude decreased with vigilance decrement (NRLV:
mean = 4.17, SD = 2.68, NRHV: mean = 4.81, SD = 2.74,
F(1,19) = 9.99, p = 0.01, η2ap = 0.31) in the no-reward condition,
although no significant difference was found between the low and
high vigilance states in the reward condition (RLV: mean = 4.96,

SD = 3.01, RHV: mean = 4.89, SD = 2.98, F(1,19) = 0.07, p = 0.80,
η2ap = −0.05). When the effect of reward was tested in states
of low and high vigilance separately, the reward improvement
presented only in the low vigilance state (F(1,19) = 15.88, p< 0.01,
η2ap = 0.43) and not in the high vigilance state (F(1,19) = 0.12,
p = 0.74, η2ap = −0.05).

Regarding the congruency (congruent vs. incongruent), a
significant main effect of congruency was found for the
P300 amplitude (F(1,19) = 22.19, p < 0.01, η2ap = 0.51). The
amplitude was higher in the congruent condition (mean = 5.07,
SD = 1.15) than in the incongruent condition (mean = 4.35,
SD = 1.14). No interaction from congruency × vigilance state or
congruency × reward state was detected.

Latency
Figure 4A illustrates the ERP waveforms in high and low
vigilance states (reward and nonreward blocks coalesced), and
Figure 4B shows the differences in P300 latency in the four
experimental conditions (left) and the two main factors of
vigilance state and reward state (right).

There was a significant main effect of the vigilance state
on the P300 latency (F(1,19) = 52.20, p < 0.01, η2ap = 0.72)
and an interaction between the vigilance state and the reward
state (F(1,19) = 6.55, p = 0.02, η2ap = 0.22). Separate ANOVAs
revealed the clear effects of vigilance states regardless of rewards.
The P300 latency increased in the low vigilance state compared
with the high vigilance state in both the no-reward (NRLV:
mean = 557.45, SD = 84.71, NRHV: mean = 506.85, SD = 81.31,
F(1,19) = 45.52, p< 0.01, η2ap = 0.69) and reward conditions (RLV:
mean = 554.65, SD = 83.94, RHV: mean = 519.55, SD = 80.44,
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F(1,19) = 37.97, p < 0.01, η2ap = 0.65). When the effect of reward
was tested in the states of low and high vigilance, there was no
difference between reward and no-reward conditions in the low
vigilance state (F(1,19) = 0.37, p = 0.55, η2ap = −0.03), but we did
find a decrease in the high vigilance state (F(1,19) = 6.81, p = 0.02,
η2ap = 0.23) after manipulating motivation.

Regarding congruency (congruent vs. incongruent), a
significant main effect was found on the P300 latency
(F(1,19) = 8.91, p = 0.01, η2ap = 0.28). The latency was shorter in the
congruent (mean = 465.59, SD = 8.43) than in the incongruent
conditions (mean = 471.48, SD = 9.41). For P300 latency,
no interaction from congruency × vigilance state or from
congruency × reward state was detected.

Correlations Between ERPs and Behavioral
Performance
To investigate the associations between task performance and
ERPs affected by motivation and vigilance states, the correlations
between the behavioral measures (accuracy, RT, and number
of omitted responses) and ERPs (the amplitude and latency of
P300) were calculated (Table 1). Significant negative correlations
between the accuracy and P300 latency and significant positive
correlations between the accuracy and P300 amplitude were
detected. Additionally, the number of omitted responses and
the RT were negatively correlated with the P300 amplitude
and positively correlated with the P300 latency. Scatter
diagrams showing the relationships between the behavioral
measures and P300 amplitude and latency can be found in
Supplementary Figure S1.

ERSP Analysis
Figure 5 illustrates the time-frequency representations (averaged
over electrodes F1, F2, Fz, FC1, FC2, FCz, C1, C2, Cz,
CP1, and CP2) in the four experimental conditions. A clear
modulation of frequencies of approximately 1–4 Hz is visible
in the time window of 440–660 ms. Separable modulations of
approximately 4–8 Hz (in the time window of 300–500 ms)
appear visually earlier than 1–4 Hz over the four conditions. The
corresponding frequency bands and time windows are indicated
by the dotted-line boxes. We also calculated the induced
time-frequency representations after removing the phase-
locked evoked responses from the total power (Supplementary

TABLE 1 | Correlations between behavioral performance and P300 measures in
the four conditions.

NRHV RHV NRLV RLV

Model r r r r
ACC vs. AMP 0.40 0.57∗ 0.60∗ 0.59∗

ACC vs. LAN −0.52∗ −0.53∗ −0.53∗ −0.41
RT vs. AMP −0.65∗∗ −0.68∗∗ −0.82∗∗ −0.83∗∗

RT vs. LAN 0.54∗ 0.51∗ 0.53∗ 0.64∗

OMIT vs. AMP −0.39 −0.45∗ −0.65∗∗ −0.65∗∗

OMIT vs. LAN 0.54∗ 0.46∗ 0.71∗∗ 0.59∗

Note: The AMP and LAN represent the amplitude and latency of P300. ACC and OMIT
represent the accuracy and number of omitted responses. Correlation cofficients in
2-tailed condition were marked by ∗p < 0.05 and ∗∗p < 0.01. The correlations were
corrected by executing the Benjamini and Hochberg procedure for controlling the false
discovery rate (FDR; Benjamini and Hochberg, 1995).

Figure S2). Figure 6A illustrates the topographic distribution
(right) and power waveforms (left) averaged across the electrodes
(referred above) corresponding to the delta band (averaged over
1–4 Hz). Figure 6B draws the topographic distribution (right)
and power waveforms (left) of the theta band (averaged over
4–8 Hz), with activations in the frontal electrodes (F1, F2, Fz,
FC1, FC2, and FCz).

In the 2 (vigilance states) × 2 (reward states) ANOVAs, for
the delta band power, we found a significant interaction between
the vigilance state and reward state (F(1,19) = 7.28, p = 0.01,
η2ap = 0.24). When the effect of the vigilance state was tested
in the no-reward and reward conditions, the delta band power
decreased with vigilance decrement in the no-reward condition
(NRLV: mean = 703.43, SD = 162.89, NRHV: mean = 768.16,
SD = 153.49, F(1,19) = 8.72, p = 0.01, η2ap = 0.28), but no significant
difference was detected between low and high vigilance states
in the reward condition (RLV: mean = 750.86, SD = 206.30,
RHV: mean = 757.08, SD = 200.46, F(1,19) = 0.05, p = 0.82,
η2ap = −0.05). When the effect of reward was separately tested
in the states of low and high vigilance, the effect of reward on
delta band power was detected only in the low vigilance state
(F(1,19) = 4.57, p = 0.04, η2ap = 0.19) and not in the high vigilance
state (F(1,19) = 0.23, p = 0.64, η2ap = 0.01).

For the theta band, vigilance state had a significant main
effect (F(1,19) = 18.56, p < 0.01, η2ap = 0.47). Follow-up ANOVA
revealed that theta power was weaker in low vigilance state than
in high vigilance state in both no-reward condition (NRLV:
mean = 432.43, SD = 115.29, NRHV:mean = 512.47, SD = 169.54,
F(1,19) = 11.38, p < 0.01, η2ap = 0.34) and reward condition (RLV:
mean = 455.70, SD = 118.69, RHV: mean = 498.61, SD = 137.47,
F(1,19) = 6.36, p = 0.02, η2ap = 0.21). The separate ANOVAs
revealed that reward did not play a role in low vigilance state
(F(1,19) = 1.73, p = 0.20, η2ap = 0.03) or in high vigilance state
(F(1,19) = 0.21, p = 0.65, η2ap = −0.04).

DISCUSSION

We examined the alterations in behavioral performance and
brain electrophysiology produced by the vigilance level and
reward during a prolonged period of selective visual attention
tasks. Behavioral measures (accuracy, RT, and number of omitted
responses), evoked responses (P300 amplitude and latency),
and spectral power (delta and theta bands) were analyzed. A
clear deterioration in behavioral performance was demonstrated
over time (Figure 2). The monetary reward improved the
performance in accuracy, RT, and number of omitted responses
only in the low vigilance state. The P300 amplitude was
smaller in low than in high vigilance state; however, in the
low vigilance state, reward increased the P300 amplitude to
its level in the high vigilance state. The P300 latency was
sensitive to vigilance decrement but insensitive to rewards,
with longer latency in low than in high vigilance states.
Changes in spectral power at 4–8 Hz purely reflected the
vigilance level, being stronger in the high vigilance state than
in the low vigilance state. Similarly, the spectral responses at
1–4 Hz also decreased with vigilance decrement. However,
the reward selectively increased the spectral power at 1–4 Hz
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FIGURE 6 | The temporal waveforms of power modulation and topographies of the delta (A) and the theta band (B) in the four experimental conditions.

in the low vigilance state to the strength levels in the high
vigilance state.

Although the time of emergence of fatigue during the
prolonged performance of cognitive tasks has not been defined,
earlier studies suggest cumulative effects in performance and
neurophysiology with time-on-task (Boksem et al., 2005, 2006;
Lorist et al., 2005; Faber et al., 2012; Möckel et al., 2015;
Reteig et al., 2019). In line with these findings, our study
found a significant decrease in accuracy and an increase in
RT and the number of omitted responses with time-on-task
(Figure 2). The decline of behavioral performance in prolonged
attention tasks is in line with our assumption that time-on-
task is associated with the decrement of vigilance levels. These
results provided justification for testing the interactions between
vigilance and reward states, where blocks 1 and 2 (first 40 min)
were regarded as representing the high vigilance state, whereas
blocks 5 (80–100 min) and 6 (100–120 min) were regarded
as the low vigilance state. This selection was also supported
by earlier findings of the effects of mental fatigue after 60- to
90-min tasks (Kastner and Ungerleider, 2000; Lorist et al., 2000;
Marcora et al., 2009).

The limited processing capacity biased toward goal-directed
selection is the core of selective visual attention (Robert
and Duncan, 1995; Polich, 2009). The P300 component is
considered as an important indicator of attentional capacity in
visual tasks (Polich, 2009). In line with earlier results showing
a fatigue-related decrease in P300 amplitude during brain-
computer interface performance (Käthner et al., 2014), our
results demonstrated that the P300 amplitude decreased with
vigilance decrement during a selective visual attention task,
presumably reflecting a less efficient engagement or limited
capacity of attentional resources. The insufficient attention
resources allocation in the low vigilance state has also been
reflected by the P300 latency, which is thought to provide a
specific index for the timing of information processing and
stimulus evaluation (Polich and Kok, 1995; Verleger, 1997;
Käthner et al., 2014). In our study, the P300 latency was
significantly prolonged in the state of low vigilance, in line
with earlier studies (Kutas et al., 1977; Boksem et al., 2006;
Kato et al., 2009). The result indicates that prolonged task
performance accompanies longer evaluation time for processing
information. Therefore, in agreement with existing studies, our
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results demonstrated a decrease in P300 amplitude and an
increase in latency along with vigilance decrement.

The close link between the modulations in behavioral
performance and the changes in brain electrophysiology is
demonstrated by strong correlations between the behavioral and
P300 measures (Table 1). It is noteworthy that, although the RT
correlates with both P300 amplitude and latency, the association
between the decrease of P300 amplitude and the increase in RT
in particular is clear (Supplementary Figure S1).

After reward manipulation, the P300 amplitude increased
only in the low vigilance state, reaching the same level as in the
high vigilance state. Our results are consistent with earlier studies
demonstrating a monetary-reward based improvement of neural
measures in mental fatigue (Boksem et al., 2006; Hopstaken et al.,
2015). We further provide quantitative evidence for the recovery
of attentional resources from low vigilance to high vigilance
states. Our results verify that, when rewards are provided, the
capacity of attentional resources in the low vigilance state can
reach the level of capacity in the high vigilance state, at least
within the limited time duration of 2 h 20 min for a visual
attention task.

Interestingly, there was no significant reward-induced
improvement in P300 latency either in high or low vigilance
states despite the reward-related improvement in RT in the low
vigilance state. These results are in line with a previous study
(Boksem et al., 2006), suggesting that the P300 latency is an
unstable electrophysiological marker of motivation compared
with the P300 amplitude. These diverging results concerning
the RT and P300 latency could be interpreted to indicate
improvement in motor response generation (as reflected by the
RT) but not in the preceding stage of information processing
(as reflected by the P300 latency). However, these results might
also reflect the complex composition (subcomponents) of the
P300 responses. The P300 component has been shown to
comprise two subcomponents—P3a and P3b—with different
functional correlations (Demiralp et al., 2001). The P3a with
frontal topography has been suggested to contribute to attention
engagement in top-down task-relevant processing, whereas the
P3b with centroparietal topography has been linked to the level
of cognitive workload and memory encoding (Polich, 2009).
They are activated in different time windows, and P3a usually
emerges earlier than P3b (Polich, 2009). Although we fail to
disentangle the two subcomponents in this study, it is possible
that, in addition to changes in the amplitude, also changes
in the emphasis of these neural subprocesses are associated
with vigilance decrement. This complicates the interpretation of
latency measures.

The topography of the P300 component in the present study
is more anterior than that in some earlier studies (Demiralp
et al., 2001; Käthner et al., 2014). This likely reflects the task
requirements of the present study. To successfully perform
a selective visual attention task, humans are able to filter
out task-irrelevant stimuli and engage their limited capacity
in task-relevant processing (Robert and Duncan, 1995). Our
task is likely to harness—although it was not designed to
differentiate—these two subprocesses. The modified Eriksen
Flanker Task applied in our study required responses for every

trial and was specifically adapted to make the target letter
distinction visually hard, emphasizing the need for the active
inhibition of the flankers. Some interpretations, especially in
studies showing anteriorly located P300 generators, emphasize
the role of the inhibitory control underlying the modulation of
P300 responses, for example, as a result of aging (Kuba et al.,
2012; van Dinteren et al., 2014). Importantly for the present
findings, this interpretation is also sensible in the context of
vigilance decrement, which is often accompanied by a reduction
in the capacity for top-down inhibitory control (Guo et al., 2018).

P300 seems to provide a reliable measure of cognitive
performance, but the analysis of phase-locked ERP offers only
limited windows to explore the underlying neural processes in
more detail. Previous studies have indicated that both delta
(Keller et al., 2017) and frontal theta oscillations (Knyazev,
2012) are involved in visual attention tasks, although the
influence of time-on-task was not studied in these studies.
Focusing on the spectral patterns and the power modulations
at different frequency bands may provide additional sensitivity
to separate vigilance- and reward-related processes in the brain.
The oscillatory activity at low-frequency bands [i.e., the delta
(1–4 Hz) and theta (4–8 Hz) bands] has been shown to increase
during the transition to the low vigilance state in spontaneous
conditions (Lal and Craig, 2001). Although the modulations of
the oscillatory activity triggered by cognitive tasks are different
from those from spontaneous activity, the temporal variations in
the power of these frequency bands triggered by a visual attention
task may tap on the same underlying processes as reported based
on more spontaneous conditions.

In the present study, the changes in the spectral power at
1–4 Hz and 4–8 Hz reflected different topographies, with the
delta band distributed in the centroparietal electrodes and the
theta band distributed more focally in the frontal electrodes.
In addition, the temporal characteristics of the changes in
power in these two frequency bands differed, with an earlier
emergence of the modulation at 1–4 Hz (300–600 ms) than
at 4–8 Hz (440–660 ms). Therefore, it is likely that the two
separable changes in spectral power reflect two distinct cognitive
functions involved in selective visual attention. The theta band
has been shown to be an indicator of attention allocation to
task-relevant stimuli (Keller et al., 2017), whereas the delta band
has been linked with internal processing in an attention task
(Harmony et al., 1996). Prolonged engagement in a selective
visual attention task led to the reduced spectral power in both
delta and theta bands. These results are in line with the analysis of
the evoked P300 responses and suggest that vigilance decrement
impairs both attention allocation and information processing.
In the rewarded low vigilance condition, the spectral power
at approximately 1–4 Hz increased to the same level as that
recorded in the high vigilance state. However, the spectral power
at approximately 4–8 Hz did not increase in the rewarded low
vigilance state compared to the rewarded high vigilance state.
Consequently, the power in these two frequency bands was thus
differently modulated by motivation. It would be tempting to
associate the current findings with the distinct roles suggested
for the theta and delta bands, suggesting that intrinsically driven
regulation of information processing can be influenced by reward
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(as reflected by delta-band changes, Knyazev, 2012), but the
top-down attentional control (reflected by theta-band changes,
Cavanagh and Frank, 2014) is insensitive to reward. Interestingly,
accumulating evidence exists linking theta oscillations with
the attentional sampling of the environment, especially during
higher task demands (Bastiaansen and Hagoort, 2003; Landau
et al., 2015; Spyropoulos et al., 2018; Karamacoska et al., 2019).
Interpreted in the context of the current results suggesting the
insensitivity of the theta band to reward manipulation, theta
power might subserve rather low-level attentional sampling,
which is not directly linked with the reward system, at least in
the context of nonprimary, extrinsic rewards such as money.
On the contrary, delta band oscillations may reflect a separate
compensatory mechanism (Knyazev, 2012), which supports the
recovery of functions after manipulating motivation.

However, these interpretations must be treated with caution,
especially regarding the role of fatigue-related oscillatory
dynamics. The current experimental paradigm is not optimal
for studying ongoing oscillations, and the changes in rhythmic
activation are strongly linked with the visual trigger. It is
important to distinguish between ongoing oscillations and
stimulus-related changes in spectral power. This fact is
highlighted by the detected decrease in the spectral power by
the decrease in vigilance in the present study, while ongoing
oscillations at low-frequency bands generally show a fatigue-
related increase (Lal and Craig, 2001). When the influence
of phase-locked evoked activation (Supplementary Figure S2)
was removed from the spectral responses, the theta-band
modulations strongly decreased. Rather than reflecting neural
computation in the theta band, the time-frequency results might
be at least partly driven by the phase-locked evoked responses.
Our analysis can be seen as advancing the interpretability
of evoked responses, and different experimental paradigms
are needed to focus purely on the fatigue-related changes in
oscillatory dynamics.

Based on our results, vigilance decrement changes the neural
processes underlying selective visual attention, as demonstrated
by the changes in the spectral power at 1–4 Hz and at 4–8 Hz,
as well as evoked P300 response. Motivation plays a different
role in the high and low vigilance states, with improvement
of performance only in the low vigilance state. This appears
inconsistent with the active fatigue framework (which states that
the vigilance decrement is the result of the depletion of cognitive
resources, and motivation cannot improve the performance
impaired by vigilance decrement, Helton and Warm, 2008)
because the impairment in the state of low vigilance is improved
after motivation manipulation. On the other hand, our results
seem to agree with the motivation control framework—that
vigilance decrement is a subconscious balancing between the
costs and benefits to expend or conserve energy (Kurzban et al.,
2013a). When the cost of efforts to carry out a task outweighs
the benefits, humans are unwilling to do so, leading to vigilance
decrement. However, not all of the neural measures are improved
after providing reward. The P300 latency in the low vigilance
state was not modulated by reward. Furthermore, the spectral
power in the delta but not in the theta band was modulated by
motivation manipulation, which means that motivation partially

alleviates neural activity in the low vigilance state. In general,
our results imply that motivation is not enough to completely
restore the impairment induced by vigilance decrement and
provide support for the mental fatigue framework, which
integrates the evaluation of expected rewards and energetic costs
(Boksem and Tops, 2008).

Further studies are inevitably needed to establish a more
comprehensive picture of the underlying neural processes
affected by motivation and vigilance states. We only analyze the
changes in high vs. low vigilance states; nevertheless, focusing on
the ongoing changes while performing the task can significantly
advance the understanding of the dynamic emergence of mental
fatigue. Our study did not consider the effects of monetary values
during a long period of attention task engagement. It is also
not possible to completely disengage the dimensions of vigilance
and motivation, as it is likely that a decrease in vigilance is
also accompanied by decreased motivation to perform a task.
Furthermore, providing rewards is not the only method to
motivate individuals. Further studies should further elaborate
the particular differences in sensitivity to reward (positive) and
punishment (negative).

CONCLUSION

Both the behavioral and electrophysiological measures were
modulated by vigilance decrement. The neurocognitive processes
were only partially recovered by manipulating rewards. In
particular, increasing motivation using rewards differentially
influenced brain activations in the high vs. low vigilance
states, with more evident improvement in the low than in
the high vigilance state. The fatigue-related decrease in latency
of P300 responses did not recover with rewards, whereas the
P300 amplitude increased to the same level as in the high
vigilance state. The spectral power of the delta band was
specifically increased by motivation, whereas the decrease of the
theta band was not recovered by reward. These findings provide
evidence for the dissociable effects of motivation in the states
of low and high vigilance and might validate the mental fatigue
framework integrating the evaluation of expected rewards and
energetic costs.
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FIGURE S1 | Scatter diagrams showing the relationships between the
behavioral measures (accuracy, reaction time, and number of omitted responses)
and the P300 amplitude and latency in the four conditions. NRHV is block 1 in the
no-reward high vigilance state, RHV is block 2 in the reward high vigilance state,
NRLV is block 5 in the no-reward low vigilance state, and RLV is block 6 in the
reward low vigilance state.

FIGURE S2 | Comparison of different ways of calculating time-frequency
representation changes for the current data. (A) Calculation of the power with the
continuous wavelet transform (CWT) in each trial, and then averaged (presented in
the present study). (B) Calculation of the power with the CWT from epochs, from
which the contribution of averaged evoked responses are removed from each trial
(averaged ERP is subtracted from each trial). (C) Calculation of the power with the
CWT from epochs averaged in the evoked responses (spectra power of
averaged ERP).
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Abstract
Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention 
task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decre-
ment of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which 
stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted 
phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained atten-
tion task to examine the electrophysiological basis of such effect. We aimed to characterize the phase-coupling networks 
to untangle different phases involved in sustained attention and study how they are modulated by vigilance decrement. We 
computed the time–frequency domain wPLI from each block and subject and constructed a fourth-order tensor, containing 
the time, frequency, functional connectivity (FC), and blocks × subjects. This tensor was subjected to the TCA to identify the 
interacted and low-dimensional components representing the frequency-specific dynamic FC (fdFC). We extracted four types 
of neuromakers during a sustained attention task, namely the pre-stimulus alpha right-lateralized parieto-occipital FC, the 
post-stimulus theta fronto-parieto-occipital FC, delta fronto-parieto-occipital FC, and beta right/left sensorimotor FCs. All 
these fdFCs were impaired by vigilance decrement. These fdFCs, except for the beta left sensorimotor network, were restored 
by rewards, although the restoration by reward in the beta right sensorimotor network was transient. These findings provide 
implications for dissociable effects of vigilance decrement on sustained attention by utilizing the tensor-based framework.

Keywords Sustained attention · Vigilance decrement · Motivation · Frequency-specific dynamic functional connectivity · 
Weighted phase lag index · Tensor component analysis

Introduction

Human attentional resources are not limitless. Sustaining 
attention on stimuli for a prolonged duration results in task 
performance declines and mental fatigue increases. This 
effect is known as time-on-task effect or vigilance decre-
ment (Davies and Parasurman 1982; Gillberg and Åkerstedt 
1998; Lim and Dinges 2008; Mackworth 1948; See et al. 
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1995). Vigilance decrement leads to increased safety risks 
and decreased productivity at work. Efforts have been made 
to explore the mechanisms of vigilance decrement. In par-
ticular, three theoretical categories—underload, overload, 
and motivational control—have emerged in the mechanisms 
of vigilance decrement (Liu et al. 2020a; Reteig et al. 2019). 
The underload theories maintain that cognitive tasks are too 
monotonous to maintain task performance for a prolonged 
period of time (Manly et al. 1999). Whereas the overload 
theories hold that a limited pool of cognitive resources is 
depleted during a long period of task performance (Cag-
giano and Parasuraman 2004). Furthermore, the motiva-
tional control theories insist that the decrement of vigilance 
is associated with mental representations of costs and ben-
efits and the task performance decreases when the costs out-
weigh the benefits (Kurzban et al. 2013). However, these 
three theories still have limitations to interpret all fatigue-
related changes. In recent years there have been theoretical 
frameworks synthesizing different theoretical categories. For 
instance, Boksem and colleagues (Boksem and Tops 2008) 
proposed a hybrid model synthesizing the motivational con-
trol and energetical costs, stating that human task perfor-
mance is determined by the energetical state and the mental 
representations of costs and benefits. Other hybrid models 
synthesizing underload and overload theories (Thomson 
et al. 2015) and synthesizing underload and motivational 
control theories (Seli et al. 2015) have also been proposed 
in the literature. Despite substantial efforts have been made 
for this, the mechanisms of vigilance decrement are still 
ambiguous.

Sustained attention has been widely used in the studies 
of vigilance decrement in the laboratory because tests of 
sustained attention are reliable and the neural mechanisms of 
sustained attention have been fairly well acknowledged. Sus-
tained attention studies using perfusion functional magnetic 
resonance imaging (fMRI) and fMRI have uncovered that 
the fronto-parietal attention network decreases during pro-
longed sustained attention task engagement (Lim et al. 2010; 
Taya et al. 2018). Previous electroencephalogram (EEG) 
work of sustained attention has implicated that the theta and 
alpha frequency bands mainly at frontal and parietal brain 
regions are associated with vigilance decrement (Sauseng 
et al. 2007; Sun et al. 2014). While the summarized attention 
network and oscillations are useful neuromakers of vigilance 
decrement, few studies have addressed the frequency-spe-
cific dynamic functional connectivity (fdFC) without a prior 
selection of time windows, frequency bands or brain regions 
in the functional connectivity (FC) or oscillatory analysis.

In essence, whole-brain interactions through phase syn-
chronization in specific frequency band form and dissolve 
dynamically and transiently to support cognitive processes 
(Bola and Sabel 2015; Fries and Str 2015; O’Neill et al. 
2017; Rosenberg et al. 2016; Vidaurre et al. 2018). Sustained 

attention encompasses a variety of fundamental cognitive 
processes, including attentional preparatory, attentional sta-
bility, working memory, and enhancement or inhibition of 
selected or unselected information (Clark et al. 2015; Reteig 
et al. 2019; Rosenberg et al. 2016; Slagter et al. 2016). Brain 
regions rapidly shift the patterns of FC on the basis of the 
cognitive process demands (Cole et al. 2013). To success-
fully execute a sustained attention task, the fdFCs should 
emerge dynamically, with the temporal scale of milliseconds 
(Bola and Sabel 2015). Nevertheless, it is still unclear how 
oscillations are involved in brain networks during a sustained 
attention task. Little is known which stage or a combination 
of stages are impaired by vigilance decrement.

High-temporal resolution modality matching the rapid 
timescales of the brain is efficient for tracking the dynamics 
of FC. In the present study, we adopt a high-temporal reso-
lution EEG dataset collected when participants performed 
a sustained attention task as long as 80 min and they were 
provided with unexpected monetary rewards 20 min before 
the end of the task (Reteig et al. 2019; Slagter et al. 2016). 
A different set of results based on this dataset extracted three 
univariate neuromarkers of vigilance decrement, consisting 
of the pre-stimulus alpha power, the early post-stimulus P1/
N1 component, and the post-stimulus theta phase (Reteig 
et al. 2019). However, they did not use multivariate fashion 
through the integrity of the whole-brain networks. By utiliz-
ing the analysis framework composed of the weighted phase 
lag index (wPLI) and tensor component analysis (TCA), we 
aim to characterize the fdFC corresponding to temporal-
spectral-spatial signatures that can be used to interpret the 
neural mechanisms of different phases of sustained attention 
and to reflect the modulations by vigilance decrement.

The wPLI is used to estimate the contributions of phase 
leads and lags, with the advantage of being insensitive to the 
volume-conduction or noise (Vinck et al. 2011). The TCA is 
applied to characterize the interacted and low-dimensional 
components. Compared with the matrix decomposition anal-
ysis, the TCA provides a good approach for identifying brain 
activities in multiple domains simultaneously without stack-
ing or concatenating the data (Cong et al. 2015 2014; Liu 
et al. 2020b). The analysis framework was firstly proposed 
by our team and successfully derived the temporal, spectral, 
and spatial modes of covariation (third-order tensor) during 
freely listening to music (Zhu et al. 2019). The reliability 
and stability of this analysis framework (third-order tensor) 
was further validated using the MEG data collected during a 
hand movement task and a working memory task (Zhu et al. 
2020a). We then apply this framework to track the temporal, 
spectral, spatial, and feature modes of covariation (fourth-
order tensor) simultaneously during a prolonged sustained 
attention task. In order to find the divergences between dif-
ferent responses during sustained attention, we perform the 
same framework in conditions of correct rejections, hits, 
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and misses, respectively. We compute the time–frequency 
domain wPLI between whole-brain electrodes from each 
block and subject. Considering the equalization of the trial 
numbers, we perform the wPLI for 100 times and then aver-
age the time–frequency domain FC. We construct a fourth-
order tensor including time points, frequency bins, pairs of 
connections, and subjects × blocks. The fourth order tensor 
is subjected to the TCA to derive the interacted and low-
dimensional TCA components, consisting of the temporal 
factor (dynamic temporal fluctuations), spectral factor (oscil-
latory distributions), connectivity factor (FC), and features 
(representations of fdFC influenced by time-on-task and 
motivation). With the use of the tensor-based framework, 
we seek to identify which frequency bands, in which time 
windows, and how the FC patterns involved in cognitive 
tasks and provide evidence for the modulations by complex 
factors.

Materials and Methods

Data Description

We adopted a sustained attention EEG dataset published on 
the Open Science Framework (OSF) platform, which is a 
free, open platform to support our research and enable col-
laboration. The contributors of this dataset have reported a 
different set of results in a prior study (Reteig et al. 2019). 
The description of the data and preprocessing procedure in 
detail could be found at the link: https ://doi.org/10.17605 /
OSF.IO/EMF9H .

The EEG data of twenty-one participants (ten males, aged 
21.6 ± 3.4 years) collected during a modified version of sus-
tained attention task (Maclean et al. 2009) was reported on 
the OSF platform. All stimuli were presented on a 17–inch 
monitor at a viewing distance of 100 cm. Participants were 
asked to maintain their fixation on a central yellow square 
(0.11° × 0.11°) against a black background throughout the 
task and covertly and continuously direct their attention to 
the stimuli located at 3° to the left and 1.5° lower than the 
fixation. The stimuli were presented only in the left hemi-
field, with the right hemifield never relevant. The outline of 
each trial is presented in Fig. 1. In each trial of 2 s, a light 
gray line was shortly presented at the to-be-attended loca-
tion for 150 ms and was followed by a mask stimulus for 
the remaining 1850 ms. The light gray line with a width of 
0.03° could either be a long (non-target, 80%) or short line 
(target, 20%). The long line was fixed on 1.89° in length, 
whereas the short one was calibrated individually before 
the main task. Participants were instructed to conduct a 
response to the rare target with their right index figure and 
withhold a response to the non-target. The mask stimulus 
was composed of many lines (0.03° × 0.12°), positioned with 

a space of 0.21° × 2.44°. These lines were randomly shifted 
in a small height (within ± 0.06°) on each presentation to 
prevent participants from recognizing the length of (non-)
target line relative to the mask lines.

The Parameter Estimation by Sequential Testing (PEST) 
(Maclean et  al. 2009; Taylor and Creelman 1967) was 
adopted to adjust the length of the short (target) line for indi-
vidual participants, achieving a minimum accuracy of 80% 
in the task. The short line length ranged from 1.21° to 1.59° 
(1.40° ± 0.01°). After the execution of PEST (7–13 min), 
participants performed the main task for an interval of 
80 min, consisting of 2400 trials (480 target trials) in total 
(Fig. 1). At the beginning of the task and every 10 min (300 
trials), participants were provided with two 7–point scales 
to evaluate their levels of motivation (1: “not motivated”, 
7: “highly motivated”) and aversion (1: “no aversion”, 7: 
“strong aversion”). In the last 20 min of the main task, par-
ticipants were informed an additional monetary reward of 
€30 (unknown to them until then) if they outperformed 65% 
of the other participants (Lorist et al. 2009). The instruction 
of monetary rewards—appeared at 60 min task-onset—dis-
appeared until a button click or until a maximum of 60 s.

Data Acquisition and Preprocessing

EEG data was recorded using the BioSemi ActiveTwo with 
64 Ag/AgCl electrodes arranged according to the interna-
tional 10–10 system. The EEG signals were digitized at a 
sampling rate of 512 Hz. Each electrode was referenced to a 
common mode sense electrode online. Two additional chan-
nels were placed to the left and the right earlobes and four 
other external electrodes were used to record the horizontal 
(left and right outer canthi) and vertical (below and above 
the left eye) EOGs.

10 min 10 min

No reward  reward 

185 0 ms

150  ms

Target (20%)

Non-target (80%)Mask

300 trials / 10  min

10 min 10 min 10 min 10 min 10 min 10 min

2400 trials (480  target tria ls)

Fig. 1  Outline of the experiment procedure and an example of one 
trial in the sustained attention task
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The preprocessing was conducted in MATLAB with the 
EEGLAB toolbox (Delorme and Makeig 2004). The EEG 
signals were high-pass filtered at 0.1 Hz and then segmented 
into epochs from − 2000 to 3000 ms peri-stimulus with 
buffer zones to reconcile the edge effects. Bad channels were 
interpolated using the spherical spline interpolation. With 
a visual inspection, parts of epochs containing eye move-
ments, muscle activities, and other artifacts were removed. 
By running the independent component analysis (ICA), arti-
ficial components distinguishable from the neural activities 
were removed. Epochs were average referenced and seg-
mented into − 1000 to 1000 ms peri-stimulus. Based on the 
markers of stimuli and responses, epochs were divided into 
four conditions, namely correct rejections, false alarms, hits, 
and misses. The condition of false alarms was not analyzed 
because the number of trials was too small.

Data Processing

The segmented epochs were further analyzed following the 
main steps of data processing. A schematic of the data analy-
sis is demonstrated in Fig. 2.

Trial Binning

Consistent with previous analysis (Reteig et al. 2019), tri-
als were split into eight 10–min blocks in the condition of 
correct rejections and binned into four 20–min blocks in 

conditions of hits and misses as the number of trials was too 
small. Obviously, the number of trials were different in each 
block for each participant, which might have a significant 
effect on results, especially the phase-based analysis results 
(Cohen 2014). Therefore, the number of trials was equalized 
across blocks for each participant by randomly selecting a 
minimum number of trials over blocks. Using the subsam-
pling process, the number of trials in the correct rejections 
condition (167 ± 22.5, range = 124–213) and in the hits and 
misses conditions (24 ± 5.4, range = 11–33) was determined. 
The subsampling process was repeated 100 times. We com-
puted the wPLI connectivity (Dynamic functional connectiv-
ity analysis section) at each time. The wPLI measures of all 
100 times were further averaged to achieve the final value.

Dynamic Functional Connectivity Analysis

Time–Frequency Representations The spectral densities 
were estimated from each trial using the continuous wavelet 
transform with the complex Morlet wavelets. The frequency 
band from 1 to 30 Hz was linearly spaced in a resolution of 
1 Hz. To preserve the temporal precision in low and high 
frequency bands, the number of wavelet cycles was adjusted 
from 2 to 11. A total of nf = 30 linearly spaced frequencies 
and nt = 1024 time points (− 1000 to 1000 ms peri-stimulus) 
were estimated. Thus, we derived the time frequency repre-
sentations Sn

c
(t, f ) in time point t ∈ [1, nt] and frequency bin 

f ∈ [1, nf ] for trial n , where n ∈ [1, N] , N is the number of 
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Fig. 2  The pipeline of data processing. The number of stimulus-
locked trials were equalized over blocks for each participant. The 
subsampling process was repeated for 100 times. For each time, the 
signals from all trials were decomposed with the complex Morlet 
wavelet and then calculated with the wPLI, generating a third-order 
tensor (Time by frequency by connectivity) for each block and par-
ticipant. An average third-order tensor was obtained by averaging 
all third-order tensors from 100 repeated times. Based on the aver-

age tensor of each block and participant, we constructed a fourth-
order tensor by concatenating the blocks and subjects together. The 
fourth-order tensor was subjected to the TCA to extract the demixed 
components containing temporal course, spectrum, connectivity, and 
representations of blocks and subjects (features). The related com-
ponents involved in the sustained attention were selected based on 
prior knowledge in the literature and the significant correlations with 
behavioral data
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trials, c ∈ [1, nc] , nc is the number of channels, nc = 63 after 
removing the on-line reference channel.

Weighted Phase Lag Index The wPLI was used to quan-
tify phase differences by the magnitude of imaginary of 
the cross-spectrum (Vinck et  al. 2011). Compared with 
the phase lag index (PLI) (Stam et al. 2007), the wPLI is 
less sensitivity to noise and volume conduction because 
of the contribution of weighted phase leads and lags. We 
computed wPLIs between all pairs of channels in each time 
point and frequency bin:

where Sn
c1
(t, f ) and Sn

c2
(t, f ) are time–frequency repre-

sentations from two different channels c1, c2 ∈ [1, nc] in 
time point t ∈ [1, nt] and frequency bin f ∈ [1, nf ] at trial 
n ∈ [1, N] . im() represents the imaginary part of a complex 
value. ∗ is the complex conjugate and | | is an absolute opera-
tion. We then constructed a third-order tensor P with the 
dimensions of nt × nf × C in each block and participant, 
where C = 1953 denotes the number of pairs of channels 
(63 × (63 − 1)∕2) . We computed the wPLI for 100 repeated 
times (Trial binning section) and averaged these 100 third-
order tensors forming a final third-order tenor in each block 
and subject. In view of the blocks and subjects, we created a 
fifth-order tensor O with dimension of nt × nf × C × S × B , 
where S = 21 is the number of participants and B is the block 
amount, B = 8 in the correct rejections condition and B = 4 
in the hits and misses conditions. Finally, we reshaped the 
tensor O into fourth-order tensor X

(
nt × nf × C × M

)
 by 

concatenating the blocks and participants together, where 
M = S × B.

Tensor Component Analysis

In general, the multi-mode data were stacked or concate-
nated to facilitate two-way processing methods (e.g., inde-
pendent component analysis (ICA) and principal compo-
nent analysis (PCA)) for extracting interested brain activities 
(Bernat et al. 2005; Cong et al. 2010; Dien 2010; Tenke 
and Kayser 2005; Vigário and Oja 2008; Zhu et al. 2020b). 
The procedures of stacking and concatenating inevitably 
lost potential interaction information (Cong et al. 2015 
2013a). The TCA can be directly applied to the multi-way 
data, exploiting the interacted information among multiple 
modes (Hitchcock 1927). As one of the most fundamen-
tal models of TCA, the canonical polyadic (CP) model 
(A.Harshman 1970; Hitchcock 1927) was applied to extract 
demixed components in our study. As all elements in the 
fourth-order tensor X ∈ ℝ

nt×nf ×C×M

+  were nonnegative, the 
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nonnegative constraint was used in the canonical polyadic 
decomposition (CPD) (Cichocki et al. 2009). For the input 
X  , the CPD is defined as an approximation of the sum of 
the outer products:

where Xj is the component j ∈ [1, J] of X  , and J is the 
number of TCA components. The outer product of four fac-
tor-vectors aj◦bj◦cj◦dj produces the rank-one tensorXj . The 
operator ◦ is the outer product of the factor-vectors. In this 
application (Fig. 2), aj is the temporal factor illustrating the 
temporal fluctuations, and bj is the spectral factor character-
izing the involvement of specific frequency band, and cj is 
the connectivity factor representing whole-brain FC, and dj 
is the feature factor indicating the alterations of specific time 
points, frequency bins, and FC affected by vigilance decre-
ment and motivation.

The realization of CPD is to solve the following minimi-
zation problem:

w h e r e  A = [a1, a2,… , aj] , B = [b1, b2,… , bj] , C = [c1,

c2,… , cj] , and D = [d1, d2,… , dj] are factor matrixes of the 
temporal course, spectrum, FC, and features. The operator 
‖‖F is the Frobenius norm. The minimization problem in 
Eq. (3) can be solved by iterative optimization methods. 
The hierarchical alternating least squares (HALS) was 
applied in our study because the validity and high perfor-
mance of HALS have been confirmed by extensive studies 
(Cichocki et al. 2009, 2008, 2007). The component num-
ber J was determined by the difference of fits (DIFFIT) 
(Cong et al. 2014, 2013b). The DIFFIT measures the dif-
ferences in data fitting and is obtained by relative error 
and the explained sum of squares (Mørupa and Hansena 
2009). The number of component J was chosen from 1 to 
40 and the data fitting was averaged across 10 repetitions 
of CPD. In theoretical, the optimal component number J 
corresponds to the local maximum value of DIFFIT and a 
high data fit value.

Selection of TCA Components Modulated by Sustained 
Attention Tasks

By using the DIFFT, we determined J TCA components 
containing temporal course, spectrum, FC, and varia-
tions of blocks over subjects. Here, we aimed to select the 
related components modulated by the sustained attention 
task from the determined J components. Different methods 

(2)X ≈

J∑
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of selecting task-modulated TCA components have been 
described in previous studies such as a method integrating 
the prior knowledge of multi-domain components with a sig-
nificant difference between experimental conditions (Cong 
et al. 2013b), a method combining the prior knowledge 
with significant correlations between variations of compo-
nents and musical features (Zhu et al. 2019), and a method 
matching prior knowledge and significant task-modulation 
FC (empirical null distribution constructed based on phase 
randomization) (Zhu et al. 2020a). In the present study, 
we performed the selection procedure based on the prior 
knowledge of temporal windows, frequency bands, and brain 
networks involved in sustained attention tasks and the sig-
nificant correlations between representations of components 
and behavioral data.

On the one hand, prior knowledge has revealed that 
implanting a sustained attention task involves different 
neural functions such as attentional preparatory, attentional 
stability, working memory, and enhancement/inhibition of 
selected/ unselected information (Clark et al. 2015; Reteig 
et al. 2019; Rosenberg et al. 2016; Slagter et al. 2016). 
Regarding the multi-domain TCA components, the FC pat-
terns at different frequency bands should emerge in different 
time windows to subserve a variety of functions in sustained 
attention. Previous studies have demonstrated that prepara-
tory orienting of attention is indexed by the pre-stimulus 
alpha, activated in the right-lateralized visual hemifield 
(Reteig et al. 2019; Worden et al. 2000). The variability of 
attention processing has been associated with the post-stim-
ulus theta phase coherence, activated in frontal and parieto-
occipital brain regions (Lutz et al. 2009; Reteig et al. 2019). 
The FC between frontal, parietal, and occipital brain regions 
in delta and theta bands has been linked to the working 
memory (Düzel et al. 2010; Gulbinaite et al. 2014; Harper 
et al. 2017). Numerous research work has demonstrated that 
the beta power (13–30 Hz) in the motor cortex is related to 
movement execution and response inhibition (Pfurtscheller 
and Aranibar 1977; Pfurtscheller and Lopes Da Silva 1999; 
Zabielska-Mendyk et al. 2018). The 20 Hz (mu) rhythm in 
particular is associated with the motor cortical function of 
the hand, and even unimanual finger movement relates to 
the bilateral somatomotor cortex (Hari and Salmelin 1997).

On the other hand, behavioral measurements—hit rate, a 
variant of accuracy, and response time—and motivation and 
aversion ratings have been illustrated as reliable markers, 
reflecting the effects of time-on-task and motivation (Reteig 
et al. 2019). The changes in behavioral and questionnaire 
data are shown in Fig. 3. The hit rate, accuracy, and response 
time rather than the false alarm rate deteriorated with time-
on-task and transiently restored by motivation. Conse-
quently, these three behavioral measurements were used for 
association analysis to select task-modulated TCA compo-
nents. Although the ratings of motivation and aversion were 

significantly modulated by vigilance decrement and motiva-
tion, they were not applied for component selection because 
these ratings were not correctly corresponding to the values 
of each block.

We conducted correlation analyses between behavioral 
measurements and features of TCA components by connect-
ing these measurements and features from all blocks (a total 
of 168 samples in the correct rejection condition and 84 
samples in the hits and misses conditions). We selected the 
desirable TCA components that both consistent with prior 
knowledge with a visual inspection and closely related to the 
behavioral measurements. The component which only meets 
the criterion of prior knowledge or only meets the criterion 
of significant correlations were not selected, as shown in 
Figs. S1–3.

Statistics

In order to examine the changes of fdFC caused by vigilance 
decrement, the elements in feature factor were subjected 
to the one-way analysis of variances (ANOVAs) with the 
within-subject factor block (first 60 min without reward) and 
results were corrected by the Greenhouse–Geisser. We also 
conducted the pair-wise comparisons between blocks 6 and 
1 in the correct rejections condition and between blocks 3 
and 1 in the hits and misses conditions to directly reveal the 
differences of fdFC between low and high vigilance state 
(without considering variations in different blocks). We per-
formed the pair-wise comparisons between blocks 7 and 6 in 
the correct rejections condition and between blocks 4 and 3 
in the hits and misses conditions to indicate the modulations 
of fdFC produced by motivation. When the effects of reward 
on specific component were detected, we ran pair-wise com-
parisons between blocks 7 and 1 in the correct rejections 
condition and between blocks 4 and 1 in the hits and misses 
conditions to quantitatively investigate the improvement of 
fdFC by motivation relative to that in the high vigilance 
state. In case of significant differences between blocks 7 and 
1, we further ran the comparisons between blocks 8 and 1 to 
explore the continuous effect of motivation on fdFC. Both 
paired-sample t-test and Kruskal–Wallis test were applied 
to pair-wise comparisons. When the representations of the 
specific component followed the Gaussian distribution meas-
ured by the Jarque–Bera test, we used the paired-sample 
t-test, otherwise the Kruskal–Wallis test.

After testing the distribution of behavioral data and repre-
sentations of component with Jarque–Bera test, the Pearson 
correlation (following the Gaussian distribution) or Spear-
man rank correlation (non-parametric test) were used for 
correlation analysis between behavioral measurements (e.g., 
hit rate, accuracy, and response time) and the features of 
TCA components.
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The type I errors should be controlled during multiple com-
parisons when more than one TCA component was selected 
and multiple pair-wise comparisons were conducted. The 
p-values from selected components were corrected by the false 
discovery rate (FDR) to control the false discoveries (Ben-
jamini and Yekutieli 2005, 2001; Benjamini and Hochberg 
1995). The p-values (under one-tailed condition) from multi-
ple pair-wise comparisons were further corrected. In sum, the 
statistics were conducted in MATLAB 2018b and IBM SPSS 
Statistics version 22. All tests applied a significance level of 
0.05.

Results

The number of TCA components were determined by the 
DIFFIT, and the components modulated by the sustained 
attention task were selected from the retained TCA com-
ponents using the criterion of prior knowledge and the 
significant correlations with behavioral measurements. We 
presented the multi-domain TCA components involved in 
the sustained attention task in the conditions of correct 
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Fig. 3  The changes in behavioral measurements and questionnaire 
ratings affected by time-on-task and motivation. a Hit rate and b 
Accuracy declined with time-on-task and transiently recovered (block 
7) after providing rewards (after 60  min, as marked with the verti-
cal dotted green line). c Response time decreased with time-on-task 
and showed a partial restoration pattern in block 7 although no sig-
nificant difference. d False alarm rate did not change with time-on-
task. e Motivation ratings and f Aversion ratings were influenced by 
time-on-task, and the motivation ratings restored to the initial level 
whereas the aversion ratings remained high compared to the initial 

level. The ratings of motivation and aversion were conducted before 
the task performance (begin) and after providing the reward instruc-
tions (post), as well as every 10 min task performance. The red line 
in the box represents the mean value, the light red box represents the 
standard deviation (SD), and the blue line corresponds to the 95% 
confidence interval. Note: The statistical results of the behavioral 
measurements and questionnaire ratings have been presented (Reteig 
et al. 2019). We only displayed the changes of them with scatter and 
boxplot to directly reveal the reliability for correlation analysis to 
select the TCA components



 Brain Topography

1 3

rejections, hits, and misses, and showed the variations of 
fdFC affected by vigilance decrement and motivation.

TCA Components in the Correct Rejections 

Condition

According to the DIFFIT, a total of 25 TCA components 
were determined in the inhibition of the correct rejec-
tions condition. Among the 25 components, we selected 
5 task-modulated components using the criterion based 

on prior knowledge and significant associations between 
representations of components and behavioral data. The 
five task components could be considered four types of 
neuromakers: (I) the pre-stimulus alpha right-lateralized 
parieto-occipital FC, (II) the post-stimulus theta fronto-
parieto-occipital FC, (III) the post-stimulus delta fronto-
parieto-occipital FC, (IV) the post-stimulus beta right 
sensorimotor FC, and (V) the post-stimulus beta left sen-
sorimotor FC, as shown in Fig. 4.

Fig. 4  The selected five TCA components in the correct rejections 
condition. Each row represents one component, consisting of four 
dimensional information: the temporal factor showing the temporal 
course during sustained attention (a); the spectral factor showing the 
involvement of specific spectrum (b); the connectivity factor repre-
senting the symmetrical weighted FC matrix (c) and the 2D weighted 
connectivity visualization (showing the top 2% of the links with high-
est values, and the 2% thresholding was only used for visualization), 
with different colors related to different connectivity strengths (d); 
the features of fdFC affected by time-on-task (blocks 1–6, marked 

with the vertical dotted green line) and motivation (blocks 7 and 8), 
and the red line in the bar represents the mean value, the yellow bar 
represents the standard deviation (SD), and the blue bar corresponds 
to the 95% confidence interval (Loftus and Masson 1994) (e). Corre-
lations between behavioral measurements, namely the response time 
(RT, in blue line), accuracy (ACC, in red line), and Hit rate (Hit, in 
green line) and variations of blocks across all subjects are displayed, 
significant relationships (p < 0.05) marked with * (f). Note that the 
insignificant correlations between the hit rate and features are not pre-
sented in scatters but in Fig. S1



Brain Topography 

1 3

Pre-stimulus Alpha Parieto-Occipital FC

The component as shown in row I of Fig. 4 had significant 
associations with the response time ( r = 0.17, p = 0.03 ) 
and accuracy ( r = −0.16, p = 0.04 ). The FC that acti-
vated in the parietal and occipital brain regions, was 
right-lateralized. This FC emerged in the time window 
of − 1000 to 0 ms stimulus-onset was dominated by the 
alpha band. The strength of the fdFC was affected by 
vigilance decrement, with a slight increase with time-
on-task ( F(3.07, 61.31) = 2.86, pcorr = 0.057 ). Moreo-
ver, the strength was stronger in block 6 than in block 1 
( t(20) = 2.47, pcorr = 0.024 ). There was no significant dif-
ference between blocks 7 and 6, although the strength of the 
fdFC showed a decrease pattern ( t(20) = 1.22, pcorr = 0.149 ). 
Neither a significant difference between blocks 1 and 7 
( t(20) = 1.57, pcorr = 0.124 ) nor between blocks 1 and 8 
( t(20) = 1.08, pcorr = 0.184 ) was detected.

Post-stimulus Theta Fronto-Parieto-Occipital FC

The component in Row II of Fig. 4 was significantly cor-
related with the response time ( r = −0.28, p < 0.01 ) and 
accuracy ( r = 0.15, p = 0.05 ). The temporal window of the 
fronto-parieto-occipital FC ranged from 100 to 500 ms stimu-
lus-onset, and the spectrum of it spanned the theta band. The 
strength of the fdFC decreased slightly during a long period 
of task engagement ( F(3.47, 69.41) = 2.61, pcorr = 0.057 ). 
The strength was weaker in block 6 than in block 
1  (  t(20) = 2.32, pcorr = 0.024  ) .  Monet a r y  reward 
increased the strength in block 7 relative to block 
6  (  t(20) = 2.59, pcorr = 0.022  ) .  The  s t r eng t h  o f 
the fdFC in block 1 was comparable to that in 
block 7 (  t(20) = 0.57, pcorr = 0.358 )  and block 8 
( t(20) = 1.11, pcorr = 0.184).

Post-stimulus Delta Fronto-Parieto-Occipital FC

The component (row III of Fig. 4) was positively associ-
ated with the hit rate ( r = 0.28, p < 0.01 ) and accuracy 
( r = 0.25, p < 0.01 ), and negatively associated with the 
response time ( r = −0.35, p < 0.01 ). The fronto-pari-
eto-occipital FC peaked around 460 ms in the temporal 
course with the spectral modes ranging from 1–4 Hz cor-
responding to the delta band. There was a slight deteriora-
tion of the fdFC strength during a prolonged duration of 
task involvement ( F(3.83, 76.61) = 2.01, pcorr = 0.092 ). 
The strength was weaker in block 6 than in block 1 
( t(20) = 2.26, pcorr = 0.024 ). The strength of the fdFC 
in block 7 increased relative to block 6 after provid-
ing rewards ( t(20) = 2.78, pcorr = 0.022 ). There was 

no significant difference either between blocks 1 and 7 
( t(20) = 0.01, pcorr = 0.500 ) or between blocks 1 and 8 
( t(20) = 0.28, pcorr = 0.392).

Post-stimulus Right and Left Beta Sensorimotor FCs

The component (row IV of Fig. 4) had a positive relation-
ship with the hit rate ( r = 0.22, p < 0.01 ) and accuracy 
( r = 0.24, p < 0.01 ), and had a negative relationship with the 
response time ( r = −0.34, p < 0.01 ). The right-lateralized 
sensorimotor FC that peaked around 740 ms stimulus onset 
in the temporal course and was dominated by 20 Hz in the 
spectrum. The strength of the fdFC was weaker in block 
6 than in block 1 ( t(20) = 2.07, pcorr = 0.026 ) and it was 
stronger in block 7 than in block 6 after providing rewards 
( t(20) = 2.30, pcorr = 0.033 ). There was no significant dif-
ference between blocks 1 and 7 ( t(20) = 0.86, pcorr = 0.333 ), 
whereas the strength of this fdFC was weaker in block 8 than 
in block 1 ( t(20) = 2.35, pcorr = 0.044).

The component (row V of Fig. 4) was closely related 
to the response time ( r = −0.37, p < 0.01 ) and accu-
racy ( r = 0.38, p < 0.01 ). The left-lateralized sensori-
motor FC that peaked around 670  ms stimulus onset 
was dominated by 20 Hz in the spectrum. A slight dete-
rioration of the left sensorimotor FC was detected with 
t i m e - o n - t a s k  (  F(2.32, 46.36) = 2.53, pcorr = 0.057  ) . 
The strength of it was weaker in block 6 than in block 1 
( t(20) = 2.21, pcorr = 0.024 ). There was no improvement 
of the strength in block 7 after manipulating motivation 
( t(20) = 0.46, pcorr = 0.326).

TCA Components in the Hits Condition

In the condition of hits, we extracted 35 TCA components 
based on the DIFFIT criterion and finally selected 3 task-
modulated components according to the mentioned crite-
rions. We derived three neuromarkers including the pre-
stimulus alpha right-lateralized parieto-occipital FC (row 
I of Fig. 5), the post-stimulus theta fronto-parieto-occipital 
FC (row II of Fig. 5), and the post-stimulus delta fronto-
parieto-occipital FC (row III of Fig. 5). These three neuro-
markers were also discovered in the correct rejections condi-
tion. However, the beta right/left sensorimotor FCs were not 
detected in the hits condition.

Pre-stimulus Alpha Parieto-Occipital FC

The component as shown in row I of Fig. 5 was signifi-
cantly correlated with the response time ( r = 0.34, p < 0.01 ) 
and accuracy ( r = −0.27, p = 0.01 ). The FC was mainly 
activated in the right-lateralized parietal and occipi-
tal brain regions. The FC emerged in the time window 
of –1000 to 0 ms was dominated by the alpha band. The 
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strength of the fdFC increased during the sustained atten-
tion task over time ( F(1.91, 36.29) = 5.32, pcorr = 0.027 ) 
and the strength was stronger in block 3 than in 
block 1 ( t(20) = −3.43, pcorr = 0.003 ). After provid-
ing rewards, the strength in block 4 decreased com-
pared to block 3 ( t(20) = 3.43, pcorr = 0.004 ) and the 
strength in block 4 recovered to the initial level in block 1 
( t(20) = 0.58, pcorr = 0.284).

Post-stimulus Theta Fronto-Parieto-Occipital FC

There was a close association between the com-
ponent (row II of Fig.  5) and the response time 
( r = −0.29, p = 0.01 ). The temporal course of the 
fronto-parieto-occipital FC ranged from 0 to 500  ms 
and the spectrum of it peaked around 5 Hz. There was 
a decline of the strength of the fdFC during prolonged 
task engagement ( F(1.57, 31.35) = 3.26, pcorr = 0.049 ). 
The strength was weaker in block 3 than in block 1 
( t(20) = 3.38, pcorr = 0.003 ). The strength in block 4 was 
improved after providing incentives compared to block 3 

( t(20) = 2.61, pcorr = 0.013 ). This improvement reached the 
strength of it in block 1, with no difference between blocks 
1 and 4 ( t(20) = 0.95, pcorr = 0.285).

Post-stimulus Delta Fronto-Parieto-Occipital FC

The component (Row III of Fig.  5) was significantly 
associated with the response time ( r = −0.39, p < 0.01 ) 
and accuracy ( r = 0.22, p = 0.47 ). The fronto-parieto-
occipital FC that peaked around 490  ms in tempo-
ral course was dominated by the delta band. Results 
revealed a decline of the strength of the fdFC with 
t i m e - o n - t a s k  (  F(1.69, 33.75) = 3.65, pcorr = 0.049  ) . 
The strength was weaker in block 3 than in block 
1(t(20) = 2.76, pcorr = 0.012 ). A slight increase of the 
strength in block 4 was detected after providing incen-
tives compared to block 3 ( t(20) = 1.70, pcorr = 0.053 ). 
There was no significant difference between blocks 1 and 
4 ( t(20) = 0.45, pcorr = 0.467).

Fig. 5  The selected three TCA components in the hits condition. 
Each row represents one component, consisting of four dimensional 
information including the temporal factor showing time varies during 
sustained attention (a), the spectral factor showing the specific oscil-
latory activations in the corresponding FC (b), the connectivity fac-
tor representing the symmetrical weighted connectivity matrix (c) and 
the 2D weighted connectivity visualization (showing the top 2% of 
the links with highest values, and the thresholding was only used for 
visualization), with different colors related to different connectivity 
strengths (d), and features’ changes affected by time-on-task (blocks 

1–3, marked with the vertical dotted green line) and motivation 
(block 4), and the red line in the bar represents the mean value, the 
yellow bar represents the standard deviation (SD), and the blue bar 
corresponds to the 95% confidence interval (e). Correlations between 
behavioral measurements, namely the response time (RT), and accu-
racy (ACC), and features are presented, with significant relationships 
(p < 0.05) marked with * (f). Note that the insignificant correlations 
between the hit rate and features are not presented in scatters but in 
Fig. S2
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TCA Components in the Misses Condition

We extracted 25 TCA components based on the DIFFIT and 
finally selected two components modulated by the sustained 
attention task, representing (I) the pre-stimulus alpha right-
lateralized parieto-occipital FC and (II) the post-stimulus 
theta fronto-parieto-occipital FC, as shown in Fig. 6. Similar 
to the hits condition, the beta right/left sensorimotor FCs 
were not detected in the misses condition, whereas different 
from the hits condition, the delta fronto-parieto-occipital FC 
was not observed in the misses condition.

Pre-stimulus Alpha Parieto-Occipital FC

The component in row I of Fig. 6 was positively corre-
lated with the response time ( r = 0.43, p < 0.01 ) and nega-
tively correlated with the accuracy ( r = −0.34, p < 0.01 ). 
The right-lateralized parieto-occipital FC emerged mainly 
around − 1000 to 0 ms stimulus-onset and was dominated by 
the alpha band. The strength of the fdFC increased slightly 
with time-on-task ( F(1.95, 39.04) = 3.38, pcorr = 0.068 ) 
and the strength was stronger in block 3 than in block 1 
( t(20) = 2.46, pcorr = 0.023 ). The impaired strength was not 
modulated by rewards, with no difference between blocks 4 
and 3 ( t(20) = 1.26, pcorr = 0.112).

Post-stimulus Theta Fronto-Parieto-Occipital FC

Row II of Fig. 6 shows a component that has a significant 
relationship with the accuracy ( r = 0.23, p = 0.039 ). The 
fronto-parieto-occipital FC ranged in the time window 

of 0–500 ms and peaked around 5 Hz in the spectrum. 
There was a slight decline of the strength of the fdFC 
with time-on-task ( F(1.65, 32.89) = 2.83, pcorr = 0.068 ). 
The strength was weaker in block 3 than in block 1 
( t(20) = 2.85, pcorr = 0.020 ). The strength in block 4 
increased relative to block 3 ( t(20) = 2.90, pcor = 0.009 ) after 
providing rewards and the increment of the strength reached 
the level of it in block 1 ( t(20) = −0.55, pcorr = 0.443).

Discussion

By applying the analysis framework composed of wPLI and 
TCA to the high-temporal resolution EEG collected during 
a sustained attention task over 80 min, we examined how a 
cascade of fundamental functions was reflected by the fdFC 
and which stages or a combination of stages were affected 
by vigilance decrement and motivation. In tandem, we per-
formed the analysis framework in the correct rejections, hits, 
and misses conditions to explore the distinctive involvement 
of functions in different conditions. Following the main steps 
of the framework (Fig. 2), we firstly calculated the time–fre-
quency domain wPLI from whole-brain electrodes in each 
block and subject and then constructed a fourth-order tensor 
(Time × Frequency × Connectivity × (Subjects × Blocks)) by 
concatenating the data in blocks and subjects. Afterward, 
the TCA was applied to the fourth-order tensor to charac-
terize the interacted, low dimensional, and representative 
components, suggesting the when (specific time windows), 
how (particular frequency band), and where (definite brain 
regions) of sustained attention were affected by vigilance 

Fig. 6  Two selected TCA components in the misses condition. Each 
row represents one component, consisting of the temporal factor 
showing the time varies (a); the spectral factor showing the domi-
nated frequency band (b); the connectivity factor representing the 
symmetrical weighted connectivity matrix (c) and the 2D weighted 
connectivity visualization (showing the top 2% of the links with high-
est values, and the thresholding was only used for visualization), with 
different colors related to different connectivity strengths (d); the 
features’ factor affected by time-on-task (blocks 1–3, marked with 

the vertical dotted green line) and motivation (block 4), and the red 
line in the bar represents the mean value, the yellow bar represents 
the standard deviation (SD), and the blue bar corresponds to the 95% 
confidence interval (e). Correlations between behavioral measure-
ments, namely the response time (RT, in blue line), and accuracy 
(ACC, in red line), and variations of blocks across all subjects are 
displayed, significant relationships (p < 0.05) marked with * (f). Note 
that the insignificant correlations between the hit rate and features are 
not presented in scatters but in Fig. S3
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decrement. A total of four types of neuromarkers were 
identified, namely the pre-stimulus alpha right-lateralized 
parieto-occipital FC, the post-stimulus theta fronto-parieto-
occipital FC, delta fronto-parieto-occipital FC, and beta 
right/left sensorimotor FCs. These fdFCs emerged in differ-
ent time windows and conditions to support the implemen-
tation of a sustained attention task. Results demonstrated 
that all fdFCs were impaired by vigilance decrement, but 
they were differently modulated by motivation. The pre-
stimulus alpha parieto-occipital FC and the post-stimulus 
theta and delta fronto-parieto-occipital FCs were restored 
by the motivation to the initial level, but the beta left senso-
rimotor FC was not modulated by motivation. Interestingly, 
the beta right sensorimotor FC increased only in the first 
10 min but decreased in the last 10 min during the interval of 
motivation manipulation. Taken together, assisted with the 
tensor-based framework, we successfully derive a sequence 
of fdFCs involved in sustained attention and the discrepan-
cies of these fdFCs among distinct conditions, as well as 
the organizations of them modulated by time-on-task and 
motivation.

Horizontal Analysis: Fundamental Functions 

in Sustained Attention

In the present study, the time window of the alpha right-
lateralized parieto-occipital FC ranged from − 1000 to 
0 ms. The theta fronto-parieto-occipital FC peaked around 
280–320  ms and the delta fronto-parieto-occipital FC 
peaked around 460–490 ms across emerged conditions. The 
beta (peaked at approximately 20 Hz) right and left senso-
rimotor FCs peaked around 670 and 740 ms, respectively. 
These fdFCs emerged in the temporal order of the alpha 
parieto-occipital, theta fronto-parieto-occipital, delta fronto-
parieto-occipital, and beta right/left FCs. When these results 
are interpreted in the context of the roles suggested for the 
fdFCs, a series of fundamental functions underlying sus-
tained attention can be tracked.

A previous study has demonstrated that the event-related 
desynchronization within the alpha band in the occipital 
brain regions is associated with the anticipatory atten-
tion for a forthcoming stimulus (Bastiaansen et al. 2001). 
Moreover, the lateralization of alpha is a critical index of 
spatial attention (Thut et al. 2006). A large body of research 
has shown that the alpha band increases in the ipsilateral 
hemisphere while decreases in the contralateral hemisphere 
when humans deploy their attention to one location (Thut 
et al. 2006; Worden et al. 2000). The alpha right-lateralized 
parieto-occipital FC in our study might be an index of antici-
patory attention, although the lateralization is opposite to 
that in earlier studies. These diverging results concerning 
the lateralization might result from the specific task design 
where the stimulus was presented only on the left of the 

fixation, as pointed out in an earlier publication based on 
the same dataset (Reteig et al. 2019). Secondly, the post-
stimulus theta phase coherence in fronto-parieto-occipital 
topography has been linked to the attentional stability (Lutz 
et al. 2009) and the variability of brain responses (Reteig 
et al. 2019). In line with these previous studies, our results 
also observed the involvement of the frontal, parietal, and 
occipital brain regions in the theta band, suggesting that the 
attentional stability might be indexed by the theta fronto-
parieto-occipital FC. Next, earlier work has suggested that 
the fronto-occipital brain network in delta band is closely 
related to the working memory (Gulbinaite et al. 2014; 
Harper et al. 2017). Consistent with these findings, the delta 
fronto-parieto-occipital FC extracted in our study is likely 
to relate to the working memory. Finally, the close relation-
ship between the beta band and the response movement has 
been built in the literature (Pfurtscheller and Aranibar 1977). 
The 20 Hz mu rhythm is particularly associated with the 
motor cortical function, with the bilateral engagement of 
the somatomotor cortex even in unilateral movement (Hari 
and Salmelin 1997). In the present study, the beta (peaked 
around 20 Hz) right/left somatomotor FCs might provide 
evidence for response movement.

In sum, according to the timeline and the cognitive con-
tent, the four types of neuromarkers appear to correspond to 
a cascade of fundamental functions in sustained attention 
consisting of the attentional preparatory, attentional stability, 
working memory, and response movement.

Vertical Analysis: Functional Discrepancies 

in Different Conditions

Our study detected the pre-stimulus alpha parieto-occipital 
FC and the post-stimulus theta fronto-parieto-occipital FC in 
the correct rejections, hits, and misses conditions. The alpha 
and theta FCs continuously presented despite the different 
responses participants conducted. In line with our findings, 
a different set of results have reported that the pre-stimulus 
alpha power and the post-stimulus theta phase presented in 
these three conditions (Reteig et al. 2019). Integrating the 
fdFCs with the fundamental functions underlying sustained 
attention, these findings appear to indicate that people need 
to prepare attention for each upcoming stimulus and the 
attentional stability exists in all three conditions.

The delta fronto-parieto-occipital FC was derived only in 
correct responses, including correctly inhibiting non-target 
(the correct rejections condition) and detecting target (the 
hits condition), but not in error responses of detecting tar-
get (the misses condition). As referred above, the delta FC 
is related to working memory. It is likely that the inability 
to detect targets is owing to a failure of the target-related 
working memory process. The working memory encom-
passes subprocesses of information encoding, maintenance, 
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or retrieval (Düzel et al. 2010; Quentin et al. 2019), but our 
results cannot infer which subprocess or a combination of 
them are dysfunctional in the misses condition.

A substantial amount of studies have examined the role 
of beta band in the motor cortex during reaction responses, 
suggesting that the response execution is related to beta 
rhythmic desynchronization and the response inhibition is 
associated with beta synchronization (Pfurtscheller and Ara-
nibar 1977; Pfurtscheller and Lopes Da Silva 1999; Zabiel-
ska-Mendyk et al. 2018). The increased beta band during 
response inhibition to distractors is also well known as the 
“beta rebound” phenomenon (Bola and Sabel 2015). In this 
work, the beta right/left sensorimotor FCs emerged only 
in the correct rejections condition. Our findings are agree-
ment with previous studies showing the synchronization of 
beta band in response inhibition and desynchronization in 
response execution. Interestingly, we did not extract the beta 
FCs in the misses condition although no responses were con-
ducted in this condition. It is plausible that the inability to 
detect target is not the failure of response execution, but the 
failure of other functions such as working memory, which 
is consistent with the results presented by the delta fronto-
parieto-occipital FC.

Unlike the magnitude differences—alpha power, N1/P1 
component, and theta phase—between hits and misses con-
ditions reported in the previous study (Reteig et al. 2019), 
the present work successfully found the functional discrep-
ancies in the hits, misses, and correct rejections conditions. 
The patterns of fdFC shift to subserve distinct responses 
(e.g., correct rejections, hits, misses) during sustained 
attention.

The fdFCs Affected by Vigilance Decrement 

and Motivation

The pre-stimulus alpha parieto-occipital FC was more 
right-lateralized with the decrease of vigilance and less 
right-lateralized after manipulating motivation in our study. 
Similar results have been reported in an earlier study that 
increased attentional load and time-on-task give rise to more 
right-lateralization in posterior alpha asymmetry (Newman 
et al. 2013), although the earlier study does not explore the 
changes of lateralization influenced by motivation. Our 
results reaffirm that the non-spatial factor of time-on-task 
modulates the biases of spatial attention and further verify 
that the motivation is another non-spatial factor influenc-
ing the attention biases. In contrast to most externally-cued 
attention orienting studies, our study and the earlier study 
(Newman et al. 2013) did not set up pre-target cues, but we 
demonstrated that the anticipatory pre-stimulus alpha was 
also apparent in no-cued attention orienting.

We found that the post-stimulus theta fronto-parieto-
occipital FC decreased with time-on-task and increased after 

manipulating motivation. In line with previous studies (Lutz 
et al. 2009; Reteig et al. 2019), the theta FC could be inter-
preted as a reliable index indicating the changes of atten-
tional stability or brain responses modulated by time-on-task 
and motivation. These results suggest that human attentional 
stability could be impaired by vigilance decrement and this 
ability could be restored after providing rewards.

The post-stimulus delta fronto-parieto-occipital FC 
decreased with time-on-task and increased after providing 
rewards, indicating that the function of working memory in 
sustained attention was impaired by vigilance decrement and 
recovered by rewards. The impairment by the decrement of 
vigilance is supported by a piece of indirect evidence that 
higher working memory capacity is related to weaker fronto-
parietal FC (Gulbinaite et al. 2014). Consistent with our 
results, a previous study has demonstrated the enhancement 
effect of reward on the working memory capacity (Sanada 
et al. 2013). Our finding seems to show that the working 
memory, at least the function involved in sustained attention, 
is sensitive to both time-on-task and motivation.

The post-stimulus beta right/left sensorimotor FCs 
decreased after long durations of task performance. Akin to 
a previous study (Guo et al. 2018), we elucidated that time-
on-task is one of the main factors leading to the degrading of 
response inhibition. We also found that the ipsilateral right 
sensorimotor FC, but not the contralateral left sensorimotor 
FC, was restored by motivation when participants inhibited 
with a right finger’s response. This appears to illustrate that 
the right sensorimotor activation is more sensitive to motiva-
tion than the left sensorimotor, in the situation that bilateral 
somatomotor networks are engaged in the unilateral move-
ment. Although we cannot make conclusions on the source 
of the reward restoration, the connections between the right 
hemisphere and response inhibition have also been built in 
an earlier research (Aron et al. 2003). Another theoretical 
work also suggests that successful versus unsuccessful inhib-
ited differential responses are related to the right hemisphere 
during rewarded condition (Padmala and Pessoa 2010).

Transient and Partial Restoration of fdFCs After 

Manipulating Motivation

Prolonged performance (60 min) of a sustained attention 
task lead to vigilance decrement, impairing all types of 
fdFCs. Participants were motivated with an extra monetary 
reward in the last 20 min interval. Four types of fdFCs, 
except for the left sensorimotor FC, were restored by reward, 
although the recovery of the right sensorimotor FC was tran-
sient. The right sensorimotor FC increased only in the first 
10 min and then fell down to the low vigilance level in the 
last 10 min. The restoration of fdFCs by motivation appears 
to inconsistent with the overload theories, which states that 
cognitive resources are limited and vigilance decrement 
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is determined only by resource depletion. The partial and 
transient improvement by motivation might agree with the 
motivational control and energetical costs theoretical model, 
where participants evaluate the costs and benefits and also 
assess their energetic resources to decide to expend or 
reserve their efforts.

There are still three caveats in explaining the results. First 
of all, the modulation effect of reward on the pre-stimulus 
alpha parieto-occipital FC is detected in the correct rejec-
tions and hits conditions, but not in the misses condition. It 
is possible that the differences are from the robustness of 
motivation itself or the instability of preparation of attention 
in the misses condition. Secondly, the number of trials can-
not be equalized in the correction rejections and hits/miss 
conditions because of the experimental design. This imbal-
ance might result in some differences in the TCA compo-
nents. Finally, the task-related component selection is criti-
cal for the application of the tensor-based framework. Not 
only with the behavioral data association analyses but also 
more robustness and efficient methods should be developed 
for TCA component selection to provide comprehensive 
consideration.

Conclusion

We apply an analysis framework composed of wPLI and 
TCA to a long period of sustained attention EEG data-
set and derive a cascade of fdFCs involved in a sustained 
attention task. The pre-stimulus alpha parieto-occipital FC, 
post-stimulus theta fronto-parieto-occipital FC, delta fronto-
parieto-occipital FC, and beta right/left sensorimotor FCs 
are derived, corresponding to different functions in sustained 
attention. We successfully detect the modulations of fdFCs 
affected by vigilance decrement and motivation. All these 
fdFCs are impaired by vigilance decrement. Especially, the 
pre-stimulus alpha FC parieto-occipital drifts rightward 
with time-on-task. The impairments of fdFCs are partially 
restored by motivation. The post-stimulus beta left sensori-
motor network is not modulated by rewards. The right sen-
sorimotor FC is more associated with motivation than the 
left sensorimotor FC, although the effect of improvement 
by motivation on the right sensorimotor FC is transient. Our 
results lay the ground for the hybrid model that vigilance 
decrement is determined by motivational control and ener-
getical costs. The analysis framework provides feasibility 
for identifying dynamic organizations of frequency-specific 
FC in cognitive tasks.
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a b s t r a c t 

Background and objective: It is challenging to conduct real-time identification of myocardial infarction 

(MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the 

present study, we proposed an automated single-beat MI detection and localization system using dual-Q 

tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. 

Methods: After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands ×
samples ×beats) was constructed based on the discrete wavelet packet transform (DWPT), to represent 

the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To re- 

duce the tensor dimension and preserve the intrinsic information, the multilinear principal component 

analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a classifier of bootstrap- 

aggregated decision trees (Treebagger). A total of 78 healthy and 328 MI (6 types) records including 57557 

beats were chosen from PTB diagnostic ECG database for evaluation. 

Results: The validation results demonstrated that our proposed MI detection and localization system 

embedded with Dual-Q TQWT and wavelet packet tensor decomposition outperformed commonly used 

discrete wavelet transform (DWT), empirical mode decomposition (EMD) denoising methods and vector- 

based PCA method. With the Treebagger classifier, we obtained an accuracy of 99.98% in beat level and 

an accuracy of 97.46% in record level training/testing for MI detection. We also achieved an accuracy of 

99.87% in beat level and an accuracy of 90.39% in record level for MI localization. 

Conclusion: Altogether, the automated system brings potential improvement in automated detection and 

localization of MI in clinical practice. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Myocardial infarction (MI) is defined as myocardial cell death 

due to prolonged ischemia [1] . As one of the main causes of death 

and disability, MI is an intractable disease and can result in artery 

disease. In clinical practice, many techniques, including electro- 

cardiographic (ECG), biochemical markers, imaging and so on, are 

used to assist in the diagnosis of MI. Among these techniques, the 

non-invasive ECG, an economic tool, is widely used in MI detec- 

tion [2,3] . The ECG abnormalities of MI can be observed in the PR 

∗ Corresponding author at: School of Biomedical Engineering, Dalian University of 

Technology, Dalian, China. 

E-mail addresses: jialiu15@foxmail.com (J. Liu), cong@dlut.edu.cn (F. Cong). 

segment, the QRS complex, the ST segment or the T wave [1] . 

However, the diagnosis of MI usually requires multiple ECGs be- 

cause the ECG signals are time-varying in nature with small am- 

plitude. Manual inspection in clinical practice is not only time- 

consuming and strenuous but also leads to inter- and intra- 

evaluator variability [4,5] . Therefore, a computer-aided diagnosis 

system (CADS) of MI should be developed to realize time-saving 

and reliable analysis [6–11] . 

Good quality ECG is a guarantee of reliable CADS, while the 

ECG signals are often corrupted by noise [12] . The ECG signals are 

usually mixed with different kinds of artifacts, such as power line 

interference, muscle artifacts, and baseline drifts. Therefore, it is 

necessary to remove artifacts by implanting denoising method in 

CADS. In [13] , Fatin and colleagues removed the low frequency 

0–0.351 Hz and high frequency > 45 Hz from ECG with 6-level 

https://doi.org/10.1016/j.cmpb.2019.105120 

0169-2607/© 2019 Elsevier B.V. All rights reserved. 
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db6 discrete wavelet transform (DWT) decomposition in arrhyth- 

mia recognition. However, the DWT fails to separate the noise 

from ECG when two types of signals co-occur at the same fre- 

quency band. According to the nature of waveforms in ECG, the 

morphological-based algorithm should be considered in ECG de- 

noising. Blanco-Velasco et al. [14] applied the empirical mode 

decomposition (EMD), in which partial intrinsic mode functions 

(IMFs) were reconstructed to remove noise mixed with ECG from 

the MIT-BIH database. Although EMD has been widely used in ECG 

denoising, it still leads to the mode-mixing problem [15] . There- 

fore, it is challenging to find an effective denoising method to ob- 

tain high signal-noise-ratio (SNR) ECG signal. Dual-Q tunable Q- 

factor wavelet transformation (Dual-Q TQWT), a morphological- 

based algorithm, was first introduced in [16–18] . Although Dual- 

Q TQWT is applied to speech analysis [16] , limited attention has 

been focused on ECG denoising until now. Using the resonance- 

based morphological separation, the Dual-Q TQWT might provide 

new sight for ECG denoising. In our study, we applied the Dual- 

Q TQWT as a denoising method in MI detection and localization 

system. 

Feature extraction plays an important role in CADS. Recent 

studies have developed effective feature extraction methods in au- 

tomated MI detection and localization system, as shown in Table 5 . 

In [10] , a multiscale energy and eigenspace approach was pro- 

posed based on DWT. The approach obtained an accuracy of 99.58% 

in MI localization with 72 features from frame-based (4 beats) 

ECG. Sun et al. [7] presented a multiple instance learning for MI 

detection system based on time-domain features of ST segments 

and R-R intervals from ECG. Their method obtained a sensitivity 

of 92.6% in single-beat MI detection with 74 features. Similarly, 

36 time-domain features of Q wave, T wave, and ST level eleva- 

tion were extracted in [3] . They achieved an accuracy of 98.3% in 

single-beat MI detection. In addition to linear time-domain fea- 

tures, Acharya et al. [11] calculated 12 types of nonlinear fea- 

tures covering different types of entropy, fractal dimension, and 

Lyapunov exponent. They obtained an accuracy of 98.8% in MI 

detection with 47 features based on single-beat and single-lead 

ECG. However, it is still challenging to propose efficient and low 

complexity feature extraction approaches to extract discriminate 

and generalization features. The tensor decomposition, different 

from other state-of-art feature extraction methods, can directly ex- 

ploit multi-mode information contained in the tensor structure. 

Using tensor decomposition, the information of inter-lead, inter- 

beat, intra-beat, and inter-frequency can be considered as param- 

eters. Especially, considering the lead of ECG as a parameter in- 

stead of manual selection can avoid under-fitting (single-lead) or 

over-fitting (12-lead). Sibasankar et al. [8] developed a third-order 

tensor method (leads ×beats × samples) for MI detection and lo- 

calization, but they failed to achieve high performance in single- 

beat ECG based on DWT. In their study, they selected discriminant 

features from different tensor modes in different wavelet coeffi- 

cients of DWT with visual observation, impeding the precise fre- 

quency and automated data-driven analysis. In contrast, the dis- 

crete wavelet packet transform (DWPT) has these advantages: each 

layer has an equal number of wavelet packet coefficients; the last 

layer can cover all the frequency subbands. These advantages pro- 

vide the possibility of fourth-order tensor formation. 

In our present study, we presented an automated MI de- 

tection and localization system equipped with Dual-Q TQWT 

denoising method and fourth-order wavelet packet tensor 

(leads × subbands × samples ×beats). The tensor-based MPCA 

was applied to reduce the dimensionality of the wavelet packet 

tensor. The optimal features were classified by a classifier of 

bootstrap-aggregated decision trees (Treebagger). In our system, 

the MI detection, a two-class classifier, is used to distinguish MI 

patients from healthy volunteers for preliminary screening. The 

Table 1 

Numbers of records and beats from different groups. 

Type AMI ALMI IMI ASMI ILMI IPLMI H 

Records 46 42 89 76 56 19 78 

Beats 6306 6568 12,115 11,232 8280 2714 10,342 

MI localization, a multi-class classifier, is a progressive diagnosis 

for different types of MI patients. The two-step MI classification is 

precise and resource efficient in practice. The PTB diagnostic ECG 

database was chosen for system evaluation. 

2. Database 

The ECG signals were chosen from the Physikalisch-Technische 

Bundesanstalt (PTB) [19] diagnostic ECG database provided by 

PhysioBank [20] . A total of 549 records from 290 subjects (mean 

age = 57.2 years, 209 men) were collected in the Department of 

Cardiology of University Clinic Benjamin Franklin in Berlin, Ger- 

many. Each record contains 12 conventional leads (I, II, III, AVR, 

AVL, AVF, V1, V2, V3, V4, V5, V6) and 3 Frank leads (VX, VY, 

VZ) ECG, which were digitized at 10 0 0 Hz with 16 bit resolution 

over a range of ±16.384 mV. According to the clinical statistics, 
268 subjects’ data, including eight different heart disease groups 

(216) and one healthy group (52), were provided in the database. 

Among these groups, the myocardial infarction group diagnosed 

as six different MIs (anterior: AMI, anterior-lateral: ALMI, inferior: 

IMI, anterior-septal: ASMI, inferior-lateral: ILMI, inferior-posterior- 

lateral: IPLMI) and the healthy group (H) were chosen for MI de- 

tection and localization evaluation in the present study. The num- 

bers of records and beats from MI patients and healthy volunteers 

were listed in Table 1 . 

3. Methods 

The present study presented a novel MI detection and localiza- 

tion system using Dual-Q TQWT denoising method and wavelet 

packet tensor decomposition. The diagram of detection and lo- 

calization system is shown in Fig. 1 . For the preprocessing stage, 

ECG data were down-sampled to 250 Hz and filtered with 10 0 0- 

order 0.5 Hz high-pass and 40 Hz low-pass FIR filters implanted in 

EEGLAB [21] . Furthermore, a mean value was subtracted from each 

lead to eliminate the offset effect [22] . The Dual-Q TQWT, apart 

from the conventional methods, was applied to ECG denoising. 

3.1. Denoising with Dual-Q TQWT 

The Dual-Q TQWT is a resonance-based, rather than a fre- 

quency or scale based signal decomposition algorithm, which uti- 

lizes sparse signal representations and morphological component 

analysis (MCA) [18] . Using this method, a signal can be decom- 

posed into the sum of a high-resonance component and a low- 

resonance component. Each component is represented sparsely by 

TQWT algorithm with high Q-factor and low Q-factor. 

TQWT is a discrete wavelet transform with flexible Q-factor 

[17] . Three parameters: Q-factor ( Q ), the redundancy ( r ), and de- 

composition level ( J ) should be set during TWQT decomposition. 

The frequency responses and wavelets of different parameters are 

displayed in Fig. 2 . The parameter Q is related to oscillation num- 

bers of wavelet, and the parameter r is an index of the overlap- 

ping between adjacent frequency responses. All three parameters 

are closely related. TQWT is developed as J level of two-channel 

filter banks attaching to low-pass filter output, resulting in J + 1 

subbands. The low- pass (H 

( j) 
0 

(w )) and high-pass (H 

( j) 
1 

(w )) filters 



J. Liu, C. Zhang and Y. Zhu et al. / Computer Methods and Programs in Biomedicine 184 (2020) 105120 3 

Fig. 1. Schematic diagram of MI detection and localization system. 

Fig. 2. Frequency responses and wavelets of TQWT with Q = 1, J = 4 (top) and Q = 4, J = 9 (down). 
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are defined as: 

H 

( j ) 
0 ( w ) = 

{ ∏ j−1 
m =0 H 0 

(
w 
αm 

)
, | w | ≤ α j π

0 , α j π < | w | ≤ π
(1) 

H ( 
j ) 

1 ( w ) = 

{ 

H 1 

(
w 

α j−1 

)∏ j−2 
m =0 H 

j 
o 

(
w 

αm 

)
, ( 1 − β) α j−1 π ≤ | w | ≤ α j−1 π

0 , f or others w ∈ [ −π π ] 
(2) 

where low-pass scaling α ≤ 1, and high-pass scaling β ≤ 1. The 

parameters Q and r are given by: 

r = 

β

1 − α
(3) 

Q = 

f c 

BW 

= 

2 − β

β
(4) 

where BW and f c are the bandwidth and center frequency, respec- 

tively. 

Given a signal x , Dual-Q TQWT decomposes x into x 1 and x 2 
components, where x 1 consists largely of oscillations and x 2 con- 

sists largely of transients. The x is the sum of x 1 and x 2 . Using 

TQWT, x can be denoted as TQWT 1 and TQWT 2 with high and 

low Q-factors. The constrained optimization problem can be rep- 

resented as [16] : 

argmi n w 1 , w 2 

J1+1 ∑ 

j=1 
λ1 , j 

∥∥w 1 , j 

∥∥
1 

+ 

J2+1 ∑ 

j=1 
λ2 , j 

∥∥w 2 , j 

∥∥
1 

(5) 

x = x 1 + x 2 = TQW T 1 
−1 

( w 1 ) + TQW T 2 
−1 

( w 2 ) (6) 

where w i,j denotes subband j of TQWT i for i = 1,2. The λ1 and λ2 , 
computed from the norms of wavelets based on the mentioned 

three parameters in TQWT, are the regularization parameters for 

high and low Q-factor TQWT. The MCA [23] based on split aug- 

mented Lagrangian shrinkage algorithm (SALSA) [24] is applied to 

estimate the solution of the optimization problem. The six param- 

eters, Q 1 , r 1 , J 1 for high Q-factor TQWT and Q 2 , r 2 , J 2 for low Q- 

factor TQWT, should be preset considering the mathematical the- 

ory of TQWT, ECG morphology, running time, and goodness-of-fit. 

To prevent an excessive ringing of wavelets, the parameter r should 

be set as greater than or equal to 3 [9,25] . In our study, the param- 

eters r 1 and r 2 are equal to 3, consistent with literature studies 

[25,26] . The low factor Q 2 is usually set to 1 [16] , while the high 

factor Q 1 is set to 4 in our work. The parameters J is set as half 

of the maximum of J max with J 1 = 10 , J 2 = 25 because low J cannot 

cover the signal and high J leads to high dimension computations 

[27–29] . 

J max = 

[
log ( βN − 8 ) 

log ( 1 − α) 

]
(7) 

where N is the number of samples of ECG signal. 

After filtering and denoising, the ECG signals were segmented 

into beats based on R-peak, detected by the Pan-Tompkins algo- 

rithm [30] . Each beat has 162 samples including 250 ms before and 

400 ms after R-peak detection. A total of 57,557 ECG beats were ob- 

tained from 6 types of MI groups and 1 healthy group, as shown 

in Table 1 . 

3.2. Feature extraction by DWPT 

The discrete wavelet packet transform (DWPT) has been suc- 

cessfully used in ECG feature extraction [31] . Compared with the 

DWT, the DWPT provides more spectral information in detail. Let 

S = [ s 1 , s 2 , …, s v ] be a 12-lead ECG beat of one subject, where 

v = 12 leads, Ls = 162 samples, S ∈ R Ls × v . In the DWPT, both the ap- 

proximation and detail coefficients are decomposed in each level, 

resulting in 2 J subbands at J th level decomposition. The sample 

length of the sub-band at j level is ls, where ls ∼= 

Ls /2 j . In our study, 

the preprocessed ECG beats were subjected to 4 levels of DWPT us- 

ing db4 mother wavelet to extract concise and distinctive features. 

We chose 16 subbands at the 4th decomposition level covering all 

the frequency bands, each of which contained specific character- 

istics. The 16 subbands have the same number of coefficients (16 

samples), which provides good feasibility for wavelet packet tensor 

decomposition analysis. The wavelet packet coefficient matrix ex- 

tracted from 12-lead m 

th beat is converted into wavelet packet ten- 

sor W m 

∈ R 

I 1 × I 2 × I 3 , where the modes of I 1 , I 2 , I 3 are the 12-lead 

of ECG, the 16 subbands of DWPT at 4th level, and the 16 samples 

of each subband. Hence, a total of B wavelet packet tensors from 

all subjects are represented as W = [ W 1 , W 2 , . . . , W m 

, . . . , W B ] , 

where m = 1, 2, …, B . 

3.3. Dimensionality reduction by MPCA 

In the view of the high dimensionality of wavelet packet tensor, 

it is necessary to reduce the dimensionality of discriminate fea- 

tures to obtain a good performance of pattern recognition and to 

improve processing speed with less memory capacity. Compared 

with vector-based dimensionality reduction algorithm of princi- 

pal component analysis (PCA), the multilinear principal component 

analysis (MPCA) can be applied to a tensor object for feature ex- 

traction and dimensionality reduction [32,33] . Although MPCA is 

widely used in other fields, such as gait recognition [32] and face 

recognition [34] , the application in multivariate time series has not 

been promoted [31,35] . 

The MPCA is realized following 4 steps [32] . First, the 

data are preprocessd by centralizing the input samples. Sec- 

ond, data are initialized by calculating the eigen-decomposition 

of the eigenvectors corresponding to the most significant 

eigenvalues. The input of MPCA are wavelet packet ten- 

sors of B beats, ∈ R 

I 1 × I 2 × I 3 × B . Using a multilinear transfor- 

mation { ̃  U 

(n ) ∈ R I n × I n 
′ 
, I n 

′ ≤ I n , n = 1 , 2 , . . . , N, N = 3 } , where 
the ˜ U 

(n ) is the n th projection matrix, the input tensor R 

I 1 × I 2 × I 3 

of each beat W m 

can be mapped onto a low dimensionality tensor 

space R 

I 1 
′ × I 2 

′ × I 3 
′ 
to extract optimal features. The low dimension- 

ality output of MPCA with maximum captured variation is repre- 

sented as: 

Y m 

= W m 

× ˜ U 

( 1 ) 
T ×2 

˜ U 

( 2 ) 
T ×3 

˜ U 

( 3 ) 
T 

(8) 

where Y m 

∈ R 

I 1 
′ × I 2 

′ × I 3 
′ 
, B beats of outputs are Y = 

[ Y 1 , Y 2 , . . . , Y m 

, . . . , Y B ] , Y ∈ R 

I 1 
′ × I 2 

′ × I 3 
′ × B . The realiza- 

tion of dimension reduction can be simplified as an optimal 

problem: { 

˜ U 

( n ) 
T 

, n = 1 , 2 , 3 

} 

= argma x ˜ U ( 1 ) , ˜ U ( 2 ) , ˜ U ( 3 ) ψ Y (9) 

where ψ Y is the total of B transformed tensor scatters, and ψ Y = ∑ B 
m =1 ‖ Y m 

− Ȳ ‖ 2 F , where the Ȳ = ( 
∑ B 

m =1 Y m 

) /B . Based on the so- 

lution of Eq. (8) , the scatter of n -mode unfolding matrix is given 

by: 

�( n ) = 

∑ B 

m =1 
(
W 

( n ) 
m 

− W̄ 

( n ) 
m 

)
· ˜ U �(n ) · ˜ U 

T 
�(n ) (W 

( n ) 
m 

− W̄ 

( n ) 
m 

) 
T 

(10) 

Where W 

(n ) 
m 

is the n-mode unfolding matrix of the tensor W m 

, and 
˜ U �(n ) can be evaluated as: 

˜ U �( n ) = 

˜ U 

( n +1 ) 
� ˜ U 

( n +2 ) 
� . . . � ˜ U 

( N ) 
� ˜ U 

( 1 ) 
� ˜ U 

( 2 ) . . . � ˜ U 

( n −1 ) 

(11) 

where � is the Kronecker product. The optimization step is solved 

using the Eqs. (10) and (8) in the iteration. Finally, the high- 

dimensional data are projected into low-dimensionality tensor 

space. 



J. Liu, C. Zhang and Y. Zhu et al. / Computer Methods and Programs in Biomedicine 184 (2020) 105120 5 

3.4. Classification 

The optimal features extracted from MPCA were fed into a clas- 

sifier. As a decision support tool, the decision tree (DT) utilizes 

a tree-like model of decisions and possible consequences. It is a 

directed graph, with three sets of decision, chance, and terminal 

nodes (also known as leaves) [36] . A DT, equipped with two func- 

tions of denoting payoffs and probabilities, can be learned in a re- 

cursive partitioning manner based on an attribute value test. Al- 

though DT has an advantage of simplicity, it is unstable and eas- 

ily affected by noise. The Bootstrap-aggregated, one of the most 

popular techniques for constructing ensembles to improve the ro- 

bustness, takes base DT learner and invokes it many times with 

replacement samples [37] . As an important parameter of Treebag- 

ger, the number of trees can reach several hundreds or thousands 

depending on the nature of the training sets. By taking the major- 

ity votes or averaging predictions of different DTs, the Treebagger 

leads to better performance than a DT. 

In our study, the performance of classifiers was measured by 

sensitivity (SE), specificity (SP), and accuracy (ACC) [38] . Based 

on the confusion matrix obtained from predicted class and actual 

class, the SE, SP, and ACC are evaluated as: 

SE = 

TP 

TP + FN 

(12) 

SP = 

TN 

TN + FP 
(13) 

ACC = 

TP + TN 

TP + TN + FP + FN 

(14) 

where TP, TN, FP, and FN correspond to true positive, true nega- 

tive, false positive, and false negative. The ROC (receiver operating 

characteristics) was also adopted to visualize the performance of 

classifiers [39] . 

4. Results and discussion 

Using 78 healthy and 328 MI records chosen from the PTB ECG 

database, the novel detection and localization system of MI with 

Dual-Q TQWT and wavelet packet tensor decomposition proposed 

in our work were evaluated. First, we evaluated the performance of 

these algorithms in our system. According to the good performance 

of the algorithms, we distinguished the MI patients from healthy 

volunteers with single-beat ECG. Furthermore, each specific MI pa- 

tient was localized at one of 6 different MI types. Finally, our au- 

tomated MI detection and localization system was compared with 

earlier published studies. 

4.1. ECG denoising and MPCA evaluation 

Based on high and low Q-factors wavelets and frequency re- 

sponses, as shown in Fig. 2 , Dual-Q TQWT decomposes the filtered 

ECG signal into the sum of a high Q-factor component and a low 

Q-factor component. Fig. 3 displays the decomposition results con- 

sisting of original and resonance waveforms. From this figure, we 

found that the high Q-factor component corresponded to sustained 

oscillations, consisting of low- and high-frequency bands unrelated 

to typical morphology of ECG (e.g. PR segment, QRS waveform, 

et al.). In contrast, the low Q-factor component corresponded to 

the transients following the morphology of the original waveform, 

with high signal-noise-ratio (SNR). Due to the characteristics of 

morphological segments and high SNR, the low Q-factor compo- 

nent was chosen for further processing. The denoised data were 

segmented into beats and decomposed into 4-level DWPT to ex- 

tract features. Using 16 subbands in the fourth level, a wavelet 

packet tensor (leads × subbands × samples ×beats) was formed. In 

Fig. 3. Resonance decomposition with Dual-Q TQWT. 

Table 2 

Comparisons among denoising methods. 

Filtered Dual-Q TQWT DWT EMD 

ACC 83.64% 91.36% 89.89% 91.28% 

SEN 96.73% 98.27% 97.98% 98.26% 

SPE 83.74% 91.36% 89.89% 91.27% 

Time(s) - 45.63 2.98 225.89 

our work, the MPCA was applied to wavelet packet tensor for di- 

mensionality reduction. Compared with the vector-based PCA, the 

tensor-based MPCA could reserve inherent properties of features. 

To illustrate the performance of the denoising algorithm, we 

compared the Dual-Q TQWT with commonly used denoising meth- 

ods discrete wavelet transform (DWT) [13] and empirical mode de- 

composition (EMD) [13] . Based on the data from healthy volun- 

teers and 5 groups of MI (without IPLMI), the performance of a 

multi-class classifier of Treebagger in the record level was cho- 

sen as criteria of these comparisons. The comparison results are 

illustrated in Table 2 . The results demonstrate that the perfor- 

mance of denoising methods outperforms filter processing. Com- 

pared with the state-of-art denoising methods (DWT and EMD), 

our proposed Dual-Q TQWT is comparable considering the running 

time (s/record) and performance. The good results validate the util- 

ity of Dual-Q TQWT denoising in MI detection and localization sys- 

tem. 

For wavelet packet coefficients, we compared the results of 

WPT-Tensor and WPT-Vector (by reshaping wavelet packet ten- 

sor to vector). WPT-Vector achieved an accuracy, a sensitivity, and 

a specificity of 88.73%, 97.75%, and 88.75%, respectively. We also 

computed the performance of Dual-Q TQWT time-domain features 

without DWPT and obtained an accuracy, a sensitivity, and a speci- 

ficity of 81.24%, 91.56%, and 80.95%, respectively. Altogether, the 

combination of Dual-Q TQWT + DWPT + MPCA yielded the high- 

est performance compared with Dual-Q TQWT + DWPT + PCA and 

Dual-Q TQWT + MPCA. 

4.2. Physiological ECG features from DWPT and MPCA 

By applying DWPT, we extracted spatial, spectral, and tempo- 

ral features from leads, frequency bands (subbands), and samples. 

Fig. 4 displays the physiological ECG waveforms in subbands 1–

4 (significant variation of features) from 12 leads. We found that 

the waveforms in different subbands and leads were different in 6 

types of MI patients and healthy volunteers. The abnormalities of 

MI could be displayed in the PR segment, the QRS complex, the ST 

segment, and the T wave in different subbands. 
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Fig. 4. DWPT features extracted from leads, sunbands, and samples of MI patients and healthy volunteers. 

Although DWPT features are significantly different in different 

types of MI and healthy volunteers, as shown in Fig. 4 , there is too 

much redundancy information in the fourth-order wavelet packet 

tensor. The wavelet packet tensor was subjected to MPCA and was 

reduced to low-dimensional tensor using matrices of multilinear 

projection. Fig. 5 displays three projection matrices in three modes. 

According to multilinear projection, we found four components in 

the spatial factor, which illustrated the multilinear combination of 

12 leads. For the spectral factor, we found three components, es- 

pecially subbands 1, 2, and 4, which were most important in MI 

identification. Each subband covers about 8 Hz from 0.5–125 Hz. 

Seven waveforms in the temporal factor were the representations 

of the PR segment, the QRS complex, the ST segment, and the T 

wave. The discriminant features of different types of MI patients 

and healthy volunteers are located in 4 components of spatial fac- 

tor, 3 components of spectral factor, and 7 components of temporal 

factor. 

4.3. MI detection 

The MI detection was treated as a two-class classification, dis- 

tinguishing the MI patients from healthy volunteers. There were 

47,215 instances (heart beats) from 328 MI records and 10,342 in- 

stances from 78 healthy records. The dimensions (12 leads ×16 

subbands ×16 samples ×57,557 beats) of wavelet packet tensor 

were reduced to low-dimension space of 4 ×3 ×7 ×57,557 beats 

by MPCA, where 90% energy was kept and the maximum number 

of interaction was set as 1. A total of 84 maximum optimal fea- 

tures were selected for MI detection. A Treebagger embedded with 

200 trees was applied to classification. Fig. 6 shows the ROC curves 

corresponding to different sets of features (according to the order- 

ing index of projected features in decreasing variance) with 90% 

instances for training and 10% for testing, which demonstrates the 

84 features are not overfitting or underfitting. 

We conducted training processes in both beat level (randomly 

selected instances from records) with 10-fold cross validation and 
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Fig. 5. MPCA matrices of multilinear projection. 

Fig. 6. ROC for MI detection with different features. 

record level (considered instances from a set of MI and healthy 

records to avoid the same instance during training and testing) 

with handout method. For the training in beat level, we achieved 

an accuracy of 99.98%, a sensitivity of 100%, and a specificity of 

99.90%, respectively. The confusion matrix of MI detection is shown 

in Table 3 . As shown in the table, all 18,852 MI beats could be cor- 

rectly classified, while 8 healthy beats of ECG among 4106 beats 

were misclassified to MI patients. Using only 10 features, we could 

achieve an accuracy of 99.41% for MI detection. For the training in 

record level, we selected randomly 90% records for training and the 

left 10% records for testing. We achieved an accuracy of 97.46%, a 

sensitivity of 99.09%, and a specificity of 90.26%, respectively. Com- 

pared with beat level classification results, the record level results 

reveal the inter-record and inter-subject variations. 

Table 3 

Confusion matrix of Treebagger 

for MI detection. 

H MI 

H 4162 8 

MI 0 18,852 

4.4. MI localization 

In this section, the MI localization was seen as multi-class clas- 

sification, localizing each specific group from 6 different types of 

MI. The 47,215 MI instances came from 46 AMI (6306), 42 ALMI 

(6568), 89 IMI (12,115), 76 ASMI (11,232), 56 ILMI (8280), and 19 

IPLMI (2714) records. The dimensions (12 leads ×16 subbands ×16 

samples ×47,215 beats) of wavelet packet tensor were reduced to 

low-dimension 4 ×3 ×7 ×47,215 beats by MPCA with the same 

settings in MI detection. The same classifier and beat- and record- 

level training processes were chosen for MI localization. Fig. 7 dis- 

plays the changes in average accuracy, sensitivity, and specificity 

following the number of features with 10-fold cross validation, 

which demonstrates the necessity of 84 features in MI localization. 

For the beat level, the average accuracy, sensitivity, and specificity 

were 99.87% ( ± 0.05%), 99.97% ( ± 0.01%), and 99.88% ( ± 0.05%), 

respectively. The confusion matrix of 6 types of MI is presented 

in Table 4 . From the confusion matrix, we found that all the ILMI 

beats could be classified correctly. Other types of MI were easily 

misclassified into IPLMI, with 5 AMI beats, 2 ALMI beats, 3 IMI 

beats, and 3 ASMI beats. The beats of ASMI were easily mixed with 

other types of MI. By using only 10 features, we could achieve an 

accuracy of 99.35% for MI localization. For the record level, we pre- 

sented the performance with 90% records for training and the left 

10% records for testing. We achieved an accuracy of 90.39%, a sen- 

sitivity of 98.03%, and a specificity of 90.76%, respectively. 
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Fig. 7. Performance of MI localization with different features using 10-fold cross 

validation. 

Table 4 

Confusion matrix of Treebagger for MI localization. 

AMI ALMI IMI ASMI ILMI IPLMI 

AMI 2576 2 0 1 0 5 

ALMI 2 2502 2 2 0 2 

IMI 1 1 4563 3 0 3 

ASMI 2 0 2 4798 0 3 

ILMI 0 0 0 0 1115 0 

IPLMI 0 0 2 1 0 3298 

4.5. Comparison performance 

Table 5 summarizes the studies employing different techniques 

in MI detection and localization with the same PTB ECG dataset. 

In our study, we down-sampled the ECG signal from 10 0 0 Hz to 

250 Hz, resulting in 162 samples in each beat. The samples in each 

beat are fewer than 650 samples in previous research [6,9,31] . Fur- 

thermore, a denoising method was applied differently from pre- 

vious conventional filtering preprocessing. In comparison to fil- 

tered data and commonly used denoising methods, the advent of 

Dual-Q TQWT makes it possible to obtain better performance with 

fewer samples in each beat. To enhance real-time MI diagnosis, our 

work, as well as some earlier studies [8,10] , was focused on single- 

beat rather than frame-based (4 beats) exploration. Furthermore, 

the number of ECG leads is another factor correlated with diag- 

nosis efficiency and computer capacity. Instead of considering all 

12 leads, some researchers explored the possibility of using fewer 

leads or just one single lead [6,9,11,40] . However, they only illus- 

trated the single lead or 12 leads, ignoring the combination of dif- 

ferent leads. Wavelet packet tensor is an efficient tool, which can 

take the ECG leads as one part of features. Using dimensionality re- 

duction, optimal leads are selected, avoiding a manual operation of 

over-fitting or under-fitting. Different from third-order tensor used 

in [8] , our work applied a fourth-order tensor consisting of fre- 

quency (taking advantage of an equal number of wavelet packet 

coefficients), leads, samples, and beats. The fourth-order wavelet 

packet tensor was dimensionality reduced in the tensor structure 

with MPCA, whose classification performance outperformed the 

commonly used vector-based PCA. Although feature extraction and 

selection were eliminated in these studies with convention neural 

network (CNN) [6,40–43] , big data, long training time, and high 

quality service were other problems introduced in their studies. 

Previous studies achieved good performance without considering 

inter-subjects variations. Our study presented good results in both 

beat level and record level training/testing. The MI detection and 

localization system for single-beat containing fewer samples in our 

Table 5 

Comparison of studies using PTB ECG database. 

Ref Beat Lead Database Over-fitting Methods Features Results 

[6] 1 12 MI: 369 RE 

H: 79 RE 

No Multiple instance 

learning + KNN, SVM 

74 SE = 92.6%; SP = 88.1% 

[3] 1 12 MI: 16,960 BE 

H: 3200 BE 

Yes Time domain features 

with DWT + KNN 

36 (D,L) SE = 99.97%; SP = 99.9% (D) 

SE = 98.67%; SP = 98.71% (L) 

[9] 4 12 MI: 847 BE 

H: unknown 

Yes DWT multiscale energy 

eigenspace + SVM 

72 (D,L) ACC = 96%; SE = 93%; SP = 99% 

(D) 

ACC = 99.58% (L) 

[10] 1 1 MI: 485,753 BE 

H: 125,652 BE 

Yes 12 nonlinear 

features + KNN 

47 (D) 

25 (L) 

ACC = 98.8%; SE = 99.45%; 

SP = 96.27% (D) 

ACC = 98.74%; SE = 99.55%; 

SP = 96.16% (L) 

[5] 1 1 MI: 40,182 BE 

H: 10,546 BE 

Yes Deep convolutional 

neural network 

_ ACC = 95.22%; SE = 95.49%; 

SP = 94.19% 

[37] 1 1,12 MI: 485,752 BE 

H: 10,564 BE 

Yes Deep convolutional 

neural network 

_ ACC = 99.78% 

[7] 4 12 MI: 41,726 BE 

H: 9966 BE 

No DWT + High order 

singular value 

decomposition 

(HOSVD) + SVM 

35 (D) 

51 (L) 

ACC = 95.3%; SE = 94.6%; 

SP = 96.0% (D) 

ACC = 98.1% (L) 

Ourwork 1 12 MI: 47,215 BE 

H: 10,342 BE 

No Dual-Q 

TQWT + DWPT + MPCA + 

Treebagger 

Record-level 

84 (D,L) 

Beat-level 

84 (D,L) 

10 (D,L) 

ACC = 97.46%; 

SE = 99.09%;SP = 90.26% (D) 

ACC = 90.39%; SE = 98.03%; 

SP = 90.76% (L) 

ACC = 99.98%; SE = 100%; 

SP = 99.9% (D) 

ACC = 99.87%; SE = 99.97%; 

SP = 99.88% (L) 

ACC = 99.41% (D); 

ACC = 99.35% (L) 

D is MI detection, L is MI localization. 
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work is comparable to the earlier studies in the literature. We ob- 

tained an accuracy of 99.98% in MI detection and an accuracy of 

99.87% in MI localization in beat level with 84 features. By using 

only 10 features in beat level, we obtained an accuracy of 99.41% 

in MI detection and an accuracy of 99.35% in MI localization. For 

the record level, we achieved an accuracy of 97.46% in MI detection 

and an accuracy of 90.39% in MI localization. 

4.6. Computational complexity of methods 

The proposed methods are implanted in MATLAB 2018b soft- 

ware in the Windows platform on a desk computer with Intel 

i5-7500 CPU (@ 3.4 GHz) and 8-GB RAM. For one record of ECG, 

the running time of Dual-Q TQWT (45.63 s) is shorter than the 

commonly used denoising algorithm EMD (225.89 s). The running 

time of DWPT feature extraction is 11.39 s, which is easier and 

more time-saving than features combination of linear, nonlinear, 

and entropy. Compared with the time spending on PCA (1795.21 s) 

used for dimensionality reduction, the tensor-based MPCA requires 

123.84 s on 408 ECG records. The training and testing processes of 

Treebagger classifier spend 223.13 s and 0.67 s, respectively. 

5. Conclusion 

The power of machine learning and advanced signal processing 

provides an opportunity for intelligent medical assistance in clin- 

ical practice. However, automated, reliable, and real-time MI de- 

tection and localization is still a challenging problem because of 

artifacts corruption, high dimensionality, and inter-individual vari- 

ations. In our present study, we introduced an automated MI de- 

tection and localization system using Dual-Q TQWT and wavelet 

packet tensor decomposition. By applying the Dual-Q TQWT de- 

noising method, we achieved comparable good performance com- 

pared with the filtered data and commonly used denoising meth- 

ods. Based on the low Q-factor component after denoising, a 

wavelet packet tensor was formed and then dimensionality re- 

duced by tensor-based MPCA, which showed a better result than 

vector-based PCA. A total of 84 features chosen from MPCA dimen- 

sionality reduction were fed into a Treebagger classifier, reaching 

an accuracy of 97.46% in MI detection and an accuracy of 90.39% in 

MI localization considering the record variations. The high perfor- 

mance of our automated detection and localization system might 

be helpful in providing MI diagnosis care with minimal resources. 

In future work, we will test the robustness of Dual-Q TQWT 

with different types of artifacts mixed with ECG data. Moreover, 

the automated MI detection and localization system will be applied 

to other heart disease diagnosis. 
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