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INTRODUCTION

In this thesis we study uniformization problems, which are central in analysis
in metric spaces. Our focus lies in the two-dimensional case, where we give
characterizations for the existence of a quasisymmetric (or quasiconformal)
mapping from a given metric space X = (X, d) to the Euclidean plane R2

or sphere S2.
Given necessary topological and geometric conditions, our main results

show that such a map exists exactly whenX carries a measure µ that deforms
the metric in a suitably controlled manner (see Sections 3 and 5). If we
know that a quasisymmetric map f : X → R2 exists, then µ = f∗m2, i.e.
the pullback of the Lebesgue measure under f , has this property.

In the other direction, we show that a given µ induces a new metric q onX
which is quasisymmetrically equivalent to d and also has strong geometric
properties which allow the application of existing uniformization tools to
(X, q). These combined with geometric estimates involving µ are powerful
enough to guarantee the existence of the desired quasisymmetric map f .

Our results generalize earlier uniformization theorems concerning Ahlfors
2-regular spaces X. The novelty of our method is that it applies to the
fractal case where (X, d) has Hausdorff dimension strictly greater than two.
Finding quasisymmetric parametrizations in the fractal setting is among the
most important open problems in analysis in metric spaces. We next give
some more background.

1. Uniformization of metric spaces

In the classical setting the Riemann mapping theorem tells us that every
simply connected domain in the complex plane other than the whole plane
can be mapped conformally onto the unit disk. More generally, the uni-
formization theorem states that each simply connected Riemann surface is
conformally equivalent to either the Riemann sphere, complex plane or the
unit disk.

Motivated largely by the need for similar results in more general contexts,
a rich theory of geometric analysis has been developed. Much of the theory
is concerned with finding suitable parametrizations, or uniformizations, for
metric spaces satisfying varying assumptions. Typically one seeks to classify
spaces with similar geometries, and furthermore to quantify the differences
between these geometries.

For example, conformal mappings preserve infinitesimal shapes, whereas
quasiconformal mappings are allowed to distort them by a bounded amount
(see Definition 5.5). Our main focus is in estimating deformations in the
global scale, and for this purpose the correct mapping class is that of qua-
sisymmetric mappings.

Definition 1.1. A homeomorphism f : X → Y between metric spaces
(X, dX) and (Y, dY ) is quasisymmetric or η-quasisymmetric if there exists a
homeomorphism η : [0,∞) → [0,∞) such that for all x, y, z ∈ X and t ≥ 0
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with

dX(x, y) ≤ tdX(x, z)

we have

dY (f(x), f(z)) ≤ η(t)dY (f(x), f(z)).

We call η the distortion function of a η-quasisymmetric mapping. Metric
spaces X and Y are called quasisymmetrically equivalent if there exists a
quasiymmetric mapping f from X onto Y . It is easy to see that inverses and
compositions of quasisymmetric mappings are also quasisymmetric. Thus it
is a natural question to classify metric spaces up to quasisymmetric equiva-
lence. See Chapters 10 and 11 in [16] for more properties of quasisymmetric
mappings.

In the general metric setting, where there is no given differential structure,
quasisymmetric mappings offer a natural generalization to conformal map-
pings. They are global versions of quasiconformal mappings in the sense
that they distort relative distances in a bounded way at all scales. Qua-
sisymmetric mappings have several useful geometric properties and are also
more flexible than bi-Lipschitz mappings, which must preserve also absolute
distances up to a multiplicative factor.

Quasisymmetric mappings were first studied in the general metric set-
ting by Tukia and Väisälä [33]. The definition originates from the work
of Beurling and Ahlfors [1] on the boundary behavior of two-dimensional
quasiconformal maps. In their article, Tukia and Väisälä established fun-
damental properties of quasisymmetric mappings. In particular, they gave
the first uniformization result involving them: a full characterization of qua-
sisymmetric circles in terms of the following intrinsic properties of the given
metric space.

Definition 1.2. Ametric space (X, d) is doubling if there exists a constant
N ∈ N such that every ball B(x, r) ⊂ X can be covered with at most N
balls B(xi, r/2), i = 1, . . . , N .

Recall that a continuum is a connected and compact set containing more
than one point.

Definition 1.3. A metric space (X, d) is linearly locally connected or LLC
if there exists a constant λ ≥ 1 such that the following properties hold

• For any x ∈ X, r > 0 and y, z ∈ B(x, r) there exists a continuum
K ⊂ B(x, λr) with y, z ∈ K.
• For any x ∈ X, r > 0 and y, z ∈ X \B(x, r) there exists a continuum
K ⊂ X \B(x, r/λ) with y, z ∈ K.

THEOREM 1.4 ([33], Theorem 4.9). A metric space X homeomorphic to
S1 = {z ∈ R2 : |z| = 1} is quasisymmetrically equivalent to S1 equipped
with the Euclidean metric if and only if it is doubling and linearly locally
connected.
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Tukia and Väisälä formulated this result with slightly different but equiv-
alent assumptions on the space. See [29] and [19] for more theory and
classification of bi-Lipschitz equivalent quasisymmetric circles.

The doubling and LLC properties are both preserved by quasisymmetric
mappings. Thus they are a natural starting point for quasisymmetric uni-
formization problems, as many of the standard model spaces such as the
Euclidean spaces, balls and spheres satisfy these properties.

The theory of quasisymmetric mappings between metric spaces has grown
rapidly after the work of Tukia and Väisälä. A central problem is to find
extensions of Theorem 1.4 to more general metric spaces. In particular,
one seeks to characterize spaces quasisymmetrically equivalent to Sn = {x ∈
Rn+1 : |x| = 1} equipped with the Euclidean metric for n ≥ 2. This problem
has proved to be extremely challenging, and a full characterization is still
missing in spite of extensive efforts during the last 25 years.

As stated above, it is necessary for a space quasisymmetrically equivalent
to Sn or Rn to be doubling and LLC, but these properties are not sufficient.
A fundamental counterexample is the Rickman rug: Let X = R2, ε ∈ (0, 1),
and consider the product metric

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|ε

for (x1, y1), (x2, y2) ∈ R2. This space can be realized as a metric product
of the Euclidean real line and the (unbounded) von Koch snowflake curve,
which is quasisymmetrically equivalent to R. The Rickman rug is doubling
and LLC but not quasisymmetrically equivalent to the Euclidean plane.
Roughly speaking, the reason for this is that the two curves in the product
are intrinsically different although quasisymmetrically equivalent.

In dimensions three and higher there are quite well-behaved spaces with-
out quasisymmetric parametrizations. For each n ≥ 3 there exist spaces
homeomorphic to Sn that are doubling, LLC, smooth outside small singu-
lar sets and with Euclidean-type mass bounds but for which there exist no
quasisymmetric mapping onto Sn, see [32], [18], [27] and [26]. In contrast,
a fundamental theorem of Bonk and Kleiner [5] shows that such examples
cannot exist in dimension two. More precisely, the following holds.

Definition 1.5. Let (X, d) be a metric space. A Borel measure µ on X is
Ahlfors regular of dimension Q or Q-regular if there exists a constant C > 0
such that

rQ/C ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and 0 < r < diamX. The space is called Q-regular if it
supports a Q-regular measure.

THEOREM 1.6 ([5] Theorem 1.1). Suppose (X, d) is homeomorphic to S2
and Ahlfors 2-regular. Then (X, d) is quasisymmetrically equivalent to S2 if
and only if it is linearly locally connected.

In [5] Bonk and Kleiner also gave a necessary and sufficient condition
for spaces quasisymmetrically equivalent to S2 in terms of a combinato-
rially defined modulus. The precise statement of this condition is however
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quite technical and not easily applicable. Similar result for Ahlfors 2-regular
spaces homeomorphic to R2 was given by Wildrick [34].

Ahlfors Q-regular spaces are in particular doubling and have Hausdorff
dimensionQ. We call a metric space (X, d) homeomorphic to Sn or Rn fractal
if it has Hausdorff dimension strictly greater than n. Fractal spaces are far
from being Ahlfors n-regular, and already in dimension two this poses great
difficulty for finding a characterization for quasisymmetric parametrization
that is verifiable in concrete settings. Examples of such fractals are the
snowflake curve and the Rickman rug mentioned above.

The quasisymmetric uniformization problem in the two-dimensional frac-
tal case is both difficult and highly important due to connections to different
branches of analysis. In addition to spaces homeomorphic to S2 or R2, also
different carpets, such as spaces homeomorphic to the standard Sierpiński
carpet, are extensively studied in terms of quasisymmetric equivalence (see
for example [3] and [14]). A better understanding of the problem also pro-
vides information on questions in geometric group theory (see for example
[6], [2] and [7]) and complex dynamics (see for example [13] and [8]).

In geometric group theory a major open problem directly tied to qua-
sisymmetric uniformization is Cannon’s conjecture. In the original form the
conjecture states that if the boundary at infinity of a Gromov hyperbolic
group G is homeomorphic to S2, then G acts properly discontinuously, co-
compactly and isometrically on the three dimensional hyperbolic space H3.
It follows from results by Sullivan and Tukia that the conjecture is equivalent
with the statement that if the boundary at infinity of a Gromov hyperbolic
group is homeomorphic to S2, then it is quasisymmetrically equivalent to
S2. This boundary has a natural family of so-called visual metrics which are
all quasisymmetrically equivalent. The resulting metric spaces are always
LLC but typically fractal. Therefore the conjecture is a natural motivation
and also one of the greatest goals in the search of tools for quasisymmetric
parametrizations of fractal spheres. See for example [2] for more details on
Cannon’s conjecture and Gromov hyperbolic groups.

2. Strong A∞ weights and metric doubling measures

Our approach to the uniformization problem is to consider deformations
of the space with a suitable doubling measure. Recall that a Radon measure
µ on a metric space (X, d) is doubling if there exists a constant C ≥ 1 such
that for every ball B(x, r) ⊂ X we have

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞. (1)

The idea of inducing a new geometry on a metric space using a doubling
measure was first introduced by David and Semmes [10]. Originally they
studied this in the form of strong A∞ weights. Recall that a non-negative,
locally integrable function ω on Rn is an Ap weight for p ∈ [1,∞] if
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• p = ∞ and there exist constants γ,C > 0 such that for every ball
B ⊂ Rn and measurable subset E ⊂ B´

E ω´
B ω
≤ C

(
mn(E)

mn(B)

)γ
,

• 1 < p < ∞ and there exists a constant C > 0 such that for every
ball B ⊂ Rn (

−
ˆ
B
ω

)(
−
ˆ
B
ω

1
1−p

)p−1
≤ C

or
• p = 1 and there exists a constant such that for every ball B ⊂ Rn

−
ˆ
B
ω ≤ C essinfB ω.

Here −́A ω is the integral average 1
mn(A)

´
A ω of ω over a measurable set A ⊂

Rn with finite and positive measure. Here we denote mn for the Lebesgue
measure in Rn.
Ap weights satisfy Aq ⊂ Ar for 1 ≤ q ≤ r ≤ ∞ and A∞ = ∪p≥1Ap. The

family of A∞ weights is also characterized by the following reverse Hölder
inequality : ω ∈ A∞ if and only if there exists C > 0 and p > 1 such that for
every ball B ⊂ Rn (

−
ˆ
B
ωp
) 1

p

≤ C−
ˆ
B
ω.

If ω is an A∞ weight, then µ = ω dmn is a doubling measure on Rn. David
and Semmes study the geometry given by this type of doubling measure via
the quasimetric function

Dµ(x, y) = µ(Bxy)
1/n.

Here and later we denote Bxy = B(x, d(x, y)) ∪ B(y, d(x, y)) in any metric
space (X, d).

An A∞ weight ω is called a strong A∞ weight if there exists a metric dω
on Rn comparable to Dµ = Dωdmn , that is

1

C
dω(x, y) ≤ Dµ(x, y) ≤ Cdω(x, y) (2)

for some C ≥ 1 and all x, y ∈ Rn. The main examples of strong A∞ weights
are A1 weights and Jacobian determinants of quasiconformal mappings on
Rn. The class of Ap weights is intimately connected to the quasiconformal
Jacobian problem, see for example [4].

If µ is a doubling measure such that Dµ is comparable to a metric on
Rn, then µ is necessarily absolutely continuous and has an A∞ weight ω
as a density, see [12] and [31]. Using the reverse Hölder inequality one can
also show that the first inequality in (2) always holds for any A∞ weight ω



10

and for the geodesic distance qω associated with ω. In the case when ω is
continuous, this geodesic distance can be realized by

qω(x, y) = inf

ˆ
γ
ω1/n ds,

where the infimum is taken over all rectifiable paths γ connecting x and y.
We give a definition in Section 3 for the general case. See [31] for more
properties and results related to strong A∞ weights, and [9] and [23] for
more recent results on these weights in the metric setting.

Strong A∞ weights correspond to metric doubling measures. We give a
general definition in the metric setting.

Definition 2.1. A doubling measure µ on an Ahlfors n-regular metric
space (X, d) is a metric doubling measure if there exists a metric dµ and a
constant C ≥ 1 such that

1

C
dµ(x, y) ≤ µ(Bxy)

1/n ≤ Cdµ(x, y)

for every x, y ∈ X.

Metric doubing measures are naturally related to quasisymmetric map-
pings. In particular, if f : X → Y is a quasisymmetric map between n-
regular spaces, then the pullback f∗Hn of the Hausdorff n-measure Hn is a
metric doubling measure.

More generally we can consider the map Dµ,s(x, y) = µ(Bxy)
1/s for a

given s > 0 and a doubling measure µ similarly as in Rn, with no regularity
assumption on the metric space X. This map Dµ,s is a quasimetric on X
for any doubling measure µ. This means that there exists a constant K ≥ 1
such that

• Dµ,s(x, y) = Dµ,s(y, x) ≥ 0 for all x, y ∈ X,
• Dµ,s(x, y) = 0 if only if x = y, and
• Dµ,s(x, y) ≤ K(Dµ,s(x, z) +Dµ,s(z, y)) for all x, y, z ∈ X.

The last condition means that Dµ,s satisfies the usual triangle inequality
up to a multiplicative constant, and this follows easily from the doubling
condition (1). Note that if K = 1, then this condition is the usual triangle
inequality.

The reason for considering Dµ,s is that this is a way of introducing a new
geometry for any metric space starting from a doubling measure µ. Indeed,
when s is large enough depending on the doubling constant of µ, then Dµ is
comparable to a genuine metric. That is, there exists a metric dµ on X and
a constant C ≥ 1 such that

1

C
dµ(x, y) ≤ Dµ,s(x, y) ≤ Cdµ(x, y) (3)

for all x, y ∈ X. If X is moreover connected, then the metric space (X, dµ) is
Ahlfors s-regular and the identity mapping id : (X, d)→ (X, dµ) is quasisym-
metric. When X is LLC and homeomorphic to S2, the best deformation one
can hope for is a µ onX for which (3) holds with s = 2. In this case (X, dµ) is
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2-regular and thus quasisymmetrically equivalent to S2 by the Bonk-Kleiner
Theorem 1.6. See Chapter 16 in [11] and Chapter 14 in [16] for proofs of the
above claims and more basic properties of quasimetrics.

3. Weak metric doubling measures

We would like to generalize the idea of metric doubling measures to fractal
spaces as a tool for studying their geometry. In [A] and [C] we show that
a necessary and sufficient condition for a quasisymmetric uniformization of
certain fractal spaces is the existence of a weak metric doubling measure.

We now give a version of the geodesic distance associated with a doubling
measure discussed in Section 2. Let (X, d) be a metric space and x, y ∈ X.
We call a finite sequence of points x0, . . . , xm a δ-chain from x to y, if δ > 0,
x0 = x, xm = y and d(xj , xj+1) ≤ δ for every j = 0, . . . ,m − 1. It is easy
to see that if X is connected, then any pair x, y ∈ X can be connected by a
δ-chain for any δ > 0.

Definition 3.1. Let (X, d) be a connected metric space, µ a doubling
measure on X and s > 0. The µ-length q = qµ,s between two points x, y ∈ X
is

qµ,s(x, y) = lim sup
δ→0

qδµ,s(x, y),

where
qδµ,s(x, y) = inf

∑
j

µ(Bxjxj+1)1/s

and the infimum is taken over all δ-chains (xj)j from x to y.

It follows from the definition that q is symmetric and satisfies the triangle
inequality, but q(x, y) ∈ (0,∞) for x 6= y may fail. If ω is a strong A∞
weight on Rn, then any metric dω satisfying (2) is comparable to qµ,n where
µ = ω dmn. This fact is the motivation behind the following definition.

Definition 3.2. Let X, d be a connected metric space and s > 0. A dou-
bling measure µ on X is a CW -weak metric doubling measure of dimension
s if

µ(Bxy)
1/s ≤ CW qµ,s(x, y) (4)

for all x, y ∈ X.

As mentioned in Section 2, a metric space homeomorphic to S2 is qua-
sisymmetrically equivalent to S2 if and only if it is LLC and there exists
a metric doubling measure on X. As the main result in [A] we show that
this characterization also holds with only assuming the existence of a weak
metric doubling measure.

THEOREM 3.3 ([A] Theorem 1.2). Let (X, d) be a metric space home-
omorphic to S2. Then (X, d) is quasisymmetrically equivalent to S2 if and
only if it is linearly locally connected and there exists a weak metric doubling
measure µ of dimension 2 on X.
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We prove Theorem 3.3 by showing that also the reverse inequality of (4)
holds under these assumptions. This implies that q = qµ,2 is a metric and µ is
a metric doubling measure on the deformed space (X, q). The uniformization
of (X, d) then follows from the Bonk-Kleiner Theorem 1.6 since the metrics
q and d are quasisymmetrically equivalent as discussed above.

The proof relies on the LLC condition and the topology and separation
properties of S2. In [C] we generalize the result to surfaces homeomorphic
to finitely connected planar domains, and in this case we need to utilize a
quasiconformal uniformization rather than showing a global reverse of (4).

Our proof applies only in the two-dimensional case. One step in the proof
is separating the center of a ball from its complement by continuum that
contains a chain of points with controlled µ-length. This estimate is a form
of coarea formula in metric spaces with dimension and codimension both
equal to one. Extending our proof to higher dimensions would require a
suitable analogue of this estimate. Recall from Section 1 that the Bonk-
Kleiner Theorem 1.6 does not hold in higher dimensions. Thus a natural
generalization of our result to higher dimension would be the following prob-
lem of minimizing the conformal dimension (see [24]) of a space with a weak
metric doubling measure. Recall that a metric space Z is linearly locally
contractible if there exists λ′ ≥ 1 such that every ball B(z, r) ⊂ Z with
r < diamZ/λ′ is contractible in B(z, λ′r).

Question 3.4. Let (X, d) be a linearly locally contractible metric space
homeomorphic to Rn or Sn with n ≥ 3 and suppose there exists a weak
metric doubling measure of dimension n on X. Is there a n-regular metric
on X quasisymmetrically equivalent d?

4. Quasisymmetric Koebe uniformization

The classical Koebe conjecture [21] states that every domain in the com-
plex plane is conformally equivalent to a circle domain. A circle domain is a
domain in the Riemann sphere S2 such that every component of its bound-
ary is either a circle or a point. The conjecture was confirmed by Koebe [22]
in the case of finite number of complementary components, and by He and
Schramm [15] in the case of countably many complementary components.

Merenkov and Wildrick [25] gave a characterization for metric spaces qua-
sisymmetrically equivalent to a circle domain assuming Ahlfors 2-regularity
and a bound on the relative accumulation of boundary components of the
space. In particular, their result implies that if a 2-regular space is homeo-
morphic to a domain in S2 and has finitely many boundary components, it is
quasisymmetrically equivalent to a circle domain if and only if it is LLC and
has compact completion. In [C] we generalize this result using weak metric
doubling measures, with no assumption on the regularity of the given metric.

We denote by X the metric completion of a metric space X and call
∂X = X \X the metric boundary of X.

THEOREM 4.1 ([C] Theorem 1.1). Let X be a metric space homeomorphic
to a domain in S2 such that X \X contains finitely many components. Then
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X is quasisymmetrically equivalent to a circle domain if and only if it is LLC,
carries a weak metric doubling measure of dimension 2 and has compact
completion. The distortion function η related to the quasisymmetry condition
only depends on the data of µ and X.

By the data of µ and X we mean the constants in the LLC, doubling
and weak metric doubling measure conditions and the number and minimal
relative distance of the boundary components of X.

Our strategy is to first deform the space with the µ-length q as in [A], and
then apply a quasiconformal uniformization on the deformed space (X, q).
This is guaranteed by showing that (X, q) is reciprocal and applying the
recent works by Rajala [28], Romney [30] and Ikonen [20]. We then show
that the quasiconformal mapping from (X, q) onto a circle domain thus
obtained is in fact quasisymmetric in terms of the original metric d.

In [25] Merenkov and Wildrick give a counterexample for the quasisym-
metric uniformization of a general metric surface with countably many bound-
ary components. In this space a necessary control on the accumulation of
the boundary components fails. A natural follow-up problem to our result
is whether a weak metric doubling measure is sufficient for the uniformiza-
tion of surfaces with countably many boundary components, for which some
steps of our proof fail.

Question 4.2. Does a version of 4.1 hold for spaces with countably many
boundary components?

5. µ-quasiconformal mappings and infinitesimally metric
measures

In [B] we consider infinitesimal versions of the previous methods and
introduce the concept of µ-quasiconformal mappings, where µ is a Radon
measure on the given metric space. Similarly as in Section 4 we would
like to use the theory of quasiconformal mappings in metric spaces in order
to find quasisymmetric parametrizations. A fundamental difficulty for this
method in fractal spaces is the lack of rectifiable paths. These are needed for
the use of the conformal modulus, a powerful geometric tool and a starting
point in the geometric definition of quasiconformal mappings.

We propose a different approach to defining the modulus of a path family
and quasiconformal mappings by using a measure as follows. For simplicity
we discuss only the two-dimensional case as in [B], and assume throughout
this section that (X, d) is a metric space homeomorphic to R2.

Definition 5.1. Let µ be a Radon measure on X and B a collection of
balls with the following property: For every x ∈ X there exists rx > 0 such
that B(x, r) ∈ B for every r ∈ (0, rx). The µ-length measure of a Borel set
A ⊂ X is

`µ(A) = lim sup
δ→0

inf{
∑
j

µ(Bj)
1/2},



14

where the infimum is taken over all δ-covers (Bj)j ⊂ B of A, i.e. sequences
of balls from B with diameter less than δ and whose union covers A.

If µ is 2-regular, then `µ is clearly comparable to the Hausdorff 1-measure
H1. Recall that using H1 or arc length in place of `µ and the Lebesgue mea-
sure m2 in place of µ in the following definition gives the standard conformal
2-modulus mod2 in R2.

Definition 5.2. Let Γ be a family of curves on X. The µ-modulus of Γ
is

modµ(Γ) = inf

ˆ
X
ρ2 dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] satisfying´
γ ρ d`µ ≥ 1 for all γ ∈ Γ with locally finite `µ-measure.

Our next definition generalizes the notion of quasiconformal mappings
using the µ-modulus. For a mapping f and a curve family Γ we denote
fΓ = {f(γ) : γ ∈ Γ}.

Definition 5.3. Let f : X → Ω ⊂ R2 be a homeomorphism. The map-
pings f and f−1 are µ-quasiconformal, if there exists K ≥ 1 such that

1

K
modµ(Γ) ≤ mod2(fΓ) ≤ K modµ(Γ)

for every curve family Γ in X.

Recall that using the standard conformal modulus mod2 in place of modµ
in Definition 5.3 gives the standard geometric definition of quasiconformal
mappings.

Using these definitions we are able to extend tools from quasiconformal
analysis to fractal spaces. A first step in this direction is to determine when
a µ-quasiconformal mapping exists. As our first main result in [B] we show
that a sufficient condition is given by infinitesimally metric measures. In
short these are measures for which the geodesic distance q defined in terms
of `µ is comparable to µ1/2 at the infinitesimal scale. Hence they can be
seen as infinitesimal versions of the metric doubling measures of David and
Semmes. For the formal definition see 3.1 in [B].

THEOREM 5.4 ([B] Theorem 1.1). If µ is an infinitesimally metric mea-
sure on X, then there exists a µ-quasiconformal map f : X → Ω ⊂ R2.

Deforming the space similarly as in the previous sections, we get a space
that is infinitesimally Ahlfors 2-regular. This means that the Hausdorff 2-
measure of a ball B(x, r) in (X, q) is comparable to r2 for small r, depending
on the point x. We show that this is enough for reciprocality (see again
[28]) and thus there exists a quasiconformal mapping f from (X, q) that is
furthermore µ-quasiconformal as a map from (X, d, µ).

Next we study the metric properties of µ-quasiconformal mappings. The
global quasisymmetry condition turns out to be too strong a conclusion
under only our infinitesimal assumptions. A natural alternative would be to
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consider the metric definition of quasiconformality, which is an infinitesimal
property.

Definition 5.5. A homeomorphism f : X → Y between metric spaces
(X, dX) and (Y, dY ) is metrically H-quasiconformal if

Hf (x, r) = lim sup
r→0

supdX(x,y)≤r dY (f(y), f(x))

infdX(x,y)≥r dY (f(y), f(x))
≤ H for all x ∈ X.

Clearly quasisymmetric mappings are metrically quasiconformal. Recall
also that in Rn the geometric and metric definitions of quasiconformal map-
pings agree. Though easier to state, the metric definition is hard to use in
practice and too weak as a basis for doing analysis on general metric spaces.
We introduce infinitesimally quasisymmetric mappings as an intermediate
class between metrically quasiconformal and quasisymmetric mappings.

Definition 5.6. A homeomorphism f : X → Y between metric spaces
(X, dX) and (Y, dY ) is infinitesimally quasisymmetric if there exists a home-
omorphism η : [0,∞) → [0,∞) and for every x ∈ X there exists a radius
rx > 0 such that if y, z ∈ B(x, rx) and t ≥ 0 with

dX(x, y) ≤ tdX(x, z)

then
dY (f(x), f(z)) ≤ η(t)dY (f(x), f(z)).

In our second main result of [B] we characterize spaces for which there
exists an infinitesimally quasisymmetric mapping into R2. As necessary and
sufficient conditions we introduce infinitesimal versions of the LLC condition
and the Loewner property coined by Heinonen and Koskela [17].

THEOREM 5.7 ([B] Theorem 1.2). There exists an infinitesimally qua-
sisymmetric mapping f : X → Ω ⊂ R2 if and only if X is infinitesimally
LLC and supports an infinitesimally metric measure µ such that (X,µ) is
infinitesimally Loewner.
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QUASISPHERES AND METRIC DOUBLING
MEASURES

ATTE LOHVANSUU, KAI RAJALA AND MARTTI RASIMUS

Abstract. Applying the Bonk-Kleiner characterization of Ahlfors
2-regular quasispheres, we show that a metric two-sphere X is a
quasisphere if and only if X is linearly locally connected and car-
ries a weak metric doubling measure, i.e., a measure that deforms
the metric on X without much shrinking.

1. Introduction

A homeomorphism f : (X, d) → (Y, d′) between metric spaces is qua-
sisymmetric, if there exists a homeomorphism η : [0,∞) → [0,∞) such
that

d(x1, x2)

d(x1, x3)
� t implies

d′(f(x1), f(x2))

d′(f(x1), f(x3))
� η(t)

for all distinct x1, x2, x3 ∈ X. Applying the definition with t = 1 shows
that quasisymmetric homeomorphisms map all balls to sets that are
uniformly round. Therefore, the condition of quasisymmetry can be
seen as a global version of conformality or quasiconformality.

Starting from the work of Tukia and Väisälä [26], a rich theory of
quasisymmetric maps between metric spaces has been developed. An
overarching problem is to characterize the metric spaces that can be
mapped to a given space S by a quasisymmetric map.
This problem is particularly appealing when S is the two-sphere S

2.
There are connections to geometric group theory, (cf. [3], [5], [6]),
complex dynamics ([7], [8], [13]), as well as minimal surfaces ([17]).

Bonk and Kleiner [4] solved the problem in the setting of two-spheres
with “controlled geometry”, see also [17], [18], [22], [23], [29]. We say
that (X, d) is a quasisphere, if there is a quasisymmetric map from
(X, d) to S

2. See Section 2 for further definitions.

THEOREM 1.1 ([4], Theorem 1.1). Suppose (X, d) is homeomorphic

to S
2 and Ahlfors 2-regular. Then (X, d) is a quasisphere if and only

if it is linearly locally connected.

Research supported by the Academy of Finland, project number 308659.
2010 Mathematics Subject Classification. Primary 30L10, Secondary 30C65, 28A75.
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Finding generalizations of the Bonk-Kleiner theorem beyond the
Ahlfors 2-regular case and to fractal surfaces is important; applica-
tions include Cannon’s conjecture on hyperbolic groups, cf. [2], [16]
(by [9] the boundary of a hyperbolic group is Ahlfors Q-regular with
Q greater than or equal to the topological dimension of the boundary).
A characterization of general quasispheres in terms of combinatorial
modulus is given in [4, Theorem 11.1]. However, this result is difficult
to apply in practice and in fact an easily applicable characterization
is not likely to exist. Several types of fractal quasispheres have been
found (cf. [1], [12], [19], [27], [28], [30]), showing the difficulty of the
problem.

In this paper we characterize quasispheres in terms of a condition
related to metric doubling measures of David and Semmes [10], [11].
These are measures that deform a given metric in a controlled man-
ner. More precisely, a (doubling) Borel measure μ is a metric doubling
measure of dimension 2 on (X, d) if there is a metric q on X and C � 1
such that for all x, y ∈ X,

(1) C−1μ(B(x, d(x, y)))1/2 � q(x, y) � Cμ(B(x, d(x, y)))1/2.

It is well-known that metric doubling measures induce quasisymmetric
maps (X, d) → (X, q). Our main result shows that quasispheres can be
characterized using a weaker condition where we basically only assume
the first inequality of (1). We call measures satisfying such a condition
weak metric doubling measures, see Section 2.

THEOREM 1.2. Let (X, d) be a metric space homeomorphic to S
2.

Then (X, d) is a quasisphere if and only if it is linearly locally connected

and carries a weak metric doubling measure of dimension 2.

To prove Theorem 1.2 we show, roughly speaking, that the first in-
equality in (1) actually implies the second inequality. It follows that μ
induces a quasisymmetric map (X, d) → (X, q), and (X, q) is 2-regular
and linearly locally connected. Applying Theorem 1.1 to (X, q) and
composing then gives the desired quasisymmetric map. It would be in-
teresting to find higher-dimensional as well as quasiconformal versions
of Theorem 1.2. See Section 6 for further discussion.

2. Preliminaries

We first give precise definitions. Let X = (X, d) be a metric space.
As usual, B(x, r) is the open ball in X with center x and radius r, and
S(x, r) is the set of points whose distance to x equals r.

We say that X is λ-linearly locally connected (LLC), if for any x ∈
X and r > 0 it is possible to join any two points in B(x, r) with
a continuum in B(x, λr), and any two points in X \ B(x, r) with a
continuum in X \B(x, r/λ).
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A Radon measure μ on X is doubling, if there exists a constant
CD � 1 such that for all x ∈ X and R > 0,

(2) μ(B(x, 2R)) � CDμ(B(x,R)),

and Ahlfors s-regular, s > 0, if there exists a constant A � 1 such that
for all x ∈ X and 0 < R < diamX,

A−1Rs � μ(B(x,R)) � ARs.

Moreover, X is Ahlfors s-regular if it carries an s-regular measure μ.

We now define weak metric doubling measures. In what follows, we
use notation Bxy = B(x, d(x, y)) ∪B(y, d(x, y)).

Let μ be a doubling measure on (X, d). For x, y ∈ X and δ > 0, a
finite sequence of points x0, x1, . . . , xm in X is a δ-chain from x to y,
if x0 = x, xm = y and d(xj, xj−1) � δ for every j = 1, . . . ,m.

Now fix s > 0 and define a “μ-length” qμ,s as follows: set

qδμ,s(x, y) := inf
{ m∑

j=1

μ(Bxjxj−1
)1/s : (xj)

m
j=0 is a δ-chain from x to y

}

and

qμ,s(x, y) := lim sup
δ→0

qδμ,s(x, y) ∈ [0,∞].

Definition 2.1. A doubling measure μ on (X, d) is a weak metric

doubling measure of dimension s, if there exists CW � 1 such that for

all x, y ∈ X,

(3)
1

CW

μ(Bxy)
1/s � qμ,s(x, y).

In what follows, if the dimension s is not specified then it is understood

that s = 2, and qμ,2 is shortened to qμ.

3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2, assuming Proposi-
tion 3.1 to be proved in the following sections. First, it is not difficult
to see that if there exists a quasisymmetric map ϕ : X → S

2, then X
is LLC, and

μ(E) := H2(ϕ(E))

defines a weak metric doubling measure on X. Therefore, the actual
content in the proof of Theorem 1.2 is the existence of a quasisymmetric
parametrization, assuming LLC and the existence of a weak metric
doubling measure (of dimension 2). The proof is based on the following
result.
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Proposition 3.1. Let (X, d) be LLC and homeomorphic to S
2. More-

over, assume that (X, d) carries a weak metric doubling measure μ of

dimension 2. Then qμ is a metric on X and μ is a metric doubling

measure in (X, qμ), that is there exists a constant CS � 1 such that

also the bound

qμ(x, y) � CSμ(Bxy)
1/2

holds for all x, y ∈ X.

We will apply the well-known growth estimates for doubling mea-
sures. The proof is left as an exercise, see [14, ex. 13.1].

Lemma 3.2. Let X be as in Proposition 3.1 and let μ be a doubling

measure on X. Then there exist constants C, α > 1 depending only on

the doubling constant CD of μ such that

μ(B(x, r2))

μ(B(x, r1))
� Cmax

{(
r2
r1

)α

,

(
r2
r1

)1/α
}

for all 0 < r1, r2 < diam(X).

Combining Proposition 3.1 and Lemma 3.2 shows that qμ induces a
quasisymmetric map. This is essentially Proposition 14.14 of [14]. We
include a proof for completeness.

Corollary 3.3. Let X and μ be as in Proposition 3.1. Then the iden-

tity mapping i : (X, d) → (X, qμ) is quasisymmetric, and (X, qμ) is

Ahlfors 2-regular.

Proof. We denote q = qμ. We first show that i is a homeomorphism.

Since (X, d) is a compact metric space, it suffices to show that i is

continuous, i.e., that any q-ball Bq(x, r) contains a d-ball Bd(x, δ) for

some δ = δ(x, r). Suppose that this does not hold for some x ∈ X and

r > 0. Then there exists a sequence (xn)
∞
n=1 such that d(xn, x) → 0

but q(xn, x) � r for all n ∈ N. Now Proposition 3.1 implies

r � q(xn, x) � Cμ(Bd(x, 2d(x, xn)))
1/2 n→∞−→ 0,

which is a contradiction. Thus i is a homeomorphism. Let x, y, z ∈ X

be distinct. By Proposition 3.1 and Lemma 3.2 we have

q(x, y)

q(x, z)
� C

μ(Bxy)
1/2

μ(Bxz)1/2
� C

μ(B(x, 2d(x, y)))1/2

μ(B(x, 2d(x, z)))1/2
� η

(
d(x, y)

d(x, z)

)
,

where η : [0,∞) → [0,∞) is the homeomorphism

η(t) = Cmax{tα/2, t1/2α}.
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Thus i is η-quasisymmetric.

We next claim that μ is Ahlfors 2-regular on (X, q). Fix x ∈ X

and 0 < r < diam (X, q)/10. Since (X, q) is connected, there exists

y ∈ Sq(x, r). Now by Proposition 3.1,

C−2
S r2 � μ(Bxy) � C2

W r2.

On the other hand, the quasisymmetry of the identity map i and the

doubling property of μ give

C−1μ(Bq(x, r)) � μ(Bxy) � Cμ(Bq(x, r)),

where C depends only on CD and η. Combining the estimates gives

the 2-regularity. �
We are now ready to finish the proof of Theorem 1.2, modulo Propo-

sition 3.1. Indeed, Corollary 3.3 shows that there is a quasisymmetric
map from (X, d) onto the 2-regular (X, qμ). It is not difficult to see
that the quasisymmetric image of a LLC space is also LLC. Hence, by
Theorem 1.1, there exists a quasisymmetric map from (X, qμ) onto S

2.
Since the composition of two quasisymmetric maps is quasisymmetric,
Theorem 1.2 follows.

4. Separating chains in annuli

We prove Proposition 3.1 in two parts. In this section we find short
chains in annuli (Lemma 4.3). In the next section we take suitable
unions of these chains to connect given points.

We first show that it suffices to consider δ-chains with sufficiently
small δ. In what follows, we use notation

cBxy = B(x, cd(x, y)) ∪B(y, cd(x, y)).

Lemma 4.1. Let (X, d) be a compact, connected metric space admitting

a weak metric doubling measure μ of some dimension s > 0. Then for

any r > 0 there exists δr > 0 such that if x, y ∈ X with d(x, y) � r

then we have

(4) 2CWC
2/s
D qδrμ,s(x, y) � μ(Bxy)

1/s,

where CW and CD are the constants in (3) and (2), respectively.

Proof. Suppose to the contrary that (4) does not hold for some r >

0. Then there exists a sequence of pairs of points (xj, yj)j for which

d(xj, yj) � r and

q1/jμ,s (xj, yj) <
1

2CWC
2/s
D

μ(Bxjyj)
1/s
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for all j = 1, 2, 3, . . . . Then by compactness we can, after passing to a

subsequence, assume that xj → x and yj → y where also d(x, y) � r.

Let then k ∈ N be arbitrary and j � k so large that Bxjyj ⊂ 4Bxy,

d(x, xj), d(y, yj) �
1

k

and

(5) μ(Bxxj
)1/s + μ(Byyj)

1/s <
1

3CW

μ(Bxy)
1/s.

The last estimate is made possible by the fact that μ({z}) = 0 for

every point z in the case of a doubling measure and a connected space,

or more generally when the space is uniformly perfect (see [11, 5.3 and

16.2]). Now choose a 1
j
-chain z0, . . . , zm from xj to yj satisfying

(6)
m∑
i=1

μ(Bzizi−1
)1/s <

1

2CWC
2/s
D

μ(Bxjyj)
1/s � 1

2CW

μ(Bxy)
1/s

so that x, z0, . . . , zm, y is in particular a 1
k
-chain from x to y. Combining

(5) and (6), we have

q1/kμ,s (x, y) <
5

6CW

μ(Bxy)
1/s.

This contradicts (3) when k → ∞. �

In what follows, we will abuse terminology by using a non-standard
definition for separating sets.

Definition 4.2. Given A,B,K ⊂ X, we say that K separates A and

B if there are distinct connected components U and V of X \K such

that A ⊂ U and B ⊂ V .

Lemma 4.3. Suppose (X, d) is λ-LLC and homeomorphic to S
2, and

μ a weak metric doubling measure on X. Let k be the smallest integer

such that 2k > λ. Then there exists C > 1 depending only on λ, CD

and CW such that for any x ∈ X, 0 < r < 2−8kdiamX and δ > 0 there

exists a δ-chain x0, . . . , xp in the annulus B(x, 25kr) \ B(x, 22kr) such

that
p∑

j=1

μ(Bxjxj−1
)1/2 � Cμ(B(x, r))1/2

and the union ∪j5Bxjxj−1
contains a continuum separating B(x, r) and

X \B(x, 27kr).
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Proof. Let x ∈ X, 0 < r < 2−8kdiamX and δ > 0 be arbitrary. By

Lemma 4.1 we may assume without loss of generality that

(7) qδμ(y, z) �
1

C ′μ(Byz)
1/2

for any y ∈ S(x, 23kr), z ∈ S(x, 24kr) and also δ < r by finding a finer

chain than possibly asked.

Next we cover the annulus A = B(x, 25kr) \ B(x, 22kr) as follows:

Let ε > 0 be small enough so that μ(B(w, δ/10)) > ε2 for every w ∈ X

(see again [11, 16.2]). Then for every w ∈ A we can choose a radius

0 < rw < δ/10 with

ε2

2CD

� μ(B(w, rw)) � ε2.

Using the 5r-covering theorem, we find a finite number m of pairwise

disjoint balls Bj = B(wj, rj), rj = rwj
from the cover {B(w, rw)}w∈A,

such that

A ⊂
m⋃
j=1

5Bj ⊂ B(x, 26kr) \B(x, 2kr).

Observe that for any point z in the thinner annulus A′ = B(x, 24kr) \
B(x, 23kr) there exists a continuum in A joining z to some point y ∈
S(x, 23kr) by the LLC-property. Hence there exists a subcollection

B′
1, . . . , B

′
n of the cover (5Bj) forming a ball chain from this y to z,

meaning that y ∈ B′
1, z ∈ B′

n and B′
j ∩ B′

j+1 �= ∅. Thus we can define

a “counting” function u for this cover on A′ by setting u(z) to be the

smallest n ∈ {1, . . . ,m} so that there exists a ball chain (B′
i)
n
i=1 from

some y ∈ S(x, 23kr) to z.

Using (7), we find a lower bound for u on S(x, 24kr): Let y ∈
S(x, 23kr), z ∈ S(x, 24kr) be arbitrary and (B′

i)
n
i=1 = (B(w′

i, 5r
′
i))

n
i=1

the corresponding chain. Then y = w′
0, w

′
1, . . . , w

′
n, z = w′

n+1 is also a

δ-chain. Hence

μ(Byz)
1/2 � C ′

n+1∑
i=1

μ(Bw′
iw

′
i−1

)1/2 � C ′C3
Dnε

as every Bw′
iw

′
i−1

is contained in B(w′
l, 20rw′

l
), l = i or i−1. On the other

hand B(x, 27kr) ⊂ B(y, 27k+1r), and since the balls Bj are disjoint,

mε2 � μ(B(y, 27k+1r)) � C7k+1
D μ(Byz),

implying n2 � m/C ′′ or u(z) � √
m/C ′′.
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Let then n be the minimal value of u on S(x, 24kr) and for j =

1, 2, . . . , n define

Aj =
⋃

5Bi∩u−1(j) �=∅
5Bi.

By the definition of u each ball 5Bi can be contained in at most two

“level sets” Aj and so we obtain a constant C � 1 such that

min
1�j�n

∑
5Bi⊂Aj

μ(5Bi)
1/2 � 1

n

n∑
j=1

∑
5Bi⊂Aj

μ(5Bi)
1/2

� 1

n
C3

Dε · 2m

� 2C3
D

√
m

n

√
ε2m

� Cμ(B(x, r))1/2.

Let j ∈ {1, . . . , n} be the index for which the above left hand sum is

smallest. Since by construction Aj necessarily intersects any curve join-

ing B(x, 2kr) and X \B(x, 26kr), it separates B(x, r) and X \B(x, 27kr)

by the LLC-property as 2k > λ. Hence the closed set Aj contains a con-

tinuum K separating these sets by topology of S2, see for example [20]

V 14.3.. Now K is covered by a ball chain B(w′
0, 5r

′
0), . . . , B(w′

p, 5r
′
p)

of closures of balls 5Bi contained in Aj. Hence these points w
′
0, . . . , w

′
p

are the desired δ-chain, since clearly d(w′
i, w

′
i+1) � 5r′i + 5r′i+1 < δ and

p∑
i=1

μ(Bw′
iw

′
i−1

)1/2 � Cμ(B(x, r))1/2

by our choice of j. �

Remark 4.4. Note that in the claim of the above lemma the constant

C is uniform with respect to the required step δ of the chain; we can in

fact find arbitrarily fine chains and have the same estimate from above

for
∑

μ(Bj)
1/2. This is essentially obtained by the doubling property

and the 5r-covering theorem. We also work with dimension s = 2,

since passing from the lower estimate of 4.1 to the upper in the claim

we actually switch the power 1/s of the measure to (s − 1)/s, both

1/2 in the proof. Thus this argument seems not to apply for higher

dimension (see Question 6.3). Moreover the topology of S2 is used for

finding a single separating component, which is not always possible for

example on a torus.
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5. Proof of Proposition 3.1

In this section (X, d, μ) satisfies the assumptions of Proposition 3.1.
Lemma 4.3 and the 5r-covering lemma then give the following: For any
given B = B(x,R) ⊂ X and δ > 0 there is a cover of the x-component
U of B by at most M = M(λ,CD, L) balls {Bi}mi=1 with centers in U
such that for every i

(1) L−2μ(B) � μ(Bi) � L−1μ(B)

(2) A continuum Ki ⊂ 27kBi \Bi separates Bi and X \ 27kBi

(3) Ki ⊂
⋃

p 5Bxi
px

i
p−1

, where (xi
p)p is a δ-chain

(4)
∑

p μ(Bxi
px

i
p−1

)1/2 � Cμ(Bi)
1/2.

Here k is as in Lemma 4.3, L > C8k
D and C = C(λ,CD, CW ).

We would like to take unions of the continua Ki to join points. How-
ever, the union ∪iKi need not be a connected set. The following lemma
takes care of this problem. We denote by K̂i the interior of Ki, i.e.,
the component of X \Ki that contains Bi.

Lemma 5.1. Let i ∈ {1, 2}. Let Bi = B(xi, ri) ⊂ X be a (small)

ball and let Ki ⊂ 27kBi \ Bi be a continuum that separates Bi and

X \ 27kBi. Suppose K̂1∩ K̂2 �= ∅. If K1∩K2 = ∅, then either K1 ⊂ K̂2

and K̂1 ⊂ K̂2 or K2 ⊂ K̂1 and K̂2 ⊂ K̂1.

Proof. Since X is homeomorphic to S
2, path components of an open

set in X are exactly its components. In addition such components are

open. Since K1 and K2 are nonempty disjoint compact sets, there exist

path connected open sets U1, U2 ⊂ X such that K1 ⊂ U1 ⊂ X \ K2

and K2 ⊂ U2 ⊂ X \ K1. Let w ∈ K̂1 ∩ K̂2. Let γ : [0, 1] → X be a

path from w to z ∈ X \ (27kB1 ∪ 27kB2). By the separation properties

γ([0, 1]) intersects K1 and K2. Let

s = inf{t ∈ [0, 1] | γ(t) ∈ K1 ∪K2}.

Now s > 0 and γ̃ := γ|[0,s] is a path that intersectsK1∪K2 exactly once.

Without loss of generality we may assume γ(s) ∈ K1. By construction

of U1 the point w can be connected to any point in K1 inside X \K2.

Thus K1 ⊂ K̂2. Now let y ∈ K̂1. It suffices to show that there exists

a path in K̂2 from y to w. Suppose there is no such path. Now the

argument of the first part of this proof implies that K2 ⊂ K̂1. Let S

be the number obtained by changing the infimum in the definition of

s to the respective supremum. Necessarily γ(S) ∈ K2, since otherwise

we could construct a path in K̂2 from w to z. Since K2 ⊂ U2 ⊂ K̂1,
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there exists a path connecting w to γ(S) in K̂1, i.e., there exists a path

from w to z in K̂1, which is impossible. Thus K̂1 ⊂ K̂2. �

Motivated by Lemma 5.1 we say that a continuum Ki is maximal (in
{Ki}mi=1) if it is not contained in the interior of some other Kj. Define
K to be the union of all maximal continua in {Ki}mi=1. Clearly K is
compact. Let us show that it is also connected. Suppose Ki and Kj

are distinct maximal continua. Let B(i) and B(j) be the balls in {Bi}
that are contained in the interiors K̂i and K̂j, respectively. Since {Bi}
is a cover of the x-component of B, we can find a chain of balls in {Bi}
connecting any pair of points in the component. On the other hand,
every ball Bi intersects the x-component, so it suffices to consider the
case where B(i)∩B(j) �= ∅. By Lemma 5.1 either Ki∩Kj �= ∅ or we may

assume that Ki ⊂ K̂j, but the latter contradicts maximality. Thus K
is a continuum. We have now proved the following proposition.

Proposition 5.2. Fix L > C8k
D , δ > 0, and B = B(x,R) ⊂ X. Then

there are at most M = M(λ,CD, L) < ∞ balls Bi centered at the

x-component U of B such that

(1) U ⊂ ∪iBi

(2) μ(Bi) � 1
L
μ(B) for all i

(3) For every i there is a continuum Ki ⊂ 27kBi\Bi which separates

Bi and X \ 27kBi

(4) Ki ⊂
⋃

p 5Bxi
px

i
p−1

, where (xi
p)p is a finite δ-chain

(5)
∑

p μ(Bxi
px

i
p−1

)1/2 � Cμ(B)1/2, C = C(λ,CD, CW )

(6) the union K of all maximal continua in {Ki} is a continuum.

Now we can finish the proof of Proposition 3.1 with the following:

Lemma 5.3. There exists a constant C = C(λ,CD, CW ) such that for

any δ > 0 and x, y ∈ X,

qδμ(x, y) � Cμ(Bxy)
1/2.

Proof. Fix x, y ∈ X and apply Proposition 5.2 to B1 = B(x, 22kd(x, y))

with L = C15k
D . Note that x and y belong to the same component of

B1. Let z = x or z = y. Let us define balls Bl,z recursively for

l � 2. Define B1,z = B1. Suppose we have defined the set Bn,z for all

n � l. Apply Proposition 5.2 with the same L to Bl,z to find a ball

Bl,z
j which contains z. By Lemma 5.1 Bl,z

j is contained in the interior

of some maximal continuum K l,z
j′ . Define Bl+1,z = 27kBl,z

j′ . Note that

Proposition 5.2 also yields the balls Bn,z and Bn,z
i and continua Kn,z

i
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and Kn,z. Also, by the separation properties and Lemma 5.1

z ∈ Bl,z
j ⊂ K̂ l,z

j ⊂ K̂ l,z
j′ ⊂ 27kBl,z

j′ = Bl+1,z.

Let ε > 0 and let Bz = B(z, rz) be a ball with rz � 6δ and μ(Bz) �
C−1

D ε2. Define

Kz :=

lεz⋃
n=1

Kn,z

where lεz is the smallest integer l that satisfies K l,z ⊂ B(z, 100−1rz).

Such a number exists, since z ∈ Bl,z for all l. Moreover, our choice of

L gives C7k
D L−1 = τ < 1 and

(8) μ(Bl,z) � C7k
D L−1μ(Bl−1,z) � τμ(Bl−1,z) � . . . � τ (l−1)μ(B1).

In particular, diam(Bl,z)
l→∞−→ 0. We next show that Kz is a continuum.

It is clearly compact, and connectedness follows if

(9) Kn,z ∩Kn+1,z �= ∅.
Let j be the index for which 27kBn,z

j = Bn+1,z. To show (9) it suffices

to show that Kn,z
j ∩Kn+1,z

i �= ∅ for some maximal Kn+1,z
i . By Lemma

5.1 there exists a maximal continuum Kn+1,z
i such that the interiors of

Kn+1,z
i andKn,z

j intersect. Moreover either (9) holds or one ofKn+1,z
i ⊂

K̂n,z
j , Kn,z

j ⊂ K̂n+1,z
i is true for any such i. Suppose Kn,z

j ⊂ K̂n+1,z
i . By

separation properties Bn,z
j ⊂ 27kBn+1,z

i , which together with our choice

of L leads to a contradiction:

μ(Bn,z
j ) � μ(27kBn+1,z

i ) � C7k
D μ(Bn+1,z

i ) � C7k
D L−1μ(Bn+1,z)

= C7k
D L−1μ(27kBn,z

j ) � C14k
D L−1μ(Bn,z

j ) < μ(Bn,z
j ).

Now if (9) were not true, Kn+1,z
i ⊂ K̂n,z

j for every i for which the

interiors of Kn+1,z
i and Kn,z

j intersect. This is impossible, since every

ball Bn+1,z
i lies in the interior of some maximal continuum and at least

one of them intersects Kn,z
j . Hence (9) holds and Kz is a continuum.

Finally, define

K = Kx ∪Ky.

Note that K is a continuum, since by construction K1,x = K1,y. Recall

that for all i, j, z there exists a finite δ-chain (xi,j,z
p )p in 27kBi,z

j \ Bi,z
j

such that

Ki,z
j ⊂

⋃
p

5Bxi,j,z
p xi,j,z

p−1
⊂

⋃
p

6Bxi,j,z
p xi,j,z

p−1
,
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and ∑
p

μ(Bxi,j,z
p xi,j,z

p−1
)1/2 � Cμ(Bi,z

j )1/2.

Since the set of balls

B :=
{
B(xi,j,z

p , 6d(xi,j,z
p , xi,j,z

p−1)), B(xi,j,z
p−1, 6d(x

i,j,z
p , xi,j,z

p−1))
}
i,j,p,z

forms an open cover for the continuum K, we may extract a finite chain

of balls (Ai)
N−1
i=1 of the set B so that, denoting A0 = Bx, AN = By we

have Ai ∩ Ai−1 �= ∅ for i = 1, . . . N . Let x0 = x, x2N = y and for other

indices choose x2i ∈ Ai so that Ai = B(x2i, ri) for some ri � 6δ. Let

x2i−1 ∈ Ai ∩ Ai−1 for i = 1, . . . , N . Now (xi)
2N
i=0 is a 6δ-chain between

the points x and y. Moreover, by (8)

2N∑
i=1

μ(Bxixi−1
)1/2 � 2

N∑
i=0

μ(2Ai)
1/2 � C

N−1∑
i=1

μ(Ai)
1/2 + 4ε

� C
∑
B∈B

μ(B)1/2 + 4ε � C
∑
z,i,j,p

μ(B(xi,j,z
p , d(xi,j,z

p , xi,j,z
p−1)))

1/2 + 4ε

� C
∑
z,i,j

∑
p

μ(Bxi,j,z
p xi,j,z

p−1
)1/2 + 4ε � C

∑
z,i

∑
j

μ(Bi,z
j )1/2 + 4ε

� C
∑
z

∑
i

Mμ(Bi,z)1/2 + 4ε � CM
∑
z

∑
i

τ (i−1)/2μ(B1)1/2 + 4ε

� CMμ(B1)1/2 + 4ε = CMμ(B(x, 22kd(x, y)))1/2 + 4ε

� CMμ(Bxy)
1/2 + 4ε.

Since ε is arbitrary, the claim follows.

�

6. Concluding remarks

It is natural to ask if Theorem 1.2 remains valid with weak metric
doubling measures of dimension s �= 2. The two lemmas below show
that it does not.

Lemma 6.1. Let (X, d) be a linearly locally connected metric space

homeomorphic to S
2, and 0 < s < 2. Then X does not carry weak

metric doubling measures of dimension s.

Proof. Assume towards a contradiction that X carries such as measure

μ. Then there exists C > 0 such that for every x, y ∈ X the following
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holds: if (xi)
m
i=0 is a δ-chain from x to y and if δ is small enough, then

μ(Bxy)
1/2 = μ(Bxy)

1/2−1/sμ(Bxy)
1/s � Cμ(Bxy)

1/2−1/s

m∑
i=1

μ(Bxixi−1
)1/s

� Cμ(Bxy)
1/2−1/s max

i
μ(Bxixi−1

)1/s−1/2

m∑
i=1

μ(Bxixi−1
)1/2.

Notice that

max
i

μ(Bxixi−1
)1/s−1/2 → 0 as δ → 0.

Applying the estimates to all δ-chains and letting δ → 0, we conclude

that μ is a weak metric doubling measure of dimension 2 and

μ(Bxy)
1/2 � εqμ,2(x, y) for all ε > 0.

Since μ(Bxy) > 0 for all distinct x and y, if follows that qμ,2(x, y) = ∞.

This contradicts Theorem 1.2. �

Lemma 6.2. Fix s > 2. Then there exists a metric space (X, d), home-

omorphic to S
2 and LLC, such that X carries a weak metric doubling

measure of dimension s but there is no quasisymmetric f : X → S
2.

Proof. Let (R2, d) be a Rickman rug; d is the product metric

d((x1, y1), (x2, y2)) =
(
|x1 − x2|2 + |y1 − y2|2/(s−1)

)1/2

.

It is well-known that there are no quasisymmetric maps from (R2, d)

onto the standard plane. Moreover, it is not difficult to show that

μ = H1 × Hs−1 is a weak metric doubling measure of dimension s on

(R2, d). To construct a similar example homeomorphic to S
2, one can

apply a suitable stereographic projection. �
It would be interesting to extend Theorem 1.2 to higher dimensions.

Recall that the Bonk-Kleiner theorem (Theorem 1.1) does not extend
to dimensions higher than 2, see [24], [15], [21].

Question 6.3. Let (X, d) be a metric space homeomorphic to S
n,

n � 3. Assume thatX is linearly locally contractible and carries a weak

metric doubling measure of dimension n. Is there a quasisymmetric

f : (X, d) → (X, d′), where (X, d′) is Ahlfors n-regular?

Recall that (X, d) is linearly locally contractible if there exists λ′ � 1
such that B(x,R) ⊂ X is contractible in B(x, λ′R) for every x ∈ X, 0 <
R < diamX/λ′. Linear local contractibility is equivalent to the LLC
condition when X is homeomorphic to S

2, see [4].
The basic tool in the proof of Theorem 1.2 was a coarea-type estimate

for real-valued functions. Extending our method to higher dimensions
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would require similar estimates for suitable maps with values in R
n−1,

which are difficult to construct when n � 3. This problem is related
to the deep results of Semmes [25] on Poincaré inequalities in Ahlfors
n-regular and linearly locally contractible n-manifolds.

Finally, it is also desirable to characterize the metric spheres that can
be uniformized by quasiconformal homeomorphisms which are more
flexible than quasisymmetric maps, see [22]. However, it is not clear
which definition of quasiconformality should be used in the generality
of possibly fractal surfaces. Our methods suggest a measure-dependent
modification to the familiar geometric definition. More precisely, given
a measure μ, conformal modulus should be defined applying not the
usual path length but a μ-length as in Section 2.
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UNIFORMIZATION WITH INFINITESIMALLY METRIC

MEASURES

KAI RAJALA, MARTTI RASIMUS, AND MATTHEW ROMNEY

Abstract. We consider extensions of quasiconformal maps and the uni-
formization theorem to the setting of metric spaces X homeomorphic to
R

2. Given a measure μ on such a space, we introduce μ-quasiconformal
maps f : X → R

2, whose definition involves deforming lengths of curves
by μ. We show that if μ is an infinitesimally metric measure, i.e., it sat-
isfies an infinitesimal version of the metric doubling measure condition
of David and Semmes, then such a μ-quasiconformal map exists. We ap-
ply this result to give a characterization of the metric spaces admitting
an infinitesimally quasisymmetric parametrization.

1. Introduction

The quasisymmetric uniformization problem asks one to characterize, as
meaningfully as possible, those metric spaces which may be mapped onto
a domain in the Euclidean plane, or the 2-sphere, by a quasisymmetric
homeomorphism. Informally, a mapping is quasisymmetric if it roughly
preserves the relative distance between triples of points. See Section 4 for
the precise definition.

Significant results on the uniformization problem, such as the Bonk–
Kleiner theorem [4] and its extensions in [21] and [22], have been obtained
for surfaces that are non-fractal, i.e., their 2-dimensional Hausdorff measure
is locally finite. These spaces carry enough rectifiable paths for classical
methods such as conformal modulus to be applicable. By surface, we mean
a 2-manifold equipped with a continuous metric.

In contrast, the class of fractal surfaces is too general for the standard
methods. Consequently, understanding the quasisymmetric uniformization
of fractal surfaces has proved extremely difficult. Any progress is desirable,
especially due to applications to geometric group theory (cf. [3], [12]) and
complex dynamics (cf. [5]).

The usual method for constructing quasisymmetric maps is to first show
the existence of some conformal or quasiconformal map in the spirit of the
classical uniformization theorem. Then, if the underlying surface has good
geometric properties, one can use quasiconformal invariants to show that
such a map is actually quasisymmetric.

A fundamental difficulty in extending this method to fractal surfaces is
the lack of a suitable definition of quasiconformality. The classical metric
definition (see Section 4) is too weak to lead to a satisfactory theory in this

Mathematics Subject Classification 2010: Primary 30L10, Secondary 30C65, 28A75,
51F99.
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generality. The geometric definition (see Section 2) requires the existence of
many rectifiable paths, which need not be the case for fractal surfaces.

In Section 2 we propose the definition of μ-quasiconformality for homeo-
morphisms f : X → R

2, depending on a measure μ on X. This is a modi-
fication of the geometric definition: we deform the metric on X using μ to
obtain the μ-length of a curve, and we define the corresponding μ-modulus
of a family of curves in X. A homeomorphism f is μ-quasiconformal if the
μ-modulus of every family of curves in X is comparable to the conformal
modulus of its image under f in R

2.
A quasisymmetric map f : X → R

2 is μ-quasiconformal when μ is the
pullback of the Lebesgue measure on R

2. Our goal is to find measures μ on
a given space X for which the existence of μ-quasiconformal maps can be
shown.

In Section 3 we introduce the notion of infinitesimally metric measure on
X. These correspond to the metric doubling measures of David and Semmes
[6], [13], the correspondence being similar to the one between metrically
quasiconformal (MQC) maps and quasisymmetric (QS) maps, where the
former is an infinitesimal condition and the latter is a global condition.
Metric doubling measures can be used to produce quasisymmetric maps
via deformation of the metric on X. Our first main result shows that a
μ-quasiconformal map exists if μ is an infinitesimally metric measure.

THEOREM 1.1. Let X be a metric space homeomorphic to R
2 which

supports an infinitesimally metric measure μ. Then there exists a μ-quasi-

conformal map f : X → Ω, where Ω = D ⊂ R
2 or Ω = R

2.

To prove Theorem 1.1, we first show that the metric d on X can be
deformed using μ to yield a “quasiconformally equivalent” metric q that
has locally finite Hausdorff 2-measure. Then, we apply the uniformization
theorem in [14] to obtain a quasiconformal map (X, q) → R

2. Composing,
we then get the desired μ-quasiconformal map.

In view of the correspondence between infinitesimally metric measures and
metric doubling measures, it is natural to attempt to characterize the class
of metric spaces X that admit metrically quasiconformal maps f : X → R

2

in terms of infinitesimally metric measures. However, it turns out that the
existence of such maps can be rather arbitrary unless strong conditions are
imposed on X.

Instead, we consider the notion of infinitesimally quasisymmetric (I-QS)
mapping (Definition 4.1). Such maps form an intermediate class between
those of MQC and QS maps. In our second main result, we characterize
the metric spaces which admit such maps into R

2 as the spaces that carry
infinitesimally metric measures with suitable properties.

THEOREM 1.2. Let X be a metric space homeomorphic to R
2. There

exists an infinitesimally quasisymmetric map f : X → Ω, where Ω = D or

Ω = R
2, if and only if X is infinitesimally linearly locally connected and sup-

ports an infinitesimally metric measure μ such that (X,μ) is infinitesimally

Loewner.
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See Section 4 for definitions. The proof combines Theorem 1.1 with esti-
mates for the μ-modulus that generalize the modulus estimates in [11].

One motivation for our work is to understand the conformal geometry
of metric surfaces in the absence of strong geometric assumptions such as
Ahlfors regularity, linear local connectedness and the Loewner condition (see
Section 4). In Section 5, we present four examples to illustrate possible be-
haviors of metric surfaces under weaker geometric assumptions. We remark
that, while the main theorems of this paper are applicable to any metric
space homeomorphic to R

2, including fractal spaces, all of these examples
have locally finite Hausdorff 2-measure. The four examples are summarized
here, listed by section in which they appear.

5.1. A surface that admits an MQC parametrization by R
2 but not an

I-QS parametrization. This surface is linearly locally connected
(LLC) but not Loewner. This example also illustrates how metric
quasiconformality is not preserved under taking inverses or precom-
posing with a QS map.

5.2. A surface that admits a geometrically quasiconformal (QC) para-
metrization by R

2 but not a MQC parametrization. This surface is
upper Ahlfors 2-regular but not infinitesimally LLC.

5.3. A surface that admits an I-QS parametrization by R
2 but not a

quasisymmetric parametrization. This surface is upper Ahlfors 2-
regular but not LLC.

5.4. A surface that, despite being a geodesic space of locally finite Haus-
dorff 2-measure, violates infinitesimal upper Ahlfors 2-regularity at
every point along a nondegenerate continuum. This surface is LLC,
and it admits a QC parametrization by R

2 but not a MQC parame-
trization.

In particular, these examples show that the class of I-QS maps from R
2 onto

a metric space differs from both the class of QS maps and the class of MQC
maps.

2. μ-quasiconformal maps

We assume throughout the paper that (X, d) is a metric space homeomor-
phic to the Euclidean plane R2. We denote B(x, r) = {y ∈ X : d(x, y) < r},
B(x, r) = {y ∈ X : d(x, y) � r}, and S(x, r) = {y ∈ X : d(x, y) = r}.
If B is a ball of radius r, we denote by λB the ball with the same center
and radius λr. A path in X is a continuous map γ : I → X, where I is an
interval. The image of such a path is called a curve in X.

We recall the Carathéodory construction of measures, cf. [7, 2.10]. Let F
be a family of subsets of X, and ϕ : F → [0,∞]. For A ⊂ X and δ > 0, the
δ-content φδ(A) is

φδ(A) = inf
∑
S∈G

ϕ(S),

where the infimum is taken over all countable

G ⊂ {S ∈ F : diam(S) � δ} such that A ⊂
⋃
S∈G

S.
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Then, since φδ(A) is decreasing with respect to δ, the limit

ψ(A) = lim
δ→0+

φδ(A) ∈ [0,∞]

exists. Moreover, if every S ∈ F is a Borel set, then ψ is a Borel regular
measure in X.

Applying the Carathéodory construction with F all the non-empty subsets
of X and φ(S) = α(m)2−m diam(S)m gives the m-dimensional Hausdorff
measure Hm in X, where α(1) = 2 and α(2) = π.

Before defining μ-quasiconformal maps, we review the classical geometric
definition of quasiconformality. However, we replace the standard modulus
of path families with the modulus of curve families, which lead to equivalent
definitions but are easier to work with in our setting.

Let Γ be a family of curves (i.e., images of paths) in X. A Borel function
ρ : X → [0,∞] is admissible for Γ if

´
C ρ dH1 � 1 for all C ∈ Γ with locally

finite H1-measure. The (conformal) modulus of Γ is defined as

(1) modΓ = inf

ˆ
X
ρ2 dH2,

where the infimum is taken over all admissible functions ρ.
Let X,Y be metric spaces homeomorphic to R

2 and f : X → Y a home-
omorphism. Then f is geometrically quasiconformal (QC), if there exists
K � 1 such that

K−1modΓ � mod fΓ � KmodΓ

for all curve families Γ in X. In this case, we also say that f is geometrically
K-quasiconformal (K-QC).

We now define μ-quasiconformal maps. Let μ be a Radon measure in X
with no atoms such that μ(B) > 0 for every open ball B ⊂ X. Recall that
a Borel regular measure μ is Radon if it is finite on compact sets.

We associate with μ a collection B of open balls in X such that for every
point x ∈ X there is rx > 0 such that B(x, r) ∈ B for every r < rx. We also
make the requirement that B(x, rx) is compact for all x. We refer to such
a collection B as an admissible cover. From now on we use the convention
that every measure μ comes equipped with an admissible cover B.

Definition 2.1. The μ-length measure �μ in X is defined by the Carathéo-

dory construction with F = B and ϕ : B → [0,∞], ϕ(B) = 2π−1/2μ(B)1/2.

The �μ is normalized so that if X = R
2 and μ the Lebesgue measure, then

�μ = H1 (for any choice of B).

Definition 2.2. Let Γ be a family of curves in X. We say that a Borel

function ρ : X → [0,∞] is μ-admissible for Γ if
´
C ρ d�μ � 1 for all C ∈ Γ

with locally finite �μ-measure. We denote the set of such functions by Φμ(Γ).

The μ-modulus of Γ is

modμ Γ = inf
ρ∈Φμ(Γ)

ˆ
X
ρ2 dμ.
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Notice that if �μ(C) = 0 for some C ∈ Γ, then there are no μ-admissible
functions for Γ and thus modμ Γ = ∞. On the other hand, if �μ is not
locally finite on any C ∈ Γ, then modμ Γ = 0. Definition 2.2 coincides with
(1) when X = R

2 and μ the Lebesgue measure.

Definition 2.3. Let f : X → Ω be a homeomorphism, where Ω is a domain

in R
2. We say that f and f−1 are μ-quasiconformal, if there exists K � 1

such that

K−1modμ Γ � mod fΓ � Kmodμ Γ

for every curve family Γ in X.

Definition 2.3 naturally leads to the following questions:

(1) How to decide if a given metric space X carries a measure μ for
which there exists a μ-quasiconformal map into R

2?
(2) How to decide if there exists a μ-quasiconformal map for a given

(X,μ)?

Concerning Question (2), it is reasonable to ask if the reciprocality condition
(Definition 3.7 below) can be modified to yield a characterization similar to
the one obtained in [14] for the 2-dimensional Hausdorff measure. In the
next section we introduce infinitesimally metric measures and show that
they lead to the existence of μ-quasiconformal maps.

3. Infinitesimally metric measures

We now define the infinitesimally metric measures. Let X, μ, B and �μ
be as above. Moreover, for x, y ∈ X let

q(x, y) = inf �μ(C(x, y)),
where the infimum is taken over all curves C(x, y) that join x and y in X.
Thus q defines a pseudometric on X. In the following, we use the subscripts
d and q to indicate which (pseudo)metric is being used in our notation for
balls, spheres, and diameter.

Definition 3.1. The measure μ is infinitesimally metric (I-MM) if there

exist Λ > 1, Ci � 1 such that

(2) C−1
i q(y, z) � μ(Bd(x, r))

1/2 � Ciq(y, z)

for every Bd(x, r) ∈ B, y ∈ Bd(x, r/Λ) and z ∈ Sd(x, r).

It follows immediately from the definition that if μ is I-MM, then q is a
metric on X.

Recall that a metric space X is (Ahlfors) 2-regular if there exists C � 1
such that C−1r2 � H2(B(x, r)) � Cr2 for all x ∈ X, r ∈ (0, diamX). We
say that X is lower or upper 2-regular if, respectively, the first or second
of these inequalities holds. Definition 3.1 imposes a similar infinitesimal
condition on the measure μ. In fact, we show in Lemma 3.4 and Lemma 3.5
that (X, q) is infinitesimally Ahlfors 2-regular.

The remainder of this section is dedicated to the proof of Theorem 1.1.
We first restate the theorem.
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THEOREM 3.2. Let X be a metric space homeomorphic to R
2 which

supports an I-MM μ. Then there exists a μ-quasiconformal map f : X → Ω,

where Ω = D ⊂ R
2 or Ω = R

2.

As groundwork, we require several lemmas to estimate the 1- and 2-
dimensional Hausdorff measures corresponding to the metric q.

We fix an I-MM μ. Let B = {Bd(x, r) : x ∈ X, r < rx} be the admissible
cover associated with μ. The assumption that μ has no atoms implies that
limr→0 μ(Bd(x, r)) = 0 for all x ∈ X. Definition 3.1 then implies that the
metrics d and q are topologically equivalent.

Lemma 3.3. We have

μ(Bd(x, r)) � C2
i μ(Bd(x, r))

for every Bd(x, r) ∈ B, where Ci is the constant in Definition 3.1.

Proof. Since Bd(x, r) is compact and X homeomorphic to R
2, there exists

a point z ∈ ∂(X \ Bd(x, r)). Observe that z ∈ Sd(x, r). Let ε > 0, and let

w ∈ Bq(z, ε) such that r < d(x,w) < rx. Now,

μ(Bd(x, r))
1/2 � μ(Bd(x, d(x,w))

1/2

� Ciq(x,w) � Ciq(x, z) + Ciε

� C2
i μ(Bd(x, r))

1/2 + Ciε.

Letting ε→ 0 proves the claim. �

Lemma 3.4. We have

C−2
i r2 � μ(Bq(x, r)) � C3

i r
2

for every ball Bq(x, r) contained in Bd(x, rx/2), where Ci is the constant in

Definition 3.1.

Proof. Let

s = inf
y∈X\Bq(x,r)

d(x, y) and t = sup
z∈Bq(x,r)

d(x, z).

Clearly Bd(x, s) ⊂ Bq(x, r). We claim that there exists y ∈ Sd(x, s) such

that q(x, y) � r. If not, thenX\Bq(x, r) and Bd(x, s) are disjoint closed sets,

with Bd(x, s) compact. This implies that dist(X \ Bq(x, r), Bd(x, s)) > 0,

contradicting the definition of s. Since μ is assumed to be I-MM, we have

μ(Bq(x, r)) � μ(Bd(x, s)) � C−2
i r2.

Likewise, Bq(x, r) ⊂ Bd(x, t). Similarly to the first part of the proof, we

note that (X \Bd(x, t)) ∩Bq(x, r) �= ∅. Thus, there exists z ∈ Sd(x, t) such

that q(x, z) � r. Since μ is I-MM, Lemma 3.3 gives

μ(Bq(x, r)) � μ(Bd(x, t)) � C2
i μ(Bd(x, t)) � C3

i r
2. �

For s, δ > 0, let Hs
q and Hs

q,δ denote the s-dimensional Hausdorff measure

and Hausdorff δ-content on (X, q), respectively.
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Lemma 3.5. We have
π

4C2
i

μ(A) � H2
q(A) � 100πC2

i μ(A)

for any Borel set A ⊂ X, where Ci is the constant in Definition 3.1.

Proof. Let δ > 0, and let U ⊂ X be an open set with A ⊂ U and μ(U) �
μ(A) + δ. Using the basic covering theorem (see [9, Thm. 1.2]), choose

a sequence of pairwise disjoint balls Bj = Bq(xj , rj) with Bj ⊂ U , Bj ⊂
Bd(xj , rxj/2) and 10rj < δ for all j, such that U ⊂ ∪∞

j=15Bj . Then

H2
q,δ(A) � π

∞∑
j=1

(10rj)
2 � Cπ

∞∑
j=1

μ(Bj) � Cπμ(U) � Cπ(μ(A) + δ),

where C = 100C2
i (the π comes from the normalization of H2). The upper

bound for H2
q(A) follows.

For the lower bound, fix n and define the Borel set

An = {x ∈ A : Bq(x, 1/n) ⊂ Bd(x, rx/2)} ∩A.
Let {Ej} be a cover for An with diamq(Ej) <

1
2n for all j. Removing

sets from the cover if necessary, we may assume that for every j there exists

xj ∈ An such that Ej ⊂ Bq(xj , 2 diamq Ej) and Bq(xj , 1/n) ⊂ Bd(xj , rxj/2).

Since

μ(An) �
∞∑
j=1

μ(Bq(xj , 2 diamq Ej)) � 4C2
i

∞∑
j=1

diamq(Ej)
2,

we get
π

4C2
i

μ(An) � H2
q,1/2n(An) � H2

q(A).

Since μ(A) = limn→∞ μ(An), the claim follows. �

Lemma 3.6. We have

2

Ci
√
π
H1

q(A) � �μ(A) �
4C3

i√
π
H1

q(A)

for any Borel set A ⊂ X, where Ci is the constant in Definition 3.1.

Proof. Since X is homeomorphic to R
2, it is locally compact and can be

exhausted by compact sets Xj . We can also approximate both �μ(A) and

H1
q(A) from below with the measures of the sets Aj = A ∩ Xj , and by

considering some compact neighbourhood Xj+k of Aj we can assume that

sup
x∈X

diamq(Bd(x, r)), sup
x∈X

diamd(Bq(x, r)) → 0 as r → 0.

We first consider Borel sets

An = {x ∈ A : 1/n < rx} ∩A, n ∈ N.

Let σ > 0 be arbitrary and δ > 0 small enough so that diamd(Bq(x, 2δ)) <

min{σ, 1/n} for every x. Fix any cover {Ej} of An with diamq(Ej) < δ
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for all j. Removing sets from the cover if necessary, we may assume that

for every j there exists xj ∈ An such that dist({xj}, Ej) < diamq(Ej) and

rxj > 1/n. Let

tj = inf{t > 0 : Ej ⊂ Bd(xj , t)}.
Then for every j we have Ej ⊂ Bd(xj , tj). Moreover, since

Ej ⊂ Bq(xj , 2 diamq Ej) ⊂ Bq(xj , 2δ),

we have tj < min{σ, 1/n}.
For every j,m ∈ N there exists yjm ∈ Ej \Bd(xj , tj − 1/m), so that

μ(Bd(xj , tj − 1/m))1/2 � Ciq(xj , y
j
m).

Since yjm ∈ Bq(xj , 2 diamq Ej), we have μ(Bd(xj , tj))
1/2 � 2Ci diamq(Ej).

Recall that �μ is defined by the Carathéodory construction: �μ(An) =

limσ→0 �μ,σ(An), where �μ,σ is the corresponding σ-content. By Lemma 3.3

we get

�μ,σ(An) � 2π−1/2
∑
j

μ(Bd(xj , tj))
1/2 � 2π−1/2C2

i

∑
j

μ(Bd(xj , tj))
1/2

� 4π−1/2C3
i

∑
j

diamq(Ej)

(the 2π−1/2 comes from the normalization of �μ) and hence �μ,σ(An) �
2π−1/2C3

i H1
q(An). This holds for all σ > 0 and n ∈ N, so we have �μ(A) �

4π−1/2C3
i H1

q(A).

The other inequality can be proved more directly, with similar arguments

but without the need to consider the sets An. �
We will apply the main result in [14]. It depends on the following defini-

tion. A quadrilateral Q = Q(ζ1, ζ2, ζ3, ζ4) is a set homeomorphic to a closed
square in R

2, with boundary edges ζ1, ζ2, ζ3, ζ4 (in cyclic order). For sets
E,F ⊂ G, Γ(E,F ;G) denotes the family of curves in G that join E and
F . While path families were considered in [14], the results applied below
remain valid when they are replaced with curve families.

Definition 3.7. Let Y be a metric space homeomorphic to R
2 with locally

finite Hausdorff 2-measure. The space Y is reciprocal if there exists κ � 1

such that for all quadrilaterals Q = Q(ζ1, ζ2, ζ3, ζ4) in X,

(3) modΓ(ζ1, ζ3;Q)modΓ(ζ2, ζ4;Q) � κ

and for all x ∈ X and R > 0 such that X \B(x,R) �= ∅,
(4) lim

r→0
modΓ(B(x, r), X \B(x,R);B(x,R)) = 0.

It was shown in [15] that the inequality opposite to (3) holds in every Y .
That is, there exists a universal constant κ′ > 0 such that

modΓ(ζ1, ζ3;Q)modΓ(ζ2, ζ4;Q) � κ′

for all quadrilaterals Q ⊂ Y .
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THEOREM 3.8 (Theorem 1.4 [14]). Let Y be a metric space homeomor-

phic to R
2, with locally finite Hausdorff 2-measure. There exists a QC map

h : Y → Ω ⊂ R
2 if and only if Y is reciprocal.

The next proposition is a generalization of Theorem 1.6 from [14], where
the mass upper bound is assumed for every radius.

Proposition 3.9. Let Y be a metric space homeomorphic to R
2. Suppose

there exist CU > 0 and for every y ∈ Y a radius ry > 0 such that

(5) H2(B(y, r)) � CUr
2

for every r < ry. Then Y is reciprocal.

Proof. Condition (4) follows by considering the admissible function

ρ(z) =
1

log(R/r)d(y, z)
.

To prove (3), we modify the proof of [14, Proposition 15.5]. We give the main

steps and refer to [14] for the missing details. Let Q = Q(ζ1, ζ2, ζ3, ζ4) be

a quadrilateral. Then there exists a ρ that is weakly admissible (admissible

outside an exceptional curve family of zero modulus) for Γ(ζ1, ζ3;Q), such

that ˆ
Y
ρ2 dH2 = modΓ(ζ1, ζ3;Q).

Fix a curve C ∈ Γ(ζ2, ζ4;Q). We may assume that C is homeomorphic to

[0, 1] and has finite length. Using the basic covering theorem, we find a finite

cover {5Bj} = {B(yj , 5rj)} of C such that yj ∈ C and 36rj < ry for all j, and

such that the balls Bj are pairwise disjoint. Moreover, let g : Q→ [0,∞],

(6) g(y) =
∑
j

r−1
j χ6Bj∩Q(y).

Since every C′ in Γ(ζ1, ζ3;Q) intersects at least one of the balls 5Bj , it

follows that g is admissible for Γ(ζ1, ζ3;Q). Moreover, since ρ is a minimizer

for modΓ(ζ1, ζ3;Q), applying the weak admissibility of (1 − t)ρ + tg and

letting t→ 0 leads to

(7) modΓ(ζ1, ζ3;Q) �
ˆ
Q
ρg dH2 =

∑
j

r−1
j

ˆ
6Bj∩Q

ρ dH2.

For the maximal function Mρ : Q→ [0,∞],

Mρ(z) = sup
r>0

1

H2(B(z, 5r))

ˆ
B(z,r)∩Q

ρ dH2,

standard arguments show that

(8)

ˆ
Q
(Mρ)2 dH2 � 8

ˆ
Q
ρ2 dH2.
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Now we apply (5) to estimate the right hand term of (7) from above by

1296CU

∑
j

rj
H2(B(yj , 36Bj)

ˆ
B(yj ,6j)∩Q

ρ dH2

� 1296CU

∑
j

rj inf
y∈C∩Bj

Mρ(y).

Since the right hand term is bounded from above by 1296CU

´
C Mρ dH1, we

conclude that

y �→ 1296CUMρ(y)

modΓ(ζ1, ζ3;Q)

is admissible for Γ(ζ2, ζ4;Q). Combining the admissibility with (6) and (8),

we have

modΓ(ζ2, ζ4;Q) � 8 · 12962C2
U

modΓ(ζ1, ζ3;Q)
,

from which (4) follows. �

Proof of Theorem 1.1. By Lemmas 3.4 and 3.5, the space (X, q) satisfies

the assumption of Proposition 3.9. Thus by Theorem 3.8 there exists a

QC map h : (X, q) → Ω ⊂ R
2. By the Riemann mapping theorem, we can

choose h such that Ω = D or Ω = R
2. Moreover, by Lemmas 3.5 and 3.6

the μ-modulus modμ(Γ) and the conformal 2-modulus mod2(Γ) in X are

comparable for any curve family Γ, so h precomposed with the identity map

from (X, d) to (X, q) is μ-quasiconformal. �

4. Infinitesimally quasisymmetric maps

In this section we introduce the notion of infinitesimally quasisymmetric
map and apply our results on infinitesimally metric measures to give a char-
acterization for the spaces that admit such a parametrization by a Euclidean
planar domain.

Recall that a homeomorphism f : (X, d) → (Y, d′) between metric spaces
is quasisymmetric (QS) if there exists a homeomorphism η : [0,∞) → [0,∞)
such that

(9)
d(x, y)

d(x, z)
� t implies

d′(f(x), f(y))
d′(f(x), f(z))

� η(t)

for all distinct points x, y, z ∈ X. Closely related is the following definition.
A homeomorphism f : (X, d) → (Y, d′) between metric spaces is metrically
quasiconformal (MQC) if there exists H � 1 such that

lim sup
r→0

sup{d′(f(x), f(y)) : d(x, y) � r}
inf{d′(f(x), f(y)) : d(x, y) � r} � H

for all x ∈ X.

Definition 4.1. A homeomorphism f : (X, d) → (Y, d′) is infinitesimally

quasisymmetric (I-QS) if there exists a homeomorphism η : [0,∞) → [0,∞)

such that for every x ∈ X there exists a radius rx > 0 such that (9) holds

for all y, z ∈ B(x, rx).
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It is a standard exercise to show that if f : X → Y and g : Y → Z are
QS, then g ◦ f and f−1 are also QS. These properties also hold for the class
of I-QS maps. Note that both properties may fail for MQC maps, even for
metric spaces homeomorphic to R

2. In Section 5.1, we give an example of
this.

It is immediate from the definitions that any QS map is I-QS, and any I-
QS is MQC. Thus infinitesimal quasisymmetry is an intermediate condition
between quasisymmetry and metric quasiconformality. In Section 5.3, we
give an example of a map which is I-QS but not QS.

Recall that a metric space (X, d) is linearly locally connected (LLC) if
there exists λ � 1 such that the following properties hold:

(1) For any x ∈ X, r > 0 and y, z ∈ B(x, r) there exists a continuum
K ⊂ B(x, λr) with y, z ∈ K.

(2) For any x ∈ X, r > 0 and y, z ∈ X \B(x, r) there exists a continuum
K ⊂ X \B(x, λ−1r) with y, z ∈ K.

Definition 4.2. A metric space (X, d) is infinitesimally linearly locally con-

nected (I-LLC) if there exists Λ � 1 such that for every x ∈ X there exists

a radius rx > 0 such that the above properties hold for all r < rx.

It is easy to see that the LLC property is preserved under QS maps. Sim-
ilarly, I-QS maps preserve the I-LLC property. Since every planar domain
is I-LLC, any metric space that admits an I-QS map to such a domain must
also be I-LLC.

Finally, we introduce a modification of the Loewner condition of Heinonen
and Koskela [11]. We denote by Γ(A,B) the family of curves which join sets
A and B in X. Recall that X (equipped with H2) is Loewner if there exists
a decreasing function φ : (0,∞) → (0,∞) such that modΓ(E,F ) � φ(t) for
all disjoint nondegenerate continua E,F satisfying

(10)
dist(E,F )

min{diamE, diamF} � t.

Also, recall our convention that any measure μ comes equipped with an
admissible cover B = {B(x, r) : 0 < r < rx}.
Definition 4.3. A metric space X equipped with a measure μ is infinitesi-

mally Loewner (I-Loewner) if there exists a decreasing function φ : (0,∞) →
(0,∞) such that modμ Γ(E,F ) � φ(T ) for all disjoint continua E,F such

that E joins x and S(x, t), F ⊃ S(x, rx) joins S(x, s) and S(x, rx), and

0 < s, t < rx/2, s/t � T .

It follows from the Loewner property of R2 that every planar domain,
equipped with Lebesgue measure and any admissible cover, is I-Loewner.
The remainder of this section is dedicated to the proof of Theorem 1.2. We
first restate the theorem.

THEOREM 4.4. Let X be a metric space homeomorphic to R
2. There

exists an I-QS map f : X → Ω, where Ω = D or Ω = R
2, if and only if X is

I-LLC and supports an I-MM μ such that (X,μ) is I-Loewner.
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To prove the theorem, we first show in Lemma 4.5 and Proposition 4.7
that if f : X → Ω is I-QS, then the pullback of Lebesgue measure satisfies the
conditions of the theorem (we already noticed that the existence of f forces
X to be I-LLC). For the other direction, we show in Proposition 4.8 that
μ-quasiconformal maps X → Ω ⊂ R

2, such as the map in Theorem 1.1, are
I-QS under these conditions. Proposition 4.8 can be seen as an infinitesimal
analog of [11, Theorem 4.7], and it is proved using similar arguments.

Lemma 4.5. Let f : X → Ω ⊂ R
2 be an I-QS map, and μ = f∗L2 the

pullback measure of the Lebesgue measure L2. Equip μ with admissible cover

B = {B(x, r) : 0 < r < rx}, where the rx are the radii in Definition 4.1 of

I-QS maps. Then

η(1)−1H1(f(C)) � �μ(C) � 4η(5)H1(f(C))
for any curve C ⊂ X.

Proof. We may assume that the curve C is simple and compact. As in

Lemma 3.5, it suffices to prove the claim for sets C for which there exists

δ > 0 such that the set of points x satisfying B(x, δ) ∈ B is dense in C.
Fix such a δ and a sequence (Bj) = (B(xj , rj)) of disjoint balls such that

xj ∈ C, 5Bj ∈ B, 5rj < δ and C ⊂ ∪j5Bj , ordered so that if γ is any injective

parametrization of C then sj = γ−1(xj) is a monotone sequence.

Let

Tj = sup{t > 0 : B(f(xj), t) ⊂ f(Bj)}
for every j. Then there exists zj ∈ X with d(xj , zj) � rj and |f(xj)− f(zj)| �
2Tj . Using the infinitesimal quasisymmetry of f we find that for any yj ∈
5Bj

|f(xj)− f(yj)| � η(5)|f(xj)− f(zj)|
so that f(5Bj) ⊂ B(f(x), 2η(5)Tj). By the choice of Tj also B(f(x), Tj) ⊂
f(Bj) and thus

μ(5Bj) = L2(f(5Bj)) � 4πη(5)2T 2
j � 4πη(5)2|f(xj)− f(xk)|2

for all k �= j as the balls Bj are disjoint. Now the δ-content �μ,δ satisfies

�μ,δ(C) � 2π−1/2
∑
j

μ(5Bj)
1/2 � 4η(5)

∑
j

|f(xj)− f(xj+1)|.

Since f(C) is the nonoverlapping union of the subcurves connecting f(xj)

and f(xj+1), we have �μ,δ(C) � 4η(5)H1(f(C)) for any δ > 0 and thus

�μ(C) � 4η(5)H1(f(C)).
To prove the other inequality, fix ε > 0 and let Bj = B(xj , rj) be a

sequence of balls in B covering C with diamBj < σ and Bj ∩ C �= ∅ for all j

and some σ > 0. Since X is locally compact and C is compact, diam f(Bj) <

ε for all j when σ is sufficiently small.
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By the infinitesimal quasisymmetry of f we have

diam f(Bj)
2 � 4π−1η(1)2L2(f(Bj)) = 4π−1η(1)2μ(Bj)

for every j, and hence

H1
ε(f(C)) � 2π−1/2η(1)

∑
j

μ(Bj)
1/2.

Thus H1
ε(f(C)) � η(1)�μ,σ(C) � η(1)�μ(C), and the same upper bound holds

for H1 since ε was arbitrary. �

Corollary 4.6. Let f and μ be as in Lemma 4.5. Then f is

μ-quasiconformal.

Proof. Let Γ be a curve family in X and ε > 0. We choose a μ-admissible

function ρ with
´
X ρ2 dμ � modμ(Γ) + ε and define ρ̃ = ρ ◦ f−1 in Ω. If a

curve C ∈ Γ has locally finite �μ-measure, then by Lemma 4.5 and a change

of variables ˆ
f(C)

ρ̃ dH1 � 1

4η(5)

ˆ
C
ρ d�μ,

so that 4η(5)ρ̃ is admissible for f(Γ). Thus using the definition of μ and a

change of variables we have

mod(f(Γ)) � 16η(5)2
ˆ
Ω
ρ̃2 dL2 = 16η(5)2

ˆ
X
ρ2 dμ � 16η(5)2 (modμ(Γ) + ε) .

The other direction can be proved similarly using the other inequality of

Lemma 4.5. �

Proposition 4.7. Let f , μ and B be as in Lemma 4.5. Then μ is I-MM

and satisfies the I-Loewner condition.

Proof. Let Λ > 1 be large enough so that η(1/Λ) � 1
2 . Fix x ∈ X and

0 < r < rx/2 so that B(f(x), diam f(B(x, r))) ⊂ Ω. In order to prove the

I-MM condition (2), fix y ∈ B(x, r/Λ) and z ∈ S(x, r). Then the segment

[f(y), f(z)] is contained in Ω. Let C = f−1([f(y), f(z)]), which is a curve

connecting y and z.

Now let

T = sup{t > 0 : B(f(x), t) ⊂ f(B(x, r))}.
Using Lemma 4.5 and infinitesimal quasisymmetry, we have

�μ(C) � 4η(5)H1(f(C)) = 4η(5)|f(y)− f(z)| � 4η(5) diam fB(x, r)

� 8η(1)η(5)T � 8η(1)η(5)√
π

L2(f(B(x, r)))1/2

=
8η(1)η(5)√

π
μ(B(x, r))1/2,

so the first inequality in (2) holds.
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For the reverse inequality, notice first that our choice of Λ implies that

|f(x)− f(y)| � 1
2 |f(x)− f(z)| and thus |f(y)− f(z)| � 1

2 |f(x)− f(z)|. Let
C be any curve connecting y and z. Now by Lemma 4.5

�μ(C) � η(1)−1H1(f(C))

� η(1)−1|f(y)− f(z)| � 1

2η(1)
|f(x)− f(z)|

� 1

2
√
πη(1)2

L2(f(B(x, r)))1/2 =
1

2
√
πη(1)2

μ(B(x, r))1/2,

since f(B(x, r)) ⊂ B(f(x), η(1)|f(x)− f(z)|). Hence also the second in-

equality in (2) holds. We conclude that μ is I-MM.

Finally, we show the I-Loewner condition. Fix x ∈ X and disjoint con-

tinua E and F as in Definition 4.3, so that there are y ∈ F ∩ S(x, s) and

z ∈ E ∩ S(x, t). By infinitesimal quasisymmetry,

dist(fE, fF )

diamE
� |f(y)− f(x)|

|f(z)− f(x)| � η(s/t).

By definition, F contains S(x, rx). In particular, fS(x, rx) surrounds f(x),

and we have dist(fE, fF ) � diam fF . Combining the estimates yields

dist(fE, fF )

min{diamE, diamF} � max{η(s/t), 1}.

Since R
2 is Loewner, there is φ′ such that

modΓ(fE, fF ) � φ′(max{η(s/t), 1}).
On the other hand f is μ-quasiconformal by Theorem 1.1, so

modμ Γ(E,F ) � K−1modΓ(fE, fF )

for some K � 1. We conclude that the I-Loewner condition holds with

φ(T ) = K−1φ′(max{η(T ), 1}). �

Proposition 4.8. Let μ be an I-MM on X, and f : X → Ω a μ-quasiconfor-

mal homeomorphism. Suppose that X is I-LLC and μ satisfies the I-Loewner

condition. Then f is I-QS.

Proof. Let Λ and λ be the constants in Definitions 3.1 and 4.2 of I-MM and

I-LLC, respectively. We will prove the equivalent statement that g = f−1

is I-QS. In this proof, for a point a ∈ Ω and set A ⊂ Ω, let a′ = g(a) and

A′ = g(A).

Fix x ∈ Ω and r > 0 so that

B(x, 3r) ⊂ Ω ∩ g−1
(
B(x′, rx′/(10λ4Λ4))

)
,

and y, z ∈ B(x, r). By our choice of r, we can choose w ∈ g−1S(x′, rx′)

so that the segment [x,w] contains z. Moreover, taking r to be sufficiently

small, we can ensure that the segment [x,w] lies in Ω. Notice that w /∈
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B(x, 3r). Let m = d(x′, y′) and � = d(x′, z′). Let t > 0. We must find an

upper bound η(t) on m/� that holds whenever |x− y|/|x− z| � t, such that

η(t) → 0 as t→ 0. Assume then that y, z satisfy |x− y|/|x− z| � t.

Suppose first that m/� � Λλ2. Then, by the I-LLC property, we can

connect x′ to z′ by a continuum E′ contained in B(x′, λ�), and y′ to w′ by
a continuum F ′ contained in X \B(x′,m/λ). Let k = �logΛ(m/(�λ2))�,

Bj = B(x′,Λj�/λ), and Aj = B(x′,Λj�/λ) \B(x′,Λj−1�/λ).

Then, by the definition of I-MM,

ρ =
1

k

k∑
j=1

CiχAj

μ(Bj)1/2

is μ-admissible for Γ(E′, F ′). Thus

modμ Γ(E
′, F ′) �

ˆ
X
ρ2 dμ � 1

k2

k∑
j=1

C2
i μ(Aj)

μ(Bj)
� C2

i

k
� C2

i

logΛ(m/(�λ
2))

.

Hence modμ Γ(E
′, F ′) becomes arbitrarily small as m/� increases to infinity.

Since g is μ-quasiconformal, modΓ(E,F ) is also small, where E = g−1(E′)
and F = g−1(F ′). But these sets connect x to z and y to w, respectively,

and have relative distance

Δ(E,F ) =
dist(E,F )

min{diamE, diamF} � |x− y|
|x− z| .

Thus, by the Loewner property of R
2, we have |x− y|/|x− z| → ∞ as

m/�→ ∞, establishing the distortion inequality in this case.

Suppose then that 0 < m/� < Λλ2. In this case we choose E = [x, y] and

F = [z, w] ∪ g−1S(x′, rx′). We may assume that 2|x− y| < |x− z|, since
otherwise there is nothing to prove. Applying the I-Loewner condition to

E′ and F ′, we have

modμ Γ(E
′, F ′) � φ(�/m).

Combining with the μ-quasiconformality of g, we get modΓ(E,F ) �
K−1φ(�/m). On the other hand, by our choice of w we can estimate

modΓ(E,F ) from above as follows:

modΓ(E,F ) � modΓ(S(x, |x− z|), S(x, |x− y|)) = 2π
(
log

|x− z|
|x− y|

)−1
.

Combining the estimates, we see that φ(�/m) � 2πK(log(1/t))−1. Observe

that this bound becomes arbitrarily small as t → 0. Since φ is decreasing,

this yields an upper bound η(t) on m/� that goes to zero as t→ 0. �
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5. Examples

In this section, we work out in detail a number of specific examples of
metric spaces homeomorphic to the plane. All of our examples have locally
finite Hausdorff 2-measure, and we assume throughout this section that a
given metric space is equipped with the Hausdorff 2-measure. We write a
point x in coordinates as x = (x1, x2) if x ∈ R

2 or x = (x1, x2, x3) if x ∈ R
3.

In addition to the examples of this section, we refer the reader to Example
4.7 of [10] for a family of uniformly LLC surfaces in R

3, equipped with the
ambient Euclidean metric, that are conformally equivalent but not uniformly
QS equivalent to the Euclidean plane. We also refer to Example 2.1 of [14]
for an example of a non-reciprocal metric on the plane, and to Example
17.1 of [14] for a non-rectifiable surface in R

3 that is QC equivalent to the
Euclidean plane. Finally, see [17] for the construction of a surface of locally
finite Hausdorff 2-measure that is QS equivalent to the plane but not QC
equivalent.

5.1. Conformal weight that decreases rapidly near the origin. De-

fine a metric d on the Riemann sphere R̂
2 = R

2 ∪ {∞} via the conformal
weight

ω(x) =

{
e−1/|x|/|x|2 if x �= 0

0 if x = 0,∞ .

That is, for all x, y ∈ R̂
2, the metric d is given by d(x, y) = infγ

´
γ ω ds, where

the infimum is taken over all absolutely continuous paths γ : [0, 1] → R̂
2 such

that γ(0) = x and γ(1) = y.

It is easy to check that d(0, x) = e−1/|x| for all x ∈ R̂
2 \{0}. In particular,

d(0,∞) = 1 and we see that d is finite. Next, let x, y ∈ R̂
2 \ {0} and assume

that |x| � |y|. By considering the concatenation of the straight-line path
from x to (|y|/|x|)x and a circular arc from (|y|/|x|)x to y, we obtain the
estimate

d(x, y) � e−1/|y| − e−1/|x| +
2πe−1/|y|

|y| .

As a consequence, if (xj) and (yj) are sequences in R̂
2 such that xj → ∞

and yj → ∞, then d(xj , yj) → 0. This is sufficient to conclude that (R̂2, d)
is homeomorphic to the Riemann sphere.

In fact, by considering the pushforward of ω under the inversion map

x �→ x/|x|2, we see that (R̂2, d) is isometric to the metric space (R̂2, d̃),

where d̃ is the metric generated by the conformal weight ω̃(x) = e−|x|. In

particular, any ball in (R̂2, d) centered at ∞ not containing the origin is
bi-Lipschitz equivalent to a Euclidean disk.

In Figure 1, a number of geodesics emanating from the point p = (.3, 0)
are plotted. Observe that the length-minimizing path from p to a point q
in the upper left region of the plot is the concatenation of the straight-line
path from p to the origin and the straight-line path from the origin to q.

This example illustrates how metric quasiconformality is not preserved in
general under taking inverses or under precomposition with a quasisymme-
try, as the following proposition shows.
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Proposition 5.1. Let ι : (R2, |·|) → (R2, d) be the identity map, and let

h : R2 → R
2 be the linear map defined by h(x1, x2) = (x1/2, x2).

(a) ι is MQC with H = 1, as is its inverse.

(b) ι is 1-QC.

(c) ι is not I-QS.

(d) (ι ◦ h)−1 is MQC.

(e) ι ◦ h is not MQC.

Proof. Claim (a) is immediate for all x �= 0 by virtue of ω being a conformal

weight, and it also holds for x = 0 by the radial symmetry of ω.

Claim (b) is also immediate if we exclude x = 0. However, observe that

reciprocality condition (4) holds for the metric d at the origin. Thus the

geometric definition is unaffected by adding the origin back in, so the claim

holds on all of R2.

For claim (c), let (tj) be a sequence of positive numbers converging to

zero, and let yj = (2tj , 0), zj = (tj , 0). Then |yj − 0| = 2tj , |zj − 0| = tj ,

d(yj , 0) =
√
e−1/tj , and d(zj , 0) = e−1/tj . But then |yj − 0|/|zj − 0| = 2

while d(yj , 0)/d(zj , 0) → ∞, violating the I-QS condition.

For claim (d), note that (ι ◦ h)−1 = h−1 ◦ ι−1 : (R2, d) → (R2, |·|) is the

postcomposition of a MQC map by a QS map, which is always MQC.

Claim (e) follows from a variation of the argument for (c). Let (tj) again

be a sequence of positive numbers converging to zero, and let yj = (tj , 0) and

zj = (0, tj). Then h(yj) = (tj/2, 0) and h(zj) = zj . This gives d(h(yj), 0) =√
e−1/tj and d(zj , 0) = e−1/tj , showing that ι ◦ h is not MQC. �

Claim (c) of Proposition 5.1 can be strengthened to the following.

Proposition 5.2. There is no I-QS map f : (R2, |·|) → (R2, d).

Proof. Suppose that such an I-QS map f exists. Then f−1 is also I-QS.

Since metric quasiconformality is preserved under postcomposition by an

I-QS map, it follows that f−1 ◦ ι is an MQC map of the Euclidean plane. By

the equivalence of definitions of quasiconformality in the Euclidean setting

(for example, see [20, Thm. 34.1]), we conclude that f−1 ◦ ι is QS and thus

that ι itself is I-QS. This contradicts claim (c) of Proposition 5.1. �

Note that the claims in Proposition 5.1 all hold if we replace R
2 with

R̂
2 equipped with the spherical metric. We also observe that (R2, d) is not

upper 2-regular: The Hausdorff 2-measure of the ball Br = B(0, r), where
r ∈ [0, 1], is given by

H2(Br) =

ˆ
Br

ω2 dL2 = 2π

ˆ R

0
e−2/t/t3 dt,
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Figure 1. Geodesics emanating from the point (.3, 0)

where R = −(log r)−1. This evaluates to

H2(Br) = 2πe−2/R

(
1

4
+

1

2R

)
= 2πr2

(
1

4
− log r

2

)
.

Since − log r → ∞ as r → 0, we see that upper 2-regularity fails.

Proposition 5.3. The space (R̂2, d) is linearly locally connected. However,

it is not a Loewner space.

The proof of linear local connectedness uses the following lemma.

Lemma 5.4. Let x ∈ R
2 and r > 0 be such that B(x, r) ⊂ B(0, e−2). Then

B(x, r) is simply connected.

Proof. The claim is obvious when x = 0, so we assume that x �= 0. We argue

by contradiction. Suppose that B = B(x, r) is not simply connected. Since

(R̂2, d) is a geodesic space, all metric balls are connected. Hence the failure

of simple connectivity implies that there exists a component V of R̂2 \B not

containing ∞.

Observe thatB(0, e−2) coincides with the Euclidean ballB(0, 1/2). In this

region, ω is increasing as a function of the radius. Let L be the Euclidean

straight line which contains x and the origin. The increasing property of

ω implies that L ∩ B(0, e−2) is a geodesic segment. Thus L ∩ B(x, r) is

connected, and in particular V ∩ L = ∅.
It follows that V is contained in one of the two open half-planes defined

by the line L, denoted by W . Let z ∈ V and let S denote the Euclidean

circle of radius |z| centered at the origin. Let L′ denote the Euclidean
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straight line containing 0 and z. Then W \ L′ consists of two disjoint open

sets W1,W2, where x ∈ ∂W1. We observe that there exists a point y ∈
S ∩B ∩W 2. A length-minimizing curve from x to y must cross L′ at some

point v. However, the radial symmetry of ω implies that d(v, z) � d(v, y),

and thus that d(x, z) � d(x, y). This gives a contradiction, and we conclude

that B is simply connected. �

Proof of Proposition 5.3. That (R̂2, d) is linearly locally connected can be

shown from Lemma 5.4 as follows. By Lemma 2.5 in [4], it suffices to show

that there exists r0 > 0 and λ � 1 such that every ball B(x, r) of radius

r ∈ (0, r0) is contractible inside the ball B(x, λr).

Let s = e−2/4 and let L � 1 be such that (R̂2\B(0, s), d) is L-bi-Lipschitz

equivalent to a Euclidean disk. Let r0 = e−2/(4L2) and λ = L2. For any

r ∈ (0, r0) and x ∈ R̂
2, the ball B(x, λr) is contained in B(0, e−2) or it is

contained in (R̂2 \ B(0, s), d). In the first case, B(x, r) is simply connected

by Lemma 5.4 and hence contractible. In the second case, the L-bi-Lispchitz

equivalence of (R̂2 \ B(0, s), d) with a Euclidean disk implies that B(x, r)

is contractible inside B(x, λr). We conclude that (R̂2, d) is linearly locally

connected.

We now show that (R̂2, d) is not Loewner. Let E = (−∞, 0)×{0} and let

Ft = [rt, Rt]×{0} for t ∈ (0, 1), where rt = −1/ log(t/2) and Rt = −1/ log t.

Then dist(E,Ft) = diam(Ft) = t, so that Δ(E,Ft) = 1 for all t. Observe

that limt→0Rt/rt = 1.

Since the identity map ι : (R2, |·|) → (R2, d) is 1-QC, the modulus of

Γ(E,Ft) relative to the metric d is the same as the modulus of the same

curve family relative to the Euclidean metric. These curve families arise

classically in the Teichmüller ring problem [1, Chapter III]. One can give an

upper bound on their modulus as follows. Let Γt denote the family of curves

which span the open Euclidean annulus At = A((rt, 0);Rt − rt, rt), where t

is sufficiently small so that Rt < 2rt. For sufficiently small t, the annulus

At does not intersect E. The family Γt majorizes Γ(E,Ft) and has modulus

2π/ log(rt/(Rt − rt)).

As t → 0, we have that modΓ(E,Ft) goes to zero. Hence (R2, d) is not

Loewner. �

The Loewner condition and linear local connectedness are conceptually
similar in that they both rule out the existence of cusps and sequences of
bottlenecks that become arbitrarily thin. In fact, the two properties are
equivalent for the class of Ahlfors 2-regular metric spheres. This follows
from Theorem 1.1 and Theorem 1.2 in [4] together with the quasisymmetric
invariance of the Loewner condition [19, Cor. 1.6]. This example illustrates
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how, for metric spheres of finite Hausdorff 2-measure, linear local connect-
edness does not imply the Loewner condition without the assumption of
Ahlfors regularity.

5.2. An accumulation of spikes, I. The purpose of this example is to give
a metric surface X so that the Hausdorff 2-measure on X is upper 2-regular
but X fails to be I-LLC. Upper regularity implies, by Proposition 3.9, that
there is a QC parametrization of X by the Euclidean plane. However, X
does not admit an MQC parametrization by the Euclidean plane, as shown
by the following simple lemma.

Lemma 5.5. Suppose there is an MQC map g : Ω → X, where Ω is a

domain in R
2. Then X is I-LLC.

Proof. Let x ∈ X and x′ = g−1(x). Let Rx > 0 be sufficiently small so that

Hg(x
′, R) � 2H for all R < Rx.

For small r > 0, g−1(B(x, r)) ⊂ B(x′, Rx). Let y, z ∈ B(x, r), y′ =

g−1(y), z′ = g−1(z), and R′ = sup{|x′ − w′| : w′ ∈ g−1(B(x, r))}. Then

there is a curve C from y′ to z′ which is contained in B(x′, R′). The metric

quasiconformality implies that g(C) is a curve from y to z contained in

B(x, 2Hr).

Similarly, let y, z ∈ X \ B(x, r), with y′ = g−1(y) and z′ = g−1(z). Now,

let R′ = inf{|x′ − w′| : w′ ∈ Ω \ g−1(B(x, r))}. Connect y′ to z′ by a curve

C in Ω \ B(x′, R′). Then metric quasiconformality implies that g(C) is a

curve from y to z contained in X \ B(x, r/(2H)). This establishes that X

is I-LLC. �

We construct this example as a surface in R
3 containing a sequence of

spikes that become progressively smaller and converge to a point. For all
n ∈ N, let tn = 2−n, hn = 2−n/2, and rn = 2−2 · 2−3n/2. The surface
X is constructed by removing each Euclidean disk B((tn, 0), rn) from R

2,
identified here with R

2 × {0}, and replacing it with a cone Sn of height hn.
That is, Sn has vertex (tn, 0, hn) and joins to R2 along the circle S((tn, 0), rn).
We equipX with the ambient Euclidean metric from R

3, though the example
works just as well if we were to take the induced length metric.

We check that X is upper 2-regular. Let x ∈ X and r > 0. In the first
case, assume that r � |x|/20, where |·| is the Euclidean norm in R

3. A
computation shows that B(x, r) intersects at most one of the cones Sn. It
is clear that H2(B(x, r) ∩ (R2 × {0})) � πr2. By the elementary geometry
of cones in R

3, it also holds that H2(B(x, r)∩Sn) � πr2. We conclude that
H2(B(x, r) � 2πr2.

In the second case, assume that r > |x|/20. Then B(x, r) ⊂ B(0, 21r),
writing 0 to denote the origin in R

3. For this, we compute

H2(B(0, 2−n)) � π2−2n +
∞∑
k=n

H2(Sn)
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� π2−2n + π

∞∑
k=n

2−3n/2
√

2−n + 2−3n

� π2−2n + π

∞∑
k=n

2−3n/2(2−n/2 + 2−3n/2) � 2−2n.

We deduce thatH2(B(0, 21r)) � r2, and therefore thatX is upper 2-regular.
Finally, the point yn = (tn, 0, hn) lies outside the ball Bn = B(0, |yn|/2).

Any continuum connecting yn to the unbounded component of R2 \Bn must
pass through the smaller ball X \ B(0, 2tn). However, limn→∞ tn/|yn| = 0,
violating the I-LLC property.

5.3. An accumulation of spikes, II. By modifying the previous example,
we construct a space which is I-QS equivalent to the plane but not QS
equivalent.

We carry out the same construction as above, now taking tn = 2−n,
hn = 2−n, and rn = 2−2 · 2−2n. Instead of cones, we replace the Euclidean
disks B((tn, 0), rn) with cylinders Cn of height hn. More precisely, Cn =
En ∪ Fn, where En = {(x1, x2, x3) : (x1, x2) ∈ S((tn, 0), rn), 0 � x3 � hn}
and Fn = B((tn, 0), rn) + (0, 0, hn). Again, we equip the resulting space X
with the restriction of the ambient Euclidean metric to X to get (X, d).

The space X is not LLC because the cylinders get progressively narrower;
thus X is not QS equivalent to the Euclidean plane. However, we claim
that X equipped with μ = H2 satisfies the conditions of Theorem 1.2 and
therefore admits an I-QS map from R

2.
First, notice that for every x ∈ X \ {(0, 0, 0)} there is rx > 0 so that

B(x, rx) ⊂ X is 10-bi-Lipschitz equivalent to a planar disk. In particular,
the conditions of Theorem 1.2 hold for all such points x.

We still need to verify the conditions of Theorem 1.2 for x = 0 = (0, 0, 0).
Take r0 = 1/2. The I-LLC condition follows from our choices of tn, hn and
rn. Also, calculating as in Section 5.2, we conclude that r2 � H2(B(0, r)) �
r2 for all r > 0. Therefore, the q-metric on X is comparable to the metric
d, and μ is I-MM.

Finally, we show that the I-Loewner condition is satisfied at 0. For a fixed
T > 0, let s, t > 0 satisfy s/t � T . Let n ∈ N be such that 2−n−1 � s < 2−n.
Consider two disjoint continua E,F ⊂ X as in Definition 4.3. We make the
observation that the cylinders Cn and Cn−1 are separated by a distance of
at least 2−n−1. Thus F ∩ (R2 × {0}) ∩ B(0, 2−n+1) contains a continuum
F ′ of diameter at least 2−n−1. Next, we split into two cases. If t � s, then
by similar reasoning E ∩ (R2 × {0}) ∩ B(0, 2−n) contains a continuum E′
of diameter at least 2−n−2. If t � s, then take E′ to be a continuum in
E ∩ (R2 × {0}) ∩B(0, t) of diameter at least t/16.

Then d(E′, F ′) � 2−n+2, and E′ and F ′ have relative distance

Δ(E′, F ′) � 2−n+2

min{2−n−2, t/16} � max {128T, 16} .
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Let T ′ = max{128T, 16}, so that Δ(E′, F ′) � T ′. Consider the domain

G =

(
R
2 \

∞⋃
n=1

B((tn, 0), rn)

)
× {0} ⊂ X.

The domain G is Loewner; let ϕ̃ be the associated Loewner function. We
have then the inequality

modΓ(E,F ) � modΓ(E′, F ′;G) � ϕ̃(T ′).

We conclude that the I-Loewner condition is satisfied at 0.

5.4. Gluing a Grushin half-plane to a Euclidean half-plane. The
Grushin plane is a basic example of a sub-Riemannian manifold. See [2,
Sec. 3.1] for an overview. One approach to the Grushin plane, studied in
[16], is given by the following definition. For each β ∈ (0, 1), the β-Grushin

plane is R2 equipped with the metric d̃ obtained from the singular conformal

weight ω̃ : R2 → [0,∞] defined by ω̃(x) = |x1|−β . The standard Grushin
plane is obtained by taking β = 1/2. Note that the standard Grushin plane
does not have locally finite Hausdorff 2-measure. However, in the case when
β ∈ (0, 1/2), it was shown in [18] and [23] that the β-Grushin plane is bi-
Lipschitz equivalent to the Euclidean plane. In particular, the β-Grushin

plane is Ahlfors 2-regular. Moreover, the identity map R
2 → (R2, d̃) is QS.

A proof of this can be found in [16, Thm. 4.3].
Here, we present a modified version of the Grushin plane. Let β ∈ (0, 1/2).

Define the conformal weight ω : R2 → [0,∞] by

ω(x) =

{
|x1|−β if x1 > 0
1 if x1 � 0

.

Let d denote the resulting metric.
First, we establish a ball-box relationship. For all r � 1, let

Dr = [−r, (1− β)r1/(1−β)]× [−r, r].
Note that, for all x2 ∈ R, the straight-line curve from (0, x2) to ((1 −
β)r1/(1−β), x2) has length r. Observe further that ω � 1 on Dr. From
this, it follows that d(x, 0) � r for all x ∈ ∂Dr. Next, by considering the
concatenation of the vertical line segment from 0 to (0, x2) with the horizon-
tal line segment from (0, x2) to x, we see that d(x, 0) � 2r for all x ∈ ∂Dr.
We conclude that

(11) Bd((0, 0), r) ⊂ Dr ⊂ Bd((0, 0), 2r)

for all r � 1.
Next, observe that H2(Bd(0, 2r)) is bounded from below by

(12)

ˆ
Dr

ω2 dL2 = 2r2 + 2r

ˆ R

0
t−2β dt = 2r2 +

r(2−3β)/(1−β)

1− 2β
.

For β ∈ (0, 1/2), the inequality (2 − 3β)/(1 − β) < 2 holds, from which we
conclude that

lim inf
r→0

H2(Bd(x, r))

r2
= ∞
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for all x lying on the vertical axis. On the other hand, (12) is an upper
bound on H2(Bd(x, r)), showing that (R2, d) has locally finite Hausdorff
2-measure.

Since ω is constant on each vertical line, we see that metric balls are
simply connected. In particular, (R2, d) is LLC.

This example illustrates how a metric surface with locally finite 2-measure
can violate infinitesimal upper 2-regularity at every point in a fairly large
set, namely a nondegenerate continuum. Since any metric surface that is
infinitesimally upper 2-regular is reciprocal, this suggests the following ques-
tion.

Question 5.6. Is there a metric surface for which reciprocality condition

(4) fails at every point on a nondegenerate continuum?

The space (R2, d) in this example is reciprocal and hence does not answer
this question. In fact, the identity map onto the Euclidean plane is 1-QC.
This can be shown by a change of variables argument; see also Proposition
3.5 in [8], where the corresponding fact is proved for the β-Grushin plane.
In contrast, we have the following.

Proposition 5.7. There is no MQC map from the Euclidean plane to

(R2, d).

Proof. Assume there is a MQC map f : R2 → (R2, d). Observe that the

identity map ι : R2 → (R2, d) is locally quasisymmetric outside of the ver-

tical axis Z. This implies that F = ι−1 ◦ f : R2 → R
2 is MQC outside of

the set f−1(Z). By a classical removability theorem for planar quasicon-

formal mappings [20, Thm. 35.1], it follows that F is globally QS; see also

Proposition 2.5 of [8].

Let x ∈ f−1(Z). By quasisymmetry, there exists H � 1 such that

BEuc(F (x), s(r)) ⊂ F (BEuc(x, r)) ⊂ BEuc(F (x), Hs(r))

for all r > 0, where s(r) = inf{|F (x) − F (y)| : y ∈ R
2 \ BEuc(x, r)}. Com-

paring this with the ball-box relationship (11), we conclude that f is not

MQC. This is a contradiction. �

A similar argument shows that there is no MQC map from (R2, d) to R
2.
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QUASISYMMETRIC KOEBE UNIFORMIZATION WITH
WEAK METRIC DOUBLING MEASURES

KAI RAJALA AND MARTTI RASIMUS

Abstract. We give a characterization of metric spaces quasisym-
metrically equivalent to a finitely connected circle domain. This
result generalizes the uniformization of Ahlfors 2-regular spaces by
Merenkov and Wildrick [7].

1. Introduction

A homeomorphism f between metric spaces (X, d) and (Y, d′) is qua-
sisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞) such
that

d′(f(x), f(y))
d′(f(x), f(z))

� η

(
d(x, y)

d(x, z)

)
for all distinct points x, y, z ∈ X. Quasisymmetric maps form a natu-
ral generalization of conformal maps to the setting of abstract metric
spaces. In particular, the uniformization problem for quasisymmetric
maps is important due to applications in areas such as geometric group
theory, complex dynamics, and geometric topology.

The uniformization problem asks which spaces admit quasisymmetric
maps onto some standard space such as S

2. Bonk and Kleiner [1]
were able to solve the problem for Ahlfors 2-regular spheres (X, d), i.e.,
topological spheres for which the two-dimensional Hausdorff measure
H2

d satisfies

C−1r2 � H2
d(Bd(x, r)) � Cr2 for all x ∈ X, 0 < r < diamX.

Bonk and Kleiner showed that linear local connectedness (see Section
2) is a necessary and sufficient condition for 2-regular spheres to be
quasisymmetrically equivalent to S

2.
Later, Merenkov and Wildrick [7] considered the multiply connected

setting, generalizing the classical Koebe uniformization. They gave
characterizations for the Ahlfors 2-regular surfaces that are quasisym-
metrically equivalent to some finitely or countably connected circle
domains in S

2. Here a circle domain is an open and connected sub-
set whose complementary components are geometric disks/points. We
refer to [7] for further motivation and background.

Mathematics Subject Classification 2010: Primary 30L10, Secondary 30C65,
28A75.

The authors were supported by the Academy of Finland, project number 308659.
1
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Our aim is to find similar characterizations for surfaces that need
not be 2-regular, such as fractal surfaces. Uniformization results for
fractal surfaces are of great importance in view of applications, cf. [2],
[7, Section 2], but one cannot expect results as strong as above to hold.
In [6], Lohvansuu and the authors introduced the weak metric dou-

bling measures, generalizing the metric doubling measures, or Strong
A∞-weights, of David and Semmes [3]. These are, roughly speaking,
measures that can be used to construct quasisymmetric deformations
for a given metric, see Section 2 for the precise definition. We then
gave a version of the Bonk-Kleiner theorem in terms of the existence
of such measures.

In this paper we apply the weak metric doubling measures to finitely
connected surfaces. Namely, we have the following generalization of
the characterization given by Merenkov and Wildrick.

THEOREM 1.1. Let X be a metric space homeomorphic to a domain
in S

2 such that X \X contains finitely many components. Then X is
quasisymmetrically equivalent to a circle domain if and only if it is
linearly locally connected, carries a weak metric doubling measure and
X is compact.

Here X is the completion of X. The “only if” part of Theorem 1.1
follows from the definitions in a straightforward manner. Theorem 2.2
below is a quantitative version of the “if” part.

To prove this, we first apply the weak metric doubling measure to
suitably deform the metric on X. We show that the deformed space
is reciprocal in the sense of [9], and therefore admits a quasiconformal
map into S

2 by a recent result of Ikonen [5]. We then apply geometric
estimates to show that this map, when suitably normalized, is qua-
sisymmetric. Our approach is different from those in [7] and [6], both
of which apply the Bonk-Kleiner theorem.

2. Weak metric doubling measures

For x, y ∈ X and δ > 0, a finite sequence of points x0, x1, . . . , xm in
X is a δ-chain from x to y, if x0 = x, xm = y and d(xj, xj−1) � δ for
every j = 1, . . . ,m. Notice that in every connected metric space each
pair of points can be connected by a δ-chain for any δ > 0.

Recall that a measure μ in a metric space (X, d) is doubling if there
is CD � 1 such that

μ(Bd(x, 2r)) � CDμ(Bd(x, r)) for all x ∈ X, r > 0.

From now on we assume that μ is a Radon measure in X that is dou-
bling with constant CD.
In what follows, we use notation

Bxy = Bd(x, d(x, y)) ∪Bd(y, d(x, y)).
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Given μ and a “dimension” s > 0, we define the μ-length qμ,s of points
x, y ∈ X as follows: set

qδμ,s(x, y) := inf
{ m∑

j=1

μ(Bxjxj−1
)1/s : (xj)

m
j=0 is a δ-chain from x to y

}

and

qμ,s(x, y) := lim sup
δ→0

qδμ,s(x, y).

Definition 2.1. We say that μ is a CW -weak metric doubling measure,
or WMDM, of dimension s > 0 in (X, d), if for all x, y ∈ X,

(1)
1

CW

μ(Bxy)
1/s � qμ,s(x, y).

From now on we assume that μ is a CW -WMDM of dimension 2, and
we abbreviate q = qμ,2. See [6] for examples and further discussion.
Weak metric doubling measures should be compared to the metric

doubling measures of David and Semmes. They are essentially defined
by requiring that in addition to (1) also the reverse inequality holds.
Recall that a metric space (X, d) is λ-linearly locally connected, or

LLC, if for any x ∈ X and r > 0,

(i) if y, z ∈ Bd(x, r) then there exists a continuum K ⊂ Bd(x, λr)
with y, z ∈ K, and

(ii) if y, z ∈ X \ Bd(x, r) then there exists a continuum K ⊂ X \
Bd(x, r/λ) with y, z ∈ K.

From now on we assume that (X, d) is λ-LLC and homeomorphic to
a circle domain such that X is compact and X \ X contains M < ∞
components. We denote by CX the ratio of the diameter of (X, d) to
the minimum distance between the components of X \X. We are now
ready to state the main result of this paper.

THEOREM 2.2. There is an η-quasisymmetric homeomorphism from
(X, d) onto a circle domain Ω ⊂ S

2, where η depends only on λ, CX ,
CD, CW , and M .

Here and in what follows, S
2 is equipped with the usual chordal

metric and R
2 with the euclidean metric.

As pointed out in the introduction, Theorem 1.1 is a straightforward
consequence of Theorem 2.2. We do not know if the dependence on
the number of components M is necessary in Theorem 2.2, and if it
admits extensions to countably connected domains corresponding to
[7, Theorem 1.4]. The rest of the paper is dedicated to the proof of
Theorem 2.2.
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3. Deformation of the metric

Theorem 2.2 is proved by showing that the μ-length q is a metric
on X with strong geometric properties. Our approach is based on the
following reverse inequality for WMDMs.

Proposition 3.1. For every x ∈ X there is rx > 0 such that

q(x, y) � CSμ(Bxy)
1/2

for all y ∈ Bd(x, rx), where CS = 16CWC
28+16�log2 λ�
D .

Before proving Proposition 3.1, we state some consequences. We will
apply the following elementary property of doubling measures, see [4,
13.1]: For all x ∈ X and 0 < r � R < diamd(X),

(2)
1

C

(
R

r

)1/α

� μ(Bd(x,R))

μ(Bd(x, r))
� C

(
R

r

)α

.

Here C and α depend only on CD.

Corollary 3.2. (X, q) is a metric space homeomorphic to (X, d).

Proof. Combine the definitions with Proposition 3.1 and (2). �
We use notations Bd and Bq for the open balls in (X, d) and (X, q),

respectively. We next give estimates for measures of balls in (X, q).

Lemma 3.3. Let x ∈ X and s > 0. Then

(3) μ(Bq(x, s)) � C2
W s2.

Moreover, if rx > 0 is as in Proposition 3.1 and Bq(x, s) ⊂ Bd(x, rx),
then

(4)
s2

2C2
SCD

� μ(Bq(x, s)).

Proof. First, we apply the WMDM-definition 2.1 to establish the in-
clusions

Bq(x, s) ⊂ {y : μ(Bxy)
1/2 < CW s}

⊂ {y : μ(Bd(x, d(x, y)))
1/2 < CW s} = Bd(x, rs)

for some rs > 0. Since μ(Bd(x, rs)) � C2
W s2, (3) follows. Similarly,

Proposition 3.1 and doubling yield

Bq(x, s) ⊃ {y : CSμ(Bxy)
1/2 < s}

⊃ {y : C
1/2
D CSμ(Bd(x, d(x, y)))

1/2 < s},
from which (4) follows. �

It follows from the above estimates that μ is in fact comparable to
the 2-dimensional Hausdorff measure H2

q in (X, q). We normalize H2
q

so that it coincides with the Lebesgue measure if q is the euclidean
metric in R

2.
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Corollary 3.4. We have

(5)
1

2πC2
SC

4
D

H2
q(E) � μ(E) � C2

W

π
H2

q(E)

for all Borel sets E ⊂ X. In particular,

(6) H2
q(Bq(x, s)) � 2πC2

SC
4
DC

2
W s2

for all x ∈ X and s > 0.

Proof. The second inequality in (5) follows directly from (3) and the
definition of H2

q . Also, (6) follows directly from (3) and the first in-
equality in (5).
For the first inequality in (5), we may assume that E is open since μ

is Radon. Given δ > 0, we can apply the 5r-covering lemma to cover E
with balls Bj

q(xj, sj) ⊂ E satisfying (4) such that the balls Bj
q(xj, sj/5)

are pairwise disjoint and each sj < δ. We denote the corresponding
δ-content by H2

q,δ. Then by (4), the doubling property of μ, and the
disjointness give

H2
q,δ(E) � π

∑
j

s2j � 2πC2
SCD

∑
j

μ(Bq(xj, sj))

� 2πC2
SC

4
D

∑
j

μ(Bq(xj, sj/5)) � 2πC2
SC

4
Dμ(E).

The claim follows by taking δ → 0. �

4. Proof of Proposition 3.1

We prove Proposition 3.1 by constructing a continuum connecting
the given points with controlled q-diameter. We define the q-diameter
with

diamq(A) = sup
a,b∈A

q(a, b)

for A ⊂ X, which makes sense even though we have not yet proved
that q is a finite distance. Note also that the definition of q implies
that it satisfies the standard triangle inequality.

As a first step of the construction we find separating continua in
small annuli. We denote � = �log2 λ	 for the rest of this section.

Lemma 4.1. Let x ∈ X and r > 0 such that Bd(x, (2λ)
7r) is com-

pact and contained in a topological disk U ⊂ X. Then there exists
a continuum K ⊂ Bd(x, (2λ)

6r) \ Bd(x, 2λr) separating Bd(x, r) and
X \Bd(x, (2λ)

7r) with

(7) diamq(K) � 8CWC12+4�
D μ(Bd(x, r))

1/2.

Proof. We use notation Sd(x, r) = {y ∈ X : d(x, y) = r}. Let
E = Sd(x, (2λ)

3r) and F = Sd(x, (2λ)
4r). By (1) and a standard
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compactness argument (see [6, 4.1]) there exists δx,r > 0 such that for
all y ∈ E, z ∈ F and 0 < δ < δx,r

(8) qδ(y, z) � 1

2CWCD

μ(Byz)
1/2.

Fix 0 < δ < min(δx,r, r). Using the doubling condition, the 5r-
covering lemma and (2) we can find a cover

(9) B = {Bi
1}mi=1 = {Bd(xi, ri)}mi=1

for the annulus

A = Bd(x, (2λ)
5r) \Bd(x, (2λ)

2r)

such that the balls Bd(xi, ri/5) are pairwise disjoint, ri < δ/2 and

ε2 � μ(Bd(xi, ri/5)) � CDε
2

for every i and some fixed ε > 0. The balls in the cover are contained
in Bd(x, (2λ)

6r) \Bd(x, (2λ)r) by the choice of ri and δ.
If z ∈ F , there exists by the LLC-condition a continuum contained

in A that connects z to E. Thus there is a chain of balls B1, . . . , Bn ∈ B
such that for some y ∈ E we have y ∈ B1, z ∈ Bn and Bj ∩ Bj+1 �= ∅
for every j = 1, . . . , n− 1. With this in mind, we define

B1 = {B ∈ B : B ∩ E �= ∅}
and

Bj = {B ∈ B \
(

j−1⋃
k=1

Bk

)
: B ∩

⎛
⎝ ⋃

B′∈Bj−1

B′

⎞
⎠ �= ∅}.

The collections Bj form layers selected from the cover B, the first con-
taining those balls that intersect E and the subsequent ones those not
previously selected which intersect with the previous layer.

Recall that each z ∈ F is contained in some Bz ∈ Bn, where n
depends on z. We claim that

(10) n �
√
m

4CWC6+�
D

for all such z, where m is the number of balls in the cover (9). Indeed,
if B1, . . . , Bn is a chain of balls as above, then their centers and the
points y and z form a δ-chain, and by (8)

μ(Byz)
1/2 � 4CWC2

D

n∑
j=1

μ(Bj)
1/2 � 4CWC4

Dnε.

But
Bd(x, (2λ)

6r) ⊂ Bd(y, 4(2λ)
2d(y, z))

and as the m balls Bd(xi, ri/5) in B are pairwise disjoint, we have

μ(Byz) � μ(Bd(x, (2λ)
6r))/C4+2�

D � mε2/C4+2�
D ,

so (10) follows.
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Let n0 = �√m/4CWC6+�
D 	. As the layers Bj are pairwise disjoint, we

have
n0∑
j=1

∑
Bi∈Bj

μ(Bi)
1/2 � C2

Dmε

� 4CWC8+�
D n0

√
mε

� 4CWC11+4�
D n0μ(Bd(x, r))

1/2.

Hence for some 1 � j0 � n0 we have∑
Bi∈Bj0

μ(Bi)
1/2 � C ′μ(Bd(x, r))

1/2,

where C ′ = 4CWC11+4�
D . We denote by K ′

1 the compact set ∪Bi∈Bj0
Bi.

By the choice of n0 and the LLC-condition K ′
1 separates Bd(x, r) and

X \Bd(x, (2λ)
7r). Moreover, since Bd(x, (2λ)

7r) ⊂ U for some U ⊂ X
homeomorphic to a disk, a componentK1 ofK

′
1 also separates the same

sets (see for example [8, V 14.3]).
By repeating the above construction for δ/j, j = 2, 3, . . . we ob-

tain continua Kj, each separating Bd(x, r) and X \ Bd(x, (2λ)
7r). By

connectedness, between any two points of Kj there exists a δ/j-chain
among the centers of the balls Bi

j covering Kj. For each j we have the
same estimate ∑

i

μ(Bi
j)

1/2 � C ′μ(Bd(x, r))
1/2.

Then using compactness in the Hausdorff metric for compact sets we
find a subsequence of (Kj) converging to a compact set K ′. Now also
K ′ and hence one of its components K again separates Bd(x, r) and
X \Bd(x, (2λ)

7r).
If a, b ∈ K and δ′ > 0, we pick a large j such that δ/j < δ′ and the

Hausdorff distance between K and Kj is less than δ′. Then from Kj

we find points p1, . . . , pl−1 so that a and b are connected by the δ′-chain
a = p0, p1, . . . , pl−1, pl = b with

qδ
′
(a, b) �

l∑
i=1

μ(Bpipi−1
)1/2 � 2CDC

′μ(Bd(x, r))
1/2.

Since the upper bound holds for all δ′ > 0 the estimate is true also for
q(a, b). �

For x ∈ X, r > 0 and K as in Lemma 4.1, we let

K(x, r) = K and

K̂(x, r) = the component of X \K(x, r) containing x.

The following lemma on basic planar topology allows us to connect
K(x1, r1) and K(x2, r2) for correctly chosen adjacent balls Bd(x1, r1)
and Bd(x2, r2). We refer to [6, 5.1] for a proof.
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Lemma 4.2. Let x1, x2 ∈ X and r1, r2 > 0 be as in Lemma 4.1 such
that

(1) K̂(x1, r1) and K̂(x2, r2) intersect,

(2) K̂(x1, r1) �⊂ K̂(x2, r2),

(3) K̂(x2, r2) �⊂ K̂(x1, r1).

Then the continua K(x1, r1) and K(x2, r2) intersect.

With these lemmas we are ready to construct the desired continuum
between the given points.

Proof of Proposition 3.1. Let y ∈ X be such that Bd(x, 2λd(x, y)) is
contained in a topological disk. Then, as in the proof of Lemma 4.1,
we can cover the ball B1 = Bd(x, λd(x, y)) with M1 balls

Bi
1 = Bd(z

1
i , r

1
i )

such that z1i ∈ B1, the balls 1
5
Bi

1 are pairwise disjoint, and

(11) μ(B1)/4C
8+7�
D � μ((2λ)7Bi

1) � μ(B1)/4C
7+7�
D

for each i. The doubling condition and (11) now imply that

(12) M1 � C19+14�
D

and that

(2λ)7r1i �
λ radius(B1)

4
.

Furthermore, Lemma 4.1 can be applied with z1i and r1i for each i.
Let I1 be the set of indices i such that Bi

1 intersects the component

D1 of B1 containing x and K̂(z1i , r
1
i ) �⊂ K̂(z1j , r

1
j ) for all j �= i. For

future reference, notice that y ∈ D1 by the LLC-condition. Then the
compact set

K1 =
⋃
i∈I1

K(z1i , r
1
i ) ⊂ 2B1

is connected. Indeed, if k, l ∈ I1, there exists a path from K̂(z1k, r
1
k) to

K̂(z1l , r
1
l ) in B1. This path is now covered by a chain of sets K̂(z1i , r

1
i ),

i ∈ I1, so that for consecutive members in the chain the corresponding
continua K(z1i , r

1
i ) intersect by Lemma 4.2 and the choice of I1.

Next we choose h ∈ I1 such that x ∈ K̂(z1h, r
1
h) and denote

B2 = Bd(z
1
h, (2λ)

7r1h).

Then x ∈ B2 and 2B2 ⊂ 1
2
B1. We cover B2 with M2 balls

Bi
2 = Bd(z

2
i , r

2
i )

so that all the properties above remain valid with the balls Bi
1 replaced

by the balls Bi
2. In particular, (11) takes the form

μ(B2)/4C
8+7�
D � μ((2λ)7Bi

2) � μ(B2)/4C
7+7�
D .
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Repeating the previous construction then yields continuum

(13) K2 =
⋃
i∈I2

K(z2i , r
2
i ) ⊂ 2B2.

We next show that

(14) K1 ∩K2 �= ∅.
First, if K(z2i , r

2
i ) is one of the continua in (13), then K̂(z1h, r

1
h) �⊂

K̂(z2i , r
2
i ), since otherwise we would have

Bd(z
1
h, r

1
h) ⊂ Bd(z

2
i , (2λ)

7r2i )

and by (11)

μ(Bd(z
1
h, r

1
h)) � μ(B2)/4C

7+7�
D � μ(Bd(z

1
h, r

1
h))/4,

a contradiction.
Secondly, if

w ∈ K̂(z1h, r
1
h) ∩K(z1h, r

1
h)

then at least one of the sets K(z2i , r
2
i ) in (13) satisfies w ∈ K̂(z2i , r

2
i ).

Then also

K̂(z2i , r
2
i ) �⊂ K̂(z1h, r

1
h) and K̂(z1h, r

1
h) ∩ K̂(z2i , r

2
i ) �= ∅.

Thus

K(z1h, r
1
h) ∩K(z2i , r

2
i ) �= ∅

by Lemma 4.2, and (14) follows.
We continue the above process to obtain continua

Kj =
⋃
i∈Ij

K(zji , r
j
i ) ⊂ 2Bj

for each j ∈ N, such that Kj ⊂ 2Bj � x for all j, and

diamd(Bj) → 0 as j → ∞.

Moreover, applying the constructions of the balls Bj together with
estimates (11) applied to these balls, we get

(15) μ(Bj+1)
1/2 � 1

2
μ(Bj)

1/2.

Repeating the argument in the previous paragraphs, we see that Kj ∩
Kj+1 �= ∅ for all j. Therefore,

K = ∪∞
j=1Kj ∪ {x}

is a continuum.
We now apply (7) and the construction of the set K to estimate its

q-diameter. First, if a, b ∈ K1, then for some i1, . . . , im+1 ∈ I1 and
points x1, . . . , xm ∈ K1 we have a ∈ K(z1i1 , r

1
i1
),

x1 ∈ K(z1i1 , r
1
i1
) ∩K(z1i2 , r

1
i2
), . . . , xm ∈ K(z1im , r

1
im) ∩K(z1im+1

, r1im+1
),
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and b ∈ K(z1im+1
, r1im+1

). By (7),

q(a, b) � q(a, x1) + q(b, xm) +
m−1∑
j=1

q(xj, xj+1)

� 8CWC12+4�
D

m+1∑
j=1

μ(B(z1ij , r
1
ij
))1/2.

Since m+ 1 � M1, combining with (11) and (12) gives

q(a, b) � C2μ(B1)
1/2,

where C2 = 4CWC28+15�
D . In particular, we get an upper bound for the

q-diameter of K1. Repeating the argument, we get

diamq(Kj) � C2μ(Bj)
1/2

for all j. Combining with (15), we moreover have

(16) diamq(Kj) � 21−jC2μ(B1)
1/2

for each j.
Now let w0 ∈ K1. Fix δ > 0, ε > 0, and

wj ∈ Kj ∩Kj+1

for each j � 1. Since d(wj, x) → 0, we find k ∈ N such that d(wk, x) < δ
and μ(Bwkx)

1/2 < ε. Then, by (16),

qδ(w0, x) �
k∑

j=1

diamq(Kj) + qδ(wk, x) � 2C2μ(B1)
1/2 + ε

and hence

(17) q(w0, x) � 2C2μ(B1)
1/2.

Finally, recall that our goal is to bound q(x, y). Since y ∈ D1, we
can repeat the argument above with the same cover for B1 to find that
(17) holds with x replaced by y. By triangle inequality, we conclude
that

q(x, y) � 4C2μ(B1)
1/2 � 4C�

DC2μ(Bxy)
1/2.

The proof is complete. �

5. Quasiconformal uniformization

Our strategy for proving Theorem 2.2 is to apply the existence of
a quasiconformal homeomorphism f from (X, q) to a circle domain Ω.
This is guaranteed by a recent result of Ikonen [5] and the classical
Koebe uniformization of finitely connected Riemann surfaces. We will
show in Sections 6 and 7 that f is in fact quasisymmetric, with respect
to the original metric d, under a suitable normalization.

We recall the geometric definition of quasiconformal maps. Let Y =
(Y, d) be a metric space such that H2

d is finite on compact subsets. We
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moreover assume that Y is a topological 2-manifold. It then follows
that H2

d is positive on open sets, cf. [9].
Let Γ be a family of paths in Y . We say that a Borel function ρ � 0

in Y is admissible for Γ, ifˆ
γ

ρ ds � 1 for all locally rectifiable γ ∈ Γ.

The (conformal) modulus of Γ is

mod(Γ) = inf

ˆ
Y

ρ2 dH2
d,

where the infimum is taken over all admissible functions.
A homeomorphism f : Y → Z between spaces as above is (geomet-

ric) K-quasiconformal, if

K−1 mod(Γ) � mod(fΓ) � Kmod(Γ)

for all path families Γ in Y , where fΓ = {f ◦ γ : γ ∈ Γ}.
It is shown in [9] and [10] that if Y is a topological disk for which

there exists C > 0 such that

H2
d(Bd(y, r)) � Cr2 for all y ∈ Y, r > 0,

then there exists a π/2-quasiconformal homeomorphism from Y into
the euclidean plane. Recently Ikonen [5] generalized this result to the
case of non-simply connected surfaces. In particular, he showed that
the upper bound (6) guarantees that there is a π/2-quasiconformal
homeomorphism from our space (X, q) onto a Riemann surface Z.
Moreover, by the classical uniformization theorem for finitely connected
Riemann surfaces, there is a conformal map from Z onto a circle do-
main Ω. Recall that conformal maps are 1-quasiconformal in the sense
of the geometric definition above, and that the composition of a K1-
and a K2-quasiconformal map is K1K2-quasiconformal. Thus we have
the following.

Proposition 5.1. There is a π/2-quasiconformal homeomorphism f :
(X, q) → Ω, where Ω ⊂ S

2 is a circle domain. If moreover (X, q) is
not homeomorphic to S

2, then the statement remains valid with circle
domain Ω ⊂ R

2.

The second statement follows from the first simply by postcompos-
ing f with a suitable Möbius transformation followed with the stereo-
graphic projection.

6. Modulus estimate in circle domains

In this section we assume that X \X has at least two components.
Let Ω ⊂ R

2 be the circle domain in Proposition 5.1. We now give
a modulus estimate which, along with Proposition 3.1, is the main
technical result towards Theorem 2.2.
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In what follows, we denote by Γ(A,B;G) the family of paths join-
ing sets A,B ⊂ G in G, i.e., all the paths γ : [a, b] → G such that
γ(a) ∈ A, γ(b) ∈ B, and γ(t) ∈ G for all a < t < b. We abbreviate
mod(A,B;G) = mod(Γ(A,B;G)).

Proposition 6.1. Let E1, E2 ⊂ Ω be disjoint continua such that

(18)
min{diam(E1), diam(E2)}

dist(E1, E2)
� 1.

Then

(19) mod(E1, E2; Ω) �
αM

2π(10M)M(M + 2)2
,

where
α = 2−2−2M−π2C2

WC
1+log2 CX
D /8 log 2.

The rest of this section is devoted to the proof of Proposition 6.1.
We denote the complementary components of Ω by

D1, . . . , DM , Di = D(zi, ri).

Complementary point-components do not have effect on the modulus.
Therefore, we can assume that ri > 0 for all i. We use notation

Δ(i, j) =
dist(Di, Dj)

min{ri, rj}
for the relative distances. The homeomorphism f in Proposition 5.1
uniquely extends to a bijection from the set of components of X \ X
to the set {Di}. We denote by Ai the component corresponding to Di

under this bijection.

Lemma 6.2. We have Δ(i, j) � α for every i �= j, where α is the
constant in Proposition 6.1.

Proof. Fix i �= j such that ri � rj. We consider mod(Di, Dj; Ω). We
first claim that

(20) mod(Di, Dj; Ω) �
π

2
mod(Ai, Aj;X) � πC2

WC
1+log2 CX

D

2
.

The first inequality follows from the quasiconformality of f . Towards
the second inequality, recall that CX is the ratio of the diameter of
(X, d) to the minimum d-distance D between the components Ai. Let
m � 1 be the smallest integer such that CX � 2m. Then, by the
WMDM-condition and the doubling property of μ, the length of every
path in Γ(Ai, Aj;X) is at least

C−1
W inf

x∈X
μ(B(x,D))1/2 � C−1

W C
−m/2
D μ(X)1/2.

Therefore,

mod(Ai, Aj;X) �
ˆ
X

C2
WCm

Dμ(X)−1 dμ = C2
WCm

D ,
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and (20) follows. We prove the lower bound for Δ(i, j) by showing that
the opposite of (20) holds if Δ(i, j) < α.
Let s = dist(Di, Dj) and

w = zi +
(ri +

s
2
)(zj − zi)

|zj − zi|
be the point in the middle of Di and Dj. If Δ(i, j) < α, we have

(21) 2N+2s � ri,

where N = �2M + π2C2
WC

1+log2 CX

D /8 log 2�. We consider the path
families

Ψn = {components of S(w, ts) ∩ Ω : 2n−1 < t < 2n}
for n = 1, . . . , N . Every path in Ψ0∪· · ·∪ΨN either connectsDi andDj

or intersects some Dk, k �= i, j. We claim that any such Dk = D(zk, rk)
intersects paths from at most two families Ψn.
Suppose to the contrary that Dk intersects paths from Ψn and Ψn+2

for some n. Then there exist w1, w2 ∈ Dk with

|w1 − w| < 2ns and |w2 − w| > 2n+1s

so that

(22) 2n−1s � rk.

Since ri � rj we can assume |zk − zi| � |zk − zj|, and now using basic
planar geometry, (21) and (22) we have

|zk − zi|2 � (ri +
s

2
)2 + (rk + 2n−1s)2 < (ri + rk)

2.

But this is impossible since Di and Dk are disjoint.
Since the number of disks Dk, k �= i, j is at most M , we have shown

that for at least N − 2M + 2 different indices n all the paths in Ψn

connect Di and Dj. Using standard properties of the modulus we have
then the lower bounds

mod(Ψn) � 4mod({S(0, t) : 1 < t < 2}) � 2 log 2

π

for every n, see [11, Theorem 10.12], and

(23) mod(Di, Dj; Ω) � (N − 2M + 2)
2 log 2

π
>

πC2
WC

1+log2 CX

D

4
.

We have thus proved that Δ(i, j) < α leads to a contradiction with
(20), and the lemma follows. �
Recall that Di = D(zi, ri). We next consider the sets

Φi = {1 < t < 1 + α : S(zi, tri) ⊂ Ω},
where α is the constant in Proposition 6.1, and the family Γi of all the
(parameterized) circles S(zi, tri), t ∈ Φi.
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Lemma 6.3. We have

(24) m1(Φi) �
αM

(10M)M

for all i = 1, . . . ,M . In particular,

(25) mod(Γi) � β =
αM

2π(10M)M
.

Proof. Enumerate the disks according to decreasing radius, and fix Di.
By Lemma 6.2, dist(Di, Dj) � αri for every j < i. Now, if∑

j�i+1

rj � αri/10,

then (24) holds. Otherwise ri+1 � αri/(10M). Continuing inductively,
either

(26)
∑

j�i+k+1

rj � αri+k/10,

for some k, or

ri+k+1 � αri+k/(10M) � . . . � riα
k+1/(10M)k+1

for all k. In the latter case,

(27) rj � riα
M−1/(10M)M−1 for all j = 1, . . . ,M,

and (24) follows from Lemma 6.2. On the other hand, if (26) occurs
then Lemma 6.2 shows that

rim1(Φi) � min
j�i+k

dist(Di, Dj)−
∑

j�i+k+1

2rj �
αri+k

10
.

If moreover k is the smallest index for which (26) occurs, then (27)
holds for j replaced with i + k and we conclude (24) also in this case.
Finally, (25) follows from (24) by a standard application of Hölder’s
inequality and polar coordinates. �

Now fix continua E1, E2 as in Proposition 6.1. First, an elementary
geometric argument (cf. [11, Theorem 11.7]) applying (18) shows that
there exist z0 ∈ R

2 and r0 > 0 such that both E1 and E2 intersect
S(z0, t0r0) for all 1 � t0 �

√
3.

Let Φi,Γi, i = 1, . . . ,M , be as in Lemma 6.3. Moreover, we denote
Φ0 = (1,

√
3) and

(28) Γ0 = {S(z0, t0r0) : t0 ∈ Φ0},
so that (25) holds for all i = 0, . . . ,M . By construction, Γi is a family of
paths in Ω when i = 1, . . . ,M , while the paths in Γ0 are not required to
lie in Ω. The proposition is proved by modifying Γ0 to obtain a family
of paths in Ω such that the lower bound for modulus is still valid. This
is based on the following property.
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Lemma 6.4. Given

T = (t0, t1, . . . , tM) ∈ Φ := Φ0 × Φ1 × · · · × ΦM ,

there is an injective path γT connecting E1 and E2 in

GT :=
M⋃
j=0

S(zj, tjrj) ∩ Ω.

Proof. By construction, there are p1, p2 ∈ S(z0, t0r0) such that p1 ∈ E1

and p2 ∈ E2. On the other hand, the components of S(z0, t0r0) \Ω are
of the form

S(z0, t0r0) ∩Dj = S(z0, t0r0) ∩D(zj, rj).

Therefore, the p1-component FT of GT contains all of S(z0, t0r0) ∩ Ω.
In particular, it contains p2. We can choose γT to be a shortest path
joining p1 and p2 in FT . �
Let

Γ = {γT : T ∈ Φ},
where γT is any path satisfying the conditions of Lemma 6.4. The
proposition follows if we can bound mod(Γ) from below.

Let ρ � 0 be a Borel function in Ω such that

(29)

ˆ
Ω

ρ2 dA =
β

(M + 2)2
,

where β is the constant in (25). The desired lower bound follows if
we can show that such a ρ cannot be admissible for Γ. By (25), (28),
and (29), we find that (M + 3/2)ρ cannot be admissible for any of
the path families Γi, i = 0, . . . ,M . Hence there is at least one T =
(t0, t1, . . . , tM) ∈ Φ such thatˆ

S(zi,tiri)

ρ ds <
1

M + 3/2

for each i = 0, . . . ,M . Applying the injectivity of γT , we moreover get
ˆ
γT

ρ ds �
M∑
i=0

ˆ
S(zi,tiri)

ρ ds � M + 1

M + 3/2
< 1.

We conclude that ρ is not admissible for Γ. The proof of Proposition
6.1 is complete.

7. Proof of Theorem 2.2

Suppose that the assumptions of Theorem 2.2 are valid. By Propo-
sition 5.1, there is a π/2-quasiconformal map f : (X, q) → Ω, where
Ω ⊂ S

2 is a circle domain. We prove Theorem 2.2 by showing that,
after a normalization, f is quasisymmetric with respect to the original
metric d.
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If Ω = S
2, then the theorem is proved in [6]. The proof in the case

of one complementary component is easier than the one below and is
omitted. We consider the remaining case where there are at least two
complementary components.

Recall that the assumptions of Väisälä’s theorem ([4, Theorem 10.17])
hold in our setting, so the quasisymmetry of f follows if we can prove
the weak quasisymmetry of h = f−1: there is t � 1 such that for every
disjoint y0, y1, y2 ∈ Ω with

|y0 − y1| � |y0 − y2| � 1

10
,

we have

(30) d(h(y0), h(y1)) � td(h(y0), h(y2)).

To prove (30), we first normalize h. Namely, we precompose h with
a suitable Möbius transformation, if necessary, so that

(31) min
i �=j

d(h(ai), h(aj)) � diamd(X)/10,

where {a0, a1, a∞} ∈ Ω correspond to the points 0, e1, and ∞ under
the stereographic projection.

Fix y0, y1, y2 ∈ Ω as in (30), and denote

A = d(h(y0), h(y2)), B = d(h(y0), h(y1)).

We need to show that B � tA. We may assume that

A � B/100λ3 � diamd(X)/100λ3,

otherwise there is nothing to prove. By (31) and triangle inequality,
we find that for some j ∈ {0, 1,∞},

d(h(y0), h(aj)) � diamd(X)/20 and |y1 − aj| � 1/10.

Moreover, by the LLC-condition, we find a continuum

F1 ⊂ Bd(h(y0), λA) ⊂ X

joining h(y0) and h(y2). Similarly, we find a continuum

F2 ⊂ X \Bd(h(y0), B/λ)

joining h(y1) and h(aj).
Denote E� = f(F�) = h−1(F�) for � = 1, 2. Then, if τ is a rotation of

S
2 sending y0 to 0 and φ the stereographic projection, we see that (φ ◦

τ)(E1) and (φ ◦ τ)(E2) satisfy the conditions of Proposition 6.1. Since
φ◦τ is conformal, we conclude that the lower bound in Proposition 6.1
holds also for the continua E1 and E2.
Next, we estimate mod(F1, F2;X) from above (recall the definition

from Section 5). Denote

U1 = Bd(h(y0), λA), U2 = X \Bd(h(y0), B/λ).
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Then, since F1 ⊂ U1 and F2 ⊂ U2, we have

mod(F1, F2;X) � mod(U1, U2;X).

Let k � 2 be the largest integer such that

B � 2kλ2A,

and denote

Aj = Bd(h(y0), 2
jλA) \Bd(h(y0), 2

j−1λA), j = 1, . . . , k.

The WMDM-condition and the doubling property of μ then guarantee
that for every γ ∈ Γ(U1, U2;X) the length in (X, q) of the restriction
of γ to Aj is at least

μ(Bd(h(y0), 2
jλA))1/2

CWCD

.

It follows that ρ : U2 \ U1 → [0,∞],

ρ(w) =
1

k

k∑
j=1

CWCDχAj
(w)

μ(Bd(h(y0), 2jλA))1/2

is admissible for Γ(U1, U2;X). Integrating and applying (5), this yields

mod(U1, U2;X) � C2
WC2

D

k2

k∑
j=1

H2
q(Aj)

μ(Bd(h(y0), 2jλA))

� 2πC2
WC2

SC
6
D

k
.

(32)

Finally, combining Proposition 5.1, Proposition 6.1, and (32), we get

k � 2π3C2
WC2

SC
6
D(10M)M(M + 2)2

αM
,

where α is the constant in Proposition 6.1. In particular, we have the
desired bound for the ratio B/A. The proof is complete.
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