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The Egan problem
on the pull-in range of type 2 PLLs

N.V. Kuznetsov, M.Y. Lobachev, M.V. Yuldashev, R.V. Yuldashev

Abstract—In 1981, famous engineer William F. Egan conjec-
tured that a higher-order type 2 PLL with an infinite hold-in
range also has an infinite pull-in range, and supported his con-
jecture with some third-order PLL implementations. Although
it is known that for the second-order type 2 PLLs the hold-in
range and the pull-in range are both infinite, the present paper
shows that the Egan conjecture may be not valid in general. We
provide an implementation of the third-order type 2 PLL, which
has an infinite hold-in range and experiences stable oscillations.
This implementation and the Egan conjecture naturally pose a
problem, which we will call the Egan problem: to determine a
class of type 2 PLLs for which an infinite hold-in range implies an
infinite pull-in range. Using the direct Lyapunov method for the
cylindrical phase space we suggest a sufficient condition of the
pull-in range infiniteness, which provides a solution to the Egan
problem.

Index Terms—Phase-locked loop, PLL, type II, type 2, hold-
in range, Egan conjecture, Egan problem on the pull-in range,
Gardner problem on the lock-in range, Lyapunov functions,
nonlinear analysis, global stability, describing function, harmonic
balance method.

I. INTRODUCTION

PHASE-LOCKED LOOPS (PLLs) are classical nonlinear
control systems for phase and frequency synchronization

in electrical circuits [1]–[3]. A PLL includes the following
three key elements: a phase detector (PD), a loop filter, and
a voltage-controlled oscillator (VCO). The phase detector
extracts a phase error, which is the phase difference between
the reference signal and the output signal of the VCO, and then
the resulting signal is filtered by the loop filter. The output
of the loop filter controls the VCO frequency in such a way
as to reduce the phase error, i.e., to synchronize the signals.
In order to characterize the synchronization properties, the
following frequency difference concepts are widely used: a
hold-in range, a pull-in range (or an acquisition range), and a
lock-in range [4]–[7].

In engineering practice, the so-called type 2 PLLs having
loop filters with exactly one pole at the origin are most
often used [3]. In 1959, Andrew J. Viterbi applied the phase-
plane analysis and stated that the second-order type 2 PLL
models have infinite (theoretically) hold-in and pull-in ranges
for any loop parameters [8, p.12], [1]. However, his proof
was incomplete (see, e.g. discussion in [9]). Later, Viterbi’s
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statement was rigorously proved using the direct Lyapunov
method ideas [10], [11].

Since the second-order PLLs may not provide the required
noise reductions [3], [5], [12], [13], some extra poles with
negative real parts are often added in the loop filter [3], [6],
[14]. In practice, the higher-order loops are widely used. For
a type 2 PLL of any order, the each of the hold-in and pull-in
ranges is either infinite or empty (see Section III). In 1981,
William F. Egan conjectured [15, p.176] that a higher-order
type 2 PLL with an infinite hold-in range also has an infinite
pull-in range, and supported it with some third-order PLL
implementations (see also [16, p.192], [6, p.161], [17, p.245]).
Nowadays, similar claims can be found in various publications
(see, e.g. [18, p.96], [19, p.171], [20, p.198], [21, p.6], and
others).

The present paper introduces a counterexample to the Egan
conjecture: a type 2 PLL with an infinite hold-in range and
a persistent oscillation, which indicates the emptiness of the
pull-in range. The observed stable oscillation and the Egan
conjecture naturally pose the following problem, which we
will call the Egan problem: to determine a class of type 2 PLLs
for which an infinite hold-in range implies an infinite pull-in
range. For such a class of PLLs the global stability conditions
can be obtained by straightforward linear methods. Notice that
similar problems are well-known in the mathematical control
theory (see, e.g. the Aizerman and Kalman conjectures [22]–
[24]). Using the direct Lyapunov method for the cylindrical
phase space we obtain a sufficient condition of the pull-in
range infiniteness, thereby providing a solution to the Egan
problem.

II. COUNTEREXAMPLE TO THE EGAN CONJECTURE

+-

++

VCO

Loop filterPD

Fig. 1. Baseband model of the third-order analog PLL.

Consider the PLL baseband model [1], [3], [5], [25] in
Fig.1 and its realization in MATLAB Simulink in Fig. 2. Here
θref(t) = ωreft + θref(0) is a phase of the reference signal, a
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Fig. 2. Simulation of a type 2 PLL with infinite hold-in range in MATLAB Simulink (baseband model). The curve from the zero initial state x1(0) = x2(0) =
θref(0) = θvco(0) = 0 tends to a persistent oscillation (the blue color); the curve with the initial state x1(0) = 1.5, x2(0) = 0, θref(0) = θvco(0) = 0 tends to the
zero locked state (the purple color). Parameters: ωref = 2+105, ω free

vco = 105, F(s) = 1.01 (1+0.4s)(1+0.4s)
s(1+0.9s) , Kvco = KPD = 1.

phase of the VCO is θvco(t), θe(t) = θref(t)−θvco(t) is a phase
error. The phase detector generates a signal KPD sin(θe(t))
where KPD is a gain and sin(·) is a characteristic of the
phase detector. The state of the loop filter is represented by
x(t) = (x1(t), x2(t)) ∈ R2 and the transfer function [26] is

F(s) = KF
(1+ sτz1)(1+ sτz2)

s(1+ sτp)
,

KF > 0, τz1 > 0, τz2 > 0, τp > 0, τz1 6= τp, τz2 6= τp.

(1)

The output of the loop filter vF(t) = KF(x1(t) + x2(t) +
τz1τz2

τp
KPD sin(θe(t))) is used to control the VCO frequency

ωvco(t), which is proportional to the control voltage:

ωvco(t) = θ̇vco(t) = ω
free
vco +KvcovF(t)

where Kvco is a gain and ω free
vco is a free-running frequency of

the VCO. Observe that the phase error θe(t) depends on the
frequency error ω free

e = ωref−ω free
vco and not on the frequencies

themselves. Therefore, transient processes in the model can
be studied with respect to ω free

e . For the loop filter transfer
function (1), one of the possible implementations1 is shown
in Fig. 3. Since the loop filter transfer function has exactly
one pole at the origin, the considered PLL model is a type 2
one [3, p.12], [6, p.59].

Vin Vout

Fig. 3. An active loop filter with the transfer function
F(s) = (1+ R5

R6
) C1

C2C3R4

(1+sR2C2)(1+sR3C3)
s(1+sR1C1)

.

1There are other implementations of transfer function (1) (e.g. the passive
ones), some of which pose additional physical restrictions on parameters and
lead to an infinite pull-in range.

The PLL baseband model in Fig. 2 is locked if the phase
error θe(t) is constant (phase-locked condition). For the locked
states of practically used PLLs, the loop filter state is constant
too (see Section III for type 2 PLLs). Thus, for arbitrary
ω free

e , the locked states correspond to the stationary states of
the model. Such locked states, which the model returns to
after a small perturbation of the loop filter state and the phase
error, are called (locally) asymptotically stable and observed
in practice.

Definition 1 (Hold-in range [7], [27], [28]): A hold-in
range is the largest symmetric interval of frequency errors
|ω free

e | ∈ [0, ωh) such that an asymptotically stable locked
state exists and varies continuously while ω free

e varies contin-
uously within the interval; ωh is called a hold-in frequency.

In the above definition, the locked states are considered as
a function of ω free

e having a continuous single-valued branch
(to exclude a case of multi-valued branch when some of the
locked states may appear or disappear while the frequency
error ω free

e varies).
Definition 2 (Pull-in range [7], [27], [28]): A pull-in range

is the largest symmetric interval of frequency errors from the
hold-in range |ω free

e | ∈ [0, ωp) such that a locked state is
acquired for an arbitrary initial state; ωp is called a pull-in
frequency.

Remark that from some initial states the model state can
tend to an unstable stationary state. To avoid such situation
for all initial states (see, e.g. the discussion of corresponding
artificial examples in [29]) the condition [0, ωp)⊂ [0, ωh) is
required in the pull-in range definition.

For the counterexample to the Egan conjecture in Fig. 2,
we consider the following parameters:

Kvco = KPD = 1, KF = 1.01, τz1 = τz2 = 0.4, τp = 0.9,

ωref = 2+105, ω
free
vco = 105.

(2)

The model state with initial state x1(0) = 2, x2(0) = 0,
θref(0) = 0, θvco(0) =−0.7 in Fig. 2 tends to the zero locked
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state. Since for type 2 PLLs the hold-in and the pull-in
ranges are either infinite or empty, the simulation indicates
the hold-in range infiniteness (see Section III for a rigorous
analysis). Following the Egan conjecture, the pull-in range
should be infinite too. However, for the zero initial state
x(0) = 0, θref(0) = θvco(0) = 0 the simulation shows persistent
oscillation of the control signal (see the plots of the VCO
frequency ωvco(t), the phase error θe(t), and their combined
XY plot in Fig. 2).

III. NONLINEAR ANALYSIS
AND SOLUTION TO THE EGAN PROBLEM

Consider a state-space representation of the third-order type
2 PLL in Fig. 1:

ẋ1 = KPD sinθe,

ẋ2 =−
1
τp

x2 +
(τz1− τp)(τp− τz2)

τ2
p

KPD sinθe,

θ̇e = ω free
e −KFKvco

(
x1 + x2 +

τz1τz2

τp
KPD sinθe

)
.

(3)
System (3) is not changed under the transformation(
ω

free
e ,x1(t),x2(t),θe(t))→

(
−ω

free
e ,−x1(t),−x2(t),−θe(t)),

and, thus, it can be studied for ω free
e ≥ 0 only. Besides using

the linear change of variables

z(t) = ω
free
e −KFKvcox1(t),

we can exclude ω free
e from the system. Thus, its stability does

not depend on ω free
e and the hold-in and pull-in ranges are

either infinite or empty.
The stationary states of system (3) are

(ω free
e /(KFKvco), 0, πk), k ∈ Z. The characteristic equation

of system (3) linearized at stationary states is

χ(s) = s2(1+ sτp)+KPDKFKvco(1+ sτz1)(1+ sτz2)cos(πk).

From the Routh-Hurwitz criterion, it follows that the stationary
states (ω free

e /(KFKvco), 0, 2πk), k ∈ Z are asymptotically
stable for any k ∈ Z if and only if the following condition
is satisfied:

KPDKFKvcoτz1τz2(τz1 + τz2)> τp− τz1− τz2, (4)

and the stationary states (ω free
e /(KFKvco), 0, π + 2πk) are

unstable. As a result, condition (4) is necessary and sufficient
for the hold-in range infiniteness.

Since the pull-in range definition requires to analyse all the
initial states of system (3), the conditions for the pull-in range
infiniteness cannot be determined by linear analysis in general.
In the following subsections, the Lyapunov direct method and
the harmonic balance method are used to study the pull-in
range and to solve the Egan problem.

A. Solution to the Egan problem: direct Lyapunov method

To analyse the pull-in range of system (3), we apply the
direct Lyapunov method and the corresponding theorem on
global stability for the cylindrical phase space (see, e.g. [29],

[30]). If there is a continuous function V (x,θe) : Rn→R such
that

(i) V (x,θe +2π) =V (x,θe) ∀x ∈ Rn−1,∀θe ∈ R;
(ii) for any solution (x(t),θe(t)) of system (3) the function

V (x(t),θe(t)) is nonincreasing;
(iii) if V (x(t),θe(t)) ≡ V (x(0),θe(0)), then

(x(t),θe(t))≡ (x(0),θe(0));
(iv) V (x,θe)+θ 2

e →+∞ as ||x||+ |θe| →+∞

then any trajectory of system (3) tends to the stationary set
(i.e., the system is globally stable).

Consider the following Lyapunov function

V (x1,x2,θe) =
KFKvco

2

(
x1−

ω free
e

KFKvco

)2

+

+
KFKvco

2
τ2

p(τz1τz2 + τp(τz1 + τz2− τp))

(τz1− τp)2(τp− τz2)2 x2
2 +

θe∫
0

KPD sinσdσ .

(5)
If the loop filter parameters satisfy the inequality

τz1 + τz2− τp > 0 (6)

then the Lyapunov function derivative along the trajectories of
system (3) is as follows:

V̇ (x1,x2,θe) =

=−KFKvco

(τpτz1τz2 + τ2
p(τz1 + τz2− τp)

(τz1− τp)2(τp− τz2)2 x2
2−

− 2τz1τz2

(τz1− τp)(τp− τz2)
x2KPD sinθe +

τz1τz2

τp
K2

PD sin2
θe

)
< 0,

x2 6= 0, θe 6= πk, k ∈ Z.

Since the derivative along any solution other than stationary
states is not identically zero, condition (6) provides the global
stability of the system for any ω free

e . Observe that condition
(4) of local stability is also valid in this case. Therefore, under
condition (6) the pull-in and the hold-in ranges of system (3)
are infinite:

[0,ωp) = [0,ωh) = [0, +∞).

Notice that in this case the classical Barbashin-Krasovsky
and LaSalle theorems cannot be directly used with the Lya-
punov functions of type (5) to study global stability, because
for that the Lyapunov function V (x,θe) must be radially un-
bounded while V (0,θe) 6→+∞ as |θe| →+∞. The discussion
of radial unboundedness is sometimes omitted in the existing
literature (see, e.g. [26], [31], [32]).

Condition (6) determines a class of type 2 PLLs for which
an infinite hold-in range implies an infinite pull-in range, thus
providing a solution to the Egan problem. The above reasoning
provides also an infinite pull-in range of the second-order type
2 PLL: Lyapunov function (5) without its second term and the
corresponding model in Fig. 1 with τz2 = τp = 0, τz1 > 0 satisfy
the conditions of the above theorem.

Notice that the same Lyapunov function can be used to
analyse transient processes and to provide a solution to the
Gardner problem on the lock-in range [3, p. 187–188], [7],
[27], [28], [33]: for the considered model a subinterval [0,ωl)
of the pull-in range over which the PLL re-establishes an
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asymptotically stable locked state without cycle slipping may
be estimated as [0,ωl)⊃ [0,

√
KPDKFKvco) (see, e.g. [33]).

Relation (6) is not satisfied for parameters (2). The gap
between conditions (4) and conditions (6) poses the problem of
studying this domain of parameters and the boundary of global
stability (which parts can be either trivial, i.e., determined
by local bifurcations, or hidden, i.e., determined by non-local
bifurcations and the birth of hidden oscillations) [24], [29].

B. Analysis of periodic solutions: the harmonic balance
method and phase portrait analysis

To analyse the PLL model behavior in the gap between
conditions (4) and (6) (particularly to analyse oscillations
in Fig. 2), the harmonic balance method and phase portrait
analysis are used in this section. The harmonic balance method
is widely used by engineers to predict oscillations in nonlinear
systems and to check the global stability of phase-locked loops
(see, e.g. [2], [34]–[38]), while the method is known to be
an approximate one and to work well only when the filter
conjecture is valid [39, p. 164], [40, p.329].

Following the harmonic balance method, we suppose that
system (3) has a periodic solution (cycle)

θe(t)≈ δω0t +a0 sin(ω0t)

where a0 is an amplitude and ω0 > 0 is a frequency, δ = 0
for the cycles of the first kind, and δ = 1 for the cycles of the
second kind. Solving the describing function equation [38],
one gets the following solution:

ω0 =

√
τp− τz1− τz2

τz1τpτz2
,

J1−δ (a0)− J1+δ (−a0)

a0
=

τp− τz1− τz2

KFKvcoτz1τz2(τz1 + τz2)

(7)

where J0,1,2(a) are the Bessel functions of the first kind:

Jk(a) =
1
π

π∫
0

cos(kt−asin t)dt, k ∈ Z.

In this case, according to the harmonic balance method, a
periodic solution does not develop in system (3) if condition
(6) is met (there is no positive frequency ω0 > 0). Otherwise,
if condition (6) is not fulfilled, then the frequency ω0 ≥ 0
and amplitude a0 satisfying equation (7) exist. Thus, the
harmonic balance method does not improve the condition of
global stability obtained by the direct Lyapunov method for
the considered model.

The phase portrait of the type 2 PLL with parameters (2),
considered for the numerical counterexample, is shown in
Fig. 4. The trajectory with initial state x1(0) = 2, x2(0) = 0,
θe(0) = 0.7+2π tends to an asymptotically stable equilibrium.

The dashed curve depicts possible unstable cycle, predicted
by harmonic balance equations (7) with δ = 0, ω0≈ 0.83, a0≈
1.4. Notice that equations (7) give only possible frequency and
amplitude of a periodic solution but do not give any initial data
of the solution. To visualize this trajectory in Fig. 4 we use
the initial data provided by theorem from [22].

0.2
0
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Fig. 4. Phase portrait of system (3). The green and red dots are asymptotically
stable and unstable equilibria, respectively. The purple trajectory tends to an
asymptotically stable equilibrium (green dot). The black dashed line depicts
possible unstable periodic orbit, predicted by harmonic balance equations (7).
The blue trajectories tend to stable limit cycle. Parameters: ω free

e = 2,
KF = 1.01, τz1 = τz2 = 0.4, τp = 0.9, Kvco = KPD = 1.

The trajectories with initial states x1(0) = 2.2, x2(0) = 0,
θe(0) = 3π and x1(0) = 2, x2(0) =−0.2, θe(0) = 2.5+2π in
Fig. 4 tend to a stable limit cycle, which can be classified
as a self-excited oscillation [22]. This stable limit cycle
corresponds to the periodic oscillation shown in Fig. 2. As it is
stated above, this oscillation is not predicted by the harmonic
balance and equations (7). A probable reason is that the stable
limit cycle has a complex structure, which is far from the shape
of a simple harmonic oscillation. As a result, the harmonic
balance method is unable to predict this stable limit cycle,
whereas it is necessary to avoid such oscillations in practice.

IV. CONCLUSION

Since PLLs are essentially nonlinear control systems, their
non-local analysis and the pull-in range estimation are chal-
lenging tasks. Therefore, classes of PLL systems for which
conditions of local (linear) and global (nonlinear) stability
coincide (thus, providing a coincidence of the hold-in and the
pull-in ranges), are of interest. For type 2 PLLs the Egan
conjecture states that an infinite hold-in range implies an
infinite pull-in range. While this conjecture is valid for the
second-order loops, the third-order loop considered in this
paper provides a counterexample to the Egan conjecture. It
is shown that stable periodic oscillations in PLLs may not
be revealed by the classical harmonic balance method. A
sufficient condition, guaranteeing an infinite pull-in range, is
obtained by the direct Lyapunov method for the cylindrical
phase space. This condition determines a class of type 2 PLLs
for which both the hold-in and the pull-in ranges are infinite,
thus, providing a solution to the Egan problem.

Notice that similar conjectures on the pull-in range for
some other types of PLLs are also known: for example, the
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Kapranov conjecture on the pull-in range of the second-order
type 1 PLLs [41] and the Gardner conjecture on the similarity
of the transient response of charge-pump PLL (CP-PLL) and
equivalent classical PLL [42, p. 1856] (see, e.g. discussions
of corresponding counterexamples in [43]–[45]).
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