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Abstract

The aim of this note is to explain in which sense an axiomatic Sobolev space over a general
etric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions
a first-order differential structure.
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0. Introduction

An axiomatic approach to the theory of Sobolev spaces over abstract metric measure
paces has been proposed by V. Gol’dshtein and M. Troyanov in [6]. Their construction
overs many important notions: the weighted Sobolev space on a Riemannian manifold,
he Hajłasz Sobolev space [7] and the Sobolev space based on the concept of upper
radient [1,2,8,10].

A key concept in [6] is the so-called D-structure: given a metric measure space
(X,d,m) and an exponent p ∈ (1,∞), we associate to any function u ∈ L p

loc(X) a family
D[u] of non-negative Borel functions called pseudo-gradients, which exert some control
from above on the variation of u. The pseudo-gradients are not explicitly specified, but
they are rather supposed to fulfill a list of axioms. Then the space W 1,p(X,d,m, D)
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is defined as the set of all functions in L p(m) admitting a pseudo-gradient in L p(m).
y means of standard functional analytic techniques, it is possible to associate to any
obolev function u ∈ W 1,p(X,d,m, D) a uniquely determined minimal object Du ∈

D[u] ∩ L p(m), called minimal pseudo-gradient of the function u. Nevertheless, we point
out that the correspondence u ↦→ Du is in general not linear, the reason being that Du

ehaves as the ‘modulus of the differential of u’ rather than the ‘differential of u’ itself.
he purpose of this manuscript is to prove that it is possible to build a linear object
↦→ du, called differential, which underlies the minimal pseudo-gradient in the sense
e are going to describe.
In recent years, the first author of the present paper introduced a differential structure

n general metric measure spaces (cf. [4,5]). The key tool in this theory is given by the
otion of L p-normed L∞-module, which constitutes a suitable abstraction of the concept

of ‘space of p-integrable sections of a Banach bundle’. Shortly said, an L p-normed
L∞-module is a vector space whose elements v can be multiplied by L∞-functions and
associated with a pointwise norm |v| ∈ L p, which ‘fiberwise’ behaves like a norm; the
reader might think of, for instance, the space of p-integrable vector fields on a given

iemannian manifold endowed with the natural pointwise operations. The fundamental
xample of normed module over a general metric measure space (X,d,m) is the so-called
otangent module L2(T ∗X), whose elements play the role of ‘square-integrable 1-forms
n X’ — in some abstract sense.

The main result of this paper – namely Theorem 3.2 – says that any D-structure
satisfying suitable locality properties) gives rise to a natural notion of cotangent module

L p(T ∗X; D), whose properties are analogous to the ones of the cotangent module
L2(T ∗X) described in [4]. Roughly speaking, the cotangent module allows us to represent

inimal pseudo-gradients as pointwise norms of suitable linear objects. More precisely,
his theory provides the existence of an abstract differential d : W 1,p(X,d,m, D) →

L p(T ∗X; D), which is a linear operator such that the pointwise norm |du| ∈ L p(m) of
u coincides with Du in the m-a.e. sense for any function u ∈ W 1,p(X,d,m, D). Finally,
e prove that the differential d is a closed operator (cf. Theorem 3.4) and satisfies some
asic calculus rules (cf. Proposition 2.13).

Let us conclude this introduction recalling that there exists another, substantially
ifferent, way of speaking about differential structures on metric measure spaces: it goes
ack to Cheeger’s celebrated paper [2] (see also the more recent developments [3,9]),
s related to a metric version of Rademacher’s theorem and leads to the definition of
ipschitz differentiability spaces. Specifically, a Lipschitz differentiability space is a
etric measure space (X,d,m) which can be m-almost all covered by Borel sets Ai and

o that for every i there is a finite number of Lipschitz functions fi,1, . . . , fi,ni : X → R
ith the following property: for any f : X → R Lipschitz there are unique L∞ functions

i,1, . . . , ci,ni on Ai such that

lip
(

f −

∑
j

ci, j (x) fi, j
)
(x) = 0 for m-a.e. x ∈ Ai , (0.1)

here lip f denotes the local Lipschitz constant of the function f . In such spaces one
an legitimately call the functions ci,1, . . . , ci,ni “coefficients of the differential of f on

A w.r.t. the base of the cotangent bundle given by the differentials of the f ’s”.
i i, j
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It is then natural to try to understand the relation between this, somehow concrete,
otion and the abstract approach studied here. In [4, Section 2.5] it has been shown
ull compatibility between the notion of differential coming from (0.1) and the one
ased on the theory of L∞ modules built upon the standard (i.e. non-axiomatic) notion
f Sobolev space. It follows that the same compatibility can hold with the ‘axiomatic
ifferential’, so to say, built here only in presence of strong rigidity of such axiomatic
pproach to Sobolev spaces. In other words, for such compatibility to hold we should
xpect the cotangent modules L p(T ∗X; D), L p(T ∗X; D′) induced by two strongly local

D-structures on X to be intimately connected. While we suspect that indeed this is the
ase, we will not try to address this question in this paper.

. General notation

For the purpose of the present paper, a metric measure space is a triple (X,d,m),
where

(X,d) is a complete and separable metric space,
m ̸= 0 is a non-negative Borel measure on X, finite on balls.

(1.1)

Fix p ∈ [1,∞). Several functional spaces over X will be used in the forthcoming
discussion:

L0(m) : the Borel functions u : X → R, considered up to m-a.e. equality.

L p(m) : the functions u ∈ L0(m) for which |u|
p is integrable.

L p
loc(m) : the functions u ∈ L0(m) with u|B ∈ L p(m|B

)
for any

B ⊆ X bounded Borel.

L∞(m) : the functions u ∈ L0(m) that are essentially bounded.

L0(m)+ : the Borel functions u : X → [0,+∞], considered up to
m-a.e. equality.

L p(m)+ : the functions u ∈ L0(m)+ for which |u|
p is integrable.

L p
loc(m)+ : the functions u ∈ L0(m)+ with u|B ∈ L p(m|B

)+ for any
B ⊆ X bounded Borel.

LIP(X) : the Lipschitz functions u : X → R,
with Lipschitz constant denoted by Lip(u).

Sf(X) : the functions u ∈ L0(m) that are simple,
i.e. with a finite essential image.

bserve that for any u ∈ L p
loc(m)+ it holds that u(x) < +∞ for m-a.e. x ∈ X. We also

ecall that the space Sf(X) is strongly dense in L p(m) for every p ∈ [1,∞].

emark 1.1. In [6, Section 1.1] a more general notion of L p
loc(m) is considered,

ased upon the concept of K-set. We chose the present approach for simplicity, but the
ollowing discussion would remain unaltered if we replaced our definition of L p

loc(m)
ith the one of [6]. ■
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2. Axiomatic theory of Sobolev spaces

We begin by briefly recalling the axiomatic notion of Sobolev space that has been
introduced by V. Gol’dshtein and M. Troyanov in [6, Section 1.2]:

Definition 2.1 (D-structure). Let (X,d,m) be a metric measure space. Let p ∈ [1,∞)
be fixed. Then a D-structure on (X,d,m) is any map D associating to each function
u ∈ L p

loc(m) a family D[u] ⊆ L0(m)+ of pseudo-gradients of u, which satisfies the
following axioms:

A1 (Non triviality) It holds that Lip(u)χ{u>0} ∈ D[u] for every u ∈ L p
loc(m)+∩LIP(X).

A2 (Upper linearity) Let u1, u2 ∈ L p
loc(m) be fixed. Consider g1 ∈ D[u1] and

g2 ∈ D[u2]. Suppose that the inequality g ≥ |α1| g1 + |α2| g2 holds m-a.e. in X
for some g ∈ L0(m)+ and α1, α2 ∈ R. Then g ∈ D[α1 u1 + α2 u2].

A3 (Leibniz rule) Fix a function u ∈ L p
loc(m) and a pseudo-gradient g ∈ D[u] of u.

Then for every ϕ ∈ LIP(X) bounded it holds that g supX |ϕ| + Lip(ϕ) |u| ∈ D[ϕ u].
A4 (Lattice property) Fix u1, u2 ∈ L p

loc(m). Given any g1 ∈ D[u1] and g2 ∈ D[u2],
one has that max{g1, g2} ∈ D

[
max{u1, u2}

]
∩ D

[
min{u1, u2}

]
.

A5 (Completeness) Consider two sequences (un)n ⊆ L p
loc(m) and (gn)n ⊆ L p(m) that

satisfy gn ∈ D[un] for every n ∈ N. Suppose that there exist u ∈ L p
loc(m) and

g ∈ L p(m) such that un → u in L p
loc(m) and gn → g in L p(m). Then g ∈ D[u].

emark 2.2. It follows from axioms A1 and A2 that 0 ∈ D[c] for every constant
ap c ∈ R. Moreover, axiom A2 grants that the set D[u] ∩ L p(m) is convex and that

D[α u] = |α| D[u] for every u ∈ L p
loc(m) and α ∈ R \ {0}, while axiom A5 implies that

ach set D[u] ∩ L p(m) is closed in the space L p(m). ■

Given any Borel set B ⊆ X, we define the p-Dirichlet energy of a map u ∈ L p(m)
n B as

Ep(u|B) := inf
{∫

B
g p dm

⏐⏐⏐⏐ g ∈ D[u]
}

∈ [0,+∞]. (2.1)

or the sake of brevity, we shall use the notation Ep(u) to indicate Ep(u|X).

efinition 2.3 (Sobolev Space). Let (X,d,m) be a metric measure space. Let p ∈ [1,∞)
e fixed. Given any D-structure on (X,d,m), we define the homogeneous Sobolev space
ssociated to D as

L1,p(X) = L1,p(X,d,m, D) :=
{
u ∈ L p

loc(m) : Ep(u) < +∞
}
. (2.2)

oreover, the Sobolev space associated to D is defined as

W 1,p(X) = W 1,p(X,d,m, D) := L p(m) ∩ L1,p(X,d,m, D). (2.3)

heorem 2.4. The space W 1,p(X,d,m, D) is a Banach space if endowed with the
orm

∥u∥W 1,p(X) :=
(
∥u∥

p
L p(m) + Ep(u)

)1/p for every u ∈ W 1,p(X). (2.4)
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For a proof of the previous result, we refer to [6, Theorem 1.5].

roposition 2.5 (Minimal Pseudo-gradient). Let (X,d,m) be a metric measure space and
let p ∈ (1,∞). Consider any D-structure on (X,d,m). Let u ∈ L1,p(X) be given. Then
there exists a unique element Du ∈ D[u], which is called the minimal pseudo-gradient
of u, such that Ep(u) = ∥Du∥

p
L p(m).

Both existence and uniqueness of the minimal pseudo-gradient follow from the fact
that the set D[u] ∩ L p(m) is convex and closed by Remark 2.2 and that the space L p(m)
is uniformly convex; see [6, Proposition 1.22] for the details.

In order to associate a differential structure to an axiomatic Sobolev space, we need
to be sure that the pseudo-gradients of a function depend only on the local behavior of
the function itself, in a suitable sense. For this reason, we propose various notions of
locality:

Definition 2.6 (Locality). Let (X,d,m) be a metric measure space. Fix p ∈ (1,∞). Then
we define five notions of locality for D-structures on (X,d,m):

L1 If B ⊆ X is Borel and u ∈ L1,p(X) is m-a.e. constant in B, then Ep(u|B) = 0.
L2 If B ⊆ X is Borel and u ∈ L1,p(X) is m-a.e. constant in B, then Du = 0 m-a.e. in

B.
L3 If u ∈ L1,p(X) and g ∈ D[u], then χ{u>0} g ∈ D[u+].
L4 If u ∈ L1,p(X) and g1, g2 ∈ D[u], then min{g1, g2} ∈ D[u].
L5 If u ∈ L1,p(X) then Du ≤ g holds m-a.e. in X for every g ∈ D[u].

Remark 2.7. In the language of [6, Definition 1.11], the properties L1 and L3 correspond
to locality and strict locality, respectively. ■

We now discuss the relations among the several notions of locality:

Proposition 2.8. Let (X,d,m) be a metric measure space. Let p ∈ (1,∞). Fix a
D-structure on (X,d,m). Then the following implications hold:

L3 H⇒

L4 ⇐⇒

L1 + L5 H⇒

L2 H⇒ L1,
L5
L2 + L3.

(2.5)

Proof.
L2 H⇒ L1. Simply notice that Ep(u|B) ≤

∫
B(Du)p dm = 0.

3 H⇒ L2. Take a constant c ∈ R such that the equality u = c holds m-a.e. in B. Given
hat Du ∈ D[u − c] ∩ D[c − u] by axiom A2 and Remark 2.2, we deduce from L3 that

χ{u>c} Du ∈ D
[
(u − c)+

]
,

χ{u<c} Du ∈ D
[
(c − u)+

]
.

Given that u − c = (u − c)+ − (c − u)+, by applying again axiom A2 we see that

χ Du = χ Du + χ Du ∈ D[u − c] = D[u].
{u ̸=c} {u>c} {u<c}
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Hence the minimality of Du grants that∫
X

(Du)p dm ≤

∫
{u ̸=c}

(Du)p dm,

which implies that Du = 0 holds m-a.e. in {u = c}, thus also m-a.e. in B. This means
hat the D-structure satisfies the property L2, as required.
4 H⇒ L5. We argue by contradiction: suppose the existence of u ∈ L1,p(X) and

g ∈ D[u] such that m
(
{Du > g}

)
> 0, whence h := min{Du, g} ∈ L p(m) satisfies

h p dm <
∫

(Du)p dm. Since h ∈ D[u] by L4, we deduce that Ep(u) <
∫

(Du)p dm,
etting a contradiction.
5 H⇒ L4. Since Du ≤ g1 and Du ≤ g2 hold m-a.e., we see that Du ≤ min{g1, g2}

olds m-a.e. as well. Therefore min{g1, g2} ∈ D[u] by A2.
L1 + L5 H⇒ L2 + L3. Property L1 grants the existence of (gn)n ⊆ D[u] with

B(gn)p dm → 0. Hence L5 tells us that
∫

B(Du)p dm ≤ limn
∫

B(gn)p dm = 0, which
mplies that Du = 0 holds m-a.e. in B, yielding L2. We now prove the validity of L3:

it holds that D[u] ⊆ D[u+], because we know that h = max{h, 0} ∈ D
[
max{u, 0}

]
=

D[u+] for every h ∈ D[u] by A4 and 0 ∈ D[0], in particular u+
∈ L1,p(X). Given

hat u+
= 0 m-a.e. in the set {u ≤ 0}, one has that Du+

= 0 holds m-a.e. in {u ≤ 0}

by L2. Hence for any g ∈ D[u] we have Du+
≤ χ{u>0} g by L5, which implies that

{u>0} g ∈ D[u+] by A2. Therefore L3 is proved. □

Definition 2.9 (Strong Locality). Let (X,d,m) be a metric measure space and p ∈ (1,∞).
Then a D-structure on (X,d,m) is said to be strongly local provided it satisfies L1 and
L5 (thus also L2, L3 and L4 by Proposition 2.8).

We now recall other two notions of locality for D-structures that appeared in the
literature:

Definition 2.10 (Two Alternative Notions of Strong Locality). Let (X,d,m) be a metric
measure space and p ∈ (1,∞). Consider a D-structure on (X,d,m). Then we give the
following definitions:

(i) We say that D is strongly local in the sense of Timoshin provided

χ{u1<u2} g1 + χ{u2<u1} g2 + χ{u1=u2} (g1 ∧ g2) ∈ D[u1 ∧ u2] (2.6)

whenever u1, u2 ∈ L1,p(X), g1 ∈ D[u1] and g2 ∈ D[u2].
(ii) We say that D is strongly local in the sense of Shanmugalingam provided

χB g1 + χX\B g2 ∈ D[u2] for every g1 ∈ D[u1] and g2 ∈ D[u2] (2.7)

whenever u1, u2 ∈ L1,p(X) satisfy u1 = u2 m-a.e. on some Borel set B ⊆ X.

The above two notions of strong locality have been proposed in [12] and [11],
espectively. We now prove that they are actually both equivalent to our strong locality
roperty:

emma 2.11. Let (X,d,m) be a metric measure space and p ∈ (1,∞). Fix any

D-structure on (X,d,m). Then the following are equivalent:
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(i) D is strongly local (in our sense).
(ii) D is strongly local in the sense of Shanmugalingam.

(iii) D is strongly local in the sense of Timoshin.

Proof.
(i) H⇒ (ii) Fix u1, u2 ∈ L1,p(X) such that u1 = u2 m-a.e. on some E ⊆ X Borel. Pick
g1 ∈ D[u1] and g2 ∈ D[u2]. Observe that D(u2 − u1) + g1 ∈ D

[
(u2 − u1) + u1

]
= D[u2]

y A2, so that we have
(
D(u2 − u1) + g1

)
∧ g2 ∈ D[u2] by L4. Since D(u2 − u1) = 0

m-a.e. on B by L2, we see that χB g1 + χX\B g2 ≥
(
D(u2 − u1) + g1

)
∧ g2 holds m-a.e.

in X, whence accordingly we conclude that χB g1 +χX\B g2 ∈ D[u2] by A2. This shows
the validity of (ii).
(ii) H⇒ (i) First of all, let us prove L1. Let u ∈ L1,p(X) and c ∈ R satisfy u = c m-a.e.
on some Borel set B ⊆ X. Given any g ∈ D[u], we deduce from (ii) that χX\B g ∈ D[u],
thus accordingly Ep(u|B) ≤

∫
B(χX\B g)p dm = 0. This proves the property L1.

To show property L4, fix u ∈ L1,p(X) and g1, g2 ∈ D[u]. Let us denote B := {g1 ≤

g2}. Therefore (ii) grants that g1 ∧ g2 = χB g1 + χX\B g2 ∈ D[u], thus obtaining L4. By
recalling Proposition 2.8, we conclude that D is strongly local.
(i) + (ii) H⇒ iii) Fix u1, u2 ∈ L1,p(X), g1 ∈ D[u1] and g2 ∈ D[u2]. Recall that
g1 ∨ g2 ∈ D[u1 ∧ u2] by axiom A4. Hence by using property (ii) twice we obtain that

χ{u1≤u2} g1 + χ{u1>u2} (g1 ∨ g2) ∈ D[u1 ∧ u2],
χ{u2≤u1} g2 + χ{u2>u1} (g1 ∨ g2) ∈ D[u1 ∧ u2].

(2.8)

The pointwise minimum between the two functions that are written in (2.8) – namely
given by χ{u1<u2} g1 + χ{u2<u1} g2 + χ{u1=u2} (g1 ∧ g2) – belongs to the class D[u1 ∧ u2]
as well by property L4, thus showing (iii).
(iii) H⇒ (i) First of all, let us prove L1. Fix a function u ∈ L1,p(X) that is m-a.e. equal
to some constant c ∈ R on a Borel set B ⊆ X. By using (iii) and the fact that 0 ∈ D[0],
we have that

χ{u<c} g ∈ D
[
(u − c) ∧ 0

]
= D

[
−(u − c)+

]
= D

[
(u − c)+

]
,

χ{u>c} g ∈ D
[
(c − u) ∧ 0

]
= D

[
−(c − u)+

]
= D

[
(c − u)+

]
.

(2.9)

Since u − c = (u − c)+ − (c − u)+, we know from A2 and (2.9) that

χ{u ̸=c} g = χ{u<c} g + χ{u>c} g ∈ D[u − c] = D[u],

hence Ep(u|B) ≤
∫

B(χ{u ̸=c} g)p dm = 0. This proves the property L1.
To show property L4, fix u ∈ L1,p(X) and g1, g2 ∈ D[u]. Hence (2.6) with u1 =

u2 := u simply reads as g1 ∧ g2 ∈ D[u], which gives L4. This proves that D is strongly
local. □

Remark 2.12 (L1 Does Not Imply L2). In general, as we are going to show in the
following example, it can happen that a D-structure satisfies L1 but not L2.

Let G = (V, E) be a locally finite connected graph. The distance d(x, y) between two
vertices x, y ∈ V is defined as the minimum length of a path joining x to y, while as
a reference measure m on V we choose the counting measure. Notice that any function
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u : V → R is locally Lipschitz and that any bounded subset of V is finite. We define a
D-structure on the metric measure space (V,d,m) in the following way:

D[u] :=

{
g : V → [0,+∞]

⏐⏐⏐ ⏐⏐u(x) − u(y)
⏐⏐ ≤ g(x) + g(y)

for any x, y ∈ V with x ∼ y
}

(2.10)

for every u : V → R, where the notation x ∼ y indicates that x and y are adjacent
vertices, i.e. that there exists an edge in E joining x to y.

We claim that D fulfills L1. To prove it, suppose that some function u : X → R
is constant on some set B ⊆ V , say u(x) = c for every x ∈ B. Define the function
g : V → [0,+∞) as

g(x) :=

{
0
|c| +

⏐⏐u(x)
⏐⏐ if x ∈ B,

if x ∈ V \ B.

Hence g ∈ D[u] and
∫

B g p dm = 0, so that Ep(u|B) = 0. This proves the validity of L1.
On the other hand, if V contains more than one vertex, then L2 is not satisfied. Indeed,

onsider any non-constant function u : V → R. Clearly any pseudo-gradient g ∈ D[u]
f u is not identically zero, thus there exists x ∈ V such that Du(x) > 0. Since u is
rivially constant on the set {x}, we then conclude that property L2 does not hold. ■

Hereafter, we shall focus our attention on the strongly local D-structures. Under these
locality assumptions, one can show the following calculus rules for minimal pseudo-
gradients, whose proof is suitably adapted from analogous results that have been proved
in [1].

Proposition 2.13 (Calculus Rules for Du). Let (X,d,m) be a metric measure space and
let p ∈ (1,∞). Consider a strongly local D-structure on (X,d,m). Then the following
hold:

(i) Let u ∈ L1,p(X) and let N ⊆ R be a Borel set with L1(N ) = 0. Then the equality
Du = 0 holds m-a.e. in u−1(N ).

(ii) CHAIN RULE. Let u ∈ L1,p(X) and ϕ ∈ LIP(R). Then |ϕ′
| ◦u Du ∈ D[ϕ ◦u]. More

precisely, ϕ ◦ u ∈ L1,p(X) and D(ϕ ◦ u) = |ϕ′
| ◦ u Du holds m-a.e. in X.

(iii) LEIBNIZ RULE. Let u, v ∈ L1,p(X) ∩ L∞(m). Then |u| Dv + |v| Du ∈ D[uv]. In
other words, uv ∈ L1,p(X) ∩ L∞(m) and D(uv) ≤ |u| Dv + |v| Du holds m-a.e.
in X.

Proof.
STEP 1. First, consider ϕ affine, say ϕ(t) = α t +β. Then |ϕ′

|◦u Du = |α| Du ∈ D[ϕ◦u]
by Remark 2.2 and A2. Now suppose that the function ϕ is piecewise affine, i.e. there
xists a sequence (ak)k∈Z ⊆ R, with ak < ak+1 for all k ∈ Z and a0 = 0, such

that each ϕ|[ak ,ak+1] is an affine function. Let us denote Ak := u−1
(
[ak, ak+1)

)
and

k := (u ∨ ak) ∧ ak+1 for every index k ∈ Z. By combining L3 with the axioms A2
nd A5, we can see that χAk Du ∈ D[uk] for every k ∈ Z. Called ϕk : R → R that

affine function coinciding with ϕ on [a , a ), we deduce from the previous case that
k k+1
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|ϕ′

k |◦uk Duk ∈ D[ϕk ◦uk] = D[ϕ◦uk], whence we have that |ϕ′
|◦uk χAk Du ∈ D[ϕ◦uk]

by L5, A2 and L2. Let us define (vn)n ⊆ L1,p(X) as

vn := ϕ(0) +

n∑
k=0

(
ϕ ◦ uk − ϕ(ak)

)
+

−1∑
k=−n

(
ϕ ◦ uk − ϕ(ak+1)

)
for every n ∈ N.

Hence gn :=
∑n

k=−n |ϕ′
| ◦ uk χAk Du ∈ D[vn] for all n ∈ N by A2 and Remark 2.2.

Given that one has vn → ϕ ◦ u in L p
loc(m) and gn → |ϕ′

| ◦ u Du in L p(m) as n → ∞,
we finally conclude that |ϕ′

| ◦ u Du ∈ D[ϕ ◦ u], as required.
STEP 2. We aim to prove the chain rule for ϕ ∈ C1(R) ∩ LIP(R). For any n ∈ N, let
us denote by ϕn the piecewise affine function interpolating the points

(
k/2n, ϕ(k/2n)

)
with k ∈ Z. We call D ⊆ R the countable set

{
k/2n

: k ∈ Z, n ∈ N
}
. Therefore ϕn

niformly converges to ϕ and ϕ′
n(t) → ϕ′(t) for all t ∈ R\ D. In particular, the functions

gn := |ϕ′
n| ◦ u Du converge m-a.e. to |ϕ′

| ◦ u Du by L2. Moreover, Lip(ϕn) ≤ Lip(ϕ) for
very n ∈ N by construction, so that (gn)n is a bounded sequence in L p(m). This implies
hat (up to a not relabeled subsequence) gn ⇀ |ϕ′

| ◦ u Du weakly in L p(m). Now apply
Mazur lemma: for any n ∈ N, there exists (αn

i )Nn
i=n ⊆ [0, 1] such that

∑Nn
i=n α

n
i = 1 and

hn :=
∑Nn

i=n α
n
i gi

n
→ |ϕ′

| ◦ u Du strongly in L p(m). Given that gn ∈ D[ϕn ◦ u] for every
∈ N by STEP 1, we deduce from axiom A2 that hn ∈ D[ψn ◦ u] for every n ∈ N,
here ψn :=

∑Nn
i=n α

n
i ϕi . Finally, it clearly holds that ψn ◦u → ϕ ◦u in L p

loc(m), whence
ϕ′

| ◦ u Du ∈ D[ϕ ◦ u] by A5.
STEP 3. We claim that

Du = 0 m-a.e. in u−1(K ), for every K ⊆ R compact with L1(K ) = 0.
(2.11)

or any n ∈ N \ {0}, define ψn := n d(·, K ) ∧ 1 and denote by ϕn the primitive of ψn

uch that ϕn(0) = 0. Since each ψn is continuous and bounded, any function ϕn is of
lass C1 and Lipschitz. By applying the dominated convergence theorem we see that the
1-measure of the ε-neighborhood of K converges to 0 as ε ↘ 0, thus accordingly ϕn

niformly converges to idR as n → ∞. This implies that ϕn◦u → u in L p
loc(m). Moreover,

e know from STEP 2 that |ψn| ◦u Du ∈ D[ϕn ◦u], thus also χX\u−1(K ) Du ∈ D[ϕn ◦u].
ence χX\u−1(K ) Du ∈ D[u] by A5, which forces the equality Du = 0 to hold m-a.e. in

u−1(K ), proving (2.11).
STEP 4. We are in a position to prove (i). Choose any m′

∈ P(X) such that m ≪ m′
≪ m

and call µ := u∗m
′. Then µ is a Radon measure on R, in particular it is inner

regular. We can thus find an increasing sequence of compact sets Kn ⊆ N such that
µ

(
N \

⋃
n Kn

)
= 0. We already know from STEP 3 that Du = 0 holds m-a.e. in⋃

n u−1(Kn). Since u−1(N )\
⋃

n u−1(Kn) is m-negligible by definition of µ, we conclude
that Du = 0 holds m-a.e. in u−1(N ). This shows the validity of property (i).
STEP 5. We now prove (ii). Let us fix ϕ ∈ LIP(R). Choose some convolution kernels
(ρn)n and define ϕn := ϕ ∗ ρn for all n ∈ N. Then ϕn → ϕ uniformly and ϕ′

n → ϕ′

pointwise L1-a.e., whence accordingly ϕn ◦ u → ϕ ◦ u in L p
loc(m) and |ϕ′

n| ◦ u Du →

|ϕ′
| ◦ u Du pointwise m-a.e. in X. Since |ϕ′

n| ◦ u Du ≤ Lip(ϕ) Du for all n ∈ N, there
exists a (not relabeled) subsequence such that |ϕ′

n| ◦ u Du ⇀ |ϕ′
| ◦ u Du weakly in

L p(m). We know that |ϕ′
| ◦ u Du ∈ D[ϕ ◦ u] for all n ∈ N because the chain rule holds
n n
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for all ϕn ∈ C1(R) ∩ LIP(R), hence by combining Mazur lemma and A5 as in STEP

2 we obtain that |ϕ′
| ◦ u Du ∈ D[ϕ ◦ u], so that ϕ ◦ u ∈ L1,p(X) and the inequality

D(ϕ ◦ u) ≤ |ϕ′
| ◦ u Du holds m-a.e. in X.

STEP 6. We conclude the proof of (ii) by showing that one actually has D(ϕ ◦ u) =

|ϕ′
| ◦u Du. We can suppose without loss of generality that Lip(ϕ) = 1. Let us define the

unctions ψ± as ψ±(t) := ±t −ϕ(t) for all t ∈ R. Then it holds m-a.e. in u−1
(
{±ϕ′

≥ 0}
)

hat

Du = D(±u) ≤ D(ϕ ◦ u) + D(ψ± ◦ u) ≤
(
|ϕ′

| ◦ u + |ψ ′

±
| ◦ u

)
Du = Du,

which forces the equality D(ϕ◦u) = ±ϕ′
◦u Du to hold m-a.e. in the set u−1

(
{±ϕ′

≥ 0}
)
.

This grants the validity of D(ϕ ◦ u) = |ϕ′
| ◦ u Du, thus completing the proof of item (ii).

STEP 7. We show (iii) for the case in which u, v ≥ c is satisfied m-a.e. in X, for
some c > 0. Call ε := min{c, c2

} and note that the function log is Lipschitz on the
interval [ε,+∞), then choose any Lipschitz function ϕ : R → R that coincides with log
on [ε,+∞). Now call C the constant log

(
∥uv∥L∞(m)

)
and choose a Lipschitz function

ψ : R → R such that ψ = exp on the interval [log ε,C]. By applying twice the chain
ule (ii), we thus deduce that uv ∈ L1,p(X) and the m-a.e. inequalities

D(uv) ≤ |ψ ′
| ◦ ϕ ◦ (uv) D

(
ϕ ◦ (uv)

)
≤ |uv|

(
D log u + D log v

)
= |uv|

(
Du
|u|

+
Dv
|v|

)
= |u| Dv + |v| Du.

herefore the Leibniz rule (iii) is verified under the additional assumption that u, v ≥

> 0.
STEP 8. We conclude by proving item (iii) for general u, v ∈ L1,p(X) ∩ L∞(m). Given
ny n ∈ N and k ∈ Z, let us denote In,k :=

[
k/n, (k + 1)/n

)
. Call ϕn,k : R → R the

ontinuous function that is the identity on In,k and constant elsewhere. For any n ∈ N,
et us define

un,k := u −
k − 1

n
, ũn,k := ϕn,k ◦ u −

k − 1
n

for all k ∈ Z,

vn,ℓ := v −
ℓ− 1

n
, ṽn,ℓ := ϕn,ℓ ◦ v −

ℓ− 1
n

for all ℓ ∈ Z.

otice that the equalities un,k = ũn,k and vn,ℓ = ṽn,ℓ hold m-a.e. in u−1(In,k) and
v−1(In,ℓ), respectively. Hence Dun,k = Dũn,k = Du and Dvn,ℓ = Dṽn,ℓ = Dv hold

-a.e. in u−1(In,k) and v−1(In,ℓ), respectively, but we also have that

D(un,k vn,ℓ) = D(ũn,k ṽn,ℓ) is verified m-a.e. in u−1(In,k) ∩ v−1(In,ℓ).

oreover, we have the m-a.e. inequalities 1/n ≤ ũn,k, ṽn,ℓ ≤ 2/n by construction.
herefore for any k, ℓ ∈ Z it holds m-a.e. in u−1(In,k) ∩ v−1(In,ℓ) that

D(uv) ≤ D(ũn,k ṽn,ℓ) +
|k − 1|

n
Dvn,ℓ +

|ℓ− 1|

n
Dun,k

≤ |ṽn,ℓ| Dũn,k + |ũn,k | Dṽn,ℓ +
|k − 1|

n
Dvn,ℓ +

|ℓ− 1|

n
Dun,k

≤

(
|v| +

4
)

Du +

(
|u| +

4
)

Dv,

n n
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where the second inequality follows from the case u, v ≥ c > 0, treated in STEP 7. This
implies that the inequality D(uv) ≤ |u| Dv + |v| Du + 4 (Du + Dv)/n holds m-a.e. in
X. Given that n ∈ N is arbitrary, the Leibniz rule (iii) follows. □

3. Cotangent module associated to a D-structure

It is shown in [4] that any metric measure space possesses a first-order differential
structure, whose construction relies upon the notion of L p(m)-normed L∞(m)-module.
For completeness, we briefly recall its definition and we refer to [4,5] for a comprehensive
exposition of this topic.

Definition 3.1 (Normed Module). Let (X,d,m) be a metric measure space and p ∈

[1,∞). Then an L p(m)-normed L∞(m)-module is any quadruplet
(
M , ∥ · ∥M , · , | · |

)
such that

(i)
(
M , ∥ · ∥M

)
is a Banach space,

(ii) (M , ·) is an algebraic module over the commutative ring L∞(m),
(iii) | · | : M → L p(m)+ is an operator, called pointwise norm, which satisfies

| f · v| = | f ||v| m-a.e. for every f ∈ L∞(m) and v ∈ M ,

∥v∥M =
|v|


L p(m) for every v ∈ M .

(3.1)

A key role in [4] is played by the cotangent module L2(T ∗X), which has a structure of
L2(m)-normed L∞(m)-module; see [5, Theorem/Definition 2.8] for its characterisation.
The following result shows that a generalised version of such object can be actually
associated to any D-structure, provided the latter is assumed to be strongly local.

Theorem 3.2 (Cotangent Module Associated to a D-structure). Let (X,d,m) be any
metric measure space and let p ∈ (1,∞). Consider a strongly local D-structure on
(X,d,m). Then there exists a unique couple

(
L p(T ∗X; D), d

)
, where L p(T ∗X; D) is an

L p(m)-normed L∞(m)-module and d : L1,p(X) → L p(T ∗X; D) is a linear map, such
that the following hold:

(i) the equality |du| = Du is satisfied m-a.e. in X for every u ∈ L1,p(X),
(ii) the vector space V of all elements of the form

∑n
i=1 χBi dui , where (Bi )i is a Borel

partition of X and (ui )i ⊆ L1,p(X), is dense in the space L p(T ∗X; D).

niqueness has to be intended up to unique isomorphism: given another such couple
M , d′), there exists a unique isomorphism Φ : L p(T ∗X; D) → M such that Φ(du) =
′u for all u ∈ L1,p(X).

The space L p(T ∗X; D) is called cotangent module, while the map d is called
ifferential.

roof.
UNIQUENESS. Consider any element ω ∈ V written as ω =

∑n
i=1 χBi dui , with (Bi )i

orel partition of X and u , . . . , u ∈ L1,p(X). Notice that the requirements that Φ is
1 n
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L∞(m)-linear and Φ ◦ d = d′ force the definition Φ(ω) :=
∑n

i=1 χBi d′ui . The m-a.e.
quality⏐⏐Φ(ω)

⏐⏐ =

∑
i=1

χBi |d′ui | =

n∑
i=1

χBi Dui =

n∑
i=1

χBi |dui | = |ω|

grants that Φ(ω) is well-defined, in the sense that it does not depend on the particular
way of representing ω, and that Φ : V → M preserves the pointwise norm. In
particular, one has that the map Φ : V → M is (linear and) continuous. Since V

is dense in L p(T ∗X; D), we can uniquely extend Φ to a linear and continuous map
Φ : L p(T ∗X; D) → M , which also preserves the pointwise norm. Moreover, we deduce
from the very definition of Φ that the identity Φ(h ω) = h Φ(ω) holds for every ω ∈ V

and h ∈ Sf(X), whence the L∞(m)-linearity of Φ follows by an approximation argument.
Finally, the image Φ(V) is dense in M , which implies that Φ is surjective. Therefore Φ
is the unique isomorphism satisfying Φ ◦ d = d′.
EXISTENCE. First of all, let us define the pre-cotangent module as

Pcm :=

{{
(Bi , ui )

}n
i=1

⏐⏐⏐⏐ n ∈ N, u1, . . . , un ∈ L1,p(X),
(Bi )n

i=1 Borel partition of X

}
.

We define an equivalence relation on Pcm as follows: we declare that
{
(Bi , ui )

}
i ∼{

(C j , v j )
}

j provided D(ui − v j ) = 0 holds m-a.e. on Bi ∩ C j for every i, j . The
quivalence class of an element

{
(Bi , ui )

}
i of Pcm will be denoted by [Bi , ui ]i . We

can endow the quotient Pcm/ ∼ with a vector space structure:

[Bi , ui ]i + [C j , v j ] j := [Bi ∩ C j , ui + v j ]i, j ,

λ [Bi , ui ]i := [Bi , λ ui ]i ,
(3.2)

or every [Bi , ui ]i , [C j , v j ] j ∈ Pcm/ ∼ and λ ∈ R. We only check that the sum
perator is well-defined; the proof of the well-posedness of the multiplication by scalars
ollows along the same lines. Suppose that

{
(Bi , ui )

}
i ∼

{
(B ′

k, u′

k)
}

k and
{
(C j , v j )

}
j ∼{

(C ′

ℓ, v
′

ℓ)
}
ℓ
, in other words D(ui − u′

k) = 0 m-a.e. on Bi ∩ B ′

k and D(v j − v′

ℓ) = 0 m-a.e.
on C j ∩ C ′

ℓ for every i, j, k, ℓ, whence accordingly

D
(
(ui + v j ) − (u′

k + v′

ℓ)
) L5

≤ D(ui − u′

k) + D(v j − v′

ℓ) = 0

holds m-a.e. on (Bi ∩ C j ) ∩ (B ′

k ∩ C ′

ℓ).

his shows that
{
(Bi ∩ C j , ui + v j )

}
i, j ∼

{
(B ′

k ∩ C ′

ℓ, u′

k + v′

ℓ)
}

k,ℓ, thus proving that the
um operator defined in (3.2) is well-posed. Now let us define

[Bi , ui ]i


L p(T ∗X;D) :=

n∑
i=1

(∫
Bi

(Dui )p dm
)1/p

for every [Bi , ui ]i ∈ Pcm/ ∼ .

(3.3)

Such definition is well-posed: if
{
(Bi , ui )

}
i ∼

{
(C j , v j )

}
j then for all i, j it holds that

|Du − Dv |
L5
≤ D(u − v ) = 0 m-a.e. on B ∩ C ,
i j i j i j
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i.e. that the equality Dui = Dv j is satisfied m-a.e. on Bi ∩ C j . Therefore one has that∑
i

(∫
Bi

(Dui )p dm
)1/p

=

∑
i, j

(∫
Bi ∩C j

(Dui )p dm
)1/p

=

∑
i, j

(∫
Bi ∩C j

(Dv j )p dm
)1/p

=

∑
j

(∫
C j

(Dv j )p dm
)1/p

,

hich grants that ∥ · ∥L p(T ∗X;D) in (3.3) is well-defined. The fact that it is a norm on
cm/ ∼ easily follows from standard verifications. Hence let us define

L p(T ∗X; D) := completion of
(
Pcm/ ∼, ∥ · ∥L p(T ∗X;D)

)
,

d : L1,p(X) → L p(T ∗X; D), du := [X, u] for every u ∈ L1,p(X).

Observe that L p(T ∗X; D) is a Banach space and that d is a linear operator. Furthermore,
given any [Bi , ui ]i ∈ Pcm/ ∼ and h =

∑
j λ j χC j ∈ Sf(X), where (λ j ) j ⊆ R and (C j ) j

is a Borel partition of X, we set⏐⏐[Bi , ui ]i
⏐⏐ :=

∑
i

χBi Dui ,

h [Bi , ui ]i := [Bi ∩ C j , λ j ui ]i, j .

ne can readily prove that such operations – which are well-posed again by the strong
ocality of D – can be uniquely extended to a pointwise norm | · | : L p(T ∗X; D) →

L p(m)+ and to a multiplication by L∞-functions L∞(m)× L p(T ∗X; D) → L p(T ∗X; D),
espectively. Therefore the space L p(T ∗X; D) turns out to be an L p(m)-normed L∞(m)-
odule when equipped with the operations described so far. In order to conclude, it

uffices to notice that

|du| =
⏐⏐[X, u]

⏐⏐ = Du holds m-a.e. for every u ∈ L1,p(X)

nd that [Bi , ui ]i =
∑

i χBi dui for all [Bi , ui ]i ∈ Pcm/ ∼, giving (i) and (ii),
espectively. □

emark 3.3. At this level of generality, the cotangent module L p(T ∗X; D) cannot be
viewed (to the best of our knowledge) as the space of p-integrable sections of some
notion of ‘measurable cotangent bundle’ of X. In particular, the differential du of a
Sobolev function u ∈ L1,p(X) is a rather abstract object, which does not admit any
sort of ‘m-a.e. representative’. ■

In full analogy with the properties of the cotangent module that is studied in [4], we
an show that the differential d introduced in Theorem 3.2 is a closed operator, which
atisfies both the chain rule and the Leibniz rule.

heorem 3.4 (Closure of the Differential). Let (X,d,m) be a metric measure space and
let p ∈ (1,∞). Consider a strongly local D-structure on (X,d,m). Then the differential

perator d is closed, i.e. if a sequence (u ) ⊆ L1,p(X) converges in L p (m) to some
n n loc
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u ∈ L p
loc(m) and dun ⇀ ω weakly in L p(T ∗X; D) for some ω ∈ L p(T ∗X; D), then

∈ L1,p(X) and du = ω.

roof. Since d is linear, we can assume with no loss of generality that dun → ω in
L p(T ∗X; D) by Mazur lemma, so that d(un − um) → ω − dum in L p(T ∗X; D) for
ny m ∈ N. In particular, one has un − um → u − um in L p

loc(m) and D(un − um) =⏐⏐d(un −um)
⏐⏐ → |ω − dum | in L p(m) as n → ∞ for all m ∈ N, whence u −um ∈ L1,p(X)

nd D(u − um) ≤ |ω − dum | holds m-a.e. for all m ∈ N by A5 and L5. Therefore
u = (u − u0) + u0 ∈ L1,p(X) and

lim
m→∞

∥du − dum∥L p(T ∗X;D) = lim
m→∞

D(u − um)


L p(m)

≤ lim
m→∞

∥ω − dum∥L p(T ∗X;D)

= lim
m→∞

lim
n→∞

∥dun − dum∥L p(T ∗X;D) = 0,

which grants that dum → du in L p(T ∗X; D) as m → ∞ and accordingly that du =

. □

roposition 3.5 (Calculus Rules for du). Let (X,d,m) be any metric measure space and
et p ∈ (1,∞). Consider a strongly local D-structure on (X,d,m). Then the following
old:

(i) Let u ∈ L1,p(X) and let N ⊆ R be a Borel set with L1(N ) = 0. Then χu−1(N ) du =

0.
(ii) CHAIN RULE. Let u ∈ L1,p(X) and ϕ ∈ LIP(R) be given. Recall that ϕ◦u ∈ L1,p(X)

by Proposition 2.13. Then d(ϕ ◦ u) = ϕ′
◦ u du.

(iii) LEIBNIZ RULE. Let u, v ∈ L1,p(X) ∩ L∞(m) be given. Recall that uv ∈ L1,p(X) ∩

L∞(m) by Proposition 2.13. Then d(uv) = u dv + v du.

roof.
i) We have that |du| = Du = 0 holds m-a.e. on u−1(N ) by item (i) of Proposition 2.13,
hus accordingly χu−1(N ) du = 0, as required.
ii) If ϕ is an affine function, say ϕ(t) = α t + β, then d(ϕ ◦ u) = d(α u + β) = α du =

ϕ′
◦u du. Now suppose that ϕ is a piecewise affine function. Say that (In)n is a sequence

of intervals whose union covers the whole real line R and that (ψn)n is a sequence of
affine functions such that ϕ|In = ψn holds for every n ∈ N. Since ϕ′ and ψ ′

n coincide
1-a.e. in the interior of In , we have that d(ϕ ◦ f ) = d(ψn ◦ f ) = ψ ′

n ◦ f d f = ϕ′
◦ f d f

olds m-a.e. on f −1(In) for all n, so that d(ϕ ◦ u) = ϕ′
◦ u du is verified m-a.e. on

n u−1(In) = X.
To prove the case of a general Lipschitz function ϕ : R → R, we want to approximate

with a sequence of piecewise affine functions: for any n ∈ N, let us denote by ϕn the
unction that coincides with ϕ at

{
k/2n

: k ∈ Z
}

and that is affine on the interval
k/2n, (k + 1)/2n

]
for every k ∈ Z. It is clear that Lip(ϕn) ≤ Lip(ϕ) for all n ∈ N.

oreover, one can readily check that, up to a not relabeled subsequence, ϕn → ϕ

niformly on R and ϕ′
n → ϕ′ pointwise L1-almost everywhere. The former grants that

p ′ ′ p u)p
≤ 2p Lip(ϕ)p (Du)p

∈ L1(m)
n ◦ u → ϕ ◦ u in L loc(m). Given that |ϕn − ϕ | ◦ u (D
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(
(

w

for all n ∈ N and |ϕ′
n − ϕ′

|
p

◦ u (Du)p
→ 0 pointwise m-a.e. by the latter above

together with (i), we obtain
∫

|ϕ′
n − ϕ′

|
p
◦u (Du)p dm → 0 as n → ∞ by the dominated

convergence theorem. In other words, ϕ′
n ◦ u du → ϕ′

◦ u du in the strong topology of
L p(T ∗X; D). Hence Theorem 3.4 ensures that d(ϕ ◦ u) = ϕ′

◦ u du, thus proving the
chain rule (ii) for any ϕ ∈ LIP(R).
iii) In the case u, v ≥ 1, we argue as in the proof of Proposition 2.13 to deduce from
ii) that

d(uv)
uv

= d log(uv) = d
(
log(u) + log(v)

)
= d log(u) + d log(v) =

du
u

+
dv
v
,

whence we get d(uv) = u dv + v du by multiplying both sides by uv.
In the general case u, v ∈ L∞(m), choose a constant C > 0 so big that u +C, v+C ≥

1. By the case treated above, we know that

d
(
(u + C)(v + C)

)
= (u + C) d(v + C) + (v + C) d(u + C)
= (u + C) dv + (v + C) du

= u dv + v du + C d(u + v),
(3.4)

hile a direct computation yields

d
(
(u + C)(v + C)

)
= d

(
uv + C(u + v) + C2)

= d(uv) + C d(u + v). (3.5)

By subtracting (3.5) from (3.4), we finally obtain that d(uv) = u dv + v du, as required.
This completes the proof of the Leibniz rule (iii). □

Remark 3.6 (Locality of the Differential). It also holds that

χ{u=v} du = χ{u=v} dv for every u, v ∈ L1,p(X). (3.6)

Indeed, given that {u = v} = (u − v)−1
(
{0}

)
we know from item (i) of Proposition 2.13

that χ{u=v} d(u − v) = 0, whence (3.6) follows from the linearity of d. ■
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