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Hold fast to dreams
For if dreams die

Life is a broken-winged bird
That cannot fly.

Hold fast to dreams
For when dreams go
Life is a barren field

Frozen with snow.

— Langston Hughes (1902-1967)



ABSTRACT

Wang, Xiulin
Coupled Nonnegative Matrix/Tensor Factorization in Brain Imaging Data
Jyväskylä: University of Jyväskylä, 2020, 58 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 321)
ISBN 978-951-39-8407-6 (PDF)

Continuous advancement of brain imaging techniques has witnessed data analy-
sis methods evolving from matrix component analysis to tensor component anal-
ysis, from individual analysis to group analysis regarding the analysis of brain
data with multi-set/multi-modal, multi-coupling and multi-way characteristics.
Coupled matrix/tensor factorization is robust in merging the advantages of anal-
ysis methods, including multi-way retainability, flexible coupling settings, mild
uniqueness conditions, and applicability of various constraints, which is rela-
tively difficult for most existing methods. Therefore, this dissertation aims to
develop efficient coupled nonnegative matrix/tensor factorization algorithms,
which can be used for the analysis of brain imaging data at the group level.

First, aiming at constrained group analysis of data from multiple sources,
we design a flexible model of coupled nonnegative matrix factorization with
sparse regularization and adopt alternating direction method of multipliers (AD-
MM) for optimization. Then, to reduce the high computational cost of large-
scale problems, we propose three efficient coupled nonnegative tensor factoriza-
tion algorithms, which are respectively based on fast hierarchical alternating least
squares (fHALS), alternating proximal gradient (APG) and a combination of APG
and low-rank approximation.

Experiments using synthetic and real-world data are conducted to demon-
strate the performances of the proposed algorithms. Specifically, for multi-subject
simulated functional magnetic resonance imaging data, the proposed ADMM-
based algorithm can achieve better performance than its competitors and extract
both common and individual patterns while correcting the disorders of common
patterns. For multi-subject ongoing electroencephalography data, the proposed
fHALS-based algorithm can effectively extract brain activities of interest associ-
ated with the musical stimulus. For multi-subject event-related potential data,
the proposed APG-based algorithms can obtain higher decomposition accuracy
and more robust multi-domain feature extraction stability, and low-rank approx-
imation can greatly improve computation efficiency without losing the accuracy.

Overall, according to data characteristics , we have developed efficient cou-
pled nonnegative matrix/tensor decomposition algorithms, which have been suc-
cessfully applied to the group analysis of brain imaging data.

Keywords: Brain imaging data, coupled constraint, group analysis, nonnegative
matrix/tensor factorization, sparse regularization



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Wang, Xiulin
Liitoksellisten matriisien / tensorien epänegatiivinen yhteishajotelma aivokuvan-
tamisaineistossa
Jyväskylä: University of Jyväskylä, 2020, 58 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 321)
ISBN 978-951-39-8407-6 (PDF)

Aivokuvantamismenetelmien jatkuvaa kehitystä on seurannut aineistojen ana-
lyysiin tarkoitettujen menetelmien kehittyminen matriisikomponenttianalyysis-
tä tensorikomponenttianalyysiin ja yksilötason analyysistä ryhmätason analyy-
siin . Liitoksellisten matriisien / tensorien yhteishajotelma luotettavasti säilyttää
rakenteiden ulottuvaisuuden, sallii joustavat rakenteiden liitokset, on yksikäsit-
teinen lievin ehdon, ja mahdollistaa monien eri reunaehtojen huomioimisen . Tä-
män väitöskirjan tavoite on kehittää liitoksellisten matriisien / tensorien epäne-
gatiivisen yhteishajotelman laskemiseksi tehokkaita algoritmeja, jotka soveltuvat
aivokuvantamisaineistojen ryhmätason analyysiin.

Tavoitteenamme usean datalähteen ryhmätason analyysi reunaehdot huo-
mioon ottaen, esittelemme joustavan liitoksellisten matriisien epänegatiivisen yh-
teishajotelman, jossa käytetään harvan ratkaisun tuottavaa regularisaatiota, ja jo-
ka ratkaistaan käyttämällä kertoimien vuorottelevan suunnan menetelmää (AD-
MM). Vähentääksemme korkeaa laskennallista vaativuutta , ehdotamme kolmea
tehokasta liitoksellisten tensorien epänegatiivista yhteishajotelmaa varten suun-
niteltua algoritmia, jotka vastaavasti perustuvat kolmeen eri menetelmään: no-
peaan, hierarkkiseen ja vuorottelevaan pienimmän neliösumman menetelmään
(fHALS), vuorottelevan proksimaalisen gradientin menetelmään (APG), ja yh-
distelmään joka koostuu APG:sta ja matala-asteisesta approksimaatiosta (LRA).

Esitettyjen algoritmien suorituskykyä arvioidaan sekä simuloidulla että oi-
kealla aineistolla. Usean koehenkilön simuloidulle fMRI-aineistolle ehdotettu AD-
MM-pohjainen algoritmi pystyy saavuttamaan parempia tuloksia kuin vaihtoeh-
dot. Usean koehenkilön jatkuvassa elektroen-kefalografia-aineistossa ehdotettu
fHALS-perustainen algoritmi onnistuu eristämään kiinnostavia aivotoimintoja.
Usean koehenkilön herätevasteaineistossa ehdotetut APG-perustaiset algoritmit
saavuttavat tarkempia hajotelmia ja löytävät olennaisia piirteitä aineistosta va-
kaammin. Lisäksi matala-asteinen approksimaatio voi huomattavasti lisätä las-
kennallista tehokkuutta kuitenkaan menettämättä tarkkuutta.

Tiivistäen, olemme siis kehittäneet tehokkaita algoritmeja liitoksellisten mat-
riisien / tensorien epänegatiiviselle yhteishajotelmalle, ja soveltaneet niitä onnis-
tuneesti ryhmätason analyysiin aivokuvantamisaineistossa.

Avainsanat: Aivokuvantamisaineisto, liitosrajoite, ryhmäanalyysi, matriisien / ten-
sorien epänegatiivinen hajotelma, harva regularisaatio
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1 INTRODUCTION

1.1 Brain imaging data

In the field of cognitive neuroscience, the advent of advanced brain imaging tech-
niques has enabled researchers to explore the brain from various perspectives.
For example, from the view of brain function, electroencephalography (EEG) is a
collection of potentials along the scalp that reflect electrical activities of the brain;
magnetoencephalography (MEG) maps brain activities by recording magnetic
fields generated by electrical currents in the brain; functional magnetic resonance
imaging (fMRI) measures hemodynamic responses related to neural activities of
the brain. From the view of brain structure, structural MRI (sMRI) and diffusion
tensor imaging (DTI) present structural information (mainly gray matter, white
matter and cerebrospinal fluid) about the brain, and DTI can additionally provide
brain structural connectivity. Incidentally, a large amount of brain imaging data
are generated with the following characteristics:

(1) Multi-set/Multi-modal: Regarding multiple datasets in brain imaging data,
such as those from multiple subjects, multiple modalities, multiple trials,
multiple groups or multiple tasks, following the article (Chen et al., 2016),
two major categories are defined in this dissertation. (i) Multiple datasets
collected from the same type of brain data are termed as multi-set, e.g., fMRI
data collected from multiple subjects under a simple visual paradigm (Cal-
houn et al., 2001). (ii) Multiple datasets collected from different types of
brain data are termed as multi-modal, e.g., fMRI, sMRI and EEG data col-
lected from patients with schizophrenia and healthy controls during an au-
ditory oddball task (Adali et al., 2015). Each type of data can record brain
information from specific aspect. However, it sometimes fails to provide
complete information of interest. Thus the brain studies in cognitive neuro-
science are more inclined to the joint analysis of the data, which can promise
to provide us with more insights of the brain and enhance our understand-
ings of the brain (Sui et al., 2012; Karahan et al., 2015; Lahat et al., 2015; Adali
et al., 2015).
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(2) Multi-coupling: Benefiting from the development of brain imaging technolo-
gies, we now have access to multi-set/multi-modal brain data that are cou-
pled in various types. For data collected from the same phenomenon, it is
reasonable to expect them (collected from different subjects or trials) to have
the same or highly correlated information, which makes the data linked to-
gether. For example, in the group analysis of ongoing EEG data, the au-
thors found that there were significant correlations among subjects only in
spatial and spectral modes, while the correlation in temporal mode was al-
most non-existent (Wang et al., 2020). The complementary strengths among
multi-modal data can also be seen as a type of coupling. For example, EEG
has excellent temporal but poor spatial resolution. On the contrary, fMRI
provides high spatial but low temporal resolution. Combining fMRI and
EEG data can naturally achieve extremely high spatial-temporal accuracy,
which has been applied to clinical medicine such as epilepsy and sleep dis-
orders (Ritter and Villringer, 2006; Gotman et al., 2004). Besides, further in-
corporation of sMRI data that captures brain structural information can ob-
tain more comprehensive information of the brain across the structure and
function (Adali et al., 2015; Levin-Schwartz et al., 2014; Acar et al., 2017a).
There are also some other combining types such as fMRI and MEG (Plis
et al., 2010), sMRI and EEG (Calhoun et al., 2006), and positron emission
tomography (PET) and sMRI (Specht et al., 2009).

(3) Multi-way: In addition to two intrinsic ways (also known as modes or di-
mensions) of time and space, most brain imaging data generally have many
other modes, such as frequency, subject, trial, group and condition. Thus
the data can be naturally represented as multi-way arrays, i.e., tensors (Ci-
chocki, 2013; Cong et al., 2015a; Zhou et al., 2016). For example, EEG data
of multiple channels per subject can be expressed as a two-way matrix with
space and time. EEG data from multiple subjects can be arranged into a
three-way array with space, time and subject. Further considering time-
frequency representation, a fourth-order tensor of space, time, frequency
and subject can be generated(Cong et al., 2012b). For event-related poten-
tial (ERP) data, the authors generated a fifth-order tensor of space, time,
frequency, subject and condition (Mørup et al., 2006a; Wang et al., 2018).

1.2 Conventional methods

The development of data imaging techniques not only produces a large amount
of multiple brain datasets, but also promotes the continuous upgrade of data
analysis methods from two-way (matrix-based) component analysis to multi-way
(tensor-based) component analysis. Next, a review of two-way and multi-way
component analysis methods and their applications in brain imaging data is pro-
vided.

Two-way component analysis: Matrix factorization methods, such as in-
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dependent component analysis (ICA), principle component analysis (PCA) and
nonnegative matrix factorization (NMF), can recover factors matrices of interest
from the observed matrix via imposing specific constraints and have been widely
used to analyze brain imaging data. For example, Cong et al. employed ICA to
decompose ongoing EEG and finally built the connections between brain activi-
ties and naturalistic music (Cong et al., 2013). Salimi-Khorshidi et al. combined
ICA and hierarchical fusion of classifiers and achieved automatic denoising of
fMRI data (Salimi-Khorshidi et al., 2014). Using PCA and regression analysis,
Zhong et al. proposed an fMRI connectivity analysis approach to detect func-
tional connectivity between the brain regions (Zhong et al., 2009). Chen et al.
applied constrained NMF for early detection of Alzheimer disease using clinical
EEG recordings (Chen et al., 2006).

Although the methods above have been proved to be effective in many stud-
ies, their main contributions are concentrated on the analysis of a single dataset.
When faced with the group analysis of multi-set/multi-modal data, they cannot
sufficiently utilize the coupling information between datasets, which limits their
broader usage to some extent (Sui et al., 2012; Chen et al., 2016; Gong et al., 2015).
As such, group analysis methods for multiple datasets have drawn great interest
from researchers. Calhoun et al. first proposed the group ICA method and ap-
plied it to multi-subject fMRI data for making group inferences, in which the data
were concatenated together along the temporal dimension by assuming sharing a
common source subspace (Calhoun et al., 2001). Using different assumptions and
data grouping strategies, joint ICA was applied to simultaneously analyze fMRI
and sMRI data collected from schizophrenia patients and healthy controls (Cal-
houn et al., 2006). Linked ICA was applied to analyze the datasets of Alzheimer’s
patients and age-matched controls, which combines two structural MRI data:
morphological data and diffusion data (Groves et al., 2011). Canonical correla-
tion analysis (CCA) and its extension to multiple datasets, namely multi-set CCA
(MCCA), achieve JBSS of multiple datasets through maximizing the correlation
among extracted sources (Li et al., 2009). Correa et al. applied them to the data fu-
sion of two or three modalities, such as fMRI, EEG, and sMRI data obtained from
patients with schizophrenia and healthy controls (Correa et al., 2008, 2010a), and
concurrent EEG and fMRI data acquired in an auditory task (Correa et al., 2010b).
Examples of similar joint analysis methods include but are not limited to: in-
dependent vector analysis (IVA, (Lee et al., 2008; Adali et al., 2014)), partial least
squares (PLS, (Krishnan et al., 2011)), parallel ICA (pICA, (Liu and Calhoun, 2007;
Liu et al., 2009b,a; Jagannathan et al., 2010)) and group NMF (GNMF, (Lee and
Choi, 2009; Shin and Oh, 2012)). For various variants and combinations of the
methods mentioned above, as well as more data fusion or joint analysis methods,
please refer to (Sui et al., 2012; Lahat et al., 2015; Chen et al., 2016).

Multi-way component analysis: In addition to two-way component anal-
ysis methods, multi-way (tensor) methods are also widely applied in the anal-
ysis of brain imaging data by virtue of retaining the multi-way nature of the
data(Cichocki, 2013; Cong et al., 2015a; Zhou et al., 2016; Mørup, 2011; Hunyadi
et al., 2017). Importantly, more modes such as spatial, temporal and spectral in-
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formation of brain data can be simultaneously considered through tensor compo-
nent analysis. It can reveal the structural connections between various modes and
present more interpretable physical and physiological significance (Cong et al.,
2015a; Mørup et al., 2006b; Cong et al., 2015b). For example, Beckmann and Smith
applied tensor probabilistic ICA to multisubject/multisession fMRI studies, in
which the components of interest in spatial, temporal, and subject/session do-
mains were directly estimated (Beckmann and Smith, 2005). Acar et al. applied
parallel factor analysis (PARAFAC, (Harshman et al., 1970)) to epilepsy study by
generating an EEG tensor of temporal, spectral and spatial modes, and proved to
be effective in epileptic focus localization (Acar et al., 2007). Multilinear PLS and
nonnegative tensor factorization (NTF) were performed to analyze ongoing EEG
elicited by natural music stimuli (Cong et al., 2012b; Wang et al., 2016). Kuang et
al. combined ICA and shift-invariant tensor decomposition for the multi-subject
fMRI analysis. Spyrou et al. applied PARAFAC2-based complex tensor factoriza-
tion in EEG connectivity estimation using the data from patients with mild cogni-
tive impairment or Alzheimer’s disease (Spyrou et al., 2018). Zhu et al. proposed
a tensor component analysis-based framework to track dynamic task-modulated
functional networks using MEG data (Zhu et al., 2020).

Furthermore, increasing recognition of joint analysis has gradually drawn
researchers’ attention to tensor-based data fusion. For example, a coupled matrix-
tensor factorization model was applied to EEG and fMRI data fusion to capture
the difference of brain activity between patients with schizophrenia and healthy
controls (Acar et al., 2017b). Coupled tensor decomposition was conducted to
extract common task features from EEG-fMRI data in an N-Back memory task
(Jonmohamadi et al., 2019) and signal sources from MEG-EEG data for differen-
tiating oscillators during intermittent photic stimulation (Naskovska et al., 2020).
Moreover, Mørup et al. developed the software ERPWAVELAB, a toolbox for
multi-channel time-frequency analysis of EEG and MEG data through nonneg-
ative multi-way (tensor) factorization based on PARAFAC and Tucker models
(Mørup et al., 2007). For more tensor-based analysis about brain imaging data,
please refer to (Karahan et al., 2015; Cong et al., 2015a).

1.3 Research questions and motivations

For the joint analysis of multiple datasets, traditional matrix factorization meth-
ods such as ICA and PCA only analyze each dataset separately, and then per-
forms post-mortem analysis (such as clustering or correlation analysis) to find
the group inference among datasets. Obviously, the mutual information between
datasets cannot be effectively utilized. Group analysis methods can take advan-
tage of the dependencies of extracted sources between datasets, potentially ob-
taining higher performance than single analysis methods originally designed for
a single dataset (Chen et al., 2016; Gong et al., 2015). However, when processing
the multiple datasets with inherent multi-way structures, the above-mentioned
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two-way analysis methods often concatenate or stack the extra modes besides
two modes to generate a matrix so that the two-way matrix analysis methods can
be applied, such unfolding operation inevitably loses some potentially existing
interactions between/among the folded modes (Cong et al., 2015a). Moreover,
two-way analysis methods generally cannot guarantee a unique solution. In con-
trast, multi-way analysis methods obtain a unique solution under fairly mild con-
ditions (Kolda and Bader, 2009).

Multi-way analysis methods often stack the matrices or tensors to generate
higher-order tensor with the assumption of complete consistency among corre-
sponding modes. For example, Cong et al. constructed a fourth-order ongoing
EEG tensor with the dimension of space, time, frequency and subject, in which
the spatial, temporal and frequency information among subjects was assumed to
be consistent (Cong et al., 2012b). However, with the same datasets, the study
in (Wang et al., 2020) only found significant correlations in spatial and spectral
modes among subjects. Furthermore, if performing the tensor method directly
and separately on subjects, the prior coupling information in spatial and spectral
modes between subjects cannot be utilized.

From the perspective of data analysis, according to data characteristics, im-
posing specific constraints (such as sparseness, nonnegativity, and smoothness)
on underlying extracted factors would contribute to obtaining more meaningful
solutions (Cichocki, 2013). Undoubtedly, in the era of big data, the high com-
putational cost of processing large-scale datasets is always one of the existing
issues (Wang et al., 2019a; Zhou et al., 2012). Therefore, to address the problems
mentioned above, in this dissertation, we mainly study coupled nonnegative ma-
trix/tensor factorization on the group analysis of brain imaging data, in which
the following advantages can be included: (i) coupled matrix/tensor factoriza-
tion can be considered as a generalization of matrix/tensor factorization to mul-
tiple datasets, providing a natural framework for the joint analysis of matrices
or tensors with coupling information; (ii) it considers incomplete consistency of
the corresponding modes between datasets and enables the simultaneous extrac-
tion of common and individual features; (iii) it can potentially reveal underlying
structures and inner-relationships between datasets with retaining the original
data structure; (iv) it can take full advantage of prior information such as flexible
constraints and achieve higher decomposition accuracy and more robust decom-
position stability.

1.4 Structure of the dissertation

The structure of this dissertation is listed as follows.
Chapter 1 briefly introduces brain imaging data and related conventional

analysis methods and interprets the main research questions and motivations of
this dissertation.

Chapter 2 describes coupled nonnegative matrix/tensor factorization prob-



20

lems, including mathematical concepts, models and optimization strategies, and
provides some verification experiments.

Chapter 3 briefly summarizes the included articles and lists the contribu-
tions of authors to the articles.

Chapter 4 presents the conclusion of this dissertation, as well as the research
contributions, limits and plans.



2 COUPLED NONNEGATIVE MATRIX/TENSOR
FACTORIZATION

Coupled nonnegative matrix/tensor factorization, an important extension of non-
negative matrix/tensor factorization to multi-block matrices/tensors which need
to be jointly analyzed, has been successfully applied in many fields, such as
biomedical signal processing (Wang et al., 2020; Jonmohamadi et al., 2019), ar-
ray signal processing (Sørensen and De Lathauwer, 2013), joint blind source sep-
aration (Gong et al., 2018a), classification (Lee and Choi, 2009) and metabolic
physiology (Acar et al., 2015). Following the articles PI-PV, this chapter compre-
hensively elaborates on the coupled nonnegative matrix/tensor decomposition,
including basic notations and tensor operations, mathematical models, optimiza-
tion methods, experiments and results.

2.1 Notations and operations

Tensors, also known as multi-way/multi-dimensional/multi-mode arrays, are
the higher-order generalizations of scalars, vectors and matrices, which can more
intuitively present the structural characteristics of high-dimensional data. Gen-
erally, tensors are denoted by calligraphic boldface uppercase letters, e.g., A ∈
R

I1×I2×···×IN
+ . R and R+ represent that all elements of the tensor are real and non-

negative values, respectively. N denotes the order of the tensor, i.e., the number
of ways, arrays or dimensions. In addition, matrices, vectors, scalars are denoted
by boldface uppercase, boldface uppercase and lowercase letters. For example,
for a matrix A = [a1, a2, · · · , aJ ] ∈ R

I×J
+ , the jth column vector of A is denoted

as aj and the (i, j)th element of A is denoted as aij. The operators of (·)T, J·K,
‖·‖F and ‖·‖1 denote transpose, Kruskal operator, Frobenius norm and l1-norm,
respectively.
Inner product is denoted as 〈·, ·〉. For the matrices A ∈ R

I×J
+ and B ∈ R

I×J
+ ,

their inner product is defined as 〈A, B〉 = ∑i,j aijbij, which can be substituted by
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tr(ABT), and tr(·) means the trace of a matrix.
Outer product is denoted as ‘◦’. The outer product of N vectors an ∈ R

In
+ , n =

1, 2, · · · , N can generate an Nth-order rank-1 tensor A ∈ R
I1×I2×···×IN
+ as A =

a1 ◦ a2 ◦ · · · ◦ aN, and Ai1i2···iN = ai1 ai2 · · · aiN . Specially, for two vectors a and b,
their outer product is a ◦ b = abT.
Kronecker product and Khatri-Rao product are denoted as ‘⊗’ and ‘�’, and de-
fined as follows:

A⊗ B =




a11B a12B · · ·
a21B a22B · · ·

...
... . . .


 ∈ R

I1 I2×J1 J2
+ , A ∈ R

I1×J1
+ , B ∈ R

I2×J2
+ (1)

and

A� B = [a1 ⊗ b1, a2 ⊗ b2, · · · , aJ ⊗ bJ ] ∈ R
I1 I2×J
+ , A ∈ R

I1×J
+ , B ∈ R

I2×J
+ . (2)

Element-wise product (also known as Hadamard product) and element-wise di-
vision are denoted as ‘~’ and ‘�’, and defined as follows:

A ~ B =




a11b11 a12b12 · · ·
a21b21 a22b22 · · ·

...
... . . .


 ∈ R

I×J
+ , A ∈ R

I×J
+ , B ∈ R

I×J
+ (3)

and

A� B =




a11/b11 a12/b12 · · ·
a21/b21 a22/b22 · · ·

...
... . . .


 ∈ R

I×J
+ , A ∈ R

I×J
+ , B ∈ R

I×J
+ . (4)

Moreover, for the matrices A(n), n = 1, 2, · · · , N, A(N) � · · · � A(2) � A(1) and
A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1) are defined as A� and A�−n , respec-
tively. A~ and A~−n are defined in the similar way.
Tensor matricization is unfolding/flattening a tensor into a matrix in a specific
order. The mode-n matricization of tensor A ∈ R

I1×I2×···×IN
+ can yield a matrix

defined as A(n) ∈ R
In×(I1 I2···In−1 I(n+1)···IN)
+ by arranging the mode-n fibers of A as

the columns of A(n). Here taking a third-order tensor A ∈ R3×3×3
+ as an example,

its mode-n matricizations have been illustrated in Figure 1.
Tensor vectorization aims to unfold/flatten a tensor into a vector. The vector-
ization of the tensor A ∈ R

I1×I2×···×IN
+ is defined by vec(A) ∈ R

I1 I2···IN
+ , and

[vec(A)]j = Ai1i2···iN with j = ∑N
n=1(in − 1) ∏n−1

m=1 Im + 1.
Tensor diagonalization is denoted by ddiag(·), which aims to extract the super-
diagonal elements of a cube tensor to generate a vector. It is defined as a gen-
eralization of MATLAB command diag to the tensor case. For a cube tensor
A ∈ RI×I×···×I

+ , ddiag(A) = [A11···1,A22···2, · · · ,AI I···I ]T. Conversely, for a
vector a = [a1, a2, · · · , aI ]

T, ddiag(a) can yield a super-diagonal tensor A with
Aii···i = ai and all other elements are 0.
Please refer to the review paper (Kolda and Bader, 2009) for a more detailed de-
scription of standard notations and basic tensor operations.
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FIGURE 1 Example of mode-1, mode-2 and mode-3 unfolding of a third-order tensor.

2.2 Mathematical models

This section introduces the definition of the nonnegative matrix/tensor factoriza-
tion model for single matrix or tensor data. Further it introduces how to formu-
late the joint analysis of multi-block matrices or tensors into the coupled nonneg-
ative matrix/tensor factorization problems.

2.2.1 Nonnegative matrix factorization

Nonnegative matrix factorization (NMF), as an unsupervised and part-based learn-
ing method, has attracted increasing interests for providing a solution to extract
potentially hidden factors that are meaningful and physically interpretable (Lee
and Seung, 1999). In the last two decades, NMF and its variants have been
successfully applied in a variety of fields including text mining (Pauca et al.,
2004), document clustering (Xu et al., 2003), face recognition (Guillamet and Vit-
ria, 2002), image/audio/biomedical signal processing (Lee and Seung, 1999; Lee
et al., 2009; Kameoka et al., 2009) and blind source separation (Cichocki et al.,
2006), etc. Unlike traditional matrix factorization methods(e.g., ICA or PCA),
NMF can represent nonnegative input data through nonsubtractive combinations
of nonnegative vectors.

Given a nonnegative matrix X ∈ R
I×J
+ , NMF searches for two nonnegative

factor matrices A ∈ RI×R
+ and B ∈ R

R×J
+ whose product approximates X as

X ≈ AB, as shown in Figure 2. The commonly used objective function for the
NMF model can be formulated as:

min
A,B

F =
1
2
‖X − AB‖2

F , s.t., A ≥ 0, B ≥ 0, (5)

where the factor matrices A = [a1, a2, · · · , aR] and B = [b1, b2, · · · , bR] denote
the basis matrix and coefficient matrix, respectively. Generally, R < min{I, J}.
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FIGURE 2 Illustration of nonnegative matrix factorization problem: finding two non-
negative factors A ∈ RI×R

+ and B ∈ R
R×J
+ to approximate the input matrix

X ∈ R
I×J
+ such that X ≈ AB.

2.2.2 Nonnegative tensor factorization

By virtue of the capability to explore the multi-way structure of data, tensor de-
composition has been widely used in an ensemble of disciplines, especially signal
processing and machine learning (Mørup, 2011; Cichocki et al., 2015; Sidiropou-
los et al., 2017). To date, the canonical polyadic (CP) model (Hitchcock, 1927) and
Tucker model (Tucker, 1966) are the two most commonly used models for ten-
sor factorization. CP model is also known as canonical decomposition (CANDE-
COMP, (Carroll and Chang, 1970)) or parallel factor analysis (PARAFAC, (Harsh-
man et al., 1970)). In theory, the CP model can be seen as a special case of the
Tucker model. However, compared with the latter, it has better uniqueness even
under very mild conditions (Kolda and Bader, 2009; Sidiropoulos et al., 2017).
Therefore, the factorization adopted and mentioned later in this dissertation are
all based on the CP model.

Generally, given an Nth higher-order tensor X ∈ RI1×I2×···×IN , CP-based
tensor factorization can decompose it into a minimum number of rank-1 tensor
terms as:

X ≈
R

∑
r=1

dra(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r =

r
D; A(1), A(2), · · · , AN

z
, (6)

where a(n)
r ∈ RIn denotes the rth column of the nth mode factor matrix A(n) =

[a(n)
1 , a(n)

2 · · · , a(n)
R ] ∈ RIn×R. D ∈ RR×R×···×R represents a core tensor with non-

zero entries dr only on its super-diagonal. The minimal number R is defined as
the rank of the tensor or the number of components. In analogy to NMF, non-
negative tensor factorization (NTF) also imposes nonnegativity constraint on the
underlying factors, and combines the advantages of NMF and tensor factoriza-
tion (Zhou et al., 2014). Figure 3 gives an illustration of the NTF model. The NTF
problem of a given tensor X ∈ R

I1×I2×···×IN
+ in Eq. 6 can be solved by reformulat-

ing it as the following optimization problem:

min
D,A(1),··· ,A(N)

F =
1
2

∥∥∥X −
r
D; A(1), A(2), · · · , AN

z∥∥∥
2

F
(7)

s.t. D ∈ RR×R×···×R
+ , A(n) ∈ R

In×R
+ , n = 1, 2, · · · , N.
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X

D

FIGURE 3 Illustration of nonnegative tensor factorization based on the canonical
polyadic model: finding four factors A ∈ R

I1×R
+ , B ∈ R

I2×R
+ , C ∈ R

I3×R
+

and D ∈ RR×R×R
+ to approximate the input third-order tensor X ∈ R

I1×I2×I3
+

such that X ≈ JD; A, B, CK.

Considering the mode-n matricization of X , the objective function in Eq. 7

can be converted to 1
2

∥∥∥X(n) − A(n)D(A�−n)T
∥∥∥

2

F
and D is a diagonal matrix with

entries from the super-diagonal entries of D. If one considers the vectorization of
X , Eq. 7 can also be reformulated as 1

2 ‖vec(X )− A�ddiag(D)‖2
F, where vec(X )

denotes the vectorization of tensor X and ddiag(D) denotes the vectorization of
the super-diagonal entries from the core tensor D.

2.2.3 Coupled nonnegative matrix/tensor factorization

Although NMF and NTF models have shown good performance in many studies,
their poor effectiveness in solving the emerging multiple matrix/tensor datasets
that need to be analyzed together has currently limited their broader applica-
tions (Chen et al., 2016; Gong et al., 2015; Zhou et al., 2016). For example, for
multi-subject/multi-modal biomedical data or low spatial resolution hyperspec-
tral (LRHS) and high spatial resolution multispectral (HRMS) image data, the
coupling and complementary information between them obviously cannot be
fully utilized in the traditional NMF/NTF methods designed for a single dataset
(Kanatsoulis et al., 2018; Li et al., 2018; Jonmohamadi et al., 2019; Wang et al.,
2020). Therefore, the growing demand for joint analysis of matrix/tensor data
makes coupled matrix/tensor factorization applicable in a number of fields, such
as data fusion (Acar et al., 2015; Li et al., 2018), signal processing (Shin and Oh,
2012; Sørensen and De Lathauwer, 2013), joint blind source separation (Gong
et al., 2018a) and neuroscience (Jonmohamadi et al., 2019; Wang et al., 2020). Note
that the coupled (also termed as joint, linked or group) here means that the multi-
block matrix or tensor datasets not only share the same or highly correlated com-
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FIGURE 4 Illustration of the coupled nonnegative matrix factorization problem: find-
ing the common components AC ∈ RI×L

+ shared by all the matrices and

the individual components A(s)
I ∈ R

I×(R(s)−L)
+ and B(s) ∈ R

R(s)×J(s)

+ pos-
sessed by the individual matrix such that X(s) ≈ A(s)B(s) = [AC A(s)

I ]B(s),
s = 1, 2, · · · , S.

ponents but also have their own individual characteristics (Lee and Choi, 2009;
Zhou et al., 2015; Yokota et al., 2012; Kim et al., 2015; Chen et al., 2016; Zhou et al.,
2016; Gong et al., 2018a; Wang et al., 2019b).

Given a set of nonnegative matrices X = {X(1), X(2), · · · , X(S)}, each X(s) ∈
R

I×J(s)

+ satisfies the NMF model, namely X(s) ≈ A(s)B(s), where A(s) ∈ RI×R(s)

+

and B(s) ∈ R
R(s)×J(s)

+ denote the latent variable and corresponding coefficient ma-
trix, respectively. R(s) < min(I, J(s)) is assumed, aiming to provide a low-rank
representation of X(s). Furthermore, in the coupled NMF (CNMF) model, each
factor matrix A(s) is assumed to include two parts, i.e., A(s) = [AC A(s)

I ]. The
submatrix AC ∈ RI×L

+ consists of a common subspace representing the coupled

components shared by all the S matrices. A(s)
I ∈ R

I×(R(s)−L)
+ consists of subspaces

representing the individual characteristics, with L ≤ min(R(s)). An illustration
of the CNMF model is given in Figure 4. The objective of the CNMF problem is to
extract the latent variables and meanwhile separate the common and individual
components, which can be achieved by solving the following objective function:

min
AC, A(s)

I , B(s)

1
2

S

∑
s=1

∥∥∥X(s) −
[
AC A(s)

I
]
B(s)

∥∥∥
2

F
, s.t. AC ≥ 0, A(s)

I ≥ 0, B(s) ≥ 0. (8)

In analogy to the CNMF model, the coupled NTF (CNTF) model considers
the joint analysis of multi-block tensors with coupling information and provides
better performance than the NTF model. Following the article PII, given a set of
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X (1)

X (S)

D(1)

D(S)

FIGURE 5 Illustration of mode-1 coupled nonnegative CP factorization model for a set
of third-order tensors X (s) ∈ R

I1×I2×I3
+ : aiming to estimate the factor ma-

trices A(s) = [AC A(s)
I ] ∈ R

I1×R(s)

+ , B(s) ∈ R
I2×R(s)

+ , C(s) ∈ R
I3×R(s)

+ and the
core tensors D ∈ RR(s)×R(s)×R(s)

+ , where AC ∈ R
I1×L
+ represents the common

components shared by all the first factors in the tensors.

Nth-order nonnegative tensors X (s) ∈ R
I1×I2×···IN
+ , s = 1, 2, · · · , S, the general-

ized CNTF model can be represented as:

X (s) ≈
R(s)

∑
r=1

d(s)
r a(1,s)

r ◦ a(2,s)
r ◦ · · · ◦ a(N,s)

r =
r
D(s); A(1,s), A(2,s), · · · , A(N,s)

z
, (9)

where a(n,s)
r denotes the rth column of n-mode factor matrix A(n,s) ∈ R

In×R(s)

+ of

sth tensor (s = 1, 2, · · · , S, n = 1, 2, · · · , N). D(s) ∈ RR(s)×R(s)×···R(s)

+ represents the

sth core tensor with non-zero entries d(s)
r only on the super-diagonal elements.

Each factor matrix A(n,s) includes two parts: A(n)
C ∈ R

In×Ln
+ , 0 ≤ Ln ≤ R(s) and

A(n,s)
I ∈ R

In×(R(s)−Ln)
+ . A(n)

C shared by all tensors represents the coupling informa-

tion among them, and A(n,s)
I corresponds to the individual characteristics of each

tensor. Figure 5 illustrates the CP-based CNTF model of third-order tensors in the
case that their mode-1 factor matrices are partially linked. Therefore, in the CNTF
model, aiming to extract the constrained factor matrices A(n,s) and core tensors
D(s) from partially linked tensors X (s) ∈ R

I1×I2×···IN
+ , the objective function can

be represented as follows:

min
D(s),A(n,s)

F =
1
2

S

∑
s=1

∥∥∥X (s) −
r
D(s); A(1,s), A(2,s), · · · , A(N,s)

z∥∥∥
2

F
(10)
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s.t. D(s) ∈ RR(s)×···×R(s)

+ , A(n,s) = [A(n)
C A(n,s)

I ] ∈ R
In×R(s)

+ .

Note that sometimes for simplicity, the core tensors D(s) will be absorbed
into the factor matrices A(n,s). When N = 2, the CNTF model will degenerate to
the CNMF model. More details about the generalized CNTF model can be found
in the attached article PII.

2.3 Optimization methods

Using block coordinate decent (BCD) framework (Razaviyayn et al., 2013), the
NMF/NTF problem can be expressed as several sub-problems, which can be al-
ternatively solved by various optimization methods, such as multiplicative up-
date (MU, (Lee and Seung, 1999)), alternating proximal gradient (APG, (Guan
et al., 2012; Xu, 2015)), projected gradient (PG, (Lin, 2007; Zdunek and Cichocki,
2006)), active-set (or like) (AS, (Kim and Park, 2008, 2011)), (fast) hierarchical al-
ternating least squares (HALS/fHALS, (Cichocki et al., 2007; Cichocki and Phan,
2009)), alternating direction method of multipliers (ADMM, (Boyd et al., 2011))
and series of their variants. Following the articles PI, PIII-PV, this section intro-
duces several effective and efficient optimization methods to solve CNMF and
CNTF problems under the BCD framework.

2.3.1 Alternating direction method of multipliers

Constrained joint analysis of data from multiple sources has received widespread
attention. It allows us to explore potential connections and extract meaningful
hidden components. Even though imposing nonnegative constraints can natu-
rally bring the sparse representation in matrix factorization, in practical applica-
tions, the sparseness generated in this way is still insufficient and uncontrollable
(Hoyer, 2004). This part introduces an efficient CNMF with sparse regularization
(CNMF-SR) model optimized by the ADMM strategy. A comprehensive review
of ADMM problems can be found in (Boyd et al., 2011).

Considering the introduction of l1-norm regularizer on factor matrix A(s),
the objective function in Eq. 8 can be expressed as:

min
A(s),B(s)

1
2

S

∑
s=1

∥∥∥X(s) − A(s)B(s)
∥∥∥

2

F
+

S

∑
s=1

β(s)
R(s)

∑
r=1

∥∥∥a(s)
r

∥∥∥
1

(11)

s.t. A(s) =
[
AC A(s)

I
]
≥ 0, B(s) ≥ 0,

where β(s) ≥ 0 is a predefined penalty parameter and here we set β(1) = · · · β(S).
(1) When calculating the factor matrix A(s), we need to merge all the matri-

ces X(s), s = 1, · · · , S since the common part AC is shared by them. Via introduc-
ing the auxiliary variables Ã(s), the augmented Lagrangian function of Eq. 11 can
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be expressed as:

Lρ

(
A(s), Ã(s), Λ(s)) =

1
2

S

∑
s=1

∥∥∥X(s) − A(s)B(s)
∥∥∥

2

F
+

S

∑
s=1

β(s)
R(s)

∑
r=1

∥∥∥ã(s)
r

∥∥∥
1

+
S

∑
s=1

ρ(s)

2

∥∥∥A(s)−Ã(s) + Λ(s)
∥∥∥

2

F
,

(12)

where Λ(s) ∈ RI×R(s)
are the dual variables and ρ(s) are the predefined penalty

parameters. Note that Ã(s) also includes two parts as Ã(s) =
[

ÃC Ã(s)
I

]
.

(2) When calculating the factor matrix B(s), we just need to use the corre-
sponding sth matrix X(s). Via introducing the auxiliary variables B̃(s), the aug-
mented Lagrangian function of Eq. 11 can be formulated as:

Lµ(B(s), B̃(s), Γ(s)) =
1
2

∥∥∥X(s) − A(s)B(s)
∥∥∥

2

F
+

µ(s)

2

∥∥∥B(s) − B̃(s) + Γ(s)
∥∥∥

2

F
, (13)

where Γ(s) ∈ RR(s)×J(s)
are the dual variables and µ(s) are the predefined penalty

parameters.
In the BCD framework, the factor matrices A(s) and B(s) can be updated

alternatively using the ADMM strategy, followed by the updates of Ã(s), B̃(s),
Λ(s) and Γ(s), which has been summarized in Algorithm 1.

Algorithm 1: CNMF-SR-ADMM algorithm

Input: X(s), L, and R(s), s = 1, 2, · · · , S
1 Initialization: A(s), B(s), Ã(s), B̃(s), Λ(s), Γ(s), s = 1, 2, · · · , S
2 for k = 1 until convergence do
3 Update

{
AC, ÃC

}
and

{
A(s)

I , Ã(s)
I , Λ(s)}S

s=1 by solving
argmin Lρ

(
A(s), Ã(s), Λ(s)) in Eq. 12

4 Update
{

B(s), B̃(s), Γ(s)}S
s=1 by solving argmin Lµ(B(s), B̃(s), Γ(s)) in

Eq. 13
5 end

Output: A(s), B(s), s = 1, 2, · · · , S

2.3.2 Fast hierarchical alternative least squares

In order to achieve group tensor analysis, Yokota et al. proposed a flexible CNTF
model, namely linked CP tensor decomposition (LCPTD), in which multiple ten-
sors with coupling information can be simultaneously decomposed into common
factor matrices, individual factor matrices and core tensors (Yokota et al., 2012).
However, this model is not suitable for linked tensors with inconsistent compo-
nent numbers. Besides, hierarchical alternative least squares (HALS, (Cichocki
et al., 2007)) algorithm can result in rather high computational cost for large-scale
problems (Wang et al., 2019a,b). In this section, the fast hierarchical alternative
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least squares (fHALS, (Cichocki and Phan, 2009)) algorithm is further introduced
to solve the CNTF problem.

First, using the HALS algorithm, the minimization optimization problem in
Eq. 10 can be converted into max(R(s)) rank-1 tensor approximation sub-problems,
which can be solved sequentially and iteratively as follows:

min F (u(n,s)
r ) =

S

∑
s=1

∥∥∥Y (s)
r − d(s)

r a(1,s)
r ◦ a(2,s)

r ◦ · · · ◦ a(N,s)
r

∥∥∥
2

F

=
S

∑
s=1

∥∥∥∥Y (s)
r,(n)
− a(n,s)

r d(s)
r
{

a(s)
r
}�T

−n

∥∥∥∥
2

F
,

(14)

where Y (s)
r

.
= X (s) − ∑R(s)

k 6=r d(s)
r a(1,s)

k ◦ a(2,s)
k ◦ · · · ◦ a(N,s)

k and Y (s)
r,(n)

is the mode-n

matricization of Y (s)
r . Let the gradient of F (a(n,s)

r ) with respect to a(n,s)
r be zero,

then the solution of a(n,s)
r can be calculated as:

a(n,s)
r =





S
∑

s=1

[
d(s)

r Y (s)
r,(n)
{a(s)

r }�−n
]/ S

∑
s=1

[
d(s)T

r d(s)
r {a(s)T

r a(s)
r }~−n

]
, r ≤ Ln,

[
Y (s)

r,(n)
{a(s)

r }�−n
]/[

d(s)
r {a(s)T

r a(s)
r }~−n

]
, r > Ln,

(15)

Second, note that Y (s)
r,(n)
{a(s)

r }�−n needs to calculate mode-n matricization
and Khatri-Rao product in each loop and thus results in rather high computation
cost, then the fHALS algorithm is adopted to address such a problem. Substitute
the mode-n matricization Y (s)

r,(n)
below

Y (s)
r,(n)

= X(s)
(n)
− A(n,s)D(s)

{
A(s)

}�T
−n

+ a(n,s)
r d(s)

r
{

a(s)
r
}�T

−n (16)

into Y (s)
r,(n)
{a(s)

r }�−n in Eq. 15, and let ζ
(n,s)
r

.
= d(s)

r Y (s)
r,(n)
{a(s)

r }�−n , then we can get

ζ
(n,s)
r =

[
X(s)

(n)
D(s)

{
A(s)

}�−n
]

r
− A(n,s)

[
γ(n,s)

]
r
+ a(n,s)

r

[
γ(n,s)

]
(r,r)

, (17)

where γ(n,s) = D(s)TD(s)
{

A(s)T
A(s)

}~−n
. Therefore, the learning rule of a(n,s)

r

can be represented as:

u(n,s)
r =





[
S
∑

s=1
ζ

(n,s)
r

/
S
∑

s=1

[
γ(n,s)

]
(r,r)

]

+

, r ≤ Ln,

[
ζ

(n,s)
r /

[
γ(n,s)

]
(r,r)

]

+

, r > Ln,

(18)

where the mode-n matricization X(s)
n in ζ

(n,s)
r only needs to be performed once in

initialization, which greatly improves the computation efficiency.
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Third, for the solution of core tensor D(s), the minimization optimization
problem in Eq. 10 can be converted into

min F (D(s)) =
1
2

∥∥∥vec
(X (s))− A(s)�ddiag

(D(s))∥∥∥
2

F
(19)

where vec(X (s)) denotes the vectorization of tensor X (s). Let the gradient of
F (D(s)) with respect to ddiag(D(s)) to be zero, then the learning rule of D(s) can
be represented as:

D(s) = ddiag
([(

A(s)�
)−1

vec
(
X (s)

)]

+

)
(20)

where ‘ddiag’ means the tensorization from a vector to a super-diagonal tensor.
To avoid the problem of rank deficiency, a small value such as eps = 10e − 16
is usually added to the denominators of Eq. 18. The summary of fHALS-based
CNTF algorithm is given in Algorithm 2.

Algorithm 2: CNTF-fHALS algorithm

Input: X (s), Ln, and R(s), n = 1, 2, · · · , N, s = 1, 2, · · · , S
1 Initialization: A(n,s), D(s), X(s)

n , n = 1, 2, · · · , N, s = 1, 2, · · · , S
2 for k = 1 until convergence do
3 for n = 1, 2, · · · , N do
4 for r = 1, 2, · · · , max(R(s)) do
5 if r ≤ R(s) then
6 Update a(n,s)

r via Eq. 18, s = 1, 2, · · · , S
7 end
8 end
9 end

10 Update D(s) via Eq. 20, s = 1, 2, · · · , S
11 end

Output: A(n,s), D(s), n = 1, 2, · · · , N, s = 1, 2, · · · , S

2.3.3 Alternating proximal gradient and low-rank approximation

To date, increasing recognition of joint tensor analysis has enabled coupled ten-
sor decomposition to be used in many applications. However, due to the non-
negative constraint and high-dimensional nature of tensor data, existing coupled
methods often suffer from slow convergence speed and low optimization accu-
racy (Zhou et al., 2012; Zhang et al., 2016). APG originally proposed by Nesterov
is used for smooth optimization with the convergence rate ofO( 1

K2 ) (K: the num-
ber of iterations) (Nesterov, 1983; Beck and Teboulle, 2009), and has proven to be
very efficient for NMF/NTF problems (Guan et al., 2012; Xu and Yin, 2013; Xu,
2015; Zhang et al., 2016; Wang et al., 2018). In this section, the APG method and
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a combination of APG method and low-rank approximation are respectively ap-
plied to solve the CNTF problem. According to the BCD framework, the CNTF
problem can be converted into several sub-problems by optimizing D(s) and
A(n,s) alternatively in each iteration. Each sub-problem can be regarded as a min-
imization problem of a continuously differentiable function, which can be solved
efficiently by the APG method (Guan et al., 2012; Xu and Yin, 2013; Xu, 2015).

First, for the solution of A(n,s), using the APG method, we have

A(n,s) = argmin
A(n,s)≥0

S

∑
s=1

[〈
Ĝ(n,s), A(n,s) − Â(n,s)

〉
+

L(n,s)
a

2

∥∥∥A(n,s) − Â(n,s)
∥∥∥

2

F

]
(21)

where Â(n,s) denotes the extrapolated point of A(n,s), and L(n,s)
a denotes the Lip-

schitz constant defined as L(n,s)
a =

∥∥∥D(s)(A(s)�−n)T A(s)�−n D(s)
∥∥∥. Ĝ(n,s) denotes

the block-partial gradient of Eq. 10 at Â(n,s) calculated as:

Ĝ(n,s) = Â(n,s)D(s)
(

A(s)T
A(s)

)~−n
D(s) − X(s)

(n)
A(s)�−n

D(s) (22)

where D(s) is a diagonal matrix and its diagonal elements correspond to the
super-diagonal elements of core tensor D(s). The updating rules of A(n)

C and A(n,s)
I

can be written in the closed form as:

A(n)
C = max

(
0, Â(n)

C −
∑S

s=1 Ĝ(n,s)
C

∑S
s=1 L(n,s)

a

)
, A(n,s)

I = max

(
0, Â(n,s)

I − Ĝ(n,s)
I

L(n,s)
a

)
(23)

where Â(n,s) =
[

Â(n,s)
C Â(n,s)

I

]
and Ĝ(n,s) =

[
Ĝ(n,s)

C Ĝ(n,s)
I

]
.

Second, for the solution of D(s), similarly, we derive

D(s) = argmin
D(s)≥0

[〈
Ĝ(s)

,D(s) − D̂(s)
〉

+
L(s)

d
2

∥∥∥D(s) − D̂(s)
∥∥∥

2

F

]
(24)

which can also be written in the closed form as

D(s) = max

(
0, D̂(s) − Ĝ(s)

L(s)
d

)
(25)

where D̂(s)
denotes the extrapolated point and L(s)

d denotes the Lipschitz constant

defined as L(s)
d =

∥∥∥(A(s)�)T A(s)�
∥∥∥. Ĝ(s)

is the block-partial gradient of Eq. 10 at

D̂(s)
, which can be calculated as:

Ĝ(s)
= ddiag

[(
A(s)T

A(s)
)~

ddiag
(
D̂(s)

)
−
(

A(s)�
)T

vec
(
X (s)

)]
(26)

where ddiag(D(s)) denotes a vector vectorized from the super-diagonal elements
of D(s), and the outer-loop notation ddiag(·) means the tensorization from a vec-
tor to a super-diagonal tensor, which is the reverse operation of the inner-loop
ddiag(·).
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Third, considering the update of A(n,s) and D(s) at the kth iteration, the

extrapolated points D̂(s)
k and Â(n,s)

k are defined as

D̂(s)
k = D(s)

k + w(s)
d,k

(
D(s)

k −D(s)
k−1

)
(27)

and
Â(n,s)

k = A(n,s)
k + w(n,s)

u,k

(
A(n,s)

k − A(n,s)
k−1

)
(28)

where w(s)
d,k and w(n,s)

u,k denote the extrapolation weights as

w(s)
d,k = min


ŵk, δw

√√√√√
L(s)

d,k−1

L(s)
d,k


 , w(n,s)

u,k = min


ŵk, δw

√√√√√
L(n,s)

u,k−1

L(n,s)
u,k


 (29)

where δw < 1 is predefined (e.g., 0.9999, (Xu, 2015)), and ŵk = tk−1
tk+1

with t0 = 1

and tk = 1
2

(
1 +

√
1 + 4t2

k−1

)
.

In each iteration, D(s) and A(n,s) are updated alternatively one after an-
other until convergence, and we define it as the CNTF-APG algorithm. The
main time cost is attributed to the multiplication of X(s)

(n)
A(s)�−n in Eq. 22 and

(A(s)�)Tvec(X (s)) in Eq. 26. The cost will become very serious, especially for
large-scale tensor problems. In NMF/NTF problems, low-rank approximation
has proven its excellent performance not only in computational efficiency but
also in computational accuracy (Zhou et al., 2012; Cong et al., 2014; Zhang et al.,
2016). Therefore, it will be further introduced into the CNTF problem. Suppose
that

r
Ã(1,s), Ã(2,s), · · · , Ã(N,s)

z
is the rank-R̃(s) approximation of X (s) obtained

by an unconstrained tensor decomposition, Ã(n,s) ∈ RIn×R̃(s)
, R̃(s) ≤ R(s). Thus

vec(X (s)) and X(s)
(n)

can be respectively expressed as vec(X (s)) = Ã(s)� ddiag(I)
and X(s)

(n)
= Ã(n,s)(Ã(s)�−n )T. I ∈ RR̃(s)×···×R̃(s)

is a core tensor with all super-
diagonal elements being 1. This thereby leads to

X(s)
(n)

A(s)�−n
= Ã(s,n)

(
Ã(s)T

A(s)
)~−n

. (30)

and (
A(s)�

)T
vec

(
X (s)

)
=
(

A(s)T
Ã(s)

)~
ddiag(I) (31)

By virtue of low-rank approximation, only very small matrices are involved
to calculate X(s)

(n)
A(s)�−n and (A(s)�)Tvec(X (s)). The computational complex-

ities are reduced from O(NSR ∏n In) and O(SR ∏n In) to O(NSR2 ∑n In) and
O(SR2 ∑n In) respectively via the substitutions in Eq. 30 and Eq. 31 (here we set
R̃(s) = R(s) = R). The CNTF algorithm based on APG and low-rank approxima-
tion is termed as the lraCNTF-APG and summarized in Algorithm 3.
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Algorithm 3: lraCNTF-APG algorithm

Input: X (s), Ln and R(s), n = 1, 2, · · · , N, s = 1, 2, · · · , S
1 Initialization: A(n,s), D(s), X(s)

(n)
, n = 1, 2, · · · , N, s = 1, 2, · · · , S

2 Calculate Ã(n,s), n = 1, 2, · · · , N, s = 1, 2, · · · , S via low-rank
approximation of X (s), s = 1, 2, · · · , S

3 for k = 1 until convergence do
4 for n = 1, 2, · · · , N do
5 Update A(n,s)

k via Eq. 23 and Eq. 30, s = 1, 2, · · · , S
6 end

7 Update D(s)
k via Eq. 25 and Eq. 31, s = 1, 2, · · · , S

8 if F(k) ≥ F(k− 1) then

9 Â(n,s)
k−1 = A(n,s)

k−1 , D̂(s)
k−1 = D(s)

k−1

10 Reupdate A(n,s)
k and D(s)

k via Eq. 23, Eq. 25, Eq. 30 and Eq. 31
11 end
12 end

Output: A(n,s), D(s), n = 1, · · · , N, s = 1, · · · , S

2.4 Experiments and results

In this chapter, following the articles PI, PIV and PV, several experiments and
their results are presented to demonstrate the performances of the proposed cou-
pled nonnegative matrix/tensor factorization algorithms.

2.4.1 Synthetic multi-subject fMRI data

In this section, NMF and CNMF models with or without sparse regularization
optimized by the ADMM are used in the joint analysis of multi-subject nonneg-
ative fMRI-like data. The data are reconstructed from the benchmark simulated
complex fMRI dataset 1. Spatial maps (SM) and corresponding time courses (TC)
are shown in Figure 6(a). They are adopted to generate the nonnegative fMRI-like
data for 6 subjects according to the source index sets {1,2,5,6,7}, {1,2,4}, {1,2,4,5},
{1,2,8}, {1,2,3,5} and {1,2,3,4}. More information about data construction can be
found in (Gong et al., 2018b). The SM images of all subjects are shown in Fig-
ure 6(b). Each row corresponds to one subject. The first two columns are shared
by all the subjects, which are considered as the common components, and the
remains are the individual ones.

The sparse parameters βs are selected from 0 to 5 with a total of 25 values.
With varying βs, we calculate the peak signal-to-noise ratio (PSNR) of SM esti-
mates under SNR=20dB in the NMF-SR and CNMF-SR models (L = 0 & L = 2),
and the PSNR curves averaged from 30 Monte Carlo runs are shown in Figure 7.

1 http://mlsp.umbc.edu/simulated_complex_fmri_data.html

http://mlsp.umbc.edu/simulated_complex_fmri_data.html
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(a) Original SMs and TCs (b) Regroup SMs

(c) NMF-ADMM, PSNR=45.52dB (d) NMF-SR-ADMM, PSNR=61.55dB

(e) CNMF-ADMM, PSNR=52.07dB (f) CNMF-SR-ADMM, PSNR=64.31dB

FIGURE 6 (a) Amplitude images of 1-8 simulated fMRI-like spatial maps (1st and 3rd
columns) and corresponding time courses (2nd and 4th columns). (b-f) SM
images of constructed data and that of estimated ones via NMF-ADMM (β =

0, L = 0), NMF-SR-ADMM (β = 3e − 4, L = 0), CNMF-ADMM (β = 0,
L = 2) and CNMF-SR-ADMM (β = 3e− 4, L = 2) under SNR=20dB.
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FIGURE 7 Mean PSNR of SM estimates for 6 subjects under NMF-SR (L = 0) and
CNMF-SR (L = 2) models with the βs of 25 values varying from 0 to 5,
SNR=20dB.

Note that in this experiment, in addition to CNMF-SR model, three other models
are also considered: (1) when β = 0, CNMF-SR will degenerate into the CNMF
problem; (2) when L = 0, CNMF-SR will degenerate into the NMF-SR problem;
(3) when L = 0 and β = 0, CNMF-SR will degenerate into the NMF problem.
From Figure 7, it can be seen that the PSNR values of all algorithms will increase
and reach the highest value at some points when the sparse penalty parameter β

increases, which proves that sparseness can improve the algorithm performance
to a certain extent. The performances of CNMF-based methods are superior to
that of NMF-based ones.

Furthermore, the SM images estimated via NMF-ADMM, NMF-SR-ADMM,
CNMF-ADMM and CNMF-SR-ADMM at β = 0, 3e− 4 and L = 0, 2 are shown
in Figure 6(c)-6(f). It can be clearly seen that some of SM images obtained by
NMF-ADMM and CNMF-ADMM algorithms are blurred with shadows or small
outliers. With imposing adequate sparse regularization, those blurs are basically
eliminated in the results of NMF-SR-ADMM and CNMF-SR-ADMM algorithms.
Moreover, in Figure 6(e)-6(f), CNMF-based algorithms can extract both common
and individual patterns for all the datasets, and also successfully correct the dis-
order problem of common patterns in the results of two NMF-based algorithms
as shown in Figure 6(c)-6(d). For a more detailed description of experimental
design and analysis of results, please refer to the attached article PI.

2.4.2 Real-world multi-subject ongoing EEG data

Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, sponta-
neous EEG and noises, which require advanced signal processing techniques
for separation and analysis. Existing methods did not simultaneously consider
common and individual characteristics among/within subjects when extracting
stimulus-elicited brain activities from ongoing EEG. In this section, the CNTF
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FIGURE 8 Flow chart of multi-subject ongoing EEG data processing and analysis: data
acquisition & preprocessing, musical feature extraction, tensor representa-
tion, coupled factorization, correlation analysis, hierarchical clustering and
cluster selection of interest.

algorithm based on the fHALS strategy (see it in Section 2.3.2) is adopted to
the joint analysis of multi-subject ongoing EEG data, with imposing a partially
double-coupled constraint on spatial and spectral modes. Figure 8 illustrates the
comprehensive flowchart of ongoing EEG data processing and analysis, which
includes the following seven steps: (1) the data were collected from 14 partici-
pants when listening to an 8.5-minute piece of modern tango (Alluri et al., 2012),
and were preprocessed off-line using EEGLAB toolbox (Delorme and Makeig,
2004) and MATLAB R2016b; (2) through short-time Fourier transform (STFT), 14
third-order tensors with the size of 46 (frequency bins) × 510 (time samples) ×
64 (space channels) were generated for 14 participants; (3) five long-term tonal
and rhythmic musical features with the length of 510 samples were extracted
from the musical stimulus, including Mode, Key Clarity, Fluctuation Centroid,
Fluctuation Entropy and Pulse Clarity, which provided a bridge for analyzing
the connections between musical stimulus and ongoing EEG data; (4) through
CNTF-fHALS algorithm, the ongoing EEG tensors of space, time and frequency
were simultaneously decomposed into common and individual components; (5)
correlation analysis was performed between temporal courses of extracted tem-
poral components and temporal courses of musical features to discover the brain
activities elicited by the musical stimulus, and the significantly correlated tempo-
ral components and their corresponding spatial and spectral components will be
of interest and further analyzed; (6) hierarchical clustering was adopted to merge
the highly correlated spatial components (selected from step 5) within the sub-
jects, and finally, q clusters of spatial components were obtained; (7) the cluster
with more than half of the total number of subjects was selected as the cluster of
interest, in which the corresponding brain activities were considered to be elicited
by the musical stimulus.

Through the proposed framework, the brain activities were effectively ex-
tracted and sorted into three clusters of interest. The averaged topographies and
their corresponding spectrograms of clusters #I, #II and #III are illustrated in Fig-
ure 9. Regarding cluster #I, the topography reveals that brain’s centro-parietal
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FIGURE 9 Illustration of clusters of interest #I, #II and #III obtained from 100 runs of
CNTF-fHALS algorithm. Spatial information, presented by the averaged to-
pographies (left column), indicate the activation of centro-parietal, occipito-
parietal and frontal regions of the brain elicited by musical stimulus, respec-
tively. Overall spectrogram of clusters #I, #II and #III (right column) from
100 runs illustrate the frequency oscillations over the entire period.

region is activated with quite a lot theta oscillations (4∼7 Hz, 74.52%, 1155/1550)
but little alpha oscillations (around 10 Hz, 25.48%, 395/1550). Conversely, the
occipito-parietal region of the brain is activated with significant alpha oscilla-
tions (8∼13 Hz, 75.21%, 2925/3889), accompanied by a small amount of theta
oscillations (4∼8 Hz, 24.79%, 964/3889) in cluster #II. In addition, the topogra-
phy representing the activation of the frontal region is also obtained, as shown
in cluster #III, and the frequency oscillations are distributed in the range of 4 to
11 Hz (theta-55.56%, 964/1735, alpha-44.44%, 771/1735). The findings are in line
with the results of previous studies, and it can be inferred that those extracted
brain activities are associated with the musical stimulus. Moreover, the frame-
work based on coupled tensor factorization provides a new perspective for the
processing and analysis of multi-subject ongoing EEG data. For a more detailed
description of the experimental design and analysis of results, please refer to the
attached article PIV.

2.4.3 Real-world multi-subject ERP data

This section applies CNTF-APG and lraCNTF-APG algorithms to the joint anal-
ysis of multi-subject event-related potential (ERP) data2. The data of 21 children

2 http://www.escience.cn/people/cong/AdvancedSP_ERP.html

http://www.escience.cn/people/cong/AdvancedSP_ERP.html
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FIGURE 10 An example of multi-domain feature extracted from multi-subject ERP data
and its corresponding temporal, spectral and spatial components through
CNTF-APG algorithm.

with reading disability (RD) and 21 children with attention deficit (AD) are cho-
sen, aiming to acquire multi-domain features that can discriminate between two
groups. Using complex Morlet wavelet transform, third-order tensors of 42 sub-
jects (21 RD & 21 AD) with the size of 9× 71× 60 are generated, presenting nine
channels, 71 frequency bins and 60 temporal points, to testify the effectiveness
and practicality of coupled tensor factorization. Following (Cong et al., 2012a),
the number of components is set as R(1) = R(2) = · · · R(42) = 36. Considering the
nature of ERP data, 42 third-order ERP tensors are assumed to be coupled in spa-
tial, spectral and temporal modes. The number of coupled components between
tensors is set to 36.

ERP data are acquired through repeated presentation of stimuli, so certain
properties of temporal, spectral and spatial domains can be expected in advance.
According to prior knowledge given in (Cong et al., 2012a), the expected multi-
domain features and its corresponding temporal, spectral and spatial compo-
nents can be selected from the decomposition results of ERP data. Figure 10
shows an example illustration of multi-domain features and their corresponding
components extracted by the CNTF-APG algorithm in the 1st run. For multi-
domain features shown in the figure, statistical analysis using t-test reveals the
significant difference between RD and AD groups with t20 = 2.419, p = 0.025.
The temporal component (latency peaks around 150 ms) and spectral component
(spectrum peaks around 5 Hz) closely match the property of mismatch negativ-
ity component (Cong et al., 2012a). The corresponding topography denotes that
the difference between RD and AD groups may appear in the central and left
hemispheres (Cong et al., 2012a).

To verify the stability of multi-domain feature extraction of CNTF-APG and
lraCNTF-APG algorithms in 100 Monte Carlo experiments, we adopt the follow-
ing steps: (1) the multi-domain features and their parallel three components in the
1st runs of all algorithms are selected and averaged separately as a set of template
patterns, and termed as afea

temp, atem
temp, aspe

temp and aspa
temp; (2) the maximum correla-

tion coefficient (MCC) between template patterns and feature-based components
of kth runs is defined as follows

MCC(k) = max
[
corr(afea

temp, Afea
k ) ~ corr(atem

temp, Atem
k )

~corr(aspe
temp, Aspe

k ) ~ corr(aspa
temp, Aspa

k )
] (32)

where k denotes the run number and corr is a matlab function which returns
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TABLE 1 Performance illustration in multi-domain feature extraction of multi-subject
ERP data based on CNTF model under 100 independent runs.

Methods TenFit Time MCC-Mean MCC-SD

CNTF-APG 0.8490 183.91 0.8898 0.0956
lraCNTF-APG 0.8490 27.45 0.8916 0.0809

a vector containing the pairwise linear correlation coefficient between a and A.
Afea

k , Atem
k , Aspe

k and Aspa
k represent the multi-domain features and their corre-

sponding temporal, spectral and spatial components in the kth run, respectively.
Table 1 gives the means and SDs of MCCs in 100 independent runs of two al-
gorithms, as well as the averages of tensor fittings and running time. It can be
seen that both algorithms show very good performance in terms of decompo-
sition accuracy and multi-domain feature extraction stability. This experiment
also proves that low-rank approximation can significantly improve computation
efficiency without losing the decomposition accuracy. For a more detailed de-
scription of the experimental design and analysis of results, please refer to the
attached article PV.



3 INCLUDED ARTICLES AND AUTHOR
CONTRIBUTIONS

This chapter presents an overview of the methods and main results involved in
the included articles, and provides the author contributions to the articles.

3.1 Article I: "Group Nonnegative Matrix Factorization with Sparse
Regularization in Multi-set Data"

Xiulin Wang, Wenya Liu, Fengyu Cong, and Tapani Ristaniemi. Group Non-
negative Matrix Factorization with Sparse Regularization in Multi-set Data. 28th
European Signal Processing Conference (EUSIPCO), Amsterdam, NL, 2020. Ac-
cepted

Method&Results: Constrained joint analysis of data from multiple sources has
received widespread attention for that it allows us to explore potential connec-
tions and extract meaningful hidden components. This article formulated a flexi-
ble joint source separation model, and termed it as group nonnegative matrix fac-
torization with sparse regularization (GNMF-SR) model. Then the authors com-
bined alternating optimization (AO) and alternating direction method of multi-
pliers (ADMM) to solve the proposed model, thus both common and individ-
ual patterns of particular underlying factors could be considered and simulta-
neously extracted with imposing the nonnegative and sparse penalties. The de-
signed synthetic fMRI-like data were adopted to testify the performance of the
proposed algorithm and its competitors. In this article, the authors found that
(1) a moderate sparse penalty will improve the performance of the algorithm,
and then increasing it may have a negative impact; (2) the performance of the
GNMF-based methods is superior to that of NMF-based ones; (3) with sparse
regularization, the performance of NMF-based and GNMF-based methods can
be both significantly improved; (4) sparse penalty yields better performance im-
provements than group constraint for NMF-based methods; (5) ADMM-based
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methods achieve better performance, but are more time consuming; (6) GNMF-
based methods can extract both the common and individual patterns for all the
datasets, and can also successfully correct the disorders of the common patterns
that cannot be realized in the NMF-based methods.

Contributions: Xiulin Wang conceived and carried out the idea of the study,
including algorithm derivation and coding, experimental implementation and
analysis, and paper writing. Wenya Liu took part in the discussion and analysis
of the results and revised the manuscript. Fengyu Cong and Tapani Ristaniemi
supervised the whole study and revised the manuscript.

3.2 Article II: "Generalization of Linked Canonical Polyadic Ten-
sor Decomposition for Group Analysis"

Xiulin Wang, Chi Zhang, Tapani Ristaniemi and Fengyu Cong. Generalization
of Linked Canonical Polyadic Tensor Decomposition for Group Analysis. 16th
International Symposium on Neural Networks (ISNN), Moscow, Russia, 2019.

Method&Results: The Linked Tensor Decomposition (LTD) model is a coupled
tensor decomposition technique proposed in recent years for group analysis, specif-
ically for joint analysis of multi-block tensors. In this article, the authors pro-
posed a generalized linked canonical polyadic tensor decomposition (GLCPTD)
model that was well suited to exploiting the linking nature in multi-block ten-
sor analysis. An efficient algorithm based on the hierarchical alternating least
squares (HALS) method was proposed and termed as the GLCPTD-HALS algo-
rithm, which enabled the simultaneous extraction of common components, indi-
vidual components and core tensors from tensor blocks. Simulation experiments
of synthetic EEG data analysis and image reconstruction and denoising were con-
ducted to demonstrate the superior performance of the proposed generalized
model and its realization. In synthetic EEG data analysis, the authors found that
(1) GLCPTD-HALS and NTF-HALS algorithms can successfully extract the com-
mon components as well as individual components; (2) the components learned
by NTF-HALS algorithm are disordered, thus clustering and other post-ordering
methods are needed; (3) although LCPTD-HALS algorithm can extract all the
common components, it cannot recover all of the potential components (omitted
or merged), which makes group analysis more complicated. In image reconstruc-
tion and denoising, the authors found that (1) the images reconstructed by the
LPCTD model are fuzzier or distorted than those from the GLCPTD model; (2)
the PSNRs obtained by the GLCPTD model are higher than those obtained by
the LCPTD model, which indicates that the proposed GLCPTD model matches
the real-world data more closely; (3) when designing the coupled tensor decom-
position experiment, stacking face images from the same subject with different
expressions is more reliable than stacking that of the same expressions with dif-
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ferent subjects; (4) the excessive number of common components may affect the
fitness of the estimated tensors.

Contributions: Xiulin Wang conceived and carried out the idea of the study,
including algorithm derivation and coding, experimental implementation and
analysis, and paper writing. Chi Zhang helped revise the manuscript. Fengyu
Cong and Tapani Ristaniemi supervised the study and revised the manuscript.

3.3 Article III: "Fast Implementation of Double-coupled Nonnega-
tive Canonical Polyadic Decomposition"

Xiulin Wang, Tapani Ristaniemi and Fengyu Cong. Fast Implementa- tion of
Double-coupled Nonnegative Canonical Polyadic Decomposition. 2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 2019.

Method&Results: Real-world tensor data exhibiting high order/dimensionality
and various couplings are linked to each other since they share some common
characteristics. To address the multi-block tensor data, the authors proposed a
fast double-coupled nonnegative Canonical Polyadic decomposition (FDC-NCPD)
algorithm in this study, based on the linked CP tensor decomposition (LCPTD)
model and fast hierarchical alternating least squares (fHALS) algorithm. Simu-
lation experiments of synthetic and real-world data were conducted to demon-
strate the superior performance of the proposed algorithm. From the experiment
results, the authors found that: (1) simultaneous extraction of common compo-
nents, individual components and core tensors can be achieved with the pro-
posed algorithm; (2) the proposed algorithm can significantly reduce calculation
time while retaining the decomposition quality; (3) joint/coupled analysis can ef-
fectively utilize prior information to improve the decomposition accuracy.

Contributions: Xiulin Wang conceived and carried out the idea of the study,
including algorithm derivation and coding, experimental implementation and
analysis, and paper writing. Fengyu Cong and Tapani Ristaniemi supervised the
whole study and revised the manuscript.

3.4 Article IV: "Group analysis of ongoing EEG data based on fast
double-coupled nonnegative tensor decomposition"

Xiulin Wang, Wenya Liu, Petri Toiviainen, Tapani Ristaniemi and Fengyu Cong.
Group analysis of ongoing EEG data based on fast double-coupled nonnegative
tensor decomposition. Journal of neuroscience methods, 330, p.108502, 2020.
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Method&Results: Aiming to discover the reliable links between brain responses
and musical stimulus from ongoing EEG elicited by 512-second long modern
tango music, the authors first proposed a fast double-coupled nonnegative tensor
decomposition (FDC-NTD) algorithm. This algorithm is based on the generalized
coupled model, which is capable of simultaneously decomposing EEG tensors of
space, time and frequency into common components and individual components.
Then the authors proposed a comprehensive framework for the group analysis of
multi-subject ongoing EEG data, which includes seven steps: data acquisition &
preprocessing, musical feature extraction, tensor representation, FDC-NTD im-
plementation, correlation analysis, hierarchical clustering and cluster selection of
interest. In this article, the authors found that (1) with the proposed framework,
the brain activities can be effectively extracted and sorted into the clusters of inter-
est; (2) the proposed algorithm based on the generalized model achieved higher
fittings and stronger robustness; (3) the oscillatory brain activities in the three
selected clusters are mainly distributed in theta (4-8 Hz), alpha (8-13 Hz) bands,
and 4-11 Hz, and located in the centro-parietal, occipito-parietal and frontal re-
gions respectively, while their corresponding temporal courses are significantly
correlated musical features of the musical stimulus. The present study, providing
a solution to separate common stimulus-elicited brain activities using coupled
tensor decomposition, has shed new light on the processing and analysis of on-
going EEG data at the multi-subject level.

Contributions: Xiulin Wang conceived and carried out the idea of this study,
including algorithm derivation and coding, experimental implementation and
analysis, and paper writing. Wenya Liu contributed to the discussion of the
results and the revision of the manuscript. Petri Toiviainen provided the data
and revised the manuscript. Fengyu Cong and Tapani Ristaniemi supervised the
whole study and revised the manuscript.

3.5 Article V: "Fast Learnings of Coupled Nonnegative Tensor De-
composition Using Optimal Gradient and Low-rank Approxi-
mation"

Xiulin Wang, Tapani Ristaniemi and Fengyu Cong. Fast Learnings of Coupled
Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Ap-
proximation. Submitted to <signal processing>, 2020.

Method&Results: Nonnegative tensor decomposition has been widely applied
in signal processing and neuroscience, etc. When it comes to group analysis
of multi-block tensors, traditional tensor decomposition is insufficient to main-
tain feature comparability or to utilize coupled information among tensors. In
this article, the authors first proposed an effective coupled nonnegative CANDE-
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COMP/PARAFAC decomposition algorithm based on alternating proximal gra-
dient (CoNCPD-APG) method. This algorithm is capable of a simultaneous de-
composition of tensors from different samples with coupled information and a si-
multaneous extraction of common components, individual components and core
tensors. Moreover, to improve the optimization efficiency, the authors further
introduced the low-rank approximation to the couple factorization problem and
proposed the lraCoNCPD-APG algorithm. The authors designed and carried out
two experiments on face image data and real-world event-related potential (ERP)
data, aiming to examine and demonstrate the superior performance of CoNCPD-
APG and lraCoNCPD-APG algorithms. In image reconstruction and denoising
of image data, the authors found that (1) the proposed APG-based algorithms are
superior to other algorithms, as they obtain higher decomposition accuracy and
stronger image reconstruction capabilities; (2) by introducing the low-rank ap-
proximation strategy, the lraCoNCPD-APG algorithm can greatly reduce execu-
tion time while maintaining decomposition performance; (3) the proposed APG-
based algorithms have excellent decomposition stability. In multi-domain feature
extraction of ERP data, the authors found that (1) the proposed CoNCPD-APG
and lraCoNCPD-APG algorithms are superior to competitors in terms of decom-
position accuracy and multi-domain feature extraction stability; (2) the MU-based
couple method achieves better performance than the fHALS-based algorithms in
has accuracy but has the worst multi-domain feature extraction stability; (3) the
low-rank approximation in joint analysis of large-scale tensors can greatly im-
prove computation efficiency without losing the decomposition accuracy.

Contributions: Xiulin Wang conceived and carried out the idea of this study,
including algorithm derivation and coding, experimental implementation and
analysis, and paper writing. Fengyu Cong and Tapani Ristaniemi supervised the
whole study and revised the manuscript.



4 CONCLUSION

This dissertation mainly focuses on the group analysis of brain imaging data us-
ing coupled nonnegative matrix/tensor decomposition algorithms, which fully
utilize data characteristics, including multi-set/multi-modal, multi-coupling and
multi-way structures. This dissertation is a synthesis of the included articles PI-
PV, the contents of which are organized as follows.

(1) For the constrained joint analysis of data from multiple sources, we de-
signed a flexible CNMF-SR model, which can be converted into NMF, NMF-SR
and CNMF models by controlling relevant parameters. Within the BCD frame-
work, we adopted the ADMM strategy to optimize the CNMF-SR model. Ex-
periment using Multi-subject fMRI-like data verify that the proposed algorithm
has better performance than its counterparts with coupling and adequate sparse
constraints. In addition to the effective elimination of the blurs of recovered im-
ages, the proposed algorithm can also extract both common patterns (sorted) and
individual patterns.

(2) To discover the commonly stimulus-elicited features among subjects, we
proposed a comprehensive data analysis framework based on the CNTF model.
We adopted the fHALS strategy to solve the CNTF model with the double-coupled
constraint. For multi-subject ongoing EEG data recorded during freely listening
to tango music, more reliable associations between brain responses and musical
stimulus can be found using the proposed framework. Through providing a so-
lution of how to use coupled tensor factorization to separate commonly stimulus-
elicited brain activities, this study has shed new light on the processing and anal-
ysis of ongoing EEG data at the multi-subject level.

(3) To address the slow convergence speed and low optimization accuracy
of most existing methods, we proposed two advanced CNTF algorithms: CNTF-
APG and its fast implementation lraCNTF-APG. We adopted multi-subject ERP
data collected from two groups of 21 children with reading difficulty and 21 chil-
dren with attention deficit. The results show that the proposed APG-based al-
gorithms can accurately and steadily extract the expected multi-domain features
which can better discriminate the two groups. The introduction of low-rank ap-
proximation can greatly improve computation efficiency without losing the de-
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composition accuracy.
In conclusion, this dissertation proposed efficient CNMF and CNTF algo-

rithms, which have been successfully applied to brain imaging data’s joint analy-
sis. The CNMF and CNTF algorithms provide a natural framework for the simul-
taneous analysis of matrices or tensors with coupling information and the simul-
taneous extraction of common and individual features. Moreover, The CNMF
and CNTF algorithms can reveal underlying structures and inner-relationships
between datasets, and take full advantage of prior information to achieve higher
decomposition accuracy and decomposition stability. However, this dissertation
still has some limitations to consider.

(1) The proposed algorithms achieve the joint analysis of multiple datasets
by imposing ‘hard’ links between datasets, i.e., we assume that different datasets
have (partially) shared factors. However, in some cases, there are only (par-
tially) highly correlated or similar factors between datasets, namely the ‘soft’
links. Thus, selecting the ‘soft’ links in the CNMF and CNTF problems according
to the characteristics of data will be one of our future works.

(2) The determination of the number of components and coupled compo-
nents depends on the validity of potential assumptions and relevant prior knowl-
edge. The number of components can be calculated subjectively or objectively via
a series of methods (such as model order selection or PCA-based method). We
have proposed how to determine the number of coupled components by calcu-
lating the correlations of corresponding components between subjects. However,
its selection is still subjective to some extent, which remains an open issue and
invites more discussion.

(3) So far, the algorithms proposed in this dissertation are only applied for
multi-subject and single-modal brain data, which does not suffice to study and
understand brain functions. Therefore, joint analysis of multi-subject and multi-
modal brain imaging data using coupled matrix/tensor factorization will be one
of our future research topics.



YHTEENVETO (SUMMARY IN FINNISH)

Pääosin tämä väitöskirja käsittelee aivokuvantamisaineistoille tehtyjä liitoksellis-
ten matriisien / tensorien epänegatiivisen yhteishajotelman algoritmeja, jotka ot-
tavat hyvin huomioon aineistojen erityisominaisuuksia mukaan lukien useat eri
modaliteetit, useaulotteiset rakenteet sekä rakenteiden väliset liitokset. Mukaan
liitettyjen artikkeleiden PI-PV jälkeen väitöskirja rakentuu seuraavanlaisesti.

Kehitimme reunaehdot huomioon ottavalle usean lähteen yhteisanalyysil-
le joustavan liitoksellisten matriisien epänegatiivinen yhteishajotelman harvalla
esityksellä (CNMF-SR), josta saadaan sopivilla parametreilla erikoistapauksina
matriisin epänegatiivinen hajotelma (NMF), matriisin epänegatiivinen hajotelma
harvalla esityksellä (NMF-SR), ja liitoksellisten matriisien epänegatiivinen yhteis-
hajotelma (CNMF). Lohkotun laskevan koordinaattisuunnan menetelmän (BCD)
puitteissa sovelsimme ADMM-strategiaa CNMF-SR-mallin ratkaisemiseksi. Tes-
timme usean koehenkilön simuloidun fMRI-aineiston kanssa osoittavat että eh-
dotettu algoritmi liitos- ja harvuusrajoitteilla on tehokkaampi kuin muut vastaa-
vat algoritmit. Sen lisäksi että algoritmit pystyy tehokkaasti vähentämään su-
mentumia palautetuista kuvista, se kykenee samanaikaisesti erottamaan toisis-
taan yksilölliset ja jaetut piirteet.

Koehenkilöiden yhteisten ärsykkeiden tuottamien aivovasteiden löytämi-
seksi kehitimme CNTF-malliin pohjaten kattavan analyysikehikon, jossa käytim-
me fHALS-strategiaa kahden (taajuuden ja paikan) tensorien välisen liitoksen si-
sältävän aineiston hajotelman laskemiseksi. Tämän kehikon soveltaminen usean
koehenkilön tango-musiikin kuuntelua sisältävään aineistoon löysi luotettavasti
yhteyksiä aivovasteiden ja musiikin piirteiden välillä. Näyttäessään kuinka lii-
toksellisten tensorien yhteishajotelmaa voi käyttää yksilöllisten ja jaettujen aivo-
vasteiden erottamiseksi, tämä tutkimus on tärkeä edistysaskel usean koehenkilön
sisältävän jatkuvan EEG-aineiston analyysissä.

Useimpien jo olemassaolevien menetelmien hitaan suppenemisen ja mata-
lan ratkaisutarkkuuden vuoksi ehdotamme kahta edistynyttä liitoksellisten ten-
sorien epänegatiivisen yhteishajotelman algoritmia: vuorottelevaan proksimaa-
liseen gradienttiin pohjaavan menetelmän (CNTF-APG) ja sen matala-asteiseen
approksimaatioon perustuvan nopeamman version (lraCNTF-APG). EEG-heräte-
vasteaineistossa, jossa oli mukana 21 lukemisvaikeuksista kärsivää lasta sekä 21
tarkkavaisuushäiriöstä kärsivää lasta, menetelmät löysivät tarkasti ja vakaasti ai-
vovasteet, jotka erottivat kaksi ryhmää toisistaan. Matala-asteinen approksimaa-
tion käyttöönotto voi merkittävästi lisätä laskennallista tehokkuutta kuitenkaan
vähentämättä hajotelman tarkkuutta.

Tiivistäen, tämä väitöskirja esittelee joitain tehokkaita algoritmeja liitoksel-
listen matriisien tai tensorien epänegatiivisen yhteishajotelman laskemiseksi, ja
niitä on onnistuneesti sovellettu aivokuvantamisaineistojen analyysiin.
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Abstract—Constrained joint analysis of data from multiple
sources has received widespread attention for that it allows us
to explore potential connections and extract meaningful hidden
components. In this paper, we formulate a flexible joint source
separation model termed as group nonnegative matrix factoriza-
tion with sparse regularization (GNMF-SR) to jointly analyze the
partially coupled multi-set data. With the generalized model, both
common and individual patterns of particular underlying factors
can be considered and simultaneously extracted with imposing
the nonnegative and sparse penalties. Alternating optimization
and alternating direction method of multipliers (ADMM) are
combined to solve the GNMF-SR model. Using the experiment
of simulated fMRI-like data, we demonstrate the ADMM-based
GNMF-SR algorithm can achieve the better performance.

Index Terms—Alternating direction method of multipliers,
coupled, group nonnegative matrix factorization, joint analysis,
sparse representation

I. INTRODUCTION

Nonnegative matrix factorization (NMF), providing a part-
based representation of nonnegative data, has been widely
applied in blind source separation (BSS) problems including
signal processing and machine learning [1]–[4]. With the
increasing availability of sensor technologies, we are now
facing a mass of data from multiple sources that need to
be jointly separated [5]–[8], such as the multi-subject/multi-
modal biomedical data [6], [7]. Although many studies have
shown that conventional NMF methods are effective in a
large of single dataset applications, their inefficiency in group
analysis of multiple datasets has limited their broader usage
[7]. In order to fill the gap between NMF and group analysis
of multiple datasets, group nonnegative matrix factorization
(GNMF) was proposed as an updated modification of the
standard NMF in multi-set problems [9], [10]. In the group
model, coupling information across datasets can be exploited,
making it possible to achieve higher performance than BSS-
based algorithms originally designed for one dataset [5], [7],
[9]. Therefore, it is easy to extract the underlying patterns that
are common among datasets, as well as individual patterns
that exhibit internal variability [8], [9]. In addition, group
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for the Central Universities [DUT2019] in Dalian University of Technol-
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analysis in multiple datasets can also automatically maintain
the alignment of coupled patterns among datasets, while BSS-
based algorithms need to adopt some post-aligned strategies
[5], [9].

Spares representation aims to encode the data using fewer
‘active’ components for better interpretation of the encoding
[11], [12]. Even though NMF-based methods can naturally
produce a sparse representation of the data, the sparseness of
extracted factors is not enough and uncontrollable [11]. There-
fore, sparse regularization has been widely applied to NMF to
promote the sparse representation and alleviate the factorized
non-uniqueness [13]. Inspired by GNMF and sparse NMF, we
formulate a group nonnegative matrix factorization with sparse
regularization (GNMF-SR) model by imposing an efficient
and commonly used regularizer l1-norm for constrained joint
analysis of partially coupled datasets. Obviously, the GNMF
works in [9], [10] do not take the sparse characteristic of latent
variables into consideration, and the sparse NMF works in
[11]–[13] cannot utilize the coupled information across the
datasets. In recent years, the alternating direction method of
multipliers (ADMM) has become an effective and popular tool
for constrained NMF problems [14]–[17], and in this study
we employ ADMM to optimize the GNMF-SR model. The
convergence issue of NMF-based or nonconvex optimization
problems about ADMM has been widely discussed in [15]–
[19], which will not be discussed in this study. A comprehen-
sive review of ADMM can be found in [17].

The rest of this paper is organized as follows. Section 2
introduces multi-set data model, GNMF models, ADMM
method and model optimization via ADMM method. In
section 3, simulation experiment on synthetic fMRI-like data
is conducted. The last section concludes this paper.

Notations: Scalars, vectors and matrices are respectively
denoted by lowercase, boldface lowercase and boldface
uppercase, e.g. x, x and X . R+ denotes the nonnegative
real number. Operators (·)T , ‖·‖1 and ‖·‖F denote transpose,
l1-norm and Frobenius norm, respectively. 〈A,B〉 denotes the
inner product of matrices A and B. 〈A,B〉 :=

∑
i,j aijbij

can be substituted by tr(ABT ) for A and B with the same
size I × J .



II. METHODS

In this section, we first introduce the multi-set data model,
then we present the GNMF and GNMF-SR models, and last
give the ADMM method and the optimization solution of
GNMF-SR model.

A. Multi-set data model

Given a set of nonnegative matrices X(s) ∈ RI
(s)×J(s)

+ ,
s = 1, 2, · · · , S, the multi-set data model assumes that each
data X(s) can be expressed by:

X(s) ≈ A(s)B(s) = [A
(s)
C A

(s)
I ]B(s), (1)

where A(s) ∈ RI
(s)×R(s)

+ and B(s) ∈ RR
(s)×J(s)

+ represent
the latent variable and corresponding coefficient matrix re-
spectively. Generally, R(s) < min(I(s), J (s)) is assumed
for providing a low-rank representation of X(s). Assuming
that those data are collected under the same condition, it is
reasonable to expect that there will be some identical or highly
correlated hidden information between the data. Therefore,
in multi-set data model, we assume that each factor matrix
A(s) = [A

(s)
C A

(s)
I ] includes two patterns: A

(s)
C ∈ RI

(s)×L
+ ,

0 ≤ L ≤ R(s), a common matrix shared by all S matrices as
A

(1)
C = · · ·A(S)

C = AC , and A
(s)
I ∈ RI

(s)×(R(s)−L)
+ , which

corresponds to the individual characteristic in each dataset.

B. Group nonnegative matrix factorization

Considering the coupling structure among the latent vari-
ables A(s) in multi-set data model, we need to analyze S
sets of X(s) simultaneously, which is different from the
conventional NMF problem. Using the Euclidean divergence
minimization, the GNMF of X(s), s = 1, 2, · · · , S, can be
achieved by solving the following optimization:

minimize
A(s),B(s)

1

2

S∑

s=1

∥∥∥X(s)−A(s)B(s)
∥∥∥
2

F
(2)

subject to A(s) ≥ 0,B(s) ≥ 0,

In many applications only the underlying patterns in the
variable dimension need to be sparse [20], thus in this study
we only consider imposing the sparsity on factor matrix A(s)

as follows:

minimize
A(s),B(s)

1

2

S∑

s=1

∥∥∥X(s)−A(s)B(s)
∥∥∥
2

F
+

S∑

s=1

β(s)

R(s)∑

r=1

∥∥∥a(s)
r

∥∥∥
1

(3)
subject to A(s) ≥ 0,B(s) ≥ 0,

where a
(s)
r corresponds to the rth column of A(s), and note

that A(1)
C = · · ·A(S)

C = AC . The penalty term
∑R(s)

r=1

∥∥∥a(s)
r

∥∥∥
1

is to impose the sparsity on factor matrix A(s), and it can be
reformed as

〈
E,A(s)

〉
, in which E ∈ RI

(s)×J(s)

+ is a matrix
whose entries are all ones. β(s) ≥ 0 is a predefined penalty
parameter. For simplicity, we set β(1) = β(2) = · · ·β(S). We

term the GNMF with sparse regularization in (3) as GNMF-
SR model. Later we will give a detailed explanation of how
to solve GNMF-SR model using ADMM algorithm.

C. Alternating direction method of multipliers

According to [17], ADMM algorithm considers the follow-
ing problem:

minimize
x,z

f(x) + g(z) (4)

subject to Ax + Bz = c.

Using the scaled from, it can be updated iteratively using the
following steps:




x := argmin
x

(
f(x) + (ρ/2) ‖Ax + Bz − c + u‖22

)
,

z := argmin
z

(
g(z) + (ρ/2) ‖Ax + Bz − c + u‖22

)
,

u := u + (Ax + Bz − c) ,
(5)

where u denote the scaled dual variable and ρ > 0 denotes
the preselected augmented Lagrangian parameter.

D. GNMF-SR solutions via ADMM

To solve the nonconvex optimization problem, ADMM
algorithm splits it into smaller pieces so that it can be
easily handled one-to-one [17]. Moreover, the problem (3)
can be first converted to two sub-problems: A(s) and B(s)

via alternating optimization strategy, and then one of sub-
problems can be solved using ADMM algorithm effectively
if the other is fixed [16]. Combining alternating optimization
and ADMM strategies [14]–[17], [21], we introduce two
auxiliary variables Ã(s) and B̃(s), and consider the following
minimization reformation of (3) as:

1

2

S∑

s=1

∥∥∥X(s)−A(s)B(s)
∥∥∥
2

F
+

S∑

s=1

β(s)

R(s)∑

r=1

∥∥∥ã(s)
r

∥∥∥
1

(6)

subject to A(s) = Ã(s),B(s) = B̃(s), Ã(s) ≥ 0, B̃(s) ≥ 0.

Corresponding to A(s), the auxiliary variable Ã(s) still con-
sists of two parts: Ã(s)

C and Ã
(s)
I , and Ã

(1)
C = · · · Ã(S)

C = ÃC .
The augmented Lagrangian function for the above problem (6)
is given by:

L(A(s),B(s), Ã(s), B̃(s),Λ(s),Γ(s))

=
1

2

S∑

s=1

∥∥∥X(s)−A(s)B(s)
∥∥∥
2

F
+

S∑

s=1

β(s)

R(s)∑

r=1

∥∥∥ã(s)
r

∥∥∥
1

+
S∑

s=1

ρ(s)

2

∥∥∥A(s)−Ã(s) + Λ(s)
∥∥∥
2

F

+

S∑

s=1

µ(s)

2

∥∥∥B(s)−B̃(s) + Γ(s)
∥∥∥
2

F
,

(7)

where Λ(s) ∈ RI
(s)×R(s)

+ and Γ(s) ∈ RR
(s)×J(s)

+ are termed
as dual variables. ρ(s) and µ(s) are the penalty parameters
predefined by the user, and here we set ρ(s) =

∥∥B(s)
∥∥2
F
/R(s)

and µ(s) =
∥∥A(s)

∥∥2
F
/R(s) as suggested in [16].







AC =

[
S∑
s=1

X(s)
(
B

(s)
C

)T−
S∑
s=1

A
(s)
I B

(s)
I

(
B

(s)
C

)T−
S∑
s=1

ρ(s)Λ
(s)
C +

S∑
s=1

ρ(s)Ã
(s)
C

][
S∑
s=1

B
(s)
C

(
B

(s)
C

)T
+

S∑
s=1

ρ(s)I

]−1

A
(s)
I =

[
X(s)

(
B

(s)
I

)T−A(s)
C B

(s)
C

(
B

(s)
I

)T−ρ(s)Λ(s)
I +ρ(s)Ã

(s)
I

][
B

(s)
I

(
B

(s)
I

)T
+ρ(s)I

]−1

B(s) =

[(
X(s)

)T
A(s) − µsΓ(s) + µ(s)B̃(s)

][(
A(s)

)T
A(s) + µ(s)I

]−1

ÃC =

[
AC +

∑S
s=1 ρ

(s)Λ
(s)
C∑S

s=1 ρ
(s) −

∑S
s=1 β

(s)EC∑S
s=1 ρ

(s)

]

+

, Ã
(s)
I =

[
A

(s)
I + Λ

(s)
I − β(s)EI

ρ(s)

]

+

B̃(s) =
[
B(s) + Γ(s)

]
+
, Λ(s) = Λ(s) + A(s) − Ã(s), Γ(s) = Γ(s) + B(s) − B̃(s)

(8)

For the solutions of
{
A(s), Ã(s),Λ(s)

}
,
{
B(s), B̃(s),Γ(s)

}

in (7), we can calculate them successively via minimizing L
with respect to one of them while fixing the others. Note
that the primal variable A(s) and auxiliary variable Ã(s)

both include the common and individual patterns, we need
to calculate these two patterns separately. Furthermore, since
the common pattern AC (or ÃC) is shared by A(s) (or Ã(s)),
s = 1, 2, · · · , S, we need to combine the information from
all matrices from 1 to S to calculate their solutions. Different
from the common pattern, the individual pattern A

(s)
I or Ã(s)

I

just needs to be calculated separately by the corresponding
sth set data. Moreover, we also divide B(s) into two parts
B

(s)
C ∈ RL×J

(s)

+ and B
(s)
I ∈ R(R(s)−L)×J(s)

+ row-wisely. The
specific solutions of primal, auxiliary and dual variables are
given in (8), in which EC ∈ RI

(l)×L
+ and EI ∈ RI

(l)×(R(l)−L)
+

are the matrices whose elements are all equal to one. We
summarize the GNMF-SR algorithm based on ADMM update
(termed as GNMF-SR-ADMM) in Algorithm 1.

Algorithm 1: GNMF-SR-ADMM algorithm

Input: X(s), L, and R(s), s = 1, · · · , S
1 Initialization:
2 A(s), B(s), Ã(s), B̃(s), Λ(s), Γ(s), s = 1, · · · , S
3 for k = 1, · · · ,MAXk do
4 According to (8);
5 Update AC and ÃC ;
6 for s = 1, · · · , S do
7 Update A

(s)
I , Ã(s)

I and Λ(s);
8 Let A(s) = Ã(s);
9 Update B(s), B̃(s) and Γ(s);

10 Let B(s) = B̃(s);
11 end
12 if stopping criterion is satisfied then
13 return
14 end
15 end

Output: A(s), B(s), s = 1, 2, · · · , S

III. EXPERIMENT AND RESULTS

In this section, we provide a comprehensive experiment
of synthetic nonnegative fMRI-like data to demonstrate the
performance of GNMF-SR-ADMM algorithm. Multiplicative
update (MU, [1], [9]), alternating proximal gradient (APG, [4],
[22]), alternative least squares (ALS, [3]) and fast hierarchical
alternative least squares (fHALS, [2], [23]) are also extended
to solve the GNMF-SR model for comparison. In addition, by
controlling the values of β and L, three other models including
NMF (β = 0, L = 0), NMF-SR (L = 0) and GNMF (β = 0)
are also considered in this experiment.

All experiments are carried out with the following computer
configurations: CPU: Intel Core i5-7500 @ 3.40Hz 3.41Hz;
Memory: 16Gb; System:64-bit Windows 10; Matlab R2016b.
Initialization. For the initialization of factor matrices, we use
the uniformly distributed pseudorandom numbers generated by
Matlab function rand.
Termination criterion. We use the change of relative error
[22] (the threshold is set by 10−8), and fix the maximum
number of iterations to 1000.
Evaluation index. We adopt peak signal-to-noise ratio (PSNR,
[3]) and inter-symbol-interference (ISI, [24]) to evaluate the
accuracy of the estimated factor matrices. Meanwhile, we use
the values of objective function (Obj), relative error (RelErr)
and running time to assess the data fittings.
Data construction. We apply the GNMF-SR model to the
joint analysis of multi-subject nonnegative fMRI-like data,
which are constructed from the benchmark simulated complex
fMRI dataset1. The amplitude of spatial maps (SM) and
corresponding time courses (TC) are shown in Fig. 1(a) and
they are adopted to generate the nonnegative fMRI-like data
for 6 subjects according to the source index set {1,2,5,6,7},
{1,2,4}, {1,2,4,5}, {1,2,8}, {1,2,3,5} and {1,2,3,4} designed
in [24], and more information about data construction can be
found in [24]. The SM images of all subjects are shown in Fig.
1(b). Each row corresponds to one subject, and the first two
columns are shared by all the subjects, which are considered
as the common patterns and the remains are the individual
ones.

1http://mlsp.umbc.edu/simulated complex fmri data.html
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Fig. 1. (a) Amplitude images of 1-8 simulated fMRI-like spatial maps (1st and 3rd columns) and corresponding time courses (2nd and 4th columns). (b-f)
SM images of constructed data and that of estimated ones via NMF-ADMM (β = 0, L = 0), NMF-SR-ADMM (β = 3e − 4, L = 0), GNMF-ADMM
(β = 0, L = 2) and GNMF-SR-ADMM (β = 3e− 4, L = 2) under SNR=20dB.

We fix SNR=20dB, and select 25 values for β ranging
from 0 to 5. With varying βs, the PSNR curves of SM
estimates averaged from 30 Monte Carlo runs in the GNMF-
SR model (L = 0 & L = 2) via MU, ALS, APG, fHALS
and ADMM algorithms are shown in Fig.2. Note that when
L = 0 and β = 0, the GNMF-SR will degenerate into the
NMF problem. From Fig. 2, we can see that the PSNR values
of all algorithms will increase and reach the highest at some
point when the sparse penalty parameter β increases, except
that MU-based algorithms show the insensitivity to the settings
of β between 0 and 5. The sparse penalty will have a negative
effect on the algorithm performance when β increases to a
certain point. We also present the specific values of PSNR,
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Fig. 2. Mean PSNR of SM estimates for 6 subjects under NMF-SR (L = 0)
and GNMF-SR (L = 2) models with the βs of 25 values varying from 0 to
5, SNR=20dB.

ISI, Obj, RelErr and running time for each algorithm under
β = 0 and a post-selected β (which corresponds to the best
performance) in Table I. The performance of the GNMF-based
methods is superior to that of NMF-based ones. With sparse
regularization, the performance of NMF-based and GNMF-
based methods can be both significantly improved. Interest-
ingly, sparse penalty yields better performance improvements
than group constraint for NMF-based methods. GNMF-SR-
ADMM algorithm achieves the best performance, followed by
GNMF-SR-APG, NMF-SR-ADMM and GNMF-SR-fHALS
algorithms. However, ADMM-based methods are more time
consuming and will be improved in our future work.

Furthermore, the SM images estimated via NMF-ADMM,
NMF-SR-ADMM, GNMF-ADMM and GNMF-SR-ADMM at
β = 0, 3e − 4 and L = 0, 2 are shown in Fig.1(c-f).
It can be clearly seen that some of SM images obtained
by NMF-ADMM and GNMF-ADMM algorithms are blurred
with shadows or small outliers. By imposing adequate sparse
regularization, those blurs are basically eliminated in the re-
sults of NMF-SR-ADMM and GNMF-SR-ADMM algorithms.
Moreover, from Fig. 1(e-f), we can denote that two group
analysis methods including GNMF-ADMM and GNMF-SR-
ADMM can extract both the common and individual patterns
for all the datasets, and also successfully correct the disorder
scenario of common patterns in the results of two NMF-based
algorithms as shown in Fig. 1(c-d).



TABLE I
PERFORMANCE COMPARISON ON FMRI LIKE DATA BASED ON

GNMF-SR MODEL (L = 0, 2, SNR=20DB)

Method β PSNR ISI Obj RelErr Time/s

L = 0

ALS
0 46.68 0.0545 0.0103 0.3332 3.6941

1e-3 58.70 0.0117 0.0103 0.3335 6.2381

MU
0 45.23 0.0741 0.0102 0.3312 5.3236

8e-2 48.02 0.0645 0.0102 0.3318 5.2624

APG
0 45.56 0.0859 0.0101 0.3303 6.8339

5e-4 58.61 0.0303 0.0105 0.3367 3.7993

fHALS
0 46.50 0.0753 0.0101 0.3298 6.1396

3e-3 54.24 0.0281 0.0101 0.3308 6.1959

ADMM
0 45.47 0.0876 0.0101 0.3303 7.0635

3e-4 61.27 0.0128 0.0103 0.3330 7.1136

L = 2

ALS
0 54.33 0.0393 0.0197 0.4245 2.9618

3e-4 58.69 0.0152 0.0149 0.3789 4.3242

MU
0 51.43 0.0330 0.0103 0.3340 5.2181
4 55.91 0.0344 0.0104 0.3352 5.2229

APG
0 52.37 0.0258 0.0103 0.3336 3.6041

5e-4 62.70 0.0215 0.0108 0.3412 5.0651

fHALS
0 55.58 0.0376 0.0109 0.3387 4.9561

8e-3 59.65 0.0083 0.0103 0.3335 5.7812

ADMM
0 51.95 0.0302 0.0103 0.3335 7.2444

3e-4 64.94 0.0062 0.0104 0.3359 7.1910

IV. CONCLUSION

In this paper, we presented a group nonnegative matrix
factorization with sparse regularization (GNMF-SR) model
for the group analysis of data from multiple sources. The
alternating optimization and alternating direction method of
multipliers (ADMM) were developed in combination to opti-
mize the GNMF-SR model, in which the common and indi-
vidual patterns can be simultaneously extracted while aligning
the common patterns. The experiment of simulated fMRI-
like data demonstrated that the ADMM-based algorithms have
better performance, and imposing group constraint and sparse
penalty can greatly improve the performance of NMF-based
algorithms.
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Abstract. Real-world data are often linked with each other since they
share some common characteristics. The mutual linking can be seen as
a core driving force of group analysis. This study proposes a general-
ized linked canonical polyadic tensor decomposition (GLCPTD) model
that is well suited to exploiting the linking nature in multi-block tensor
analysis. To address GLCPTD model, an efficient algorithm based on hi-
erarchical alternating least squares (HALS) method is proposed, termed
as GLCPTD-HALS algorithm. The proposed algorithm enables the si-
multaneous extraction of common components, individual components
and core tensors from tensor blocks. Simulation experiments of synthetic
EEG data analysis and image reconstruction and denoising were con-
ducted to demonstrate the superior performance of the proposed gener-
alized model and its realization.

Key words: Linked tensor decomposition ·Hierarchical alternating least
squares · Canonical polyadic · Simultaneous extraction

1 Introduction

Linked tensor decomposition (LTD) is an emerging technique for group analysis
in recent years, specially designed for simultaneous analysis of multi-block tensor
data. It has been successfully applied in the fields of neuroscience [1], multi-
dimensional harmonic retrieval [2], array signal processing [3] and metabolic
physiology [4].

Linked tensor decomposition can be seen as an extension of tensor decom-
position applied to single-block tensor [5–7] in multi-block data analysis, e.g.,
analysis of electrophysiological (EEG) data collected from different subjects un-
der a certain stimulus, which can be naturally linked together for sharing the
similar brain activities [1]. LTD method can take full advantage of such link-
ing/coupling information among data blocks to improve the decomposition iden-
tifiability [3]. In addition, LTD method has its advantage in imposing constraints
on particular modes or components compared to its matrix counterpart [9, 10].
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Any combination of constraints including independence, sparsity, smoothness
and non-negativity can be added more easily and flexibly [11]. Moreover, im-
posing specific constraints on different modes or components would contribute
to obtaining more reasonable decomposition solutions with convincing interpre-
tations [6, 8, 11]. For example, the constraint of non-negativity is applied in the
processing of ERP data with time-frequency representation [6]. Furthermore,
tensor decomposition is superior to two-way matrix factorization such as solu-
tion uniqueness and component identification in some cases [12]. To unfold some
of the modes in matrix factorization will inevitably loss the potential interactions
under the multiway structure [13]. Therefore, it is reliable to take the high-order
characteristics of tensors into consideration in data analysis.

With the LTD model, simultaneous extraction of common components, indi-
vidual components and core tensors can be obtained. The notion ‘linked’ is based
on the assumption that different data blocks share the same or highly correlated
components while retaining individual information [14]. In group data analysis,
e.g. face images collected from different subjects with the same expression [14],
or EEG data collected from different participants under the same stimulus [8],
all subjects may share the similar or even identical information, which can be
regarded as linking factors among tensors. However, individual characteristics
will exist in particular subjects at the same time, which may lead to inconsis-
tent number of components for tensors. Obviously, this inconsistency does not
match the linked canonical polyadic tensor decomposition (LCPTD) model in
[14]. Therefore, this study aims to develop a more generalized and flexible model
with inconsistent component number for linked tensor decomposition. To obtain
the solution of the new model, we propose a generalized linked canonical polyadic
tensor decomposition algorithm based on HALS strategy [7], which is termed as
GLCPTD-HALS algorithm. The experiment results show that the generalized
model is more practical in multi-block data analysis, and its realization can
achieve better performance.

This paper is organized as follows. Section 2 introduces LCPTD model and its
generalization. In section 3, GLCPTD-HALS algorithm is proposed. In section
4, simulation experiments are conducted to verify the performance of proposed
algorithm. The last section summarizes this paper.

2 Problem Formulation

In this section, we mainly introduce the linked canonical polyadic tensor decom-
position (LCPTD) model [14] and its generalization. CP model [15] is also called
parallel factor analysis (PARAFAC) [16] and canonical composition (CANDE-
COMP) [17]. CP decomposition (CPD) can decompose a tensor into a minimal
number of rank-1 tensors, and the minimum number R is termed as the rank of
a tensor. It can achieve good unique identification under some mild conditions
without any special constraints. Please refer to [18] for a detailed description of
standard notations and basic tensor operations.
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2.1 Review of LCPTD Model

To deal with multi-block tensors with coupling information, researchers in [14]
proposed a model of simultaneous decomposition, namely LCPTD model, which
is defined as follows:

X (s)≈X̂
(s)

=
R∑

r=1

λ(s)
r u (1,s)

r ◦ u (2,s)
r ◦ · · · ◦ u (N,s)

r

=
r
G(s);U (1,s),U (2,s), · · · ,U (N,s)

z
,

(1)

where X (s) ∈ ℜI1×I2×···IN and X̂
(s) ∈ ℜI1×I2×···IN denote the original and

estimated tensors, respectively. U (n,s) =
[
u

(n,s)
1 ,u

(n,s)
2 , · · · ,u (n,s)

R

]
∈ ℜIn×R

denotes the n-mode factor matrix of sth tensor. S , R, N are denoted as the
number, rank and order of tensors, respectively. G(s) ∈ ℜR×R×···R denotes the

sth core tensor with non-zero entries only on the super-diagonal. λ
(s)
r is the

(r, r, ..., r)th element of G(s). The LCPTD model assumes that each factor ma-

trix U (n,s) =
[
U

(n)
C U

(n,s)
I

]
∈ ℜIn×R consists of two parts: U

(n)
C ∈ ℜIn×Ln ,

0 ≤ Ln ≤ R and U
(n,s)
I ∈ ℜIn×(R−Ln). The former shared by all tensor blocks

represents the coupling (same or highly correlated) information, whereas the
latter corresponds to the individual characteristics of each tensor block.

2.2 Generalization of LCPTD Model

Even though multiple data blocks are collected under the same condition, indi-
vidual characteristics will exist in the particular blocks due to the individual dif-
ferences. These characteristics may lead to inconsistent number of components
for tensors. Obviously, this inconsistency does not match the LCPTD model.
Therefore, we extend the LCPTD model to the generalized case with different
component number R(s), termed as GLCPTD, which is defined as:

X (s)≈X̂
(s)

=
R(s)∑

r=1

λ(s)
r u (1,s)

r ◦ u (2,s)
r ◦ · · · ◦ u (N,s)

r

=
r
G(s);U (1,s),U (2,s), · · · ,U (N,s)

z
.

(2)

The generalized LCPTD model still assumes that each factor matrix U (n,s) =[
U

(n)
C U

(n,s)
I

]
∈ ℜIn×R(s)

consists of two parts: U
(n)
C ∈ ℜIn×Ln , 0 ≤ Ln ≤

min(R(s)) and U
(n,s)
I ∈ ℜIn×(R(s)−Ln), representing the same meanings with

LCPTD model. G(s) ∈ ℜR(s)×R(s)×···R(s)

denotes the sth core tensor.
Fig. 1 illustrates the conceptual model of dual-linked tensor decomposition

based on CP model (all tensors are linked together by the common parts U
(1)
C

and U
(2)
C ).
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Fig. 1. Conceptual illustration of GLCPTD model with dual-linked parts [11]

3 Realization of GLCPTD Model

In this section, we aim to provide a solution of how to solve the above-mentioned
GLCPTD model through HALS strategy [7]. The optimization criterion of squared
Euclidean distance minimization is utilized to minimize the error between the
original and estimated tensors. Therefore, the cost function can be expressed as:

min
S∑

s=1

∥∥∥∥∥∥
X (s) −

R(s)∑

r=1

λ(s)
r u (1,s)

r ◦ u (2,s)
r ◦ · · · ◦ u (N,s)

r

∥∥∥∥∥∥

2

F

(3)

s.t.u (n,1)
r = · · · = u (n,S)

r , r ≤ Ln,∥∥∥u (n,s)
r

∥∥∥ = 1, n = 1 · · ·N, r = 1 · · ·R(s), s = 1 · · ·S.

The above minimized optimization problem can be transformed into max(R(s))
sub-problems via HALS strategy, which can be solved sequentially and iteratively
as follows:

D
(r)
F (λ(s)

r , u(n,s)
r ) =

S∑

s=1,r≤R(s)

∥∥∥Y (s)
r − λ(s)

r u(1,s)
r ◦ u(2,s)

r ◦ · · · ◦ u(N,s)
r

∥∥∥
2

F
, (4)

where Y (s)
r

.
= X(s) −∑R(s)

k ̸=r λ
(s)
k u

(1,s)
k ◦ u

(2,s)
k ◦ · · · ◦ u

(N,s)
k . For the solution of

u
(n,s)
r , we only set the derivative of D

(r)
F (λ

(s)
r , u

(n,s)
r ) with respect to u

(n,s)
r to

zero. The learning rule of u
(n,s)
r can be formulated as:

u (n,s)
r =





∑
s

(
Y

(s)
r,(n)λ

(s)
r {u (s)

r }⊙−n

)/∑
s

(
λ

(s)T
r λ

(s)
r

)
, r ≤ Ln,

Y
(s)
r,(n){u

(s)
r }⊙−n

/
λ

(s)T
r , r > Ln,

(5)
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where Y
(s)
r,(n) is the mode-n matricization of Y (s)

r . {u(s)
r }⊙−n = u

(N,s)
r ⊙ · · · ⊙

u
(n+1,s)
r ⊙u

(n−1,s)
r ⊙ · · ·⊙u

(1,s)
r and ‘⊙’ denotes the Khatri-Rao product. If r ≤

Ln, u
(n,s)
r will be calculated by combining all tensor information and assigned

to each s. Otherwise, it needs to be calculated separately. u
(n,s)
r needs to be

normalized to unit variance by u
(n,s)
r ← u

(n,s)
r /∥u (n,s)

r ∥2 in each iteration. After

N iterations of u
(n,s)
r , the (r, r, ..., r)th element λ

(s)
r of core tensors is updated

as follows:

λ(s)
r ← Y (s)

r ×1 u (1,s)
r ×2 u (2,s)

r · · · ×N u (N,s)
r . (6)

These max(R(s)) stages are alternatively updated one after another until
convergence. In order to impose non-negativity, a simple “half-rectifying” non-

linear projection is applied as u
(n,s)
r ← ∥u (n,s)

r ∥+ or λ
(s)
r ← ∥λ(s)

r ∥+ after (5) and
(6). We summarize the extended GLCPTD-HALS algorithm in Algorithm 1.

Algorithm 1: GLCPTD-HALS algorithm

Input: X(s), Ln and R(s), n = 1, · · · , N , s = 1, · · · , S
Initialization: G(s), U (n,s), u

(n,s)
r ← u

(n,s)
r /∥u(n,s)

r ∥2
E(s) = X(s) −∑R(s)

r λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r

while not convergence do

for r = 1, 2, · · · , max(R(s)) do

Y (s) = E(s) + λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

for n = 1, 2, · · · , N do

update u
(n,s)
r , r ≤ R(s), s = 1, 2, · · · , S via equation (5)

end

update λ
(s)
r , s = 1, 2, · · · , S via equation (6)

E(s) = Y (s) − λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

end

end

Output: G(s), U (n,s), n = 1, ..., N , s = 1, ..., S

4 Simulation Results

4.1 Synthetic EEG Data Analysis

In this part, we synthetically generate three types of factor matrices based on
brain activities, respectively presenting topography, waveform and power spec-
trum, as shown in the Fig. 2 (a)-(c). Through the back projection of factor
matrices, four tensor blocks representing four subjects are constructed with the
SNR of 10dB, as shown in Fig. 2 (d). SNR refers to the signal-to-noise ratio,
which is defined as SNR = 10log10(σs/σn). σs and σn denote the levels of signal
and noise, respectively. To prove the usefulness of GLCPTD model, we set the
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number of components for four tensors as {4, 4, 3, 3}. Furthermore, factor ma-
trices of topography and power spectrum consist of two common bases and one
or two individual bases (L1 = L2 = 2), while the components of waveform are
completely individual (L3 = 0). The common bases represent that the occipital
region in the mid-line and left-hemisphere of four subjects are activated with
the alpha oscillations (8∼13Hz).

Fig. 2. Illustration of factor matrices of (a) topography, (b) waveform and (c) power
spectrum and (d) tensors (frequency×time×channel) for four subjects. Factor matrices
of topography and power spectrum for each subject consist of two common components
and one/two individual components, while temporal components are individual for each
subject.

We apply LCPTD-HALS [14], GLCPTD-HALS, and NTF-HALS [7] algo-
rithms with nonnegative constraint to analyze the four tensor blocks. Solutions
of topography learned by these algorithms are shown in Fig. 3 (a)-(d). We can
see that, GLCPTD-HALS and NTF-HALS algorithms can successfully extract
the common components as well as individual components. The difference is that
the components learned by NTF-HALS algorithm are disordered. Clustering and
other post-ordering methods need to be applied to obtain the common bases.
Although LCPTD-HALS algorithm can extract all the common components,
only 3 components are extracted from subject 1 or subject 2 shown in Fig. 3 (c)
and 4 components are recovered from subject 3 or subject 4 shown in Fig. 3 (d).
The former causes potential components to be omitted (subject 1) or merged
(subject 2). The latter depends on the magnitude of the particular component
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being redistributed in a certain way driven by algorithm (e.g. the 1st component
of subject 3 in Fig. 2 (a) is recovered to the 1st and 4th components in Fig. 3 (d)
corresponding to that its magnitude is divided into two parts from predefined
1), which makes group analysis more complicated especially when the number
of components increases.

Fig. 3. Illustration of factor matrices of topography for four subjects under four condi-
tions. (a)-(d) show the components learned by GLCPTD-HALS, NTF-HALS, LCPTD-
HALS (R = 3) and LCPTD-HALS (R = 4) algorithms, respectively.

4.2 Image Reconstruction and Denoising

In this part, to examine and demonstrate the performance of the proposed al-
gorithm, we apply the LCPTD and GLCPTD models to image reconstruction
and denoising. There are 165 gray-scale images from 15 individuals in the Yale
face database. Each individual has 11 images of different face expressions (‘cen-
terlight’, ‘glasses’, ‘happy’, ‘leftlight’, ‘noglasses’, ‘normal’, ‘rightlight’, ‘sad’,
‘sleepy’, ‘surprised’, ‘wink’) , and the size of each image is 215× 171 pixels. We
construct the multi-block tensors by stacking corresponding face images under
two conditions: (1) Face images from the same subject with different expressions,
I1 = 215, I2 = 171, I3 = 11, S = 15; (2) Face images from different subjects with
the same expression, I1 = 215, I2 = 171, I3 = 15, S = 11. Furthermore, 5% salt-
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and-pepper noises are added to all face images. We use the peak-signal-to-noise
ratio (PSNR) to measure the quality of reconstructed images.

In terms of the number of components in each tensor, we set R to 40 in
the LCPTD model, which is consistent with the original parameter in [14]. Dif-
ferently, in the GLCPTD model, we use the following method to calculate it:
we concatenate each tensor along the first mode to generate a matrix, and per-
form principle component analysis (PCA) on the matrices successively; when
the percentage of the total variance explained by each principle component is
greater than 99.6%, the number of corresponding principle components is chosen
as the number of components. In this experiment, we assume that the coupling
information exists in two modes of images so that we set the number of coupled
components to L1 = L2, L3 = 0, and the values of L1,2 are changed in {10, 20,
30}.

17.5099 22.9862 21.9793 20.0933 19.3200

16.9517 21.9548 21.4064 20.6532 20.1881

17.1596 20.6686 20.5557 20.1793 18.5204

16.9923 22.5435 21.3091 19.7628 18.7277

Fig. 4. Original, noisy and reconstructed face images of ‘centerlight’ from four subjects
with PSNRs (dB). 1st column: original images, 2nd column: noisy images, 3rd column:
GLCPTD model of condition I, 4th column: LCPTD model of condition I, 5th column:
GLCPTD model of condition II, 6th column: LCPTD model of condition II.

By performing the LCPTD-HALS [14] and GLCPTD-HALS algorithms with
nonnegative constraint on the above two models, we can compute the PSNRs
of reconstructed images. Fig. 4 depict the original, noisy and reconstructed face
images from subject 1-4 with the same expression of ‘centerlight’ (I1,2 = 10).
We can see that the images reconstructed by LPCTD model/condition II are
more fuzzier or distorted than those from GLCPTD model/condition I. Table 1
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shows the averaged PSNRs of the reconstructed images under the two conditions.
The PSNRs obtained by GLCPTD model are higher than those obtained by
the LCPTD model in both conditions. It can be considered that the proposed
GLCPTD model matches the real-world data more closely, which may make it
more practical in real-world data analysis. The PSNRs obtained under condition
I are higher than those under condition II, which means that it is more reliable
to stack face images from the same subject with different expressions together.
It seems that if the number of common components becomes larger, the PSNRs
become smaller. The excessive number of common components may affect the
fitness of the estimated tensors. However, the selection of parameter Ln is still
an open issue in the current study, which will be one of our future works.

Table 1. Averaged PSNRs (dB) of reconstructed images

Condition I Condition II

L1, L2 = 10 20 30 L1, L2 = 10 20 30

LCPTD 21.3651 20.7517 19.9021 19.0809 18.8694 18.5321

GLPCTD 22.0421 21.5476 20.8134 19.9649 19.6537 19.4444

5 Conclusion

The main objective of this paper is to develop a generalized and flexible model
of linked tensor decomposition which is more suitable for group analysis. We
proposed the generalized LCPTD model as well as its realization, in which the
common components, individual components and core tensors can be extracted
simultaneously. Experiments of synthetic EEG data analysis and image recon-
struction and denoising were conducted to compare the performance of pro-
posed algorithm with LCPTD-HALS and NTF-HALS algorithms. The results
illustrated the superior performance of the newly generalized model and its re-
alization.
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Foundation of China (Grant No. 81471742), the Fundamental Research Funds for
the Central Universities [DUT16JJ(G)03] in Dalian University of Technology in
China, and the scholarships from China scholarship Council (No. 201706060262).

References

1. Zhou, G.-X., Zhao, Q.-B., Zhang, Y., et al.: Linked component analysis from ma-
trices to high-order tensors: applications to biomedical data. Proc. IEEE. 104(2),
310–331 (2016)



10 X. Wang et al.

2. Sorensen, M., De Lathauwer, L.: Multidimensional harmonic retrieval via coupled
canonical polyadic decomposition — part II: algorithm and multirate sampling.
IEEE Trans. on Signal Process. 65(2), 528–539 (2017)

3. Gong, X.-F., Lin, Q.-H., Cong, F.-Y., De Lathauwer, L.: Double coupled canonical
polyadic decomposition for joint blind source separation. IEEE Trans. on Signal
Process. 66(13), 3475–3490 (2016)

4. Acar, E., Bro, R., Smilde, A.-K.: Data fusion in metabolomics using coupled matrix
and tensor factorizations. Proc. IEEE. 103(9), 1602–1620 (2015)

5. Zhou, G.-X., Cichocki, A., Xie, S.-L.: Fast nonnegative matrix/tensor factorization
based on low-rank approximation. IEEE Trans. on Signal Process. 60(6), 2928–
2940 (2012)

6. Cong, F.-Y., Zhou, G.-X., Cichocki, A., et al.: Low-rank approximation based non-
negative multi-way array decomposition on event-related potentials. Int. J. Neural
Syst. 24(8), 1440005 (2014)

7. Cichocki, A., Zdunek, R., Amari, S.: Hierarchical ALS algorithms for nonnegative
matrix and 3D tensor factorization. In: 7th International Conference on Indepen-
dent Component Analysis and Signal Separation, pp. 169–176. Springer, London
(2007)

8. Cong, F.-Y., Phan, A.-H., Zhao, Q.-B., et al.: Analysis of ongoing EEG elicited by
natural music stimuli using nonnegative tensor factorization. In: 20th European
Signal Processing Conference, pp. 494–498. Elsevier, Bucharest (2012)

9. Calhoun, V.-D., Liu, J., Adali, T.: A review of group ICA for fMRI data and ICA
for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), 163–172
(2009)

10. Gong, X.-F., Wang, X.-L., Lin, Q.-H.: Generalized non-orthogonal joint diagonal-
ization with LU decomposition and successive rotations. IEEE Trans. on Signal
Process. 63(5), 1322–1334 (2015)

11. Cichocki, A.: Tensor decompositions: a new concept in brain data analysis? arXiv
Prepr. arXiv1305.0395 (2013)

12. Mørup, M.: Applications of tensor (multiway array) factorizations and decomposi-
tions in data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery. 1(1), 24–40 (2011)

13. Cong, F.-Y., Lin, Q.-H., Kuang, L.-D., et al.: Tensor decomposition of EEG signals:
A brief review. J. Neurosci. Methods 248, 5969 (2015)

14. Yokota, T., Cichocki, A., Yamashita, Y.: Linked PARAFAC / CP tensor decom-
position and its fast implementation for multi-block tensor analysis. In: 19th Inter-
national Conference on Neural Information Processing, pp. 84–91. Springer, Doha
(2012)

15. Hitchcock, F.-L.: The expression of a tensor or a polyadic as a sum of products. J.
Math. Phys. 6(1-4), 164–189 (1927)

16. Harshman, R.-A.: Foundations of the PARAFAC procedure: models and conditions
for an explanatory multimodal factor analysis. UCLA Work. Pap. Phonetics. 16,
1–84 (1970)

17. Carroll, J.-D., Chang, J.-J.: Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika
35(3), 283–319 (1970)

18. Kolda, T.-G., Bader, B.-W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2008)



 

 
 
 

PIII 
 
 

FAST IMPLEMENTATION OF DOUBLE-COUPLED 
NONNEGATIVE CANONICAL POLYADIC DECOMPOSITION 
 
 
 
 

by 
 

Xiulin Wang, Tapani Ristaniemi and Fengyu Cong 2019 
 

2019 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Brighton, UK, http://doi.org/10.1109/ICASSP.2019.8682737 

 
 

Reproduced with kind permission of IEEE. 



FAST IMPLEMENTATION OF DOUBLE-COUPLED NONNEGATIVE CANONICAL
POLYADIC DECOMPOSITION

Xiulin Wang1,2 Tapani Ristaniemi2 Fengyu Cong1,2,∗

1 School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering,
Dalian University of Technology, Dalian, China

2 Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

ABSTRACT

Real-world data exhibiting high order/dimensionality and
various couplings are linked to each other since they share
some common characteristics. Coupled tensor decomposition
has become a popular technique for group analysis in recent
years, especially for simultaneous analysis of multi-block
tensor data with common information. To address the multi-
block tensor data, we propose a fast double-coupled non-
negative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm in this study, based on the linked CP tensor decom-
position (LCPTD) model and fast Hierarchical Alternating
Least Squares (Fast-HALS) algorithm. The proposed FDC-
NCPD algorithm enables simultaneous extraction of common
components, individual components and core tensors from
tensor blocks. Moreover, time consumption is greatly reduced
without compromising the decomposition quality when han-
dling large-scale tensor blocks. Simulation experiments of
synthetic and real-world data are conducted to demonstrate
the superior performance of the proposed algorithm.

Index Terms— Tensor decomposition, coupled ten-
sor decomposition, Hierarchical Alternating Least Squares
(HALS), linked CP tensor decomposition (LCPTD)

1. INTRODUCTION

Tensor decomposition has been successfully applied to an
ensemble of disciplines including blind source separation,
signal processing, classification, data mining and neuro-
science [1, 2, 3, 4, 5]. For instance, in EEG data analysis,
spatial, temporal and spectral information can be simultane-
ously considered via tensor decomposition, which in turn pr-
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ovides solutions with convincing physiological or pathologi-
cal interpretations [5]. However, when it comes to joint analy-
sis of multi-block tensor data, such as multiset or multimodal
neurophysiological data fusion [6], conventional methods
meet challenges in maintaining feature/component compara-
bility and utilizing coupled information across tensors. Joint
analysis of data from different samples can potentially reveal
underlying structures and inner-relationships among data
[7, 8]. Furthermore, joint analysis can take full advantage of
prior information to improve the accuracy and stability of so-
lutions [9]. Therefore, increasing recognition of joint analysis
makes coupled tensor decomposition more extensively uti-
lized. Coupled tensor decomposition can jointly analyze the
multi-block tensors represented by various samples, mean-
while provide a simultaneous extraction of common compo-
nents, individual components and core tensors [10]. To date,
coupled tensor decomposition has been applied in the fields
of neuroscience, multi-dimensional harmonic retrieval, array
signal processing and metabolic physiology [8, 11, 12, 13].

Compared with tensor decomposition originally designed
for single tensors [1], coupled tensor decomposition can
utilize shared information among tensors to improve de-
composition identifiability with keeping feature/component
comparability. In addition, coupled tensor decomposition has
the advantage of imposing constraints on particular modes or
components compared to its matrix counterparts [14]. Any
combination of constraints, including independence, sparsity,
orthogonality and non-negativity, can be added more easily
and flexibly [14]. Moreover, it is more reliable to consider
the high-order feature of tensors in data analysis [5].

In the analysis of EEG data collected from multiple sub-
jects under the same stimulus, the time consumed by the
depletion process in the coupled algorithms (assuming that
shared information exists in both modes of space and fre-
quency) would go extremely heavy, due to the high-order,
high-dimensional and nonnegative nature of EEG data. To
address this problem, we propose a fast double-coupled non-
negative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm. This algorithm is based on linked CP tensor
decomposition (LCPTD) model [10] and fast Hierarchical



Alternating Least Squares (Fast-HALS) algorithm [15]. With
the proposed algorithm, time consumption is greatly reduced
without losing decomposition quality in the analysis of large-
scale tensor blocks.

The rest of this paper is organized as follows. Section 2
introduces the LCPTD model. In section 3, a fast double-
coupled implementation of LCPTD model is proposed. In
section 4, simulation experiments are conducted to verify the
performance of the proposed algorithm. The last section con-
cludes this paper.

2. REVIEW OF LCPTD MODEL

To deal with multi-block tensors with coupling information,
researchers in [10] proposed a generalized model of simul-
taneous decomposition, namely LCPTD model, which is de-
fined as follows:

X (s)≈X̂
(s)

=
R∑

r=1

λ(s)
r u (1,s)

r ◦ u (2,s)
r ◦ · · · ◦ u (N,s)

r

= JG(s);U (1,s),U (2,s), · · · ,U (N,s)K
(1)

s.t.
∥∥∥u (n,s)

r

∥∥∥ = 1, n = 1 · · ·N, r = 1 · · ·R, s = 1 · · ·S,

where X (s) ∈ ℜI1×I2×···IN and X̂
(s) ∈ ℜI1×I2×···IN denote

the original and estimated tensors, respectively. U (n,s) =[
u

(n,s)
1 ,· · ·,u (n,s)

R

]
∈ ℜIn×R denotes the n-mode factor ma-

trix of sth tensor. S , R, N are denoted as the number, rank
and order of tensors, respectively. G(s) ∈ ℜR×R×···R de-
notes the sth core tensor with non-zero entries only on the
super-diagonal. λ

(s)
r is the (r, r, r)th element of G(s).

The LCPTD model assumes that each factor matrix
U (n,s) = [U

(n)
C U

(n,s)
I ] ∈ ℜIn×R consists of two parts:

U
(n)
C ∈ ℜIn×Ln , 0 ≤ Ln ≤ R and U

(n,s)
I ∈ ℜIn×(R−Ln).

The former shared by all tensor blocks represents the cou-
pling (same or highly correlated) information, whereas the
latter corresponds to the individual characteristics of each
tensor block.

3. ALGORITHM IMPLEMENTATION

In this section, an optimization criterion of squared Euclidean
divergence minimization is used to evaluate the error between
the original and estimated tensors. For simplicity, we assume
that the element λ

(s)
r in core tensors can be absorbed into the

non-normalized component u (N,s)
r . Therefore, the cost func-

tion can be expressed in a simplified form as:

min

S∑

s=1

∥∥∥∥∥X
(s)−

R∑

r=1

u (1,s)
r ◦u (2,s)

r ◦· · ·◦u (N,s)
r

∥∥∥∥∥

2

F

(2)

s.t.u (n,1)
r = · · · = u (n,S)

r for r ≤ Ln,

∥∥∥u (n,s)
r

∥∥∥ = 1, n = 1 · · ·N − 1, r = 1 · · ·R, s = 1 · · ·S.

The above minimization problem can be transformed into
R sub-problems via the HALS algorithm [16], which can
be optimized sequentially and iteratively. More exactly, the
learning rule of u

(n,s)
r can be formulated as follows:

u (n,s)
r =

{[∑
sζ

(n,s)
r

]
/
∑

sγ
(n,s)
r , r ≤ Ln,

ζ
(n,s)
r /γ

(n,s)
r , r > Ln,

(3)

where ζ
(n,s)
r = Y

(s)
r,(n){u

(s)
r }⊙−n . Y (s)

r,(n) is the mode-n ma-

tricization of Y (s)
r

.
= X (s) −∑R

p ̸=r u
(1,s)
p ◦ u

(2,s)
p ◦ · · · ◦

u
(N,s)
p . ‘⊙’ denotes the Khatri-Rao product. The scaling co-

efficients γ
(n,s)
r can be calculated as:

γ(n,s)
r =

{
u

(N,s)T
r u

(N,s)
r , n ̸= N.

1, n = N.
(4)

If r ≤ Ln, u (n,s)
r will be calculated by combining all ten-

sor information and assigned to each s. Otherwise, it needs
to be calculated separately. The calculation of ζ

(n,s)
r in equa-

tion (3) which seems relatively simple may result in rather
high computational cost, especially for large-scale problems
[15]. To address the above issue, we further introduce the
Fast-HALS algorithm [15] to LCPTD model instead of HALS
algorithm (LCPTD-HALS algorithm only considered the in-
troduction of HALS algorithm in the LCPTD model [10]). A
detailed analysis of HALS and Fast-HALS algorithms can be
found in [15, 16]. In the proposed algorithm, ζ

(n,s)
r in equa-

tion (3) can be represented as:

ζ(n,s)
r =

[
X

(s)
(n){U

(s)}⊙−n

]
r
−U (n,s)

[
ξ
(s)
(n)

]
r
+ γ(n,s)

r u (n,s)
r ,

(5)
where ξ

(s)
(n) = (U (s)TU (s))~ ⊘ (U (n,s)TU (n,s)). ‘~’ and

‘⊘’ are denoted as Hadamard (element-wise) product and
element-wise division, respectively. u

(n,s)
r , n ̸= N needs to

be normalized to unit variance by u
(n,s)
r ← u

(n,s)
r /∥u (n,s)

r ∥2
in each iteration. Meanwhile, the denominators of equa-
tion (3) can be omitted due to the normalization of u

(n,s)
r .

In order to obtain the nonnegative components, a simple
“half-rectifying” nonlinear projection is applied as u

(n,s)
r ←

∥u (n,s)
r ∥+ after (3). These R stages are updated alternatively

one after another until convergence.
In the end, the (r, r, r)th element λ

(s)
r of core tensors

which has been absorbed into u
(N,s)
r can be obtained as

λ
(s)
r = ∥u (N,s)

r ∥2, and u
(N,s)
r needs to be normalized as

u
(N,s)
r ← u

(N,s)
r /∥u (N,s)

r ∥2. Compared with the mode-n
matricization Y

(s)
r,(n) of Y (s)

r in (3), which is performed re-

peatedly in each iteration, mode-n matricization X
(s)
(n) in (5)

only needs to be executed once in the initialization before
the iteration. This greatly improves the computational ef-
ficiency of the proposed algorithm. With the consideration



that tensors are only assumed to be coupled in two modes
(i.d., Ln = 0, n > 2), this extended fast-HALS-based algo-
rithm with nonnegative and CP constraints is termed as the
fast double-coupled nonnegative CP Decomposition (FDC-
NCPD). Please refer to [17] for the detailed description of
standard notations and basic tensor operations due to the
limited length of paper.

4. SIMULATION RESULTS

In this section, simulation experiments of synthetic and real-
world ongoing EEG data are provided to illustrate and com-
pare the performance of NTF-HALS [16], NTF-FastHALS
[15], LCPTD-HALS [10] and FDC-NCPD algorithms.

The following experiments are done with the following
computer configurations; CPU: Intel Core i5-7500 @ 3.40Hz
3.41Hz; Memory: 8.00 Gb; System: 64-bit Windows 10;
Matlab R2016b.

4.1. Synthetic data

Data generation. The double-coupled nonnegative tensors
with noisy disturbance are generated as follows:

X (s)′
= σs

X (s)

∥X (s)∥F

+ σn
N (s)

∥N (s)∥F

, s = 1 · · ·S, (6)

where X (s) is constructed as in equation (1). N (s) denotes
noise term drawn from the standard uniform distribution on
the open interval (0, 1). Moreover, σs and σn represent the
levels of signal and noise, respectively. Signal-to-noise ratio
(SNR) is defined as SNR = 10log10(σs/σn).
Evaluation index. The performance index (PI) and Fit are
used to evaluate the decomposition quality in the following
experiments. More exactly, we use Fit value to measure the
tensor reconstruction capability of algorithms, which is de-

fined as: Fit = ∥X (s) − X̂
(s)∥F /∥X (s)∥F , where X̂

(s)
is

the reconstructed version of X (s). We use PI value to evalu-
ate the accuracy of the estimated factor matrices [18].
Termination criteria. The iteration termination criteria for
all algorithms are set as |Fitnew−Fitold| < ε, ε = 1e−6 but
no more than 1000 iterations .

4.1.1. Convergence speed

In this experiment, execution time and iteration number
of LCPTD-HALS and FDC-NCPD algorithms are com-
pared against the dimensionality of tensors I1 = 7n, I2 =
8n, I3 = 9n with n varying from 1 to 10. The target ten-
sors are constructed as equation (6) under the noise scenario
SNR = 20 dB. The number of components, coupled com-
ponents and tensors are fixed to R = 4n, L1 = L2 = 2n,
S = 10, respectively. The performance curves averaged from
30 Monte Carlo runs are illustrated in Fig. 1.
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Fig. 1. Averaged execution time and iteration number versus
dimensionality of tensors

From Fig.1 (a), we can see that the FDC-NCPD algo-
rithm could greatly reduce the execution time compared
with LCPTD-HALS algorithm. This advantage becomes
more significant as the dimensionality of tensors increases.
Furthermore, in Fig.2 (b), the difference in the number of
iterations between two algorithms seems relatively small, es-
pecially when n ≥ 4, which indicates that the FDC-NCPD
algorithm outperforms significantly in terms of convergence
speed in each iteration. The increase of convergence speed
is in parallel with our analysis in section 3, replacing Y

(s)
r,(n)

in equation (3) by X
(s)
(n) in equation (5) greatly reduces the

calculation time.

4.1.2. Decomposition quality

In this experiment, we compare the Fit and PI performance of
FDC-NCPD with LCPTD-HALS and two conventional tensor
decomposition algorithms including NTF-HALS and NTF-
FastHALS. The noisy double-coupled non-negative tensors
are generated as equation (6) under different SNRs from -5
dB to 20 dB with a step size of 2 dB. For the dimensionality
of tensors, we set I1 = 40, I2 = 50, I3 = 60. The number
of components, coupled components and tensors are fixed to
R = 30, L1 = L2 = 20 and S = 10, respectively. The aver-
aged performance curves obtained from 20 Monte Carlo runs
are ploted as in Fig. 2.

As indicated in Fig.2 (a), the four algorithms provide
nearly the same Fit performance under all SNRs. In Fig.2 (b),
we can see that FDC-NCPD and LCPTD-HALS algorithms
show better PI performance than the two conventional al-
gorithms. Moreover, the coupled algorithms obtain equal
performance in low SNRs (-5∼7 dB). When SNR is dis-
tributed in 7∼16 dB, FDC-NCPD algorithm yields slightly
better performance than LCPTD-HALS algorithm. However,
when SNR exceeds 17 dB, the proposed algorithm slightly
underperforms its competitors. This experiment also veri-
fies that joint/coupled analysis can effectively utilize prior
information to improve the decomposition accuracy.
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Fig. 2. Average tensor Fit and PI versus SNR

4.2. Real-world ongoing EEG data

Data description. In this experiment, we apply the FDC-
NCPD and LCPTD-HALS algorithms to the ongoing EEG
data, collected from 14 subjects while listening to an 8.5-
minute long tango music. We compare the performance of
two algorithms in terms of execution time, data Fit and the
number of components matched with musical features. The
details of data collection, data preprocessing and music fea-
ture extraction can be found in [19]. Through short-time
Fourier transform (STFT), 14 third-order tensors are formu-
lated with size of 64 × 146 × 510 (64 spatial channels, 146
frequency bins (1∼30Hz) and 510 temporal samples from
EEG data of each subject).
Parameter selection. For the selection of the number of
components, smoothed DIFFIT [20] is used in this study
with suggested R = 36. We assume that the coupling in-
formation exists both in brain activation areas and frequency
oscillations among participants. Thus, the number of coupled
components is set as L1 = L2 = 20, L3 = 0 (after analyzing
the components obtained by conventional method, we found
that there were nearly 20 spatial or frequency components
among participants with correlations of more than 0.96).
Random initializations are used for both factor matrices and
core tensors. Termination criteria of algorithms are identical
with Experiment 4.1.
Correlation analysis. The temporal, spectral and spatial
components can be extracted simultaneously via the FDC-
NCPD and LCPTD-HALS algorithms. Correlation analyses
are conducted between the temporal courses from EEG data
and the temporal courses of musical features, aiming to find
the brain activities corresponding to musical stimuli. In addi-
tion, we are interested in finding brain components with the
significant correlation coefficients(at level p < 0.05). The
method for determining significant correlation thresholds can
be found in [21]. Fig. 3 shows an example of 10th EEG com-
ponents (topography, spectrum and waveform) extracted from
subject #1, in which the temporal course of temporal com-
ponent is significantly correlated with the temporal course of
musical feature termed as ‘Pulse Clarity’ (0.1462 > 0.1167).
In addition, the corresponding spatial and spectral compo-
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Fig. 3. The 10th temporal component and its corresponding
spatial and spectral components from subject #1

Table 1. Performance of two algorithms in ongoing EEG data
analysis. I-total number of components matched with musical
feature, II-execution time, III-data Fit.

I II III

LCPTD-HALS 59.3 76442.65 0.7360
FDC-NCPD 65.6 350.97 0.7353

nents indicate that the posterior area of subject #1 is activated
with an alpha oscillation (8∼13Hz) when listening to the
tango music.
Results analysis. By 10 times of algorithm executions and
correlation analyses, the averaged results of execution time,
data Fit and the number of components matched with musical
features are illustrated in Table 1. It can be noted that the
FDC-NCPD algorithm extracts 6.3 interested components
more than the latter on the total number of components.
More importantly, the FDC-NCPD algorithm greatly reduces
the execution time by nearly 200 times, while yielding equal
performance on data Fit (the gap of 0.0007 can be negligible).

5. CONCLUSION

In this study, we introduced the Fast-HALS algorithm to
LCPTD model and proposed the FDC-NCPD algorithm, in
which the common components, individual components and
core tensors can be extracted simultaneously. Simulation ex-
periments of synthetic and real-world data were conducted,
showing that the proposed algorithm can significantly reduce
time consumption while retaining the decomposition quality.
Besides, it can extract a larger number of interested compo-
nents in the EEG data analysis. In the future studies, we can
further analyze brain activation regions and frequency oscil-
lations corresponding to the significantly correlated temporal
components.
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A B S T R A C T

Background: Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises,
which require advanced signal processing techniques for separation and analysis. Existing methods cannot si-
multaneously consider common and individual characteristics among/within subjects when extracting stimulus-
elicited brain activities from ongoing EEG elicited by 512-s long modern tango music.
New method: Aiming to discover the commonly music-elicited brain activities among subjects, we provide a
comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algo-
rithm. The proposed algorithm with a generalized model is capable of simultaneously decomposing EEG tensors
into common and individual components.
Results: With the proposed framework, the brain activities can be effectively extracted and sorted into the
clusters of interest. The proposed algorithm based on the generalized model achieved higher fittings and stronger
robustness. In addition to the distribution of centro-parietal and occipito-parietal regions with theta and alpha
oscillations, the music-elicited brain activities were also located in the frontal region and distributed in the
4∼11 Hz band.
Comparison with existing method(s): The present study, by providing a solution of how to separate common
stimulus-elicited brain activities using coupled tensor decomposition, has shed new light on the processing and
analysis of ongoing EEG data in multi-subject level. It can also reveal more links between brain responses and the
continuous musical stimulus.
Conclusions: The proposed framework based on coupled tensor decomposition can be successfully applied to
group analysis of ongoing EEG data, as it can be reliably inferred that those brain activities we obtained are
associated with musical stimulus.

1. Introduction

Listening to music has proven to be an effective strategy to improve
and rehabilitate the human health (Koelsch, 2012; MacDonald et al.,
2013), especially for people with insomnia, depression, schizophrenia
or similar illnesses (Maratos et al., 2008; Mössler et al., 2011; Jespersen
et al., 2015). Therefore, revealing brain activities during listening to
music has drew an increasing amount of research interest in recent
decades (Cong et al., 2012b, 2013a; Wang et al., 2016; Li et al., 2016;
Zhu et al., 2019). The advent of brain imaging techniques has provided

researchers with the opportunity and insight to probe the brain func-
tions elicited by listening to music. For example, Electro-
encephalography (EEG) is a collection of potentials along the scalp that
reflect electrical activities of the brain. Since Hans Berger first in-
troduced EEG to the world in 1929 (Berger, 1929), it has been widely
used in the study of brain functions (Cong et al., 2013a; Huber et al.,
2004; Herrmann, 2001) and diagnosis of neurological diseases/dis-
orders (Jeong, 2004; Adeli and Ghosh-Dastidar, 2010; Siuly et al.,
2016). Unlike spontaneous EEG recorded in resting state (Berger, 1929)
or event-related potentials (ERP) acquired through repeated
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presentation of stimuli (Luck, 2014), ongoing EEG is a direct response
to brain activities in naturalistic and continuous context (e.g. listening
to music or watching movies) (Busch et al., 2009; Cong et al., 2012b,
2013a), which makes it possible to study brain functions during real-
world experiences. In ongoing EEG experiment, the recorded data can
be viewed as mixtures of stimulus-elicited EEG, spontaneous EEG and
noises, but how to separate the stimulus-elicited brain activities from
ongoing EEG data still remains open for research (Cong et al., 2013a,
2015b; Zhu et al., 2019). Therefore, this study is devoted to the se-
paration and analysis of ongoing EEG data elicited by a 512-s long piece
of modern tango music.

In recent years, for the data used in this paper, several studies has
been tried to extract the music-elicited brain activities. Cong et al.
constructed a fourth-order EEG tensor of channel × frequency × time
× subject and the tensor was decomposed using nonnegative tensor
factorization (NTF) (Cong et al., 2012b). It should be noted that the
analysis of high-order tensors is based on the assumption that the un-
derlying information in temporal, spatial and spectral modes are con-
sistent among subjects (Wang et al., 2018b). However, we found that
there was almost no consistent temporal information among subjects as
shown in Fig. 1. In Cong et al. (2013a) and Zhu et al. (2019), the au-
thors first adopted independent component analysis (ICA) or spatial ICA
to decompose two-way ongoing EEG data represented by each subject
and then applied time-frequency analysis and K-means clustering to
find spatial, spectral and temporal information of interest. Apparently,
such ICA-based approach did not take into account the high-correlation
information in space and frequency modes among subjects as shown in
Fig. 1, and did not fully utilize the inherent structural information of
the tensors represented spatial, temporal and spectral modes (Cong
et al., 2015a). In Wang et al. (2016), multilinear partial least squares
(PLS) was performed on the tensor (represented by ongoing EEG data)
and matrix (represented by musical features), however, it did not
consider the nonnegative nature of EEG tensor brought by the time-
frequency analysis. With the consideration of phase characteristics, Li
et al. applied the ordered Parallel Factors (PARAFAC) algorithm to the
ongoing EEG data elicited by the same tango music (Li et al., 2016), but
no coupled information among subjects was utilized in the data pro-
cessing. Tensors, also termed as multi-way arrays, are the higher-order
extension of matrices (Kolda and Bader, 2009). Ongoing EEG data can
be naturally represented as tensors in which the structural information
of inherent interactions between different modes can be fully utilized
(Cong et al., 2015a). For example, considering the time-frequency re-
presentation of EEG data in each channel, a third-order tensor of

channel × time × frequency can be formed (Acar et al., 2007). Tensor
decomposition allows for simultaneous consideration of spatial, tem-
poral and spectral information, which provides convincing solutions
with physiological or pathological interpretations (Cichocki, 2013).
However, when it comes to the analysis of an ensemble of ongoing EEG
data (e.g., the data collected from different subjects under the same
tango music), it is unreasonable to represent them as a high-order
tensor of channel × frequency × time × subject and apply high-order
tensor decomposition owing to the incomplete consistency in channel,
time and frequency patterns across subjects. Moreover, when analyzing
the data through two-way matrix or individual tensor decomposition
methods, potential interactions among the multi-way structure of ten-
sors or the coupling information among tensors will inevitably be lost
(Cong et al., 2015a; Mørup, 2011).

Coupled tensor decomposition, the extension of tensor decomposi-
tion to multi-block tensors, provides a natural framework for the si-
multaneous analysis of heterogeneous tensors with coupling informa-
tion (Zhou et al., 2016; Sørensen et al., 2015; Gong et al., 2016). The
crucial difference between them is that tensor decomposition processes
tensors of × frequency × time individually or a higher-order tensor of
channel × frequency × time × subject (generated by stacking tensors
from different subjects with the consistent assumption of spatial, tem-
poral and spectral information among the third-order tensors) (Wang
et al., 2018b; Mørup et al., 2006; Cong et al., 2012a), while coupled
tensor decomposition generalizes tensor decomposition to cover the
sharing information across multiple tensor blocks (Sørensen et al.,
2015; Gong et al., 2016; Ermiş et al., 2015; Yokota et al., 2012).
Compared with its matrix counterparts (Chen et al., 2016; Gong et al.,
2015; Calhoun et al., 2009), coupled tensor decomposition can achieve
unique solutions and interpretable components, while circumventing
the independence constraint (Hunyadi et al., 2017; Mørup, 2011).
Given the data collected under the same stimulus, it is reasonable to
expect identical or highly correlated stimulus-elicited information
among subjects, which can be regarded as a prerequisite for applying
coupled tensor decomposition. However, the inter-component simi-
larity among subjects has rarely been considered in previous methods
(Cong et al., 2013a; Wang et al., 2016; Li et al., 2016; Zhu et al., 2019).
Due to individual differences, individual characteristics in each subject
may lead to inconsistent number of components among tensors (Zhou
et al., 2016; Ermiş et al., 2015). This inconsistency is not considered in
the realization of linked canonical polyadic tensor decomposition
(LCPTD) model in Yokota et al. (2012) and Wang et al. (2019). In ad-
dition, the time consumption load will be extremely heavy due to the

Fig. 1. Inter- and intra-subject correlations of spatial, spectral and temporal components. The spatial (spectral or temporal) components decomposed from ongoing
EEG data of 14 subjects by tensor decomposition individually (here we use the fast hierarchical alternative least squares (fast-HALS) algorithm Cichocki and Phan
(2009)) are concatenated together, and then the correlation coefficients are calculated.
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high-dimensional and nonnegative nature of ongoing EEG data (Wang
et al., 2019; Zhou et al., 2012). Our preliminary exploration on the
LCPTD model in the application of ongoing EEG data processing has
been reported in Wang et al. (2019). Based on the above issues, the
specific contributions of this paper can be listed as follows:

First, regarding the individual differences in ongoing EEG data, this
study developed a more versatile and flexible model with inconsistent
component number in each tensor for coupled tensor decomposition.
This model enables the simultaneous decomposition of common com-
ponents and individual components among tensors.

Second, based on the model mentioned above, this study proposed
an efficient data-driven coupled tensor decomposition method termed
as fast double-coupled nonnegative tensor decomposition (FDC-NTD)
algorithm.

Third, in order to discover the reliable links between brain re-
sponses and musical stimulus, this study proposed a general framework
based on coupled tensor decomposition for ongoing EEG data proces-
sing and analysis. To the best of our knowledge, this is the first attempt
to apply coupled tensor decomposition to the group analysis of ongoing
EEG data.

1.1. Why nonnegative and double-coupled constraints?

From the perspective of data analysis, imposing specific constraints
on different modes or components during the decomposition process
would contribute to obtaining more meaningful solutions (Cichocki,
2013; Wang et al., 2018b). After performing TFR, nonnegative con-
straint is naturally brought into the EEG data. Correspondingly, the
temporal, spectral and spatial components of EEG tensor are all non-
negative, representing the specific physical meanings of time envelope,
spectrum and topography, respectively (Wang et al., 2018b).

Given the ongoing EEG data collected under the same stimulus, it is
reasonable to expect coupled (identical or highly correlated) compo-
nents among subjects. Fig. 1 shows the inter- and intra-subject corre-
lations of spatial, spectral and temporal components respectively,
which are extracted from the ongoing EEG data of 14 subjects by
conventional tensor decomposition individually (i.e., regardless of any
coupled information). The detailed information of these data is

described in Section 3. We can see that the correlations of some com-
ponents among subjects in spatial and spectral modes are very sig-
nificant, while the correlations of temporal components are almost non-
existent. Due to the sparse nature in spectral mode, of course, the
correlations of spectral components are not as pronounced as correla-
tions of the spatial components. Therefore, in this study, we consider
imposing double coupled constraints in spatial and spectral modes.

2. Fast double-coupled nonnegative tensor decomposition

2.1. Basic notations and mathematical operations

Generally, scalars, vectors, matrices and tensors are respectively
denoted by lowercase, boldface lowercase, boldface uppercase and
calligraphic boldface uppercase letters, e.g. x x X, , , . and + de-
note real number and nonnegative real number. Operators ( )T and · F
denote transpose and Frobenius norm, respectively. Outer product,
Khatri-Rao product, Hadamard product and element-wise division are
denoted by ‘∘’, ‘⊙’, ‘⊛’ and ‘⊘’, respectively. Moreover,

+U U U U U U
U U U U

,
,

N n n

N N

(1) (2) ( ) (1) ( 1) ( 1)

( ) (1) (2) ( )

and

+U U U Un n N(1) ( 1) ( 1) ( ) are defined as U{ } , U{ } n,
U{ } , U{ } n, respectively. The mode-n matricization of a tensor

× × ×I I IN1 2 is termed as (n) with the size of
× +I I I I I( )n n n N1 1 1 . Please refer to Kolda and Bader (2009) for a

more detailed description of standard notations and basic tensor op-
erations.

2.2. Model generalization

Aiming to process multi-block tensors with coupled information,
Yokota et al. proposed the LCPTD model (Yokota et al., 2012), which
can enable the simultaneous extraction of common components, in-
dividual components and core tensors. This model assumes that those
tensors are linked together for sharing some common components.
However, even if the tensors are generated under the same conditions,
individual differences between them will present as individual char-
acteristics, which may result in inconsistent number of components in

Fig. 2. Conceptual illustration of generalized LCPTD model with double-coupled constraint (adapted from Cichocki (2013)), in which the factor matrices of mode-1
and mode-2 among tensors are partially linked, as they share the same components UC

(1) and UC
(2), respectively.

X. Wang, et al. Journal of Neuroscience Methods 330 (2020) 108502

3



each tensor. This inconsistency was not considered in the LCPTD model.
Therefore, in this section, we first extend a generalized LCPTD model of
inconsistent component number R s( ). Given a set of Nth-order non-
negative tensors +

× × ×s I I I( ) N1 2 , = …s S1, 2 , , , the generalized
nonnegative LCPTD model can be expressed as:

=

= × × ×
=

u u u

U U U

ˆ

,

s s

r

R

r
s

r
s

r
s

r
N s

s s s
N
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( ) ( )
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1
(1, )

2
(2, ) ( , )

s( )

(1)

where the tensor +
× × ×ˆ s I I I( ) N1 2 denotes the estimated item of tensor

s( ). ur
n s( , ) denotes the rth column of n-mode factor matrix

+
×U n s I R( , ) n s( )

of sth tensor = … = …s S n N( 1, 2, , , 1, 2, , ), and
= …U u u u[ , , , ]n s n s n s

R
n s( , )

1
( , )

2
( , ) ( , ) . +

× ×s R R R( ) s s s( ) ( ) ( )
represents the sth

core tensor with non-zero entries r
s( ) only on the super-diagonal ele-

ments …r r r( , , , ), =r R1, 2, , s( ). Most importantly, in general-
ized LCPTD model, each factor matrix U n s( , ) includes two parts:

+
×UC

n I L( ) n n, L R0 n
s( ) and +

×UI
n s I R L( , ) ( )n s n( )

. UC
n( ) shared by all

tensors represents the coupling information among them, while UI
n s( , )

corresponds to the individual characteristics of each tensor. Fig. 2 gives
the conceptual illustration of generalized double-coupled tensor de-
composition model.

2.3. Model realization

In this section, aiming to extract the constrained factor matrices
U n s( , ) and core tensors s( ), a solution based on fast-HALS algorithm for
the generalized LCPTD model is provided. Note that the scalar factor

r
s( ) of core tensor s( )can be absorbed into one denormalized compo-

nent, such as ur
N s( , ), so the cost function using squared Euclidean dis-

tance minimization can be represented in a simplified form as follows:
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The above optimization problem can be converted into max R( )s( )

suboptimization problems via HALS algorithm (Cichocki et al.,
2007), in which ur

n s( , ) can be calculated sequentially and iteratively.
To address the issue of high computation cost, we further introduce
the fast-HALS algorithm (Cichocki and Phan, 2009) to the proposed
model. Therefore, the updating rule of ur

n s( , ) can be defined as fol-
lows:
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where +[·] means “half-rectifying” nonlinear projection to obtain
non-negative components and r

n s( , ) is defined as:
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tricization of tensor s( ). The scaling coefficients r
n s( , ) can be for-

mulated as:
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In each iteration, we perform the updates of ur
n s( , ) with the indexes

= … = …n N s S1, 2, , , 1, 2, , and = …r R1, 2, , s( ) succes-
sively, while normalizing it to unit variance by u u u/r

n s
r

n s
r

n s( , ) ( , ) ( , )
2

except n≠ N. As illustrated in (3), the calculation of common compo-
nent ur

n s( , ) depends on all tensors and the individual component needs
to be calculated separately. These components are alternatively up-
dated one after another until convergence. In this study, considering
that those nonnegative tensors represented by ongoing EEG data are
assumed to be coupled in spatial and spectral modes (i.d.,

= >L n0 , 2)n , the proposed algorithm is termed as fast double-
coupled nonnegative tensor decomposition (FDC-NTD) algorithm. We
summarize the proposed FDC-NTD algorithm in Algorithm 1, and its
detailed derivation is given in the appendix.

Algorithm 1. FDC-NTD algorithm

3. Experiments and methods

In this section, we provide a comprehensive framework for ongoing
EEG data processing and analysis based on the proposed FDC-NTD al-
gorithm, aiming to find commonly appearing brain activities elicited by
naturalistic and continuous musical stimulus. Undoubtedly, such
common information shared by the majority of subjects is more reliable
than individual information from particular subject (Cong et al., 2013a;
Lee and Choi, 2009). Through TFR and FDC-NTD algorithm, tensors
with dimensions of channel × time × frequency can be constructed
and decomposed into common and individual components in the spa-
tial, spectral and temporal modes. Meanwhile, five long-term musical
features can be extracted from the music. Correlation analysis and
hierarchical clustering are performed together to determine the cluster
of interest. Fig. 3 illustrates the overall flow diagram of ongoing EEG
data processing and analysis.

3.1. Data acquisition & preprocessing

The ongoing EEG data collected from 14 participants aged from 20
to 46 years old were used in this study. All participants were right-
handed and healthy, without musical expertise and any problem of
hearing loss or history of neurological disorders. The musical stimulus
adopted an 8.5-min piece of modern tango by Astor Piazzolla (Alluri
et al., 2012). The data were recorded using BioSemi bioactive electrode
caps with the sampling rate of 2048 Hz, according to the international
10–20 system. The collected EEG data were preprocessed off-line using
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EEGLAB toolbox (Delorme and Makeig, 2004) and MATLAB R2016b,
down-sampled to 256 Hz, and filtered by high-pass and low-pass filters
with 1 Hz and 30 Hz cutoff frequencies. Detailed information about
data acquisition and preprocessing can be found in our previous work
(Cong et al., 2013a).

3.2. Tensor representation

TFR of the preprocessed EEG data was obtained by short-time
Fourier transform (STFT). The Hamming window was adopted as the
window function, with the window length of 3 s and 66.7% overlap
ratio between windows. The number of Fourier points in each window
was 1024, which was four times of the sampling rate. Power spectrum
of EEG data are often evaluated in several frequency bands, such as
delta (0.5∼4 Hz), theta (4∼8 Hz), alpha (8∼13 Hz) and beta (13∼30
Hz) (Siuly et al., 2016). According to previous work (Sammler et al.,
2007; Lin et al., 2008, 2010; Shahin et al., 2009; Schaefer et al., 2011;
Cong et al., 2012b, 2013a; Li et al., 2016), frequency fluctuations of
brain activities elicited by musical stimulus are generally distributed in
theta and alpha bands, hence in this study, frequency ranging from 4 to
13 Hz was used for further analysis. Therefore, third- order tensors
including the spectrograms of EEG data with dimensions of 46 (fre-
quency bins) × 510 (time samples) × 64 (space channels) were gen-
erated for 14 participants, as shown in Fig. 4.

3.3. Musical feature extraction

In this study, five long-term musical features (tonal and rhythmic,
Fig. 5) were extracted by a frame-by-frame analysis method, providing
a bridge for analyzing the connections between musical stimulus and
ongoing EEG (Alluri et al., 2012; Cong et al., 2013a; Zhu et al., 2019).
The duration of each frame was 3 s and overlap ratio between frames

was 66.7%, which was consistent with the window settings in the STFT
of EEG data. Therefore, the corresponding temporal courses with 510
samples were generated for those features. Furthermore, for the tonal
features, Mode denotes the strength of major or minor mode, and Key
Clarity is the measure of the tonal clarity (Alluri et al., 2012). For the
rhythmic features, Fluctuation Centroid is defined as the geometric
mean of the fluctuation spectrum, and it represents the global reparti-
tion of rhythm periodicities within the range of 0∼10 Hz, indicating
the average frequency of these periodicities (Alluri et al., 2012). Fluc-
tuation entropy is the Shannon entropy of the fluctuation spectrum, and
it represents the global repartition of rhythm periodicities. Pulse Clarity
is regarded as an estimate of clarity of the pulse. The details of musical
features and extraction method can be found in Latrillot and Toiviainen
(2007), Alluri et al. (2012), and Cong et al. (2013a).

3.4. FDC-NTD implementation

3.4.1. Parameter initialization
The input factor matrices of spatial, spectral and temporal modes

were initialized with uniformly distributed pseudorandom numbers
generated by MATLAB function rand.

3.4.2. Termination criteria
In this study, two iteration termination criteria of FDC-NTD algo-

rithm were adopted. (a) | <Fit Fitnew old , it means that the Fit
change between the adjacent iterations should be smaller than the
predefined threshold (e.g., = 1e 6 . Tensor fitting is defined as

=Fit [1 ˆ / ]S s
S s s

F
s

F
1

1
( ) ( ) ( ) , where s( ) and ˆ s( ) are ori-

ginal and recovered tensors respectively. Furthermore, the relative
error is defined as =RelErr [ ˆ / ]s

S s s
F

s
F1

( ) ( ) ( ) . (b) The
maximum number of iterations is no more than 1000.

3.4.3. Component number selection
To determine the number of components, a multi-dimensional

model order selection technique termed as R-dimensional minimum
description length (R-D MDL, da Costa et al., 2011) was adopted in this
study. The R-D MDL method based on information theoretic criterium
extended 1-D MDL (modified MDL) method to the multi-dimensional
case by using the global eigenvalues, providing low computational
complexity and maintaining good performance even for lower SNR
scenarios (da Costa, 2010). Its optimization problem is given as follows:

= +d I P g P
P

p P Iˆ argmin ( )log( ( )
( )

) ( , , )
P

G
G

G
G( )

( )

( )
( )

(6)

where the penalty function p P I( , , )G( ) is chosen as
P P I(2 )log( )G1

2
( ) . d̂ denotes an estimated of the true model order

Fig. 3. FDC-NTD-based ongoing EEG data analysis includes the following steps: (1) data acquisition & preprocessing; (2) musical feature extraction; (3) tensor
representation; (4) FDC-NTD implementation; (5) correlation analysis; (6) hierarchical clustering; (7) cluster selection of interest.

Fig. 4. Third-order tensors for 14 participants, and each tensor includes three
dimensions of 64 channels, 46 frequency bins (4∼13 Hz) and 510 time samples.
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d g P, ( )G( ) and P( )G( ) represent the geometric and arithmetic means of
the P smallest global eigenvalues, respectively. I is set as

= …I I I Imax( , , , )N1 2 , and G( ) is the total number of adaptively
defined global eigenvalues. Therefore, for the EEG tensors of 14 sub-
jects, the number of components were respectively selected as {44, 34,
36, 38, 36, 39, 35, 35, 34, 37, 33, 36, 34, 35} via R-D MDL algorithm
adapted from IPM software.1

Regarding the number of common components, we first ran 10
times of individual fast-HALS decompositions on each EEG tensor and
then performed correlation analysis on the spatial/spectral modes be-
tween any two subjects successively. We obtained the averaged corre-
lation coefficients =r 0.8714 and =r 0.9031 at level <p 0.001 on the
two modes respectively. There was an average of 26 high-correlated
spatial/spectral components between any two subjects (the correlation
coefficients of 0.7 to 1 are considered to represent high or very high
correlations; Asuero et al., 2006). Therefore, considering the hypothesis
of double-coupled constraint, we set = =L L 261 2 and =L 03 .

3.5. Correlation analysis

After extracting the components using FDC-NTD algorithm, it is
necessary to determine which ones are relevant to musical stimulus.
According to our previous work Cong et al. (2012b, 2013a), correlation
analysis was conducted between temporal courses of extracted tem-
poral components and temporal courses of musical features, aiming to
find the brain activities elicited by musical stimulus. Pearson correla-
tion analysis was applied to calculate the correlation coefficient, and
then Monte Carlo method and permutation test were used to determine
significant thresholds of correlation and correct for multiple compar-
isons (Alluri et al., 2012; Groppe et al., 2011). Moreover, a threshold (at
level <p 0.05 ) of correlation coefficient was calculated by a musical
feature and R s( ) temporal components from each participant. Those
temporal components which are significantly correlated with temporal
courses of musical features were considered to be relevant to musical
stimulus, and will be of interest and further analyzed. Fig. 6 shows an
example of spatial, spectral and temporal components of EEG data,
represented as topography, power spectrum and waveform, respec-
tively. The temporal component was significantly correlated with the
musical feature of ‘Fluctuation Centroid’ (i.e., >0.1128 0.1064 ). In
addition, we can see that the occipital region of subject #11 is activated
with theta oscillation.

3.6. Hierarchical clustering

It should be noted that the correlations in Fig. 1 include two parts:
auto-correlation (intra-subject) and cross-correlation (inter-subject).
Therefore, in addition to the high spatial cross-correlation of inter-
subject, we also found the high correlations between spatial compo-
nents within the subject. Different from imposing coupled constraints to
address inter-subject correlations, in this study, we adopted hier-
archical clustering to merge the highly correlated spatial components
within the subject. Through the FDC-NTD algorithm, L1 common spatial
and L2 spectral components from the ongoing EEG can be extracted. By
virtue of the coupled constraints across subjects, we only need to cluster
the L1 common spatial components.

Moreover, clustering L1 spatial components is simpler than clus-
tering all of the spatial components extracted from 14 subjects by in-
dependent component analysis (ICA) individually (Cong et al., 2013a).
For stable clustering, we adopted hierarchical agglomerative clustering
algorithm, in which complete linkage was used to calculate the furthest

distance (here we used correlation) between pairs of clusters and the
pairs of clusters with the nearest distance were merged. We applied PCA
to L1 spatial components, and the number of principal components with
99% explained variance was selected as the number of clusters. Figs. 7
and 8 give some illustrations and results relevant to hierarchical clus-
tering analysis about 26 spatial components. As shown in Fig. 7(a),
when the cumulative explained variance exceeds the threshold of 99%
(red dash line), 4 is selected as the number of clusters. Therefore, the
hierarchical tree in the hierarchical clustering is spit into 4 clusters by
cutting branches (red dash line). Fig. 7(c) shows the averaged spatial
maps of each cluster. In cluster #1, there is only one component. For
clusters #2, #3 and #4, the mean correlation coefficients between
spatial components within each cluster are 0.9518, 0.9268 and 0.8397,
and the corresponding standard deviations (SDs) are 0.0502, 0.0596
and 0.1314, respectively. This indicates that the components are highly
correlated with each other in each cluster. The low correlations of
averaged spatial components between clusters, as shown in Fig. 8, also
demonstrate the accuracy of clustering results.

3.7. Cluster selection of interest

In group analysis, phenomena commonly appearing in most subjects
are more attractive than the individual ones of a particular subject.

Fig. 6. The topography, power spectrum and waveform of the 1st EEG com-
ponents from subject #11 of Run #1. The temporal course of Comp #1 is sig-
nificantly correlated with the temporal course of ‘Fluctuation Centroid’ with a
correlation coefficient of 0.1128 and a significant correlation threshold of
0.1064 (at level p < 0.05).

Fig. 5. Temporal courses of five musical features, including Fluctuation
Centroid, Fluctuation Entropy, Key Clarity, Mode and Pulse Clarity.

1 https://lasp.unb.br/index.php/publications/softwares/
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Therefore, in this section, our object is to determine the brain activities
shared by the majority of subjects from the ongoing EEG data. Through
comprehensively analyzing the results from correlation analysis (tem-
poral components and musical features) and hierarchical clustering
(common spatial components), we can obtain q clusters of spatial
components whose parallel temporal components satisfy the threshold
of significant correlation coefficients (with any musical feature). If the
number of subjects contributing to a cluster exceeds half of the total
number of subjects, the cluster will be selected as the cluster of interest
and kept for further analysis in this study (Cong et al., 2013a). For each
cluster of interest, the corresponding brain responses in most subjects
are considered to be related to the musical stimulus. In Table 1, the
subjects contributing to the 4 clusters in Fig. 7 are listed separately, and
clusters #2, #3 and #4 are selected as the cluster of interest based on
the predefined criterion. For the sake of simplicity, here we integrate
the clustered spatial components and their corresponding temporal and
spectral components into category of the cluster of interest.

4. Results

The uniqueness of the decomposition is critical to the interpretation
of extracted components (Hunyadi et al., 2017). For the ongoing EEG
data contaminated with noise, it is difficult to verify that the recovered

Fig. 7. Hierarchical clustering results of 26 spatial components of Run #7. (a) Selection of the number of clusters; (b) dendrogram output of hierarchical clustering;
(c) averaged topographies of clusters and correlations between components within the clusters.

Fig. 8. Correlations of spatial maps (the averaged spatial component in each
cluster) between clusters.

Table 1
Subject distribution of 4 clusters after comprehensively analyzing the results of correlation analysis and hierarchical clustering of Run #1. ‘1’ and ‘–’ indicate that the
subject contributes or does not contribute to the cluster. The number of subjects contributing to cluster #2, #3 and #4 exceed half of the total number of subject.

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 Total

Cluster #1 – – – – – – 1 – – 1 – – – 1 3
Cluster #2 1 – 1 – 1 – – – – 1 1 1 1 1 8
Cluster #3 1 1 1 – 1 1 1 1 1 1 1 1 1 – 12
Cluster #4 1 1 1 – 1 1 1 – – 1 – 1 – – 8
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components are the true versions of the observed tensors. Therefore, in
order to validate the reliability and stability of the solutions, we per-
formed FDC-NTD algorithm 100 times on the generalized LCPTD model
in this experiment. At the same time, to prove the validity of the gen-
eralized model, we also ran 100 times of Fast-HALS algorithm on the
LCPTD model (for simplicity, we named it the LCPTD algorithm). Ac-
cording to Cong et al. (2012b), we chose 35 as the number of compo-
nents in the LCPTD algorithm.

The experiments were carried out with the following computer
configurations: CPU: Intel Core i5-7500 @ 3.40Hz 3.41Hz; Memory:
16.00 Gb; System: 64-bit Windows 10; Matlab R2016b. For data vi-
sualization, Figs. 10 and 11 were plotted using the graphics toolbox
gramm2 (Morel, 2018).

As shown in Table 2, we compare FDC-NTD and LCPTD algorithms
in five aspects including objective function value (Obj), relative error

Table 2
Performance comparison between FDC-NTD and LCPTD algorithms. Evaluation indices include Obj, RelErr, Fit and Time averaged from 100 runs, and the number of
occurrence of Clusters #I, #II and #III in 100 runs.

Obj RelErr Fit Time/s Cluster #I Cluster #II Cluster #III
FDC-NTD 1.1263e+11 3.9202 0.7200 164.06 83/100 100/100 96/100

LCPTD 1.1669e+11 3.9634 0.7169 153.00 82/100 100/100 93/100

Obj: objective function value; RelErr: relative error; Fit: tensor fitting; Time: running time.

Fig. 9. Illustrations of averaged clusters of interest #I, #II and #III obtained from 100 runs. Spatial information, presented by the averaged topographies (left
column), indicate the activations of centro-parietal, occipito-parietal and frontal regions of the brain elicited by musical stimulus, respectively. Overall spectrograms
of clusters #I, #II and #III (right column) from 100 runs illustrate the frequency oscillations over the entire period. For cluster #I, the numbers of theta and alpha
components are 1155 and 395. For cluster #II, the numbers of theta and alpha components are 964 and 2925. For cluster #III, the numbers of theta and alpha
components are 964 and 771.

Fig. 10. Distribution of the number of the subjects contributing to the clusters
#I, #II and #III in 100 runs. Cluster #1, #II and #III appeared 83, 100 and 96
times in 100 runs, respectively.2 https://github.com/piermorel/gramm
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(RelErr), tensor fitting (Fit), running time (Time) and occurrence
probabilities of clusters #I, #II and #III. For the averaged Obj, RelErr
and Fit value, the FDC-NTD algorithm performs slightly better than
LCPTD algorithm, but requires more consuming time. Through corre-
lation analysis, hierarchical clustering and cluster selection of interest,
three kinds of clusters of interest are obtained from 100 decomposition
results. For example, the corresponding averaged topographies ob-
tained by FDC-NTD algorithm are plotted in Fig. 9. For the FDC-NTD
algorithm, the probabilities of clusters #I, #II, and #III occurring in
100 runs reach 83% (83/100), 100% (100/100) and 96% (96/100),
while the occurrence probabilities of clusters #I, #II, and #III obtained
by LCPTD algorithm are 82% (82/100), 100% (100/100) and 93% (93/
100). It should be noted that the FDC-NTD algorithm is more stable
than the LCPTD algorithm.

Fig. 9 also illustrates the overall spectrograms of clusters #I, #II and
#III obtained in FDC-NTD algorithm. The spectrogram can be generated
by back-projection of spectral and temporal components, presenting a
qualitative and quantitative evaluation of frequency oscillations over
the entire period. Regarding cluster #I, the topography reveals that the
centro-parietal region of the brain was activated with quite a lot theta
oscillations (4∼7 Hz, 74.52%, 1155/1550) but little alpha oscillations
(around 10 Hz, 25.48%, 395/1550). Conversely, the occipito-parietal
region of the brain is activated with significant alpha oscillations
(8∼13 Hz, 75.21%, 2925/3889), accompanied by a small amount of
theta oscillations (4∼8 Hz, 24.79%, 964/3889) in cluster #II. In ad-
dition, we also obtained the topography representing the activation of

frontal region of the brain, as shown in cluster #III. The frequency
oscillations of cluster #III are distributed in the range of 4∼11 Hz
(theta-55.56%, 964/1735, alpha-44.44%, 771/1735).

The number of subjects contributing to the clusters #I, #II and #III
in each run is visualized in Fig. 10. Regarding cluster #II, the number of
subjects in each run is concentrated at 12, 13 and 14 (green circles).
The number of subjects contributing to clusters #I and #III in 100 runs
is mostly distributed in 7, 8, 9 and 10 (pink and blue circles). Fur-
thermore, the gramm plot of spatial correlations within and between
runs for clusters #I, #II and #III in 100 runs is illustrated in Fig. 11.
From Fig. 11(a), we can see that the distribution of cluster #II is more
compressed than that of clusters #I and #III. Regarding cluster #II, the
averaged mean and SD of correlations in 100 runs are 0.8949 and
0.0949. For cluster #I, the averaged mean and SD of correlations in 83
runs are 0.8959 and 0.0985. For cluster #III, the averaged mean and SD
of correlations in 96 runs are 0.8459 and 0.1402, which are inferior to
the ones of clusters #I and #II. Fig. 11(b) illustrates the correlation
coefficients between runs for clusters #I, #II and #III. We can find that
the cluster #II is more stable with less outliers. Regarding cluster #II,
the mean and SD of correlation coefficient are 0.9813 and 0.0182. For
cluster #I, the mean and SD are 0.9570 and 0.0492. For cluster #III, the
mean and SD are 0.9591 and 0.0449. From the results in Fig. 11, we can
conclude that spatial components within and between runs for each
cluster are highly correlated with each other. It strongly demonstrates
the accuracy and stability of clustering results obtained by FDC-NTD
algorithm.

5. Discussion

Tensor decomposition and group-level ICA methods have been
generally used to extract stimulus-elicited components from a higher-
order EEG tensor or concatenated EEG matrix of different subjects for
group- level analysis in the cognitive research (Eichele et al., 2011;
Cong et al., 2012b, 2015a). Only if the number of sources or the hidden
information in EEG data of different subjects is consistent, the above
methods will make sense to stack/concatenate the data to the tensor/
matrix for analysis (Cong and He, 2013b; Wang et al., 2018b). In-
dividual ICA method is not naturally suited to explore group inferences
since the result fusion across individuals is sometimes a non-trial pro-
blem (Eichele et al., 2011). Coupled tensor decomposition, an extension
of tensor decomposition to multi-block tensors, has been widely utilized
to explore the potential common phenomenon across tensors (Sørensen
et al., 2015; Ermiş et al., 2015; Gong et al., 2016). Therefore, in this
study, a comprehensive framework based on coupled tensor decom-
position applying to group-level analysis of ongoing EEG data during
free listening to a 8.5-min long tango music was investigated.

The theoretical principle of coupled tensor decomposition is that the
different tensors share some of the same or partially identical factor
matrices (Zhou et al., 2016; Yokota et al., 2012). For the ongoing EEG
data, we indeed found that there were highly correlated information in
both spatial and spectral modes among the tensors represented from 14
subjects (see it in Fig. 1), which can be regarded as a prerequisite for
applying coupled tensor decomposition in this study. Meanwhile, there
is also individual information for each tensor, which may lead to in-
consistent number of components among tensors. Considering the

Fig. 11. Spatial correlations within and between runs for clusters #I, #II and
#III in 100 runs. (a) Distribution of means and SDs of correlation coefficients
calculated by the internal spatial components in each run for clusters #I, #II
and #III. (b) Illustration of correlation coefficients calculated by the averaged
spatial components between runs for clusters #I, #II and #III.
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common and individual information with the inconsistent number of
components, we extended the LCPTD model to a general case. For the
validation of the generalized model, we ran 100 times of two algorithms
to compare their performance as shown in Table 2. It indicates that the
our generalized LCPTD model has higher model fit and stronger ro-
bustness than the LCPTD model, and the performance development
depends to a large extent on the actual number of components we use.
For clusters whose occurrence rate are not 100%, this is mainly due to
the inconsistency of local optimal solutions caused by random in-
itialization in 100 algorithm implementations. Wang et al. demon-
strated that sparsity regularization can improve the extraction stability
of EEG components (Wang et al., 2018a), which provides a good per-
spective for our future work.

From the results of 100 FCD-NTD algorithm implementations, we
found that the brain activities of selected clusters #I, #II and #III re-
levant to the musical stimulus were mainly distributed in the bands of
4∼8 Hz (theta), 8∼13 Hz (alpha) and 4∼11 Hz, and located in the
centro-parietal, occipito-parietal and frontal regions respectively. For
the same data in this study, such theta and alpha activities in the central
and occipital regions were reported in Cong et al. (2013a), but no such
activities in the frontal region. For the ICA-based method in Cong et al.
(2013a), posterior K- means clustering was adopted to cluster all of the
spatial components extracted from 14 subjects individually. However,
the prior coupling information present in spatial and spectral modes
was not employed when extract the hidden information, which may
result in the failure of information extraction. In addition, clustering
L1,2 common spatial components is obviously much simpler and stable
than clustering all of the spatial components in Cong et al. (2013a),
where the mean correlation coefficients between spatial maps in clus-
ters #I and #II were only 0.85 and 0.81 respectively. Regarding the
clusters #I and #II, the significant theta and alpha oscillations were
also reported in Li et al. (2016), where Li et al. utilized tensor de-
composition imposing EEG phase characteristics to explore the brain
responses to the naturalistic and continuous musical stimulus. Cong
et al. extracted only alpha activity in the posterior region using fourth-
order nonnegative tensor decomposition without considering the ex-
istence of individual information for each subject (Cong et al., 2012b).
Compared to previous work, the proposed FDC-NTD algorithm can
avoid strong constraint that imposes consistency on temporal, spatial
and spectral modes between EEG tensors (Cong et al., 2012b; Li et al.,
2016). In addition, it can utilize the multi-way structure of tensor-re-
presented data and the coupled relationship across tensor blocks, and
can decompose EEG tensors into common components and individual
components in each mode. The extraction of common components
among data makes it easier to discover the commonly appearing brain
activities among majority of subjects. The high means and low SDs of
correlation coefficients within/between 100 runs can demonstrate the

stability and practicability of coupled tensor decomposition applied to
the group-level analysis of ongoing EEG data.

Besides the studies of ongoing EEG analysis elicited by naturalistic
and continuous musical stimulus, previous work on the use of EEG
activities to analyze emotion and musical stimuli can provide some
solid references for the results in this study (Sammler et al., 2007; Lin
et al., 2008, 2010; Schmidt and Trainor, 2001). During listening to the
emotional music, the spectrum power asymmetry indexes located in the
brain areas corresponding to RASM12 (namely, 12 symmetric electrode
pairs including Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-
P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, and O1-O2) are sensitive to the
brain activations associated with emotion responses (Lin et al., 2008).
Lin et al. found the frontal and parietal lobes across frequency bands
including theta and alpha contributed a lot in the emotion recognition
during music listening (Lin et al., 2010). According to Sammler et al.
(2007), the increase of theta power over the frontal midline was asso-
ciated with pleasant music, while the frontal alpha asymmetry of on-
going EEG activity was used to distinguish the emotional valence of
musical stimuli (Schmidt and Trainor, 2001). The previous studies re-
garding EEG and musical stimuli verified the plausibility of our findings
to some extent.

In conclusion, we proposed a comprehensive framework based on
coupled tensor decomposition for the group analysis of ongoing EEG
data, elicited by naturalistic and continuous musical stimulus.
Specifically, the proposed framework includes the following seven
steps: data acquisition & preprocessing, musical feature extraction,
tensor representation, algorithm implementation, correlation analysis,
hierarchical clustering and cluster selection of interest, aiming to dis-
cover commonly appearing brain activities among subjects. The results
obtained in the proposed framework illustrate that our findings are in
line with the results of previous studies, and it can be inferred that those
brain activities we extracted are associated with musical stimulus.
Furthermore, the proposed framework based on coupled tensor de-
composition in this study provides a new perspective for the processing
and analysis of multi- subject ongoing EEG data. Coupled tensor de-
composition methods with different optimization strategies can be ap-
plied for comparison to find more convincing solutions when processing
and analyzing ongoing EEG data, which will be one of our future work.
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Appendix A. Derivation of FDC-NTD algorithm

The minimized optimization problem in (2) can be converted into Rmax( )s( ) rank-1 tensor approximation problems via HALS algorithm (Cichocki
et al., 2007), which can be solved sequentially and iteratively as follows:
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For the solution of ur
n s( , ), we only need to set the gradient in (9) to zero. Therefore, the learning rule of ur

n s( , ) obtained via HALS strategy can be
formulated as:
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where u u{ } { }r
s

r
s( ) ( )nT n is denoted by r

n s( , ) for simplicity, and it can be reformulated as u u{ }r
s T

r
s( ) ( ) n. As = =u n N1, 1 1r

n s( , ) , the scaling
coefficients r

n s( , ) can be abbreviated as (5). It is important to note that the calculation of u{ }r n
s

r
s

,( )
( ) ( ) n including the mode-n matricization of r

s( )

and the Khatri-Rao product of ur
m s( , ), = … + …m n n N1 , 1, 1, , needs to be performed in each iteration. It can result in rather high com-

putational cost, especially for large-scale problems (Cichocki and Phan, 2009). Since the fast-HALS algorithm has been proven to be more efficient in
Cichocki and Phan (2009) than HALS algorithm, in this study, we further extend it to the generalized LCPTD model. Inspired by fast-HALS algorithm,

r
s( ) can be represented as:
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By defining u{ }r
n s

r n
s

r
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,( )
( ) ( ) n, we substitute the mode-n matricization of r

s( ) in (11) into r
n s( , ) and it can be represented as:
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with
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At last, we obtain the learning rule of ur
n s( , ) based on fast-HALS algorithm Cichocki and Phan (2009) in generalized LCPTD model (1) as follows:
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with the definitions of r
n s( , ) in (12) and r

n s( , ) in (5). The mode-n matricization n
s( ) in r

n s( , ) only needs to be performed once in initialization, which
greatly improves the computation efficiency of the proposed FDC-NTD algorithm.
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Abstract

Nonnegative tensor decomposition has been widely applied in signal processing

and neuroscience, etc. When it comes to group analysis of multi-block tensors,

traditional tensor decomposition is insufficient to utilize the coupled informa-

tion among tensors. In this study, we propose a coupled nonnegative CAN-

DECOMP/PARAFAC decomposition algorithm based on alternating proximal

gradient method (CoNCPD-APG), which is capable of a simultaneous decompo-

sition of tensors from different samples that are partially linked and a simultane-

ous extraction of common components, individual components and core tensors.

Due to the low optimization efficiency brought by nonnegative constraint and

high-dimensional nature of the data, we further propose the lraCoNCPD-APG

algorithm by combining low-rank approximation and the proposed coupled de-

composition method. When processing multi-block large-scale tensors, the pro-

posed lraCoNCPD-APG algorithm can greatly reduce the computational load

without compromising the decomposition quality. Experiment results of cou-
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pled nonnegative tensor decomposition problems designed for synthetic data,

real-world face image and event-related potential data demonstrate the practi-

cability and superiority of the proposed algorithms.

Keywords: Alternating proximal gradient, CANDECOMP/PARAFAC,

coupled, low-rank approximation, nonnegative tensor decomposition

1. Introduction

Decomposing a tensor into a minimal number of rank-1 tensors, is known

as CANDECOMP/PARAFAC (also known as Canonical Polyadic, [1, 2, 3])

decomposition (CPD). Nonnegative CPD (NCPD) provides a part-based rep-

resentation of a tensor via imposing nonnegative constraints on its hidden fac-5

tors, which enables us to extract more meaningful and convincing information

[4]. For example, electroencephalography (EEG) data with spatial, temporal

and subject features can be represented as a third-order tensor, and the un-

derlying features can be simultaneously extracted through CPD [5]. If time-

frequency representation is further considered, non-negativity will naturally be10

brought into the EEG data, which should be solved by NCPD [6, 7]. Although

CPD/NCPD methods have received widespread attention both in theory and

application, their main contribution lies in the decomposition analysis of a ten-

sor represented by a single dataset [8, 9, 10]. Regarding emerging multi-block

tensors (e.g., multi-subject/multi-modal biomedical data) that need to be ana-15

lyzed together, traditional tensor decomposition methods become very difficult

to identify and utilize the connections between different tensors [11, 12]. For ex-

ample, the internal connections in ongoing EEG data of multiple subjects or the

complementary spatiotemporal characteristics in the EEG-fMRI integrated data

obviously cannot be effectively utilized in the CPD/NCPD methods [12, 13].20

Coupled tensor decomposition, an extension of tensor decomposition to multi-

block tensors, provides an ideal solution for how to jointly analyze two or more

tensors [11, 14, 15]. Interestingly, the uniqueness condition of coupled ten-

sor decomposition is more relaxed than that of single tensor decomposition

2



[15, 16]. Coupled tensor decomposition can achieve higher decomposition ac-25

curacy and stronger robustness by combining the prior coupling information

among tensors[17]. It can also take full advantage of the constraints (e.g., spar-

sity, smoothness and nonnegativity) imposed in the optimization process, so that

can obtain more unique solutions and interpretable components [17, 18]. Cou-

pled tensor decomposition can reveal the inner-relationships among tensor data30

[5, 12], and maintain the potential interactions among multi-way structure of

tensor data. The interactions will inevitably be lost in two-way matrix counter-

parts [19, 20], and coupled tensor methods can circumvent the independent con-

straint [16, 21]. Moreover, coupled tensor decomposition of multi-block tensors

can achieve the simultaneous extraction of common components shared by all35

blocks and individual components corresponding to individual block [22, 23, 24].

To date, increasing recognition of joint tensor analysis has led to the consid-

eration of coupled tensor decomposition in a number of applications. A special

case, coupled matrix and tensor factorization (CMTF [25]) and its variants in-

cluding advanced CMTF [26], and coupled tensor-tensor decomposition (CTTD40

[13, 27]) have proved their superiority over ICA-based two-way methods in EEG

and fMRI data fusion. The algebraic double coupled CPD (DC-CPD) algorithm

using second-order statistics in joint blind source separation (JBSS) problem ex-

hibits more relaxed uniqueness and higher accuracy than the standard CPD [14].

Linked CPD model optimized by hierarchical alternating least squares (HALS),45

fast HALS and alternating direction method of multipliers (ADMM) has also

achieved good performance in classification, image processing and biomedical

signal processing[12, 22, 28, 29]. Common and individual feature extraction

(CIFE) framework for multi-block data enables the separate extraction of com-

mon and individual components by incorporating dimensionality reduction and50

blind source separation (BSS) methods, and has been successfully applied to

classification, clustering and linked BSS problems [11, 24]. Last but not the

least, coupled tensor decomposition is also applied to data fusion of low spa-

tial resolution hyperspectral (LRHS) and high spatial resolution multispectral

(HRMS) images [30, 31], array signal processing [32], linked prediction[33] and55

3



metabolic physiology [34].

However, due to the nonnegative constraint and high-dimensional nature of

tensor data, existing coupled tensor decompsotion methods often suffer from

slow convergence speed and low optimization accuracy [35, 36]. Therefore, aim-

ing to effectively and efficiently achieve the joint analysis of tensors with cou-60

pled information, we propose two advanced coupled NCPD methods: coupled

nonnegative CANDECOMP/PARAFAC decomposition algorithm based on al-

ternating proximal gradient (CoNCPD-APG) and its fast implementation based

on low-rank approximation (lraCoNCPD-APG). Specifically, our contributions

in this study are listed as follows.65

(1) Using the optimal gradient method, we propose an effective CoNCPD-APG

algorithm for the joint analysis of multi-block tensors that are partially linked.

It can realize the simultaneous decomposition of tensors with excellent decom-

position accuracy.

(2) By introducing low-rank approximation, we further proposed an efficient70

larCoNCPD-APG algorithm, which can greatly reduce the time consumption

without losing the decomposition accuracy.

(3) The designed experiments on synthetic data, real-world face image and EEG

data prove the practicability and superiority of the proposed algorithms.

The rest of this paper is organized as follows. Section 2 introduces some75

basic preliminaries and related work. In Section 3, we present the proposed

algorithms as well as some theoretical analyses. Experiments on synthetic and

real-world data are designed in Section 4 to verify the performance of the pro-

posed algorithms. The last section concludes this paper.

2. Preliminaries and related work80

2.1. Notations and tensor operations

Tensor, also known as multi-way array, is the high-order generalization of

vector and matrix. The order of a tensor is the number of dimensions, ways or

modes of it. Generally, tensors are denoted by calligraphic boldface uppercase

4



letters, matrices by boldface uppercase letters, vectors by boldface uppercase85

letters, and scalars by lowercase letters. Table 1 gives a summary of basic

notations and mathematical operations throughout this study, and please refer

to [8] for a more detailed description of them.

Table 1: Basic notations and mathematical operations

Symbol Defination

R, R+ real number, nonnegative real number

◦, � outer product, Khatri-Rao product

~, � element-wise (Hadamard) product, division

(·)T , vec(·) transpose, vectorization operator

J·K, 〈·, ·〉, ‖·‖F Kruskal operator, inner product and Frobenius norm

m, m, M , M scalar, vector, matrix and tensor

M(n) mode-n matricization of tensor M

vec(M) vectorization of tensor M

ddiag(M) vectorization of super-diagonal elements of tensor M

ddiag(m) tensorization with m on the super-diagonal elements

Ui:j,: row-wise submatrix of U , ith to jth row

U:,i:j column-wise submatrix of U , ith to jth column

U (n) the n-th factor matrix

1U� U (N) �U (N−1) � · · · �U (2) · · · �U (1)

2U�−n U (N) � · · · �U (n+1) �U (n−1) · · · �U (1)

1, 2 U~ and U~−n are defined in the similar way.

2.2. Optimal gradient method

Accelerated/Alternating proximal gradient (APG), an accelerated version of

proximal gradient (PG, [37]), was originally proposed by Nesterov for smooth

5



optimization with achieving the convergence rate of O( 1
K2 ), where K is the

number of iterations [38, 39]. For a minimization problem: min{f(x), x ∈ Rn},
assuming that f(x) : Rn → R is a convex function with Lipschitz continuous

gradient f ′, there will hold that

‖f ′(xi)− f ′(xj)‖ ≤ L ‖xi − xj‖ ,∀xi, xj ∈ Rn (1)

where L > 0 is the Lipschitz constant. To obtain an optimal point ẍ, two

sequences are updated successively in each iteration round (assume at the kth

iteration) in APG method [38, 40] as follows:

xk = argmin
x

{
φ(x, xk−1) = f(xk−1)

+ 〈x− xk−1, f ′(xk−1)〉+
L

2
‖x− xk−1‖

}
,

(2)

and

xk+1 = xk +
αk − 1

αk+1
(xk − xk−1) (3)

with

α0 = 1, αk+1 =
1 +

√
4α2

k + 1

2
(4)

where φ(x, xk−1) denotes the proximal regularized function of f(x) at xk−1

and (3) denotes an extrapolated point by combining the points of current and

previous iterations. Using the Lagrange multiplier method, from (2), we have

xk ← P(xk−1 −
1

L
f ′(xk−1)) (5)

where P(·) denotes a shrinkage operator predefined by the user. Since each90

subproblem under block coordinate descent (BCD) framework is a convex func-

tion with Lipchitz continuous gradient, APG and its variants have proven to be

very efficient for nonnegative matrix/tensor factorization issues and outperform

many other competitors [7, 36, 40, 41, 42]. In the sequel, we adopt APG method

to solve the coupled nonnegative tensor decomposition problems.95
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2.3. Coupled NCPD model

Given a set of Nth-order nonnegative tensors M(s) ∈ RI1×I2×···IN
+ , s =

1, 2, · · · , S, the coupled NCPD model can be expressed as:

M(s)≈M̂(s)
=

R(s)∑

r=1

λ(s)r u (1,s)
r ◦ u (2,s)

r ◦ · · · ◦ u (N,s)
r

=
r
D(s);U (1,s),U (2,s), · · · ,U (N,s)

z (6)

where M̂(s) ∈ RI1×I2×···IN
+ denotes the estimated item of M(s). u

(n,s)
r ∈ RIn

+

denotes the rth column of mode-n factor matrix of sth tensor and U (n,s) =[
u
(n,s)
1 ,u

(n,s)
2 , · · · ,u(n,s)

R

]
∈ RIn×R(s)

+ . D(s) ∈ RR(s)×···×R(s)

+ represents the

sth core tensor with non-zero entries λ
(s)
r only on its super-diagonal elements.100

M̂(s)

r = λ
(s)
r u

(1,s)
r ◦u (2,s)

r ◦ · · · ◦u (N,s)
r is termed as a rank-1 tensor generated by

outer product of u
(n,s)
r , n = 1, 2, · · · , N , and λ

(s)
r is used to represent the scaling

of rank-1 tensor. The decomposition of each tensor M(s) can be regarded as

decomposing a high-order tensor into a minimal number of rank-1 tensors, and

the minimum number R(s) is named as the rank of the tensor or the number of105

components.

In coupled NCPD model, we assume that each factor matrix includes two

parts and satisfies U (n,s) =
[
U

(n,s)
C U

(n,s)
I

]
. U

(n,s)
C ∈ RIn×Ln

+ , 0 ≤ Ln ≤
min(R(s)) represents the common information shared by all block-tensors as

U
(n,1)
C = · · · = U

(n,S)
C = U

(n)
C , and U

(n,s)
I ∈ RIn×(R(s)−Ln)

+ denotes the indi-110

vidual part corresponding to individual tensor. Ln represents the number of

coupled components between tensors in the nth mode.

3. Proposed Algorithm

This section illustrates how to use APG method or combine APG method

and low-rank approximation to solve the coupled NCPD problem. In addition,115

we give some discussions on the properties of the proposed algorithms as well

as some implementation remarks.
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3.1. Coupled NCPD using APG

For the coupled NCPD model, the optimization criterion of Euclidean di-

vergence minimization is adopted to minimize the error between the original

and estimated tensors. Therefore, given a set of nonnegative tensors M(s),

s = 1, 2, . . . , S, the objective function of coupled NCPD model can be presented

as follows:

min F
D(s),U(n,s)

1

2

S∑

s=1

∥∥∥M(s) −
r
D(s);U (1,s), · · · ,U (N,s)

z∥∥∥
2

F
(7)

s.t., D(s) ∈ RR(s)×···×R(s)

+ , U (n,s) ∈ RIn×R(s)

+

where U (n,s) =
[
U

(n,s)
C U

(n,s)
I

]
and U

(n,1)
C = · · · = U

(n,S)
C = U

(n)
C . According

to BCD framework, the coupled NCPD problem can be converted into several120

subproblems by optimizing D(s) and U (n,s) alternatively in each iteration. Each

subproblem can be regarded as a minimization problem of a continuously differ-

entiable function, which can be solved efficiently by APG methed [40, 41, 42].

Next we provide a solution for coupled NCPD problem based on APG method.

First, regarding core tensor D(s), we adopt the following update:

D(s) = argmin
D(s)≥0

[
F (D̂(s)

) +
〈
Ĝ(s)

,D(s) − D̂(s)
〉

+
L
(s)
d

2

∥∥∥D(s) − D̂(s)
∥∥∥
2

F

]
(8)

where D̂(s)
denotes an extrapolated point and L

(s)
d denotes the Lipschitz con-

stant of F ′(D(s)). Ĝ(s)
is the block-partial gradient of (7) at D̂(s)

, which can

be calculated as:

Ĝ(s)
= ddiag

[(
U (s)TU (s)

)~
ddiag

(
D̂(s)

)

−
(
U (s)�

)T
vec
(
M(s)

)] (9)

where vec(M(s)) denotes the vectorization of tensor M(s) and ddiag(D(s))

denotes a vector vectorized from the super-diagonal elements of D(s). The

outer-loop notation ddiag(·) means the tensorization from a vector to a super-

diagonal tensor, which is the reverse operation of the inner-loop ddiag(·). By
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keeping all the other variables and using the Lagrange multiplier method, from

(8), we can obtain the solution of D(s) in a closed form as follows:

D(s) = max

(
0, D̂(s) − Ĝ(s)

L
(s)
d

)
. (10)

Second, for the solution of factor matrix U (n,s) (without coupled informa-

tion, i.e., Ln = 0), we consider the updating method as follows:

U (n,s) = argmin
U(n,s)≥0

S∑

s=1

[
F (Û (n,s)) +

〈
Ĝ(n,s),U (n,s) − Û (n,s)

〉

+
L
(n,s)
u

2

∥∥∥U (n,s) − Û (n,s)
∥∥∥
2

F

] (11)

where Û (n,s) denotes an extrapolated point of U (n,s), L
(n,s)
u denotes a Lipschitz

constant. The block-partial gradient Ĝ(n,s) of (7) at Û (n,s) can be expressed

as:

Ĝ(n,s) = Û (n,s)D(s)
(
U (s)TU (s)

)~−n

D(s)

−M(s)
(n)U

(s)�−n
D(s)

(12)

where M(s)
(n) denotes the mode-n matricization of M(s). D(s) is a diagonal

matrix and its diagonal elements correspond to the super-diagonal elements of

core tensor D(s). The update rule of U (n,s) can be written in the closed form

as follows:

U (n,s) = max

(
0, Û (n,s) − Ĝ(n,s)

L
(n,s)
u

)
. (13)

However, for the factor matrix which includes U
(n)
C and U

(n,s)
I , we need

to calculate their solutions separately. Since U
(n)
C is shared by all tensors as

U
(n,1)
C = · · ·=U

(n,S)
C =U

(n)
C , we should combine the information of all tensors

to calculate the solution of U
(n)
C . The solution of individual part U

(n,s)
I only

needs to consider the corresponding sth-set tensor. Therefore, we have

U
(n)
C = max

(
0, Û

(n)
C −

∑S
s=1 Ĝ

(n,s)
C∑S

s=1 L
(n,s)
u

)
, (14)

and

U
(n,s)
I = max

(
0, Û

(n,s)
I − Ĝ

(n,s)
I

L
(n,s)
u

)
(15)

9



where Ĝ
(n,s)
C and Ĝ

(n,s)
I denote the block-partial gradients of (7) at Û

(n,s)
C and125

Û
(n,s)
I , respectively. Û

(n,s)
C and Û

(n,s)
I denote the extrapolated points of U

(n,s)
C

and U
(n,s)
I . Moreover, Û (n,s) =

[
Û

(n,s)
C Û

(n,s)
I

]
and Ĝ(n,s) =

[
Ĝ

(n,s)
C Ĝ

(n,s)
I

]
.

Consider updating D(s) and U (n,s) at the kth iteration. The extrapolated

points D̂(s)

k−1 and Û
(n,s)
k−1 are defined as

D̂(s)

k−1 = D(s)
k−1 + w

(s)
d,k−1

(
D(s)

k−1 −D(s)
k−2

)
, (16)

and

Û
(n,s)
k−1 = U

(n,s)
k−1 + w

(n,s)
u,k−1

(
U

(n,s)
k−1 −U

(n,s)
k−2

)
(17)

where w
(s)
d,k−1 and w

(n,s)
u,k−1 denote the extrapolation weights. Since APG is not

a monotone method, i.e., F (k) may not be smaller than F (k−1). Therefore,

if F (k) ≥ F (k−1) after iteration k, an additional re-updating of U
(n,s)
k and130

D(s)
k will be taken via D̂(s)

k−1 = D(s)
k−1 and Û

(n,s)
k−1 = U

(n,s)
k−1 . In each iter-

ation, we perform the optimization with the order D(1),D(2), · · · ,D(S) and

U (1,1), · · ·U (1,S), · · · ,U (N,1), · · ·U (N,S), which are alternatively updated one

after another until convergence. We term the proposed coupled NCPD algo-

rithm based on APG update as CoNCPD-APG and summarize it in Algorithm135

1. The detailed derivations and relevant parameter settings are given in the

Appendix A.

3.2. Coupled NCPD using APG and low-rank approximation

In CoNCPD-APG algorithm, the time consumption of updating D(s) and

U (n,s) is mainly attributed to the multiplication of (U (s)�)T vec(M(s)) and

M(s)
(n)U

(s)�−n
in (9) and (12), and it will be increasingly serious especially for

the tensors with large dimensionality. Specifically, in each iteration, let R(s) =

R, the computational complexity of (U (s)�)T vec(M(s)) reaches O(SR
∏

nIn)

and M(s)
(n)U

(s)�−n
has the complexity of O(NSR

∏
n In). The applications of

low-rank approximation in nonnegative matrix/tensor factorization have demon-

strated their performance improvement in terms of computational efficiency

while maintaining computational accuracy [35, 36, 43]. Generally, the un-

constrained CPD of a tensor converges in dozens of iterations and is consid-
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Algorithm 1: CoNCPD-APG algorithm

Input: M(s), Ln and R(s), n=1,· · ·, N , s=1,· · ·, S
1 Initialization:

2 U (n,s), D(s), M(s)
(n), n = 1, · · · , N , s = 1, · · · , S

3 for k = 1, 2, · · · ,MaxIt do

4 for s = 1, · · · , S do

5 Calculate Ĝ(s)

k−1 and D̂(s)

k−1 via (9) and (16)

6 Update D(s)
k via (10)

7 end

8 for n = 1, 2, · · · , N do

9 for s = 1, · · · , S do

10 Calculate Ĝ
(n,s)
k−1 and Û

(n,s)
k−1 via (12) and (17)

11 Update U
(n,s)
k via (13), (14) and (15)

12 end

13 end

14 if F (k) ≥ F (k − 1) then

15 D̂(s)

k−1 = D(s)
k−1, Û

(n,s)
k−1 = U

(n,s)
k−1

16 Reupdate D(s)
k , U

(n,s)
k via (10), (13), (14) and (15)

17 end

18 if stopping criteron is satisfied then

19 return

20 U
(n,s)
k , D(s)

k , n = 1, · · · , N , s = 1, · · · , S
21 end

22 end

Output: U (n,s), D(s), n = 1, · · · , N , s = 1, · · · , S
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ered faster than its counterpart with nonnegative constraint. Therefore, aim-

ing to reduce the computational complexity of CoNCPD-APG algorithm, we

consider introducing the low-rank approximation of M(s) before performing

the actual coupled decomposition. Suppose that
r
Ũ (1,s), Ũ (2,s), · · · , Ũ (N,s)

z

is the rank-R̃(s) approximation of M(s) obtained by the unconstrained CPD,

Ũ (n,s) ∈ RIn×R̃(s)

, R̃(s) ≤ R(s), thus the cost function in (7) can be represented

as the following optimization problem with fixed Ũ (1,s), Ũ (2,s), · · · , Ũ (N,s) as:

min F
D(s),U(n,s)

1

2

S∑

s=1

∥∥∥∥
r
Ũ (1,s), Ũ (2,s),· · ·,Ũ (N,s)

z
−
r
D(s);U (1,s),U (2,s),· · ·,U (N,s)

z ∥∥∥∥
2

F

(18)

s.t. D(s) ∈ RI1×···×IN
+ , U (n,s) ∈ RIn×R(s)

+ , Ũ (n,s) ∈ RIn×R̃(s)

, R̃(s) ≤ R(s).

In other words, instead of loading the original tensor M(s) directly into

the iterations, we first split the tensor into smaller compressed matrices, such

as Ũ (1,s), Ũ (2,s), · · · , Ũ (N,s), and then bring them into the decomposition it-

erations, which can greatly reduce the time and space complexities of algo-

rithms [35]. Via low-rank approximation, vec(M(s)) and M(s)
(n) in (9) and (12)

can be respectively expressed by vec(M(s)) = Ũ (s)� ddiag(I) and M(s)
(n) =

Ũ (s,n)
(
Ũ (s)�−n

)T
, and I ∈ RR̃(s)×···×R̃(s)

denotes a core tensor with all super-

diagonal elements being 1. This thereby leads to

(
U (s)�

)T
vec
(
M(s)

)
=
(
U (s)�

)T
Ũ (s)� ddiag(I)

=
(
U (s)T Ũ (s)

)~
ddiag(I),

(19)

and

M(s)
(n)U

(s)�−n
= Ũ (s,n)

(
Ũ (s)�−n

)T
U (s)�−n

= Ũ (s,n)
(
Ũ (s)TU (s)

)~−n

.

(20)

By virtue of low-rank approximation, only very small matrices are involved

to perform the multiplications in (19) and (20), and the heavy cost of Khatri-140

Rao product can also be avoided. In addition, the computational complexities of

(U (s)�)T vec(M(s)) and M(s)
(n)U

(s)�−n
are respectively reduced toO(SRR̃

∑
nIn)

12



and O(NSRR̃
∑

nIn) via the transformations of (19) and (20) (here we set

R̃(s) = R̃).

Overall, to develop an efficient coupled tensor decomposition algorithm, we145

further propose the lraCoNCPD-APG algorithm based on APG algorithm and

low-rank approximation. The implementation of lraCoNCPD-APG algorithm

includes two steps: (i) performing unconstrained CPD of tensors M(s) succes-

sively to achieve low-rank approximation as M(s) ≈
r
Ũ (1,s), Ũ (2,s), · · · , Ũ (N,s)

z
;

(ii) updating U
(n,s)
k and D(s)

k via solving the optimization problem in (18) with150

fixed Ũ (1,s), Ũ (2,s), · · · , Ũ (N,s). The framework of lraCoNCPD-APG algorithm

is presented in Algorithm 2.

Algorithm 2: larCoNCPD-APG algorithm

Input: M(s), Ln, and R(s), n = 1, · · · , N , s = 1, · · · , S
1 Initialization:

2 U (n,s), D(s), M(s)
(n), n = 1, · · · , N , s = 1, · · · , S

3 Calculate Ũ (n,s), n = 1, · · · , N , s = 1, · · · , S via unconstrained CPD on

M(s), s = 1, · · · , S
4 for k = 1, 2, · · · ,MaxIt do

5 Repeat the 4th to 21st command lines of Algorithm 1 except the

5th and 10th lines:

6 Calculate Ĝ(s)

k−1 and Ĝ
(n,s)
k−1 via (9) and (12) by introducing (19) and

(20)

7 end

Output: U (n,s), D(s), n = 1, · · · , N , s = 1, · · · , S

3.3. Remarks and discussions

3.3.1. Acceleration strategy

Even though we have introduced low-rank approximation to reduce the com-155

putation load of CoNCPD-APG algorithm, there is still some way to speed

up the algorithm. In conventional NCPD problem, core tensor D is generally

merged into the factor matrices, so we do not need to calculate additional core
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tensor, which can reduce the computation load to a certain extent. Analo-

gously, this strategy can be extended to the coupled NCPD problem, but only160

for the cases where all N modes are not fully coupled between tensors [12], e.g.,

∃n,Ln = 0. However, for the cases of ∀n,Ln > 0, the core tensors D(s) are re-

quired and defined to differentiate the magnitude of corresponding components

(rank-1 tensor) between tensors. In Experiment 1, we design the coupled NCPD

problem using synthetic data and verify the importance of core tensors in some165

cases. In Experiment 3, the scaling features of corresponding brain activities

provided by core tensors extracted from ERP tensors are used to classify pa-

tient and normal people groups. Therefore, this acceleration strategy depends

on the coupling constraints of tensor data.

3.3.2. Normalization170

According to coupling constraints in this study, we have explained the ne-

cessity of retaining core tensors in optimization. However, in each iteration of

the optimization process, we do not consider the column normalization of fac-

tor matrices (i.e., the column scalings of factor matrices are absorbed into core

tensors). Because it is actually equivalent to applying additional normalization175

constraint to the coupled NCPD optimization problem. Then each subproblem

under BCD framework will become a nonconvex problem, which is not easy to

solve. Therefore, in the following experiments, we will not add such normaliza-

tion constraint even in the HALS-based algorithm. Moreover, this constraint

may generate a negative impact if we further consider imposing sparse constraint180

to the optimization problem.

3.3.3. Computational complexity

In this study, for the computational complexity, we mainly refer to the time

complexity based on the multiplication operations. From Section 3, we can note

that the main computational load is dominated by the updates of D(s) and185

U (n,s), especially the calculation of block-partial gradients G̃(s)
and G̃(n,s) in

(9) and (12). The specific costs of calculating them (nth mode of sth tensor) are
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Equation Operation Description Input size Output size Cost

(9) 1© =
(
U (s)TU (s)

)~
Hadamard product In ×R,n = 1, 2, · · · , N R×R R2

∑N
n=1In +R2N

(9) 2© =
(
U (s)�

)T
Khatri-Rao product In ×R,n = 1, 2, · · · , N R×∏N

n=1 In R
∏N

n=1In

(9) 3© = 2© · vec
(M(s)

)
Matrix product R×∏N

n=1In,
∏N

n=1In × 1 R× 1 R
∏N

n=1In

(12) 4© =
(
U (s)TU (s)

)~−n
Hadamard product Im ×R,m = 1, · · · , N,m 6= n R×R R2

∑N
m6=nIm +R2(N − 1)

(12) 5© = Û (n,s) · 4© Matrix product In ×R,R×R In ×R R2In

(12) 6© = U (s)�−n
Khatri-Rao product Im ×R,m = 1, · · · , N,m 6= n

∏N
m 6=nIm ×R R

∏N
m 6=nIm

(12) 7© = M(s)
(n) · 6© Matrix product In ×

∏N
m6=nIm,

∏N
m 6=nIm ×R In ×R R

∏N
n=1In

(19) 8© =
(
U (s)T Ũ (s)

)~
Hadamard product In ×R,n = 1, 2, · · · , N R×R R2

∑N
n=1In +R2N

(20) 9© =
(
Ũ (s)TU (s)

)~−n

Hadamard product Im ×R,m = 1, · · · , N,m 6= n R×R R2
∑N

m6=nIm +R2(N − 1)

(20) 10© = Ũ (s,n) · 9© Matrix product In ×R,R×R In ×R R2In

1 Here let R(s) = R̃(s) = R, s = 1, 2, · · · , S.
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listed in Table 2. Let R(s) = R, taking into consideration that there areN modes

and S tensors, the total time complexity for each iteration of CoNCPD-APG

algorithm reaches O(NSR
∏N

n=1In). By introducing low-rank approximation,190

(9) and (12) can be calculated using (19) and (20), the costs of which are also

given in Table 2. Let R̃(s) = R, the overall computation load per iteration of

lraCoNCPD-APG algorithm is reduced to O(NSR2
∑N

n=1In).

3.3.4. Termination criteria

In this study, we consider two iteration termination parameters: the change195

of relative error (RelErr) and the maximum number of iterations (MaxIt). In

the CoNCPD model, we define RelErr ,
∑S

s=1

[
‖M(s) − M̂(s)‖F /‖M(s)‖F

]
.

Furthermore, we stipulate |RelErrnew − RelErrold| < ε, i.e., the adjacent RelErr

change should be smaller than the preselected threshold. In this study, we

choose ε = 1e− 8 and MaxIt=1000 in CoNCPD algorithms and ε = 1e− 4 and200

MaxIt=200 in unconstrained CPD algorithm.

4. Experiments

In this section, aiming to examine and demonstrate the superior performance

of CoNCPD-APG and lraCoNCPD-APG algorithms on coupled NCPD problem,

we design and perform three experiments on synthetic data, face image data205

and real-world electroencephalography (EEG) data. We adopt alternating least

squares (ALS, [4]) algorithm to implement the low-rank approximation, which

has proven to be a reasonable solver for unconstrained CPD problems [36].

The optimization strategies including fast hierarchical alternating least squares

(fHALS, [28, 29, 44]), multiplicative updating (MU, [45, 46]) and ALS are used210

as the competitors to the proposed algorithms. Additionally, we also introduce

the low-rank approximation to fHALS-based algorithm.

For algorithm performance comparison, we adopt decomposition quality

indicators including RelErr, objective function value (ObjFun), tensor fitting

value (TenFit) and performance index (PI), as well as execution time (Time).
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TenFit , 1
S

∑S
s=1

[
1− ‖M(s) − M̂(s)‖F /‖M(s)‖F

]
, and it is used to present

the fittings between original and recovered tensors. PI is used to evaluate the

recovery accuracy of factor matrices and defined as

FacFit , 1

2R(R− 1)




R∑

i=1




R∑

j=1

|gij |
maxk |gik|


+

R∑

i=1




R∑

j=1

|gji|
maxk |gki|




 (21)

where gij denotes the (i, j)th element of G = (Ū)†U . Ū is the recovered

estimation of factor matrix U and † denotes the pseudo inverse operator. The

small value of PI indicates an accurate estimation of the true factor matrix. The215

input factor matrices and core tensors are initialized with uniformly distributed

pseudorandom numbers generated by matlab function rand. Signal-to-noise

ratio (SNR) is defined as SNR = 10log10(ps/pn), where ps and pn denote signal

level and noise level, respectively.

The experiments are carried out with the following computer configurations:220

CPU-Intel Core i5-7500 @3.40Hz; Memory-16.00 Gb; System-64-bit Windows

10; Software-matlab R2016b.

Experiment 1 Synthetic data. In this part, we design an experiment to

illustrate the performance of CoNCPD-APG and lraCoNCPD-APG algorithms

in terms of decomposition efficiency and accuracy using synthetic data, and225

compare them with or without core tensors during the optimization process.

Here the algorithms without optimizing core tensors are respectively termed

as CoNCPD-APG-NC and lraCoNCPD-APG-NC. We construct 10 third-order

tensors partially coupled in three modes according to equation (6) and set the

size of tensors to I1 = 8n, I2 = 9n and I3 = 10n, where n ranges from 2 to230

12. The number of components and coupled components of tensors are set to

R(s) = round(I2/2) and L1,2,3 = round(I2/4), and round is a matlab function

that towards nearest integer. The performance curves including PI, Tenfit,

Time and ObjFun versus the size of tensors are illustrated in Figure 1 with

contributions from 50 independent runs under the SNR of 20dB.235

From Figure 1, we can see that CoNCPD-APG achieves the best decomposi-

tion accuracy in terms of PI, Tenfit and ObjFun, followed by lraCoNCPD-APG,
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Figure 1: PI, Tenfit, Time and ObjFun curves of all compared algorithms versus the size of

tensors under SNR=20dB and 50 independent runs.
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CoNCPD-APG-NC and lraCoNCPD-APG-NC. However, CoNCPD-APG is the

most time-consuming, followed by CoNCPD-APG-NC and then by lraCoNCPD-

APG and lraCoNCPD-APG-NC. The introduction of low-rank approximation240

can greatly reduce the execution time, and this advantage becomes more signifi-

cant as the size of tensors increases. Meanwhile, its cost is only a slight reduction

in decomposition accuracy. Since the core tensors are not updated in the opti-

mization process, the time consumption of CoNCPD-APG-NC is also alleviated,

but the decomposition accuracy of CoNCPD-APG-NC and lraCoNCPD-APG-245

NC is reduced to some extent.

Experiment 2 Face image data. In this experiment, we use the extended

Yale B face database1 for coupled tensor decomposition analysis via image re-

construction and denoising. This database contains gray-scale face images of 38

subjects obtained under 9 poses and 64 illumination conditions [47]. For this250

database, we only use the cropped images under frontal pose of all illumina-

tions2 [48]. Each subject corresponds to 64 images, and each cropped image is

resized to 32×32 pixels. Finally, we construct 31 third-order tensors by stacking

corresponding face images of each subject along illumination conditions, and the

size of each tensor is 32 pixels ×32 pixels ×64 conditions (Data of 7 subjects255

were not used because of incompleteness).

In terms of the number of components for each tensor, a simple explained

variance-based method is adopted in this study. Through unfolding along the

first mode, each tensor can be reconstructed into a matrix with the size of

32×2048. Then performing principle component analysis (PCA) on the matrices260

successively, and the number of principle components with a total explained

variance of 99% is regarded as the corresponding component number. Using

this method, the component number of tensors for 31 subjects are separately

selected. In this experiment, we assume that the coupling information between

tensors exists in their three modes, and totally 20 coupled components among265

1http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Table 3: Performance comparison of image reconstruction and denoising on Yale B face

database based on coupled NCPD model (with 0.1 salt&pepper noise)

Methods ALS fHALS lra&fHALS APG lra&APG

RelErr 18.37 15.92 15.98 15.56 15.59

TenFit 0.4075 0.4866 0.4844 0.4980 0.4971

ObjFun 3.80e9 2.81e9 2.84e9 2.68e9 2.69e9

Time 101.50 94.59 19.84 95.53 12.58

PNSR 16.02 19.93 19.78 20.80 20.73

Table 4: Performance comparison of image reconstruction and denoising on Yale B face

database based on coupled NCPD model (with 0.0001 salt&pepper noise)

Methods ALS fHALS lra&fHALS APG lra&APG

RelErr 13.68 8.96 9.08 7.61 7.65

TenFit 0.5587 0.7108 0.7071 0.7544 0.7531

ObjFun 1.74e9 7.25e8 7.43e8 5.07e8 5.12e8

Time 103.84 96.34 20.59 87.70 12.51

PNSR 16.51 20.16 20.03 21.52 21.47
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tensors were extracted.

We compare CoNCPD-APG and lraCoNCPD-APG algorithms with their

competitors on two noisy image datasets of 0.1 and 0.0001 salt-and-pepper noise.

The value of peak-signal-to-noise ratio (PSNR) is also used to measure the qual-

ity of reconstructed face images. Table 3 and 4 give the algorithm performance270

comparison averaged from 100 independent runs under two noise settings. From

the tables, we can see that the proposed APG-based algorithms are superior to

other algorithms, as they obtain lower RelErr and ObjFun values, as well as

higher tensor fittings and PSNRs. It indicates that the proposed algorithms

have higher decomposition accuracy and stronger image reconstruction capa-275

bilities. More importantly, by introducing low-rank approximation strategy,

lraCoNCPD-APG and lraCoNCPD-fHALS algorithms can greatly reduce exe-

cution time while maintaining decomposition performance. It should be noted

that the execution time of lra-based algorithms showed in tables includes the

running time of the unconstrained CPD and the running time of APG/fHALS280

optimization in the CoNCPD problem. In addition, Figure 2 illustrates the

PSNR value curves of all the compared algorithms over 100 independent runs,

indicating that the proposed CoNCPD-APG and lraCoNCPD-APG algorithms

have excellent decomposition stability compared with competitors.

Experiment 3 Real-world ERP data. In this experiment, we compare the285

proposed CoNCPD-APG and lraCoNCPD-APG algorithms with CoNCPD-MU,

CoNCPD-fHALS and lraCoNCPD-fHALS algorithms in the multi-domain fea-

ture extraction of event-related potential (ERP) data 3 (ALS-based algorithm is

excluded due to its poor performance). Two groups of data are chosen: 21 chil-

dren with reading disability (RD) and 21 children with attention deficit (AD),290

aiming to acquire multi-domain features of ERP data which can better discrim-

inate the two groups. Using complex Morlet wavelet transform, we generate the

third-order tensors of 42 subjects (21 RD & 21 AD) with the size of 9 (channels)

× 71 (frequency bins) × 60 (temporal points) to testify the effectiveness and

3http://www.escience.cn/people/cong/AdvancedSP ERP.html
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Figure 3: An example of multi-domain feature and its related temporal, spectral and spatial

components of ERP data extracted by CoNCPD-APG algorithm

practicality of coupled tensor decomposition. Following [49], we set the num-295

ber of components to R(1) = R(2) = · · ·R(42) = 36. Considering the nature of

ERP data, we assume that these third-order ERP tensors are coupled in spa-

tial, spectral and temporal modes, and we directly set the number of coupled

components to 36.

ERP data are acquired through repeated presentation of stimuli, which300

makes their properties in temporal, spectral and spatial domains roughly known

before they are actually extracted. According to prior knowledge given in

[49], we can select the expected multi-domain features and their correspond-

ing temporal, spectral and spatial components from the decomposition results
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of ERP data. Figure 3 gives an example illustration of multi-domain features305

and their corresponding components extracted by CoNCPD-APG algorithm in

the 1st run. For multi-domain feature shown in the figure, statistical analy-

sis using t-test reveals the significant difference between RD and AD groups

with t20 = 2.419, p = 0.025. The relevant temporal component (latency peaks

around 150 ms) and spectral component (spectrum peaks around 5 Hz) closely310

match the property of mismatch negativity component [49]. The corresponding

topography denotes that the difference of RD and AD groups may appear in

the central and left hemisphere [49].

We adopt three steps to verify the stability of multi-domain feature extrac-

tion of all the compared algorithms in 100 runs. (1) We select the multi-domain

features and their parallel three components in the 1st runs of 5 algorithms. (2)

We average the selected ones separately as a set of template patterns, which are

termed as ufea
temp, utem

temp, uspe
temp and uspa

temp. (3) We define the maximum corre-

lation coefficient (MCC) between template patterns and feature-based compo-

nents of kth runs as follows

MCC(k) = max
[
corr(ufea

temp,U
fea
k ) ~ corr(utem

temp,U
tem
k )

~corr(uspe
temp,U

spe
k ) ~ corr(uspa

temp,U
spa
k )

] (22)

where k denotes the run number and corr is a matlab function which returns

a vector containing the pairwise linear correlation coefficient between u and315

U . U fea
k , U tem

k , U spe
k and U spa

k represent multi-domain features and their cor-

responding temporal, spectral and spatial components in the kth run, respec-

tively. Obviously, if the MCC is close to 1, it means that the extraction of

multi-domain features is more stable.

Table 5 gives the average RelErr, ObjFun, TenFit and Time from 100 inde-320

pendent runs for ERP data, as well as the means and SDs of MCCs of multi-

domain features. From the table, we see that the proposed CoNCPD-APG and

lraCoNCPD-APG algorithms are superior to competitors in terms of decompo-

sition accuracy and multi-domain feature extraction stability. Interestingly, the

MU-based couple method achieves better performance than the fHALS-based325

23



Table 5: Performance comparison of the algorithms in multi-domain feature extraction of

ERP data based on coupled NCPD model

Methods MU fHALS lra&fHALS APG lra&APG

RelErr 6.83 7.06 7.02 6.34 6.34

TenFit 0.8373 0.8319 0.8327 0.8490 0.8490

ObjFun 6.34e5 6.87e5 6.81e5 5.48 5.47e5

Time 164.30 192.71 39.35 183.91 27.45

MCC-Mean 0.7293 0.8782 0.8621 0.8896 0.8916

MCC-SD 0.1770 0.0973 0.1171 0.0956 0.0809

algorithms in accuracy but has the worst multi-domain feature extraction sta-

bility. This experiment also proves that the low-rank approximation in coupling

analysis of large-scale tensors can greatly improve computation efficiency with-

out losing the decomposition accuracy.

5. Conclusion330

In this study, we considered the coupled tensor decomposition problem, aim-

ing to solve the simultaneous decomposition of nonnegative multi-block ten-

sors. To improve convergence speed and optimization accuracy, we first pro-

posed a coupled nonnegative CANDECOMP/PARAFAC decomposition algo-

rithm based as alternating proximal gradient (APG) method (CoNCPD-APG).335

Then by combining APG and low-rank approximation, we further proposed the

lraCoNCPD-APG algorithm. We also gave some discussions on the properties

of the proposed algorithms as well as some implementation remarks. Experi-

ments of synthetic data, real-world face image data and event-related potential

(ERP) data were conducted to compare the proposed algorithms with fast hi-340

erarchical alternating least squares (fHALS), multiplicative updating (MU) and

alternating least squares (ALS)-based algorithms in the designed coupled NCPD
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problems. The experiment results illustrated that the proposed algorithms are

superior to competitors in terms of decomposition accuracy, image reconstruc-

tion capability and multi-domain feature extraction stability, and also demon-345

strated that the introduction of low-rank approximation can greatly improve the

computation efficiency without compromising the decomposition quality. Deter-

mining the number of coupled components depends on the validity of potential

assumptions and relevant prior knowledge. So far, its selection in real-world ap-

plications is still subjective to a certain extent, which remains it an open issue350

and will be one of our future works.
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Appendix A.

For completeness of this paper, in this section, some steps of algorithm

derivations and relevant parameter settings will be further explained below.

Appendix A.1. CoNCPD-APG algorithm360

Following [40, 41], by using Lagrange multiplier method, we obtain (10),

(13), (14) and (15) from (8) and (11). When updating the core tensor D(s), by

keeping all factor matrices U (n,s) fixed, we first convert (7) to

Fd =
1

2

∥∥∥vec
(M(s)

)
−U (s)�ddiag

(D(s)
)∥∥∥

2

F
(A.1)

where vec(M(s)) denotes the vectorization of tensor M(s). Mathematically,

the squared Frobenius norm of a matrix can be replaced by the trace of mul-

tiplication of the matrix and its transpose. Then (A.1) can be represented as:
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Fd =
1

2
tr

[(
vec
(M(s)

)
−U (s)�ddiag

(D(s)
))T

(
vec
(M(s)

)
−U (s)�ddiag

(D(s)
))] (A.2)

According to trace property, the block-partial gradient Ĝ(s)
of (A.2) with

respect to D̂(s)
can be calculated by

Ĝ(s)
= ∇D̂(s)Fd

= ddiag

[(
U (s)�

)T
U (s)�ddiag

(
D̂(s)

)]

− ddiag

[(
U (s)�

)T
vec
(
M(s)

)]
(A.3)

where the outer notation ‘ddiag’ means the tensorization from a vector to a

super-diagonal tensor, which is the reverse operation of inner one. Using the

property of Khatri-Rao product, we can efficiently calculate (U (s)�)TU (s)� by

(
U (s)�

)T
U (s)� =

(
U (s)TU (s)

)~
(A.4)

When updating the factor matrix (without coupling information) U (n,s), by

keeping all other variables U (m,s),m 6= n and D(s) fixed, (7) is represented as

follows:

Fu =
1

2

∥∥∥∥M
(s)
(n) −U (n,s)D(s)

(
U (s)�−n

)T∥∥∥∥
2

F

(A.5)

where M(s)
(n) denotes the mode-n matricization of M(s). D(s) is a diagonal

matrix and its diagonal elements correspond to the super-diagonal elements of

core tensor D(s). Similarly, the block-partial gradient Ĝ(n,s) of (A.5) at Û (n,s)

can be calculated as:

Ĝ(n,s) = ∇Û(n,s)Fu

= Û (n,s)D(s)
(
U (s)�−n

)T
U (s)�−n

(
D(s)

)T

−M(s)
(n)U

(s)�−n

(
D(s)

)T

= Û (n,s)D(s)
(
U (s)TU (s)

)~−n

D(s)

−M(s)
(n)U

(s)�−nD(s)

(A.6)
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However, when updating the factor matrix U (n,s) which consists of two

parts: U
(n,s)
C and U

(n,s)
I , we first substitute U (n,s) =

[
U

(n,s)
C U

(n,s)
I

]
into (A.5)

and have

Fci =
1

2

∥∥∥∥M
(s)
(n)−

[
U

(n,s)
C U

(n,s)
I

]
D(s)

(
U (s)�−n

)T∥∥∥∥
2

F

(A.7)

Let B(n,s) = D(s)
(
U (s)�−n

)T ∈ RR(s)×∏N
m6=n Im

+ . Let Ĝ
(n,s)
C denote the block-

partial gradient of (A.7) at Û
(n,s)
C , which can be calculated as:

Ĝ
(n,s)
C = ∇

Û
(n,s)
C

Fci

= Û
(n,s)
C B

(n,s)
C

(
B

(n,s)
C

)T

−
(
M(s)

(n) − Û
(n,s)
I B

(n,s)
I

)(
B

(n,s)
C

)T

=
(
Û (n,s)B(n,s) −M(s)

(n)

)(
B

(n,s)
C

)T

(A.8)

where Û
(n,s)
C denotes an extrapolated point of U

(n,s)
C . B(n,s) =

[
B

(n,s)
C ;B

(n,s)
I

]
,

B
(n,s)
C ∈ RLn×

∏N
m 6=n Im

+ and B
(n,s)
I ∈ R(R(s)−Ln)×

∏N
m6=n Im

+ . From (A.6) and

(A.8), it can be infered that Ĝ
(n,s)
C is equal to Ĝ

(n,s)
:,1:Ln

. Analogously, the block-

partial gradient Ĝ
(n,s)
I at Û

(n,s)
I can be obtained as Ĝ

(n,s)

:,Ln:R(s) and Ĝ(n,s) =[
Ĝ

(n,s)
C Ĝ

(n,s)
I

]
.365

Appendix A.2. Parameter settings

Consider updating D(s) and U (n,s) at the kth iteration. Following [-], we

set the Lipschitz constants L
(s)
d,k−1 and L

(n,s)
u,k−1 as:

L
(s)
d,k−1 =

∥∥∥(U
(s)�
k−1 )TU

(s)�
k−1

∥∥∥ (A.9)

and

L
(n,s)
u,k−1 =

∥∥∥D(s)
k−1(U

(s)�−n

k−1 )TU
(s)�−n

k−1 D
(s)
k−1

∥∥∥ (A.10)

where ‖·‖ denotes the spectral norm. Using the property of Khatri-Rao product,

we can also efficiently calculate L
(s)
d,k−1 and L

(n,s)
u,k−1 through

(
U

(s)�
k−1

)T
U

(s)�
k−1 =

[(
U

(n,s)
k−1

)T
U

(n,s)
k−1

]~

(
U

(s)�−n

k−1

)T
U

(s)�−n

k−1 =

[(
U

(m,s)
k−1

)T
U

(m,s)
k−1

]~−n
(A.11)
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We take the extrapolation weights as

w
(s)
d,k−1 = min


ŵk−1, δw

√√√√L
(s)
d,k−2

L
(s)
d,k−1


 (A.12)

and

w
(n,s)
u,k−1 = min


ŵk−1, δw

√√√√L
(n,s)
u,k−2

L
(n,s)
u,k−1


 (A.13)

where δw < 1 is predefined (e.g., 0.9999, [42]), and ŵk−1 = tk−1−1
tk

with t0 = 1

and tk = 1
2

(
1 +

√
1 + 4t2k−1

)
. Moreover, we define the extrapolation at points

D(s)
k−1 and U

(n,s)
k−1 as

D̂(s)

k−1 = D(s)
k−1 + w

(s)
d,k−1

(
D(s)

k−1 −D(s)
k−2

)
(A.14)

and

Û
(n,s)
k−1 = U

(n,s)
k−1 + w

(n,s)
u,k−1

(
U

(n,s)
k−1 −U

(n,s)
k−2

)
(A.15)
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