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We perform the first dipole picture fit to HERA inclusive cross section data using the full next-to-leading
order (NLO) impact factor combined with an improved Balitsky-Kovchegov evolution including the
dominant effects beyond leading logarithmic accuracy at low x. We find that three different formulations of
the evolution equation that have been proposed in the recent literature result in a very similar description of
HERA data and robust predictions for future deep inelastic scattering experiments. We find evidence
pointing toward a significant nonperturbative contribution to the structure function for light quarks, which

stresses the need to extend the NLO impact factor calculation to massive quarks.

DOI: 10.1103/PhysRevD.102.074028

I. INTRODUCTION

The inner structure of protons and nuclei can be
accurately determined in deep inelastic scattering (DIS)
experiments, where the target structure is probed by a
simple pointlike electron via the exchange of a virtual
photon. For proton targets, the combined structure function
data from the H1 and ZEUS experiments at HERA [1-4]
have made it possible to extract the parton densities with an
excellent precision.

At small momentum fraction x the gluon densities rise
rapidly, and one eventually expects nonlinear high-occu-
pancy effects to be important and become visible in the
weak coupling regime. At high gluon densities, these
nonlinear effects tame the growth of the gluon density,
and a dynamical scale known as the saturation scale Q2 is
generated. This scale characterizes the region of phase
space where the nonlinear saturation effects dominate. To
describe QCD in this high-energy regime an effective
theory known as the color glass condensate (CGC) has
been developed; see Refs. [5,6] for a review.

The precise DIS data can provide a crucial test for the
saturation picture. Theoretically the inclusive DIS cross
section is a relatively simple observable, as the probe has no
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internal structure and one does not need to consider e.g.,
fragmentation effects. As the proton structure is not
perturbatively calculable, some input from experimental
data is needed. In the CGC framework, one can calculate
the energy dependence of various observables, e.g., the
total photon-proton cross section, perturbatively by resum-
ming contributions enhanced by a large logarithms of
energy or In1/x. The nonperturbative input in this case
is the proton structure at an initial (and smallish) Bjorken x,
which is a parametrized input fitted to the data. The
leading-order CGC calculations have been able to obtain
a good description of the precise HERA data by fitting the
initial condition with only a few free parameters [7-9].
However, in all these fits one needs to introduce an
additional fit parameter to slow down the x evolution to
be compatible with the HERA measurements.

To precisely test the saturation picture of CGC, it is
crucial to move beyond leading-order accuracy. In recent
years the theory has been rapidly developing toward full
next-to-leading-order (NLO) accuracy. The impact factors,
describing the photon-proton interaction, have been calcu-
lated at this order in case of massless quarks [10-15], and
the first numerical results were reported in Ref. [16]. The
impact factors need to be combined with evolution equa-
tions that describe the Bjorken-x dependence and resum
contributions enhanced by large logarithms of energy,
(agIn1/x)" at leading order and a(ar;In1/x)" at next-to-
leading order. The Balitsky-Kovchegov (BK) equation
describing the evolution of the dipole-target interaction
[17,18] is available at NLO accuracy [19] with the higher-
order contributions enhanced by large transverse logarithms

Published by the American Physical Society
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resummed in Refs. [20-23] and numerical solutions reported
in Refs. [24,25].

An additional complication in the small-x evolution is
that the Coulomb tails obtained from a perturbative
calculation result in the proton size growing much faster
than seen in the data and faster than suggested by the
Froissart bound [26] for hadronic collisions. It has been
argued [27,28] on the theoretical level that including some
nonperturbative damping of the gluon emission at large
transverse distance is necessary and sufficient to recover a
Froissart behavior for the virtual photon-proton cross
section. This idea has been studied [29,30] in fits to the
HERA data using the impact-parameter-dependent BK
equation supplemented by either a nonperturbative cutoff
or collinear resummations. In addition to the BK equation,
one can solve the more general Jalilian-Marian—Iancu—
McLerran—Weigert-Leonidov—Kovner (JIMWLK) evolu-
tion equation [31-37] (available at NLO accuracy [38,39],
but no numerical solution exists for the NLO equation). The
JIMWLK evolved proton structure was compared with the
HERA data in Ref. [40] (see also Refs. [41,42]), where
again large nonperturbative contributions were needed to
describe the system with a finite proton geometry. Due to
these additional complications, we only study an impact-
parameter-independent evolution here and assume that the
transverse area of the proton can be factorized in the cross
section calculations.

In addition to testing the saturation conjecture, an
accurate description of the DIS data is important for other
phenomenological applications. As we will discuss later,
the DIS cross section is written in terms of the quark dipole-
target scattering amplitude. The exactly same degrees of
freedom are needed to describe other scattering processes,
such as particle production in proton-nucleus collisions
(see e.g., [9,43-53]) or diffractive DIS (e.g., [54-62]).
Although most of the current phenomenological applica-
tions are performed at leading-order accuracy, the NLO
calculations are developing rapidly [63—74]. A necessary
input for the phenomenological applications at NLO
accuracy is the initial condition for the NLO evolution,
which can be obtained by fitting the DIS data as presented
in this paper.

This paper is structured as follows. First, in Sec. II, we
will briefly introduce the dipole picture of DIS at leading
and next-to-leading order. Then, in Sec. III, we will review
the necessary details of the different variants of the BK
equation used in this work. Section IV reviews the datasets
used in the fits, and Sec. V discusses the results of the fits.

II. DEEP INELASTIC SCATTERING IN THE
DIPOLE PICTURE AT NLO

The photon-proton cross section is parametrized in terms
of the structure functions F, and F, that are related to the
virtual photon-proton cross sections 67 7 as

QZ

Faluwy @) = 27— (01" +o1") (1)
and
2 Q2 "
_ r'p
FL(xBj? Q) = 4”2aem op - (2)

Here the subscripts 7 and L refer to the transverse and
longitudinal polarizations, respectively, of the virtual pho-
ton. The experimental data are often reported as a reduced
cross section:

y2

o,(xpj, y, Q%) = Fy(xg;, 0%) — T (=)

Fr (xg;, 02).
(3)

Here —Q? is the photon virtuality, xgj is the Bjorken
variable and y is the inelasticity.

The focus in this paper is on the next-to-leading-order
corrections to the total DIS cross section in the dipole
picture. As an introduction, let us first briefly describe the
process in the leading-order dipole picture.

At leading order, the virtual photon-proton scattering in
the dipole picture is understood in the following way (see
e.g., [75]). First, the incoming photon fluctuates into a
quark-antiquark pair. This splitting is described by the
photon light-cone wave function y? ~47. Subsequently, the
produced dipole interacts with the target. At high energy,
the quark-target interaction is eikonal, and the transverse
position of the quark does not change during the scattering.
Instead, the quark goes through a color rotation in the target
color field and picks up a Wilson line V(xq) in the
fundamental representation, where X, is the transverse
coordinate of the quark. Similarly, the antiquark at point
X, picks up a conjugate Wilson line V'(x,).

To calculate the total cross section, one applies the
optical theorem and calculates the imaginary part of the
forward elastic scattering amplitude for the process
y*p — y*p. The resulting cross section reads

*

P =2 / dbd2rdz |y ~%(r, 02, 7)[2
x (1= S(r,b,x)). (4)

Here, z is the light-cone momentum fraction of the photon
carried by the quark. The dipole size is r = X, — X and its
impact parameter is b = (xo + x;)/2. In the following,
S(r, b, x) is assumed to depend only slowly on b. Thus we
will drop this dependence on b and replace the integration
over b by a constant [ d*b — 6,/2. The dipole scattering
matrix S is defined as a two-point function of the Wilson
lines that the quarks pick up in the scattering process:
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S(r, b, x) = <NLTrV(x0)vf(x1)> . (5)

X

The brackets () refer to the average over the target color
charge configurations. Here the momentum fraction x in the
subscript stands for the fact that the Wilson lines are
evaluated at some energy or rapidity scale corresponding to
the kinematics of the process. This dependence is given by
the Balitsky-Kovchegov equation which, at leading order,
is usually used to evolve the Wilson lines up to an evolution
rapidity Y =log1/xg;. At NLO the question of the
evolution rapidity becomes more complicated, as discussed
in more detail in Sec. IIL.

At NLO the virtual photon-proton scattering involves
Fock states of the photon that contain a gluon in addition to
the quark and antiquark, which all scatter off the target.
There are also other NLO contributions with only a quark-
antiquark Fock state scattering off the target, which include
a gluon loop correction to the photon splitting. These NLO
qqg and qq contributions have been calculated independ-
ently using the conventional dimensional regularization
[13,14] and four-dimensional helicity schemes [15]. The
individual diagrams contain UV divergences that cancel
each other in the sum. On top of these, there remains a
divergence related to low-x gluons, which must be
resummed into the evolution of the target. Subtraction
schemes for this low-x gluon divergence in DIS were

qg unsub (XS CF
orr = 8N Qe ef dz

22,min

and the dipole term is

devised and tested in Refs. [14,16], and in our present paper
we continue to refine the “unsub” scheme to enable a
comparison between the theory and experimental data.

In Refs. [14,16] the low-x gluon divergence factorization
from the NLO DIS cross sections (for a more detailed
discussion in the context of single inclusive particle
production see Refs. [67,76,77]) were written in two
distinct but equivalent forms: a form where the factoriza-
tion is implicit, and another where it was made explicit,
named “unsubtracted” and “subtracted” schemes, respec-
tively. In this work we use the unsubtracted form for the
cross sections, which can be expressed as

NLO dip qg unsub
NP =0l +o,+0o . (6)

Here the first term is the leading-order cross section (4)
where the dipole scattering amplitude is evaluated at the
chosen fixed initial rapidity scale of the target, correspond-
ing to the initial condition of BK evolution. The other terms

can be interpreted as arising from the NLO ¢g diagrams

(69" and from the NLO ¢gg diagrams oy sy “up to

subtractlon terms used to make the cancellation of UV

divergences between these diagrams explicit. In our
scheme, the unsubtracted gg term is
1- —Z1 dzz

’C 11722’X0’X1,X2) (7)

X0, X1,X2

i A 71'2 5
GdL%"_4NC Aem erf/ le /KLT Z17X07X1)|:21n (1_Zl> 6 +§:|7 (8)

Xo.X

with the shorthand fxi = [ d;—; The integrand kernels and dipole operators for the leading-order and dipole terms are

K%O(tho, X)) = 4QZZ%(1 - Zl)zK(z)(sz)(l = S(Xo1))s )

Q%21 (1 = z1) (27 + (1 = 21)*) KF(QX,)(1

Klfo(zl’xovxl) = S(Xo1))s (10)

where X3 = z;(1 — z;)x}, X;; = X; — X, and S(x;;)=S(x;;,b). Here, the rapidity scale which the dipole operator (5) is
evaluated at is left implicit. It will be dlscussed together with the associated small-x evolution in Sec. III. However, we note
already now that in the ¢gg term this rapidity scale must be taken to depend on the gluon momentum fraction z,, not just the
external kinematical scales xg; and Q?. This is essential for the stability of the factorization scheme, as discussed in great

detail e.g., in Refs. [16,20,67,76,77].

074028-3



BEUF, HANNINEN, LAPPI, and MANTYSAARI

PHYS. REV. D 102, 074028 (2020)

For the gg terms that only appear at NLO, the kernels

and Wilson line operators are

z X X X
KYO(21, 2. %0, X1, %) = 40%23(1 —21)2{P< 2 )% <%—%> [K3(0X5)(1 = So12) — (%2 = X)]
1—z1)x3 \X3 X3
7\ Xg Xy )
K;(0X5)(1 -8 , 11
T (1 _Z1> X2, %2, 3(0X;3)( 012)} (11)
Z X Xy X
’CI}ILO(Zl,Zz,Xo,Xuxz):szl(l—zl){P(l : )(Z%‘F(I—Zl)z)%‘<%—%>[K%(QXQ(I—5012)—(X2—>X0)]
—2 X350 \X3 X3
2 [ - 2y X20 " X2 X2 X21 20(z1t+22)] 0

1- 2 - K2(0X;)(1-S (12
+<1_Zl> [(ZIJF( 21)%) 22, + 22021 X2 X2 e 1(0X3)(1=So12) (12)

Here zy, z;, and z, are the longitudinal momentum
fractions of the quark, antiquark, and gluon, respectively,
which satisfy >, z; = 1. The parton configuration factor
QX5 is interpreted as the ratio of the ggg state formation
time to the y* lifetime [12]. It is defined as X% =
2021X3, + 2022X3, + 2221X3,. We have also defined a short-
hand P(z) := 1+ (1 — z)%. The ggg state-target scattering
Wilson line operator is

Ne

S =
012 2CF

<S(X02)S(X21) - %S(Xm))- (13)

In Eq. (7) the lower limit z;,;;, in the gluon longitudinal
momentum fraction integral is yet undefined, and its proper
value will be discussed in the next section.

E

In principle we should use the next-to-leading-order BK
equation when using the impact factors calculated to the
order a,. The required numerical solution of the NLO BK
equation exists [24,25,79]. However, the equation is
numerically burdensome due to the high-dimensional
transverse integration (in the NLO BK equation one
integrates over the transverse coordinates of the two
emitted gluons, instead of just one gluon in the leading-
order equation). Instead of the full equation, in this work
we use prescriptions of BK evolution that capture an
important subset of beyond leading-order effects. The
difference between the studied evolutions reflects some
of the uncertainty due to the missing full NLO evolution.

In practice we have chosen three related formulations of
the BK equation that resum some or all of the large transverse

Ncas (X%I )
272

2
X01
2 o2
12X02

Kgk (X0, X1, X,) =

III. HIGH-ENERGY EVOLUTION
A. Balitsky-Kovchegov equation

In the calculation of the photon-proton cross section at
NLO, as discussed above, the dipole-target scattering
amplitude depends on the energy or, equivalently, on
Bjorken x. In the large N, limit, the evolution is given
by the BK equation [17,18]. At leading order, the BK
equation reads

98(xo1)

oY _/d2X2KBK(X07X1aX2)

X [S(x02)S(x21) = S(x01)]- (14)
The kernel Ky is proportional to the probability density to
emit a gluon with transverse coordinate x, from the dipole
of size x(; = X — X;. The evolution rapidity Y is discussed
in detail later. When running coupling corrections follow-
ing the Balitsky prescription [78] are included, it reads

ey rm ) 13

momentum logarithms in the NLO equation. Firstly we
consider the nonlocal evolution equation in terms of the
projectile momentum fraction introduced in Ref. [20], where
collinear double logarithms are resummed via the inclusion
of a kinematical constraint: we denote this the KCBK
equation. Secondly, we consider the local equation in the
projectile momentum fraction of Ref. [21], where the same
double logarithms, together with Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP)-like single logarithms,
are explicitly resummed into a kernel that is a nontrivial
function of a,: we call this the ResumBK equation. Thirdly
we study a nonlocal equation in the target momentum
fraction, recently formulated in Ref. [23] and denoted here
as the TBK equation. The first two are formulated in terms of
the projectile momentum fraction, so that the rapiditylike
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evolution variable in the BK equation is defined by the
momentum fraction of the probe or, equivalently, by the plus
component of the 4-momentum.' Since the projectile
momentum fraction is the variable appearing explicitly in
the NLO DIS impact factors, using these evolution equations
is fairly straightforward. However the fact that the TBK
equation is written in terms of the target momentum fraction,
i.e., the minus component of 4-momentum, means that the
evolution and the perturbative impact factors can only be
matched approximatively, and the procedure requires
more care.

As we will discuss in detail in the following, we solve the
BK equation by taking a parametrized dipole amplitude as
an initial condition at an initial rapidity scale. Starting from
this initial condition the evolution predicts the behavior of
the dipole at higher rapidities, i.e., energies, or correspond-
ingly at smaller Bjorken x. The phase space available for
the emission of the gluon grows with energy and deter-
mines the amount of BK evolution. Thus the evolution
range is controlled by the lower limit of the gluon
momentum fraction z; ;,;, in Eq. (7), with a smaller lower
limit corresponding to longer evolution.

B. Evolution in projectile momentum fraction

Let us first consider the evolution written in projectile
momentum fraction, which is the case for the KCBK and
ResumBK equations. In this case the high-energy evolution
is parametrized by the rapidity variable Y, which is defined
using the plus components of the gluon momentum k™ and
a plus momentum scale Pt associated with the target as

Y = 1n<llj—i>. (16)

Since the incoming photon energy ¢t (which is the
maximal k") in the target rest frame is proportional to
the photon-target c.m.s. energy W2, one should think of
evolution in the rapidity variable Y as evolution in In W2, as
we will see more explicitly below.

In the impact factor, Eq. (7), the gluon momentum is
parametrized by the momentum fraction z, as k™ = z,q™.
Both the probe momentum fraction evolution equations and
the NLO impact factor are derived in terms of the same z,.
Thus it is straightforward to see that the dipole operators in
the evaluation of the gg term in the cross section (7) are
always evaluated at the projectile rapidity

qu
Y:ln22 +IH<F>, (17)

'We work in a frame where the target has a large minus
momentum P~, and the incoming photon has a large plus
momentum ¢*.

depending on the integration variable z,. We will specify
the value of P below.

First, we have to determine the lower limit z, ;, for the
Z, integral in the NLO impact factor, Eq. (7), which
controls the amount of evolution. This limit is set by the
overall kinematics of the process. One way to understand
the existence of this limit is to note that in the limit z, — 0
the invariant mass of the ¢gg system interacting with the
target grows as Méqg ~ 1/z,. The fact that this invariant
mass cannot be larger than the c.m.s. collision energy
results in a lower limit for kinematically allowed values of
Z,. Since the validity of the eikonal approximation used to
derive the dipole picture cross section requires in principle
M, < W2, one could require a more strict limit on z, than
resulting from purely kinematics. Thus there is a choice in
how close to the kinematical limit one allows the integral to
go, which we quantify by the parameter e'o.t > 1. In terms
of this parameter we have the limit

2 2
+ Yoir p+ — LYo QO — LYo QO +
qu >€0.fP _eO.fF_eO.fxBjaq s

2

2
Your v 20 o vou €0 _
22 > e’ oif xngr\ae 0.if W=Z2'min. (18)

Here we have introduced a nonperturbative target trans-
verse momentum scale Q3, for which in this work we use
the value® Q2 = 1 GeV2. This allows us to write P™ =
Q3/(2P7), and we used the fact that xp; = Q*/
(2P -q) = Q?/(2P¢*). This limit is already derived
e.g., in Refs. [14,16,20]. In Ref. [16] the authors for
simplicity set Q3/Q% =1 in practical evaluations of the
NLO impact factors.

In principle also the limits z; — 0, z; — 1in Egs. (7) and
(8) correspond to the invariant mass of the scattering state
becoming infinite, similarly to the limit z, — 0. Thus, as
discussed in Ref. [14], one could also take the energy or
rapidity scale at which the dipoles are evaluated to depend
on the (anti)quark momentum fractions z,, z; (see also
Ref. [80]). This part of phase space does not, however,
generate a contribution enhanced by a large logarithm of x
to the cross section. Instead, this “aligned jet” configuration
produces a large collinear logarithm which in principle
should be included in the DGLAP evolution not included in
the dipole picture applied in this work. Properly including
this collinear logarithm is an important issue but separate
from the factorization to the BK equation and is left for
future work.

*Note that the two parameters Y, ;; and Q only appear in one
combination eo Q3 here; thus there is really only one indepen-
dent parameter characterizing the limit z, ,,;,. However, for the
discussion that follows it is better to think in terms of a separate
nonperturbative transverse momentum scale Q.
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When the Bjorken x of the process is such that the
smallest momentum fraction z, ;, is close to 1, i.e., when
xpj ~ e~ Yoir (with Q% ~ Q}), the possible phase space for
real gluon emission allowed in the expression for the cross
section vanishes. Thus the gg contribution to the NLO cross
section goes to zero at xgj ~ e Yoir by construction. The
NLO calculation does not fix any exact value for Y .
A possible choice to consider for Y ;; would be to take
Yo.ir #In1/0.01, corresponding to the limit where the
dipole picture is usually considered applicable. This was
the choice used in Ref. [16]. However, this choice leads to a
transient effect in the NLO cross sections at the upper end
of the xp; range xpj~ e "oit since the positive virtual
correction remains large, while the negative gg contribution
vanishes, as demonstrated in Ref. [16].

To avoid this unphysical transient effect, we adopt here
instead the maximal (or minimal depending on the point of
view) choice Y ;s = 0. This means that the integral over z,
in the cross section extends all the way to the kinematical
limit, outside of the validity of the eikonal approximation.
The contribution from this region is, however, only a
parametrically small part of the cross section for small
xgj, which is where we are comparing the cross section to
experimental data. Also, since there is a cancellation
between the real and virtual contributions to the cross
section, and the latter includes a z, integral over the full
range 0 < z, < 1, one could in fact argue that this choice
minimizes the net effect of very large invariant mass states
in the photon on the cross section.

The above discussion only applies to the gg term (7)
in the cross section. The virtual correction in Eq. (8) is
already integrated over z, and cannot be evaluated at a
Zp-dependent rapidity. Thus for this term dipole operators
are taken to be independent of z, and evaluated at rapidity
Y = In 1/xg;. Using a z,-independent dipole is justified, as
the region z, < 1 gives only a negligible contribution to the
virtual correction. Including these formally subleading
effects, namely the z,-dependent dipole operator, in the
virtual term and improving the approximation ¥ ~ In 1/xg;
is left for future work.

The choice Y ;s = 0 removes the unphysical transient
effect, but it forces us to confront another problem that the
earlier formulation of Ref. [16] wanted to avoid by
choosing a larger Y ;. Namely, at the lower end of the
z, range we are forced to evaluate also the (BK-evolved)
dipoles at a rapidity scale that is lower (or xg; scale that is
higher) than where the BK equation is normally used. Now
we again have different options regarding the rapidity
where we start the BK evolution. We parametrize this
choice by another constant Y, g, whose value can also be
chosen in different ways.

One way is to take Y gx = Y i = 0, in which case we
simply start the BK evolution much earlier (much higher
xgj) than where we are actually calculating the cross

section. Here the contribution of the unphysical small
rapidity or large x phase space to the cross section (7) is
suppressed, because target gets more and more dilute
following the evolution backward to smaller rapidities.
This procedure changes the way the parametrization of the
initial condition for the BK evolution should be interpreted.
In this approach, the quantity that can meaningfully be
compared to the initial dipole amplitude at x = x5 ~ 0.01 in
LO fits is not the actual initial condition at ¥ = Y gx = 0,
but the result obtained after ¥ = In 1/0.01 units of rapidity
evolution.

Another option is to take a more typical initial energy
scale for the BK equation, which we here take as
Yopk =1In1/0.01. In this latter case one has to model
the dipole amplitude in the region Y, <Y < Yypk. In
this case, we simply assume that the dipole operator is
independent of Y in this region, which is “before the initial
condition” in Y. Assuming an energy-independent dipole
amplitude in this region is consistent within the accuracy of
the framework.

To summarize, we have two parameters that we must
choose, Yy i and Y,pk. In this work we always take
Yy it = O to avoid the large transient effect at xg; ~ e~Yoir in
the data region. We then apply two approaches for the
parameter Yopgx. The first option is to start the BK
evolution at rapidity Yopx =In1/0.01 and freeze the
dipole amplitude at ¥ < Y gkx. The second option is to
also start the BK evolution at rapidity Y,gx = Y ;s = 0.

We recall that the dipole amplitudes in the cross section
Eq. (7) are evaluated at a rapidity

Kw?
Y=Int—o=In" 22,
P02

(19)

Note that the maximum rapidity Y., encountered is
obtained at the z, — 1 limit

2

Yiax =In— =1In

Q() Z2,min N YO,lf’ (20)
corresponding to values of Y probed by the z, integral in
the cross section ranging from Y jr to Yy, i.e., over a
rapidity interval AY = In1/z ;. When Y gk > Y i, the
actual range of BK evolution is smaller by Y gk, and for
Yo.ir <Y < Y, pk the dipole does not change. We empha-
size that the evolution rapidity depends only on the total
center-of-mass energy W2 and not explicitly on Xgj Or 0>
This is natural, as the scattering amplitude for a dipole with
a fixed transverse size can only be sensitive to the total
center-of-mass energy, and strictly speaking the dipole does
not exactly know about the photon virtuality or the
Bjorken x.
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C. Kinematically constrained BK

As discussed previously, in order to keep the computa-
tional cost of the fit procedure manageable, we do not use
the full NLO BK equation to obtain the rapidity depend-
ence of the dipole scattering matrix S. Instead, we use
modified versions of the leading-order evolution equation
that resums the most important higher-order corrections, in
particular the collinear double logarithms.

First, we use the KCBK equation [20] that is nonlocal in
the projectile momentum fraction (i.e., the evolution
variable Y):

yS(xo1,Y)

:/deZKBK(XO»XI’XZ)Q(Y_AOIZ_YO,if)
X [S(X02. Y = Ap12)S (X021, Y = Agpn) = S(x01. V)]  (21)

with

2
X01

2 w2
min{Xg,, X
Ay, = max {0, IHM}. (22)
This equation explicitly forces time ordering between
subsequent gluon emissions. The theta function ensures
that only dipoles in the range Y > Y ;; are included.

D. Rapidity local resummed BK

The most important higher-order corrections to the BK
equation that are enhanced by double large transverse
logarithms can be resummed alternatively into a kernel
that is local in the evolution rapidity Y by a method
introduced in Ref. [21].” This procedure resums exactly the
same contributions that are included in Ref. [20] to derive
the kinematically constrained BK equation shown above in
Eq. (21). A practical advantage of the approach taken in
Ref. [21] is that the resulting equation is local in evolution
(projectile) rapidity, and as such numerically easier to solve
using standard Runge-Kutta methods. In addition to the
double transverse logarithms resummation, the contribu-
tion of some of the single transverse logarithms present in
the NLO BK equation can be included following Ref. [22],
keeping the equation local in rapidity. In Ref. [81] it was
shown that this resummed BK equation is in practice close
to the kinematically constrained BK equation discussed
previously. As the resulting resummed evolution equation
is written in terms of the projectile rapidity Y, it can be used
with the impact factors exactly as the kinematically con-
strained BK equation.

The resummed equation is obtained by multiplying the
BK kernel (15) by KppaKsri, where Kppa is a

The double log resummation was further developed in
Ref. [23]; in this work we however use the result from Ref. [21]
numerically implemented in Ref. [25].

resummation of double and Kgp single transverse loga-
rithms. The kernel resumming the double transverse
logarithms reads

Jl (2 &sz)

=, (23)

KprLa = -
A X

with x = /Inx3,/x3,Inx3,/x3, and @, = aN./z. If
Inx3,/x3, Inx3,/x3, < 0, an absolute value of the argument
is used and the Bessel function is changed to J; — I;; see
Ref. [21]. The single transverse logarithms ~a In 1/ (x7,07)
are included multiplying the kernel multiplied by

}. (24)

In Ref. [25] it was shown that the resummation of single
transverse logarithms can be done such that the resummed
equation is a good approximation to the full NLO BK
evolution by adjusting the constant Cg,;, whose numerical
value is not fixed by the resummation procedure. This
renders the O(a?) contributions in the NLO BK equation
that are not enhanced by large (single) transverse logarithms
minimal. With this procedure, one obtains a rapidity local
projectile momentum fraction resummed BK equation which
we use as an approximation to the full NLO BK equation
(with a resummation of large transverse logarithmic correc-
tions), with Cg,, = 0.65 determined in Ref. [25].

The resummation of the single transverse logarithms is
completely independent of the resummation of the double
transverse logarithms and thus could be included in the
same way also in the other studied evolution equations. In
this work, however, we only include this contribution in the
ResumBK evolution, as we prefer to work with the
established versions of the BK evolution. We will discuss
the effect of the single transverse logarithm resummation
on our fits in Sec. V.

aSNCAl
T

2
Csubx()l

Kt = exp {—
P S
min{xg,, X{, }

E. Target momentum fraction evolution

As discussed in detail in Ref. [23], it is possible to
formulate the evolution in terms of the target rapidity 7
defined as a logarithm of the minus component of the
momentum. This corresponds to a fraction of the total
longitudinal momentum of the target, which is the variable
used in its DGLAP evolution, and also the usual physical
interpretation of xg; in the parton model. In order to
translate a plus momentum to a minus, one needs to have
access to the correct transverse momentum scale. In the
case of the whole DIS process this would naturally be Q2.
Thus we would want to define things in such a way that the
largest evolution rapidity reached in the process is
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2
1
nmaXNYmax_an_zzln_’ (25)
0p XBj

with Y.« from Eq. (20). Here we see that the target rapidity
n is directly related to the Bjorken x in DIS, as expected.
Thus, similarly as one can think of evolution in Y as
evolution in In W2, evolution in # corresponds to evolution
in In1/xg;.

The complication in using the target momentum fraction
is that both the evolution equation and the impact factors
are written in transverse coordinate space, which is natural
for the eikonal interaction with the target. Thus the gluon
transverse momentum is not very explicit in either. The
usual procedure is to use an uncertainty principle argument
and estimate the transverse momentum as the inverse of the
corresponding transverse distance. In both the BK equation
and the impact factor one integrates over transverse dis-
tances up to infinity, which would correspond to zero
transverse momentum and infinite # (for a fixed Y).
Distances longer than some nonperturbative scale should,
however, not have a significant effect on the physics. Thus
we do not want large dipoles with sizes above a (soft) target
transverse momentum scale 1/Q3 (the same Q3 that we
have already used) to appear in the relation between the
rapidities Y and 7. In practice we are thus led to consider a
dipole of size r at a projectile momentum fraction corre-
sponding to Y, to have a target evolution rapidity # given by

2, 22
In 1 —1nW Z, min{l, r QO}. (26)

=Y - =
1 min{1, 202} 02

We see that with this definition we always have n <Y,
which corresponds to the fact that for perturbative size
dipoles r* < 1/Qj3 we always have less evolution in 7 than
in Y [see Eq. (29)].

The evolution equation for the dipole amplitude in terms
of the target rapidity # was derived in Ref. [23] as’

8:15(’(01,’7) = / dzZKBK(XOv X1.X2)0(n =19 gk — )

X [S(X2.11 = 802) S(X21,11 = 821) = S (Xo1.7)].
(27)

where S refers to the dipole scattering matrix depending on
the target rapidity #, instead of projectile rapidity Y. This
evolution equation then needs to be provided with an initial
condition at the initial rapidity #,pg. We include running
coupling corrections and use the kernel Kgg(Xg,X;,X>)
from Eq. (15). The rapidity shift reads

4Compared to the recent analysis in Ref. [82], we include the
step function 6(5 — 79k — 6) and leave the resummation of the
single transverse logarithms for future work.

%2
8 = max {0, lnx—gl}. (28)
ki

The step function with § = max{&y,, 6,;} ensures that the
equation is a well-defined initial value problem and no
information about the dipole amplitude for 7 < gk
affects the evolution. When calculating the cross section,
we use S(r,n) = S(r,nopk) for n < nopx-

Equation (27) is the “canonical” BK equation from [23],
which contains an all-order resummation of the double
collinear logarithm enhanced corrections, and thus is
perturbatively correct up to an error of O(a2). The full
NLO BK evolution in target rapidity has not been solved
numerically so it is not known in practice how well this
resummation captures the NLO effects. In Ref. [23] a
comparison is made between two formulations of the
equation with double logarithm resummations, and the
differences are minor and mostly in the early evolution. The
resummed evolution is also compared to the LO BK
evolution formulated in target rapidity, and the resummed
evolution is found to be notably slower.

To use the target rapidity dependent dipole amplitudes in
the NLO impact factors, we simply need to replace the
dipoles in the impact factor with the #-dependent dipoles.
The rapidity argument is determined by using z, to obtain Y
with Eq. (19), which is then transformed into # using
Eq. (26), i.e.,

S(Xij7Y) —>S<Xij,l’]—Y—ln (29)

1
min{1, x%Qé})

with Y defined in Eq. (19). The regulator ensures that the
rapidity shift is always negative, consistent with the
definition (26) and with the rapidity shift in the TBK
evolution equation (28).

Let us finally discuss the kinematical limits in the z,
integral and their connection to the target momentum
fraction probed by the process. The lower limit z, >
Z>.min Of the z, integral (18) corresponds to the lower limit
of the 5 values probed by the impact factor

n > YO,if —|—ln min{l,er(z)}. (30)

With our choice Y = 0 the values of # needed in the cross
section always extend down to evolution rapidities before the
initial condition that is imposed at 7y k. In this region
1 < no gk the dipole operators are, as in Ref. [82], just frozen
to the initial value: S(r,n < nopx) = S(r,nopk)- At the
upper limit z, = 1, on the other hand, the largest values of 7
are reached for r > 1/Q,, with the range in n extending up to

2
’1<an—, (31)
0
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which is the same as the maximum Y reached in projectile
momentum fraction evolution. Here let us note two things.
Firstly, the min function used in defining the target momen-
tum fraction rapidity (26) prohibits # from getting infinitely
large (which would require an infinite amount of evolution)
for very large dipoles r > 1/Q, that are not expected to
contribute significantly to the cross section. Secondly, the
amount of evolution, or largest rapidity reached, in target
momentum fraction given by xgj, as in Eq. (25), strictly
speaking applies only to typical dipole sizes r ~ 1/Q. For
larger dipoles 1/Q < r < 1/Q, one actually evolves further
in the target momentum fraction.

F. Running coupling

For the strong coupling constant in coordinate space we
use the expression

4
o (xj;) = P . (32)
S\ /c 1€
Poln ()" + (F26—)"°]
QCD ij**QCD

with = (11N, —2Ng)/3 and Ng =3, Agcp = 0.241 GeV.
The parameter C> controls the running coupling scale in the
transverse coordinate space, i.e., a;(k’>~C?/r*). From
Fourier analysis it has the expected value of C?> = e=/r
[83,84]. In this work, however, we take C? to be a fit
parameter to absorb missing nonperturbative or higher-
order contributions in the modified evolution speed, sim-
ilarly to previous LO fit studies [8,9]. The parameters u,
and ¢ control how the coupling is frozen in the infrared, and
we choose yy/Agcp = 2.5 and ¢ = 0.2. With this choice,
the coupling freezes to @, = 0.762 in the infrared.

We have performed fits with two different running
coupling prescriptions. The first one is denoted Balitsky
+ smallest dipole (Bal + SD) scheme below. In this
scheme, we use the Balitsky prescription from Ref. [78]
in the BK evolution as in Eq. (15). In the NLO impact
factor, Eq. (7), and in the terms resumming large transverse
logarithms, Eqgs. (23) and (24) in the ResumBK evolution
equation, the scale is set by the smallest dipole

as,sd(x(z)l’ X%z’ X%1) = a,(min {X%p X%r X%l})' (33)

Note that the Balitsky prescription reduces to the smallest
dipole one when one of the dipoles is much smaller than the
others. For comparison we also use another scheme
denoted as parent dipole. Here, the scale is always set
by the size of the parent dipole, both in the evolution
equation and in the impact factor.

In the LO-like 657 term of the impact factor, Eq. (8),
there are no daughter dipoles in the scattering state. For this
term the smallest dipole scheme is equivalent with the
parent dipole scheme.

G. Initial conditions

The initial condition for the (projectile momentum
fraction) BK evolution is parametrized at rapidity
Y = Yypk. We use the MV parametrization used previ-
ously in similar fits [7,8] and write the initial condition as

S(xijv Y =Ypk)

(X?j 20) 1
—1 . 34
4 ! <|Xz’j|AQCD * eﬂ (34)

The fit parameters in the initial condition are Q2,, which
controls the saturation scale at the initial x, and the
anomalous dimension y, which determines the shape of
the dipole amplitude at small [x;;|. We note that this
parametrization results in both a negative unintegrated
gluon distribution and negative particle production cross
sections in proton-nucleus collisions at high transverse
momenta if y > 1. As the inclusive DIS measurements are
not sensitive to asymptotically small dipoles, we do not
consider our dipole amplitude to be valid in that region and
as such, having an anomalous dimension y > 1 is accept-
able. The practical interpretation of y in our fit is that it
controls the shape of the dipole amplitude in the transient
region r ~ 1/Q,. The leading-order BK fits to HERA data
generally prefer y ~ 1.1 [8,9], and similar results were
found in recent fits where the BK equation with some
higher-order corrections resummed [82] was used. For a
detailed discussion related to the Fourier positivity of the
dipole amplitude, the reader is referred to Ref. [85].

For the local resummed projectile momentum fraction
(ResumBK) evolution, the resummation should also in
principle affect the initial condition [21]. However, as the
initial condition is in any case a nonperturbative input, we
will use the same parametrization of Eq. (34) also for
solving the ResumBK equation.

For target momentum fraction evolution, the initial
condition for the evolution (27) corresponds to the scatter-
ing amplitude S(r,77 = nopx) at some rapidity 79 gx. We
use the same parametrization, Eq. (34), as in the case of
projectile rapidity evolution.

= exp [1 -

IV. AVAILABLE DIS DATA

The HERA experiments H1 and ZEUS have published
their combined measurements for the reduced cross section
o, in Refs. [1,2]. Additionally, the charm and bottom quark
contributions to the fully inclusive data are available [3,4].
As the impact factors at next-to-leading-order accuracy in
the massive quark case are not available, we only calculate
the light-quark contribution to the photon-proton cross
section. In the leading-order fits [8,9] it has been possible to
obtain a good description of the fully inclusive data with
only light quarks, even though the charm contribution is
significant (parametrically up to ~40% at Q* > m?2). On
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the other hand, the leading-order fits aiming to simulta-
neously describe the total and charm structure function data
require separate parameters (e.g., different transverse areas)
for the light and charm quarks [8] or an additional effective
soft and nonperturbative contribution [29,40].

In this work we consider two different setups. First, we
follow the strategy that has been successfully used at
leading order, calculate the light-quark contribution to
the structure functions, and compare with the inclusive
HERA data from Ref. [1]. We note that the newer combined
dataset containing data from the HERA-II run is also
available [2], but at low x and moderate Q? the two
datasets result in very similar fits (see e.g., Ref. [86]).

As a second approach, we construct an interpolated
dataset that only contains the light-quark contribution.
Since the charm and bottom data are not measured in
the same kinematical x, Q2 bins as the inclusive data, it is
not possible to just subtract the heavy quark contribution
from the fully inclusive cross section. Instead, we use a
leading-order dipole model fit from Ref. [86], where the
Bjorken-x and dipole size r dependence is described using
the so-called IPsat parametrization [87]. This parametriza-
tion includes a smooth matching to the DGLAP evolution
[88-91] in the dilute region, and at large dipoles or
densities the scattering amplitude saturates to unity. The
advantage of this parametrization is that it results in an
excellent description of both inclusive and heavy quark
datasets. Consequently, it can be used to interpolate the
charm and bottom contributions to the structure functions.
We use this parametrization to subtract the heavy quark
contributions from the measured reduced cross section. We
then use this interpolated light-quark-only data in the NLO
fits. In our procedure we do not modify the uncertainties of
the inclusive data in the subtraction (another possible
approach would be to reduce the uncertainties proportion-
ally). This is not really a consistent treatment for the errors;
ultimately only the experimental collaborations would be in
a position to correctly take into account the correlation
between errors in the total and heavy quark data. Thus the
errors and consequently y> values in the light-quark fits are
not correct statistically. However, we expect the magnitude
of the uncertainties to only affect the final fit qualities and
to have only a limited effect on the extracted best fit
parameter values and the interpretation in terms of physics.
This detail must be kept in mind for the interpretation of the
x> values from the light-quark fits.

The total reduced cross section for some Q2 bins from
HERA [1] is shown in Fig. 1 and compared with the result
obtained by the IPsat fit mentioned above. The description
of the data is excellent. The interpolated light-quark data in
the same kinematics are also shown and compared to the
light-quark reduced cross section computed using the same
IPsat fit.

When fitting the initial condition for the BK
evolution, we consider data points in the region

1.6
14k T Dk L
1.2+ -

S 10k -
0.8 Hys & -

LY

0.6 [Q? = 27GeVERy (02 —65GeV?  %a
04 PERTTTT BT ETTTY M Srw . S| MERTTT B EERETIT MR T
1.5
1.4+ 3
1.3+ H
1.2+ 3

& 1.1F 3
1.0 3
0.9F %} 3 *
0.8 * F \f
0.7 g2 :Iﬁo(;ev’I FQ? = 120 GeV? Y FQ2 = 200 GeV? M
06 TRETIT BRIt BN AT] . " ' . " '

1071 1073 1072 1071 1073 1072 107 1073 1072
CCBj CCBj a?Bj
FIG. 1. Total reduced cross section (black triangles) from

Ref. [1] and interpolated light quark pseudodata (red circles)
in a few Q2 bins. The solid and dashed lines show the calculated
cross sections from the IPsat fit that are used to generate the
pseudodata.

0.75 < Q% < 50 GeV? at x < 0.01. This results in N =
187 data points to be included in the fit. Although the
correlation matrix for the experimental uncertainties is
available [1], we do not take these correlations into account
as we expect it to have only a negligible effect in our fits.

V. FIT RESULTS

In this section we will look at our fit results. The
discussion is divided first by the data that are being fitted,
followed by a comparison of the evolution prescriptions in
the kinematical domain accessible in future DIS experi-
ments, which lies outside the HERA region included in
the fits.

Let us first recall the essential details of our fit schemes.
The choice of a fit scheme consists of the version of the BK
evolution equation (discussed in Secs. III C-IITE), the
running coupling scheme (see Sec. III F), and the starting
point of the BK evolution, parametrized in terms of Y, gk or
nopk- The fit results in values for the free parameters
characterizing the initial condition as discussed in Sec. III
G: Qfo, o, and 7, and in a value for the parameter C? in the
scale of the running coupling; see Sec. III F.

Our main fit results are presented in Tables I-III
classified by the BK equation used, with secondary and
tertiary grouping keys being the running coupling scheme
and Y gk (or 17y gk ) controlling the rapidity scale of the BK
initial condition used in the fits. The saturation scale Q2
defined as N(r> =2/Q?) =1-¢~'/? is also shown at
fixed projectile rapidity ¥ = In ﬁ. We will first discuss in
the next subsection the fits to the full HERA reduced cross
section data, and in the following subsection the fits to the
interpolated light-quark pseudodata presented in Sec. IV
and labeled as light-q in the tables where the fit results are
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TABLE 1. Fits to HERA and light-quark data with the KCBK evolution.

Data a YoBK 7*/N 20 [GeV?] c? 4 09/2 [mb] QXY =Ingh;) [GeV?]
HERA Parent In o,lﬁ 1.85 0.0833 3.49 0.98 9.74 0.11

Light-q Parent In ﬁ 1.58 0.0753 37.7 1.25 18.41 0.11

HERA Parent 0 1.24 0.0680 79.9 1.21 18.39 0.20

Light-q Parent 0 1.18 0.0664 1340 1.47 27.12 0.14

HERA Bal + SD In ()]W 1.89 0.0905 0.846 1.21 8.68 0.13

Light-q Bal + SD In olﬁ 2.63 0.0720 1.91 1.55 12.44 0.11

HERA Bal + SD 0 1.49 0.1114 0.846 1.94 8.53 0.26

Light-q Bal + SD 0 1.69 0.1040 2.87 7.70 12.09 0.14

TABLE II. Fits to HERA and light-quark data with local projectile momentum fraction evolution (ResumBK).

Data ag Yo K 2*/N 07, [GeV?] c Y 09/2 [mb] 03 (Y = Inggy) [GeV?]
HERA Parent In ﬁ 2.24 0.0964 1.21 0.98 7.66 0.13

Light-q Parent In ﬁ 1.62 0.0755 11.7 1.24 16.53 0.11

HERA Parent 0 1.12 0.0721 89.5 1.37 19.68 0.21

Light-q Parent 0 1.18 0.0794 1480 1.92 26.69 0.18

HERA Bal + SD In ﬁ 2.37 0.0950 0.313 1.24 7.85 0.14

Light-q Bal + SD lnﬁ 2.21 0.0796 0.684 1.81 11.34 0.13

HERA Bal + SD 0 2.35 0.0530 0.486 1.56 10.10 0.23

Light-q Bal + SD 0 3.19 0.0566 1.27 9.35 14.27 0.13

TABLE III.  Fits to HERA and light-quark data with TBK evolution. Note that the saturation scale Q% is extracted at fixed projectile

rapidity Y to allow comparisons with the projectile momentum fraction evolutions.

Data o mec /N Q% [GeV?] c v 0o/2 [mb] QY = Inggy) [GeV?]
HERA Parent In ﬁ 2.76 0.0917 0.641 0.90 6.19 0.11
Light-q Parent In ﬁ 1.61 0.0729 14.4 1.19 16.45 0.10
HERA Parent 0 1.03 0.0820 209 1.44 19.78 0.23
Light-q Parent 0 1.26 0.0731 8050 1.86 29.84 0.16
HERA Bal + SD In ﬁ 2.48 0.0678 1.23 1.13 10.43 0.09
Light-q Bal 4+ SD In Olﬁ 1.90 0.0537 3.55 1.59 16.85 0.08
HERA Bal + SD 0 2.77 0.0645 3.67 6.37 14.14 0.15
Light-q Bal + SD 0 1.82 0.0690 822 8.35 29.26 0.14

shown. The two datasets differ enough to warrant their own
discussion.

A. Fitting the HERA reduced cross section

Before we discuss the results and their systematic
features in more detail we show in Fig. 2 that all three
BK evolutions combined with next-to-leading-order impact
factors are capable of describing the HERA data equally
well. The results shown are obtained using the Bal 4+ SD
running coupling, and Y,px = 1ok = In1/0.01, but
excellent fit results are obtained with other scheme choices,

too. Even though the resulting parametrizations for the
dipole at initial rapidity can differ significantly, the result-
ing reduced cross sections are mostly indistinguishable.
We first present in Table I the fit results obtained using
the kinematically constrained BK equation as discussed in
Sec. III C. We find a very good description (y>/N = 1.49)
of the HERA data using our main setup with the Bal 4+ SD
prescription and Yogx = 0. We consider this as our
preferred HERA data fit, with a BK equation derived in
the same framework as the impact factor, a theoretically
preferred running coupling scheme, and only one starting
scale Yy i = Yopk = 0. We note that starting the BK
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FIG. 2. Reduced cross section obtained using the fits with
different BK evolutions compared with the HERA data [1].
Balitsky + smallest dipole running coupling is used, with
Yopk =1n1/0.01.

evolution at Yopx = lnﬁ (and freezing the dipole at
smaller rapidities) results in an equally good fit. This
suggests that we are only weakly sensitive to the details
of extrapolation scheme used to describe the dipole
amplitude in the region Y, ;s < Y < Y k. The parameter
C? controlling the evolution speed is not required to be
large as it is in the case of leading-order fits, where one
generally finds C? ~ 10 [8.,9]. Instead, we find C* = 0.85,
which is of the same ballpark as the general estimate C?> =
e E 0.3 [83,84].

As seen in Table 1, larger values of C? are required in the
parent dipole scheme fits. This is expected, as C> maps the
coordinate space scale X;; to momentum space C*/x7;, and
in the parent dipole scheme the coordinate space scale is
generically larger. Consequently a larger C? is needed to
render the strong coupling values and the resulting evolu-
tion speeds, comparable between the coupling constant
scheme choices.

We generically find y > 1 at the initial condition, with
the exception y = 1 found in the case where the evolution
starts at Y px = lnﬁ and the parent dipole prescription
for the running coupling is used. We note that y > 1 is also
required in the leading-order fits to obtain a O dependence
at the initial condition compatible with the HERA data
[8,9]. The disadvantage of an initial condition with y > 1 is
that, as discussed in Sec. III G, it results in the unintegrated
gluon distribution not being positive definite at large
transverse momenta.

To understand why different running coupling prescrip-
tions result in different initial anomalous dimensions, we
study the slope of the dipole defined as

_ dInN(r)

y(r) = “dn2 (35)

1.2 prmsesssinn
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FIG. 3. Anomalous dimension evolution with KCBK,

Yopk = In1/0.01. Computed from fits to HERA data.

For the KCBK fits this is shown in Fig. 3 as a function of
dimensionless dipole size rQ,. The kinematically con-
strained BK equation is found to keep the anomalous
dimension (slope at small r) approximatively constant at
very small r, unlike the leading-order BK equation. A
similar effect was found in case of the ResumBK equation
in Ref. [25].

At intermediate r~ 1/Q, which dominates the cross
section, there is clear evolution toward an asymptotic
shape. Let us first focus on results where the smallest
dipole Bal + SD coupling is used. Here, the anomalous
dimension is large at the initial condition and the evolution
decreases the slope at intermediate rQ,, which results in the
cross section growing more rapidly with Q. If the BK
evolution is started at the rapidity scale from which there is
a long evolution before entering the data region (i.e.,
Yopk = 0), a larger initial anomalous dimension is
required in order to obtain the shape dictated by the Q2
dependence of the HERA structure function data
around r ~ 1/Q;,.

Let us then consider the evolution with the parent dipole
prescription. In this case, we start from a relatively small
y = 0.98, and the evolution increases the slope at small (but
not asymptotically small) r. This can be seen to stem from
the fact that in the parent dipole prescription the coupling,
and consequently the evolution speed of the dipole ampli-
tude N(r), grows more as a function of parent dipole size r
in comparison to other running coupling prescriptions. At
larger r, the slope evolves only slightly. After a few units of
rapidity evolution, the dipole amplitudes have the same
shape in the r ~ 1/Q; region independently of the running
coupling prescription. This is expected, as r ~ 1/Q; size
dipoles dominate when calculating the structure functions
in HERA kinematics.

Next we move to the local projectile momentum fraction
(ResumBK) fits, the results of which are shown in Table II.
In general, the results are close to the ones previously
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discussed in case of the kinematically constrained BK
equation. This is not surprising, as both equations are
designed to include the same subset of higher-order
corrections enhanced by large double transverse loga-
rithms. Similarly to the preferred fit with KCBK, in the
ResumBK fit to HERA data with Bal + SD and Y gx =0
the obtained C? is quite small at C> % 0.49 ~ e~%¢ and the
anomalous dimension is large, y = 1.56. The obtained
anomalous dimension values behave similarly as in the
case of KCBK, and there similarly seems to be a systematic
preference for smaller 6y/2 with the Balitsky + smallest
dipole coupling.

The ResumBK equation evolves generically more slowly
than the KCBK equation, which is reflected in the required
C? values being smaller (except in the case Y, gx = 0 with
parent dipole prescription when the C? values are compa-
rable). This is a consequence of the ResumBK equation
including an additional resummation of some single trans-
verse logarithms. The main effect of this resummation is
that it results in a slower evolution; see discussion in
Sec. IIID. We have confirmed numerically that if the
resummation of single transverse logarithms is not
included, our fit results are almost intact, except that a
larger value for the parameter C? is obtained.

In both ResumBK and KCBK fits with Bal 4+ SD
running coupling, the obtained values for the proton
transverse area o,/2 are generally smaller than what is
found in leading-order fits with similar running coupling
schemes, with or without a resummation of large transverse
logarithms [8,9,82]. The obtained saturation scales at
Y = lnr})l, on the other hand, are comparable to the
leading-order fit results. In the LO fits, one typically
obtains ¢(/2 ~ 16 mb (proton sizes comparable to our
results were found in the leading-order fit presented in
Ref. [81] where double logarithmic corrections were
resummed in the BK equation similarly as in our setup).

We note that the proton transverse area can in principle be
obtained by studying the squared momentum transfer ¢
dependence of exclusive vector meson production. If the
cross section is written as e~?ol!l at small |¢|, the HERA
measurements on J/y production [92,93] give Bpx
4 GeV~2. Depending on the assumed proton density profile,
this corresponds to 6 /2 ~ 9.8...19.6 mb (using Gaussian or
a step function profile). As the vector meson ¢ spectra are not
measured precisely enough especially at large ||, the exact
form of the proton density profile cannot be deduced.
Consequently, we find that all obtained values for the proton
transverse size oy/2 in our fits to HERA reduced cross
section data are compatible with the J/y spectra. However,
we also note that the step function profile is not really favored
by the HERA data [94]. Thus one would prefer values that are
in the lower part of the range 6/2 ~ 9.8...19.6 mb. Indeed,
especially with the Balitsky + smallest dipole running
coupling, our fit results for the proton size also favor such
smaller target sizes for the proton.

As we are neglecting the impact parameter dependence,
we cannot compute the evolution of the proton transverse
area and consequently use a fixed o(/2 at all xg;. We note
that the HERA vector meson production data [93,95]
suggest that the transverse area depends logarithmically
on the center-of-mass energy. This growth is effectively
included in the energy dependence of the proton saturation
scale in our framework.

Let us finally discuss the results obtained with the third
evolution equation considered in this work, the BK
equation formulated in terms of the target momentum
fraction (TBK). The fit results in this case are shown in
Table III. While the fit qualities overall are quite similar to
the projectile momentum fraction setups, we find some
departures from the shared qualitative features of the
KCBK and ResumBK fits. With the Balitsky + smallest
dipole running coupling the TBK evolution needs to be
slowed down more with a larger values of C> compared to
KCBK and ResumBK equations. The TBK fit with
parent dipole coupling is more mixed in this respect: with
no.sk = O setups the C? values are quite a bit larger but then

1

with 79 gx = Ingg7 the HERA data fit is found to require

only a small C?.

Comparing the initial conditions with 7ygx = 0 and
NoBK = lnﬁ we see that every evolution starts from a
significantly larger anomalous dimension when 7 gk = O.
This difference is more pronounced compared to the
previously studied KCBK and ResumBK equations. This
is because the TBK evolution drives the dipole toward the
asymptotic shape with a small anomalous dimension
y ~ 0.6 [23]. This behavior is similar to the leading-order
BK equation, in which case it is already known that the
asymptotic shape cannot be used to parametrize the initial
condition [8].° Indeed the development of the geometric
scaling regime independently of the initial condition is a
theoretically attractive feature of the TBK formulation.
However, HERA data seem to prefer to lie in the pre-
asymptotic regime in the fits. Thus, especially in the fits
with more evolution before the data region (smaller 7 gk ),
one needs to slow down the evolution more and start with a
significantly larger anomalous dimension in order to still
have a transient form of the dipole amplitude in the data
regime.

The evolution of the dipole slope in TBK evolution is
shown in Fig. 4 at different evolution rapidities #. Unlike in
the case of KCBK equation discussed earlier and shown in
Fig. 3, the slope of the dipole from the TBK evolution is
decreasing with both running couplings in the r~ 1/Q;
regime. As shown in Ref. [23], the asymptotic anomalous
dimension y ~ 0.6 is obtained only at very large rapidities,
and at least the Bal + SD coupling case can be seen to be

’In [96] an asymptotic form of the initial condition produces
working results only when a significant additional ‘“energy
conservation” correction in the BK evolution is used.
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M — Bal+SD, Ay =058, Q, = 0.348 GeV
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FIG. 4. Anomalous dimension evolution with TBK, using the
initial conditions parametrized at 7ygx = In ﬁ. The evolved
rapidity range from the initial condition is denoted by An.

evolving toward this asymptotic value. In the rapidity range
relevant in HERA or even LHeC kinematics the asymptotic
anomalous dimension is not reached. With the parent
dipole coupling, a significantly longer evolution is needed
before evolution toward the asymptotic shape at small r
becomes visible in the best fit case with a small anomalous
dimension y = 0.9 in the initial condition.

The dipole amplitudes at different evolution rapidities as
a function of dipole size are shown in Fig. 5. Here, results
obtained using all three considered evolution equations are
shown at fixed projectile rapidity ¥ = Y,gx + AY. The
solution to the TBK evolution is shifted from the target
rapidity # to the projectile rapidity Y by performing the shift
(29). The shifted TBK solutions are shown in the region

o[ — KCBK, AY =058
10 E — KCBK,AY =518
[ -— ResumBK, AY = 0.58
1071 L == ResumBK, AY = 5.18
E - TBK, AY = 0.58
[ - TBK, AY =5.18
1072
= F
1073
10—4_
10*0 L Ll 1 reaal
1073 1072 1071 10"
r (fm)
FIG.5. Dipole amplitudes of the three BK equations at an early

and later stage in the evolution at constant evolution rapidities
Y = Yypk + AY, with TBK solutions in # shifted into Y. Balitsky
+ smallest dipole running coupling is used, with the initial
conditions from the fits with Yopx = 79px = In g37-

where 1 > 5y k. In the region where the dipole amplitude
is not small, all evolution equations result in comparable
dipole amplitudes. This is expected, as all the shown
dipoles result in a compatible description of the HERA
structure function data.

At small dipole sizes that do not significantly contribute
to the structure functions some differences appear. Despite
the fact that KCBK and ResumBK equations have very
similar initial conditions the resulting amplitudes differ
significantly for small dipoles. This is mostly driven by the
resummation of the single transverse logarithms not
included in the kinematically constrained BK equation,
as this resummation is more important at small parent
dipole size r. At very small dipoles the TBK evolved dipole
also differs significantly from the other dipoles when the
shift from target rapidity, Eq. (28), results in the dipole
being evaluated close to the initial condition. If the parent
dipole scheme for the running coupling were used, the
differences between the dipoles obtained from the different
evolution equations would be significantly reduced, as in
that scheme the coupling constant is generically smaller at
small r and differences between the evolution equations are
suppressed by the small .

B. Fitting the interpolated light-quark
reduced cross section

Next we consider fits to our interpolated light-quark
dataset. The fit results are also shown in Tables I-III.
Figure 6 shows a comparison between the HERA and
interpolated light-quark data with one of the fits, obtained
with the KCBK equation with the Balitsky + smallest
dipole running coupling and initial condition parametrized
at YO,BK =1In 1/001

The light-quark-only fits have quite distinct systematics
in comparison to the actual HERA data fits. Every single fit

1.4f
1.2F
w“ 10 [
o)
0.8F
0.6 HERA data
° LightQ data
Fit to HERA data
0.4F Fit to LightQ data

i

FIG. 6. Total and light-quark reduced cross sections computed
from KCBK fit compared with the light-quark pseudodata data
and HERA reduced cross section data [1]. Balitsky + smallest
dipole running coupling is used with Yk = In1/0.01.
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setup used needs a substantially larger C? and to a varying
degree larger anomalous dimensions. Lastly, and impor-
tantly, light-quark fits need larger values of 6, compared to
the corresponding total HERA cross section fit.

The slow evolution speed (visible as a large C? espe-
cially when using the parent dipole prescription) and a large
oy in the light-quark pseudodata fits can be understood to
result from an effective description of nonperturbative
effects. We expect that there is a nonperturbative hadronic
contribution in the light-quark production cross section
which is large (resulting in a large () and evolves more
slowly as a function of Bjorken xg; than the fully
perturbative cross sections, like charm production. In our
framework, these nonperturbative effects correspond to
large dipoles, with sizes larger than roughly the inverse
pion mass. In this case, quark-antiquark dipoles are not the
right degrees of freedom, and one should in principle use an
another effective description for the nonperturbative phys-
ics, e.g., the vector meson dominance [97-100] model.

The same nonperturbative effects are there also in the total
reduced cross section and, consequently, in our fits to full
HERA data. However, the full reduced cross section also
includes the more reliably perturbative charm production
contribution (and a small b quark one), with a much faster x
evolution and a smaller magnitude (¢,). Consequently, when
performing our (massless) NLO fits to the full HERA data
more weight is given to perturbative contributions compared
to light-quark fits, and there is less need for the fit parameters
to adjust to nonperturbative effects with unnatural values.

These observations are compatible with some of
the previous analyses. In the study by the AAMQS
Collaboration [8] it was found that a combined fit to both
charm and total reduced cross section requires one to
introduce separate fit parameters for the charm quarks,
especially the charm quarks require a smaller . A slowly
evolving nonperturbative contribution to the light-quark
production was also found to be necessary in Refs. [29,40].
In the dipole picture applied here, one finds that very large
dipoles up to a few femtometers contribute significantly to
the light-quark structure function [86]. In reality, non-
perturbative confinement scale effects not included in our
perturbative calculation are expected to dominate in these
cases as discussed above.

To arrive at one of our central points of this article, we
make the observation that even though the HERA DIS data
has been described well with leading-order dipole picture
fits with the BK equation in the past, simultaneous fits to
the full data and charm quark data have not been successful
with a single BK-evolved amplitude (note however the
existence of fits [94,101,102] using parametrizations that
mimic BK evolution). Similar results are found in the recent
study with the target rapidity BK prescription as well [82]:
fits to the full data are excellent but the fit parametrizations
do not describe the heavy-quark data. Our next-to-leading-
order analysis, where we separately consider the light-

quark production only, results in similar conclusions. This
indicates that the description of the light-quark contribution
has a large theoretical uncertainty as well in any such fit to
the full DIS data.

Thus we find that it would be preferable to fit the charm
quark structure function F, . separately (or inclusive Fj
data, as the longitudinal photon splits generally to smaller
dipoles, resulting in smaller nonperturbative contributions).
The F; measurements from HERA [103] are however not
precise enough for our purposes (see the next section). Very
precise F; data (among with inclusive and charm structure
functions) can be expected from the future Electron Ion
Collider [104,105] or from the LHeC [106].

C. Beyond HERA

Given the equality in the capabilities of the different
versions of the BK equation in describing the HERA and
light-quark data, a question arises if it is possible to
distinguish the different fit schemes and find the preferred
form of the BK equation. In general, one might expect to
see differences in the Q7 dependence of the structure
functions at small x (in the HERA kinematics, the fit
procedure ensures a compatible evolution). This is because
the Q? dependence is controlled by the anomalous dimen-
sion, which behaves differently in ResumBK and KCBK
evolutions, when compared to the BK equation formulated
in the target momentum fraction as shown in Figs. 3 and 4.

At asymptotically small x both approaches can result in
the same Q2 dependence of the cross section in spite of the
different anomalous dimensions. This can be seen as
follows. Let us first consider the BK equation formulated
in the target rapidity and write the dipole amplitude as
N ~ (Q?%r?). The TBK equation results in the saturation
scale scaling as Q2 ~ x™*, as the evolution range is In 1/ Xgj-
This gives N ~ xp;™7(Q?)77, and consequently the struc-
ture functions behave as

1
WFZ.L(QZ) ~ (%), (36)
where we have scaled out the Q° dependence originating

from the virtual photon wave function " ~94. Substituting
an asymptotic anomalous dimension y ~ 0.7 we get

WFZ,L(QZ) ~ (0%, (37)

On the other hand, when applying the KCBK or ResumBK
equations formulated in terms of the projectile momentum
fraction, the evolution range is controlled by In W? =
In(Q?/xg;). Consequently, we get Q2 ~(W?)*~(Q?/xg;)".
This gives
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1
2yr(A-1
sz.L ~(Q*)h. (38)
In general, in the case of ResumBK and KCBK we expect
y ~1 as the evolution does not change the asymptotic
anomalous dimension. Using 4 ~ 0.3 for the generic evolu-
tion speed we get

Fap~ly7 =912(Q%)"7, (39)

which is the same Q? scaling as obtained in case of TBK
equation; see Eq. (37).

In practice, however, in HERA or even LHeC kinematics
the TBK evolution has not reached its asymptotic form, and
the anomalous dimension is still close to unity as shown in
Fig. 4. Consequently, the Q? dependence is expected to be
slower in the TBK evolution in realistic kinematics. We
note that the structure functions are not actually sensitive to
the slope of the dipole at asymptotically small » but in the
region r~ 1/Q, or r~1/Q, which makes it in practice
difficult to compare Q? dependences analytically. We also
note that when computing the structure function at low xgj,
also dipole amplitudes at higher xg; are probed when
performing the z, integral.

The numerically calculated Q® dependence of the
structure functions F, and F; is shown in Fig. 7. The
results are shown at small xg; = 5.6 X 1073 corresponding
to the LHeC kinematics using each of the BK equations,
employing the fit to the full HERA data with the Bal 4+ SD
running coupling prescription and Y gx = #opx = In ﬁ.
For comparison, the leading-order result based on Ref. [9]
is shown. Compared to the leading-order fit, the Q7
dependence is weaker at next-to-leading order, due to
the different asymptotic shape of the dipole amplitude
(the leading-order BK equation develops a small anoma-
lous dimension y which results in faster Q> dependence).

The different fit schemes that result in an equally good
description of the HERA data start to differ slightly at large
Q? when considering the Bjorken-xg; region not included
in the fits. The longitudinal structure function F; is more
sensitive to small dipole sizes, and as such it can be
expected to be more sensitive on the details of the
evolution. This is especially visible when the ResumBK
evolution is compared to other approaches: the Q? depend-
ence is much weaker at large Q. This is due to the
resummation of single transverse logarithms not included
in other evolution schemes, which has the largest effect at
small parent dipole sizes probed at large Q>. However, in
the realistic kinematical range considered here, the differ-
ence between the fits is moderate. This suggests that our
next-to-leading-order predictions for the structure functions
in the future collider experiments are robust. Future high-
energy DIS data from e.g., LHeC will be extremely precise,
with the expected uncertainties in the structure function

— KCBK fit
35F ResumBK fit

——- TBK fit
30 L s LOBK fit

HERA data fit, Bal + SD
25 | YopK =08k = In ﬁ
g = 5.6 - 10-°

hc‘\] 2.0
1.5
1.0
0.5F
0.0 e
1.0 10.0 100.0
Q* (GeV?)
(a) Structure function Fs

0.7 F — xepk it

----- ResumBK fit
0.6 | ——- TBK fit

......... LOBK ht

0.5 MHERA data fit, Bal + SD
Yopk = no.pk = In 547

0.4 Fap =56-10"°
S ] o
L3
0.3
0.2
0.1
0.0 i
1.0 10.0 100.0
Q% (GeV?)
(b) Structure function Fp,
FIG. 7. Structure functions F, and F; computed from HERA

data fit parametrizations extrapolated to the LHeC kinematics.
For comparison, the corresponding leading-order predictions
from Ref. [9] are shown.

measurements being even at the per mill level [106]. As
such one could be sensitive to details in NLO BK evolution,
even though the effects are not large. Ultimately more
differential measurements in addition to the reduced cross
section will be needed.

The most precise measurement of the proton longitudinal
structure function F; up to date is performed by the H1
Collaboration at HERA [103] (with compatible results
obtained by the ZEUS Collaboration [107]). In Fig. 8
we compare the F; computed from our fits to the H1 data.
Due to the limited statistics, the most precise results are not
reported as a function of both x and Q2, but at fixed x, Q°
combinations. Consequently, it is crucial to note that the
higher Q2 points are measured at higher x. All three fit
setups result in almost identical F;, as expected as the F is
measured in the kinematical domain mostly included in our
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FIG. 8. NLO fit predictions of F'; compared to averaged H1
data [103]. Fits are to HERA data, with smallest dipole coupling

_ _ 1
and YO,BK = ’70,BK = ln 001

reduced cross section fits. Even though the future Electron
Ion Collider [104] will not reach as small Bjorken-x values
as the LHeC, the F'; measurements it can perform will be
very useful as the HERA measurement has large uncer-
tainties and it only covers a small fraction of the phase
space where the details of the evolution cannot be accessed.

VI. CONCLUSIONS

We have performed, for the first time, a fit to the HERA
structure function data in the color glass condensate
framework at next-to-leading-order accuracy in the case
of massless quarks. As the full next-to-leading-order BK
equation is computationally demanding, we approximate it
by employing evolution equations that resum higher-order
corrections enhanced by large transverse logarithms. As a
result of the fits, we obtain the initial condition for the
perturbative BK evolution. The resulting dipole-target
scattering amplitude can be used in other phenomenologi-
cal applications, for example when calculating particle
production in proton-nucleus collisions at next-to-leading
order in a.

Similarly as in the leading-order fits previously studied
in the literature, we find that it is possible to obtain an
excellent description of the precise combined HERA
structure function data. Equally good fits are obtained
when using both the BK equation formulated in terms of
the projectile momentum fraction, and the recently pro-
posed BK equation where the evolution rapidity is dictated
by the fraction of the target longitudinal momentum. When
extrapolated to LHeC energies, the different BK evolution
prescriptions are found to result in moderate differences in
the Q? dependence of the structure functions. This suggests
that the NLO calculation presented here is robust, and has a
strong predictive power for future DIS measurements in
new experimental facilities such as the EIC or LHeC.

As next-to-leading-order impact factors for massive
quarks are not yet available, it is not possible to compute
charm and bottom contribution to the structure functions.
To perform consistent fits, we also generated an interpo-
lated light-quark dataset by subtracting the interpolated
charm and bottom contribution from the HERA reduced
cross section data. Fits to these light-quark data require a
much slower Bjorken-x evolution than we naturally get
from the perturbative evolution equations applied.
Additionally, the apparent proton transverse size obtained
is significantly larger than seen when fitting the full HERA
data. These features we interpret to result from a non-
perturbative hadronic component in the light-quark pro-
duction cross section. This component is large (resulting in
a large proton transverse area) and evolves more slowly
as a function of Bjorken x, as expected for a hadronic
component.

Our results demonstrate the need for massive quark
impact factors at next-to-leading-order accuracy in the
CGC framework, which would allow fits to fully pertur-
bative charm cross section separately. Precise measure-
ments of the charm structure function over a wide range of
x and Qz, in addition to the longitudinal structure function,
from future experiments will also be useful. The fits to the
generated light-quark data should in principle be consid-
ered our principal preferred fits as there the agreement
between the data and the massless theory should be on the
most solid footing. However, if used for QCD phenom-
enology in other observables where the presumed non-
perturbative contribution is smaller, the best one can do is
use the full HERA data fits.

In addition to inclusion of the quark masses and the
usage of the full NLO BK, the NLO DIS calculation can be
improved by relaxing some of the kinematical assumptions.
First, in addition to the gluon momentum fraction z,, the
quark momentum fraction z; should not be allowed to get
arbitrary close to end points z; — 0,1 in order to avoid
production of gg pairs with invariant mass larger than the
center-of-mass energy. Additionally, in the virtual correc-
tion one should also perform the integral over the gluon
momentum fraction and evaluate the dipole operator at the
same rapidity as in the real term. This would make it
possible to also consistently include a (Q*-dependent
evolution range in the virtual contribution. Finally, when
the Balitsky prescription for the running coupling is used in
the BK evolution, there is a mismatch in the running
coupling schemes between the impact factor and the
evolution equation which could be improved. We plan to
address these issues in future work.
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