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ABSTRACT

This dissertation studies the inverse problem for a specific partial differential equation,
the so called fractional Calderén problem or inverse problem for the fractional Schrodinger
equation. The dissertation focuses mainly on uniqueness results for inverse problems
involving the Dirichlet to Neumann map, the object encoding exterior measurements in
the model. The included articles show how this information suffices to determine the
parameters involved in the problems considered.

The first article considers a fractional version of the inverse problem for the conductivity
equation, showing that the unknown conductivity can be recovered from the DN map even
in the case of a single measurement. The technique employed is the fractional Liouville
reduction, which allows one to state the problem in terms of the fractional Schrédinger
equation. The second article extends the known result for the fractional Schrédinger
equation to the magnetic case, showing how a nonlocal perturbation and a potential can
be both recovered up to a natural gauge. This resembles the results known for the local
case. The third article explores the fractional Schrédinger equation in a high order regime,
proving the injectivity of the relative DN map in both the perturbed and unperturbed
cases. This requires a high order Poincaré inequality, which has been studied in the
same paper. The fifth article follows the third one, extending the study to general local
high-order perturbations: the coefficients of any local lower order operator are shown to
be recoverable from the DN map. The fourth article studies the perturbed fractional
Calderén problem by means of the Caffarelli-Silvestre extension, transforming it into a
local problem with mixed Robin boundary conditions, eventually showing that the bulk
and boundary potentials can be recovered simultaneously. This requires some technical
Carleman estimates and the construction of a new class of CGO solutions.

The introduction of the dissertation contains a survey of the literature related to both
the classical and fractional Calderén problems, as well as a collection of the definitions of
the function spaces appearing in the articles. The appendix is an informal introduction
to key concepts in inverse problems and EIT, thought for the use of the general public.



TIIVISTELMA

Taman vaitoskirjan tarkoitus on syventdd ymmarrysté tietysta osittaisdifferentiaaliy-
htéloiden inversio-ongelmasta, niin sanotusta fraktionaalisesta Calderénin ongelmasta tai
fraktionaalisen Schrédingerin yhtalon inversio-ongelmasta. Viitoskirja keskittyy paaasi-
assa mallin ulkomittauksia karakterisoivan objektin eli Dirichlet-to-Neumann -kuvauksen
(DN-kuvauksen) injektiivisyyteen. Viitoskirjaan siséltyvit artikkelit osoittavat, kuinka
DN-kuvaus riittda méaaraamaan ongelman tuntemattomat aineparametrit.

Ensimmaéisessé artikkelissa tarkastellaan johtavuusyhtéloa koskevan inversio-ongelman
fraktionaalista versiota ja osoitetaan, ettd tuntematon johtavuus voidaan méaéarittaa DN-
kuvauksesta jopa yhden mittauksen tapauksessa. Kéiytetty tekniikka on fraktionaali-
nen Liouvillen reduktio, jonka avulla ongelman voi lausua fraktionaalisen Schrédingerin
yhtalon muodossa. Toinen artikkeli laajentaa fraktionaalisen Schrodingerin yhtélon tun-
netun tuloksen magneettiseen tapaukseen osoittaen, kuinka epélokaali perturbaatio ja
potentiaali voidaan molemmat maéaarittad luonnollista epéyksikésitteisyyttd lukuunot-
tamatta. Tamé& muistuttaa lokaalin tapauksen tunnettuja tuloksia. Kolmannessa ar-
tikkelissa tutkitaan korkean kertaluvun fraktionaalista Schrodingerin yhtaloa ja osoite-
taan DN-kuvauksen injektiivisyys sekéd perturboidussa etta ei-perturboidussa tilanteessa.
Téhan tarvitaan korkean kertaluvun Poincarén epayhtéalod, jota on tutkittu samassa ar-
tikkelissa. Viides artikkeli on jatkoa kolmannelle laajentaen tarkastelun yleisille lokaaleille
korkean asteen perturbaatioille: minkd tahansa lokaalin alemman asteen operaattorin
kertoimien osoitetaan olevan méaritettavissd DN-kuvauksesta. Neljannesséd artikkelissa
tutkitaan perturboitua fraktionaalista Calderénin ongelmaa Caffarellin-Silvestren laajen-
nuksen avulla muuttamalla se lokaaliksi ongelmaksi, jolla on sekoitetut Robin-reunaehdot.
Lopulta osoitetaan, ettéd sisd- ja reunapotentiaalit voidaan méarittdd samanaikaisesti.
Tama vaatii joitain teknisid Carlemanin estimaatteja ja CGO-ratkaisujen uuden luokan
rakentamista.

Viitoskirjan johdanto sisaltda kirjallisuuskatsauksen seké klassisesta etté fraktionaalis-
esta Calderénin ongelmasta ja kokoelman artikkeleissa esiintyvien funktioavaruuksien
méadritelmistd. Liite on epévirallinen suurelle yleisolle tarkoitettu johdanto inversio-
ongelmien ja sihkdimpedanssitomografian (EIT) avainkésitteisiin.
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1. INTRODUCTION

1.1. The classical Calder6én problem. The problem of whether it is possible to de-
termine the electrical conductivity inside of a domain by measurements performed on
its boundary is one of the oldest and most classical inverse problems for partial differ-
ential equations. It first entered the mathematical literature in the year 1980, when the
prominent Argentinian mathematician Alberto Calderén published his results about the
method nowadays called Electric Impedance Tomograhy (EIT) as a way of prospecting
for minerals. The famous analyst considered this problem in the 1940’s while working as
an engineer at YPF (Yacimientos Petroliferos Fiscales, or Fiscal Oilfields), but did not
publish the obtained results until many years later. The idea consists in first delivering
current to the ground by means of some aptly placed electrodes, and then measuring the
resulting voltage. The measurements should contain information about the composition
of the materials hidden underground, since each substance is characterized by a specific
electric conductivity and thus can influence the flow of current ([124] 13§]).

The main characteristic that makes this method interesting is that it is non-invasive,
meaning that it allows the recovery of information about the inside of an object from
measurements on its surface. It is easy to see how this may be applied in the field of
medical imaging: taking advantage of the fact that the tissues composing the human
body have different electric conductivities ([66]), it is possible to obtain a representation
of the internal structure of the body of a patient using electric measurements performed
on his skin. This has lead to great advances in various occasions (see for instance [49] for
cancer detection, [25] for the monitoring of vital functions, and many more [56]). Other
applications of the EIT method were invented in seismic and industrial imaging (see e.g.

[52]).

Let us now introduce the Calderén problem in mathematical language. We represent
the object whose electric properties we want to study (may it be an industrial product,
the body of a patient or the whole Earth) with a bounded open set 2 C R™ with Lipschitz
boundary. The unknown will be the electric conductivity v : £ — (0, 00) of the object.
Next, we consider the Dirichlet problem for the conductivity equation

V-(yVu)=0 in{
u=f on 000 ’



and enconde the boundary measurements in the so called Dirichlet-to-Neumann (DN)
map A, : HY2(0Q) — H~Y2(9Q) . A, associates prescribed voltages to measured
currents. The inverse problem thus consists in deducing « from the knowledge of A,.
Using the substitution ¢ = (A/¥)/,/7, one can reformulate the Calderén problem as an
inverse problem for the Schrodinger equation:

{ (—A+qu =0 inQ
ulpo = f

This method is known as Liouwville reduction [124]. In order to have unique solutions
to the above equation, it is typical to assume that 0 is not a Dirichlet eigenvalue of the
operator (—A + ¢). Given that one can express the DN map A, for the Schrédinger
equation in terms of the DN map A, for the conductivity equation, the inverse problem
now requires to determine the potential ¢ uniquely from A,.

The Calderén problem can be generalized to contain first order perturbations. The
result is the inverse problem for the magnetic Schrodinger equation (see [104]), which re-
quires to find the electric and magnetic potentials existing in a medium using information
derived solely from voltage and current measurements on its boundary. The components
of such field are A for the magnetic potential and ¢ for the electric one. The Dirichlet
problem for the magnetic Schrédinger equation looks like

(—A)au+qu = —Au—iV - (Au) —iA-Vu+ ([AP+@u=0 inQ
u=f on 9N ’

where f is the prescribed boundary value for the voltage u. As in the conductivity case,
the DN map Aa, : HY/2(0Q) — H~1/2(0Q) encodes the boundary measurements. The
inverse problem thus consists in finding A, ¢ in  knowing just Ay ,. This is however
impossible to do in general, because the problem contains a natural gauge: while the
electric potential ¢ can be recovered completely, the magnetic potential A can only be
recovered up to a gradient if Q is known to be simply connected (see [104] for the case
n > 3 and [82] for n = 2). It is however interesting to note that in the recent result [S6]
the authors proved the possibility to recover both the electric and the magnetic potential
in a nonlinear magnetic Schréodinger equation from partial data.

This perturbed version of the Calderén problem has a connexion with the inverse
scattering problem with a fixed energy (|[I04]). Moreover it arises by reduction in the
study of the Maxwell (J98]), Schrédinger ([40]), Dirac (JI05]) and Stokes equations ([55]),
as well as in the study of isotropic elasticity ([L06]).

1.2. The fractional Calder6on problem. Another generalization of the Calderén prob-
lem consists in replacing the Laplace operator (—A) with the fractional Laplacian (—A)*,
where s € (0,1). This new operator, which will be defined in section [3.6] is in many ways
different from the classical Laplacian: the main difference is that (—A)® is a nonlocal
operator, in the sense that it does not preserve supports. Because of this, the fractional
Laplacian enjoys properties of unique continuation and approximation which are impos-
sible for the classical Laplacian. Eventually, this means that stronger results are possible
for the associated inverse problem (see [2).

As we have seen in section [I.I} the Calderén problem is eventually reduced to the
study of the inverse problem for the Schrédinger equation. For this reason it is considered
appropriate to use the name fractional Calderon problem when referring to the inverse
problem for the fractional Schrédinger equation (see however our article (A) for a deeper

understanding of this connection). This problem was introduced in the seminal paper
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[46] in the following form. Let @ C R™ be a bounded open set, s € (0,1), and define
Q. :==R"\ Q as the exterior of Q. Consider the direct problem

{ (A +qu =0 inQ
u = f on 0f)

and its associated DN map A,: H*(Q.) — (H°(€))*. We see that A, is well-defined as
a bounded linear operator as soon as the potential ¢ is such that 0 is not a Dirichlet

eigenvalue of ((—A)® + q), that is
If w e H*(R") solves ((—A)° + ¢)u =0 in Q and u|g, =0, then v = 0.

Moreover, one proves that under stronger assumptions the DN map has the form A, f =
(—A)*ulq, (seelemma 3.1 in [46]). The inverse problem now consists in recovering the po-
tential ¢ from the knowledge of the DN map A,. Many results were reached in uniqueness,
stability and recoverability for the fractional Calderén problem (see section [2.2)).

Fractional inverse problems have recently attracted the interest of numerous fields of
science. This is mainly due to the fact that the fractional Laplace operator can be
related to the process of anomalous diffusion ([139]), and thus the fractional Schrodinger
equation can be used to describe those diffusion processes in which the dependence of
the mean squared displacement on time is non linear (|7]). Many results were obtained
for instance in turbulent fluid dynamics ([29)], [31]), ecology ([57], [96], [I10]), image
processing ([48]), mathematical finance ([3], [90], [127]), quantum mechanics |87, 8],
elasticity ([128]) and physics in general ([37], [39], [47], [87], [100], [142]), among many
others (125, 115} [7, 113 [15]).

Another application of the fractional Calderéon problem is for indirectly detecting cor-
rosion. This kind of problem can be formulated by means of the Robin inverse problem
([67, 68, 126, 1T]), which in turn can be related to the inverse problem for the fractional
Schrodinger equation via the Caffarelli-Silvestre extension ([18], (D)).

2. CALDERON TYPE PROBLEMS

2.1. The classical Calderéon problem. Being a prototypical elliptic inverse problem,
the Calderon problem has received large attention since its formulation ([20]). In this
section we will recall the main known results and open problems, while referring to the
surveys [138] 124] for greater detail.

2.1.1. Boundary determination. The first and most natural question is whether the con-
ductivity v and its normal derivatives can be recovered at the boundary. Kohn and
Vogelius showed that this can be done and obtained uniqueness results for real-analytic
([72]) and piecewise real-analytic ([74]) conductivities. These results are local, in the
sense that the DN map needs to be known just in an open set of the boundary in order to
determine «y in that open set. A stability result based on a microlocal technique ([133])
then extends the uniqueness to continuous conductivities. In all the above methods, the
trick always is to test the DN map against functions oscillating rapidly at the boundary
point where the conductivity is to be determined.

2.1.2. CGO solutions. Complex geometrical optics (CGO) solutions to the conductivity
equation were first devised by Sylvester and Uhlmann ([132, [I31]) with the goal of emu-
lating the behaviour of Calderon’s exponential solutions ([20]) at high frequencies. These
are functions of the form

u(r) = 6“”")(:13 +4(z,p))



where the error 1 is small when |p| is large and vanishes when |p| — co. The construction
in the cited papers is suited for C? conductivities, but it has been upgraded to different
regularity assumptions ([104, 123],[134]) and even to the case of the magnetic Schrodinger
equation ([80]). The significance of these CGO solutions is that they can be used as test
functions for the reconstruction of the conductivity from the DN map.

2.1.3. Results in dimension n > 3. Using specific CGO solutions to test an integral
identity derived from the assumption that A, = A,, via a reduction to the classical
Schrodinger equation, it is possible to show the uniqueness result v, = 9 for strictly
positive C? conductivities (J[I32]). This requires the boundary determination from [72] as
well. In the following years this result has been improved on various occasions. In [51]
Haberman and Tataru showed uniqueness for C'! conductivities, in [23] Caro and Rogers
extended the result to Lipschitz conductivities, and in [50] Haberman treated the case of
conductivities belonging to W1 N L>(Q), n = 3,4, thus showing that the gradient of
the conductivity does not need to be bounded. Whether uniqueness still holds for less
regular conductivities in higher dimension is an open problem at the time of writing.

The main stability result in dimension n > 3 was proved by Alessandrini in [4], where
a logarithmic modulus of continuity was shown to appear

I = el < € (ltogllhr = Aslly 317 + 1Ay = Aally 1), o € (0,1)

for smooth conductivities. The optimality of this estimate was later proved by Mandache
([95]), showing that the Calderén problem is severely ill-posed. However, better results
were obtained by adding a-priori information about the conductivity (|5, 112]). It is
thought ([I03]) that the stability estimates get better closer to the boundary. It was also
proved ([65]) that in the case n = 3 the inverse problem for the Helmoltz equation shows
increased stability at high frequencies.

A reconstruction result for the Schrodinger equation was obtained by Nachman and
Novikov ([102] [108]). Using the CGO construction, they showed that the potential ¢
can be determined from the associated DN map A,. Using the Liouville reduction and
the boundary determination results cited above, they were able to reconstruct the corre-
sponding conductivity v as well.

2.1.4. Partial data. 1t is often impossible to perform measurements on the whole bound-
ary of the domain, as some parts of it might be inaccessible. Whenever the DN map is
known only on part of the boundary, we are dealing with a partial data problem. The
question of whether it is possible to determine the potential ¢ from measurements per-
formed only on an arbitrary open subset of the boundary is an open problem (see [36]
for a result in the linearized case). However, Isakov proved uniqueness ([64]) when the
remaining part of the boundary belongs to a plane or a sphere, making use of a reflection
trick. This technique was later generalized to the Maxwell system (|22]; see also the
related paper [109] for the general inverse problem). In the case in which the domain is
only known to be strictly convex, [70] grants global identifiability for a DN map measured
on any open subset of the boundary for functions supported in a neighbourhood of its
complement. The method in [70] extends that of [132], as it requires a new kind of CGO
solutions of the form
uw=e n@) (g 47r)

where 1) solves an eikonal equation, a is a smooth solution of a complex transport equa-
tion, h is a small parameter and r is an error function whose L? norm vanishes as h — 0.
It is also essential that ¢ is a limiting Carleman weight, and the existence of such func-

tion is granted by Carleman estimates. This uniqueness result was then improved with a
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reconstruction method ([101]) and extended to both the magnetic case (|35, [71, [79, 136])
and the Maxwell system ([26]).

An extreme partial data case was studied in [I07], where just one voltage-current mea-
surement was shown to suffice for the estimation of the size of an inclusion embedded in
a two-dimensional body with discontinuous conductivity.

2.1.5. Results in dimension n = 2. In two dimensions also methods from complex analysis
are available. While the Calderén problem in 2D is formally determined by variable
counting, one can also construct a larger class of CGO solutions in this case. This has led
to better results in the case n = 2, first and foremost the one by Astala and Paivérinta
([9]) which shows uniqueness for an L* conductivity. Their technique has also been
used for numerical reconstruction procedures ([62] [63]). Bukhgeim (|I6]) proved that a
potential ¢ € C'! can be uniquely determined starting from Cauchy data. This result was
later improved by Blasten, Imanuvilov and Yamamoto for ¢ € L?, p > 2 (|13]), and again
by Blasten, Tzou and Wang for p > 4/3 ([14]). Uniqueness was also proved in [30] for
an unbounded conductivity with a specific a-priori estimate depending on the domain 2.
Further, in [60] Imanuvilov, Uhlmann and Yamamoto solved the partial data problem in
two dimensions for the Schrodinger equation, and thus for the conductivity equation as
well, by showing that the potential is uniquely determined in a bounded domain by the
Cauchy data on an arbitrary open subset of the boundary.

2.1.6. Anisotropic conductivities. In some materials, such as crystals or muscle tissue,
the electrical properties in a point depend on direction. In these cases, the conductivity
is better represented by a positive definite, smooth, symmetric matrix, and it is said to
be anisotropic. The version of the Calderén problem which asks to recover such matrix
conductivity from the associated DN map has been shown by Tartar not to be solvable
in general because of a natural gauge (|73]). However, uniqueness up to the gauge class
for n = 2 has been proved in [8] for L conductivities, using a change of variable (the
isothermal coordinates, |2, [130]) to reduce the problem to the isotropic one. In the case
n > 3 the problem is of geometric nature and better discussed on manifolds ([89]). We
refer to [I38] and the references therein for more details.

2.1.7. Inaccurately known boundary. The accuracy of the recovered conductivities can be
affected by multiple factors, among which the exact knowledge of the boundary and the
contact impedances. In a typical application, the experimenter may not have precise data
about the shape of the boundary of the domain of interest. In a series of papers (|75,
76, [77, [78]) various aspects of this problem were addressed and some new computational
methods were proposed.

2.2. The fractional Calderén problem. The fractional version of the Calderén prob-
lem has been object of intensive study in the years following its formulation in the sem-
inal paper [46] by Ghosh, Salo and Uhlmann. This problem enjoys several properties
that distinguish it from its classical counterpart and make it somehow more manageable
(133, 134], 118] 116}, [43]). Already from a heuristic point of view, a simple variable count
shows that the problem is overdetermined in any dimension. In this section we list some
of the main results and techniques, referring to [125] for more details and references.

2.2.1. Uniqueness. The main uniqueness result was achieved in the paper [46] itself for
L™ potentials. The proof is based on a strong approximation property enjoyed by the
fractional Schrodinger equation, the Runge approximation property, which itself depends

on the unique continuation property for the fractional Laplacian. It is interesting to
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note that the principal uniqueness result is already formulated for all dimensions and for
partial data, while the corresponding problem is open in the classical case for n > 3 and
requires a different technique in dimension 2. Low regularity was investigated in [118§],
where the proof of uniqueness was extended to potentials in L™2*(Q) and W~*"/5(Q).

2.2.2. Stability. Similarly to its classical counterpart, the fractional Calderén problem
was shown to be severely ill-posed, due to the presence of a logarithmic modulus of
continuity. In a series of papers from year 2017 ([120], 118| 119, [117]), Riiland and Salo
showed that one has

HQI - Q2||L"/2S(Q) < C|log”AtI1 - ACHH*FU , O € (07 1) )

and moreover that this type of stability is optimal. This result was made possible by a
careful analysis of the quantitative aspects of the estimates contained in the uniqueness
proof for low regularity potentials.

2.2.3. Reconstruction and single measurement. The possibility of recovering and even
reconstructing a low regularity potential ¢ from its associated DN map A, was shown
in [45], even in the case of a single measurement. Ths kind of result is specific to the
fractional case, and sets it strongly apart from the classical problem. The methods
involved require a unique continuation property from sets of vanishing measure, as well
as various regularization schemes. More related results for full-data reconstruction were
obtained using monotonicity methods (53], 54]).

2.2.4. Related problems. Perturbed versions of the fractional Calderén problem have been
studied in several recent papers. Variable coefficients were considered in two different
settings in our paper (A) about the fractional conductivity equation and in [44], where
an anisotropic case was studied. Different versions of a fractional magnetic Schréodinger
equation have been the object of several works, among which our papers (B) and (C)
(see also [91], 93], 24]). A lower order nonlocal perturbation was introduced in [12], while
our paper (E) considers general local perturbations. Other variants include semilinear
equations ([83,84]), the fractional heat equation (|85, [118]) and nonlocal Schrédinger-type
elliptic operators ([21]), among many others (see for instance [94], 121, 42]).

At this stage there are of course many problems left open in the field. Some of them
were outlined in our article (C).

3. PRELIMINARIES: FUNCTION SPACES AND THE FRACTIONAL LAPLACIAN

In this section we recall the main function spaces used in the included articles, as well
as the definition of the omnipresent fractional Laplace operator. We follow [, [46, 99, 97,
135] 140] as references.

3.1. Inhomogeneous fractional L?-based Sobolev spaces. Let r € R. If u € ./ (R")
is a Schwartz function, let

Fu)© =) = [ e ulads
indicate the Fourier transform of u. The Fourier transform can be extended to act as an
isomorphism F: ./(R") — '(R") on tempered distributions. By F~!(u) we indicate
the inverse Fourier transform of . The inhomogeneous fractional L?-based Sobolev space
of order r € R is
HY(RY) = {u e #(R") : F\(()70) € LA(R)}
6



and its norm is defined as

HUHHT(R") = H.F71<<,>rr&) LQ(Rn) )

where (z) := (14 |z]|*)"/2. If Q, F C R" respectively are an open and a closed set, then
define

where we use the symbol spt(u) to indicate the support of u. To the space H"(2) we
associate the quotient norm

101 e () = WE{[[w]] g gny = w0 € H'(R™), wlo = v} .
The following inclusions among the above spaces hold for any open set 2 and r € R:
H'(Q) C Hy(Q), H'(Q) C HyR"), (H' ()" =H"(Q), (H(Q) =H"(Q).
If in particular €2 is a Lipschitz domain, we also have

H"(Q) = H5(R"), forallr € R,

[\CRGV]
DO | Ot

Hy(Q) = H5(R"), ifr>—1/2and r ¢ {

3.2. Bessel potential spaces. More in general, if 1 < p < oo and r € R we can define
the Bessel potential space

DO | —

H™(R") = {u€ S (R") : F((:)"a) € L"(R")}

and its norm

|

Hrp(R?) — H}Ll«‘ya)

The name is due to the fact that J := (Id — A)Y/2 is called the Bessel potential,
and thus F71((-)"4) = J'u. Similarly to what we did in 3.1 we define the spaces
HEP(R™), HP(Q), H™#() and H}?(Q) for Q,F C R" an open and a closed set. As
before we get the inclusions

LP(R™) *

H™(Q) € HyP(Q), H™(Q) C HF(R")

forallr e R, 1 < p < oo and Q C R” open. Moreover, if ) is a bounded C'*°-domain
and 1 < p < oo by [I35], Section 4.3.2, Theorem 1] we have

H™(Q) = HZP(R™), forallr € R,

1
H(9) = H'P(Q), ifr<
7



3.3. Homogeneous fractional L2-based Sobolev spaces. The norm of the fractional
Sobolev space H"(R™) is not homogeneous with respect to the scaling & — . It is also
possible to define a variety of fractional Sobolev space for which this homogeneity holds:
we let

H (R") = {ue.”(R") : %€ L, (R") and |-|" @ € L*(R")}

1/2
- ( / €17 a(&)]” d&)

to be its norm. For negative r we have the inclusion H"(R") C H"(R"), while for positive
r we have H"(R") C H"(R"). When r < n/2, we have that H"(R") is a Hilbert space;
in this case we also have that .7(R") is dense in H"(R"), where .%(R") C .Z(R") is
defined as

and define

[l

Fo(R") = {p € L (R") : ¢|p0,) = 0 for some € > 0} .

3.4. Semiclassical Sobolev spaces. Let h € (0,1) and r € R. If u € L*(R"), we define
the semiclassical Fourier transform ([143]) as

Fscu(§) :—/ e_ﬁix'gu(x)dx )
Correspondingly, the semiclassical Sobolev norm will be

el gy = 2h) ™" ()" Factil L2 am) -

The semiclassical Sobolev spaces L2,(R™) and H_ (R™) are then defined as those subspaces
of L*(R™) where the semiclassical norms || - ||? 12 @&y || IF i1 gy are finite. Observe that
in these two special cases we have

LR = ||uHL2(R") + hilHVUHLQ(Rn) .

2.(R™) = ||uHL2(R") and

3.5. Sobolev multiplier spaces. Let r,t € R. Following [97, Ch. 3|, we say that a
distribution f belongs to M(H" — H') if and only if the norm

[fllre := sup{|(f, uv)] 5 w,v € CZR"), [Jull grgny = 0]l gy = 13

is finite. Since it holds that |(f, wv)| < [|f ¢ [[wll g gy V] gty Py density f acts as a
multiplier between H"(R™) and H~*(R").

One can prove many interesting properties of these multiplier spaces (see for instance
[97]). We have

M(H"— H)Y=M(H "= H™), forallrteR,
M(H" — H") = {0}, ifr<t,
and if A\, 4 > 0 then also
M(H™ — H™™) — M(H" — H) .

Let Mo(H™ — H') be the closure of C°(R™) in M(H" — H') C D'(R™). For this space
we have
My(H™™ — H"™) C My(H™ — H') .
8



3.6. The fractional Laplacian. The fractional Laplacian (—A)® is the main operator
studied in the included articles. It is a nonlocal operator of order 2s, and for this reason
its behaviour is quite different from that of the classical Laplacian, which can be described
as a local differential operator of order 2. It is however true that at the limit s — 1~ we
recover the classical behaviour from the nonlocal operator [32].

One may define the fractional Laplacian in many different equivalent ways [81] in the
most typical regime s € (0,1). We use the definition (—A)*p := F~1(]-|** ¢), which is
valid for ¢ € Z(R™). In this case, a simple computation shows that (-A)*: ./ (R") —
H"=25(R") is linear and continuous. Therefore, it is possible to uniquely extend it to act
on H"(R™) for every r € R, in which case we have

(—A)*: H'(R™) — H™™2(R") .

We can do something similar for the homogeneous fractional Sobolev spaces. In this
case we define (—A)*p := F1(|-]** @) for ¢ € #(R"), observe that (—A)*: Z(R") —
H"=2(R") is an isometry with respect to ||-|| Frr ey and eventually extend the operator
to a continuous map

(—A)SI HT(RTZ) N HT—QS(Rn)
by density, whenever r < n/2.
The fractional Laplacian can be studied more generally for s > —n/4 and v € H"(R"),
7 € R. In this case we see that (—A)*u = F~1(|-]* @) € &/(R"), that is, (—A)*u makes
sense as a tempered distribution (see for instance section 2.2 in our paper (C)).

4. MAIN RESULTS

In this section we will review the results achieved in the included articles. Each of the
following subsections is dedicated to one of the articles (A) to (E). For each one of them
we will give some context, the relevant definitions, the statements of the theorems and a
sketch of their proofs.

4.1. Uniqueness for the inverse problem for the fractional conductivity equa-
tion, (A). The main goal of article (A) is to define and study a fractional counterpart
of the classical Calderén problem. In light of the recent paper [40], it was expected that
we could achieve better results than the classical ones employing the intrinsic nonlocality
of the fractional operators. We have proved in (A) that this is indeed the case.
Fix s € (0,1) and consider the fractional gradient operator V* : C°(R") — L*(R?*")
Cl? uly) — u(w)
B V2 |y — x|n/2+s+1 (y—=).

Since one sees that [|V°ul|72gzny < [[ull%.(gn), this operator can be extended by density

to act on H*(R"). We also define the fractional divergence operator (V-)* : L*(R*") —
H~*(R™) in such a way that it is the adjoint of V*. These operators were firstly introduced
in the more general framework of [38]. They should be thought of as nonlocal counterparts
of the standard divergence and gradient; just as in the classical case, they have the
interesting property that (—A)*u = (V-)*V*u ([(A), Lemma 2.1]).

We set up the Dirichlet problem for the fractional conductivity equation as

Viu(z,y) =

Clu = (V) (v(x)/*7(y)*VPu) =0 in O
u=f in Q.



One shows that this problem is well-posed ([(A), Theorem 3.1]), and thus the DN map
A2 2 H*(Qe) — (H*(§2))* can be defined in a weak sense ([(A), Lemma 3.3]). The inverse
problem we are interested in now asks to recover v knowing A2.

The main results in paper (A) are the two following theorems. Theorem gives
uniqueness for the inverse problem for the nonlocal conductivity equation, while theo-
rem gives a uniqueness result and a reconstruction procedure in the case of a single
measurement.

Theorem 4.1. ((A), Theorem 1.1) Let Q@ C R, n > 1, be a bounded open set, s € (0, 1),
and for j = 1,2 let v; : R™ — R be such that

for some v;,7; €R, 0<; <5(x) <7 < oo, for ae. x €R”
v (x) = 1= my(x) € W2*(Q) '

Suppose Wy, Wy C Q. are open sets, and that the DN maps for the conductivity equations
i Q) relative to v and 7o satisfy

A [ Mlwe = A, [fllws, Y € CZ2(WA)
Then 1 = 7s.

Theorem 4.2. ((A), Theorem 1.2) Let Q2 C R, n > 1 be a bounded open set, s € (0,1),
e >0, and let v : R" — R be such that

for some 7,7 €R, 0<y<y(zr) <5< oo, for a.e. v € R"
YY2(z) — 1 :=m(x) € W2+eP(Q), forp>n/e '

Suppose W1, Wy C (2. are open sets, with QNW, = 0. Given any fired function g €
H* (W) \ {0}, v 1s uniquely determined and can be reconstructed from the knowledge of
AS[glw, -

% 2

The proofs of the two above theorems are achieved by reduction. The plan is to express
the inverse problem for the fractional conductivity equation as an inverse problem for the
fractional Schrodinger equation, which is in turn well understood thanks to the previous
results ([120], [45]).

Thus our first step is to show that the fractional conductivity equation can be rephrased
as a special case of the fractional Schrodinger equation for an appropriate choice of the

potential ¢, namely g = %#. In fact, as shown in [(A), Theorem 3.1| we have

that for all u € H*(R")
s 1/2 s 1/2
Clu=7"2((=2)"+ q)(ur'/?)
holds, which entails that for all g € H*(£2.)

{cmpﬂ)mg N {(eAy+@w201nQ
u=yg in Q, 1/2

)

w=r"y"'%g in 0,

with w = v%?u. This is reminiscent to one of the strategies used to study the classical
conductivity equation, the so called Liouville reduction ([124]).

This is of course not enough, as one still needs to show that the DN map for the
new Schrodinger problem can be deduced from the DN map of the original fractional
conductivity problem. This issue is dealt with in [(A), Lemma 3.4] by means of the
following integral identity, holding for all f,v € H*(R"™) with support in :

A L)) = AS[f1([0]) = /Q fo(=A)mdx .
10 ‘



Once the reduction procedure is complete, one can apply the results [120], [45] cited
above, which respectively have the effect of either proving uniqueness for the potential g
or even reconstructing it from a single measurement. The key points in these works are
the strong uniqueness and approximation results obtained in [34].

In order to complete our proof, we will need to show that the information we have
obtained about ¢ is enough to show the uniqueness and reconstruction results for . This
last step makes use of the uniqueness of solutions of the fractional Schrodinger equation,
which was proved in [46].

The last section of article (A) shows how the fractional conductivity equation naturally
arises as continuous limit of a long jump random walk with weights, as it is to expect for
an equation concerning anomalous diffusion [139].

4.2. Uniqueness for the inverse problem for the fractional Schrodinger equa-
tion in a magnetic field, (B). In article (B) our main goal is to define and study
a fractional version of the classical inverse problem for the magnetic Schrédinger equa-
tion. This was, in a sense, previously studied in the paper [24], whose authours find
that no gauge exists for a certain magnetic Schrodinger equation in which all the lower
order terms are local. This turned out to be the case also in the following related works
[92, 93, OT]. In contrast, we have proved in (B) that our version of the fractional mag-
netic Schrodinger equation (FMSE), which is in a sense completely nonlocal, does indeed
posses a natural gauge.

Fix s € (0,1) and a vector potential A. Here we assume that A = A(z,y) depends on
two spatial variables x,y € R", in order to account for the nonlocality of the problem.
We define the magnetic versions V% and (V-)% of the fractional gradient and divergence
operators weakly as

(Viu,v) == (Vu + Au,v)
and

((V)i‘v,u) = <U, vilu> )
for all u € H*(R") and v € L?(R?*"). These respectively act as operators V5 : H*(R") —
L*(R?") and (V)% : L*(R*") — H—*(R™). Observe that this way of constructing magnetic
divergence and gradient resembles the one used in the classical case [I04]. The magnetic
fractional Laplacian will be the combination of the two, namely (—A)% = (V:)%(V?%)
acting from H*(R™) to H°(R™). One sees immediately that in the case A = 0 this
reduces back to the fractional Laplacian (see (B)).
Next we set up the Dirichlet problem for the fractional magnetic Schrodinger equation as

(—A¥u+qu=0 1inQ
u=f in Q. "’

and define the DN map A%, @ H*(Q%) — (H°(€2))". Again, the inverse problem is to
recover A and ¢ in ) from A% . This turns out to be impossible in general, because
of the natural gauge associated to the equation. We say that the couples of potentials
(A1,q1) and (As,q2) are in gauge when it happens that the corresponding operators
(=A)3, + ¢; coincide, and we indicate this eventuality with (A1, q1) ~ (A2, ¢2). As we
have proved in [(B), Lemmas 3.8, 3.9|, for all couples (Ai,q;) it is possible to find a
different couple (A, g2) such that (Ay,q1) ~ (As,¢2). Thus, we say that the fractional
magnetic Schrodinger equation enjoys the gauge ~.

Observe that the gauge holding for MSE, which we indicate with =, is quite different
from ~. One may define ~ as

(A, q1) = (A2,¢2) & FoeG:(=A), (up) + qrud = ¢((—A)},u + qu)
11



for all w € H*(R™), where G := {¢ € C°(R") : ¢ > 0,¢|q, = 1}. In lemmas 3.9 and 3.10
of (B) we proved that FMSE enjoys only ~, while MSE only enjoys =. The reason of
this difference emerges from the nonlocality of FMSE: as shown in formula (10) in (B),
the coefficient of the gradient term in FMSE is related only to the antisymmetric part A,
of the vector potential A, and such antisymmetry requirement does not allow FMSE to
enjoy ~. It follows that, in contrast to the classical case, the scalar potential ¢ can not
be in general uniquely determined for FMSE.

It is clear from the discussion above that we can only hope to recover (A, q) up to ~;
this is what we prove in our main theorem:

Theorem 4.3. ((B), Theorem 1.1) Let 2 C R", n > 2 be a bounded open set, s € (0,1),
and let (A;,q;)) € P fori = 1,2. Suppose Wi, Wy C €. are open sets, and that the
DN maps for the fractional magnetic Schrodinger equations in S relative to (Aq,q1) and
(A2, g2) satisfy

Axs41,q1 [f”WQ = 1542,q2[f”W27 vf E Cé)o(Wl) °

Then (A1, q1) ~ (Aa, qa), that is, the potentials coincide up to the gauge ~.

Here P is a class of potentials verifying certain technical regularity assumptions (see sec-
tion 3 in (B)). The proof of the above theorem is based on a technique initially developed
for the fractional case with A = 0 in [46]. The first step is to show that the fractional
magnetic Schrodinger operator enjoys the so called weak unique continuation property
(|(B), Lemmas 3.4, 4.1]), a very nonlocal property which states that any u € H*(R")
such that u = (—A)%u = 0 in some open set W must vanish identically everywhere. This
is easily achieved thanks to our assumptions on P and the previous work [114].

Next, we prove the Runge approximation property (|(B), Lemma 3.15|) for the frac-
tional magnetic Schrédinger operator. This property states that any L?*(€2) function may
be approximated arbitrarily well by the restriction to €2 of a solution to the fractional
magnetic Schrodinger equation with some exterior value f € C°(W), where W is any
open subset of €2.. For this proof we use the Hahn-Banach theorem and the previously
cited weak unique continuation property.

We also need an Alessandrini identity, that is an integral identity relating the differ-
ence of the DN maps corresponding to potentials (A1, 1), (Asz,g2) to the differences of
the potentials themselves. This is obtained in [(B), Lemma 3.13]. In order to extract
useful information from this identity, we test it with some aptly shaped solutions to the
fractional magnetic Schrodinger equation, which in turn are cooked up using the Runge
approximation property. Eventually, this lets us reconstruct the gauge class to which our
couples of potentials (A;, ¢;) must belong.

Article (B) also contains a discussion of how our fractional magnetic Schrédinger equa-
tion naturally arises as a continuous limit of a long jump random walk with weights
depending on position. This feels like a natural generalization of both [139] and our arti-
cle (A). In the last section of the paper, we briefly entertain the idea of a hybrid fractional
conductivity-magnetic equation and show that for it we can get similar results as for the
purely magnetic case.

4.3. The higher order fractional Laplacian: unique continuation property,
Poincaré inequality and higher order fractional magnetic Schrédinger equa-
tion, (C). The third included paper deals with some properties of the high order frac-
tional Laplacian, i.e. of the nonlocal operator (—A)®, with s € (—n/2,00) \ Z. In
particular, we investigate the unique continuation property and the Poincaré inequality,

achieving quite satisfactory results in both cases.
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We are interested in the unique continuation property for the fractional Laplacian be-
cause it has been by now extensively employed in showing uniqueness results for fractional
Schrodinger equations [45, 46, 120]. It dates back to at least Riesz [111]; subsequently
it has been used in [59] for Riesz potentials I,. In the case s € (0,1), the unique con-
tinuation property of (—A)® for functions in H"(R"), » € R, was proved in [46] with a
technique based on Carleman estimates and Caffarelli-Silvestre extensions ([114} [17] [18§]).
The unique continuation property for the fractional Schrédinger equation is also strictly
related to the fractional Landis conjecture, which asks to determine the maximal vanish-
ing rate at infinity of solutions of (—A)*u + qu = 0 ([122]). Our result generalizes the
unique continuation property to all s € (—n/2,00) \ Z:

Theorem 4.4. ((C), Theorem 1.1) Let s € (—n/4,00) \ Z and v € H"(R"), r € R. If
(—=A)*uly =0 and uly = 0 for some nonempty open set V.C R™, then u = 0. The claim
holds also for s € (—n/2,—n /4 \ Z if u € H"'(R") or u € O (R").

We propose a proof of the above theorem by reduction: using the decomposition
(=A)u = (=A)**(—=A)u, with k € Z and s € (0,1), we can achieve the desired
result by invoking [46]. Of course this trick will only work for u belonging to aptly chosen
function spaces. In the corollaries [(C), Corollaries 4.4, 4.5, 4.6] we obtain related results
for the case of Bessel potential spaces and homogeneous Sobolev spaces, while in [(C),
Corollary 4.2] we study Riesz potentials and in [(C), Corollary 4.3] we consider a slightly
stronger result in the case of compact support.

The second property of the higher order fractional Laplacian (—A)*, s > 0, which
we study in article (C) is the Poincaré inequality. It will be needed in the proof of
the well-posedness of the inverse problem for the fractional Schrodinger equation. The
higher order fractional Poincaré inequality has already appeared in [I41] for smooth
functions in a bounded Lipschitz domain, and in [10] for homogeneous Sobolev norms.
Our contribution is to have extended some known results, given alternative proofs, and
studied the connection between the fractional and the classical Poincaré constants.

Theorem 4.5. ((C), Theorem 1.4) Let s > t > 0, K C R™ a compact set and u €
H; (R™). There ezists a constant ¢ = é(n, K, s) > 0 such that

(=872 gy < E[|(~ )2

uHL?(Rn uHL2(R")'

For the sake of illustrating some possibly unnoticed connections between methods, in
our paper we present five different proofs for the fractional Poincaré inequality. The first
of the proofs is very direct, and consists in splitting low and high frequencies in the Fourier
side of the L? norm of the fractional Laplacian; this has the pleasant effect of giving an
estimate for the Poincaré constant. The second proof, which is quite technical, derives
from the approach considered in [46] and is based on several estimates, most notably
the Hardy-Littlewood-Sobolev inequality. The third proof extends the result obtained in
[24] by means of a reduction argument. Using the interpolation of homogeneous Sobolev
spaces, we obtain a fourth proof and also an explicit constant in terms of the classical
Poincaré constant. Finally, the fifth proof uses some uncertainty inequalities from [41].

Eventually, with all the previous results in mind, we consider the higher order fractional
Schrodinger equation. We have achieved uniqueness results for the associated inverse
problem at first in the case of a singular electric potential [(C), Theorems 1.5, 1.6],
which generalizes the results obtained in [46, [120], and then in the case of non vanishing

magnetic potential, which in turn generalizes our paper (B).
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The first step towards these results consists in defining the higher order fractional
gradient in a way that is reminiscent of the one we used in our first paper (A), keeping
in mind that we now expect to get a tensor of order |s| 4+ 1. We assume the following
definition

CcY? ol _uls)
Viu(z,y) := nisp V2 u(z) — Vu(y)

\/5 |y _ x|n/2+{s}+1

® (y — )

to hold for u smooth and compactly supported. We shall then extend this to u € H*(R")
by density. Next, we define the higher order fractional divergence (V-)* by duality, and
the magnetic counterparts of the fractional gradient and divergence operators as in (B).
Their composition (—A)% = (V)5 V¥ is our higher order magnetic fractional Laplacian,
which reduces to the magnetic fractional Laplacian considered in (B) as soon as s € (0, 1),
and eventually to the fractional Laplacian (—A)® itself if A vanishes.

Thanks to [(C), Lemma 7.4|, we can express the corresponding fractional magnetic
Schrodinger equation in a more convenient form, which highlights the fractional Lapla-
cian and the perturbation components of the equation. Using this and our higher order
Poincaré inequality, we can prove the coericivity estimate for the bilinear form associated
to the fractional magnetic Schrédinger equation ([(C), Lemma 7.5]), which eventually
leads to the proof of well-posedness for the corresponding Dirichlet problem and the def-
inition of the DN map (|(C), Lemma 7.6]). This is enough to state the inverse problem,
for which we prove uniqueness in our main theorem:

Theorem 4.6. ((C), Theorem 1.7) Let Q C R™, n > 2, be a bounded open set, s € RT\Z,
and let A;, q; verify assumptions (1)-(5) for i = 1,2. Let Wy, Wy C Q. be open sets. If
the DN maps for the fractional magnetic Schrédinger equations in S relative to (A1, q1)
and (A, q2) satisfy

f41,q1 [f”WQ - Axs42,q2 [f”WQ? for allf 6 O((;O(Wl) ?

then (A1, q1) ~ (As, q2), that is, the potentials coincide up to gauge.

The assumptions (1)-(5) are purely technical, and coincide with the ones required by
the previous results in our paper (B) and in [46] when s € (0,1) and A = 0. Observe
that, just as in our previous paper (B), we obtain here that the problem has a natural
gauge ~: we will say that (Ay,q) and (A, ¢2) are in gauge if and only if they give rise
to the same equation, that is (—A)%, + q1 = (=A)%, + g2 as operators. It is thus clear
that recovery may only be possible within the limits prescribed by the gauge, which is
exactly what we prove.

The proof itself is based on the weak unique continuation property and the Runge
approximation property, which hold for the higher order fractional magnetic Schréodinger
equation as a consequence of [(C), Remark 7.7|. We can also write an integral identity for
the equation; testing it with some aptly shaped exponential functions eventually produces
the wanted result.

Part of article (C) is dedicated to the Radon transform and region of interest tomogra-
phy. We have proved that a unique continuation property holds for the normal operator
of the d-plane transform for odd d ([(C), Corollary 4.8]), and as a consequence that the
X-ray transform enjoys a uniqueness property ([(C), Corollary 4.9]). These interesting
results are however auxiliary to the topic of the present work, and thus we will not discuss

them any further.
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4.4. The classical Calder6n problem with mixed boundary conditions, (D).
This article provides a different point of view on fractional, nonlocal inverse problems by
adopting a local “Caffarelli-Silvestre perspective”. This is interesting in the reconstruction
of non-directly measurable potentials on the boundary in addition to electric and magnetic
potentials in the interior of a medium. In order to clarify the connection to the fractional
Calderén problem, we shall first describe the set-up of the problem at hand.

Let 2 C R™ be an open, bounded, smooth domain, and assume that X;,3, C 02
are two disjoint, relatively open, smooth non-empty sets. In this setting we consider the
following magnetic Schrodinger equation with mixed boundary conditions

—Au—iA-Vu—iV - (Au) + (JA? + V)u = 0in Q,
O,u + qu =0 on Xy,
u= f on Yo,
u=0o0n 0N\ (X, UX,),

where the coefficients are supposed to be smooth and v - A = 0 on 0€2. Here the set
represents an inaccessible part of the boundary where an unknown Robin coefficent ¢ is
present. The inverse problem consists in recovering the potentials A,V and ¢ from the
usual measurements encoded in the partial DN map Ay v, : H2(35) = H™2(23), fls, —
Oyuls,. We thus combine a classical Calderén problem with a Robin inverse problem,
which arises for instance in the study of corrosion detection ([61]). In particular, we aim
at a simultaneous recovery of the potentials; see the survey [69)] for some partial results.
The following is the result we achieved in (D) for the simple model described above:

Theorem 4.7. ((D), Theorem 1) Let Q C R™, n > 3, be an open, bounded and C*-regular
domain. Assume €y € § is an open, bounded set with Q\ Qy simply connected and that

Y1, %e C OQ are two disjoint, relatively open sets. If the potentials qi,q2 € L>®(%1),
Ay, Ay € CHQq,R™) and Vi, Vy € L*°(8y) in the equation are such that

Ay = AA17V1,CI1 = AA27V27q2 =: Ay )
then q1 = (q2, ‘/1 = ‘/2 and dA1 = dA2

Observe that in theorem {4.7] we have allowed some “safety distance" between the com-
pact set €2y in which the interior potentials are defined and the sets X1, Y5 on the bound-
ary. Also notice that the magnetic potential is only recovered in the sense that dA; = dAs,;
the existence of this gauge is however expected and is reminiscent of [104].

Our proof is based on the Runge approximation ideas from [6, 119], which allow the
approximation of full data CGO solutions in €2 by partial data solutions in the whole
domain 2. We of course have to deal with the additional challenge due to the potential
q on the piece ¥, of the boundary. However, we have proved that simultaneous density
results both in the bulk and on the boundary are possible in [(D), Lemmas 1.1, 4.2|: for
instance, if

Svg:={u€ H'(Q): uis a weak solution to (1) in Q} C L*(Qy),

we prove the following simultaneous boundary and bulk approximation result:

(1)

Lemma 4.8. Assume the consuete geometrical setting holds for €2, € and ¥1,%,. Let
Ve L>(Q), g € L*(0R). Then the set

R := {(u|s,, ulq,) : ulg, = Pfls, and u|q, = Pflq, with f € CF(X9)} C Lz(Zl) X LQ(Ql)

is dense in L*(X) x Sy, with the L*(1) x L*() topology. Here P denotes the Poisson

operator.
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The rest of the proof of theorem [4.7]is an application of the above Runge approximation
property and of an Alessandrini identity, similar to what was done in the previous articles

(A)-(C).

The above problem can be made more interesting by introducing operators whose
conductivities or potentials depend on the distance to the boundary. Let d : Q — [0, 00)
be a smooth function coinciding with the distance to the boundary in a neighbourhood
of 99, and let s € (0,1). Consider the problem

(2)
—V - d'"Vu — iAdT* - Vu — iV - (dV7FAu) + d (AP + V)u =0 in Q,
lim d"*0,u+qu=0on Y,
d(z)—0
u= f on X,

u=0o0n 002\ (3 UZXy).

The associated DN map will be

As,A,V,q : HS(E2) — H78(22)7 f|22 = d(hgo d(x>172sauu|22‘

We now wish to clarify the relation between this problem (and the previous one, which
corresponds to the case s = 1/2) and the fractional Calderén problem. This is done by
means of the so called Caffarelli-Silvestre extension [18]. Given a function v € H*(R"),
we study the degenerate elliptic problem

1—2s ~ : n+1
V-x, 7°Vu=0in R},

) @ =wu on R" x {0}.

It is possible to prove that the degenerate DN operator associated to this equation is
(—A)®, the fractional Laplacian. More exactly we have
. . 1—2 ~
(=A)u:=c xnlillgo T i1 Onat(z) -
This idea has been explored also in [129] [19]. In this sense, it is possible to understand

equation as a localized version of the inverse problem consisting in recovering the
potentials A, V' and ¢ in the fractional Schréodinger equation

(—(V+id)?+V)*u+du=0in X C R",
u=fonR"\ X,

supp(f) C X, from an associated DN map. In , the bounded domain 2 C R" plays
the same role as R’ in (3)).

We study problem in the simplified assumptions that ¥; = QN {z,41 = 0},
Yo =00\ ¥ and A = 0. Such geometric assumptions are not uncommon in partial data
problems. Thus we consider

V20 ¥ Vu+ Val3Pu = 0in Q,
(4) u = f on X,
lim x}%fls@nﬂu +qu =0 on X,
:En+1—>0
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for g € L>(%), V € L*(Q) and, for instance, f € C2°(X,). After having shown that the
direct problem is well-posed, one can consider the associated DN map
1-2s

Ay,: f— lim 2. °0,uls
,q f In_i,-l*)aﬂ TL-‘r]. v | 2

and ask the relative inverse problem of simultaneously recovering ¢ and V' knowing Ay,.
For this question we achieved the following result in the regime s € (1/2,1):

Theorem 4.9. ((D), Theorem 2) Let Q C RY*! n > 3, be an open, bounded and smooth
domain. Assume that ¥y := 0Q N {x,1 =0} and Xy C I\ Xy are two relatively open,
non-empty subsets of the boundary such that ¥, UYe = 0Q. Let s € (1/2,1). If the
potentials q1,q2 € L>®(31) and V1, Va € L>®(Q) relative to problem are such that

A1 = As,Vl,ql = As,Vg,qQ = A2 )
then g1 = qo and V, = Vj.

Since now V may be supported up to the sets ¥, ¥, the Runge approximation tech-
nique can not be applied anymore in €. We thus resort to CGO solutions to test the
Alessandrini identity deriving from the assumption that A; = As. However, because of
the additional Robin boundary condition on ¥, we can not directly apply the CGO so-
lutions for the magnetic Schrodinger equation known to the literature. There has been
previous work in this respect in [27] 28] for mixed boundary condition, but in our case we
also have the additional challenge posed by the unknown potential ¢. In the next theo-
rem, we construct a new family of CGO solutions suited for unknown bulk and boundary
potentials:

Theorem 4.10. Let ) C R’ffl, n > 3, be an open, bounded smooth domain. Assume
that 37 = 0Q N (R™ x {0}) is a relatively open, non-empty subset of the boundary, and
that ¥y = 0N\ 3y, Let s € [1/2,1) and let V € L=(Q) and q € L=(X;). Then there
exists a non-trivial solution u € H'(Q,z,33°) of the problem

V-2, PVu+ 2 Ve =0 in Q,

: 1-2s
xnlgrio Ty 1 Oppu+qu =0 on ¥,
of the form u(x) = &% (e* ¥ +hni1eiin L p (1)), where k € R™, ¢ € C" is such that
&-8=0,k-&=0, and

. _1 1
o if s =1/2, then [l 2@ = O(€14), Il = OE12) and [Irll2,) = O(1);
° ifs>1/2, then ||7‘”L2(Q,x;f’;) =O0(l¢']™), ||T||H1(Q,z;;215) = O(|€'1'*) and ||| 2z,
O(Ig'[*=*).

This is proved by duality relying on new Carleman estimates for a Caffarelli-Silvestre
type extension problem, as shown in the quite technical proofs of [(D), Proposition 6.1]
and [(D), Corollary 6.4]. Using the CGO solutions from theorem we are then able
to completely prove theorem 4.9

4.5. Uniqueness for the higher order fractional Calderén problem with local
perturbations, (E). Firstly introduced in [40] as a fractional counterpart to the classical
Calderon problem (|137, 138]), the fractional Calderén problem was later studied in the
cases of “rough" potentials (J[I120]) and first order perturbations ([24]). Our article (C)
introduced and studied the higher order case s € R™ \ Z. This framework motivates the
study of higher order perturbations to the fractional Laplacian, which was proposed as

an open problem in [(C), Question 2.5] and is the main focus of our article (E).
17



Consider a linear partial differential operator

P(z,D)= Y an(x)D"

laj<m

of order m € N, where the coefficients a, are functions defined in a bounded open set
QCR"and n > 1. Let s € Rt \ Z. The Dirichlet problem for the perturbed fractional
Schrodinger equation then is

(—A)*u+ P(x,D)u=01in Q
u= fin

We assume that the order m of the local perturbation P(z, D) is such that the fractional,
nonlocal part governs the equation, that is we let 2s > m.

As our first step towards the formulation of the inverse problem, we need to prove the
well-posedness of the direct problem. We achieve this in [(E), Lemmas 3.3, 4.3| for two
different classes of coefficients a,, namely for Fourier multipliers and bounded Sobolev
spaces. We can then define the DN map Ap: H*(Q2.) — (H*(€2))* encoding our data for
the inverse problem, which in turn can be formulated in the following way: does the DN
map Ap determine uniquely the coefficients a, in 27 In other words, does Ap, = Ap,
imply that a1, = ag, in €2 for all |a] < m?

Our main theorems and prove that this is indeed the case for both Fourier
multipliers and bounded coefficients. In particular, our first theorem generalizes the
results obtained in [120, Theorem 1.1] for the case m = 0,s € (0,1) and in [(C), Theorem
1.5| for the case m = 0,s € RT \ Z.

Theorem 4.11. ((E), Theorem 1.1) Let Q@ C R™ be a bounded open set where n > 1. Let
s € R"\ Z and m € N be such that 2s > m. Let

Pi= > aD% j=12,

la|<m

be linear PDOs of order m with coefficients a;, € Mo(H*™1l — H=%). Given any two
open sets Wy, Wy C Q., suppose that the DN maps Ap, for the equations ((—A)*+P;)u =0
i ) satisfy

AP1f’W2 = AP2f|W2

for all f € CX(Wy). Then Pilg = Pslq.

On the other hand, our second theorem is a generalization of both [24, Theorem 1.1],
[46, Theorem 1.1|, which studied the cases m € {0,1},s € (0,1), and of [(C), Theorem
1.5], in which the case m = 0,s € RT \ Z was considered.

Theorem 4.12. ((E), Theorem 1.2) Let Q C R™ be a bounded Lipschitz domain where
n>1. Let s € R"\ Z and m € N be such that 2s > m. Let

Pi(z,D) = Z ajo(x)D*, j=1,2,
la<m
be linear PDOs of order m with coefficients a;, € H™>°(2) where
0 if la| —s <0,
To i= {|0¢] —s+0 if |a|—s€{1/2,3/2,...},
la] —s if otherwise
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for any fized 6 > 0. Given any two open sets Wi, Wy C Q., suppose that the DN maps
Ap, for the equations ((—A)® + Pj(z, D))u = 0 in Q satisfy

AP1f|W2 = AP2f|W2
for all f € C(Wy). Then Pi(xz,D) = Py(x, D).

The proofs of theorems and are structurally similar, but differ in many tech-
nical details. In particular, the boundedness of the bilinear forms associated to the
equations and the well-posedness of the direct problem are achieved in the second case
by using the assumption that 0€) is Lipschitz and the Kato-Ponce inequality. Both for
Fourier multipliers and for bounded coefficients, such proofs involve the Riesz represen-
tation theorem and some ad hoc estimates.

Since P(z, D) is by assumption a local operator, the weak unique continuation property
is easily shown to hold true. This opens the way to the proof of the Runge approxzimation
property, which is given in [(E), Lemmas 3.7, 4.6]; observe that in this case we obtain the
density in H*(2), and not just L2(Q), of the set of restrictions to € of the solutions to
our equation. We then find in [(E), Lemmas 3.6, 4.5] that an Alessandrini identity holds
for our equation, namely

(Ap, = Ap) AL L)) = D (610 — az,), D ugus) |

laj<m

where uy, us € H*(R"™) respectively solve

(—A)sul + Z alyaDo‘ul =0 in Q7 Uy — f1 S ﬁS<Q)

la|<m
and

(Ayus+ Y (~DD*(az0u3) =0 in Q uj— fr € H(Q)

laj<m

for some fi, fo € H*(R™). Next, we test the above integral identity with appropriate
solutions to the equation, cooked up by means of the Runge approximation property.
This is done using the principle of complete induction: at each step we test the identity
with a different solution and deduce that a;, = ag, for one of the multi-indices in the
sum, thus making it shorter by one term. After a finite amount of steps, the proof is
complete.
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1. Introduction

This paper introduces and studies a fractional conductivity equation, and establishes uniqueness and
reconstruction results for related inverse problems. The main point of interest is a fractional version of the
standard Calder6n problem [5], which requires to find the electrical conductivity of a medium from voltage
and current measurements on its boundary.

Let 2 C R™ be a bounded open set with a regular enough boundary (e.g., let 92 be Lipschitz),
representing a medium whose electrical properties must be studied. The Dirichlet problem for the
conductivity equation asks to find a function u satisfying

V-(yVu)=0 in 2
u=f on 9 '’

where f is some prescribed boundary value and -y is the electrical conductivity of the medium. The boundary
measurements are given by the Dirichlet-to-Neumann (or DN) map A, : H'/2(002) — H~'/2(912) , which is
defined weakly using the bilinear form of the equation. The inverse problem consists in finding the function
7 in 2 from the knowledge of A,.
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The classical Calderén problem we stated above has general mathematical interest, as it serves as a model
case for the study of inverse problems for elliptic equations, and is of course useful in the applied fields of
medical, seismic and industrial imaging. The survey [19] provides many more details on this topic. The main
physical motivation, and actually Calderén’s original one, comes from electrical mineral prospecting. In this
application, the electrical properties of a patch of soil are measured by an array of electrodes distributed
on the ground, with the goal of determining whether any economically interesting mineral source is present
underneath.

On the other hand, fractional mathematical models are nowadays widely used in many fields of science. It
is known for example that they arise in the study of turbulent fluids such as the atmosphere. They also
appear in probability theory as generators of certain Levy processes, and because of this they are used in
mathematical finance. For the many modern applications of fractional models, check e.g. [4].

It is therefore very promising to study a fractional extension of the Calderén problem, in view of its many
potential applications. This is the model we introduce below.

Fix s € (0,1) and consider the new operators (V-)* and V*, which in this paper are called fractional
divergence and fractional gradient. Their rigorous definitions will be given in Section 2 following [9], but for
now they can be thought of as non-local counterparts of the standard divergence and gradient. They are
“nonlocal” because they do not preserve supports, in the sense that V*u|, can only be computed knowing
u over all of R™. Later on we will show that, just as in the local case, the combination of these operators
gives the fractional Laplacian, that is (—A)%u = (V:)*V5u.

Remark. It is worth noticing at this point that our choice for the names of the non-local operators, which
has been guided by the similarity with the local case, is not universal. In [9], for example, our fractional
gradient is called adjoint of the fractional divergence, while the name fractional gradient is assigned to a
completely different operator which does not play any role in this paper.

We set up the Dirichlet problem for the fractional conductivity equation as

(V)*(6-V5u) =0 in 02
u:f in Qe ’

where O is an interaction matrix depending on 7. Because of the non-local nature of the operators, the
exterior value is given over all of 2, = R\ £2. In Section 3 it will be shown that the bilinear form associated
to the conductivity equation is positive definite; this assures that 0 is not an eigenvalue of (V-)*(yV?), and
therefore the problem above is well-posed. Consequently, the DN map A3 : H*({2) — (H*(f2))* can be
defined in a weak sense starting from the bilinear form of the equation. The inverse problem asks to recover
v in £ from A5,

The following theorems are the main results in this paper. The first one solves the injectivity question
relative to the inverse problem for the non-local conductivity equation in any dimension n > 1.

Theorem 1.1. Let 2 C R", n > 1, be a bounded open set, s € (0,1), and for j = 1,2 let v; : R™ — R be

such that
{ for some 7;,7; € R, 0 <y <v;(z) <75 < oo, for a.e. z € R"

72 (@) L= my () € W (0)
Suppose W1, Wy C (2. are open sets, and that the DN maps for the conductivity equations in {2 relative to

Y1 and 2 satisfy
A:gyl[f”Wg :A:ngI:f”WQ? vfeccoo(Wl) :

Then v1 = a.
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The second theorem gives a uniqueness result and even a reconstruction procedure for the same inverse

problem with a single measurement.

Theorem 1.2. Let 2 CR™, n > 1 be a bounded open set, s € (0,1), € > 0, and let v : R™ — R be such

that
{ for some 7,7 € R, 0 <y <y(x) <7< o0, for a.e. z € R”

Y2(z) — 1 = m(x) € W2steP(), for p > n/e

Suppose W1, Wy C £2, are open sets, with 2 N W, = ). Given any fized function g € H3(W1) \ {0}, v is
uniquely determined and can be reconstructed from the knowledge of A3 [g]lws, -

Remark. In the theorems above we make some regularity assumptions on m: namely, it is required to
belong to Sobolev spaces of the form WP (£2), which are defined in Section 2. Such assumptions are needed
in order to be able to apply the previous results [10,16], which are recalled in Section 3 and constitute the
core of the proofs of our theorems.

A tool that is often used for treating the second order conductivity equation is Liouville’s reduction, which

. 1/2 .
/24, and the potential ¢ = Aﬁm It is

consists in rephrasing the problem in terms of the function w = =
easily shown that the resulting equation is —Aw + qw = 0, i.e. Schrodinger’s equation. The idea behind
the proofs of Theorems 1.1 and 1.2 is to use a reduction similar to Liouville’s, but suited for a non-local

setting: as it will be shown in Section 3, the potential will be ¢ = — (_ﬁ};m. The problems considered are

thus transformed into special cases of inverse problems for the fractional Schrodinger equation. These are in
turn well understood and dealt with thanks to the previous results [10,16]. The key points in these works are
the strong uniqueness and approximation results obtained in [7]. For an overview of the fractional Calderén
problem and many more references, see the survey [17].

This paper is organized as follows. Section 1 is the introduction. Section 2 is devoted to preliminaries
and definitions, including Sobolev spaces and non-local operators. Section 3 first defines the conductivity
equation and the DN map, then proves the main theorems. Section 4 contains an analysis of the limit case
s — 17, which is expected to give the local problem. The last part, Section 5, is devoted to a simple model
for a random walk with long jumps from which the fractional conductivity equation naturally arises.

2. Preliminaries

In this section the main function spaces, operators and notations of the paper will be introduced. For the
Sobolev spaces, the notation will be the usual one (check, e.g., [11]). The non-local operators are based on
the theoretical framework presented in [8].

Sobolev spaces. If k € R, p € (1,00) and n € N\ {0}, the symbols W*? = WkP(R") indicate the usual
LP-based Sobolev space. If 2 C R™ is an open set, the symbol WF?(£2) indicates that subset of W* whose
elements can be approximated in the Sobolev norm by functions belonging to C2°(£2).

In particular, given s € (0,1) and n € N\ {0}, the symbols H®* = H*(R") = W*?2(R") indicate the standard
L?-based Sobolev space with norm

[ull 7 (ny = 1F () * @)l L2 gy

where (€) := (1 + |¢|*)1/2. The notation for the Fourier transform is a(¢) = Fu(¢) = f.

wn € u(z)de . If

U, F C R™ are an open and a closed set, define

H*(U) = {uly,u € H*(R™)},
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H*(U) = closure of C>*(U) in H*(R™) , and
Hi(R") ={ue H*(R"™) : supp(u) C F} .

The set H*(U) is equipped with the norm |jul|gsy = inf{||w| gs@n);w € H¥(R"),w|y = u}. f U is a
Lipschitz domain, the Sobolev spaces H*(U) and H 5 (R™) can be naturally identified for all real s. For more
details on this topic, check [11].

If U ¢ R™ is a bounded open set and s € (0,1), let X = H*(R™)/H*(U) be the abstract trace space.
If U is a Lipschitz domain, X is the quotient H*(R")/H (R"), in which two functions u,v € H*(R") are
equivalent if and only if u|y, = v|y,.

Remark. There exist several other definitions of Sobolev spaces. In fact ([6], prop. 3.4), given s € (0,1)
and an open set U C R™ whose boundary is regular enough (in the sense of [6], prop. 2.2), H*(U) might
just as well be defined as

H(U) = {u e 1) . o) —ulvll L?(U?)} ,

|x _ y|n/2+s

with the natural norm 12
el sy = (22 + [0 n)

9 1/2
[U]HS(U) = (/U . —|u(a:) — :iyz),sy dx dy)

|z — |

Non-local operators. If u € S(R™), its fractional Laplacian is

(—A)%u(z) ==Cp,s lim Mjﬁfzdy ,
0% JRM\Be(a) |y — 2]

4°I'(n/2+s)

YTy is a constant satisfying (see [6])

where C,, s ==

. Cn.s 4n
lim : = .
s—»1—- s(1—58)  wp_1

(2)

This choice assures that the Fourier symbol of the fractional Laplacian is [€|*%, i.e. the equality (—A)%u(z) =

FL€/**a(€)) holds. If k € R and p € (1,00), (—A)* extends as a bounded map [14], Chapter 4 and [18]
(—A)* : WHP(R™) — WE2SP(R™) . (3)

For the sake of completeness, it should be added that there exist many equivalent definitions for the fractional
Laplacian [15]. As shown by change of variables in [6], one of them is

Cn,s PV (S’U(.T,y)

—A)’v(x) = —

dy , (4)

which holds if v is a Schwartz function. The symbol dv(z, y), which is quite recurrent in this paper, is defined
as follows:

5u(w,y) = v +y) + v(x — y) — 20(x) (5)
This way of writing the fractional Laplacian is very useful for removing the singularity at the origin: in fact,
if v is a smooth function, by means of a Taylor expansion one gets

v(z+y)+v(r—y)—2v(x) < | D?v|| Lo
n+2s — n+2s—2
Y |y

which is integrable near 0.
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Motivated by the elementary decomposition Au = V- (Vu), the next step will be to define two fractional
counterparts of such differential operators, following [8]. These will share the non-local nature of the fractional
Laplacian.

Let u € C°(R™), x,y € R™. The fractional gradient of u at points x and y is the vector

C}L/f u(y) — u(z
e ). ©

Using the result (Proposition 3.6, [6]), formula (1) and the fact that 0 < [£|/(¢) < 1, it is easy to find the
following inequality:

s, 112 ns | ng
IV oy = 52 [ [ Oy = S

H Ié\

Viu(z,y) = —

Vi€ (7)

= [1(=2)/2ul2a gy = NI E) 22 gm) =
L2(R")

< M WO Z2(gmy = llullZrs my -
Thus the linear operator V¢ maps C°(R") into L?(R?"™). What is more, since C°(R") is dense in H*(R")
one can extend V* so that it is defined in H*(R™) and formula (7) still holds.

The next operator is defined by duality. Let v € H*(R"), v € L?(R?"); the fractional divergence is that
operator (V-)* : L2(R?*") — H~*(R™) such that the following formula holds:

<(V’)SU7 U>L2(R") — <'U, VSU>L2(R2n) . (8)

The next simple lemma allows the composition of the fractional divergence and its adjoint into the
fractional Laplacian.

Lemma 2.1. Let u € H*(R™). Then the equality (V-)*(V°u)(z) = (—A)*u(x) holds in weak sense, with
(V)35(Vou) € H*(R™).

Proof. Let u, ¢ € H*(R™), and by density for all i € N let u;, ¢; be smooth, compactly supported functions
such that [|u — w;|| gs@®n) < 1/i and [|¢ — @i gsmny < 1/i. By Cauchy-Schwarz inequality and formula (7),
it is seen that

(Vou, Vo) = lim ((V*(u—u;), V&) + (Vius, V) = lim (Vou;, V36) |

11— 00 11— 00

and thus (Vou, V@) = lim; o (V*u;, V*¢;). Now compute

(Vi V°0) = %{ﬂ/zm_ijmm 62)) dyd

ullezz — u; ()

o (pi(x £ 2) — ¢i(x)) dzdx

R™ JR™

. |z|n+28{ — @i(x)0ui(z, 2) + (uds) (T + 2) + (uids) (z — 2)

n

—ui(x)(pi(z + 2) + ¢i(x — z))} dzdz .
By adding and subtracting the term 2(u;¢;)(z) we then get
(i oy = e [ om0l ) _wERAEE) e

| |’I’L+28
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This integral can be split in three parts, which are all well defined because of the above consideration about
the removal of the singularity at the origin:

(Ve Vo) = 5 (91, (=4 w) = (1, (=) (i) + (. (- 4)°69)
= (61 (- Ay 'us)

The last line follows from the fact that u;, ¢, € C2°(R™), which means that the first and last terms are
equal. Moreover, the second term vanishes because, by Fubini’s theorem,

(1, (= A)* (wsi)) = Cns /n /n (uidi) (@ + y) + (widi) (@ — y) — 2(uidi) () dyde
1

n,5
2 [y
n,s

C )
R / y /Rn((“WHy)+<ui¢i><m—y>—2<ui¢i><x>>da:dy,

and the integral in dz is of course independent of y and equal to 0. Therefore (VSu;, VS¢;) = ((—A)*u;, ¢;),
and eventually

(V)2 (V2)u, ¢) = (VPu, Vog) = lim (VPuy, Vo¢y) = lim (=4)%u;, ¢;)

1— 00

= Tim ({(=2)"(us = w), 60) + (= A)"u, 6 — 6)) + {(~A)u, )

=((=4)u, 9) ,

just as wanted. Notice that the limit vanishes because ||[(—A)*w| z-s < ||w|gs. This proves the first
statement; the second one now follows from the previous remark about the extensions of the fractional
Laplacian. [

Remark. V?® and (V:)® can be respectively identified with the operators D* and D from [8], where the
antisymmetric vector mapping a(z,y) : R*™ — R™ is chosen as

o oy—u
7 9)

oz, y) = .
(z,y) V2 [y — P

The choice of a comes from the fact that we want to have (V-)*(V*u) = (—A)%u, which at least for u € S
means

(=4)*u(z) = 2/Rn(U(x) — u(y))lalz,y)*dy .

cl/2

Thus the most natural choice would be to have |a(z,y)| = W, which motivates our choice of a.
Yy—x
In this case we also have, for u € C°(R"),
Col2 uly) -

\/§ ’y - $’n/2+8 '

Anyway, different choices of a could in principle be considered.

3. Main results

Non-local conductivity equation. Let 2 C R™ be an open set; we call 2, = R™ \ {2 the exterior domain.
Let v : R™ — R be a measurable function such that there exist 7,7 € R such that 0 <y < v(z) <7 < o0
for all z € R™, and let m(z) := vy*/?(x) — 1 belong to Wfs’n/zs(()). The assumptions for the conductivity ~y
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are similar to the ones that are typically made in the second order case. The values of y(z) for = € supp
m represent the conductivity in the object of study. Outside of this region v(z) = 1, because the electrical
properties of the surroundings are thought of as constant.

Let © : R*™ — R?" be the variable matrix O(z,y) = v(x)?~(y)'/?1d. The interaction matriz O
represents how readily an electron will jump from z to y. We assume the material to be isotropic, meaning
that the interaction does not depend on direction; therefore, ©(z,y) is a symmetrical scalar multiple of the
identity matrix.

Remark. According to formula (3), it makes sense to compute (—A)*m, and it belongs to Wo"/2s(R™) =
Ln/2s (Rn)

By using the boundedness of v and Lemma 2.1 it is seen that if u € H*(R™), then 6 - Vu € L?(R?*"):

16V ulauan, = [, A1)V 0 ¥ de dy <39 0, < o

Let u € H*(R™). The non-local conductivity operator is Ciu := (V-)*(0 - V*u), while the non-local
conductivity equation is the statement C3u = 0 in (2.
The next theorem reduces the conductivity equation to Schrédinger’s.

Theorem 3.1. Let u € H*(R™), g € H*(,), w = v'?u, f = v"/%g and q = —Fﬁ#. u solves the
conductivity equation with exterior value g if and only if w solves Schridinger’s equation with exterior value
f, that is
{ (V)0 - Vou)=0 im0 { ((—A)S +q)w —0 inQ
u=4g in 2 w=f in £2,
Moreover, the following formula holds for all w € H*(R™):

C5 (v 2w) =4 2((-2)° + qw.

Proof. Start by observing that m is a Fourier multiplier on H?®, because we have the embedding
(W?2sm/25 0 [*) x H® < H* (check Lemma 6, [3]). This of course means that also /2 = 1 +m is a
Fourier multiplier on H®, which in turn implies that w € H® and f € H*({2.). Moreover, the computation

(=4)"m 1/2

pvp u=—u(—A)°m

qu = —

and the observation that, by Theorem 6.1 in [1] and Sobolev embedding theorem,
Ln/25 < HS < L2n/(n+28) s H~S

imply that ((—A)* +q)w e H*.
Our proof will be very similar to the one of the previous Lemma 2.1. Take ¢ € H?, and for all ¢+ € N let
¢i,ui € CP(R™) be such that ||[¢ — ¢;||ms < 1/i and ||u — u;||gs < 1/i. By definition, Cauchy—Schwarz
inequality and formula (7) we get

= lim ({6 V*u, Vi) + (6 V*u, V*(6 - 6,))) (1)

= lim (O - V%, V%¢;) = lim (O - V*u;, V°¢;) .
1—00 100
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By change of variables,

C‘:

n,s

2

<9 VSUZ,V ¢1> = n+2s

v
n |y — x|

(m)1/2fy(x + Z)1/2 (uj(x £ 2) — Ui(|$)|215r€21(50 +2z)— ¢i(x))dzdm

n

)
S

(a4 1 004 D) = (o) 0 2) — )

‘z|n+2s

n n

I
|
%\ﬁé\%\
%\Wg\%\
2

I T (e G [N Gt R C) Py

‘Z‘n+28

Now consider the integrand function. By defining w; := v/?u; it can be rewritten as

2)1/2
T { =00 (1o + 9 il =) ) 3w ) 492 - 2) +

(wig)(@ +2) + (wii)(z = 2) —wile) (126:) (@ +2) + (1200) (@ = 2)) }.

so that, if we add and subtract the term 2w;(x) from the first line and the term 2(w;¢;)(x) from the second
one, by formula (5) we get

2)1/2
T {300, 0 0w, 2) — (@) (B, 2) — w50 = 1))}

Therefore

1/2
(-9 v = e [ [ 0o {Bwoe ) - w0 @,

— ¢u(a) (Jwila.2) — wi(@)d(1/2 = (@, 2) ) |
and the interior integral can be split in the following four parts by Lemma 2.1, since the §’s make each of
them integrable at the origin:

(07, 7°6) = 5 [ {2 i) + wil-4)(21/20)
+ 072 (= A) wi — ¢y Pui(=A)° (512 — 1)}
=5 [ {a=eay o) + w2760

—A)s 1/2 _ 1
+ 0P (= A) w; — ¢w”2wi( ) g/z )} :

In the last line, we have added the term %fRn(—A)s(wigbi), which equals 0. Now by the first part of the
proof we can compute

(0 9o ooy — 200 (CA @) | (M2 1), (28)"(wi) + i (~4)°(/200)

2 2
_ 0260 (A +owy) | (Z((=A) m)us v 260) + (= 4)*wi, 71 6)
2 2
_ (729, (=4)* + Qwi + qui + (—A)*w;)
2

= (7201, (-4)* + Qi) .
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Eventually, by using this and (11),
(Cou,0) = lim (201, ((—A)° + Qi) = (6,772(=4)° +qJu) .
This last step holds true because

lim |(/2(91 — 9), ((—4)° +q)wi)| < e lim 16 = @llmsl|(—A)° + @il - =0

1—00

and

lim [(v"/2¢, ((—4)° + ) (w; — w))| < el lim [|((=2)° + q)(w; — )]l -

i—00

Il
< @l (1 + lll]o2e) Jim s = wlss =0

Bilinear form. Let s € (0,1), u,v € H*(R"), and define the bilinear form B3 : H* x H® — R as follows
B u,v] = /n - Vév - (@ - Viu)dydx . (12)

By, is a useful instrument to show the well-posedness of the direct problem for the conductivity equation.
In [8], Theorem 4.9, it is proved that for all F' € (H*({2))* there exists a unique solution up € H*({2) to
Bilu,v] = F(v), Yv € H#(£). This is equivalent to saying that for all ' € (H*(2))* there exists one and
only one up € H*({2) such that Cju = F' in 2, ur|g, = 0. To treat the case of non-zero exterior value,
suppose f € H°(R™) and let uy =u+ f, where w € H*({2) is the unique solution to the problem

Ciu=F —B3[f,:] in Ciu=F in 2
8! g 8!
{ u=20 in 2, ° Then u=f in £2.

has uy € H*(R™) as its unique solution. Moreover, it follows from [11] that
gl s @ny < e(1F [l s @y + I1f [l rn)) - (13)
The next lemma collects some properties of B.
Lemma 3.2. Letv,w € H*(R"), f,g € H*(f2) and uy,uy € H*(R"™) be such that Ciuy = Cjuy, = 0 in
2, uflp, = f and uglo, = g. Then

1. Bilv,w] = Bj[w,v] (symmetry),
2 |B3fv,wll < Flollas el en)
3. Bj[uf,eg] = Bi[ug,ef] ,

where eg, e € H*(R™) are extensions of g, f respectively.

Proof. Symmetry is showed by using (6) in (12),

Bl = 2 [ [ (a0 0lg) o) g

ly — 2"

For the second point, using Holder’s inequality and the known estimate for the L? norm of the fractional

gradient,
|B§[U7w]| < HVSU||L2(1R<2H)||6 : vSWHL?(R%) < 7|\VSU||L2(R2H)||sz||L2(R2n)

<Alvll s @ny lw| s mny -
In order to prove the last point, use the definition of fractional divergence (8)

Biluyp,ug) = /n - Viug - (0 - Vius)dy de = /Rn ugCluy dz
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then observe that CJuy = 0 in §2 and uy; = g in {2, so that actually

B,Sy[u]v,ug]:/ ung{dex:/ gC,SYdez:/ egCluy dx = Bjluy,eg] .
Qe Qe R

This completes the proof, since by symmetry
Bi[uﬁeg] = Bﬁi[uﬂug] = Bi[ugvuf] = B»Sy[“mef} O

DN map. The main use of the bilinear form in this paper is the definition of the DN map. In the case of
the fractional Calderén problem for the Schrédinger equation with an unknown potential ¢, such map is
Ag: X — X,

110D = [ v upde+ [ quogda,

as defined in [11]. In the above formula, f,v € H*(R") and wy € H*(R") is the unique solution to
(—A)*w + qw =0 in 2 with w — f € H*(2).

Lemma 3.3. There exists a bounded, linear, self-adjoint map A5 : X — X* defined by

(3111, 191y = Biluy,gl, Vg€ H(R"),

where X is the abstract quotient space H*(R™)/H*(2) and u; € H*(R™) solves Ciu = 0 in 2 with
u— f e H ().

Proof. The DN map needs to be well defined, that is for all ¢,7 € H*(2) and f,g € H*(R") the equality
Biluy,g] = Bjlufyg,g + 9] must hold. By Lemma 3.2,

Bilupig, g+ 0] = Bilusig, 9] + Bilupie, ¥] = B3[f + ¢, ug] + /¢C§Uf+¢ dx

= Bi[f,ug] + Bi[¢,ug] = Bi[uy, g /d)Csug dx = Bi[uy,g] ,

since us44, Uy are solutions to the conductivity equation, and ¢, are supported in {2. The boundedness of
A%, follows from the second point of Lemma 3.2 and Eq. (13). In fact,

(A5 [f], [9D)] = [B5[uy, 9l < cllugll s @nllgllms &n)
<l fllas@mllgll ms ey Vfelf]l, Vg elgl,

which implies
AZ[f], < c¢ inf sgny inf s(Rn) = C .
I a,[f] [9])] Felf] £l (R )ge[g] gl e (R™) LA x (gl x

Self-adjointness is trivial, in light of point (3) of Lemma 3.2:
(A5[f)19]) = B5lug, gl = Bjlug, ] = (A3[g], [f]) = ([f], 43[g]) . OO

Lemma 3.4. Let f,v € H*(R™) be such that supp(f), supp(v) C 2. The DN maps for the conductivity
equation A7, and for the corresponding Schridinger equation Ay, satisfy

Agy [F1([0]) = A3 [f1([v]) = ., fo(=A)Ymdz .
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Proof. First of all observe that we have v'/2f = f and v'/?v = v, because supp(f)Nsupp(m) = () and
supp(v)Nsupp(m) = (). With this in mind and making use of Theorem 3.1 it is easy to compute

A0 = Bifupovl = [ [ 900 (0 Voup) dyis

an

= /Rn vCluy dr = /R" vy2 (= A)° + ¢,)wy dx

:/ 71/21)(—A)Swfdx+/ Y 2vq,w; da
n RTL

:/ v(—A) wy dm—/ vf(=A)*mdz .
R7 Qe
Moreover, recalling the assumptions about the supports,

Ag, [fI([v]) = / v(—A)wy dx +/ gyowys dr = / v(—A) wysdx .
n Q n
The statement of the Lemma is thus proved by taking the difference of the last two formulas. [

The definition of the DN map given above, which is abstract in nature, lets us formulate and solve the
inverse problems completely. Nonetheless, in the next theorem we will give a more concrete definition of the
DN map under stronger assumptions.

Theorem 3.5. Let 2 be a bounded open set with C™ boundary, let s € (0,1) and let v'/? = 1 4+ m, with
m € CF(£2) and 0 <y < vy(x), for all x € R"™. For any 3 > 0 such that § € (s —1/2,1/2) the restriction of
A3 to H¥MP(82,) is the map

A5 HMP(0) = H*VP(0), A3 f = Cluglg,

where uy € H*TP(R™) solves Cu = 0 in 2 with ulg, = f, f € H*"P(£2).

Proof. Start by observing that the embedding H® x H¢ — H¢ can be made to work for any ¢ € R, if a
is taken accordingly large enough: in the case ¢ < 0, use Theorem 8.1 from [1] with a > n/2, while if ¢ > 0
use Theorem 7.3 with a > max{n/2, c}. Since now m € C*(£2) C H*(R™) for all @ > 0, and consequently
(—A)*m € H* 2% for all @ > 0, we have that h € H¢ implies mh, (—A)*m h € H¢. It also easily follows that
’71/2h,’)/_1/2h c He.

Now take f € H*T8(£2,); by the above observations, g := y2f e H*%8(£2,), and so there exists a unique
wy € H*P satisfying ((—A)* +¢,)w = 0 in 2, w|g, = g. This was proved in [11], Lemma 3.1, making use of

—1/2

earliest results found in [12,21] and [13]. Now let us :== v~ '/“w,. Again by the above observations we have

uy € H**P(£2,), and by Theorem 3.1 u; is the unique solution of Ciu = 0,u|q, = f. We also have
IG5 usllpro—s = V2 (= A)° + gy )wgl gri—s
<2 (=AY wyll o + llwg(=A)*m|l go-s < o0,

and moreover, if e, € H*T#(R") is any extension of a given h € H*"5(12,),

(A5 f,h) = Blluy,en] = / Vien - (0 - Viuy)dyde = (Cluy, en) -

R™ JR™

Given an open set U and a function u, let ryu := u|y. The statement would be proved if we could decompose

<C,S},Uf,€h> = <1“QC,§,Uf,7‘Q€h>_Q + <7'QEC,§/U/f,7’_Qeeh>_Qe ,
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because then since u; solves the fractional conductivity equation in {2 we would be able to conclude
(A5f,h) = (ra,Ciuyp, h)go,. In order to use the above decomposition we need to find an o € (-1/2,1/2)
such that CSuy € H and e;, € H™®, as in the proof of Lemma 3.1 in [11]; this task is easily accomplished
by taking a =5 —s. O

Two inverse problems. The two main uniqueness results about the Calderén problem for the fractional
Schrodinger equation are [16], Theorem 1.1, and [10], Theorem 1:

Injectivity (Infinitely Many Measurements). Let 2 C R™, n > 1, be bounded open, let s € (0,1), and let
q1,q2 € L™/?5(R™) be such that 0 is not an eigenvalue of (—A)® + qj- Let also Wy, Wy C §2. be open. If the
DN maps for the equations ((—A)® + gj)u = 0 in 2 satisfy

A(n [f”WQ = AQ2[f]|W27 Vfe CEO(WI) )

then q1 = qo in 2.

Uniqueness and reconstruction (Single Measurement). Let 2 C R™, n > 1, be bounded open, let
s € (0,1), and suppose that 0 is not an eigenvalue of (—A)® + q. Let also W1, Wy C 2. be open, with
NNW; =0. Assume that either

e s€[i,1) and g€ L>(2), or

LIS Co(ﬁ).
Given any fized function g € H*(Wy) \ {0}, the potential q is uniquely determined and can be reconstructed
from the knowledge of Ag4[g]lw, .

By using the results stated above, one can prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. If Wi N Wy # (), there still exist two open sets W{ C Wy and W, C W such that
W{NWj = 0; so without loss of generality assume that Wi, W5 and {2 are three pairwise disjoint open sets.
Let v € C2°(W3); the hypothesis of the theorem then reads

A5, (1)) = A3, (D), for f € O (W)

1/2f

Since y; = 2 = 1 in {2, one has vy, =y 1/2 f = f in all of R™. Therefore, from the previous equality

and from Lemma 3.4

Ag, [F1([0]) = A3, [f1]([0]) + ., fo(=4)"my dx

= A3, [f1([v]) = 43, [f1([v]) = Aq,, [f1([v]) ,
where the integral disappears because supp(f)N supp(v) = ). Hence
g [fllwe = Ag, [fllwy,  for fe CZ(Wh) . (14)

It is known that (—A)*m; € L™/?5(R™). Therefore,

n/2s
n/2s (_A)Sm —n/4s s n/2s
[ /Rn TQJ do < 3= A ] oy < 00
J

Using this and condition (14), one gets ¢,, = ¢, in 2 by the previously stated injectivity result with
infinitely many measurements.
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Now let m = mgy — my; of course supp(m) C {2, and in {2

0= 19" (a7, = 4r) = 1'% (=4)"ma — 7,/ (= 2)"my
= (=A)"ma — (—A) m1 + mi(—A) ma — ma(—A)°my (15)
=1 +m)(=A)°m —m(—A)my .
Formula (15) can be written as (—A)*m — %m = 0, which shows that m solves the following Dirichlet

problem for the fractional Schrédinger equation:

{ (—APu— EA My, — 0 in 0

14+mq
u=>0 in {2,

Observe that the equation that v must satisfy in {2 is the fractional conductivity equation with conductivity
1, by Theorem 3.1. Thus the problem above is well-posed, and so m = 0 in {2. This in turn implies m; = mo,
which is the same as saying v = 72 in 2. O

Proof of Theorem 1.2. By reasoning as before, W; and W5 can be again supposed to be disjoint. If
v e H*(Wy), by Lemma 3.4

Ag, [f1([v]) = , fo(=A)ymdx + A3 [f]([v]), VfeH(R"),
so that, by taking f = ~v/2g,

Agy 1291 (10]) = A3lg]lws ([0]) -

Hence A,,[v"/?g]lw, is completely known from Af[g]lw,. Fix ¢ > 0 and observe that the condition
m € W2TSP(2),¥p > n/e implies m € Wczs’n/%((}) and (—A)*m € C°(R™) by Sobolev embedding theorem.
Therefore ¢, € C°(12), and by the previously stated result concerning uniqueness and reconstruction with a
single measurement, ¢, can be reconstructed uniquely. By the definition of ¢, m solves

{ (—A)*m —gym = —q, in {2

1/2

)

m =20 in {2,

and thus m can be recovered by solving the above problem for Schrédinger’s equation. [

4. A limit case

Now the previous considerations will be extended to the case s — 17. Since for the fractional Laplacian
one has lim,_,;- (—A)u = —Au [0], it is logical to expect something similar for the other non-local operators.
The following holds:

Lemma 4.1. Let u € H'(R™). Then lim,_,,— [|[V5ullp2g2n) = [ Vull 2 zn)-

Remark. This result is a special case of the one given in [2], namely when p = 2. However, since our proof
is much easier than the one of the general case, we will still include it for completeness.

Proof. Given i € N, let u; € C°(R") be such that ||u — || g1 (gny < 1/i. By the definition of fractional
divergence and Lemma 2.1,

lim (| Voul72gony = lim [ u(=A)"udr
s—1 s—1 Rn

(16)
= lim lim (/n u(—A)S(u—ui)dx+/n u(—A)%uy; d:c) .

1—00 51—
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Since the following estimates hold [11],

‘ /Rn (u —uy;) de = ‘ /]R" A Pu(=A) 2 (u — ;) da
< [ 18l -2 s ar)

< I(=2)*"2u 2 [I(— A)*"2(u — w;)|| 12
< ullzs lu — uillgs < Jull g l|lu —will g2 < ¢/,

one gets that [o, u(—A)%(u — u;) dz — 0 upon taking the limits. Moreover (—A)*u; € ey HY(R™) C
L?(R™), and so the second integral in (16) is finite by Holder. Hence

lim lim u(—A)’u; dx = lim u lim (—A)%u; dx
=00 s—=1" JRn 100 Jpn  s—17
= — lim uAu; dr = lim VuVu; dz (18)
12— 00 R" 12— 00 R"

/ ]Vu\ dx + hm . VuV (u; —u) de = HVUH%Q(RTL) ,

since the last limit is easily shown to equal 0 by means of Hoélder’s inequality. The result is obtained by
combining (16)—(18). O

Remark. It is not always true that Vu(z,y) — Vu(z)d(x — y) in distributional sense; quite counter-
intuitively, lim, ;- V®u = 0 in distributional sense for all u € C°(R™). In fact, if u € C(R"™) and
¢ € C°(R?"), then for some n-dimensional balls By, By, B3 centered at the origin,

1/2 u\y u\x
(ol < [, ol Funl ey = [ o) S50

1
<cC1/2/ / [uy) —ul@)] dy<ccl/3/ / — dady
B, JB, ‘y_w‘n/2+s ) B, /B, |y_m‘n/2+sfl

By /B3 |z|
1/2

Since C}l/ 52 is bounded by a constant which is independent of s and also lim,_,;- C;/s = 0, by dominated
convergence the computation above implies

dxdy

(lim Viu,¢) = lim (Viu,¢) =0.

s—1— s—1—
Observe that this computation is valid also for a more general definition of the fractional gradient, namely
one in which « is naturally chosen in such a way that (10) still holds.

Next, some limit results for the non-local conductivity operator and its DN map. In the rest of this section,
the function m will be taken from W;" n/2s([2) which embeds into the usual W n/2s([2).

Lemma 4.2. Ifuec H*(R"), lim,_,;- C3u =V - (yVu) in distributional sense.

Proof. Let ¢ € C°(R™). By reducing the conductivity operator to Schrodinger’s, one is able to write

lim o(z)(V-)*(O - Viu)(z)dr = lim ¢ Cludzr

s—=1= Jrn s—=17 Jrn

= lim (¢71/2(—A) w — ¢y Pu(— A)Sm) dz .

s—1— Jrn

(19)
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Observe now that since ¢ € C2°(R") and u € H?(R"), we have ¢pu € H?(R") as well. Moreover, since s < 1,
we certainly have m € Wf’"/28(9) N L>®R") C Wf’nm(()) N L>(R™); this means that v'/2 is a Fourier
multiplier on H?(R™), and therefore w, y'/?u¢ and v'/2¢ all belong to H?(R™). We can compute

2s
1(=4) m| g2 = Hf_l (mm(£)>

e < | F(©)] 2 = cllmll 2 - (20)

L2

zQS
1+22
for all s € (0,1), which makes hy a Fourier multiplier on L?. Since m belongs to L>°(R") and has compact

In fact, it is easily seen that the function hg(x) :=

takes values in [0, 1) for all non-negative x and

support, we see that ||[(—A)*m|| g—2 < c[|m]| 2 < oo, i.e. (—A)*m € H~2(R™). By using again (20) with m
replaced by w, we get [|(=A)*w|| g2 < ¢|lw|| 2; since w € H?(R™), this leads to (—A)%w € H2(R").
The above discussion lets us rewrite Eq. (19) in the form

lim (¢, (V)*(6 - V*u)) = lim (7"/2, (=A)"w) — lim (¢y'/2u, (—A)m) . (21)

s—1— s—1— s—1—
Trivially, |hi(z) — hs(z)| < 2 for all non-negative = and for all s € (0,1). With this in mind we can compute
2 2s
I-2ym — (~aymils = |7 (EL=E
1+ ¢

< | F (@)l 2 = cllml| 2 < o0,

L2

which means that

lim || = Am — (=4A)'m| g2 = lim |[F7F ((ha(@) = hs(2))m(S))]| .-

s—1— s—1—

s—1—

L2
Thus (—A)*m — —Am in H-2(R") as s — 17, and the same proof can be used to show the analogous

result for (—A)*w as well. We can now deduce from Eq. (21) that

lim (¢, (V)*(6 - V*u)) = (¢7'/%, = Aw) — (¢7"/?u, —Am) .

s—1—

Performing some elementary vector calculus computation on this last formula the desired result is
immediately obtained:

lim ¢ Cludr = oV - (yVu)dz. O

s—17 Jrn Rn
Lemma 4.3. Let u,v € H'(R"™). Then lims_,; B3 u,v] = fR” ~vVu - Vo dz.
Proof. For all i € N, let u;,v; € C°(R") be such that |[u — u;| g1gny < 1/i and ||v — ;|| g1 (gny < 1/i.
Then we can compute

lim Bj[u,v] = lim lim (B,Sy[u —ug,v] + B [ui, v — vi] + B [wi, vi]) - (22)

s—1— 1—>00 g— 1~
By Holder’s inequality we see that
| B [u —ui, v]| = [(V(u—u), © - Vo0)| <[V (u—ui)l[2]|© - VPvl| 2

<Alu = willmsl[ollzs <Allu = will g l[oll g,
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so that the first term on the right hand side of (22) vanishes upon taking the limits. The second term behaves
similarly, and so we are left with lim ;- B3[u,v] = lim; o lim,_,;- B5[u;,v;]. Now apply Lemma 4.2 to
deduce that

lim BS[u,v] = lim lim Bj[u;,v] = lim lim (Vu;, 6 - Vi)

s—1— 1—00 g1~ 1—00 g1~

= lim lim (u;, CJv;) = lim (u;, V- (vVv;))
1— 00

100 51—
i—00

The result is now recovered by decomposing this term as in (22) and then applying again Holder’s
inequality. [

Corollary 4.4. Let f,g € H'(R"). Then lim,_,,— (A3[f],[g]) = [gn YVuys - Vg da.

Proof. The result immediately follows from the previous Lemma and from the definition (A3[f],[g]) =
B3[uy,g). O

5. A simple model: the random walk

This section shows how the non-local conductivity equation naturally arises from weighted long jump
random walks. This is an extension of [20], where the fractional Laplacian is related to unweighted long
jump random walks.

Let h >0, 7= h?, k€ Z", x € hZ"™ and t € 7Z. Consider a random walk on the lattice hZ", subject to
discrete time steps belonging to 7Z. Define

V2 4+ hE)E) 7T i k#£0

f(w’k)::{o if k=0

Observe that, Vx € hZ",
Y fak)y= D flak) = Y AV (x+hk)kTT

kezn keZm\ {0} keZm\{0} (23
S 71/2 Z |k:|_n_2'S < o,
keZ™\{0}

and therefore it makes sense to define a normalized version of f(z, k), namely
~1
k) | (Sieon F@ D) 2+ WK 5 k#0
0 it k=0
Of course one has 0 < P(z, k) <1, and from the definition it follows that

ez goy V2 (@ + hE)K T
> Pk = Y Plak) =T S = 1 (24)

kezn kezZm\ {0} > ez oy V2 (@ + Rl

P(x,k) is the probability that a particle found at point x + hk will jump to x in the next discrete step.
With v = 1 one recovers the case [20], where the probability only depends on the distance between the two
points. A non constant function v can instead account for spatially changing properties of the medium, so
that the jumping probability is higher from a point whose conductivity is large, while still decreasing with
distance.
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Let u(z,t) be the probability that at some instant ¢ the particle is found at point x. It is clearly related
to the previous state of the particle by the equation

u(x, t+71) = Z P(x,k)u(x + hk,t) .
kezZ™\{0}
Now compute the time derivative of u(z, t):

() = lim u(z,t +7) — u(zx,t)

T—0 T
. 1
= 111310 1o Z P(z,k)u(x + hk,t) — u(z,t)
kezn\{0}
:h% h2s Z P(l’,k) (u(ac+hk',t)—u(:c,t)) )
kez™\{0}

where the last line is due to the normalization property (24) of P(z, k). So,

2 kezm\{0} [71/2(96 + hE)k| 7" (u(x + bk, t) — u(a, t))}

Opu(z,t) = lim S = s (25)
h=0 h2 3 ez qoy Y2 (@ + hj)lj]
The denominator is finite, as observed in (23), and also bounded away from 0:
S A @+ hk)ETTE =AY KT > 0. (26)
kezZm\ {0} kezZm\ {0}
By using (26) in Eq. (25), one can compute
 Seamgoy [ )RR (ul o+ Bk, ) — (o, )]
Oyu(z,t) = lim 7o N —n—2s
h=0 > jezmqoy V2 (@ + hi)lj|
1/2
=C % (u(x + z,t) — u(x,t)) dz
R |2
c / P ()P (y)
- u(y,t) —u(z,t)) dy ,
v(@)1/2 Jgn ly — x,n-{-?s (u(y,t) (z,t)) dy
because the sum approximates the Riemannian integral. Eventually, Oju(x,t) = ,Y(TC)H/Q Cu. If u(z,t) is

independent of ¢, the fractional conductivity equation Cju = 0 is recovered.
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Abstract

This paper shows global uniqueness in an inverse problemifor a fractional mag-
netic Schrodinger equation (FMSE): an unknown. electromagnetic field in a
bounded domain is uniquely determined/up to asnatural gauge by infinitely
many measurements of solutions taken in arbitrary open subsets of the exterior.
The proof is based on Alessandrini’s,identity ‘and the Runge approximation
property, thus generalizing some previoussworks on the fractional Laplacian.
Moreover, we show with a simple model that the FMSE relates to a long jump

random walk with weights.

Keywords: Fractional magnetic Sehrédinger equation, Non-local operators,
Inverse problems, Calderén problem
2010 MSC: 35R11, 35R30

1. Introduction

This paper studies a fractional version of the Schrodinger equation in a mag-
netic field{ or a fractional magnetic Schrodinger equation (FMSE), establishing
a uniqueness result for a related inverse problem. We thus deal with a non-local
counterpart of the classical magnetic Schrodinger equation (MSE) (see [33]),
which requires#o find up to gauge the scalar and vector potentials existing in a
medidm from veltage and current measurements on its boundary.

Let 2/C R™ be a bounded open set with Lipschitz boundary, representing
a medium containing an unknown electromagnetic field. The solution of the
Dirichlet problem for the MSE is a function u satisfying

(—A)au+ qu = —Au —iV - (Au) —iA-Vu+ (JAP +¢@u=0 inQ
{ u=f on 0}

Preprint submitted to Inverse Problems December 3, 2019
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where f is the prescribed boundary value and A, q are the vector and scalar
potentials in the medium. The boundary measurements are encoded itv A4 4
HY2(0Q) — H~/2(99) , the Dirichlet-to-Neumann (or DN) map. The inverse
problem consists in finding A4, ¢ in © up to gauge by knowing A 44.

The study of the local MSE has both mathematical and praectical interest,
since it constitutes a substantial generalization of the Calderén proble& (see [6]).
This problem first arose for the prospection of the ground in seatrch of valuable
minerals. In the method known as Electrical ImpedaneerTomography (EIT),
electrodes are placed on the ground in order to deliver voltage and measure
current flow; the resulting data carries information aboutithe conductivity of the
materials underground, allowing deductions abgut their composition ([42]). A
similar method is also used in medical imagingsSince the tissues of a body have
different electrical conductivities ([26]), using the same setup harmless currents
can be allowed to flow in the body of a patient, thus colﬁcting information about
its internal structure. This technique can belapplied to cancer detection ([20]),
monitoring of vital functions ([8]) and more (seee.g. [23]). Various engineering
applications have also been proposed: A reeent one (see [21]) describes a sensing
skin consisting of a thin ldyeriof,conductive copper paint applied on concrete.
In case of cracking of the block; the rupture of the surface would result in a local
decrease in conductiyity, which wouldyin turn be detected by EIT, allowing the
timely substitution of thefailing block. The version of the problem with non-
vanishing magnetic field is interesting on its own, as it is related to the inverse
scattering problem wi@ a fixed energy (see [33]). First order terms also arise
by reduction infthe study of numerous other inverse problems, among which
isotropic elasticity/([35]), special cases of Maxwell and Schrédinger equations
([310, [16]), Dirac equations ([34]) and the Stokes system ([22]). The survey [39)]
containssmere references on inverse boundary value problems for the MSE.

Below we introduce a fractional extension of the local problem. This is mo-
tivated by the connection between anomalous diffusion and random walks, as
explained in the end of the Introduction and in Section 5. Fix s € (0,1), and
consider the fractional divergence and gradient operators (V-)* and V*. These
are based on the theoretical framework laid down in [I3], [I4], and were intro-
duced in [I0] as non-local counterparts of the classical divergence and gradient.
They are defined to be the adjoint of each other, and also they have the ex-
pected property that (V-)*V® = (—A)?®, the fractional Laplacian. Fix now a

Page 2 of 30
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vector potential A, and consider the magnetic versions (V-)% and V¥ of the
above operators. These correspond to (—iV + A)- and (—iV + A), whése com=
bination results in the local magnetic Laplacian (—A)4. Analogously, we will
show how (V)% and V¥ can be combined in a fractional magnetic Laplacian
(—A)%. As expected, this operator will reduce to the known (—A)® if A =0.
The next step will be setting up the Dirichlet problem for EMSE ashy

(—A)5Su+qu=0 inQ
u=f in

Since our operators are non-local, the exterior values are taken over (), =
R” \ . The well-posedness of the direct problemis grantedsby the assumption
that 0 is not an eigenvalue for the left hand side of FMSE, (see e.g. [38]). We
can therefore define the DN map A3 , : H°(Qe) = (H*(€2))" from the bilinear
form associated to the equation. The inverse/problem is to recover A and ¢
in ! from A% . Because of a natural gauge ~ enjoyed by FMSE, solving the
inverse problem completely is impaossible; however, the gauge class of the solving

potentials can be fully recovered:

Theorem 1.1. Let Q C R™, n>nl be a bounded open set, s € (0,1), and let
(Ai,q;) € P fori=1,2. Suppose W1, Wz C . are non empty open sets, and
that the DN maps forsthe FMSEs in'§ relative to (A1, q1) and (A, q2) satisfy

Ail,ql [f“Wz - AZQ,QQ[f]|W27 Vf € CEO(WI) .
Then (A1, q1) ~ (Ag,qgl, that/is, the potentials coincide up to the gauge ~.

The set P of poténtials and the gauge ~ are defined in Section 3. P contains
all potential§’( A, q) satisfying certain properties, among which (p5): supp(A) C
Q2. We suspect. this_assumption to be unnecessary, but we nonetheless prove
our Thieorem in this easier case, and highlight the occasions when (p5) is used.

The, proof is based on three preliminary results: the integral identity for
the DN mapsthe weak unique continuation property (WUCP) and the Runge
approximation property (RAP). The WUCP is easily proved by reducing our
case to that of the fractional Laplacian (—A)®, for which the result is already
known (see e.g. [37], [I7]). For this we use (p5). The proof of the RAP then
comes from the WUCP and the Hahn-Banach theorem. Eventually, we use
this result, the integral identity and (p5) to complete the proof by means of

Alessandrini’s identity. This technique generalizes the one studied in [17].
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We consider Theorem 1.1 to be very satisfactory, as gauges show up in the
local case s = 1 as well (again, see [33]). For comparison see [7], whiere it is
shown that no gauge exists for a fractional Schrodinger equation with a local
first-order perturbation of the form b(x) - Vu(z). As observed in Section 3, our
operator can be regarded as a fractional Schrodinger equation with a nonslocal

perturbation of the kind
~

/n b(z,y) - Vu(z,y)dy ,

and thus our results extend the investigation in [7] inta rather natural way. One
may also compare our operator with the one studiedsin [3]::In such work the au-
thors consider non-local lower-order perturbations of thefractional Schrodinger
equation of the form (—A)ng(x)(—A)gzu(x), where the symbol (—A)?{Q de-
notes the regional fractional Laplacian. Inthe case of .complete data, [3] shows
that the perturbation b and the potential g can be completely recovered; how-
ever, in the case of a single measurement, the,authors interestingly find that
there exist natural obstacles to the full recovery of both b and q.

Besides the purely mathematical appeal, we believe that the problem we are
considering may also be interesting from a practical point of view. As a matter
of fact, fractional mathematical models are nowadays quite common in many
different fields of science, including image processing ([19]), physics ([13], [15],
18], [28], [32], [44]), ecology ([25], [30], [36]), turbulent fluid dynamics ([9], [I1])
and mathematical finance ([1,[29], [40]). For more references, see [5]. All these
applications involve anemalous diffusion, i.e. a diffusion process in which events
that are quite far from thefinean are still allowed to happen with a relatively high
probability. /As a consequence, one can model such phenomena with anomalous
diffusion random walks. These are "anomalous” in the sense that the variance
of the dengthhof the jumps is not finite as in the classical diffusion case. The
authers of [43] have proved how the fractional Laplacian corresponds to a long
jumprandem walk of this kind. In Section 5 we extend their line of reasoning to
our magnetic fractional operator, showing that its leading term corresponds to
along jump random walk with weights. We also prove that this is an anomalous

diffusion random walk.

Page 4 of 30



Page 5 of 30 AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

1
2
3
. 2 PRELIMINARIES
6
- 1
8 2 2. Preliminaries
3
9
10 !
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19 "
25
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< (A =A%), o + 4t = A& : Ai(y,x) )
n H (A(z,y) — Ai(z,y)) + (Aly, z) — Ai(y, z))
2 L
= (A= A, 2 + ’W’y) — Aoy + W) - A ) 4
<2 A - A2 <2/i. o -

Remark 2.4. If A € C2°, the operators (-)s, (*)a, (+)|, (-)Licommute with each
other; because of Lemma this still holds a.e. forgA € L*(R®™), Thus in the
following we use e.g. the symbol Ay for both (Ag )y and (4 )4

Sobolev spaces. Let Q C R™ be open and'r € R, p € (1,00), n € N\ {0}.
By the symbols WP = W"P(R™) and WZP(Q) we d%note the usual LP-based
Sobolev spaces. We also let H® = H*(R") & W$2(R") be the standard L*-
based Sobolev space with norm ||dfjge &~y = |FE_H(E)%0) || L2(rn) , where s € R,
(€)== (14 |¢>)*/? and the Fourier transform is

(&)= Ful).= / e Sz dr .

n

One should note that there exist, many equivalent definitions of fractional
Sobolev spaces (see e.g. [12]). Using the Sobolev embedding and multiplication

theorems (see e.g. [A]4|2]), these spaces can often be embedded into each other:
Lemma 2.5. Letsi€ (Qpl), pi=max{2,n/2s} and h > 0. Then the embeddings
(el). H® x H e 4"/ (n/2Fsp=25) (e5). L% x L2 < LP
(e2). H®& DR — L2/(n+2s)

(e6). HSP~25 — [P
(e3). L% x LR L2n/(n+29)

(ef)en L2 x HS e L2 (e7). L2n/(H2h) <y =
hold; where x indicates the pointwise product. ]
Let U, FF C R” be an open and a closed set. We define the spaces
H*(U) = {ulv,u e H*(R")},

H*(U) = closure of C>°(U) in H*(R"™) , and

Page 6 of 30
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Hp(R") = {u € H*(R") : supp(u) € F} |

where |[ul| gsy = inf{||w||gs@ny;w € H*(R"),w|y = u}. For s € (0,1) and
a bounded open set U C R", let X := H*(R™)/H*(U). If U is a Lipschitz
domain, then then H*(U) and HE (R™) can be identified for all s@€ R (see [17]);
therefore, X = H*(R")/HZ(R"), and its elements are equivalence classes of

functions from H*(R") coinciding on U,. X is called abstraét trace-space.

Non-local operators. If u € S(R™), its fractional Laplaeian is (see'|27], [12])

, w(@)— u(y)
—A)u(x) :=Cps lim ———"dy,
Coyute) = tim [
for a constant C,, ;. Its Fourier symbol is [£]?%, i.e. (—A)%u(z) = F~1(|¢]**a(€)).
By [24], Ch. 4 and [1], (—A)® extends as a bounded map (—A)® : W™P(R") —
Wr=2sP(R") for 7 € R and p € (1,00). Lét a(z,y): R — R" be the map

0711,,/52 Y=

a(z,y) = 2y o] 7

If u e C*(R™) and x,y € R, the fractional gradient of w at points x and y is
Vou(z, )= (u(z) = u(y))o(z,y) , (4)

and is thus a symmetrichand parallel vector function of x and y. Since it was
proved in [I0] that ||V5u||%2(R2n) < ||u||2HS(Rn), and thus that the linear op-
erator V¥ maps C2(R") into L?(R?"), we see that V® can be extended to
Ve . H*(R™) = LQ(R“"). Using a proof by density similar to the one for
Lemma one sees that still holds a.e. for u € H*(R™).

If u e HYR") andw.€ L?(R*"), the fractional divergence is defined as that
operator (V-)$a.L?(R*") — H—*(R") satisfying

(V) v,u) p2mny = (v, Viu) p2(gen)y (5)

ile. it is by definition the adjoint of the fractional gradient. As observed in [10],
Lemma 2.1, if w.€ H*(R"™) the equality (V-)*(V®u)(z) = (—A)%u(z) holds in
weaksense, and (V-)*(V°u) € H—*(R").

Lemma 2.6. Let u € C°(R™). There exists a constant ky_ s such that

.F(V"'u)(f,n) = k”’s (|§|n/§+ls + |,,7|n/727+18> ]:u(f + 77) :




oNOYTULT D WN =

© 00 N O Ol W N

42

AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

2 PRELIMINARIES

Proof. As u € C°(R"), we know that Vu € L?(R?"), and we can compute its

Fourier transform in the variables £, 7. By a change of variables,

1/2

F(Vu)

n

_ k/ /
on

K [
on

— K, Fué +1) / (755 — ¢i#E) Y (|21~ 2] d

n

i =iy _W(Z) — ul(y)
€, yn|y—x\"/2+€+1( y — ) dedy

—1z n

FRGs 2 [ e ) — ) o d
" ~

Z|n/2+s+1

: e Fu(€ +n)(1 — =) 4,

n

— KL Ful + ) (nF (|22 e Rl ) (~€))

= kn,s <

€

n
|¢[n/2+1=s + 77|n/2+1_5) Fu(§+m) - O

Lemma 2.7. The fractional gradient extends as a botnded map

VS . HT(Rn) y <DL + Dy)’l“stQ(RQTL) ,

and if r < s then also V*®: H"(R")'= HT=3(R?") .

Proof. Start with u € C°(R™)jrand let . € R. Then

IV*ullip, +pyyr—sz2 = (Dt Dy)" ™ *Vou, (Dy + Dy)" " *Vou) 2

= ({Dy + Dy)*" =)V u, Vou) 2 (6)
= (FE((D, + D)2 "=IV5u), F(Vu)) 2

From the previous Len{ma we/can deduce that

F({Dy + Dy 2= )N5u) =

(1 + 1€ +n*) " F(Vu)

¢ Ul

= b (s + v ) Fe(E+
£ "

— kn,s (

= F(V*(D

|E|n/2Hi=s + |nn/2+1—s> F((D2)*" = u) (€ + 1)

x)

2(rfs)u)) )

Using the properties of the fractional gradient and @,

V2 U“ Do+Dy)r—sL2 =

=(F
(V
(

(D
(=

(V

*((
)"

*((Dg)* ")), F(Viu)) e
D)2 =90), Vo) 12 = ((Dy)2 9, (—A)5u) 2
S(=A)Pu, (D) 5 (= A)* ) o

AY2ul - < cluly -

Page 8 of 30
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3 DEFINITION AND PROPERTIES OF FMSE

An argument by density completes the proof of the first part of the statement.

For the second one, observe that r < s implies

[V Frs = (Da )"0, (D))" *0) 12 = ({Day)*"V0,0) 12
(L+ 2+ [n*)"*0,0) 2 < c((1+|€+nl*) 130, 0) 2
= C(<Dm -+ Dy> (T*S)'U’ 'U)Lz = C”,U”(Dm-‘rDy}’"_st s

and so (D, + D,)""*L*(R*") C H"~*(R?"). O
As a consequence of the above Lemma, the fractional divergeneeican be similarly
extended as (V-)® : H{(R?") — H'~3(R") for all t > s,

3. Definition and properties of FMSE

¥
Fractional magnetic Schrédinger equation. Let 2 C R™ be open, Q. =
R™\Q be the exterior domain, andalso recall that p :=max{2,n/2s}. The vector
potential and scalar potential are two functions A : R*® — C” and ¢ : R" — R.

The following properties are of interest:

(p1). 1A, J2A € L*R"),

(2). Ay € HP*(RECT)

(p3). Aqy(x,y) - (y£2x) >0, for all z,y € R™,

(p4). q € LP(Q) 470N

(p5). A€ L*(R*2){ supp(A4) C Q2.

With respect to.the above properties, we define four sets of potentials:

Ay := {vector potentials A verifying (pl) — (p3)},
A :=/{vector potentials A verifying (pl1) — (p3) and (p5)},
Po.:= {pairs of potentials (A, q) verifying (pl) — (p4)},
P :={pairs of potentials (4, ¢) verifying (pl) — (p5)}.

Remark 3.1. The peculiar definitions for the spaces in (pl), (p2) and (p4) are

due/to computational necessities: they make the following quantities

laqullar—, (V) Agyllze, (24 Lo, uToAllrz
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3 DEFINITION AND PROPERTIES OF FMSE

finite for u € H®, as needed in Remark 3.6, Lemma 3.3 and . This isseasily
proved by using Lemma 2.5. However, if n > 4, then p = n/2s, and sorin this
case L? = L™* and HP—5 = H"™2=%; this simplifies the assumptions for n

large enough.

Let A€ Ap and u € H*(R™). By (p1) and (e4),

A prelalzaen = (/ u(e)” / |A($>y)|2dydw>l/2

n

1/2
— ([ 0 A do g = 10 T

< kflul g

\72AHL21" < o0,
and thus the magnetic fractional gradient of w can be defined as the function
S R?™ — C" such that .
(Viu,v) := (Vou + A(ayy)u(z),v), forall v € L*(R*") . (8)
By the same computation, V¥ acts'as an operator V¥ : H*(R") — L?(R?").
Let A € Ag, u € H*(R™) and.v € L*(R?"). The magnetic fractional divergence
is defined by duality as that operator (V:)5 : L*(R?") — H~*(R") such that

((V)5v,uy:= (v, Viu) .

By construction, the magnetic fractional divergence and gradient can be com-
bined; we call magnetic{mctional Laplacian (—A)5 := (V-)%(V?) that operator
from H*(R™) t¢ H5(R™).such that, for all u,v € H*(R"),

(=A)au,v) = (Viu, Viv) . (9)

Remark 3.2..If A= 0, the magnetic fractional Laplacian (—A)% is reduced to

S

its nom~magnetic counterpart (—A)*®, as expected. Since the fractional Laplacian

isawell understood (see e.g. [T7]), from now on we assume A # 0.

Lemma 3.3. Let A€ L*(R*")N Ay and u € H*(R"). The equation

EA)u = (—A)u+ 2/Rn (Aqp - Viu) dy + ((v-)SAS“ + /Rn AP dy) u
(10)

holds in weak sense.

10

Page 10 of 30
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6
7 1
8 2 Proof. By (9), (~A)%u € H=*(R"™), and in order to prove in weakssense
9 i one needs to compute ((—A)%u,v) for v e H*(R™). By (9) and (§),
10
1 ; (= A)5u,v) = (V'u+ A, y)u(), Vo + A, y)o(@))
12
13 7 = (Vu, V°0) + (Au, Av) + (Viu, Av) + (Viu, Au) ,
8
1: 9  where all the above terms make sense, since by formula Vou, VeuyAu and
16 10 Ap all belong to L2(R?"). The new term (V*u, A(y, x)v(z)) isdlso finite, so
11
17
18 2 (=A)au, v) = (Vou, V*0) + (Au, Av)+
13
;g 14 + (Vou, A(z,y)v(z)) — (Vu, Ay, x)v(z))+ (11)
21 . + (Vu, Ay, 2)o(w)) £ (VoA y)u)
22
23 17 For the first term on the right hand side of , by definition,
18
24 19 S S S S .S
52 20 (Viu, Vo) = (V)" Vouv)= ((14)%u,v) . (12)
21
27 22 For the second one, by the embeddings (e5), (e2) and (e7),
2 2
30 21 (u 40) = (@l P ) = (AP0 (13
25 "
31
32 zj Since u € H*(R"), by (3) we deducén>(Vsu) € L2(R™). Now (e3) implies that
23 28 J2(Viu) A € L7+ " Qn the other hand, by Cauchy-Schwarz
4
36 H/ Vou - Ady|| 133 = / Viu - Ady dx
37 31 R™ L n+23@") n | JRrn
38 > s > 2\
39 33 < / / |VPu| | Aldy dz < / / |Vu| dy/ |A|*dy dx
40 i?)il 2n —2n
o o = (e Bl de = (V0 BT,
4 36 Rn L7n+2s (Rm)
37 2n
43 35 and 8o o, VurAdy € L7+% . Now ([, Vou - Ady,v) is finite by (e7), and
44
39
> w0 (V7 Alegy) v(@)) ~ (V0. Aly, 2)o(x)) =
41
47 42 = </ Vo - A(»’C,y)dy,v> — < Vou - A(y7x)dy,v>
48 A R™ R™
49 " ) (14)
50 = / Vou- (A(z,y) — Ay, z))dy, v
45 R™
51 16
52 = <2/ Vou - Ag dy,v> = <2 Viu - Ay dy,v> )
54
55 11
56
57
58
59
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3 DEFINITION AND PROPERTIES OF FMSE

The last steps use Lemma to write A, for A € L? and to see that Vu is
a.e. a parallel vector for v € H*(R™), which implies V*u - A, = 0 afer. This
computes the third and fourth terms on the right hand side of . For the
last two terms observe that, since A(y, z)v(z) — A(z,y)v(y) is anbisymmetric,
by Lemma [2.3| we have (V*u, A(y, z)v(z) — A(z, y)v(y)) = 0, and so

(Viu, Ay, x) v(z)) + (V°v, Au) ~
_ /]R A(wy) - (o) u+ u(2) V) drlly
= [ A-a (@) — utw) + u( @) ~ o) dedy (15)
= [ A a(ut@n) — utw)ofon ) 2y

= (Ay, V2 (w)) = (u(V-)" Agfw), .
L
On the third line of the integrand is the product of a symmetric, parallel

vector and A; this reduces A to AgynFrom (el),(e7) and Lemma [2.7| one sees
that V*(uv) € H°~"P, and now (Ag,V¥(uw)) makes sense by (p2). Eventually,
(@), (e6), (e2) and (e7) explain the last step. Equation follows from (1)),
(12), ({13), and (I5)). O

Lemma 3.4. Let Ane L*(R*™) Ay, There exists a symmetric distribution
o € D'(R*) such that 0 21 and A, = (o — 1) a.e..

Proof. Because of Lemma @ A, is a parallel vector almost everywhere, and
thus [|Aq) — (AgPylfz2=0. Again by Lemma

AaH'(x_y) T
|z —y|? ==v)

v, @ V2 Ay (z—y) i oy—a
alf C}L/f lz —y[i=n/2=s | /2 |y — x|n/2+sHL

V2 Ay (y—x)
A, — 1 -1
al << + CL2 |z — y[in2=s «

Moreover; if ¢ € C>°(R?") and B,,, B,, are balls in R™ centered at the origin

0= A= (Ag)yllz2 = HAa| -

L2

L2

L2

12
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6
7 1
8 52), such that supp(¢) C By, X By,, then by (1), and Cauchy-Schwarz inequality
9
4 V2 =z
10 1+ _ n/2+s<A y) >‘:
y—x a ;¢
11 ° |< Cnl2 v 1y —a
12 0 Y
7 2 s Yy—x
13 . = / / 1+ 1/2|y—x\”/2+‘ (Aa|~) ¢ dy dx
14 n JRn C’n s ly — ]
15 ?0 2 Y- .
16 N / / 1/2 |y |n/ i (Aa| : ﬁ) o] dy da
n Jrn y
17
18 12 gt
19 13 < H¢||L°°/ / 1/2 |y |n/2+s (Aal . m) dy dx
20 14 By, JB,,
21 15 w
2! 10 < kol 1+ / ly -zl |4, *\ dy d
17 B, JB., ly — x|
23
24 ' o
19 < klgllr= | 1+ (2] + ™A | dy da
\
25 2 By, J By,
26 o1
27 22 <Kol 1+/ / [Aq | dy dx
28 s B,, JB.,
29
" 24 <K Il (Yehliedaglz o ) < K6 (14 A3 gpm) ) < o0
25
31
32 26 Thus it makes sense to define a digtribution o € D’(R?*") such that
27
33
28 V2 —z
34 (0, 6) =T |y — o /2 (Aa g ) ’
35 i O iyl
30
36 3
37 holds for all ¢ €OP(R#™).. Given that Ag) is antisymmetric, it is clear that o
32
228) 33 1S symmetric; moreover, property (p3) assures that o > 1. O
34
40 ;s Remark 3.5. If u€8(R"), by the previous Lemma we can rewrite the leading
Z; ii term of {=A)% as
43 u(z) — u(y)
38 Cos PV | o(z,y) 22— 1Y)
44 39 R™ @) |z — y[nt2s
45 2
46 " Thisshows the connection between the magnetic and classical fractional Lapla-
47 sgcians: ifio(z,y) = 1, ie. if Ay = 0, the formula above defines (—A)*u.
49 43 Moreover, if o(x,y) is separable (i.e. there are functions 01,09 : R — R such
50 ié that'a (z,y) = o1(x)oa(y)) we get the fractional conductivity operator (see [10]).
51
52 ii Consider (4,q) € Py and f € H*(Q.). We say that v € H*(R") solves
53
54
55 13
56
57
58
59
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FMSE with exterior value f if and only if

(—A¥u+qu=0 inQ
u=f in .

holds in weak sense, that is if and only if u— f € H*(2) and, for all v € H*(R"),
(=A)ju,v) + {qu,v) = 0. ~(16)

Remark 3.6. By (pl), (p2) and (p4), formula makes sensed This was
already partially shown in the above discussion about the magnetic fractional

Laplacian. For the last term, just use (p4), (e2) and (&7).

Old gauges, new gauges. Let (G, -) be the abelian group of all strictly positive
functions ¢ € C°(R™) such that ¢|q, = 1. Forn(A,q), (A',q") € Py, define

4
(A,q) ~(A,¢) & (=A% wu+aqu=_=A)u+qu, (17)
(A9~ (A,q) & 3¢eGU=A)(up)Hgtd = ((—A)%u+q'u) (18)
for all w € H*(R™). Both ~ and =~ areequivalence relations on Py, and thus we
can consider the quotient spacesiPy/ ~ and Py/ ~. Moreover, since ¢ =1 € G,
we have (4,q) ~ (4, ¢') = (A @~ (A 7).

We say that FMSE has the gauge ~ if for each (A,q) € Py there exists
(A',q") € Py such that (A, ¢') # (4,q) and (A,q) ~ (A’,¢). Similarly, we
say that FMSE has/the gaugeha: if for each (A4,q) € Py there exist ¢ € G,
(4%, q') € Po such thatgg # 1, [A',¢') # (4, ) and (4,¢) = (4, ¢).

Remark 3.7. [The definitions and , which have been given for FMSE,
can be extended to the local case in the natural way.

If s =1, itissknown that (—A)a(u¢g) + que = ¢ ((—A)A+v7¢u + qu) for all
¢ € Gland u € HY(R"). If we choose ¢ # 1, we have (A+ %,q) # (A, q) and

(Asq)-= (A + %, q), which shows that MSE has the gauge ~. On the other
hand if (A, g (A’,¢') then necessarily A = A’ and ¢ = ¢’: thus, MSE does
not/enjoy sthe gauge ~. We now treat the case s € (0,1).

Lemma 3.8. Let (A,q),(A’,q") € Py. Then (A,q) ~ (A',¢") if and only if
Aq = A;H and Q = @', where

Qi=q+ / APdy + (V) Ay, Q@ =dq+ / A2 dy + (V)* AL
R Rn

14
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Proof. One direction of the implication is trivial: by and the definitien, it
is clear that if A, = A;H and Q = Q' then (—A)5u+ qu = (—A)%,u +q'u.
For the other one, use Lemmas 3.3 and 3.4 to write (—A)%u+qu = (—A)Spu+q'u

as

0= 2/ la*(0" — o) (uly) — u(z)) dy + u(z)(Q =)
n \ (19)
u(y) — u(x) )
=Cps o — o)~ dy +u(x)(Q Q).
[ (0 -+ u(@)(Q @Y
Fix ¢ € C2(R™), z € R” and u(y) := ¢(y)e/1*=¥l|x — y|"*28: one sees that
u € &, since it is compactly supported and all the derivatives of the smooth
function e~/1*=¥l vanish at 2. Thus u € H*, aid we ean substitute it in :

0= / (o(x,y) — o’ (z,y))e” V1"V (y) dys=i(al@iy) — o' (x,))e /177 ) .
" &

Being ¢ arbitrary and e~'/1*=¥| non-negative, we deduce that y +— o(x,y) —
o'(z,y) is zero for any fixed z, thatisjg = o’.“Then A, = A} by Lemma
and also Q = Q' by . O

Lemma 3.9. Let A # 0. Then EMSE has the gauge ~.

Proof. 1f (A, q) € Posand A’ € Ap issuch that A, = A;H, then by the previous
Lemma (4, q) ~ (A, ¢")if,and only if Q = @', that is

¢ =+ QAP Ay $O Ay - [ APy (A
AN R™

Since A, A’ [€ Ay{ we have ASHaAIsH € H°P~% and JoA, Jo A’ € L?P. By the
former fagt, (V-)*A;, (V-)SA'SH belong to H*?~2% and eventually to LP because
of (e6). By the latter fact and (e5), [, [A]*dy, [g. |A']?dy € LP. Also, q € L?
becausé (A, ¢).€ Pg. This implies that (p4) holds for the ¢’ computed above.
Henge, if we find A" € Ag such that A, = A;”, and then take ¢’ as above, we
getran(A’)q)) &Py in gauge ~ with a given (A, q) € Py. We now show how to
do this with A A’, which implies that FMSE enjoys ~.

Fix (A,q) € Po, and for the case A} # 0let A" := A — Ay. Then A # A’,
because A # A’ ; moreover, from A = A“ we get Ay = A;” and A;H =4, €
H*P=#. Eventually, |A|? = |AI||2 + A P = AP+ - ALP =4 P+ |AL? =
|4)? implies Jo A’ = JoA, and A’ verifies (p1). If instead we have A} = 0,
let A" = Ay + RAj, where R is any 7/2 rotation. Then as before A, = A;H

15
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and A'SH = Ay € H°P7?°, because A = Ah. We also have A # A’, because
AL =0# RA = A',. Finally, since JoA € LP, A’ verifies (p1):

1/2 1/2
ad = ([ 1aray) = ([ 1P+ 14 P
R7 R7

1/2 1/2
= </ |4 1% + |RA||2dy> = (/ 2A|||2dy> =V AL O
R R™ ~

Lemma 3.10. FMSE does not have the gauge ==.

Proof. Let (A,q),(A4',q') € Py such that (A,q) = (A’,q’). Then there exists
¢ € G such that (—A)% (up) + quo = ¢((—A)S,u +qu) for all uw € H*. Fix
Y € CX(R™), z € R” and u(y) := ¥ (y)e V1=~ ¥l|z =" *25as in Lemma 3.8.
Then u € S, and by Lemma 3.3 and Remark 3:5,

0=Cp. PV / (U (,47) M) — u() ) G (m)u(:c)qs(x) — u(y)gb(x)) oy

|x_y|n+25 |x_y|n+23

+u(@)p(2)(Q - Q)

—Con PV [ e g0l dy

= Cn,s/ Y(y)e Ve (z W) =0 (z,y)6(y)) dy .
o

Here the principal value disappears because the integral is not singular. Given
the arbitrarity of ¢ andsthe non negativity of the exponential, we deduce
o(z,y)p(y) = o'(z,9)¢(x) forrall y # x. On the other hand, since o,0’ are
symmetric and ¢ > O,Qy taking the symmetric part of each side

¢(z) + 6(y)
2

Olx) + 0ly)

= (0@ 9)6(v))s = (o' (@,y)d(x))s = o' (x,y) =

o(z,y)

This implies o. = ¢”,'and the equation can be rewritten as o(z, y)(¢(y) —¢(z)) =
0. Beingig»> 0, it.is clear that ¢ must be constant, and therefore equal to 1.
This, means that, whenever (A,q), (A’,q") € Py are such that (A,q) ~ (4’,¢)
with.some ¢ € G, then ¢ = 1, i.e. FMSE does not have the gauge ~. O

By the last two Lemmas, FMSE enjoys ~, but not ~. Observe that the
reverse is'true for the classical magnetic Schrodinger equation. This surprising
difference is due to the non-local nature of the operators involved: FMSE has ~
because the coefficient of its gradient term is not the whole vector potential A,
as in the classical case, but just a part of it. On the other hand, the restriction

imposed by the antisymmetry of such part motivates the absence of =.

16
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Bilinear form. Let s € (0,1), u,v € H*(R"™), and define the bilinearyform
B, H* x H* — R as follows:
Bj ,lu,v] = / / Viu - Vivdydx +/ quudz .

Observe that by Fubini’s theorem and Lemmas 3.3, 3.4

B lusu] = ((=A) u,u) + 2(Viu, Agju) + (Qu, w) =
= (Vou, Viu) + 2(Viu,a(c — 1)u) £XQu, u)
= (Vou, Vou + (0 — Da(u(z) —u(y))) +(Qu, v)
= (Vu,oV?u) + (Qu, u) .

Since again by Lemma 3.4 we have ¢ > 1, for the first term
(Vou,oViu) = / o|Veul? dydx > / IVeul2dyde = (—A)*u,u)
R2n R2n .

and thus B3 [u,u] > Bj 5[u,u] 4 Now Lemima 2.6 from [38] gives the well-
posedness of the direct problem for. EMSE, in the assumption that 0 is not an
eigenvalue for the equation: if £ € (H2 (Q))%then there exists a unique solution
up € H*(Q) to By [u,v] &), Yv'€ H*(Q), that is a unique up € H*(Q)
such that (—A)%u + qu = F i, uplg, = 0. For non-zero exterior value, see
e.g. [I0] and [I7]; one also gets the estimate
lugler=@an< c(IFll =y~ + 1 me@n)) - (20)

Lemma 3.11. Let vow € H*(R"), f,g € H*(Qe) and uy,uy € H*(R™) be such
that ((—A)% +quy :?Z'—A);Jrq)ug =011 Q, uslo, = f and uglo, =g. Then

1. B lusw]'=B3 [wy] (symmetry),

2. | B} g[v | < Kl o]l e reny 1w 112 )

3. Bi,q[uf7 eg] = Bi,q[ugﬂ ef] ’
where eq, ey, & (R™) are extensions of g, f respectively.

Prodf. Symmetry follows immediately from the definition. For the second point,
use (e2); (e7) and the definition of magnetic fractional gradient to write
|B2 [0, w]| = (Viv, Viw) + (qu,w)| < Vi, Viw)| + [(qu, w)]
< [IVavlle2l[Viwllz> + llqull -

< Kvllme

wl|prs

| gs + K \|qlloe Jo)| zs lwl s < Elloll s ||lw]| a2 -

17
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3 DEFINITION AND PROPERTIES OF FMSE

For the third point, first compute

Biyalug gl = [ (Vs + ugugdo = [ (=A)3us + quaty do

e

_ /Q (—AY5us + quy)eq do = By lug, ey]

and then BY  [uf,eq] = BY  [uf,ug]l = BY [ug,up] = B [dg, ef].— 0 O

The DN-map and the integral identity.

Lemma 3.12. There exists a bounded, linear, self-adjoint map Aix,q X = X*
defined by

(MNaglf] l9) = Bl gluy, g, 4V, 9 € HSR"),

where X is the abstract quotient space H®(R™Y/H® (Q).and uy € H*(R™) solves
(= A)Sus+qup =0 in Q with u — f € H(Q).

Proof. We first prove that the tentative defimition of the DN-map does not
depend on the representatives of the\equivalence classes involved. Let ¢,¢ €
H*(Q) and compute by Lermma,

B qlurte,9+ ] =/ (g.+ V) (=A% + Quyrg dr

e

_ /Q 9((~A) + quy dz = BY Jup.g)

The 1 disappears beca&se it vanishes in €2, while the ¢ plays actually no role,
since f = f + ¢ overf). implies usy = uy. The boundedness of A% , follows

from and (20)¢ first compute

[ag [Falgll b= 1B g[up, 9l < Kllug | e

gllas < cllfllusllgllas ,

for alb f € [f], g € [g], and then observe that this implies
WA f1, 9D < K inf |[fllms inf {lgllm = KII[f]]xg]llx -
felf] 9€lg]

Finallygtwe prove the self-adjointness from Lemma [3.11}
<Af4,q[f]7 [g]> = Bf&q[ufa eg] = Bqu[u.(]v 6f] = <Aj47q[g]7 [f]> = <[f]7Af4,q[g]> : D
The DN-map will now be used to prove an integral identity.

18
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1
2
3
: 3 DEFINITION AND PROPERTIES OF FMSE
6
- 1
8 2 Lemma 3.13. Let (A1,q1), (A2,q2) € P, fi1,fo be exterior data belonging to
9 i H*(R™) and u; € H*(R™) be the solution of (—A)% wu; + qiu; = 0 with iy — fi €
1(1) 5 H*(Q) fori=1,2. The following integral identity holds:
12 ¢ s s
13 7 (A g0 = Ny ogo) 15 f2) =
‘ S (21)
14 o = 2</ ((A1)a) — (A2)q)) - Viuy dy7U2> +((Q1 #0Q2)u1ug) <
15 " -
10
1? 11 Proof. The proof is a computation based on the results of-\Lemmas and 3.3:
18 12
19 13 (A, g0 — Ny o) f1s fo) = By, g [ua, ue] — B, glur, us]
14
;? 15 = (Viuy, Viug) + 2< /n (Al)uH -Vouy dy, U2> F(Qru1,uz)—
29 16
23 17 - <VSU1, VSU2> - 2</ (AQ)a“ 3 Vsul dy, U2> — <Q2U1, 'LL2>
18 R
24 A
25 1o = 2</ ((A1)a) — (A2)q)) - Viuy dy,u2>:— (@1 = Q2)ur,uz) . O
20 R
26
57 21
28 22 The WUCP and the RAP. Let W €€, be open and u € H*(R™) be such
29 zz that w =0 and (—A)%u + gu = 0 in WA If this implies that w = 0 in  as well,
30 95 Wwe say that FMSE has got the WUCPu It is known that WUCP holds if both A
1
22 26 and ¢ vanish, that is, in the case of.the fractional Laplace equation (see [3§]).
33 2 Let R = {uy|q, ff€€(W)} C L3(N) be the set of the restrictions to € of
28
34 59 those functions uy solying FMSE for some smooth exterior value f supported
22 30 in W. If R is dense in L?(9)), we'say that FMSE has got the RAP.
31 N
g; 32 Remark 3.14./The WUCP and the RAP are non-local properties. For example,
39 33 the RAP shows a certain freedom of the solutions to fractional PDEs, since it
40 §4 states that they can approzimate any L? function. This is not the case for a local
2; 36 operatorzzesg. the.classical Laplacian, whose solutions are much more rigid.
37
43 33 Lemma 3.15."  The WUCP implies the RAP in the case of FMSE.
44
39
45 10 Proof..We follow the spirit of the analogous Lemma of [I7]. Let v € L?(2), and
pie 41 assufne that (v,@) = 0 for all w € R. Then if f € CX(W) and ¢ € H*(Q)
42
48 A
49 L,
50 "
51 16
52 47
53
54
55 19
56
57
58
59
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4 MAIN RESULTS

solves (—A)%¢ + g = v in ), we have

n

0= (v,urla) = (v,uy — f) z/ v(uy — f)dx
- / o(ug — f) dz = / (~A)s6+ q6)(uy — f) dd
Q Q
= [ (a%0+ a0 - s %

= BY [boug] — / (~A)36 + q0)f de .

n

However, By (¢, uf] = [g. (=A)5uy + qup)pdr =0y and so [, (—A)5¢ +
q®)f dx = 0. Given the arbitrarity of f € C2°(W), this implies that (—A)%¢ +
g = 0in W. Now we use the WUCP: from (=A)%¢+qdp=0and ¢ =0 in W,
an open subset of ()., we deduce that ¢ = 0.in.2 as.well. By the definition of ¢
and the fact that v € L2(€2) it now follows that v = 04Thus if (v, w) = 0 holds
for all w € R, then v € L?(2) must vanish; by the Hahn-Banach theorem this
implies that R is dense in L?(Q). O

4. Main results

The inverse problém. We prove Theorem 1.1 under the assumption (4, q) €
P, while for all the previous results we only required (A, ¢) € Py. We find that
(p5) makes physical sense, as the random walk interpretation of FMSE suggests;
however, we move_the consideration of the general case to future work.

By (p5) and Lemima 3.4 we easily deduce that o(z,y) = 1 whenever (z,y) € Q2,

since in this case\dy| (z,y) = 0. Another consequence of (p5) is:
Lemma 4.1. \Let (A, q) € P. Then FMSE enjoys the WUCP.

Proof.| Suppose ithat for all z € W C Q. we have u(z) = 0, (—A)5u(z) +
q(z)u(x)= 0. This in particular implies that (—A)%u(z) = 0. Since = ¢ ,
for almost every y € R™ we must have A(z,y) = A(y,z) = 0 by property (p5),
which means that A, (z,y) = 0. It is now an easy consequence of Lemma
3.3 that (—A)*u(x) = 0 for all x € W. The known WUCP for the fractional
Laplacian ([I7]) gives the wanted result. O

We are ready to solve the inverse problem, which we restate here:

20
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1
2
3
‘5‘ 4 MAIN RESULTS
6
7 1
8 2 Theorem 1.1. Let Q C R™, n > 1 be a bounded open set, s € (0,1), and let
9 i (Ai,q;) € P fori=1,2. Suppose Wi, Wa C §. are non empty open $ets, and
1(1) 5 that the DN maps for the FMSEs in  relative to (A1, q1) and (As, ¢2) satisfy
12 ¢
13 7 Aoyl llwe = Ay, o [fllws V€ CZ(WH)
8
12 9 Then (A1,q1) ~ (A2, q2), that is, the potentials coincide up go the gauge~.
10
1? 11 Proof. Without loss of generality, let Wy, N Wy = 0. Let f; € CSUW;), and
18 12 let u; € H5(R™) solve (=A%, ui + qiug = 0 with u; — f; € ﬁS(Q) for i =1, 2.
19 12 Knowing that the DN maps computed on f € C°(Wq)ieoincide when restricted
;? 15 to Wy and the integral identity , we write Adessandrini’siidentity:
16
22 s s
17 0= <( Ay,q1 Az,qz)f1?f2>
;Z 18 (22)
5 19 = 2</ ((A1)a) — (A2)q)) - Vi dyaU2> + (@1 — Q2)ur, u2) -
26 20 y
57 21 We can refine by substituting every instanceof u; with u;|q. In fact, since
28 22y, is supported in QU W; and (Q U, )Y A(Q U Ws) = Q,
29 .
30 (@ Quun ) = [ GO Qade = [ wun(Q - Q2) ds
31 " Q
26
2 o S wloalol@iy- @2 do = [ wlauslo(@ - @2) d.
Q R™
28
34
35 29 Moreover, by property (pd),
. :
37 < Viur - ((Afal = Z)all)dyvu2> =
32 R
38 33
39 34 = / UQ/ ((Al)au — (AQ)(LH) . Vsul dy d(ﬁ
40 35 o R™
y 6 ) [ (01(0) a2l ) o (0 (0) s (9) dy o
43 37 ) n
44 i A [ ) [ (1) - o) ol ((wla)@) - (ula)w) dyd.
39 Q Q
45
46 10 Bventuially we get
47 .
48 02 ualo)@) [ (@1(e,0) - ool ol (w]a)(@) — (wla) @) dy do+
49 n n
44
50 15 +/ ug|uz|a(Q1 — Q2) dr .
51 16 n ’3
52 ur (23)
53
54
55 21
56
57
58
59
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5 A RANDOM WALK INTERPRETATION FOR FMSE

The RAP holds by Lemmas 3.15 and 4.1. Fix any f € L2(Q), and let £
C(W;) for i = 1,2 and k € N be such that ugk)|g =1, ugk)m — (frin L2
Inserting these solutions in and taking the limit as £k — oo implies that
Jan f(Q1 — Q2) dz = 0, so that, given that f € L?(Q) is arbitrary, we deduce
Q1(z) = Q2(x) for z € Q. Coming back to (23), we can write

/ (uz]a)(z) / (o1(z,y) — o2(7,y)) (uﬂﬂéx_) ;éﬁ;lg)(y) dydze="0,

where u; € H*(R™) once again solves (—A)% u; + qu; = 0with u; —fi € H*(Q)
for some f; € C°(W;) and ¢ = 1,2. Choosing uék)k) — fin L? for some
arbitrary f € L2, by the same argument

/ (o1(2.y) — o2(x.y) (“m)f_) - ()

for z € Q. Fix now some z € Q and an arbitrary e C°(Q). Since g(y) :=
Y(y)e V12=vl|p — y|t2s € S € L2() asiin Lemma@ by the RAP we find a

sequence u(lk)|g — g. Substituting these solutionsand taking the limit,

dy =10

| (o)~ ax(egulie v dy 0.

Thus we conclude that for allw € Qitimust be o1 (z,y) = o2(x,y) for all y € Q,

i.e. 01 = o9 over Q2. But then o and o5 coincide everywhere, because they are

both 1 in R?™\ Q2. Thigymeans that (A;), = (A2)q). Moreover, since by (p2),

(p4) and (p5) we have Q1 =0.= Q2 over ., by the argument above Q1 = Q2

everywhere. It thus follows from Lemma that (A1,q1) ~ (A2, g2). O
N

5. A random walk interpretation for FMSE

Diffusion phenomena can often be seen as continuous limits of random walks.
The classical result for the Laplacian was extended in [43] to the fractional one
by considering long jumps. Similarly, the fractional conductivity equation was
shown in. [I0] to arise from a long jump random walk with weight ~1/2 where
7 is the conductivity. We now show how the leading term in FMSE is itself the
limit of a long jump random walk with weights. For simplicity, here we take o
as smooth and regular as needed. Let h > 0, 7 = h?%, k € Z", x € hZ"™ and

t € 7Z. We consider a random walk on hZ" with time steps from 7Z. Define

o(z,x + hk)|k|~""2 if k#0

fa, k) = ;
0 if k=0

22

Page 22 of 30



Page 23 of 30

1
2
3
4
5
6
7 1
8 2
9 3
10 4
11 K
12 0
13 ’
14 8
15 ?
16 10
17 11
18 2
; :
20 15
21 16
22
: ;
24 19
25 20
26 21
27 22
28 23
29 24
30 o
31 o
32 .
33 .
34

29
35

30
36

31
37 "
38

33
39 o
40 s
41

36
42

37
43 .
44

39
45 0
46 "
47 42
48 p
49 "
50 -
51 o
52 -
53
54
55
56
57
58
59

AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

5 A RANDOM WALK INTERPRETATION FOR FMSE

and then observe that Vx € hZ™

S flak)y= > fl@k)= > olw,x+hk)k

kezn kezZr\{0} kezr\{0}

<folle > T <00,
keZ™\{0}

Thus we can normalize f(z,k), and get the new function P(z, k).«

-1
(Syezn F@))  olw,z+ hE)M " WiE_k 0
0 if k=0

P(z,k) == (24)

P(x,k) takes values in [0,1] and verifies ), .,/ P(x,k),= 1; we interpret it as
the probability that a particle will jump froméz + hk to r in the next step.

Remark 5.1. Let us compare P(x, k) for/the fractionah Laplacian, conductivity
and magnetic Laplacian operators. P(x, k) always|decreases when k increases;
the fractional Laplacian, which ‘hasia(x,y) =l treats all the points of R™
equally: no point is intrinsically more likely to be reached at the next jump; the
fractional conductivity operator, which has o(x,y) = \/W, distinguishes
the points of R™: those with>high conductivity are more likely to be reached.
Howewver, the conductivity field is independent from the current position of the
particle. The magnetie fractional Laplacian operator has no special o(z,y) and
it distinguishes the points of R™ in a more subtle way, as the conductivity field
depends on the position of the particle: the same point may have high conduc-

twvity if the parti€le is ot @wanid o low one if it is at y.

Remark 5.2. We'now see why o > 0 and o(x,y) = 1 if (z,y) € Q2: these are
needed fory = o(x,y) to be a conductivity as in [10] for all x € R™.

Let u(&,t) be the probability that the particle is at point x at time ¢. Then
u(,t+7)= Y Pz, kulx+hkt) .
kezm\{0}

We'can compute Oyu(x,t) as the limit for 7 — 0 of the difference quotients, and
then substitute the above formula (see [I0]). As the resulting sum approximates
the Riemannian integral, we eventually get that for some constant C' > 0

Ou(z, t) = C/ U(z,y)w dy

|z —y[nF2e

n

23
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5 A RANDOM WALK INTERPRETATION FOR FMSE

If u(zx,t) is independent of ¢, the leading term of FMSE is recovered.

We shall now prove that the random walk we are considering represents
anomalous diffusion. In a classical diffusion scenario, very long jumps should
happen with very low probability. This is mathematically reflectéd in the prop-
erty that the variance of the length of the jumps is finite. However, this is not

the case for our random walk: ~

Lemma 5.3. If s € (0,1), then the second moment of theylength of the jumps
of the random walk is infinity. Moreover, if s € (1/2,1) the_first moment
is finite, and if s € (0,1/2] it is infinity.

Proof. Fix any point x € R"™, and let s € (0,1). The second moment of the
length of the jumps of the random walk is proportional to

go(z,x+ hk) Y1
Z K| e[ nt2s v Z |k[n+2s—2

kezm\{0} kezr\{0}

By the integral test for the convergence of a series, we deduce that the above

series diverges because

dx < - 1225 ) o 2=25|®  _
re\By 27T : 1 P p=cr |p:1 -
1

Thus the second moment is\infinity. For the first moment, let M > diam(Q2)/h.
Then (z,x + hk) & Q2 for |k| >3, either because z € Q or because, if z € €,
then |hk| >diam(Q) an therefore x + hk ¢ Q. Thus by (p5) we know that
o(x,x + hk) = 11f |k| > M. Of course we have

o(z,x + hk) xm-i—hk)
Z |k|wz Z |k‘n+251+ Z |k|pt2s—1

kezn\{0} |k|>M |k| <M
keZ™\{0} kezZ™\{0}

becatise the second sum in the right hand side has only a finite amount of finite
terms; andyis.therefore finite itself. For the other sum in the right hand side,

we use again the integral test: the first moment will be finite if and only if the

dx /°° _os
s =c | p*dp
/]R’"\BM |z[nt2s—1 M

isvitself finite. We see that this happens if and only if s € (1/2,1), which

concludes the proof. O

integral

24
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1
2
3
: 6 ONE SLIGHT GENERALIZATION:
6
- 1
8 2 Remark 5.4. If s € (1/2,1), the variance of the length of the jumps jof the
9 i random walk 1s infinity because of the above Lemma. Therefore;vin this
1(1) 5 case the random walk represents anomalous diffusion.
12 i
13 N 6. One slight generalization
14
15 ?0 We now briefly consider a fractional magnetic conductivity equation (FMCE)
1? 11 and show that it shares similar features as FMSE. Lett(A4,¢q) € P/and let v
18 12 be a conductivity in the sense of [10]. Consider v € H%(RZ)" Since V¥ :
19 12 Hs(R"™) — L2(R?"), if O(z,y) := \/7(2)v(y)Id by théproperties of v we know
;? 15 that © - V4u € L*(R?"). Thus we define the fractional magnetic conductivity
22 16  operator
23 17
24 12 C3 au(z) :== (V)73(© - Viu)(z), Clax HS‘JR”) — H°(R"™).
25
26 20 We say that u € H*(R™) solves the, FMCE with exterior value f € H*(Q,) if
27 .
28 . €3 u(e) + i) =0 in ©
29 24 u =of in 0,
30 95
31 26 holds in weak sense.
32
33 z; Lemma 6.1. Let u € H3(R™), g € H*(Q.), w = v?u and f = v'/%g. More-
gg 29 over, let (A,q) € P and
30
36 (V) (A2 (y) — (=A)° (")
31 r_ w s
q =q = &— V)5 A, + —
57 : AR g g
33 s(~1/2) . A 1/2
39 o +/ y- Vi) 4 %2 )4, |A\2(71/2(y) ~1))dy.
40 4 n y/2(x) /2 ()
Z; 36  FMCFE aithwpotentials (A, q), conductivity v and exterior value g is solved by u
43 3T if and only if w solves FMSE with potentials (A, q') and exterior value f, i.e.
38
44
39 : / :
(034 =0 Q —A)3 =0 Q
45 0 St + qu in - (=AY w+ ¢w in
46 " U=y in Qe w=f in Qe
47 12
48 43 Moreover, the following formula holds for all w € H* (R™):
49 L,
>0 45 ny,A(V_l/Qw) +qy P =42 <(_A)f4 + q/)w.
51
46
52 47
53
54
55 25
56
57
58
59
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6 ONE SLIGHT GENERALIZATION.

Proof. Let us start from some preliminary computations. One sees that

Viw = Vo (71 2u) = 42 (y) Viu + u(@) Vo (717?)

V4 (41?2
1/2 s
P () s
. ) 5w s 1/2
from which V*®u = % — w(x)#vm)(y), and eventually
\v& \v& 1/2
Vi = s () ) o) (25)

72 (y) VT VT SR VeI

By the definition of magnetic fractional divergence, if w.€ H*(R™),

(V)5(0 - Viu),v) = (v ()7 (y) Viu, Vo)
= (Y2 (@) 2 (y) Vi, Vo) + (v 2 @)y /2 (y) Viyu, Av)

= (V2@ 2 (y) Vi, Vo) 4 </ 71/2(zﬂVf4u-Adywl/2v> :
Applying formula , we get

(V)24(0 - Viu),v) = (v1/?(2)Vow, Vo) (@) (A, y)r' 2 (y) — V* (41/2)), V*v)

1/2 Viw Ve (y1/?) w(z) L
(L0 TP i + A Vi) - Ader' )

= (Y2(2)Vow, N + (w(z)(A@, y)7v % (y) — V2 (v1/?)), V*0) (26)
s VS(71/2) A 71/2( )
+ </ﬂ (V w-A—w(CC)W + |A|2w(x)71/ (e )) dy, 71/2 >

We treat the resulting terms$eparately. For the first one, by symmetry,
(32 (@)Y w, VEOYE= (Vi 712 (2)Vou) = (Vow, VP (0y!/?) —u(y) V (71/2))
= ((FA)w, 0y2) = (Vw,0(y) V* (7/?)) = ((—A)*w, 07! /?) = (Vow, v(2)V*(4'/?))

s(~1/2
£, 772 - ( . sz‘zlsz(x)) dy, 7" (27)

Eor the second part of , we will compute as follows:

(A@, )7 P y) =V (r1?), w(@)Vv) =

= (Az, )72 (y) = V2 (71/?), V¥ (vw) — v(y) Vow)

= (09" (A g0 2() = 7 (12), 0w) = (A, 2() = V5 (52) Joly), Vow)

Page 26 of 30

_ <((v')s(f471/2(y)) (= 1)/9(71/2))w(m),v’yl/2> _ <(A(y,3:)71/2(x) —V8(71/2))0($)7V8w>

73 () ?(x)
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REFERENCES
(V) (A2 (y) (A (+/?) 1
= <( 72 (z) RVETE )w(x),vv /2>, (28)
s 1/2 vs( 1/2) s 1
—< RnA(y,x)-V wdy,v’y/>—|—< RHW-V w dy, vy /2>.

Substituting (27) and (28) into (26]), we conclude the proof:
» » o VE?) ey
RY Bvi — {(— s 1/2y E Y /2
(V)0 Vi) o) = (=) w, 00 %) = (| Vw =l Al +
V)5 (A~L/2 _A)S(A1/2
+<<( (A7) (AP ))w(x)7v,yl/2>_

17(@) T7()

s \V&d 71/2 )
- </HA(y,w)~V wdy,v71/2>+ </ 7157@)) v wdy,vvl/2>+

(L (- T e ) )

. 4
= <(—A)Sw—|—2/]R Aq| ~Vsu)dy—l—w(m)(/]R \A|2dy+(V-)SAS||>7071/2>+

+ {(v,)s Ay TV ARG (Sapft)

Y2 () V1/2(z)
s(~1/2) . 1/2
+/n (- Vé_jm@))_fl + 1A|2(31/2Ez; -1)) dy} w(a),v'/?)
= ((=A)sw + (¢ — q/v)w, vy ), 0

Thus the FMCEs can be reduced to FMSEs; hence, we know that FMCE enjoys
the same gauges as FMSE, and most importantly we can consider and solve an

analogous inverse proh@m.
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UNIQUE CONTINUATION PROPERTY AND POINCARE INEQUALITY
FOR HIGHER ORDER FRACTIONAL LAPLACIANS WITH
APPLICATIONS IN INVERSE PROBLEMS

GIOVANNI COVI, KEIJO MONKKONEN, AND JESSE RAILO

ABSTRACT. We prove a unique continuation property for the fractional Laplacian (—A)® when
s € (—n/2,00) \ Z where n > 1. In addition, we study Poincaré-type inequalities for the
operator (—A)® when s > 0. We apply the results to show that one can uniquely recover, up
to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated
to the higher order fractional magnetic Schrédinger equation. We also study the higher order
fractional Schrédinger equation with singular electric potential. In both cases, we obtain a
Runge approximation property for the equation. Furthermore, we prove a uniqueness result
for a partial data problem of the d-plane Radon transform in low regularity. Our work extends
some recent results in inverse problems for more general operators.

1. INTRODUCTION

The fractional Laplacian (—A)*, s € (—n/2,00) \ Z, is a non-local operator by definition and
thus differs substantially from the ordinary Laplacian (—A). The non-local behaviour can be
exploited when solving fractional inverse problems. In section 3.1, we prove that (—A)® admits
a unique continuation property (UCP) for open sets, that is, if v and (—A)®u both vanish in
a nonempty open set, then u vanishes everywhere. Clearly this property cannot hold for local
operators. We give many other versions of UCPs as well.

We have also included a quite comprehensive discussion of the Poincaré inequality for the
higher order fractional Laplacian (—A)®, s > 0, in section 3.2. We give many proofs for the
higher order fractional Poincaré inequality based on various different methods in the literature.
The higher order fractional Poincaré inequality appears earlier at least in [84] for functions in
C°(Q) where €2 is a bounded Lipschitz domain. Also similar inequalities are proved in the
book [4] for homogeneous Sobolev norms but without referring to the fractional Laplacian.
However, we have extended some known results, given alternative proofs, and studied a con-
nection between the fractional and the classical Poincaré constants. We believe that section 3.2
will serve as a helpful reference on fractional Poincaré inequalities in the future.

Our main applications are fractional Schrodinger equations with and without a magnetic
potential, and the d-plane Radon transforms with partial data. We apply the UCP result
and the Poincaré inequality for higher order fractional Laplacians to show uniqueness for the
associated fractional Schrodinger equation and the Runge approximation properties. UCPs
have also applications in integral geometry since certain partial data inverse problems for the
Radon transforms can be reduced to unique continuation problems of the normal operators.
We remark that the normal operators of the Radon transforms are negative order fractional
Laplacians (Riesz potentials) up to constant coefficients.

In this section, we introduce our models, discuss some related results and present our main
theorems and corollaries. We start with the classical Calderén problem as a motivation.

1.1. The Calderén problem. We will study a non-local version of the famous Calderén prob-
lem called the fractional Calderén problem. A survey of the fractional Calderén problem is given
in [79]. The Calderén problem is a classical inverse problem where one wants to determine the

Date: September 4, 2020.
Key words and phrases. Inverse problems, unique continuation, fractional Laplacian, fractional Schrodinger
equation, fractional Poincaré inequality, Radon transform.
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electrical conductivity on some sufficiently smooth domain by boundary measurements [77, 83].
Suppose that  C R" is a domain with regular enough boundary 9€). The electrical conduc-
tivity is usually represented as a bounded positive function -, and the conductivity equation
is

(1)

where f is the potential on the boundary 92 and u is the induced potential in 2. The data in

this problem is the Dirichlet-to-Neumann (DN) map A, (f) = (y0,u)|sq, where v is the outer

unit normal on the boundary. The DN map basically tells how the applied voltage on the

boundary induces normal currents on the boundary by the electrical properties of the interior.

The inverse problem is to determine 7 from the DN map A,. One of the associated basic

questions is the uniqueness problem, that is, whether v; = 2 follows from A, = A,,.
Equation (1) can be reduced to a Schrédinger equation

(—A+qgu =0inQ
@) { ulog = f

{ V-(yVu) =0 inQ
ulpn = f

where ¢ = (A,/¥)/\/7 now represents the electric potential in Q2. One typically assumes that 0
is not a Dirichlet eigenvalue of the operator (—A +¢) to obtain unique solutions to equation (2).
The inverse problem then is to know whether one can determine the electric potential ¢ uniquely
from the DN map A4, which can be expressed in terms of the normal derivative Ay f = 0, ulaq
for regular enough boundaries. For more details on the classical Calderén problem and its
applications to medical, seismic and industrial imaging, see [77, 83].

1.2. Fractional Schrédinger equation. In this article, we focus on the fractional Schrodinger
equation and its generalization, the fractional magnetic Schrédinger equation. The main differ-
ence between the classical and fractional Schrodinger operators is that the first one is local and
the second one is non-local. This can be seen since the Laplacian (—A) is local as a differential
operator while the fractional counterpart (—A)*, s € RT \ Z, is a non-local Fourier integral op-
erator. In other words, the value (—A)%u(x), s € R*\Z, depends on the values of u everywhere,
not just in a small neighbourhood of © € R™. Fractional Laplacians have a close connection
to Levy processes and have been used in many areas of mathematics and physics, for example
to model anomalous and nonlocal diffusion, and also in the formulation of fractional quantum
mechanics where the fractional Schrodinger equation arises naturally as a generalization of the
ordinary Schrédinger equation [3, 7, 18, 28, 50, 51, 58, 71].

Since the fractional Laplacian is a non-local operator, it is more natural to fix exterior values
for the solutions of the equation instead of just boundary values. This motivates the study of
the following exterior value problem, first introduced in [28],

(A +qu =0inQ
®) { ulo, =/

where Q, = R \ Q0 is the exterior of Q. The associated DN map for equation (3) is a bounded
linear operator Ag: H*(Qe) — (H*(€))* which, under stronger assumptions, has an expression
Agf = (—A)%ulq, [28]. We assume that the potential ¢ is such that the following holds:

(4) If u e H*(R") solves ((—A)° + ¢)u =0 in © and u|g, = 0, then u = 0.

In other words, condition (4) requires that 0 is not a Dirichlet eigenvalue of the operator
((=A)*+q).

In section 5, we will prove that, under certain assumptions, one can uniquely determine the
potential ¢ in equation (3) from exterior measurements when s € R™ \ Z, and we also prove
a Runge approximation property for equation (3) (see also section 1.5). These generalize the
results in [28, 75] to higher fractional powers of s. The proofs basically reduce to the fact that
the operator (—A)® has the following UCP: if (—=A)*uly = 0 and u|y = 0 for some nonempty
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open set V' C R", then u = 0 everywhere. This reflects the fact that (—A)® is a non-local
operator since such UCP can never hold for local operators.

Unique continuation of the fractional Laplacian has been extensively studied and used to
show uniqueness results for fractional Schrédinger equations [14, 27, 28, 75]. One version was
already proved by Riesz [28, 70] and similar methods were used in [41] to show a UCP of
Riesz potentials I, which can be seen as fractional Laplacians with negative exponents. See
also [45] for a unique continuation result of Riesz potentials. UCP of (—A)?® for functions in
H"(R™), r € R, was proved in [28] when s € (0,1). The proof is based on Carleman estimates
from [72] and on Caffarelli-Silvestre extension [8, 9]. Using the known result for s € (0,1), we
provide an elementary proof which generalizes the UCP for all s € (—n/2,00) \ Z. With the
same trick we obtain several other unique continuation results. There are also strong unique
continuation results for s € (0,1) if one assumes more regularity from the function [22, 72].
In the strong UCP, one replaces the condition u|yy = 0 by the requirement that u vanishes to
infinite order at some point g € V. The higher order case s € RT\ (ZU(0, 1)) has been studied
recently by several authors [23, 26, 86]. These results however assume some special conditions
on the function u, i.e. they require that u is in a Sobolev space which depends on the power s
of the fractional Laplacian (—A)®. We only require that w is in some Sobolev space H"(R")
where r € R can be an arbitrarily small (negative) number.

See also [45] where the author proves a higher order Runge approximation property by s-
harmonic functions in the unit ball when s € RT \ Z (compare to theorem 1.7). Here s-
harmonicity simply means that (—A)®*u = 0 in some domain 2. The s-harmonic approximation
in the case s € (0,1) was already studied in [17]; similar higher regularity approximation results
are proved in [11, 28] for the fractional Schrédinger equation.

1.3. Fractional magnetic Schrodinger equation. Section 6 of this paper extends the study
of the fractional magnetic Schrodinger equation (FMSE) begun in [14], expanding the uniqueness
result for the related inverse problem to the cases when s € R* \ Z. The direct problem for the
classical magnetic Schrodinger equation (MSE) consists in finding a function wu satisfying

{ (—A)au+qu =—Au—iV - (Au) —iAd-Vu+ (|[A? +qu=0 in Q
uloa = f

where 2 C R™ is some bounded open set with Lipschitz boundary representing a medium, f
is the boundary value for the solution u, and A, ¢ are the vector and scalar potentials of the
equation. In the associated inverse problem, we are given measurements on the boundary in the
form of a DN map A, : H'/?2(9Q) — H~/2(8Q), and we are asked to recover A, q in Q using
this information. It was shown in [60] that this is only possible up to a natural gauge: one can
uniquely determine the potential ¢ and the magnetic field curlA, but the magnetic potential
A can not be determined in greater detail. The inverse problem for MSE is of great interest,
because it generalizes the non-magnetic case by adding some first order terms, and shows a
quite different behavior. It also possesses multiple applications in the sciences: the papers
[60, 62, 56, 20, 61] and [35] give some examples of this, treating the inverse scattering problem
with a fixed energy, isotropic elasticity, the Maxwell, Schrodinger and Dirac equations and the
Stokes system. We refer to the survey [76] for many more references on inverse boundary value
problems related to MSE.

We are interested in the study of a high order fractional version of the MSE. There have been
many studies in this direction (see for instance [54, 52, 53]). In our work, we will build upon
the results from [14] and generalize them to higher order. Thus, for us the direct problem for
FMSE asks to find a function w which satisfies

(—A)¥%u+qu =0 inQ
ulo, =f
where Q, f, A and ¢ play a similar role as in the local case, s € RT\Z and (—A)?% is the magnetic
fractional Laplacian. This is a fractional version of (—iV+A)-(—iV+A), the magnetic Laplacian

from which MSE arises. In section 6, we will construct the fractional magnetic Laplacian based
3



on the fractional gradient operator V*®. The fractional gradient is based on the framework laid
down in [18, 19], and has been studied in the papers [15, 14]. One should keep in mind that for
s > 1 the fractional gradient is a tensor of order |s| rather than a vector. In the corresponding
inverse problem, we assume to know the DN map A3 : H*(Qe) — (H*(Q¢))", and we wish to
recover A, q in Q. In the cases when s € (0,1), it has been shown that the pair A, ¢ can only be
recovered up to a natural gauge [14]. We generalize this result to the case s € RT \ Z. This is
achieved by first proving a weak UCP and the Runge approximation property for FMSE, and
then testing the Alessandrini identity for the equation with suitably chosen functions.

Remark 1.1. The case of the high order magnetic Schrédinger equation, that is the one in
which s € N, s # 1, is still open at the time of writing to the best of the authors’ knowledge.
Our methods are purely nonlocal, and thus cannot be applied to the integer case. It was however
showed in [60], as cited above, that a uniqueness result up to a natural gauge holds when s = 1.

1.4. Radon transforms and region of interest tomography. Unique continuation results
have also applications in integral geometry. It was proved in [41] that the normal operator of
the X-ray transform admits a UCP in the class of compactly supported distributions. This was
done by considering the normal operator as a Riesz potential. We generalize the result for the
normal operator of the d-plane transform R; where d € N is odd such that 0 < d < n. In the
case d = 1 the transform R, corresponds to the X-ray transform and in the case d =n — 1 to
the Radon transform. The UCP of the normal operator Ny = R} Rq implies uniqueness for the
following partial data problem: if f integrates to zero over all d-planes which intersect some
nonempty open set V and f|yy = 0, then f = 0. This can be seen as a complementary result to
the Helgason support theorem for the d-plane transform [36]. Helgason’s theorem says that if f
integrates to zero over all d-planes not intersecting a convex and compact set K and f|x = 0,
then f = 0. The d-plane transform Ry is injective on continuous functions which decay rapidly
enough at infinity and also on compactly supported distributions [36]. The d-plane transform
has been recently studied in the periodic case on the flat torus [2, 40, 67] but also in other
settings [16, 37, 69]. Weighted and limited data Radon transforms (d = n — 1) have been
studied recently for example in [25, 29, 30, 31].

When d = 1, partial data problems as discussed above arise for example in seismology and
medical imaging. In [41], it is explained how one can use shear wave splitting data to uniquely
determine the difference of the anisotropic perturbations in the S-wave speeds, and also how
one can use local measurements of travel times of seismic waves to uniquely determine the
conformal factor in the linearization. Both of these problems reduce to the following partial
data result: if f integrates to zero over all lines which intersect some nonempty open set V
and fly = 0, then f = 0. In medical imaging, one typically wants to reconstruct a specific
part of the human body. Can this be done by using only X-rays which go though our region
of interest (ROI)? Generally this is not possible even for C2°-functions [43, 63, 81], but if we
know some information of f in the ROI, then the reconstruction can be done. For example,
if the function f is piecewice constant, piecewice polynomial or analytic in the ROI, then f
can be uniquely determined from the X-ray data [42, 43, 85]. Also, if we know the X-ray data
through the ROI and the values of f in an arbitrarily small open set inside the ROI, then f
is uniquely determined everywhere [13, 41]. For practical applications of ROI tomography in
medical imaging, see for example [87, 88]. See also [44, 65, 66] for a discussion of the difficulties
of obtaining stable reconstruction in partial data problems for the X-ray transform (visible and
invisible singularities).

1.5. Main results. We briefly introduce the basic notation; more details can be found in

sections 2, 4, 5 and 6. Let H"(R") be the L? Sobolev space of order r € R and H"(Q)

the closure of C°(Q2) in H"(R") when (2 is an open set. The L' Bessel potential space is

denoted by H™!(R™). We define H}-(R™) C H"(R™) to be those Sobolev functions which have

support in the compact set K. The fractional Laplacian is defined via the Fourier transform

(=A)su = F~Y(]-[**4). Then (—=A)*: H"(R") — H" 25(R") is a continuous operator when
4



s € Rt \ Z. The d-plane transform R, takes a function which decreases rapidly enough at
infinity and integrates it over d-dimensional planes where 0 < d < n. The normal operator
of the d-plane transform is defined as Ny = R} R; where R} is the adjoint operator. Further,
we denote by D'(R™) the space of all distributions, £'(R™) the space of compactly supported
distributions, O{(R") the space of rapidly decreasing distributions and Cuo(R™) the set of
rapidly decreasing continuous functions. The space of singular potentials Z;*(R") is a certain
subset of distributions D’(R™) and can be interpreted as a set of bounded multipliers from
H*(R™) to H*(R™).

The following theorem extends a result in [28] and has a central role in this article. We call
it the UCP of the operator (—A)°.

Theorem 1.2. Letn > 1, s € (—n/4,00) \ Z and u € H"(R™) where r € R. If (—A)%uly =0
and uly = 0 for some nonempty open set V.C R"™, then u = 0. The claim holds also for
s € (—n/2,—n/4\Z if u € H"}(R™) or u € O4(R™).

Theorem 1.2 is proved in section 3.1. The UCP of (—A)® implies corresponding UCP for
Riesz potentials (see corollary 3.2 and [41, Theorem 5.2]). This in turn implies the following
UCP for the normal operator of the d-plane transform Ny when d is odd; the case d = 1 was
already studied in [41].

Corollary 1.3. Let n > 2 and let f belong to either E'(R™) or Coo(R™). Let d € N be odd such
that 0 < d <n. If Ngf|y =0 and fly =0 for some nonempty open set V.C R", then f = 0.

From the UCP of N; we obtain the next result which is in a sense complementary to the
Helgason support theorem for the d-plane transform [36, Theorem 6.1]. It extends a result
in [41] where the authors prove a similar uniqueness property for the X-ray transform.

Corollary 1.4. Let n > 2, V. C R™ a nonempty open set and f € C(R™). Let d € N be odd
such that 0 < d < n. If fly =0 and Ryf = 0 for all d-planes intersecting V', then f = 0. The
claim holds also for f € E'(R™) when the assumption Ryf = 0 for all d-planes intersecting V' is
understood in the sense of distributions.

If d is even, then f is uniquely determined in V' by its integrals over d-planes which intersect V',
i.e. Rqf = 0 for all d-planes intersecting V' implies f|y = 0 (see remark 4.2). The authors do
not know if the result of corollary 1.4 holds when d is even. However, if d is even, then the result
of corollary 1.3 cannot be true as the normal operator Ny is the inverse of a local operator. See
section 4 for the proofs and the definition of the d-plane transform of distributions.

The following result is a general version of the Poincaré inequality which we need for the
well-posedness of the inverse problem for the fractional Schrodinger equation.

Theorem 1.5. Letn>1,s>t >0, K CR" a compact set and u € Hf((R"). There exists a
constant ¢ = ¢(n, K, s) > 0 such that

H(_A)tmu‘ (—A)s/2u‘

c

IN

L2(R™) L2(Rn)

The constant ¢ can be expressed in terms of the classical Poincaré constant when s > 1 (see
theorem 3.17. See section 3.2 for several proofs of the Poincaré inequality. From the unique
continuation of (—A)® we obtain results for the higher order fractional Schrédinger equation
with singular electric potential. The following theorems generalize the results in [28, 75] for

higher exponents s € RT\ (Z U (0,1)).

Theorem 1.6. Let n > 1, Q C R™ a bounded open set, s € R\ Z, and q1,q2 € Z, *(R")
which satisfy condition (4). Let Wi, Wy C Q. be open sets. If the DN maps for the equations
(=A)’u~+mg,(u) =0 in Q satisfy Ag, flw, = Mgy flws for all f e C(Wh), then qila = ¢2|a.
Theorem 1.7. Letn > 1 and s € RT \ Z. Let Q@ C R" be a bounded open set and Q1 D
any open set such that int( \ Q) # @. If ¢ € Zy*(R™) satisfies condition (4), then any
g € H(Q) can be approzimated arbitrarily well in H*(Q) by solutions u € H*(R") to the
equation (—A)%u + my(u) = 0 in Q such that spt(u) C Q.
5



We remark that the approximation property in theorem 1.7 also holds in L?(€2) when one
takes restrictions of the solutions (see [28, Theorem 1.3]). In [17, 45] the authors prove similar
approximation results: C*-functions can be approximated (in the C’k—norm) in the unit ball by
s-harmonic functions, i.e. functions u which satisfy (—A)*u = 0 in B;(0) (see also [28, Remark
7.3]). Theorems 1.6 and 1.7 are proved in section 5. The proofs are almost identical to those in
[28, 75] and only slight changes need to be done. We will present the main ideas of the proofs
for clarity and in order to make a comparison to the more complicated case of FMSE.

We have achieved the following result on the Calderén problem for FMSE:

Theorem 1.8. Let Q C R™, n > 2, be a bounded open set, s € RT \ Z, and let A;,q; verify
assumptions (al)-(a5) in section 6 for i = 1,2. Let W1, Wa C . be open sets. If the DN maps
for the FMSEs in § relative to (A1, q1) and (A, q2) satisfy

Aoy g U llwe = Ao, o, [fllw,  for all f € CZ°(Wh),

then (A1,q1) ~ (A, q2), that is, the potentials coincide up to gauge.

An in-depth clarification of the assumptions and the definition of the gauge involved in the
proof are presented in section 6.

1.6. Organization of the article. This article is organized as follows. Section 2 is devoted
to preliminaries. We introduce our notation and definitions of relevant quantities. In sections
3.1 and 3.2 we prove the unique continuation property of (—A)® for s € (—n/2,00) \ Z and give
several proofs for the fractional Poincaré inequality. We introduce some applications in integral
geometry and partial data problems of the d-plane transform in section 4. In section 5, we show
the uniqueness and the Runge approximation results for the higher order fractional Schrodinger
equation with singular electric potential. We prove the uniqueness result up to a gauge for the
higher order fractional magnetic Schrodinger equation in section 6. Finally, in section 7, we
discuss other problems that would now naturally continue our work. There are many potential
recent results in inverse problems which perhaps can be generalized to higher order fractional
Laplacians using our unique continuation result and fractional Poincaré inequality.

Acknowledgements. The authors wish to thank Yi-Hsuan Lin for suggesting to study higher
order fractional Calderén problems and for his idea of reducing the UCP of higher order frac-
tional Laplacians to the case s € (0,1). The authors are grateful to Mikko Salo for proposing
a proof for the fractional Poincaré inequality for n = 1 and s € (1/2,1), and for many other
helpful discussions. We thank Joonas Ilmavirta for discussions about integral geometry. The
authors wish to thank the anonymous referees for helpful comments and suggestions to improve
the article. G.C. was partially supported by the European Research Council under Horizon
2020 (ERC CoG 770924). K.M. and J.R. were supported by Academy of Finland (Centre of
Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963).

2. PRELIMINARIES

In this section, we will go through our basic notations and definitions. The following theory of
distributions, Fourier analysis and Sobolev spaces can be found in many books (see for example

[1, 4, 6, 38, 39, 57, 59, 78, 82]). We write |-| for both the Euclidean norm of vectors and the
absolute value of complex numbers. We denote by Ny the set of natural numbers including zero.

2.1. Distributions and Fourier transform. We denote by £(R"™) the set of smooth functions
equipped with the topology of uniform convergence of derivatives of all order on compact sets.
We also denote by D(R™) the set of compactly supported smooth functions with the topology of
uniform convergence of derivatives of all order in a fixed compact set. The topological duals of
these spaces are denoted by D'(R™) and &'(R™). Elements in the space £'(R™) can be identified
as distributions in D’'(R") with compact support.
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We also use the space of rapidly decreasing smooth functions, i.e. Schwartz functions. Define
the Schwartz space as

S (R™) = {@ e C®(R"): H( Na%H < oo for all N e Nand § € Ng},

where (x) = (1+\x|2)1/2, equipped with the topology induced by the seminorms H (~)N8f8<pHLOO(Rn).
The continuous dual of .”(R") is denoted by .#/(R™) and its elements are called tempered distri-

butions. We have the continuous inclusions £'(R™) C .%/(R™) C D'(R™). The Fourier transform
of u € L'(R") is defined as

(Fo© =) = [ e tul)ds

and it is an isomorphism F: . (R") — (R"). By duality the Fourier transform is also an
isomorphism F: .#/(R") — .%’/(R"). By density of .(R") in L?(R") the Fourier transform can
be extended to an isomorphism F: L?(R") — L%(R"). The following subset of Schwartz space

F(R™) = {p € S (R") : §|p(o,e) = 0 for some € > 0}

is used to define fractional Laplacians on homogeneous Sobolev spaces.
Finally, we denote by € (R"™) the space of rapidly decreasing distributions. One has that
T € O(R™) if and only if for any N € N there exist M(N) € N and continuous functions gg

such that
T = Z oP 93
|B|<M(N)

where (-)Vgg is a bounded function for every |3| < M(N). Alternatively one can characterize
O, (R™) via the Fourier transform: it holds that F: 0 (R") — Oy (R") is a bijective map where
Oy (R™) is the space of smooth functions with polynomially bounded derivatives of all orders.
We have the continuous inclusions &'(R™) C O (R™) C #'(R"). For example Coo(R") C
O (R"), where f € Cux(R") if and only if f is continuous and ()" f is bounded for every
N € N. The convolution formula for the Fourier transform f/;k\g = f ¢ holds in the sense of
distributions when f € O, (R") and g € /(R™). For more details on distributions, see the
classic books [38, 39, 82].

2.2. Fractional Laplacian on Sobolev spaces. Let r € R. We define the inhomogeneous
fractional L? Sobolev space of order r to be the set

H"(R™) = {u € ' (R") : F1((-)"a) € L*(R™)}
equipped with the norm

ol g eny = [|F ()" -
The spaces H"(R") are Hilbert spaces for all » € R. It follows that both .(R") and .#(R")
are dense in H"(R™) for all r € R. Note that

oc®R™) C | J H'(RM).
reR

If s € (0,1), the fractional Laplacian can be defined in several equivalent ways [46]. We will
take the Fourier transform approach which allows us to define it as a continuous map on Sobolev
spaces for all s € RT \ Z. Define the fractional Laplacian of order s € RT \ Z as (—A)%p =

“1(|-]* @) for ¢ € .Z(R"™). Then (—A)*: & (R™) — H"~25(R") is linear and continuous with
respect to the norm ||| fr(rny DY a simple calculation. Thus we can uniquely extend it to a
continuous linear operator (—A)*: H"(R™) — H"2(R") as (—A)*u = limy_, (—A)*p, where
o € L(R™) is such that ¢ — w in H"(R™).

On the other hand, if s > —n/4, one can always define (—A)%u for v € H"(R") as the
tempered distribution (—A)su = F~1(]|* @), note that we also allow integer values of s here.

This can be seen in the following way: let @) € .Z(R™) such that ¢ — 0in #(R™). It holds that
7



H_ﬂ € L} (R") if and only if 3 < n. Taking N € N large enough and using Cauchy-Schwartz

. loc
we obtain

[ el s ([ eraere)” ([ e eaeras)

N e
< C’(/n <x>2Ndw) [1¢) @k“Lm(Rn) = 0.

Hence ||*4 € &/(R") and also (—A)’u = F~1(|-[**4) € .#/(R"). The definition can be
relaxed to s > —n/2 if we assume that (-)'4 € L>(R") for some t € R. This holds for example
if u € OL(R") or u € H"'(R") (see the definition of Bessel potential spaces below). When
s > 0, we again obtain that (—A)%: H"(R") — H"~25(R") is continuous. It follows from the
properties of the Fourier transform that (—A)¥(—A)* = (=A)**+s when s > —n/2 and k € N.
This relation will be used many times.

Fractional Laplacians with negative powers s have a connection to Riesz potentials. Let o € R
such that 0 < o < n. We define the Riesz potential I: OL(R") — .#/(R") as Inf = f * ha,
where the kernel is hq(z) = |z|”“. It follows that I, is continuous in the distributional sense
and I, = (—A)™°, up to a constant factor, where s = (n — «)/2. On the other hand, if
—n/2 < s < 0, then one can write (—A)Sf = fx|-|7*™™ = Iy, f, also up to a constant factor.
Hence fractional Laplacians with negative powers correspond to Riesz potentials and vice versa.

Following [4], one can define fractional Laplacians and Riesz potentials on homogeneous
Sobolev spaces. Let us define

H'(R") = {uc . (R") : 4 € L,.(R") and |-|" 4 € L*(R")}

1/2
ol = ([ Il a)

The norm ||ul| fr(rny 15 homogeneous with respect to scaling £ — A{ in contrast to the norm
[[wll rgny- We have the inclusions H"(R™) ¢ H"(R") for r < 0 and H"(R") C H"(R") for
r>0. If r < n/2, then H"(R") is a Hilbert space and . (R") is dense in H"(R"). Let s > 0
and define (—A)%p = F1(||* @) for ¢ € S(R™). Then (—A)%: % (R") — H™25(R™) is an
isometry with respect to the norm ||| ey and by density can be extended to a continuous
map (—A)*: H"(R") — H"2%(R") when 7 < n/2. Similarly one obtains that I,: H"(R") —
H"™"=%(R") is a continuous map for 7 < a—n/2 and corresponds to fractional Laplacians with
negative powers, up to a constant factor.

The fractional Laplacian can also be defined on Bessel potential spaces. Let 1 < p < co. We
define

and equip it with the norm

H™P(R") = {u e &' (R"): F~1((-)"a) € LP(R™)}

and equip it with the norm

el ey = [ )| s -

It follows that H™P(R™) is a Banach space and .#(R") is dense in H"P(R") for all » € R. By
the Mikhlin multiplier theorem, one obtains that the operator (—A)®: H"P(R") — H"~25P(R")
is continuous for s > 0 and 1 < p < oo. The fractional Laplacian is also defined in the
space H™'(R") since H™}(R") — H g (R™) for any € > 0 by the continuity of the Fourier
transform F: L*(R™) — L*°(R").

One can define fractional Laplacians on more general spaces. It follows that if s € (—n/2,1],
then (—A)%: Z(R") — #(R") is continuous where .%;(R") is the set

F(R") = {o € C®(R") : ()"F20%p € L>®(R") for all § € Nj'}
8




equipped with the topology induced by the seminorms “(-)"*255‘590“ Lo (Rn)- One can then
extend (—A)® by duality to a continuous map (—A)®: (S (R™)* — ' (R™). See [28, 80] for
more details and a characterization of the dual (5(R™))*.

2.3. Trace spaces and singular potentials. Let U, FF C R” be an open and a closed set.
We define the following Sobolev spaces

H'(U) = {uly : we H'(R")}

H"(U) = closure of C®(U) in H"(R")
Hg( = closure of C°(U) in H"(U)
Hp(R") ={u e H"(R") : spt(u) C F}.

It is obvious that H"(U) C HE(R™) and H"(U) H{(U). In nonlocal problems, we impose
exterior values for the equation instead of boundary values. Therefore exterior values are con-
sidered to be the same if their difference is in the space H"(U). For example, in equation (3)
the condition u|q, = f means that u — f € H*(Q), i.c. u and f are equal outside £, where Q is
bounded open set. This motivates the definition of the abstract trace space X = H"(R"™)/H" ()
which identifies functions in Q. If € is a Lipschitz domain, then we have Hy(2) = HG(R")

when r > —1/2, r ¢ {1/2,3/2,...}, H"(Q) = HZ(R™), X = H"(2) and X~ = Hg:(]R") Thus
for more regular domains it could be more convenient to work with the spaces H%(R”), but in
this article we do not assume any regularity of the set €2. For more theory of Sobolev spaces on
(non-Lipschitz) domains and their properties, see [12, 57].

We also use some properties of singular potentials which were introduced in [75]. Let ¢ > 0
and define Z~¢(U) as a subspace of distributions D’(U) equipped with the norm

Hf”z—t(U) = sup{[(f, wiuz)y | : u; € C°(U), Hui”Ht(Rn) =1},

where (-, -);; is the dual pairing. We denote by Z;*(U) the closure of C2°(U) in Z={(U). El-
ements in Z~*(R™) can be seen as multipliers: every f € Z~*(R") induces a map my: H(R") —
H~*(R") defined as (m(u), v)gn = (f, uv)gn. Also [(f, wv)gn| < | fll g @ny llull gegny 101 e gn);
and this inequality can be seen as a motivation for the definition of the space Z~ ( ™). Clearly
we have Z;'(R") ¢ Z7HR"). If U is bounded, then L3 (U) C Z;'(R™) for 0 < t < n/2 and
L>®(U) C Zy'(R™) in the sense of zero extensions. Further, it holds that LP(U) C Z;*(R")
when p > max{1,n/2t} (see section 6). We will only need these basic inclusions. For a more
detailed treatment of the space of singular potentials Z~*(U), see [55, 75].

3. UNIQUE CONTINUATION PROPERTY AND POINCARE INEQUALITY

3.1. Unique continuation results. In this section, we prove theorem 1.2 and give several
other unique continuation results for fractional Laplacians and Riesz potentials in inhomoge-
neous and homogeneous Sobolev spaces. Even though we do not need all the results to solve
the inverse problems considered in this article, we still state those variants since they are not
given in earlier literature to the best of our knowledge. The strategy to prove results in this
chapter is straightforward: if something is true for (—A)® when s € (0, 1), then by the splitting
(—A)® = (—=A)¥(=A)*7* it should also be true for all powers s whenever the operations and
claims are meaningful.

First we need a basic lemma for polyharmonic distributions, i.e. distributions which satisfy
(—A)Fg = 0 for some integer k € N. We sketch the proof since it reflects the method of reduction
we repeatedly use in this section.

Lemma 3.1. Let V C R™ be any nonempty open set. If g € D'(R™) satisfies (—A)Fg = 0 and
glv =0 for some k € N, then g = 0.

Proof. The proof is by induction. The case k = 1 is true since harmonic distributions are
harmonic functions and therefore analytic [59]. Assume that the lemma holds for some k =
9



m € N. If (=A)"Tlg =0 and g|y = 0, then (—=A)™((—=A)g) = 0 and (—A)g|y = 0 since (—A)
is a local operator. The induction assumption implies (—A)g = 0, and since also g|ly = 0, we
obtain g = 0 by harmonicity. This implies the claim. Alternatively one could use the fact that
polyharmonic distributions are analytic [59, Theorem 7.30]. U

Now we can prove theorem 1.2. The idea is to reduce the general case back to the one where
s € (0,1) and use the UCP proved in [28]. Note that the corresponding UCP cannot hold for
local operators such as (—A)* when k € N. Therefore we have to assume that s € R\ Z. For
the proof of the case s € (0, 1), see [28, Theorem 1.2].

Proof of theorem 1.2. Because of our assumptions for u, the fractional Laplacian (—A)%u for
s € (—n/2,00) \ Z is well-defined, see section 2.2. Assume that £k — 1 < s < k for some
k € N. Now we can split (—A)%u = (—A)*~* =D ((=A)*~1y) where s — (k — 1) € (0,1). Since
the operator (—A)F~1 is local, we obtain (—A)*~ =D ((—A)*=1y)|;y = 0 and (—A)Fuly =0
where (—A)F~1y € H™=2(=1(R"). By the UCP of (—A)*~*~1 we have (—~A)* 'y = 0. Since
u is polyharmonic and u|y = 0, lemma 3.1 implies u = 0.

If —n/2 < s<0,s¢7Z, choose k € N such that k + s > 0. Then by the locality of (—A)* we
obtain (—A)**su|y; = 0 and u|y = 0. The first part of the proof implies the claim. O

Note that theorem 1.2 implies UCP for equations of the type (—A)*u + Lu = 0 where L is
any local operator. Especially, this holds if L = P(x, D) where

P(z,D)= > as(x)D"

la<m

is a differential operator of order m.

The following unique continuation result of Riesz potentials was presented in [41]. We use it
to show uniqueness for partial data problems of the d-plane transform in section 4. We recall
the short proof since it relies on the UCP of the fractional Laplacian.

Corollary 3.2. Let o € R such that 0 < a < n and (o« —n)/2 € R\ Z. Let f € Op(R") and
V C R™ some nonempty open set. If Infly =0 and f|y =0, then f = 0.

Proof. Recall that f € H"(R") for some r € R. We can write Iof = (—A)™°f where s =
(n — a)/2. Choose k € N such that k — s > 0. By locality of (—A)* we obtain the conditions
(—=A)*=5flyy = 0 and f|y = 0. Theorem 1.2 implies f = 0. O

It is also independently proved in [41], without using the UCP of (—A)%, that if f € &'(R"™),
then one can replace the condition I,f|y = 0 by the requirement 9°(I,f)(z¢) = 0 for some
zo € V and all 8 € Njj. In fact, this can be used to prove a slightly stronger result for (—A)*
in the case of compact support.

Corollary 3.3. Let u € &'(R"™), V C R™ some nonempty open set and s € (—n/2,00) \ Z. If
OP((—A)*u)(wo) = 0 and uly =0 for some xo € V and all § € N§, then u = 0.

Proof. Let k—1 < s < k where k € N. Now (—A)* = (=A)*(=A)*~F = (=A)*I, where o = n+
25—2k € (n—2,n). Furthermore, 8°(—A)%u = 0°1,(—A)*u since the Riesz potential commutes
with derivatives. By the locality of (—A)¥ we obtain the conditions 0% (I,(—A)*u)(zg) = 0 and
(—=A)ruly = 0 where (—A)*u € &(R"). By [41, Theorem 1.1], we must have (—A)*u = 0.
Since also uly = 0, we obtain v = 0 by lemma 3.1.

Let then s € (—n/2,0), s ¢ Z, and pick k € N such that s + %k > 0. All the derivatives
P ((=A)*u)(xg) vanish, and hence ((—A)*0%)((=A)*u)(zo) = 0. Now ((—=A)*08)((—=A)%u) =
P ((—=A)*T*u) and we get the conditions 8% ((—A)*+t*u)(xg) = 0 and u|yy = 0. The first part of
the proof gives the claim. O

The UCP of (—A)*® also extends to homogeneous Sobolev spaces. The following result is a
simple consequence of theorem 1.2. See [22, 23] for related results (strong UCP and measurable
UCP in some special cases).
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Corollary 3.4. Let s € Rt \ Z and u € H"(R"), r < n/2. If (~A)*uly = 0 and u|ly = 0 for
some nonempty open set V.C R", then u = 0.

Proof. If r < 0, then w € H"(R™) and the claim follows from theorem 1.2. Let r > 0 and
choose k € N such that r — 2k < 0. Now (—A)¥(=A)* = (—A)*(=A)* holds in .#H(R") so
by the density of .#(R") and the locality of (—A)* we obtain (—A)*((=A)*u)|y = 0 and
(=A)*fuly = 0, where (—A)fu € H™=2F(R") ¢ H"~2(R™). Hence (—A)*u = 0 by theorem 1.2
and since u|y = 0 we obtain v = 0 by lemma 3.1. (|

Since (—A)*(—A)~* = (—A)*~* also holds by the density of .#,(R"), one can reduce the case
of negative exponents to the case of positive exponents. Thus one obtains the corresponding
UCP for the Riesz potential I, in H"(R") where r < « —n/2. By the Sobolev embedding
theorem we obtain the following unique continuation result for Bessel potential spaces when
I1<p<2

Corollary 3.5. Let s c RT\Z, 1 < p<2andu € HP(R"), r € R. If (—A)’u|y = 0 and
uly = 0 for some nonempty open set V.C R", then u = 0.

Proof. If p = 1, then F~1({:)"4) € L'(R™) which implies (-)"@ € L*>°(R") since F: L*(R") —
L>(R™) is continuous. Hence u € H'(R™) for some ¢t € R and the claim follows from theo-
rem 1.2. Let then 1 < p < 2. By the Sobolev embedding theorem (see e.g. [6, Theorem 6.5.1])
H"P(R™) — H™P1(R") when r; <7, 1 <p<p; <ooand
n n
—=r - —.
p h
Choose p; = 2. Then for any 1 < p < 2 the previous equality holds when
2rp+n(p —2)
"m=-——F—"
2p

Hence v € H™?(R™) = H"(R") and by theorem 1.2 we obtain u = 0. O

r—

<r.

For higher exponents p, we can prove the following version of unique continuation considering
the Fourier transform.

Corollary 3.6. Letr > 0,2 <p < oo and s € Rt \Z. Let u € H"P(R") and V C R" some
nonempty open set. If (—A)*aly =0 and 4|y =0, then u = 0.

Proof. By the inclusion H"P(R") — LP(R™) for r > 0, we can assume u € LP(R"). If p = 2,
then @ € L?(R™). By theorem 1.2, we obtain @& = 0 and hence u = 0. If 2 < p < oo, then we
have that & € H~*(R™) where t > n(1/2 — 1/p) by [38, Theorem 7.9.3]. Again we obtain @ = 0
by theorem 1.2 and eventually v = 0. 0

Note that if v has compact support, then by the Paley-Wiener theorem the condition @]y = 0
already implies that u = 0.

3.2. The fractional Poincaré inequality. This subsection is dedicated to the proofs of a
fractional Poincaré inequality. It serves the goal of estimating the L?-norm of u € H*(Q) with
that of its fractional Laplacian (—A)s/ 2u. We give five possible proofs for the fractional Poincaré
inequality. We believe that giving several proofs will be helpful in subsequent works. This also
illustrates some connections between methods which might have been unnoticed before.

The first proof is the most direct one and is based on splitting of frequencies on the Fourier
side. The second proof utilizes several estimates (most importantly Hardy-Littlewood-Sobolev
inequalities). This proof is motivated by the approach taken in [28]. Third proof uses a reduction
argument to extend the inequality proved in [11] for all powers s > 0. Fourth proof is based
on interpolation of homogeneous Sobolev spaces and it also gives an explicit constant in terms
of the classical Poincaré constant. Fifth proof uses uncertainty inequalities which are treated
in [24].
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We begin our first proof by dividing the Fourier side into high and low frequencies. We
only use simple estimates in the proof. In this approach we also get a control on the Poincaré
constant. The result is basically the same as [4, Proposition 1.55].

Theorem 3.7 (Poincaré inequality). Let s > 0, K C R™ compact set and v € Hj,(R™). There
exists a constant ¢ = c(n, K, s) > 0 such that

||UHL2(Rn) <c H(_A)S/Qu)

L2(R")

Proof. We divide the integration into high and low frequencies
fullfaery = [ la(Rde+ [ ja) ag
l€|<e [€1>€

where € > 0 is determined later on. Let us analyze the first part. Since u € L?(R") and has
support in K, Holder’s inequality implies

()] < NJull 1 gy < K7 | 2y -

Thus we have
/5 LGRS /|§ VTl 46 = € 1T BO, ) [l

where |K| and |B(0,1)| are the measures of K and the unit ball B(0,1). For high frequencies
we can do the following trick

28 | ~ 2
. 2d _ ’§| ‘U(f)‘ de < 2
/5 LGRS /5 Bt

Now choose 0 < € < (JK||B(0,1)|)~'/". Then one obtains the inequality

car

2

(_A)S/Qu‘

L2(Rn)

6_8

u ny <
[l g2 ny < VI— e [K[|B(0,1)]

Remark 3.8. Choosing € = (2|K||B(0,1)))~Y/™ one obtains the following inequality in theo-
rem 3.7

0

L2(Rn)

(—8)*/2]

s/n
Jull ) < V31K |BO, 1)) o

If K is a ball, the constant in this inequality has the same scaling with respect to the diameter of
the set as in theorem 3.17, i.e. ¢ = (diam(K))®. Further, one can use similar method of proof
as in theorem 3.7 to show Poincaré inequalities for more general pseudodifferential operators on
certain manifolds. See [84] for details.

Provided we have the Poincaré inequality, we can prove the generalized version of it. See
also [4, Corollary 1.56] for a similar inequality when K is a ball. In that case one can take
¢ ~ (diam(K))*~*. The cases s >t > 1and s > 1 > ¢ > 0 are also proved for v € H*(Q) in
theorem 3.17.

Proof of theorem 1.5. Since s > t > 0 we have the continuous embeddings H*(R") < H*(R")
and H*(R™) — HY(R™). Using the Poincaré inequality in theorem 3.7 we obtain
|7

s+1
= ||“HHt(Rn) < ||u||Ht(Rn) < HUHHS(]R”) <2z

(Mol 2y + 1l ey )

L2(R™)
2% (el g -2 )
L2(R™) L2(R™)
= cll(=A s/2 ‘
o (Sl
where the constants ¢ and ¢ do not depend on u. In the fourth step we used the elementary
inequality (a + b)" < 2"(a” + b") for a,b > 0. This concludes the proof. O

We then start preparation for our second proof by stating some known lemmas:
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e lemma 3.9 is the continuity of Riesz potentials,

e lemma 3.10 is the L? boundedness of inverse of elliptic second order operators,

e lemma 3.11 is a convolution LP estimate from below by an inhomogeneous Hélder norm,
e lemma 3.12 is a specific form of the Poincaré inequality for fractional Laplacians, and
e lemma 3.13 is a simple commutation property for the gradient and a Fourier multiplier.

Lemma 3.9 (Theorem 4.5.3 in [38]). Let t > 0, 1 < p < oo be such that n > tp, and define
q= nﬁ};p. Then the Riesz potential (—A)~Y2 : LP(R™) — L(R™) is continuous.

Lemma 3.10 (Section 6 in [21]). Let Q C R"™ be a bounded domain and f € L*(Q). If
w € HY(Q) is the unique solution of the problem

{ (—Ayw =f inQ

wlpa =0
then there exists a constant C' = C(2) such that
(5) lwlizz) < Cllfllz2c) -

Lemma 3.11 (Theorem 4.5.10 in [38]). Let 1) € C*(R™\ {0}) be homogeneous of degree —n/a,
p € [1,00] and v = n(1 —1/a — 1/p) be such that v € (0,1). Then if v € LP(R™) N E'(R™) we
have

sup
T#y

where C' does not depend on w.

Lemma 3.12 (Formula (1.3) in [64]). Let 1 < p < q < oo and f € W™PP(R"™). There is a
constant C' = C(n,p) such that

_ 1—
(6) £l zagny < Cq"PI(=D)"2 F b 11 -
This estimate is proved using sharp Hardy-Littlewood-Sobolev inequalities.

Lemma 3.13. Lett > 0 and f € H' 2 (R"™). Then [V, (—A)!|f = 0, that is, the gradient and
the fractional Laplacian of exponent t commute.

{|<w *v)(x) — (Y *v)(Y)|

D=Lt MO < ol

Proof. The proof is just a trivial computation with Fourier symbols:
F(V(=A)'f) = igle* f() = €€ f (&) = F(-D)"(V)) - O
We are now ready to state and prove the fractional Poincaré inequality.

Theorem 3.14 (Poincaré inequality). Let Q@ C R™ be a bounded domain, s € [0,00) and
u € H*(Q). There exists a constant ¢ = c(n, 2, s) such that

[l L2y < CH(—A>S/ZUHL2(RH) .

Proof. In the inequalities the constants (usually denoted by ¢, C, etc.) do not depend on
the function which is being estimated and can change from line to line. We let the symbol
s’ = s — | s| indicate the fractional part of the exponent s, with the convention that s’ € [0, 1).
First observe that by using lemma 3.9 with p = 2 and Holder’s inequality we get the following
useful estimate

(7) [ullL2@ny < Callullpamny < CH(—A)t/QUHL?(Rn)
when u € H!() where ¢ and ¢ are as in lemma 3.9. Our proof is divided in several cases.
Case 1: |s] €2Z,s =0.

Recall that H2"(Q) C HZ"(Q). We show that if u € HZ"(Q2) and h € N then there exists a
constant ¢ = ¢(n, 2, h) such that

(8) 1(=2) ull L2 (gny = ellul 2 (gn) -
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The estimate (8) holds trivially if A = 0, while if A = 1 then (8) follows from the boundedness
of the inverse lemma 3.10. Assume now that A > 2, and by induction that (8) holds for h — 1.
Then (—A)u € HZ"2(Q), so we can apply (8) and (5) to get

1(=2)"ul| 2y = [(=A)" " (=Au) || 2gny > ell(=A)ull 2@ny > ¢lull L2gny -
In the next steps we consider s &€ N.

Case 2: |s| €2Z,5 €(0,1/2) or |s| €2Z,5 €[1/2,1),n>2.
Now it holds that n > 2s’, and there exists k € N such that s € (2k,2k + 1) and we can write
(=A)*?u = (—=A)*/2(=A)ku. Since (—A)*Fu € H2F(Q) = H*(Q), we can apply formula (7)

1(=2) ull 2@y < ell(=2)"2ul| p2(gny -
Since u € H(Q) C HZ*(2), we can get the result using formula (8).

Case 3: |s| €2Z,4 €(1/2,1),n=1.
As in the second case, there exists k € N such that s € (2k, 2k+1) and we can write (—A)%/2y =
(=A)*'/2(=A)*u. However, since now n < 2s', we cannot directly use formula (7).
Assume first that w € C2°(€2). Then we can take yg € Q such that w(yo) = 0 and xy € 2 such
that w(wo) = [|w|| f (). With these choices and for any v > 0 we can write

< Cw(ﬂfo) — w(yo)

|zo — Yol
We now let v = s’ —n/2 =5 —1/2 € (0,1/2), and define ¢ = |z|* !, v = (=A)*/2w. By the
mapping properties of the fractional Laplacian and the Mikhlin theorem, we can observe that

v e LP(R) for all 1 < p < oo (see [1, Theorem 7.2]). Using the continuity of the Riesz potential
in lemma 3.9, we see that for a constant ¢ = ¢(n, s) the following holds almost everywhere:

9) [l z2@mny < Cllwl| (0

w=(—A)"2((=A)Pw) = (=A) v = el _gv = c|lz]¥ " x v =cp xv) .

Let xr be the characteristic function of the ball Br of radius R > 0, and define wg =
c(y * (xrv)), with ¢ as above. We see that

wa(z) = c(th * (xnv)) () = ¢ /R bl — y)xr(y)o(y)dy

and the integrand is dominated by |¢(x — y)v(y)|. This is an integrable function, since

/ (e — y)o(y)ldy = / bz — y)o(y)ldy = iy (o)) (x)
R R

and the Riesz potential is well defined almost everywhere on LP(R) for any 1 < p < 1/s’. Now
the dominated convergence theorem gives that wgr(x) — w(z) as R — oo for almost every fixed
z e R

Let € > 0 and (), y, € R be such that |xo—z(| < €, |yo —y(| < € and wr(xy), wr(y,) converge
to w(z(), w(y,) as R — co. Applying lemma 3.11 with p =2, n =1 and a = 1 — &, we see that

wr(x) — wr(yg) wgr(r) — wr(y)
[0 — yo]” Sii‘;{ @ —yP }
o [ ())(@) = (05 (o)) ()
- xﬁ;{ EET }

< Clixrvllz2my < Cllvll 2wy = CH(—A)S,/QUJHL%R) .

We now first take the limit for R — oo and then the one for € — 0. By the smoothness of w,
this gives
14



w(xg) — Wy o
(10) W < ClI(=A)"w| 2z -

Combining formulas (9) and (10) we get |w||p2gn) < C’||(—A)s//2wHL2(Rn), and the same
inequality holds for w € H*' () by density. Let now w := (—A)*u € H2%(Q) = H*'(Q). The
result is then obtained applying formula (8).

Case4: |s|€2Z,8'=1/2,n=1.
Let w := (—A)fu € H*=2(Q) = H¥(Q). Here we make use of formula (6) with p =2, ¢ = 3 in
order to estimate

1) fwllzegny = lwlfage ol gny < lwllfsgen lwllZgn < Cll(=2)" w2 -
Since n/4 equals §'/2 for n = 1, the results follows from (11) and (8).

Case 5: |s] € 2Z.
Let u € C(Q). In this case s = s’ + 2k + 1 for some k € N, therefore we can calculate

(=) 2ull 2ny = [[(=A)/2(=2) 22 L2 gy
= [[V(=2)¢ 22| 2 ey
= (=) 2Ty 2 @ny
> O VullL2gny = Cllull L2(gny -

(12)

The second equality in (12) is just an L? property of the gradient and the (—A)Y/2 operator.
The third equality in (12) follows from lemma 3.13. The first inequality in (12) follows from the
even cases, given that |s' 4+ 2k| € 2Z and Vu € H SIHk(Q) componentwise. The last inequality

follows from the classical Poincaré inequality. The rest follows by approximation. O

Remark 3.15. Third way to prove the Poincaré inequality is using the known result in the case
n > 1 and s € (0,1) [11, Lemma 2.2]. This result is proved using Caffarelli-Silvestre exten-
sion. Then one can use similar reduction argument to prove it for all s > 0 and u € C°(£2).
Namely, one shows using the classical Poincaré inequality that the claim holds for all s € [0,2).
The higher order fractional cases are obtained by splitting the fractional Laplacian as (—A)® =
(=A)E(=A)? where t € (0,2). Boundedness of the inverse and the fractional Poincaré in-
equality for t € (0,2) imply the claim for fractional exponents. Integer order exponents are

obtained from the boundedness of the inverse as before. The inequality for u € ﬁS(Q) follows
by approximation.

For the fourth proof we use the following interpolation lemma of homogeneous Sobolev spaces
which is a simple consequence of Holder’s inequality, see [4, Proposition 1.32].

Lemma 3.16. Let 5o <7 < s1 and f € H(R") N H*'(R"). Then f € H"(R™) and
—0 0
1z my < 1S oo oy I W Eres ny -+ 7= (1= 6)s0 + 1.

Using the interpolation lemma and the usual Poincaré inequality we can easily prove the
following theorem. Note that we also obtain explicit constant from the proof.

Theorem 3.17 (Poincaré inequality). Let s >t > 1 ors>1>t¢ >0, Q C R bounded open
set and u € H*(Q2). The following inequality holds

et

poce < 5 H(_A)S/2u’

L2(R™)

where C' = C(n, Q) is the classical Poincaré constant.
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Proof. Let s >t > 1 and u € C2°(2). The usual Poincaré inequality can be written in terms of
the homogeneous Sobolev norm as

[ull p2ny = llull 2(q) < C VUl L2y = ClIVUll o (rny = Cllull g1 gy
where C' = C(n, ). We use the 1nterpolat10n lemma 3.16 twice. First choose s =0, r =1 and
s1 =t >1. Now # = 1/t and by the classical Poincaré inequality we obtain
0 0 0
HUHHl R7) < HUHL2 Rn) ||u”Ht(]Rn) <c [|u HHl R") ||uHHt(Rn)'

From this we get the following inequality

;9
lull ey < C77 llull gre(rn)
for all u € C2°(2). Hence
HUHL2(Rn) <C HUHHl(R”) <’ HuHHt(Rn) :
Then choose sp = 0, r =t and s; = s > t in lemma 3.16. Now 6 = t/s and by the previous
inequality

< O

0 0
el ey < el 72y el e ey 1l s ey -
( (R™) H R (R™)

From this we obtain
[GEERY

poca <5t H(_A)S/zu’

L2(R")
for u € C(9).
Let then s > 1>t >0 and u € C°(Q). First interpolate for s > 1 > ¢ to obtain
1-—1¢
[’
ol gy < ol Ty 6= .

Second, interpolate for 1 > ¢ > 0 and use the previous inequality and the classical Poincaré
inequality to get

et}
Il
=~

0 6 0
”UHHt(Rn < HUHL2 R") HUHHI(Rn) <C' ||UHH1&(R1L HuHHs(Rn) )
which eventually implies the inequality

H t/2 = ”u”Ht(Rn) <ot HUHHS(]Rn) — st H(_A)S/Qu’

L2(R7)
for all u € C°(Q).
Then let u € H*(Q2). By definition there is a sequence ¢j € C2°(£2) such that

v —u in H3(R™).
The continuity of (—A)*? implies that
(=AY 20, = (=AY %4 in HSHRY).
The embedding H*~!(R") < L?(R") is continuous and thus
(=AY 20, — (—=A)?u  in L*(RM).

By the continuity of the norm and (—A)*? we finally obtain
A2 ’ —; H A2 ‘ < 5t H A/ )
H @y ke (=8)" L2(R") . PRIl L2 gy
— o5t H(—A)Sﬂu‘ . 0
L2(Rn)

We remark that the case t = 0 and s = 1 corresponds to the classical Poincaré inequality
since || Vul|p2gny = (A 1/2uHL2 (&) Also the constant C*~t is the expected one. In the usual
Poincaré inequality we take one derivative and the constant is C'. In the higher order version
we take t and s derivatives and the constant naturally becomes C*~!. The constant C' can be
taken to be proportional to the diameter of the set, C' &~ diam({2).
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Remark 3.18. Fifth way to prove the Poincaré inequality is using uncertainty inequalities. If
u € L?(R™), then there is a constant ¢ = c(n,s) such that

2 .
(13) ullzo@ny < eIl wll p2gny 117 Al 2y »
see the discussion after theorem 4.1 in [24]. We can interpret this inequality as

)P E @) o [ (2)70]

2
lullf ey < c|

L2(R™) L2(R")

whenever the terms on the right hand side of equation (13) are finite. If u is supported in some
fixed compact set K, then one obtains similar inequality as in theorem 3.7, i.e.

(_A)S/Qu’

/
[ull Loy < ¢ L2(R")

holds for all uw € Hj-(R™) and for some constant ¢’ = '(n, K, s).

Remark 3.19. The Poincaré inequality for the operator (—A)S/2 implies also Poincaré inequal-
ity for the fractional gradient V*: H*(R™) — L?>(R?", MLsI+1) which is defined as

e o Gt VP u(z) = Viuy)
Vou(z,y) := V2 |y — z[r/s

see section 6 for more details. If s >t >0 and u € C°(Q2), then

e

®(y_$)7

HvtuHLQ(RQn7MLsJ+1) - H(iA) - E ||vsu||L2(R2n7M\_5j+l) 3

L2(R™ L2(Rn)
where the constant ¢ does not depend on w. By approzimation and the continuity of V*® the

previous inequality is also true for u € H*(2).

4. APPLICATIONS TO INTEGRAL GEOMETRY

In this section we discuss how the UCP of Riesz potentials can be used in partial data problems
in integral geometry. We follow [36] for the treatment of the d-plane transform, theory of X-ray
transform and Radon transform can also be found in [63, 68, 81]. Let d € {1,... ,n — 1} and
denote by P9 the space of all d-dimensional affine planes in R™. We define the d-plane transform
of a function f to be

Ruf(4) = / _ J@aim(@)

where A € P% and m is the Hausdorff measure on A. The adjoint of Ry is defined as
Rigla) = [ g()du(a)
Asz

where g is a function on P? and p is the associated measure. These transforms are defined for
functions such that the integrals exist. The case d = 1 corresponds to the usual X-ray transform
and d = n—1 to the Radon transform. The normal operator of the d-plane transform Ny = R} Ry
has an expression Nqf = ¢y q(f * |-|_("_d)) where ¢, 4 is a constant depending on n and d. The
normal operator is well defined if f is a function that decreases rapidly enough at infinity [36].
This holds for example if f € C(R™) where Coo (R™) is the space of continuous functions which
decrease faster than any polynomial at infinity (see section 2.1 for a precise definition). Thus,
up to a constant factor, Ny can be represented as a Riesz potential Ny = I, = (—A)~%/?
a=n—de{l,... ,n—1}

The transforms Ry and R}, can be extended to distributions by duality. Let f € £'(R™) and
g € D'(R™). Since Rq: D(R") — D(PY) and RY: £(PY) — E(R") are continuous [32], we can
define the following operations

(Raf.¥) = (f.Rip), o€ &PY)

(Ry9,¢) = (9, Rap), ¢ € DR").
17
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Therefore Ryf € &'(P?) and Rjg € D'(R"). This shows that the normal operator Ny =
RiR;: E&'(R") — D'(R") is always defined and Ngf = ¢, q(f * -|=(=9) holds in the sense of
distributions. Let V' C R™ be a nonempty open set and f € £&'(R™). We say that Ryf vanishes
on all d-planes intersecting V, if (Ryf, ) = 0 for all ¢ € C°(P%) where P is the set of all
d-planes intersecting V. If V.= B(0,R) is a ball, ¢ € CSO(P‘%/) means that ¢ is smooth and
¢(A) = 0 for all d-planes A for which d(0, A) > r for some r < R. For more details on the range
of the d-plane transform and duality in integral geometry, see [32] and [36, Chapter II].

Remark 4.1. The UCP of Riesz potentials (corollary 3.2) immediately implies the UCP of the
normal operator of the d-plane transform when d is odd (corollary 1.3) since Ny =~ I,_4 and
d/2 ¢ 7. However, such UCP cannot hold if d is even, which can be shown by contradiction.
Assume that corollary 1.3 holds when d is even. Take any nonzero f € C°(R™). By the prop-
erties of the Fourier transform and Riesz potentials we have (—A)¥2f = (=A)~¥2((=A)4f) =
Nag(—=A)f up to a constant factor. Since d is even (—A)Y? is a local operator and we obtain
Ng(=A)fly = (=A)lfly = 0 where V. C R™ is an open set outside the support of f and
(=AY f € CX(R™). By the assumption we would get that (—A)1f =0, i.e. f is polyharmonic.
But this implies f = 0 by lemma 3.1, which is a contradiction. Hence the UCP cannot hold for
N, when d even.

Using the UCP of Ny we can now prove corollary 1.4.

Proof of corollary 1.3. Consider first f € Coo(R™). Taking the adjoint, we get the conditions
Nyfly = 0 and f|y = 0. By corollary 1.3 we obtain f = 0 whenever d is odd. Then let
f € &' (R™). We can assume that V = B(0, R) is a ball of radius R centered at the origin. As
in [36] we define the “convolution”

(9x D)) = [ g )y
where g € C®(R"), p € C®(P9), A € P? and A — y is a d-plane shifted by y € R". Then one
can calculate that R)(g x ¢) = g * Rjp (see [36, Proof of theorem 5.4]). Let j. € CZ°(R™) be
the standard mollifier and consider the mollifications f * j. € C°(R™). By the properties of the
convolutions

(14) (Ra(f = je),sp) = (f *Jes Rap) = (f, Je x Raep) = (f, Ra(je X ¢)) = (Raf,je X ¢) -

Take r > 0 and € > 0 small enough so that r + ¢ < R. Let ¢ € C°(P?) such that p(A4) = 0
for all d-planes which satisfy d(0,A) > r. Then (je x ¢)(A) = 0 for all d-planes for which
d(0, A) > r+e. Thus je x p € C°(P{,) and by (14) it follows that Ry(f je) = 0 for all d-planes
intersecting B(0,7). We also have (f * jc)|p(,) = 0 and the first part of the proof implies the
claim for f x j. for small € > 0. Since f x j. — f in &'(R™) when ¢ — 0, we obtain the claim
for f. O

Remark 4.2. When d is even, corollary 1.4 does not say that the result is false. It only indicates
that we cannot use the UCP of the normal operator in the proof. This boils down to the fact
that (—A)® does not admit the UCP for s € Z. However, if d is even, then the function f is
determined uniquely in V by its integrals over d-planes which intersect V.. Namely, if Rqf =0
on all d-planes intersecting V', then Nyf|y = 0. Since Ny ~ (—A)*d/2, one can invert Ngf by
the local operator (—A)d/2 to obtain f|y = 0. Hence the ROI problem is uniquely solvable in
this case without the additional knowledge of f in an open set inside the ROI.

Remark 4.3. We also note that unlike in the global data case lower dimensional data does not
determine higher dimensional data. In other words, Rpf = 0 for all k-planes intersecting V
does not necessarily imply that Rqf = 0 for all d-planes which intersect V where 0 < k < d < n.
Thus one cannot reduce the partial data problem for k-planes to the partial data problem for
d-planes.
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5. HIGHER ORDER FRACTIONAL SCHRODINGER EQUATION WITH SINGULAR POTENTIAL

In this section, we study the fractional Schrodinger equation with higher order fractional
Laplacian and singular potential. Let @ C R™ be a bounded open set, s € R \ Z and consider
the equation

(15) { (-4 +uq’2;: :(])c in O

where u € H*(R"), f € H*(R") is the exterior value of u and ¢ € L>°(2) represents the electric
potential. When the potential ¢ is more singular one has to interpret the product qu in a suitable
way. If ¢ € Z;°(R"), then ¢ acts as a multiplier and induces a map mg,: H*(R") — H~*(R")
defined by (mgy(u), v)gn = (¢, uv)gn. Then equation (15) becomes

(16) { (—A)u+ mz(‘g) - ?c in Q

We will prove that the generalized DN map A, for equation (16) determines the restriction
of the potential ¢ € Z;*(R") to Q uniquely from exterior measurements. We also obtain the
Runge approximation property for equation (16): any function g € H*(£2) can be approximated
arbitrarily well by solutions of (16).

Similar results were proved in [75] when 0 < s < 1. Our theorems generalize those results
for higher order fractional Laplacians. The proofs rely essentially on the same thing: the UCP
of the operator (—A)® which was proved for s € R™ \ Z in section 3.1. Also the higher order
Poincaré inequality is needed for the well-posedness of the inverse problem. In this section, we
provide the basic ideas for the proofs of the lemmas, which are reminescent of the ones in [75]
and [28]. We will mainly follow the same notation as in those articles.

The strategy to prove theorems 1.6 and 1.7 is the following. First one constructs a bilinear
form and proves that unique weak solutions are obtained in the complement of a countable set
of eigenvalues. One also proves that 0 is not an eigenvalue when (4) holds. Then one defines the
abstract DN map and proves the Alessandrini identity using it. Using the UCP of (—A)® one
obtains the Runge approximation property for equation (16). From the Runge approximation
and the Alessandrini identity, one can prove the uniqueness result for the inverse problem.

If U € R" is open and u,v € L?(U), we denote the inner product by

(u,v>U:/ uvdz.
U

We also use the same notation (-,-);; for dual pairing.
The following lemma guarantees the existence of unique weak solutions (see [75, Lemma 2.6]).

Lemma 5.1. Let Q C R™ be bounded open set, s € RT\Z and q € Zy *(R"™). Forv,w € H*(R")
define the bilinear form By as

By(v,w) = ((~8)"20, (~A)2w) 4 (mq(v), w)g

]Rn
The following claims hold:
(a) There is a countable set ¥ = {\;}52; C R, Ay < X < ... — o0, with the following
property: if X ¢ X, then for any F € (H*(Q))* and f € H(R™) there is unique
u € H*(R™) satisfying
By(u,w) — A (u, w)yga = F(w) forw e H*(Q), u—feH Q)

with the norm estimate

el sy < € (1F ey + 1Dy )

where C' is independent of F' and f.
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(b) The function u in (a) is the unique u € H*(R™) satisfying
(=AY u + mg(u) — )| = F
in the sense of distributions with u — f € H*(Q).

(c) One has 0 ¢ X if (4) holds. If ¢ € L>®(2) and ¢ > 0, then ¥ C (0,00) and (4) always
holds.

Proof. The constants in the inequalities do not depend on the function v in the proof. It is
enough to solve the problem in (a) for v — f = v € H*(Q). Using the fractional Poincaré
inequality (theorem 1.5) we obtain

oy < € (=200, o+ Tolean ) < €

Let 0 < € < 1/C’" where the constant ¢’ > 0 comes from the previous inequality. Since ¢ €
Zy *(R™), we can find g5 € C2°(R") and ¢, € Z7*(R") such that ¢ = ¢s+¢r and ||¢;[| g« (gny < €.
When we take p = ||¢y || 00 (gn) Where g = —min{0, ¢s(z)}, we obtain the coercivity condition

2 2

(—8)/2|

L2(R™ L2(R")

2

s 1
By(0,0) + 1 {0, 0)gn = [[(=2)720| |+ lar00)gn 2 5 [0l gy — €0l

L2(R")

Hence v, w — By(v, w) + p (v, w)pn defines an equivalent inner product in H*(£2). The proof is
then completed as in [28]: the Riesz representation theorem implies that for every F € (H*(Q))*
there is unique v = G“ﬁ € H*(Q) such that By(v,w) + p (v, w)gn = F(w) for all w € H5(Q).
The map G,: (ﬁ[ () — H () induces a compact, self-adjoint and positive definite operator
éu: L?(2) — L?(22) by the compact Sobolev embedding theorem. The spectral theorem for the
self-adjoint compact operator éu implies the claim in (a). Part (b) holds since C2°(£2) is dense
in H*(£2). The first claim in (c) follows from the Fredholm alternative. The second claim in (c)
is essentially the same as in [28, Lemma 2.3] and is proved by replacing H* () with Hg(R™) in
the proof of (a). O

Recall the definition of the abstract trace space X = H*(R™)/H*(2) which we equip with
the quotient norm
I llx = wf Jf = @llgsgny, [eHR),
peH=(Q)
The following lemma implies that the DN map is well-defined and continuous. The result
follows immediately from the definition of the bilinear form By(-,-) and from the continuity of
(=A)*/?: H5(R™) — L*(R") (see [28, Lemma 2.4]).

Lemma 5.2. Let Q C R™ be bounded open set, s € R\ Z and q € Zy *(R™) which satisfies (4).
Then the map Aq: X — X*, (Ag[f],[g]) = Bqluy,g), is linear and continuous, where uy €

H?*(R") solves (—A)*u~+mg(u) =0 in Q with u— f € H*(2). One also has the self-adjointness
property (Ag[f1,[9])) = ([f], Aglgl) for f,g € H*(R™).

Proof. Since uy is a solution to (—A)*u + mg(u) = 0 in Q with uy — f € H*(Q) and solutions

are unique, we obtain By(usiy,g + ) = By(uy,g) for ¢, € H*(2). This implies that A, is

well-defined. Further, using continuity of (—A)%/?

lemma 5.1, we obtain
AL, 9] < [[(—2)*/2u]

<C ||f”Hs(Rn) HgHHS(IR") J

and the norm estimate for solution ¥ from

|(—2)7%|

4 el ey g5 ey N

L2(R™) L2(R"

where C' does not depend on f and g. By the definition of the quotient norm [(A,[f], [g])] <
CIIfNx gl > so Agq is continuous. Choosing g = u, we obtain by symmetry of By(:,-)

(Aq[f1,191) = Byluy, ug) = (Aqlgl; [us]) = ([f], Aglg])
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where we used the fact that uy — f € H*(Q). O

We immediately obtain the Alessandrini identity from lemma 5.2 (see [75, Lemma 2.7]). We
use some abuse of notation and write f instead of [f].

Lemma 5.3 (Alessandrini identity). Let Q C R™ be bounded open set, s € Rt \ Z and q1,q €
Zy *(R™) which satisfy (4). For any f1, fo € X one has

<(AQ1 - qu)fl, f2> = <mQ1—QQ(u1)7 u2>Rn
where u; € H*(R™) solves (—A)*u; + mg, (u;) = 0 in Q with u; — f; € H5(9).

Proof. Using the self-adjointness of A, and the property By (u;, g+v) = By(u;, g) for ¢ € H® (Q),
we obtain

(Mg, = Agy) f1, f2) = (Agy f1, f2) — (f1, Ago f2) = By, (ua, f2) — By, (u2, f1)
= By, (u1, f2 + (u2 — f2)) — By, (u2, f1 + (u1 — f1))
= By, (u1,u2) — By, (u1,u2) = (mg, —g, (u1), u2)pn

which gives the claim. O

From the UCP of (—A)® (theorem 1.2), we obtain the following approximation result (see
[75, Lemma 8.1]).

Lemma 5.4. Let Q C R" be bounded open set, s € R\ Z and q € Z; *(R"™) which satisfies (4).
Denote by Py: X — H*(R™), P,f = uy, where uy € H*(R™) is the unique solution to (—A)%u+
mg(u) =0 in Q with u — f € H*(Q) given by lemma 5.1. Let W C Q. be any open set and
define the set

R={(Pf— f: e R0},
Then R is dense in H*((2).

Proof. By the Hahn-Banach theorem it is enough to show that if F' € (H*(Q))* and (F,v) =0
for all v € R, then F = 0. Let F € (H*(Q2))* and assume that

<F7qu_f>:O> fECEO(W)
Let ¢ € H5(Q) be the solution to
(=A)p +my(p) = FinQ,  ¢lo, =0

which exists by lemma 5.1. This means that B,(p,w) = (F,w) for all w € H*(Q). Let
uf = Pyf € H*(R"™) where uy — f € H*(Q2). Now

(B, Pyf — f) = By(p,up — f) = —=By(p, f)

since uy is a solution to (—A)%u + my(u) = 0in Q and ¢ € H*(Q). Thus By(p, f) = 0 for all
f e CX(W). Using the fact that spt(¢) and spt(f) are disjoint, we obtain

0= ((=8)"%, (=A)f) = (=A% gn-

Here we used that ((—A)%/?u, (—A)s/2v>Rn = ((—A)*u, v)gn for u,v € S (R"™) and the equality
holds also in H*(R") by density. Hence ¢|w = (—A)*p|w = 0 and theorem 1.2 implies ¢ = 0
and eventually F' = 0. (]

We remark that exactly the same proof gives the density of 7qR in L?() where rq is the
restriction to §2 (see [28, Lemma 5.1]). Now it is easy to prove theorems 1.6 and 1.7.
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Proof of theorem 1.6. Since we can always shrink the sets W;, we can assume without loss of
generality that Wi NWqo = @ and (W1 UW2)NQ = &. Using the Alessandrini identity (lemma
5.3), we obtain
<mf11*612 (u1), u2>Rn =0

for any u; € H*(R™) which solves (—A)%u; + mg, (u;) = 0 in Q with exterior values in C2°(W;).
Let vi,v2 € H*(Q). By lemma 5.4 there are sequences of exterior values fF € C°(W;) and
f¥ € 0 (Wy) with sequences of solutions u¥, uk € H*(R") such that

o (=AU +mgy(uf) =0in Q

° uf — fzk € H°(Q)

o uf = fF 4+ v; +rF where r¥ E22% 0in H5(Q).
When we insert the solutions uf into the Alessandrini identity, use the support conditions and
take the limit £ — oo, we obtain

<mQ1—CI2 (Ul)vv2>Rn = 0.
Let ¢ € C°(Q2). Choose v1 = ¢ and vy € C2°(£2) such that vy = 1 in a neighborhood of spt(¢p).
This implies
0 = (Mg—g2(v1), v2)gn = (@1 = G2, V1V2)gn = (@1 — G2, P)gn

which is equivalent to that ¢1]q = ¢2|q as distributions. O

Proof of theorem 1.7. Since int(21\) # @, there is open set W C €, such that W C Q;\Q. By
lemma 5.4, the set R is dense in H #(€2). Hence, we can approximate any g € H 5(Q) arbitrarily
well by solutions u € H*(R") to the equation (—A)*u + mgy(u) = 0in Q with u — f € H5(Q).
Since f € C°(W) we especially have spt(u) C €. O

6. HIGHER ORDER FRACTIONAL MAGNETIC SCHRODINGER EQUATION

In this section we will be dealing with the definition of the FMSE, as well as with the proof
of the injectivity result for the corresponding inverse problem. For the sake of simplicity, let
us fix the convention throughout this section that the symbol (-,-) indicates both the scalar
product (duality pairing) on L?(R") and the one on L?(R?"), the distinction between the two
being always possible by checking the number of free variables inside the brackets. We also let
the norms [|-|| 2, ||| g+ etc. to denote the norms over the whole R™ or R?" when the base set is
not specified.

6.1. High order bivariate functions. Let I,n € N, and consider a family A of scalar two-
point functions indexed over the set {1, ..., n}l. A generic member of the family is determined
by a vector (i1, ...,4;) such that i; € {1,...,n} for all j € {1,...,1}, and it is a function A;, _; :
R?" — R. We call such family A a bivariate function of order I. One can see the family A as
a function A : R?" — M!, where M is the set of all n x ... x n = n! arrays of real numbers, i.e.
tensors of order .

Let a,b € N, and let A, B be bivariate functions of orders a and b respectively, in the variables
x1,22. The tensor product of A and B is the bivariate function of order a + b given by

(A® B)iy,.iajiop (X1, 72) = Aiy_ig(T1,22) By jy (21, 2) -

In particular, for a vector & € R™ we let £20 = 0, £€®1 = ¢ and recursively £ = ¢®(m—1) @ ¢
Let A, B as before, but assume now that a > b. The contraction of A and B is the bivariate
function of order a — b given by
n
(A- B)ilym,iafb (z1,22) == Z A bdtsesdo (x1>x2)Bj1,m,jb (z1,22) -

J1seesJo=1
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If A = B, then of course a = b, so that A - A is a scalar function of the variables (z1,x2). One
sees that |A| := (A - A)Y/? defines a norm for fixed z; and x5, and that this coincides with the
usual one when A is a vector function.

Lemma 6.1. Let a,b € N, and let A, B, v be bivariate functions of orders a,b and 1 respectively,
in the variables x1,xo. Assume that a > b+ 1; then

A (Bov)=(Av) B.

Proof. The proof is just a simple computation:

n
[A' (B ® U)]i1,.-.,ia—b—1 - E : Ai17~~~,ia—b—17j1,~~,jb+1 (B ® v)j1,~-7jb+1
J1seedot1=1
n
= § : Ailw-ﬂ'a—b—l:j17~--’.7'b+1le:-~~7jbvjb+1
J1seedbt1=1
n n
= Y Bigy O Airdiacsridtodver Vi
J15--Jp=1 Jor1=1
n
= E : lev---vjb(A : U)il7---7ia—b—17j17---7jb
J1senfp=1
= [(A : U) : B]i17~-~7ia—b—l : g

Let A be a bivariate function of any order. Following [14], we recall the definitions of the
symmetric and antisymmetric parts of A with respect to the variables x and y and the L? norms
of A with respect to the first and second variable at point x:

Az, y) + Ay, x)
2 )

aae = ([ awora) . saw= ([ aeora)

n

As(z,y) == Ag(z,y) = A(z,y) — As(z,y) ,

It is easily seen that A € L? implies Ay, A, € L?, since

Az,y) + Aly, @)
2

A(.%', y) — A(y7 :(J)
2

<H>MAB=H < [IAll2

<Al Adlse = |
L2 L2
A bivariate function A of any order will be called symmetric if A = A almost everywhere,

and antisymmetric if A = A, almost everywhere.

Lemma 6.2. Let A € L'(R?>", M!) be an antisymmetric bivariate function of order | for some
l € N. Then [z, A(z,y)dydz =0.

Proof. Let D%, D~ be the sets respectively above and under the diagonal D := {(x,y) € R?*" :
x =y} of R*". Since [p. A(z,y)dydz < [, |A(z,y)| dyde < ||A|f1 < oo, we can decompose
the integral as [po, A(x,y) dyde = [+ A(z,y) dyde+ [,- A(z,y) dydz. Given the symmetry of
the sets DT and D™, this can be rewritten as [po, A(x,y) dyde = [, (A(z,y) + Ay, x)) dydz
which vanishes by virtue of the antisymmetry of A. O

6.2. Fractional operators. Let s € RT \ Z, u € C°(R") and z,y € R". Let |s| := sup{n €
N:n < s} and ¢’ := s — [s], so that by definition s’ € (0,1). The fractional gradient of order s
of u at points x and y is the following symmetric bivariate function of order |s| + 1:
1/2
Vou(a,y) = S V(@) = VIuly)
VT T e
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Observe that this definition coincides with the usual one for s € (0, 1), since in this case |s] =0
and s’ = s. One can compute

Cns Vu(z) — VElu(y)?
s, 112 n,s
”V u”L2(R2",MLSJ+1) = /n/n |:1; — d.’lfdy

2 y|n+2s’

C / / 2
— S yyls], 02 — (= A /2y Ls]
2 v u]HS’(R”) H( ATV u’LQ(Rn)
= 1€ €2 (€)1 2ny = €12 | F2(zn)

2

/A Ns/2 2

00 < Ny

Thus, by the density of C¢° in H®, V* can be extended to a continuous operator V* : H*(R") —
L2(R?* MsJ+1). One sees by density that the formula given for V¥u in the case u € C°(R™)
still holds almost everywhere for v € H*(R™). Thus if u,v € H®, by the above computation,

(Vou, Vou) = [[(=A)Pul|Fs = (=A)"2u, (=A)*%u) = (=A)*u,u) ,
so that by the polarization identity and the self-adjointness of (—A)*,
Vi(u+v), Vi(u+v)) — (Viu, Viu) — (Viv, Vo)

(Viu, Vi) = < 5
(A (utv),u+v) — (=A)°u,u) — {((=A)*v,v)
2

(=4)%u,v) + {(=4)*v, u s
This proves that if the fractional divergence (V-)* : L*(R?", MLlsJ+1) — H—5(R") is defined as
the adjoint of V*, then weakly (V-)*V* = (—A)* for s € R\ Z. This result was already proved
in [15], but only for the case s € (0,1). If we define the antisymmetric bivariate vector function
a(z.y) = Ci y-u
W Ty e

then for v € H?® the identity
Vou(z,y) = (VFu(z) - VEu(y) @ a(z,y)
holds almost everywhere.

We now define the magnetic versions of the above operators. Fix p > max{1,n/2s}, and let
A be a bivariate function of order |s] + 1 such that

(al) JoA € L?*"(R")

(a2) spt(A) C Q x Q.
With such choice of p, the embedding H® x L* — L? always holds by [5, Theorem 6.1], recall
that W"(R") = H"(R") with equivalent norms when r» € R and W"(R") is the L? Sobolev-
Slobodecki space [5, 57]. Therefore, if u € H®,

1/2
4G, gyl ggon ooy = [ @ [ JAGo)Pay o)

1/2
_ ( [ o)l 174w da:) — Ju oAl e
< cllul - | FoAll 20 < o0,

where ¢ does not depend on u and A. This allows the definition of Vu(z,y) := Viu(x,y) +
A(z, y)u(x) and its adjoint (V)3 just as in [14], in such a way that V4, : H*(R") — L?(R?" Mlsl+1)
and (V-)% : L*(R? MlsI+1) - H—=$(R™). By definition, the magnetic fractional Laplacian
(—A)3% : H® — H~* will be the composition (V-)%V?. Let now g be a scalar field such that
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(a3) g € LP(Q).
By [5, Theorem 8.3] we have the embedding H® x LP — H~*® and hence qu € H~* holds for
u € H®. We can thus define the magnetic Schrédinger operator (—A)% +¢ : H® — H™° and
the fractional magnetic Schrodinger equation (FMSE)
(—A)u+qu=0.

In the next Lemma we write (—A)% in a more convenient form. To this scope, we introduce
the bivariate function of order |s]| given by S(z,y) := A(z,y) - a(z,y), for which we assume
that

(ad) |S(z,y)| < S(y) for a.e. z,y € R*, with S € L?,
(a5) S(z,y) € HEI(R2, ML),

Remark 6.3. Assumption (a4) is really relevant only when |s| # 0, as it will be clear from
the proof; in the case s € (0,1), this assumption can be reduced. We refer to [14] for a set of
sufficient conditions in that regime. Moreover, with a more careful analysis, one could reduce
the exponent of the space to which S belongs. However, we decided to keep L* for the sake of
stmplicity.

Lemma 6.4. Let A be a bivariate function of order |s| + 1 satisfying conditions (al), (a2)
(a4), (a5), and let w € H®. There exist linear operators N, Mg acting on bivariate functions of
order |s|, with B a multi-index of length |3| < |s|, such that the equation

(—A)ju(z) =(=A)u(@) + Y 0%u(z)(Ms(S))(x)+
1BI<ls]

+ [ ul) S ) dy +uta) [ APy

n

holds in weak sense.

Proof. If v € H®, then in weak sense

(18) (—A)5u, vy = (Viu, Vov) + (Vu, Av) + (V°v, Au) + (Au, Av)
where all the terms on the right hand side are finite, as observed above.

Step 1. Let us start by computing the third term on the right hand side of (18). The bivariate
function V*v(z,y)[A(z,y)u(z)], is antisymmetric, and by Cauchy-Schwartz and formula (17)
we have ||V (Au)gllrr < [V r2||(Auw)allr2 < ||v||gs]|Au||r2 < oo. Therefore Lemma 6.2
gives (V*v, (Au),) = 0, and we can use Lemma 6.1 to write

(Viv, Au) = (Viv, Au) — (Vi0, (Au),) = (Vi0, (Au)s)
= (Vu(a ) VLSJ (¥)) ® a, (Au)s)
(VElo(z) — Vislu(y), (Au); - @)
= (VElu(@) = vlu(y), (A - au)a)
(Vo(z) - VLSJ (), (Sw)a) -

—~
[a—
=)

SN—

I

The bivariate function [V v(z)4+Vv(y)][S(x, y)u(z)], is antisymmetric, and we can estimate
its L' norm by means of the triangle inequality as
(Vo (z) + VEu(y) (Su)all < (V) o(@) = Vo) (Su)allr + 1290 () (Su)al o1 -

The first term on the right hand side equals ||V*v (Au)s|| 1 by computation (19), so that it is
finite by [|V5v (Au)s||rr < |V r2||(Aw)s||r2 < [|v||lms||Aul|fz < co. We estimate the other
term again by triangular inequality as

(200  [12Vu(@)(Su)allr < [V o(@)S (@, y)u@) |+ [V o(@)S(y, 2)uy)| -
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The estimation of the second term on the right hand side of (20) can be done as follows, and
similarly for the other one:

IVo@S )t = [ 190 [ 1860 lu) dds
< [ 19E@)I5G) [ futn)]dydo

(21) < cluls [ 19¥0(@)lS()de

< cflull 2| Vo (@) | 2|15 2
< cllull s vl s ]| S 2 < oo,
where the constant ¢ can change from line to line and does not depend on v,w and S.
Thus we have proved that |2V v(z)(Su)a|| 1 < oo, which in turn implies that ||(V *v(z) +
VIlo(y))(Su)ellr < oo. Now we can use again Lemma 6.2 to conclude that (VIslu(z) +
Vslu(y), (Su)e) = 0. From this fact and formula (19), integrating by parts,
(Vo0, Au) = (VElo(z) — VEo(y), (Su)a) + (VB u(z) + VIu(y), (Su)a)
= 2(VIo(@), (Su)a) = (Vv (z), S(2,y)ulz) — S(y, 2)uly))
= (Vo (@), S(z,y)u(@)) — (Vo (@), S(y, 2)uly))

= (-1 (o, (o) [ SCompan) )

09 (o (@ [ Sty

In the last term the derivatives can pass under the integral sign by means of the dominated
convergence theorem, since |S(z, y)u(y)| < S)|u(y)], and fo, S)u(y)ldy < [ Sl2lul > <
oo. Eventually,

22 (0. = (-0 (0. (u(o) [ SCeppa))
0 (o [ )9 Sy

Step 2. Next we compute the second term on the right hand side of (18). With a computation
similar to (19), we obtain (Vu, Av) = (VIsu(z) — VIlu(y), S(z, y)v(x)); moreover, we have
estimates similar to the ones in (21), and so we can split the integral. Eventually, we integrate
by parts and get

(V'u, Av) = (Vu(a), S(e y)o(a)) — (Vu(y), SCa,y)o )
@ = (o) o) [ Sean) - (o). [ V) Seain)
= <v(a;), vishy(z) -

n

Sty ) + (-0 (o), [ )@ st phay )
Rn
Step 3. The properties ((—A)*u,v) = (Vu, V5v) and (Au, Av) = (v, u [, |A(z,y)|*dy) hold,
as proved in [14]. Using this information and formulas (22), (23) we can write the fractional
magnetic Schrodinger operator as

(—A)u ) + <vLSJu<az> Sy + (—1)l vl (a(zc)

[ Sty o)+
0t (997800 + (995G dovo ) + ([ 1Py,
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Let us compute the left hand side of the second bracket and collect the resulting terms according
to the order of their derivatives of u. For every multi-index § such that |3 < |s| we can find a
linear operator Mg such that

Vel [ Sty + DI ()

S:Uydy) > P u(z)Mg(S) .

R 181<Ls]

We can also define the following linear operator:
N(S) = (- (VLIS 2) + (VIS () -

With these new definitions, we can rewrite the fractional magnetic Schrédinger operator as in
the statement of the Lemma. O

6.3. The bilinear form and the DN map. For every s € RT \ Z and u,v € H® we define
the bilinear form Bj  : H* x H® — R as in [14]:

B q(u,v) = / / Viu - Vi dydzx +/ quu dx .
Lemma 6.5. There are constants i/, k' > 0 such that, for all u € H®,
Bl o) + 1 (w0} = K Jule

Proof. The formula we want to prove is called coercivity estimate. Using (18), we can write

B} ,(u,u) = /n - Viu - Viudydx + /n qu? dx
= / u(—A)5udx +/ qu? dz = ((—A)%u, u) + (qu,u)
= ((—A)°u,u) + 2(Viu, Au) + <<q + /R" A(m,y)]%ly) u,u>
(24) = ((—A)’u,u) + 2 < Viu - Ady,u> + (Qu, u) ,
where Q(z) = q(x) + [g. |A(z,y)|*dy belongs to LP since Cauchy-Schwartz and assumptions
(al) and (a3) imply the embedding L% x L? < LP. Since we always have LP x H® — H~*

we get (Qu,u) < |lullps||Qullg-s < ||Qllze|lul|%s. For the second term on the right hand side
of (24) we first perform an estimate by means of the Young inequality

/ Viu-Ady
R’I’L

then estimate the second term with the Cauchy-Schwartz inequality, in light of (a4):

Rn

2

9

2< Vsu-Ady,u> < e ul2s +e
Rn

LQ

2 2
€ Viu-Ady|| =ce / ((VLSJU(I) —viluy) e oz) -Ady
R L2 n L2
2
- / (Vlu(z) — Vhu(y)) - (A - ) dy
n L2
2
= / (Vhu(x) — Vlu(y)) - S(a,y) dy
9 12(2)
1/2 1/2]|2
< ( [ 19ua) - vLsJu@)rzdy) ( JAEClk dy)
Q Q LQ(Q)

/ </ (VElu(z) — vislu(y))| dy/ 1S (z, ) |? dy) dx



€ LsJay(x Lslq, S T
< /Q</Q<|v (@) + |V <y>|>2dy/gs2<y)dy)d
— 81 [ [ (190w + 9ty

< 265220 /Q /Q IV (@) + [V u(y) ) dyda
< 04e] 8120 IV ul22 < cel V)2, < celule,

where the constant ¢ can change from line to line and does not depend on w.
Eventually

2< Vou. Ady,u> < e ulZ: + cellully,

Rn

which leads to

(25) B g(u,u) > B g(u,u) — € Hull7z2 — cellulFs -

Since C2°(2) is dense in LP(Q), for every 0 > 0 we can find functions Qs, @, such that Q, €

C(), 1QrllLr(@) < 0 and Q = Qs + Qr. Also, if ¢; € C2(Q) and ||pjllgs = 1 for j = 1,2,

then [(Qr¢1, ¢2)| < cl|o1||as||d2]lms||Qr|lLr < €6 by the embedding LP x H® < H~*. Therefore,
1Qrllz-s = sup  {[(Qrd1,P2)[} < b,

llésll s =1

which means that @ belongs to the closure of C2°(§2) in Z7*(R"™), that is @ € Z;*(R"™). Now
by Lemma 5.1 we know the coercivity estimate for the non-magnetic high exponent case; this
lets us write (25) as

By g (uyu) + (ot € ) (uu) > (k= ce)lull e

which is the coercivity estimate for B}, as soon as € is fixed small enough and p' := p + e,
k' := k — ce are defined. O

By means of the lemma above, if we assume 0 is not an eigenvalue for the equation, we
can proceed as in the proof of Lemma 2.6 from [75] and get the well-posedness of the direct
problem for FMSE. This can be stated as follows: if F € (H $(£2))*, there exists unique solution
u € H¥(R") to B ,(u,v) = F(v) for all v € H5(Q), i.e. unique u € H*(R™) such that
(—A)u+qu = F in Q, u|g, = 0. This is also true for non-vanishing exterior value f € H*(R")
(see [15] and [28]), and the following estimate holds:

(

26) ull gy < eCIF oy + 1 i)
where ¢ does not depend on F' and f.
One can prove (see Lemma 3.11 from [14]) that Bj , also enjoys these properties:
(1) B} ,(v,w) = Bj ,(w,v), for all v,w € H?,
(2) |Bj (v, w)| < cl[v]|gs@n)l|wl| s @ny for all v,w € H*, where ¢ does not depend on v
and w.

(3) B} ,(u1,e2) = Bj (u2,e1) , for u; € H? solution to the direct problem for FMSE with
exterior value f; € H*(Q) and e; any extension of f; to H®, j =1,2.

Lemma 6.6. Let X = H*(R")/H*(Q) be the abstract quotient space, and let u; € H* be the
solution to the direct problem for FMSE with exterior value f1 € H*(.). Then

<A3A,q[f1]’[f2]> :Bi,q(ula.fé)v fj €EH® j=1,2
defines a bounded, linear, self-adjoint map ASA?q : X — X*. We call Aiqu the DN map.

Proof. The proof follows trivially from properties (1)-(3) of B} , and (26). O
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6.4. The gauge. Consider two couples of potentials (A1, q1) and (Az, g2). We say that (A1, q1) ~
(Az, q2) if and only if the following conditions are met:

e MN(S1 — S2) = 0 for almost every z,y € R”

e M, 0)(S1—52) + [zn(JA1]* — [A2]*)dy + (q1 — q2) = O for almost every = € R"

e Mp(S1 — S2) =0forall 1 <|B] < [s]| and almost every z € R".
It is clear from the linearity of 91 and 91, that ~ is an equivalence relation, and so the set of
all couples of potentials is divided into equivalence classes by ~. We call these gauge classes,
and if (A1, q1) ~ (A2, q2) we say that (A1,q1) and (Aa,q2) are in gauge.
Observe that this gauge ~ coincides with the one defined in [14] if s € (0, 1), although it looks
quite different. Since in this case |s] = 0, there is no third condition. In the language of that
paper, the first condition reads

0=-MN(51 - 52) = Si(y,2) + Si(x,y) — Sa(y, x) — Sa(z,y)

= (Ai(z,y) — Aa(z,9)) - a(z,y) + (A1(y, z) — A2(y, 2)) - a(y, z)

= (Ai(z,y) — A1y, ) — As(z,y) + A2(y, 2)) - a(z,y)

=2(A1 — Az)g - a =2(A1 — Ag)y -
which is equivalent to (A1), = (Az2)g), since the two vectors in the last scalar product have the
same direction. Given this fact, for any v € H® the first term in the second condition weakly is

(Mo,...,0)(S1 — S2),v) = 2(51 — S2,v) = 2(a- (A1 — A2),v) = 2(av- (A1 — A2),v)

=2(a- (A — AQ)SH,'U> = 2(aw, (A — A2)5||> =2((aw)s, (41 — A2)8||>

= (a(z,y)v(z) + aly, v)v(y), (A1 — A2),))

= {(a(z,y)(v(z) —v(y)), (A1 — Aa)y))

= (VP0, (A1 = Ao)y)) = (v, (V)*((A1 — A2)y)))

which lets us rewrite the second condition as
(VA0 + [ AP+ = (99 (g + [ |AaPdy+ .

Remark 6.7. Observe that the gauge enjoyed by the FMSE is quite different from the one
holding for the MSE. For the sake of simplicity, we shall compare the classical case with the
fractional one in the regime s € (0,1), following section 8 in [14].

Given lemma 6.4, one sees that the following is an equivalent definition for the gauge ~ above:

(A, q1) ~ (A2,2) & (FA)Q u+ qru = (=A)),u+qu,
for all w € H*(R™). One may also define the accessory gauge =~ as

(A1,q1) = (A2,q2) & 3P € G: (=A%, (ud) + qrue = ¢((—A)%,u + qu) ,

for all w € H5(R™), where G := {¢p € C®(R") : ¢ > 0,¢|q. = 1}. These definitions can be
extended to the MSE in the natural way. It was proved in lemmas 3.9 and 3.10 of [14] that the
FMSE enjoys the gauge ~, but not ~. In the same discussion, it was arqued that the opposite
holds for MSE. The reason for this surprising discrepancy should be looked for in the nonlocal
structure of the FMSE. As apparent in formula (10) in [14], the coefficient of the gradient term
in FMSE is not related to the whole vector potential A itself, but only to its antisymmetric part
Aq. It is such antisymmetry requirement what eventually does not allow the FMSE to enjoy =~
as the MSE. As a result, the scalar potential ¢ can not be in general uniquely determined as in
the classical case.

geeey

6.5. Main result.

Remark 6.8. Assume W C €. is an open set and uw € H® satisfies u = 0 and (—A)5u+ qu =

0 in W. We say that the fractional magnetic Schrédinger operator enjoys the weak unique

continuation property (WUCP) if we can deduce that uw = 0 in Q. This was proved in [14] by

using the UCP of the fractional Laplacian for s € (0,1); since we know by Theorem 1.2 that
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UCP still holds for (—A)* in the regime s € Rt \ Z, we can deduce WUCP for (—A)% + q by
the same proof.

Proof of theorem 1.8. Step 1. Without loss of generality, let W1 N Wy = (. Let f; € C°(W;),
and let u; € H*(R") solve (—=A)% w; + qu; = 0 with u; — f; € H5() for i = 1,2. Knowing
that the DN maps computed on f € C2°(W;) coincide when restricted to Wa, using Lemmas
6.4 and 6.6 we write this integral identity

0= <( SAI:QI - Axs‘\z,Q2)f1’f2> = Bih,ln (u17u2> - Bi\zﬂz(ul’uz)

<u2, Z 861”9}(,3(51 - SQ)> + <’LL2, /n ul(y)‘)“((Sl — SQ) dy> +

181<Ls]

+ <u2,U1 </Rn(|A1|2 — Ao dy + (q1 — qQ))>.

Since if x € Q or y € Q we have A;(z,y) = Aaz(z,y) and ¢1(z) = ¢2(x), we can restrict ug, us
and 0%uy over € in the previous formula; it is also true that (0%uq)|q = 0°(u1]q), and therefore

0= <U2|97 > 0% (ur])IMs(S1 — 52)> + <U2|97/ ut|o(y)N(S1 — S2) d@/> +
18I<ls] !

N <u2|qu1|Q </Rn(|A1|2 —A2H)dy + (¢ — Q2)>>.

This is the Alessandrini identity, which now we will test with certain solutions in order to obtain
information about the potentials. The appropriate test solutions will be produced by means of
the Runge approximation property (RAP), which holds for the FMSE because of Remark 6.8
and Lemma 3.15 in [14]. This property says that the set R = {uylo : f € C (W)} C L*(Q)
of the restrictions to € of those functions uy solving FMSE for some smooth exterior value f
supported in W is dense in L?(Q).

Step 2. Given any f € L?(f2), by the RAP we can find a sequence of solutions (ug)y — f in
L? sense as k — oco. Substituting these in the Alessandrini identity and taking limits, by the
arbitrarity of f we can deduce that

0= 3 0 (i) Ms(S1 — S) +/ | ()0N(S) — Sb) dy+
1B1<[s] !

rurle ([ (AP = 4Py + (a1 - )

holds for every solution u; € H® and almost every point = € 2. Fix € ). Consider now any
Y € CX(Q) and let g(y) = e VI*=¥ly(y), g(x) = 0. Since e~ /1*=¥l is smooth, it is easy to
see that g € C°(Q) C L?(Q); also, by the properties of e~/1*=¥l one has that d%g(x) = 0 for
all multi-indices 3. By the RAP we can find a sequence of solutions (u1)y — g in L? sense as
k — oo. Substituting these in the above identity and taking limits, we get

/ e Ve=ulyp () NSy — Sy)dy = 0.,

which by the arbitrarity of ¢ and the positivity of the exponential now implies 91(S; — S3) =0
for almost all z,y € . We can now return to the above equation with this new information:
for every solution u; € H® and almost every = € ),

0= Y 9(ui|o)Ms(S1 — S2) +wila </ (|A1]? = |A2P)dy + (q1 — qz)) -
1B1<1s] R
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For every multi-index  we can consider the function hg(x) = zf = fvf b .xﬁ“, which belongs
to L?(Q). Let (hg)r be a sequence of solutions approximating hg in L?, which exists by the

RAP. We will first substitute (h(, . o))k into the last formula, take limits and deduce

Mo 0)(S1 — S2) + / (A12 = |As2)dy + (1 — q2) = 0,

Rn

which has the effect of reducing the equation to

> 9% (uro)Ms(S) — S2) = 0.
1<|8I<ls)

If |s| > 1, we will repeat the last steps with each hg such that |3| = 1, deducing Mz(S1—52) =0
for every such (3, and subsequently

> 0% (ula)Ms(S1 — S) =0.
2<|/<|s)

Repeating this process for a total of |s] times eventually leads to
Mp(S1—82) =0 V1<|B[<|s],
which proves the theorem by the definition of the gauge ~. O

7. POSSIBLE GENERALIZATIONS AND APPLICATIONS BEYOND THIS ARTICLE

We discuss some possible directions for the future research on higher order fractional inverse
problems, fractional Poincaré inequalities and unique continuation properties. It seems that
now it would be the most natural to reconsider many of the recent developments in fractional
inverse problems for higher order operators. We outline here some problems which we would
like to see solved in the future.

We have split this section in three in order to emphasize some open problems which we find
especially interesting. We do not claim that answers to all questions are positive and it would be
interesting to see why and where the greatest difficulties, or even counterexamples, would show
up. We first list the most natural directions to continue our work on higher order fractional
Calderén problems. One could study for example the following cases:

(i) Is reconstruction from a single measurement [15, 27] possible also in the higher order
cases?
(ii) Is there stability [75] in the higher order cases?
(iii) Is there exponential instability [73] in the higher order cases?
(iv) Is there uniqueness for the Calderén problem for fractional semilinear Schrédinger equa-
tions [47, 48] in the higher order cases?
(v) Do the monotonicity methods [33, 34] extend to the higher order cases?
(vi) Is there uniqueness for the conductivity type fractional Calderén problems [10, 15] in
the higher order cases?
(vii) Could recent results on fractional heat equations [49, 74] be generalized to the higher
order cases?
(viii) Does the higher regularity Runge approximation in [11, 28] generalize to higher order
cases?

7.1. Unique continuation problems. We state here some unique continuation problems,
which do not follow directly from the earlier results and the techniques that we have developed
for this article.

Question 7.1 (UCP for Bessel potentials). Let s € R\ Z, p € [1,00) and r € R. Let V C R"
be an open set. Suppose that f € H"P(R™), fly =0 and (=A)*f|y = 0. Show that f =0 or
give a counterexample.
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The positive answer to question 7.1 is known when p € [1,2] (see corollary 3.5). If f has
compact support, then the answer is positive for all p € [1,00) (see corollary 3.3). Question 7.1
is also open for the exponents s € (0,1) when p > 2. See section 3.1 for details.

Question 7.2 (Measurable UCP). Let s € RT \Z and r € R. Let V.C R" be an open set
and E C V' a measurable set with positive measure. Suppose that f € H"(R™), flg = 0 and
(=A)fly = 0. Show that f =0 or give a counterexample.

The positive answer to question 7.2 is known when s € (0,1) [27]. Question 7.2 with a
potential ¢ from a suitable class of functions is also an interesting and more challenging problem.
See [27, Proposition 5.1] for more details.

Question 7.3 (Alternative strong UCP). Let s € RtV \Z and r € R. Let V. C R" be an open
set. Suppose that f € H"(R™), fly = 0 and 9°((=A)*f)(x0) = 0 for some 29 € V and all
B € Nj. Show that f =0 or give a counterexample.

Question 7.3 can be seen as a version of the strong unique continuation property (see e.g.
[22, 26, 72]) with interchanged decay conditions. When f has compact support, the answer to
question 7.3 is positive for s € (—n/2,00) \ Z (see corollary 3.3).

The problems posed in questions 7.1-7.3 for the fractional Laplacian are interesting math-
ematical problems on their own right, but they also have important applications in inverse
problems. The UCPs can be used to show Runge approximation properties for nonlocal equa-
tions such as the fractional Schrodinger equation (see theorem 1.7), which in turn can be used to
show uniqueness for the corresponding nonlocal inverse problem (see theorem 1.6). The UCPs
have also applications in integral geometry, where the uniqueness of the ROI problem for the
d-plane transform can be reduced to a unique continuation problem for the fractional Laplacian
(see remark 4.1 and corollaries 1.3 and 1.4).

7.2. Fractional Poincaré inequality for LP-norms. In section 3.2 we prove the fractional
Poincaré inequality for L?-norms in multiple ways. The inequality is needed for the well-
posedness of the inverse problem for the fractional Schrédinger equation. One could try to
extend the Poincaré inequality for general LP-norms. This suggests the following natural ques-
tion which is also interesting from the pure mathematical point of view.

Question 7.4. Let s > 0, 1 < p < oo, K C R™ compact set and u € H¥P(R™) such that
spt(u) C K. Show that there exists a constant ¢ = c¢(n, K, s,p) such that

(27) [ [CNEE

Lp(RM)

or give a counterexample.

Since we have presented several proofs for the Poincaré inequality in the case p = 2, one could
try some of our methods to solve question 7.4. However, some of our proofs are heavily based
on Fourier analysis and those approaches might be difficult to generalize to the LP-case when
p # 2. Like in theorem 1.5 and in theorem 3.17, another interesting question is whether one can
replace u in the left-hand side of equation (27) with (—A)"?u when 0 < ¢ < s, and whether the
constant ¢ in equation (27) can be expressed in terms of the classical Poincaré constant when
s> 1.

7.3. The Calder6n problem for determining a higher order PDO. In this discussion,
we try to make as simple assumptions as possible. The whole point is to introduce a new
inverse problem that we think is a very natural and interesting one, at least from a pure
mathematical point of view. Therefore the optimal regularity in the statement of the problem
is not as important. Let © be a domain with smooth boundary. Suppose that P(z,D) =
>_laj<m Ga(x)D® is a partial differential operator (PDO) of order m with smooth coefficients on
Q. We argue in section 3.1 that the operator (—A)® + P(xz, D) admits the UCP (in open sets).

It is shown in the seminal work of Ghosh, Uhlmann and Salo [28] that if P(z, D) is of order
m = 0, then one can determine the zeroth order coefficient (i.e. the potential ¢) from the
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associated DN map. It was then later shown in [11] that if P(x, D) is of order m = 1, then
one can also determine the coefficients (i.e. the potential ¢ and the magnetic drift b) from the
associated DN map whenever the order of (—A)? is large enough, namely when 2s > 1. This
and our work on higher order Calderén problems motivate the following inverse problem.

Question 7.5. Suppose that 2 C R"™ is a bounded open domain with smooth boundary. Let
Pj(x,D), j = 1,2, be smooth PDOs of order m € N in Q. Let s € RT \ Z be such that 2s > m.
Given any two open sets Wi, Wo C €, suppose that the DN maps Ap, for the equations

((=A)° 4+ Pj(z,D))uj =0 inf

satisfy Ap, flw, = Ap,flw, for all f € C(Wy). Show that Py(x,D) = Pa(x,D) or give a
counterexample.

Another interesting question is whether the strong UCP [26] can be extended to higher order
PDOs.
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ON SOME PARTIAL DATA CALDERON TYPE PROBLEMS WITH MIXED
BOUNDARY CONDITIONS

GIOVANNI COVI AND ANGKANA RULAND

ABSTRACT. In this article we consider the simultaneous recovery of bulk and boundary po-
tentials in (degenerate) elliptic equations modelling (degenerate) conducting media with in-
accessible boundaries. This connects local and nonlocal Calderén type problems. We prove
two main results on these type of problems: On the one hand, we derive simultaneous bulk
and boundary Runge approximation results. Building on these, we deduce uniqueness for
localized bulk and boundary potentials. On the other hand, we construct a family of CGO
solutions associated with the corresponding equations. These allow us to deduce uniqueness
results for arbitrary bounded, not necessarily localized bulk and boundary potentials. The
CGO solutions are constructed by duality to a new Carleman estimate.

1. INTRODUCTION

There has been a substantial amount of work on nonlocal inverse problems in the last years (see

for instance the survey articles | , ] and the references cited below). These nonlocal
equations arise naturally in many problems from applications including, for instance, finance
[ , , ], ecology | , , ], image processing | |, turbulent fluid
mechanics | ], quantum mechanics | , ] and elasticity | | as well as many

other fields [ , , , , , , , , ]. In this
article, we provide yet another point of view on these non-local inverse problems by adopting
a local “Caffarelli-Silvestre perspective”. The resulting equations and the associated inverse
problems are of interest in their own right, modelling for instance situations in which there are
unknown, not-directly measurable fluzes or potentials on the boundary of an electric device in
addition to electric and/or magnetic potentials in the interior of it. Moreover, we also include
situations in which the conducting property of the (electric) medium may deteriorate or improve
towards the boundary. In this setting of unknown and not directly accessible boundary and bulk
potentials at possibly degenerate conductivities, we are interested in the reconstruction of both
of these boundary and bulk potentials which are coupled through possibly degenerate, linear
elliptic equations.

1.1. A model setting. As a model case, we consider the following problem set-up with non-
degenerate conductivities: Let Q C R™ be an open, bounded, C?-regular (or smooth) domain,
modelling the conducting body. Assume that ¥q,¥y C 9 are two disjoint, relatively open,
smooth non-empty sets. Consider the following magnetic Schrodinger equation with mixed
boundary conditions

~Au—iA-Vu—iV - (Au) + (JA* + V)u =0 in Q,
dyu+qu =0 on X,
u = f on X,
u=0o0n 00\ (X1 U33y),

(1)
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where, for simplicity, the coefficients are supposed to satisfy the conditions that

(2) Ve L*(Q,R), Ae L*®(Q,R"), ¢ € L™ (0Q,R),
and that
(3) v-A=0on oM.

In analogy to the setting of the Schrodinger version of the partial data Calderén problem we
seek to recover the potentials A,V and ¢ from boundary measurements encoded in the (partial)
Dirichlet-to-Neumann map

Mavg: HE(Z2) = H 2 (S2), fls, = Ouls,.
In a formally correct way this will be defined by means of the bilinear form
(4)
Bay,q(u,v) = /Vu Vv +i0A - Vu — iAu - Vv + Vuvdz +/qu§d7—["71 for u,v € H*(Q,C),
Q P

in Definition 3.9 in Section 3 below. Here @ denotes the complex conjugate of u.

We remark that in contrast to the “usual” partial data, magnetic Schrodinger version of the
Calderén problem, in (1) the first boundary condition yields a new ingredient: Besides the partial
data character of the problem which is encoded in the measurement of data on X5 only, we now
also consider a setting in which a part of the domain, ¥;, is modelled as inaccessible and on
which we also seek to recover an unknown boundary flux/potential. This is closely related to the
so-called inverse Robin problem which arises, for instance, in corrosion detection (see | ] and
the references below). We thus combine a Calderén with a Robin inverse problem, studying a
setting in which in addition to the bulk potentials in the interior of the domain €2 also unknown
boundary potentials and mixed-type boundary conditions are present.

In this framework it is our objective to investigate the following questions:

(Q1) Let us assume that A,V,q and A4 v,4 are as above. Can we then simultaneously recover
the boundary potential ¢, the magnetic potential A and the bulk potential V', if the bulk
(gradient) potentials A and V are supported in a set ; € Q which is open and bounded?

(Q2) Is this recovery still possible — at least for V and ¢ — if the bulk potentials are not
compactly supported in Q27 In particular, is this possible, if there is no longer some
safety distance between €2 and the boundary parts given by ¥, and Xo7

Let us comment on these questions: Both of these are partial data problems with the objective
of reconstructing unknown potentials simultaneously on the boundary and in the bulk (see [ ]
for a survey on the known partial data results). As explained in the sequel, the effect of the
boundary and bulk potentials however is expected to differ quite substantially in the context of
the inverse problem.

On the one hand, the magnetic and scalar potentials A and V are local, interior potentials.
The dimension counting heuristics on the recovery of these follow from the ones for the classical
Calderén problem: One seeks to recover unknown objects of n degrees of freedom from the
(partial) Dirichlet-to-Neumann map, an operator which encodes 2(n — 1) degrees of freedom.
Building on the seminal result | ], a canonical tool to address the associated uniqueness
question for the “local” potentials A,V are complex geometric optics (CGO) solutions. It is
further well-known that the presence of the magnetic potential creates additional difficulties
due to the resulting gauge invariances. In spite of this, both in the full and the partial data
settings, CGO solutions have been constructed starting with the works | , ], see also
[ , ]. These however do not cover our mixed-data set-up in which additional unknowns
are present on the boundary.
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On the other hand, the heuristics on the recovery of the boundary potential give hope for sub-
stantially stronger boundary uniqueness results: Indeed, recalling from the argument above that
the Dirichlet-to-Neumann operator formally contains 2(n — 1) degrees of freedom, we note that
the recovery of ¢ which is a function of n—1 degrees of freedom is always overdetermined. Hence,
in analogy to | ], even single measurement results for the uniqueness of the boundary
data can be expected (see [ , ] for results of this type for the Robin inverse prob-
lem). We view this as a “non-local” reconstruction problem at the boundary; a connection to
the fractional Calderén problem is explained below.

In dealing with the questions (Q1) and (Q2) we thus combine ideas from “local” and “non-
local” inverse problems. Here in our analysis of the question (Q1) the softer “non-local” effects
dominate, while in our approach towards the problem (Q2), the “local” interior effects prevail.
In particular, we thus

e address question (Q1) using simultaneous Runge approximation results in the bulk and
on the boundary (see Sections 4-5),
o deal with question (Q2) by constructing suitable CGO solutions (see Sections 6-7).

Indeed, in (1) we view the boundary data on ¥; as a local formulation a la Caffarelli-Silvestre
[ ] of a Schrédinger equation for the half-Laplacian on ;. Then, using the fact that in
question (Q1) the local interior potentials A,V are only supported in a compact subset of §2
which has some safety distance to 31,35, this indicates that the problem can be reduced to
a full data type problem by means of Runge approximation results. In order to deal with the

interior potentials, we recall the Runge approximation ideas developed in | ] and quantified
in [ ]. These allow one to approximate full data CGO solutions in 2; by partial data
solutions in the whole domain . Compared to | ] in our setting of (1), we have to deal

with the additional challenge that also on the boundary of 2 an unknown potential is present.
However, due to the disjointness of the domains ¥; and ¥ and motivated by the interpretation
of the equation on ¥; as a fractional Schrédinger equation, it is possible to prove corresponding
simultaneous density results both in the bulk and on the boundary (see Proposition 5.1).

In contrast to the setting of the question (Q1), the question (Q2) is dominated by “local”
effects. Since now V may be supported in the whole domain {2 and may in particular be supported
up to the sets X, 3o, the Runge approximation techniques are no longer applicable in 2. In
order to nevertheless address the uniqueness question, we thus construct CGO solutions. Here
we can however not directly make use of the known full/partial data CGO solutions from the
magnetic Schrodinger problem, due to the presence of the additional boundary condition on X
in (1). A related difficulty had earlier been addressed in [ ) ] in the context of partial
data problems. However with respect to the setting in | ] our equation on the boundary
imposes an additional challenge in that the potential g is assumed to be unknown and the
problem is of mized-data type. Thus, aiming at uniqueness results by means of CGO solutions,
we construct a new family of CGO solutions which takes into account both the unknown bulk
and boundary potentials. This relies on new Carleman estimates for a Caffarelli-Silvestre type
extension problem (see Proposition 6.1 and Corollary 6.4).

1.2. A family of (degenerate) boundary-bulk partial data Schrédinger problems. Be-
fore discussing our main results, let us present a variation of the problem outlined above in
which we also study operators whose conductivities or potentials depend on the distance to the
boundary. More precisely, for s € (0,1) and for the potentials A, V, ¢ satisfying the conditions in
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(3) and (2), we consider the following equation

()
—V - d"EVu —iAd T Vu — iV - (d2 Au) + d2E (AP + V)u = 01in Q,
lim d*~%9,u+ qu=0on %,
d(z)—0
u = f on X,
u=0o0n 00\ (X;UXs).

Here d : Q — [0, 00) denotes a smooth function which is equal to the distance to the boundary in
a neighbourhood of the boundary. If not otherwise explained, all the functions and in particular
u,v in the sequel will be complex-valued. As in the case s = 3 we define an associated (partial)
Dirichlet-to-Neumann map as

Mov : 5(82) = H7(00), fls, = i d(a) = Dyals,.
Again, in a formally precise way it is defined by means of the bilinear form

Bs av,q(u,v) = /dlfQSVu Vo —d'70A - Vu + d A - Vo + d 25V + |A]P ) uvde
(6) .
+ /qu@d’}'—[”*1 for u,v € H*(Q,d'~2*).

P
For the equation (5) and the Dirichlet-to-Neumann map (6) (and a slight variant of it, see (9)
below) we seek to investigate the analogues of the questions (Q1) and (Q2) for s € (0,1), i.e. the
reconstruction of the scalar, magnetic and boundary potentials from the generalized Dirichlet-
to-Neumann map in the cases that the interior potentials are either supported away from the
boundary or reach up to the boundary.

These questions share the same type of local and nonlocal features as explained above. How-
ever, the relation to the fractional Laplacian may become more transparent. To illustrate this,
we recall the Caffarelli-Silvestre extension [ ] which allows one to compute the fractional
Laplacian through a problem of the type (5) in the unbounded domain R’ffl. To this end, given
a function u € H*(R™) one considers the degenerate elliptic problem

o V .z, 3°Va=0in R},
@ =wu on R" x {0}.

The fractional Laplacian then turns into the generalized Dirichlet-to-Neumann operator associ-

ated with this equation; (—A)*u :=¢, lim Oxiffawla(x). The idea of realizing the fractional
Tn41—

Laplacian as a (degenerate) Dirichlet-to-Neumann operator of a local, degenerate elliptic equa-
tion has been further extended to rather general variable coefficient settings, see for instance
[ , ]. In this sense, we view the equation (5) and also (1) as a localized proxy for the
inverse problem of recovering the potentials A, V' and § in the fractional Schrédinger equation
(=(V+iA)? +V)*u+Gu=0in Qc R,

(8) ) _
u=fon W cCR"\Q

from an associated Dirichlet-to-Neumann map. We note that in (5) the set Q@ C R™ plays the role
of the extended space R’7"! in (7). As a word of caution we however remark that, following the
classical formulation of the Caffarelli-Silvestre extension (7) as an equation in n + 1 dimensions,
the formulation of the problem (7) is shifted by one dimension with respect to our setting in
(5). In contrast to the Caffarelli-Silvestre extension problem associated with (8), (5) has the
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advantage that we can work in a bounded domain 2. This allows us to circumvent the discussion
of various issues which arise in the inverse problem for the full Caffarelli-Silvestre extension of
(8). We emphasize that just as (5) the problem (8) has a natural gauge invariance. In particular
it represents yet another nonlocal model with gauge invariances besides the ones which had been
introduced and analysed in | , ) ) ]

1.3. Main results. As one of the main results of this article we provide a complete answer (at

L* regularity) for the uniqueness question in (Q1) in the case s = 1.

Theorem 1. Let Q C R™, n > 3, be an open, bounded and C?-regular domain. Assume ) € Q
is an open, bounded set with Q\ Qy simply connected and that 31,39 C IQ are two disjoint,
relatively open sets. If the potentials q1,q2 € L™= (31), A1, Az € CH(Q1,R™) and Vy, Vo € L*°(£2;)
in the equation (1) are such that

Ay = AA1-,V17q1 - AA27V2,112 =: Az )
then g1 = q2, V4 = V5 and dAy, = dAs.

This relies on simultaneous approximation results for the bulk and boundary measurements.
For instance, restricting first to the case in which A = 0 and considering the sets

Syq = {u € L*(Q) : wuis a weak solution to (1) in Q},
Sy :={u€ H'(Q): uis a weak solution to (1) in Q} € L*(y),
we prove the following simultaneous boundary and bulk approximation result.

Lemma 1.1. Assume that the conditions from Section 2.8 hold for Q,Qy and ¥q,%s. Let
Ve L*®(Q), g € L>®(0). Then the set

Rup = {(uls, ula,) + uls, = Pfls, and ulo, = Pfla, with f € C2°(2)} C L*($1) x L* ()

is dense in L*(31) x Sy, with the L?(X1) x L?(Q) topology. Here P denotes the Poisson operator
from Definition 3.3.

We remark that substantial generalizations are possible for these type of approximation results.
These involve both approximations in stronger topologies and more general Schrédinger type
operators. We refer to Lemma 4.2 and the discussion in Sections 4 and 5 for more on this.

Similar approximation results also hold in the setting of the problem (5), see for instance
Proposition 5.1. Furthermore, an analogous uniqueness result as in Theorem 1 can also proved
in this situation, see Theorem 3. In spite of the degenerate character of the equation (5) this
is reduced to the construction of CGO solutions to a non-degenerate Schrodinger type problem
and an application of the Runge approximation result.

We next turn to a variant of the problem (5) and investigate the question (Q2) for this model.
Here we follow the usual notation from the Caffarelli-Silvestre extension which was also already
used in (7) and assume that @ C R"*! is an open set. We emphasise that we thus increase
the dimension of the problem under consideration by one with respect to our discussion of the
question (Q1). Here, in order to simplify the geometric setting which in partial data problems
is not uncommon, we assume that ¥; := QN {r,1; = 0} and that ¥y = dQ \ ¥;. In contrast
of considering (5) we study a slight variation of it. For ¢ € L (%), V € L>(Q) we investigate
solutions to

Ve 3Vu+ Vel P u=0in Q,

(9) u = f on ZQ,
lim 7

1-2s
lim nal Ont1u+qu=0on X;.
n+1
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Here, for instance, f € CS°(3;). Using the same ideas as in Section 3, it can be shown that this
problem is well-posed if zero is not an eigenvalue with respect to our mixed data setting. Thus,
an associated Dirichlet-to-Neumann map can be (formally) defined as the map,
) : 1-2
NS o,

We refer to Section 7 for a more detailed discussion of the Dirichlet-to-Neumann map associated
with (9) and the function spaces it acts on. Now no longer imposing conditions on the support
of V', we seek to recover both V and ¢. Since this implies that Runge approximation methods
are no longer applicable in the interior of {2, we instead rely on a new Carleman inequality for
the equation (9) (see Proposition 6.1 and Corollary 6.4) and by duality construct CGO solutions
from it:

Proposition 1.2. Let Q C ]RT'I, n > 3, be an open, bounded smooth domain. Assume that
¥ =902 N (R™ x {0}) is a relatively open, non-empty subset of the boundary, and that Yo =
OO\ 2. Let s € [1/2,1) and let V € L=(Q) and ¢ € L>°(X,). Then there exists a non-trivial
solution u € H (0, z}.3°) of the problem

(10) Vez) 3 Vu+ 2, 7 Vu =0 in Q,
a:nlillil*)() $3L12155n+1u +qu =0 on X,
of the form u(x) = eg,"c,(eik/“l”k"“mﬁl +7(x)), where k € R*L ¢ € C" is such that £'-&' = 0,
k-& =0, and
o if s=1/2, then |[r|L2@) = O(I€'|72), Irll @) = O(I€'1?) and |r]|L2(s,) = O(1);
o if s> 172, then |7l jagqgs-2 = OUE1™): Il gty = OUEI—) and vl pacs,) =
O(lg'1-2).

Remark 1.3. We remark that by inspection of the proof given in Section 7 below, one observes

that for s = % one only needs to assume that n > 2 and may work with £ € R"*! instead of

& eR™.
Remark 1.4. Instead of considering CGOs of the form
u(aj) _ egr.x/(eik/,x/+ikn+1mij_l + r(x)),
by the same arqguments we can also construct CGOs of the form
u(x) _ eg/,zl(ez’k/,m/_kn_,_lziil + T(l‘))
or kni1 > 0 which thus have some decay behaviour in the x,1-direction in the amplitude.
+ +

We emphasize that the CGOs here contain new ingredients compared to the classical CGOs in
that the amplitude contains the normal contribution k11225 instead of a linear phase. Also,
in order to avoid dealing with the non-degeneracy of the equation, with respect to the classical
CGOs, we loose one dimension in the case s € (%, 1), having to restrict ourselves to n > 3 (and
thus n4+1 > 4).

Relying on this new family of CGO solutions for s € (3, 1), we give a complete answer to the

question (Q2) for n > 3:
Theorem 2. Let ) C Ri“, n > 3, be an open, bounded and smooth domain. Assume that
¥ = 09N {xpt1 = 0} and Xy C ON\ X1 are two relatively open, non-empty subsets of the
boundary such that X1 UXe = 0Q. Let s € (1/2,1). If the potentials q1,q2 € L*(%1) and
V1, V4 € L>(Q) relative to problem (9) are such that

Ay = AS,VMIl = AS,Vz#]z =: Ay,
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then g1 = g2 and V3 = V5.

This provides the first uniqueness result combining both local and monlocal features of the
described form in Calderén type problems. We hope that these ideas could also be of interest in
the study of (8).

In the case s = %, the lack of sufficiently strong boundary decay estimates only allows us to
recover V given ¢ (see Proposition 7.1 and Remark 6.3). We seek to study improvements of this
in future work.

1.4. Connection to the literature. The study of nonlocal fractional Calderén type problems
has been very active in the last years: After its formulation and the study of its uniqueness

properties in | |, optimal stability and uniqueness in scaling critical spaces have been
addressed in | ) ]. In | | single measurement reconstruction results have been
proved, see also [ , ] for full-data reconstruction results by monotonicity methods.
Further, variable coefficient versions were studied in [ , | and magnetic potentials
were introduced in [ , , , ]. We refer to the articles | , ,

, ] for further variants of related nonlocal problems. Reviews for

the fractlonal Calderon problem with additional literature can be found in | , .
In all these works, a striking flexibility property of nonlocal equations is used, see also | ,
, , ]: As a consequence of the antilocality of the fractional Laplacian
(see | ]), one obtains that the set of solutions to a given fractional Schrédinger problem with
scaling-critical or subcritical potential in € is already dense in L?(§2). This allows one to prove
uniqueness and reconstruction results by means of Runge approximation properties. These often
lead to substantially stronger results for the nonlocal inverse problems than the known ones (e.g.
partial data, low regularity) for the classical local case. Apart from the intrinsic interest in the
described effects of anti- and nonlocality, these nonlocal inverse problems are also of relevance
in various applications and in order to obtain an improved understanding of the classical, local

Calderén problem.

By virtue of the Caffarelli-Silvestre extension, the described fractional Schrodinger inverse
problems are also closely connected to (degenerate) versions of the Robin inverse problem as
proposed and formulated for instance in [ , , , ]. These problems arise
in the indirect detection of corrosion through electrostatic measurements and in thermal imaging
techniques. Mathematically, under sufficiently strong regularity conditions on the potentials and
the measurement sets, these can be addressed using ideas on unique continuation, see for instance
[ , ] for uniqueness, stability and reconstruc-
tion resultb on the Robm inverse problem In contrast to our setting which combines unknown
potentials on the boundary and in the bulk, the literature on the inverse Robin boundary prob-
lem however typically does not consider a combination of these two challenges. Typically, in
works on the inverse Robin problem, a setting complementary to the classical Calderén prob-
lem is studied, where it is assumed that the bulk properties of the material are known, while
reconstruction at inaccessible boundaries is explored.

The classical, local Calderén problem is a prototypical and well-studied elliptic inverse prob-
lem. It had originally been formulated and studied in its linearized version by Calderdn, see
[ ]. For n > 3 the uniqueness question for the full, nonlinear problem had been solved in

the seminal work | ] by introducing CGO solutions. For recent, low regularity contributions
on uniqueness, we refer to [ ) , ]. Also stability | ], reconstruction [ ]
and partial data [ ] problems have been addressed. We refer to | | for a more detailed

survey on the results for the Calderén problem.
In this article, we seek to combine both effects, local and nonlocal, with the objective of con-
necting these and providing new perspectives on them. Studying boundary and bulk potentials
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simultaneously, we thus combine both the local (bulk) effects and the nonlocal (boundary) effects
of the two classes of inverse problems described above. By studying the questions (Q1) and (Q2)
outlined above, we illustrate that either effect can dominate. Combining the two settings we
investigate an interesting model problem in its own right and hope to to derive ideas and results
connecting the local and nonlocal realms.

1.5. Organization of the remainder of the article. The remainder of the article is organized
as follows. In the next section, we introduce our notation and recall some results on weighted
Sobolev spaces. Next, we discuss the well-posedness of problems (1) and (5). Building on this,
in Sections 4 and 5 we address the question (Q1). Here we also provide the proofs of Theorem 1
and Lemma 1.1. In Section 6 we prove a new Carleman estimate for the generalized Caffarelli-
Silvestre extension in (9). Arguing by duality, we derive the existence of CGO solutions for these
in Section 7 and thus present the proof of Proposition 1.2. Building on this, we provide the proof
of Theorem 2 there. Last but not least, we provide a proof of the density result of Proposition
2.3 in the appendix.

2. NOTATION AND AUXILIARY RESULTS
2.1. Function spaces. In the following we will make use a number of function spaces. Unless

explicitly stated, all function spaces consist of complex valued functions.

2.1.1. Weighted Sobolev spaces. We will fix s € (0,1) and assume that Q@ C R™ is an open,
bounded, C2-regular domain. We let d : Q — [0, 00) denote a C''-regular function which close to
the boundary 02 measures the distance to 052 and is extended to €2 in a C'-regular way. Then
we set:

L*(Q,d 2%) := {u : Q — C measureable : Hd%uﬂg(g) < o0},
HY(Q,d"2%) := {u: Q — C measureable : Hdl_TQSuHLz(Q) + Hdl_TQSVuHLz(Q) < oo}
We further use the following notation for fractional Sobolev spaces:
H*(©) = {ulg : u e H*(RM)},
and equip it with the quotient topology
ull s ) = nE{ Ul zr2@ny : Ula = u}.

It will also be convenient to work with functions obtained by completion of smooth functions
with compact support:

H*(Q) := closure of C®°(R") in H*(R™).
We remark that in our setting of sufficiently regular domains, we have that
H*(Q) = HE,

where HS = {u € H*(R") : supp(u) C Q}. Working in charts, similar definitions hold for
functions on (sub)manifolds.

We recall the following extension and trace estimates which we will be using for the weighted
H'(Q,d'=2%) spaces. We remark that both Lemmas 2.1 and 2.2 are not new and had first been
proved in | ]. We only provide a (rough) argument for these for completeness and the
convenience of the reader.
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Lemma 2.1. Let Q C R" be an open, bounded, C?-reqular set and let u € H*(Q, d'=2%). Then
there exists a continuous trace operator into H®(0N), i.e. ulgq exists in a weak sense, coincides
with u|pq if uw € C*(Q) and

luloll s a0) < Cllull g (o,dr-2¢)-

Proof. The claim follows from the flat result (see for instance | , Lemma 4.4] for this) and
a partition of unity. Indeed, using boundary normal coordinates and a partition of unity {7}
whose elements have a sufficiently small support we obtain with uy = uny and @y (x) := ug oo (z)
where ¢y, locally maps the boundary of Q to the flat boundary {z,1 = 0}
M
C(lld=2 Vul g2 + [d2 ul[z2(q)) > (Hd 2 Vug| 2 + [|d 2 uk||L2(Q)>
k=1

C—l

v

1-2s 1-2s
(NooFy Tl gy + oty kllse )

C*l

v

||1~Lk||Hs({$n+1:0})

< M= I

>C7 Y urllmeo) = C Hull e o0)-
k=1
Here C' > 1 is a generic constant which may change from line to line. In the estimates, we have
used that |V¢yi| can be chosen as small as desired in the support of uy (by possibly enlarging
M € N) and that ||ag| s ({2, .,=0}) ~ l[urllzsa0) (see for instance [ , Theorem 3.23]). O

Lemma 2.2. Let Q C R™ be an open, bounded, C?-reqular set. For f € H*(0)) there exists a
continuous extension operator E(f) into HY(Q,d'=2%), i.e. E(f)|oq = f and

| Es fll a1 (,ar-25) < Ol fll 406

Proof. Again, this follows by relying on a partition of unity {7 }ren and a flatting argument.
Flattening dQ by local diffeomorphisms ¢, with small C' norm, we consider fi, := (fnx) © ¢.
As fk may be assumed to be compactly supported in {z,+1 = 0}, we obtain an extension iy
satisfying the bound

(11) ”ﬂk”Hl(]Rn><[074]711ij5) < C”kaHS(]R")-
One possibility of achieving this is by choosing 4y to be the solution to
V2, 3 Ve =0 in R
u= fr on R" x {0}.

We, for instance, refer to the Appendix in | ] for the derivation of the associated estimates
of the form (11). Finally, using the local diffeomorphisms ¢, and the behaviour of the H*(9)
and H! (RT‘I, x};ﬁs) norms under diffeomorphisms, the estimate (11) turns into a corresponding

M
estimate in Q. Defining u := Y npiy o (b,:l then concludes the proof. (]
k=1

With the trace estimates in hand, we further define the following spaces including boundary
data. To this end, let ¥ C 9Q be a C?-regular, relatively open set. Then,

H%;’O(Q,dl_%) = {u Q= C: ||d 2 UHLz(Q) + ||d 2 VUHLZ(Q) < 00, U‘E = 0}.
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2.1.2. Test functions for the CGO construction. In addition to the weighted Sobolev spaces from
above, in our construction of complex geometric optics solutions, we will make use of the following
function spaces: For Q C Rfﬁl with Q N {11 =0} := 3, we set

22,0 (@) = {f: Q= C: f(2) = a2, b, 241) with h € C2(Q)),
where we use the notation

CZ(Q) :={h:Q — C: his infinitely often continuously differentiable and supp(h) C QU X}.

We stress that this in particular enforces that h, 9,h = 0 on 9Q\ X but that h does not necessarily
vanish on .
For ¥; C 99 a smooth, n-dimensional, star-shaped set, we further consider

C:={f: Q> R: feC®Q) with flx,.0 =0, dfln(se =0,
Ont1f(z) =0 for x € N(Xq,€) x [0,¢] for some € > 0,¢ > 0}.
For simplicity of notation, we have set ¥y := 9Q \ ¥; and denote by N(Xs,¢), N(X1,¢) an
e-neighbourhood of %1, Y5 on 09).

As an important property which we will make use of in our construction of CGO solutions,
we state a density result for the space C:

Proposition 2.3. Assume that the conditions from above hold. Then the setC C Hémo(ﬂ, x};zls)
is dense.

We postpone the proof of Proposition 2.3 to the appendix.
Finally, for s € (0,1) we define

(12) C:=C+a2,02(Q).
We will use this space extensively in Section 7.

2.1.3. Semiclassical spaces and the Fourier transform. In our construction of CGOs it will be
useful to work with semiclassical Sobolev spaces. To this end, we use the following notation for
the Fourier transform

u(y) = Fuly) = / e Yy (x)dr .

Rn+1

We introduce the following definitions for the semiclassical Sobolev spaces. Let & € C".

Eventually we will consider the limit case |¢/| — oo, and thus for us |¢/|~! constitutes a small
parameter. Following [ ], we define the semiclassical Fourier transform as

Fseuly) := / e €Ty (2)de
R'rL+1
and then use it in order to define the semiclassical Sobolev norm

€N e
HuH?{gC(R"Jrl) = (27r 1{y) |fscu(y)\||i2(w+1) J

where s € R, u € L2(R"!) and (y) := (1 + |y|?)'/2 for y € R"*!. The cases of interest for us
are s = 0 and s = 1, for which we have
lull g2, gesry = lull 2gesry  and  Jull g o1y = [Jull pz@o+ny + €17 VUl 2@y -

The semiclassical Sobolev spaces L2, (R"*1) and H., (R"*!) are then defined as the subspaces of
L?(R™*1) where the corresponding semiclassical norms are finite. Moreover, if Q is some open
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subset of R"™! and w(x) is a weight function, we define the weighted semiclassical Sobolev space
H.(9,w) as the subspace of L?(R"*!) where the norm

n+1
1l = () 1At 2
Hi(Quw) = \ on Y | Fscu@)IZ2(quw)

is finite. In the special cases s = 0 and s = 1 this of course gives

lull L2, 0w = lullL2@uw)  and  fullg @uw) = lullL2@uw) + €17 VUl 2w -

2.2. Trace estimates. In this section we collect a number of (weighted) trace estimates. These

are not new and have already been used in for instance | , , ]

We begin with the case s = %:

Lemma 2.4. Let 2 C R" be an open, bounded, C?-regular domain. Then there exist constants
C=0C(Q,00) > 1, cg = co(Q) > 1 such that for allu € H*(Q) and p > cq it holds
lullz200) < Cu™ I Vull 2 (@) + ullullz2()-

Proof. By density, we may without loss of generality assume that w is smooth. We work in
boundary normal coordinates and denote the coordinates by = = (2/,t), where z = 2’ + Tv(z'),
a2’ € 09 and v(z’) denotes the inner unit normal to 9 at a’. By the fundamental theorem, we
thus write for some ¢ > 0

t
u(z’,0) = /Bsu(x',s)ds +u(a’,t).
0

As a consequence, by Holder,
t
lu(x’,0)]* < C(t/ |0su(x’, 8)[2ds + |u(2,t)]?).
0
Integrating over 2’ € 99 thus yields

t
||UH%2(aQ) < Ct//|5‘5u(x’,s)|2dsdx' + Hu(o,t)||2Lz(aQ)
89 0
< Ct|Vul 2 + [ullZ2(00,)-

Integrating in t € (0, =) with u > Co(2) > 0 leads to
p Ml 200y < O~ VullZzo) + lullfzq)-
Multiplying by p > 0 implies the desired result. (|
More generally, also a weighted trace estimate holds for s € (0,1):

Lemma 2.5. Let Q C R" be an open, bounded, C*-regular domain. Let d : Q — [0,00) be a
C' regular function which close to the boundary OQ coincides with the distance function to OS).
Then there exist constants C = C(Q,09Q) > 1, ¢g = co(2) > 1 such that for all u € H*(Q) and
> co it holds

1-2s ) i=2s
[ullL2a0) < C(u™*lld = Vullp2) + 1! lld = ullL2(q)-
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Proof. As above, we only prove the result for u smooth and work in boundary normal coordinates
x = (2/,t) as in the proof of Lemma 2.4. Again the fundamental theorem in combination with
Holder’s inequality, yields

t
(', 0)] < / B,u(a’, r)|dr + fu(a!, )
0

1

< Cyt® (/ r1_25|8ru(x’7r)2dr> + |u(2’, 7).
0

Squaring this and integrating in the tangential coordinates yields for ¢ = ¢(2) > 0 sufficiently
small that

o, 1=2s
[ullZ200) < CE°(It7= Byull72(q) + CllullZz(aq,)-

Integrating this in ¢ € [r,2r] for r € (0,7¢) and 79 = 79(2) > 0 entails that

1—2s
rlullZzo0) < Cr2*tHIt= diullZzq) + Cllulliz o)
1—2s 1—2s

< Or T 0y + O [ F )

1— 1-2s

< OrHY|d™ 2 V| 2o gy + Cr®Hd = ul|2aq).

1

Dividing by r > 0 and defining =" = r, we obtain the desired result for p > 7“51. O

2.3. Notation for sets. In the following we will work with Calderén type problems with mixed
boundary conditions. To this end, we will use the following notation in the remainder of the
article. In Sections 3-5 we will always assume that Q C R:‘_‘Ll is a relatively open, C?-regular
set. Furthermore, the sets £1,3s C 9Q are C2%-regular and satisfy ¥; N 2y = (). For the sake
of simplicity, in the sequel we will always assume that 2; € Q is a bounded, open set such that
Q\ Q; is simply connected. In Sections 6 and 7 we will in addition assume that all sets are
smooth and that > is star-shaped.

Working with sets in the neighbourhood of 02 or with some distance to 02, we further define
for 6 € (0, 1) sufficiently small

Qs :={x € Q: dist(z, Q) > 6},

(13) Qs ={z+tv(z): 20, te(0,0)} CQ.

Here for z € 9Q C R™ the vector v(x) € S"~! denotes the inner unit normal at the point x. For
a subset ¥ C 02 we further set

N(%,96) :={zx € 09 : dist(z,X) < d}.

3. WELL-POSEDNESS OF THE MIXED BOUNDARY VALUE PROBLEMS (1) AND (5)

In this section, we discuss the well-posedness of the (weak) forms of the equations (1) and (5)
in the associated energy spaces. Based on this, we define the associated Dirichlet-to-Neumann
maps and derive the central Alessandrini identities which we will use in the following sections
when dealing with the associated inverse problems.

We begin by discussing the well-posedness of the problem (1).

Proposition 3.1 (Well-posedness, s = 1). Let Ba,v,, denote the bilinear form from (4) and let

0,%1,% be as above. Then, there exists a countable set M C C such that if A € C\ M, for all
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F e (Héﬂ\zl,o(ﬁ))*f fa € HZ% and f, € H=2 (%), there is u € H(%Q\(&UZQLO(Q) with uls, = fo

and with

(14) Bav,g(u,v) = Mu,v) p2(0) = (F,v) + (f1,v)2(,)s

forallv e H(%Q\El 0(Q2). Here (-,-) denotes the (HéSZ\El,O(Q))*’ H(%Q\El 0(Q) duality pairing.
If A ¢ M, there exists a constant C > 0 such that

(15) lellmoy < CUP Gy, o @y + il -y g, + 12l 1 )

20\ ,0

Remark 3.2. We remark that in Proposition 3.1, compared to the problem in (1), we consider
the slightly more general setting of constructing (weak) solutions to

Lyu = —Au—iA-Vu—iV-(Au) + (AP +V + Nu=F in Q,
Ou+qu=f on Xy,
u = fa on Xa,
u=0 on 0N\ (X1 UXy).

(16)

This will be convenient when discussing density properties by studying the adjoint equation (see
Section /).

For A ¢ M, we will refer to solutions of (14) with the described properties as weak solutions
to (16). It is this notion of a solution that we will work with in the sequel.

Proof. We argue in several steps.

Step 1: Reduction. We first reduce the problem to the case of fo = 0 by considering u =
uy + E(f2) where E(f2) is an HéQ\EZ 0(Q) extension of f, satisfying the bound [|E(f2)|| 1 ()
| f2||H% )" This is possible by for instance defining E(f2) to be the harmonic extension

2

AN

of f2 into €2. The function u; thus solves a similar problem as the original function u with
a new functional F' := F — Ly(E(f2)) € (HéQ\El,O(Q))*’ but now in addition satisfies fy :=
uy|y, = 0. Here the expression Ly (E(f2)) is understood in the weak sense, i.e. as the functional
Hflm\zl o) 3 v = —Bav,e(E(f2),v). With slight abuse of notation, in the following we will
only work with the function u; and drop the subindex in the notation for u; and the tildas in
the data.

Step 2: Continuity.
We observe that for v € H 59\21 0(2) as above, we have (using the trace inequality)
|Ba,v,q(u,v)| < Cllullay@llvll g @)

Here the constant C' > 0 depends on A, ||q|| Lo, ||Al| o, ||V ||Le- This proves the continuity of the
bilinear form.

Step 3: Coercivity. We next study the coercivity properties of the bilinear form. By Cauchy-
Schwarz,

/quH"_l < gl o) lull 200y 1]l 2 (a0) -
D)

Thus, by the trace inequality from Lemma 2.4 we infer that

/q|u|2d7’1f"_1 < Cllgllze o lullZ2 a0y < Cllalleioa) (=2 VullZzq) + 1 lullFzq))-
Q
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1

15+ We thus obtain

Choosing p > 1 such that Cllg|| e @o)p™? <

o
[ a1 < Il + Cldlzzonlulz:
Q

Moreover, by Young’s inequality,

— 1
[ A Fds| < IV ule) + ClLAR ~ o el
Q

Noting that by Poincaré’s inequality there exists a constant C' > 0 such that for all u €
Hjo\ s, 0(€) we have

ClIVull 2y > llull g1 ),

and combining this with the previous estimates for the lower order bulk and boundary contri-
butions, we thus obtain that for u = [|[V_|[1~(q) + Cil|AllL=() + Cillg|lL=(a0) with suitable
constants C1,Cy > 0, we have

By(u,u) == Bav,q(u,u) + p(u,u)r20) > CQHU”%_]l(Q).

Step 4: Conclusion. By the discussion in Steps 2 and 3 above, B,(-,-) is a scalar product
and the Riesz representation theorem is applicable. Since F' € (H éQ\El 0(f2))* and also for

fi€ H_%(Zl) the map
Hons, 0(Q) 30 (v, fi) L2z,

is a bounded linear functional on H 59\21 0(£2), this yields the existence of a unique function
u:= G,(F, f1) such that

By (u,v) = (F,v) + (f1,v)12(s,) for all v € H59\21,0(9>-
Moreover, the operator
Gyt (Hjons, o))" X H™H(S1) = Hjos, ()
is bounded. Now, the equation
Bav,q(u,v) = Mu,v) = F(v)
with v as above and F a functional on this space, is equivalent to
(17) u=G,((n+Nu+F).

As G 0 L*(Q) x L2(31) — L?(9) is compact and self-adjoint, the spectral theorem for compact,
self-adjoint operators yields the existence of a set M such that for A\ ¢ M (17) is (uniquely)

solvable. Hence, the original equation is (uniquely) solvable outside of the set M := {ﬁ .
J j=1
O

With the well-posedness result available, it is possible to define the Poisson operator associated
with the equation (1).
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1
Definition 3.3. Let M C C be as in Proposition 3.1 and assume that 0 ¢ M. Let [ € HZL and
2
let u € HY(Q) be the solution constructed in Proposition 3.1 with F = 0,f;1 = 0 and fo = f.
Then, we define the Poisson operator
1
s 1
P.HZ’%—>H (Q), fr—u.
We remark that by the apriori estimates from Proposition 3.1 the Poisson operator is bounded.

With the well-posedness of (1) at our disposal, we proceed to the well-posedness of the equation
(5).
Proposition 3.4 (Well-posedness, s € (0,1)). Let By a,v,q denote the bilinear form from (6).
Then, there exists a countable set M C C such that if \ € C\M for any F € (HéQ\21 o(Q, d25)*,
fa € Hg- and fie H™%(%y) there isu € Hélm\(zlu&),o(ﬂ,dl_zs) with uls, = fo and with

B av,q(u,v) = AMu,v)r2(0) = (F,v) + (f1,v)12())

for all v € HéQ\El7O(Q,d1*25), Here (-,-) denotes the (H(2,d'=2%))*, HY(Q,d' %) duality
pairing. If X ¢ M, there exists a constant C > 0 such that
(18) lull g1 (,a1-25) < C(HFH(HgQ\ZLU(Q,dlf%))* + 1 fll & (=2))-
Remark 3.5. Asin Proposition 3.1, compared to the problem in (5), we here consider the slightly
more general setting of constructing (weak) solutions to
(19)

—V - d' 7 Vu —iAdV T - Vu — iV - (d 2 Au) + dP2E (AP +V)u = F oin Q,

lim d'"2°0,u+ qu = f1 on 31,
d(z)—0

u = fy on Xa,
u=0 on N\ (21 UZXs).

Again this will be convenient when discussing density properties by means of studying the adjoint
equation. For convenience of notation, we define

Lysu:=—V -d'"72Vu —iAd ™% - Vu — iV - (d' 72 Au) + d" 725 (|A]* + V)u.

As in the case s = %, for X ¢ M we define a weak solution to (19) to be the corresponding
function u € Héﬂ\(zluzz) o(8, d*=2%) from Proposition 3.4.

The proof of Proposition 3.1 follows along similar lines as the proof of Proposition 3.4. Due to
the presence of the weights we however need to rely on suitable modifications of the boundary-
bulk inequalities as recalled in Section 2.1.

Proof. Step 1: Reduction. As in the proof of Proposition 3.1 we first reduce the setting to fo =0
by considering v = u; + Es(f2), where Es(f2) € Héﬂ\zz 0(€Q,d'72%) is obtained from Lemma 2.2
and has the property that ”ES(fQ)HHéQ\E J(Qdi-2) < Cllfallas (2,
2 ~
Working with the equation for u; yields an equation of the desired form with u;|s, = fo =0
and a new inhomogeneity F':= F — Ly 5(Es(f2)) € (HémZl 0o(€,d'72%))*. As in the case s = 3,
the functional Ly ;(E(f2)) is interpreted weakly, in that it is given by
Hjo\s, 0(Q,d"7%%) 3 v By avq(Bs(fa),v).

With a slight abuse of notation, we drop the subscript in the notation for w; and the tildas in
the notation for the data in the following.
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Step 8: Continuity. The continuity of the bilinear form then is a consequence of the following
observations and estimates:

(i) Continuity of the boundary terms. We observe that by Lemma 2.1

[ auvide < Jall ooy llulzz omllol 2con
Q
< llall o< oo llull s o) V| 24 (002)
< C||Q||L°°(3Q)||7-LHH1(Q,d1—25)HU||H1(Q,d1—25)~

(ii) Continuity of the bulk terms. As the continuity of all the bulk terms follows analogously,
we only discuss the first magnetic term: In this case, by Cauchy-Schwarz, we obtain

/dl_zs’UAl de S HAlHLoo(Q)‘|U||L2(Q7d172s)
Q

’U/”Hl(Q,dl—Qs).

(iii) Boundedness of the right hand side. The mapping
H™(%1) 3 fi = (f1,v)12(z))

for v € H} (92, d'=2%) satisfies the bound

Q\E1,0
|(f1,0) 20| S W lle-ssollvlla:oo) < Ifilla-collvlm @.da-20)-

It is thus a bounded linear functional on (Héﬂ\zl o(,d*=2))*. Similarly, for F €

(HéQ\EhO(Q,dl_%))*, by definition, the map v — (F,v) is a bounded linear functional

on Hyo 5, o(Q2,d" %),

Step 4: Coercivity. For the coercivity estimate, we need to bound B 4 v,q(u, u) from below.
Again the bulk estimates follow from the Cauchy-Schwarz and Young’s inequality. The main
point is to consider the boundary contributions and to prove their coercivity. This is a conse-
quence of the trace estimate from Lemma 2.5. Indeed, we deduce that for ;1 > 1 to be chosen
below

/ dlul?dz] < gl com el 200
Q

1-2s 1—2s

< Cligll Lo o0y (n=?%(|d = VUH%%Q)*‘NQ_QSHCZ 2 UH%Q(Q))'

Choosing 1 > 1 such that

1
C oo 2 <
lallz=onyn ™ < 16

we thus infer that

1 1
[ dhuld] < ol mom) + Clal iyl @ an-s.
Q

Next we note that there exists a constant C' > 0 such that for all v € H 59\21 0(9) it holds that
OHquLz(Q,dF?S) > ||U||H1(Q’d1—2s).

This follows from the fact that u|po\x, = 0 and an application of Poincaré’s inequality, see for
instance [ , Lemma 4.7] and the proof of Lemma 2.5. Combining all these observations
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and also invoking the estimate in Step 3(ii) for the bulk contributions (to which we still apply
Young’s inequality), we hence infer that the bilinear form By 4 v,4(-,-) is coercive, i.e. that
B > L2 -C 7
S7A7V7q(u7u) = HUHHl(Q,dl*?S) l0w||u||L2(Q’d1—2s)7
where the constant Cjo, > 0 depends on s, || Al o), [V @), 9]l 2= a0), -

Step 5: Conclusion. With the available upper and lower bounds, we conclude as in the proof
of Proposition 3.1. More precisely, for u > Cjo, the bilinear form B; ,,(u,v) := B a,v,q(u,v) +
p(u, ) 20,412y is a scalar product. Hence, in combination with the third estimate in Step

3, the Riesz representation theorem is applicable and yields a unique solution u = G(F) €
Helm\zl (€, d'2%) with F = (F, f1) to the equation

By u(u,v) = (F,v)2(0) + (f1,v)12(x,) for all v € HéQ\EI’O(Q,dl_Qs).

Using the compactness of the space L?(Q,d'~2¢) ¢ H'(Q,d'~2*) and the fact that
G L2(Q,d* )X L2(81) C (Hag\x, o(2,d" 7)) < H*(%)
— Hjorz, 0(2,d7 %) C L2 (Q,d' %),

the claim on the set M C R follows from the spectral theorem for self-adjoint, compact operators

in the same way as in Proposition 3.1 (see for instance | , Theorem 2.37 and Corollary
2.39]). g
As in the case s = % the well-posedness result allows us to define the Poisson operator

associated with the Schrédinger equation (5).

Definition 3.6. Let M C C be as in Proposition 3.4 and assume that 0 ¢ M. Let f € ng

and let u € HY(Q,d'=2%) be the solution constructed in Proposition 3.1 with F =0, fi = 0 and
fo = f. Then, we define the Poisson operator

Ps: Hy — HY(Q,d"7%), [ u.

Again this operator is bounded by the apriori estimates from the well-posedness result in
Proposition 3.4.

In order to simplify our discussion, for convenience we will, for the remainder of the article,
always make the following assumption:

Assumption 3.7. For the remainder of the article we will assume that zero is not an eigenvalue
of the Schradinger operators (1) and (5), i.e. we will assume that A =0 ¢ M, where M denotes
the sets constructed in Propositions 3.1 and 3.4, respectively.

We remark that as a consequence of Proposition 3.4, we also obtain the following regularity
result for the weighted normal derivative:

Lemma 3.8. Let u be a weak solution to (5) possibly also with a bulk inhomogeneity F €
L2(Q,d?**~1). Then, there exists a constant C > 0 such that for each § > 0 sufficiently small we
have that d*=250,u € H~*(0Qs) with

(20) 1420 ull g+ 00,) < C (IF]|2(@.a2e-1) + l|ullmsa0)) »

where 00 = {x +tv(z): =€ 9N, t € (0,0)} and where v(z) denotes the inward pointing unit
normal at a point x € 0). Moreover,

(21) I ii_r}r%) d % 0,u — d 0, ul -+ (p0s) — 0 as § — 0.
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Proof. The fact that for any § € (0, 1) sufficiently small d'~2%9,u|on, € H~*(0€s) with a uniform
estimate (in § > 0) follows by duality and the weak form of the equation: Indeed, due to the
validity of the equation (5) and the fact that this is a uniformly elliptic equation away from 9,
we have that d'=2°0,u € L?(0Qs) for any § > 0. Integrating by parts, we further observe that
for any w € H®(9€2s) and an associated extension Es(w) € H'(Qs,d'~2%), we obtain

(22) (wa dl_QsaVu)Lz(Bﬂg) = Bs,A,V,q(Es (w)7 u)
Using (22) and the boundary estimate from Lemma 2.2, we hence estimate
[(w,d" 720, u) 12 (005 | < [(Es(w), F) 20| + [(VEs(w), d' V) 12(q,)|
< Cllwll =05 (Il mr (@,a1-20) + [[Fl| 2 (0,42:-1))
< Cllwl| s o0s) ([ull me0) + [1F ]l L2(0,d25-1))-
Thus, taking the supremum in w € H*(0Qs) with ||w||gsa0,) = 1 implies the claim (20).
Moreover, by the definition of the normal derivative by means of the bilinear form as in (22)
for é1,d9 > 0 small,
(' =20, u) (- + 61v) — (A 7> 0pu) (- + &20)[| -+ (90
— s (w, (@ FOu)(+ 61) — (@O + 010)) 1200
[Jwll gs 90y <1

= sup ((Es(w)XQal - Es<w)XQ52 ) F)Lz(ﬂ)

llwllzs o2y <1
+(d1_2s(XQ($1 VES (w) — XQ&Q VES(W))7 VU)LZ(Q))

< Cllwllzsoa) (1xas, — xas, ) FllL2@,a-1) + 1d' 7> (xas, — Xas, ) VullL2@) = 0
as 41,02 — 0.
Here we used that Vu € L?(2,d'~2%) by the apriori estimates from the well-posedness results

and have set Q5 = {x € Q : dist(z,09Q) > §} for § > 0 sufficiently small. This proves that
{(d*=29,u)(- + n7'v) }nen is a Cauchy sequence in H~*(9Q), that li_>m (d'*=20,u)(- + n~'v)

exists in H*(0Q) as n — oo and that (21) holds. O
With the well-posedness results of Propositions 3.1, 3.4 and the global Assumption 3.7 in

hand, we can now also define the (partial data) Dirichlet-to-Neumann maps which we will study
in the sequel.

Definition 3.9 (Partial Dirichlet-to-Neumann maps). Let s € (0,1) and let Bavq(-,-) and
Bs av,q(-,-) denote the bilinear forms from (4), (6). We then define the (partial) Dirichlet-to-
Neumann maps Aav,q H3(3,) — H 2 (%) and As avg: H(X2) - H *(X2) weakly as
<AA7V,qf7 g>* = BA7V,q<ufaE(g))7
(As,aviaf, 9)s, = Bsav,qlug, Es(g)),
where E(g) denotes an Héﬂ\(zluzg),o(ﬂ) extension of g into Q and uy denotes a weak solution
(in the sense of Proposition 3.1 of (1)). Similarly, E<(g) is an HéQ\(ElLJZz),O(Q’ d*=2s) extension
of g into Q and uy denotes a weak solution (in the sense of Proposition 3.4) of (5). Here the

notation (-,-), and (-,-),. denotes the duality pairing between H=2(X3) and Hz (X2) and between
H~%(%2) and H*(X2), respectively.

Remark 3.10. By definition we of course have that Aa v, = A%VA,qu.

As in the standard (partial data) setting, these Dirichlet-to-Neumann maps are well-defined
and do not depend on the choice of the extension.
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Lemma 3.11. Let Ay v, : }NI%(ZQ) — H_%(Zg) and As a v, fIs(Zg) — H75(33) be as in
Definition 3.9. Then these maps are well-defined, i.e. they do not depend on the choice of the
extension E(g) and Es(g). Moreover, both maps are linear and bounded.

Proof. The independence of the choice of the extension follows from the well-posedness theory.
Indeed, considering two extensions F(g) and E(g) of g € H'/?(%,), we deduce that E(g)—E(g) €
Héﬂ\zl,o(g)' Hence, we obtain that Ba v4(uys, E(g) — E(g)) = 0 since u; is a weak solution to
the equation (1). A similar argument holds for the weighted operator. The linearity of the map
follows from the linearity of the Schrddinger equations (1) and (5). The boundedness follows
from the apriori estimates (15) and (18). O

As in the classical setting, the (partial data) Dirichlet-to-Neumann maps are self-adjoint
operators:

Lemma 3.12 (Symmetry). Let A v,q and A av,q be as in (3.9). Then, we have

<AA,V,qfa g>* = <fa AA,V,qQ)*»
<AS,A,V,qfa g>*s = <ga AS,A,V7qg>*S-
Proof. The claim follows from the fact that two solutions u; and u, associated with the data f, g

in (1) or (5) are particular extensions of f,g € H*(X;). Since the bilinear forms Bayv,(-,-) and
B a,vq(, ) are symmetric (with respect to the complex scalar product) the claim follows. O

Furthermore, a central Alessandrini identity involving all potentials holds true:

Lemma 3.13 (Alessandrini). Let A;,Vj,q; and A a; v, 4, with j € {1,2} be as above. Then,
for two solutions uy,us of (5) associated with the respective boundary data and potentials,

<(AS,A1,V1,Q1 - AS,AQ,Vz,QQ>f17 f2>*5 = /(Vl - Va+ A% - Ag)ulﬁdl_zsd‘r
Q
—|—i/d1_25(A1 — As) - (u1Vug — ug - Vuy)dx
Q
+ /(fh — @) uyzdH" .
PN

Proof. This follows by using the symmetry result of Lemma 3.12 in combination with the struc-
ture of By 4,v,q and the fact that all (bulk, boundary and gradient) potentials are real valued:

<(A87A1,V17111 - AS.,A2,V2,!]2)f13 f2>*s = <AS,A1,V1,q1 f17 f2>*s - <fla AS,AQ,VQ,(]‘Zf2>*S
= Bs,Al,Vl,q1 (ulv u2) - Bs,Ag,Vg,qg (ula u2)
= /(Vl — Vo + Al — ADuiugd' > dx + /((h — @) urlpdH"
Q 31

+75/d1728(A1 - AQ) . (U1VU2 —Uug - Vul)d:c
Q

This proves the claim. ]
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4. SIMULTANEOUS RUNGE APPROXIMATION IN THE BULK AND ON THE BOUNDARY —

1
RESOLUTION OF THE QUESTION (Q1) FOR s = 5

In this section we discuss the resolution of the question (Q1) for the case s = % by proving
simultaneous Runge approximation results. This requires a certain “safety distance” between 2,
and the sets X1, X5 and a topological condition on the connectedness of Q2 \ ;. We refer to the
set-up which had been layed out in Section 2.3 for the precise conditions. Although our setting
could have been generalized to allow for Q; including some boundary portions (see for instance
[ ]), for clarity of exposition, we do not address this in the present article.

Let

Savg:={u€ L*Q): uis a weak solution to (1) in Q},

23 ~
(23) Savg:={u€ H(Q):uis a weak solution to (1) in Q;} C L*(Qy).

Here by a weak solution we mean a solution as obtained in our well-posedness discussion in
Section 3. For simplicity, we also simply set Sy 4 := Sp,v, and S'V,q = SO,V,q.

As a first step towards answering the question (Q1), we prove the simultaneous Runge ap-
proximation result (in the absence of magnetic potentials) from Lemma 1.1.

Remark 4.1. Together with the (known) existence results of whole space CGO solutions, this
approzimation result allows us to recover the potentials V€ L™ (Qy) and g € L*>(09Q) simulta-
neously in the inverse problem for (1). Instead of explaining this at this point already, we refer
to the proof of Theorem 1, where this is deduced even in the presence of magnetic potentials.

Proof of Lemma 1.1. By the Hahn-Banach theorem, it suffices to prove that if v = (v1,v2) €
L2(31) x L%(Q) satisfies v L Ry, (with respect to the scalar product in L?(X1) x L(£21)), then
we have

v L (L2(El) X S’V,q)-

To this end, let f € C(X2) and define v := Pf. Moreover, let w be a solution to the
associated adjoint problem
—Aw + Vw = vaxq, in 2,
(24) O,w+ qw = v on X,
w=0on 0N\ 3.

Here xq, denotes the characteristic function of the set ;. By the assumption v L R4, and the
definitions of u and w, we have

0= (v1,uls, ) r2(sy) + (v2,ule, ) L2(a))
= (Opw + qu,u — f). + (—Aw + Vw,u)r2(q)
(25) = (0w + qu,u — f)s + (=Au + Vu,w)2(q) + (Opu, w)s — (u, 0yw),
= (qu,u)x — (Oyw + qw, [ + (Opu, w)
= —(0bw + qu, )«

where we integrated by parts twice and where (-,-), denotes the H2 (%), H2 () duality
pairing. We remark that this computation which — a priori is formal, since due to the mixed
boundary conditions w, u may not be in H?(£2) — can be justified by considering the identities in
a smaller domain €2, for € > 0 sufficiently small first and then passing to the limit ¢ — 0. More
precisely, by standard regularity theory, we obtain that w,u € H?(£.) which allows us to justify
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the following manipulations:

(Ovw + qu,u — ulpo 5, ) r200.) + (—Aw + Vw,u) 2 (q,)

(
= (Oyw + qu,u — ulgpa 5, ) r200.) + (—Au + Vu,w)r2q.) + (Ouu, w) L200.) — (4, 0w) L2(00.)
= (Oyw + qu,u — ulgax, . )r200.) + (Ouu, w) L2090, — (U, W) L2(00.)-

Here 09, is defined as in (13) and &1 . :={z € Q: x =y+ev(y), y € £1}. Then passing to the
limit € — 0 and using the observations from Lemma 3.8 allows us to recover the first and fourth
lines in (25), i.e.

(Ovw + qu,u — ulpg\x, ) r290.) + (—Aw + Vw,u) 2 (q,)

- <6Vw +qu,u — f>* + (U27u‘91)L2(Q1)7

(Ovw + qu,u — ulga s, ) L2 00 + (Ouu, w) 200, — (4, W) L2 (90,

= {qw,u)s = (Oyw + qu, f)s + (Oyu, w)..
This then allows us to conclude the identity (0, w + qw, f). = 0 as in the formal argument from
(25).

By the arbitrary choice of f € C°(X2), (25) yields that d,w + qw = 0 in Xy, which in turn by

the defining property of w gives d,w|y, = w|s, = 0. Thus now the unique continuation property
(see for instance | ]) implies that w =0 in Q\ 4, and therefore

(26) wly, = Vw|g, =0 and w|sq, = Vw|sg, =0.
The first part of (26) implies v1 = 0 by the definition of the associated dual problem (24). In
particular, (vi,¥1)r2(s,) = 0 for all ¥y € L?(%1). If now 1y € S’V’q, denoting the H_%(Z?Ql)7
H2(89) duality pairing by (-, Yx,00, and integrating by parts we get
(v2,%2) L2 (0y) = (Aw + Vw, ¥2) r2(q))
= (=Avy + Viho,w)12(q,) + (O, W)« 00, — (Y2, 0bw)x 00, ,

which vanishes because of the second part of formula (26) and because 1o € S'qu (which is also
true in the weak form of the equation by definition). Hence,

(v, )12 yxr2(0,) =0 forall ¢ = (¥1,1h2) € (L*(Z1) x Sv,q) ,
that is, v L (L?(31) x Sy,) with respect to the L?(31) x L?(Q;) scalar product as desired. [J

For our next step towards the solution of question (Q1), we shall consider a generalization of
equation (1), namely
Lu:= -V - (¢gVu) —iA; - Vu—iV - (Agu) + Vu=01in Q,
v-(gVu)+qu=0on Xy,
u= f on X,
u=0o0n 00N\ (X1 U3y),

(27)

where g = (gij)ij=1,..n is a C? metric, i.e. a symmetric, positive definite, elliptic, C?-regular
matrix valued function on 2, and the magnetic potentials A; and As do not necessarily coincide.
We avoid discussing the well-posedness for this and refer to | ] and | | for a discussion
of it. In the sequel, we will assume the well-posedness of this problem and its associated dual
problem.

In connection to the problem (27) we define the sets

Sy A1 As Vg = {u € L*(Q) : u is a weak solution to (27) in Q},
Sg.ar As v i={u€ HY(Q) : uis a weak solution to (27) in Q1 } C L2(Q).
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The next Lemma 4.2 shows that the result of Lemma 1.1 still holds for equation (27), and the
approximation can even be given in H'(£;) instead of L?(4).

Lemma 4.2. Assume that the set-up is as above. Then, the set
Ry := {<u|21’u|91) : ulzl = Pf|21 and U’IQI = Pf|91 with f € 020(22)} C LQ(Zl) X Hl(Ql)

is dense in L2(X1) X Sy 4, 4,.vq equipped with the L*($1) x H* () topology. Here P denotes
the Poisson operator which is defined in analogy to Definition 3.3 and in particular maps data
f e 0 (Xs3) into the associated (weak) solution u to the equation (27).

Proof. We use the same strategy as in the proof of the previous Lemma. Let (vy,v3) € L?(31) x
(HY(©4))*, and consider the unique Riesz representative vo € H'(£;) of the functional v} €
(HY(©4))*. By the Hahn-Banach theorem, it suffices to prove that if v = (vy,v9) € L?(2;) x
HY() satisfies v L Ry, with respect to the scalar product in L?(X1) x H(€;), then we have

vl (L2(21) X §g7A17A27V,q)'

To this end, let f € C°(X2) and define v := Pf. Moreover, let w be a solution to the

associated adjoint problem
L*w = 93 in §,
(28) v-(gVw)+ (g —iv- A —iv- Ay)w = vy on Xy,
w=0on 0N\ X,

where L* := =V - (gV) +iAds -V +iV - A +V and 95(-) := vi(-|q,). First we observe that

€ (HLH Q) = (HéQ\EI’O(Q) + H2 (35 U%;))*. The associated bound is easily proved, since
for u € H}(Q)

103 (u)] = [v27 (ule,)| < llv2™[Hulo, (|51 < lloallHwll @) -
Now we have
(UQ, u|91)H1(91) = ’U;(u|91) = ﬂ;(u) )
which by the assumption v 1L Ry leads to
0= (v1,uls,)r2(z,) + (v2,ul0,)H1(0)
(29) ={v-(gVw)+ (q—iv- A —iv- As)w, uls, )« + 03 (u)
=(v-(gVw) + (¢ —iv- Ay —iv- As)w,u — f). + (L w,u)12(q) -

As in the previous proof, (-, ), denotes the H%(aQ), H_%(8Q) duality pairing.

Integrating by parts twice (which can be justified in the same way as in the previous section),
we obtain the following formula linking the operators L and L*:

(Lu,w)q — (u, L*w)q = —(V - (gVu),w)q — i(A; - Vu,w)q —i(V - (A2u),w)q
(30) + (V- (gVw),u)q —i(Az - Vw,u)q — i(V - (A1w), u)o
=—(v-(gVu),w)s —i(v - (A1 + A2)u, w)s + (u, v - (gVw)), .

Here we have used (-,-)q as a shorthand notation for (-,-)r2(q). Combining formulas (29) and
(30), we infer

- (gVw)+ (g—iv- Ay —iv-Aw, . =0,
which by the arbitrary choice of f € C°(32) gives

v-(gVw)+ (g—iv-A; —iv-A)w =0 on 3.
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Thus, by definition of the adjoint equation (28), we are left with
L*w=01in Q\ Qy,
v-(gVw) =0 on g,
w =0 on X,
and now the UCP (see for instance [ ]) leads to w = 0 in ©\ Q;. As a consequence of
this fact, we obtain w)| anay) = 0 and Vuw| aay) = 0, which in particular implies
(31) U1|21 - V’w|21 =0 and w|691 = V’wbﬂl =0.

The first part of (31) implies v1 = 0 by the associated dual problem (28). In particular,
{(v1,91)« = 0 for all 1y € L2(%).

Let now ¢y € Sy 4, 4, v If E: HY() — H'(Q) is any extension operator, we have

(v2,Y2) () = (V2, (BY2)|a,) i1, = v5((EY2)la,)
= 03 (E2) = (L*w, EYa)12(q) = (L w,¥2)r2(0,) -

Using the integration by parts formula (30) with Q; instead of 2, we infer

(va, Y2) 10,y = (L w,¥2)r2())
= (Lipg, w)a, + (v - (9Vb2), )« 00,
+i(v - (A1 + A2)a, )i 00, — (P2, v - (gVW))s 00, -
Here we have denoted the H~2(9;), H2 (0) duality pairing by (-, Vi,00, -

The right hand side of the above equation vanishes because of the second part of formula (31)
and because 12 € Sg.a,,4,,v,q- Thus we have obtained that

(v, ) L2(myxmi(oy) =0 forall o= (¥1,12) € (L*(Z1) X Sg,4,,4,v,0) »
that is, v L (L23(3;) x Sg,Al,A%V,q)' H

The desired uniqueness result of Theorem 1 now follows from Alessandrini’s identity.

Proof of Theorem 1. Using the assumption that the DN maps coincide and Lemma 3.13 with
s =1/2, we see that

0= ((A1 — A2) f1, f2)«
(32) _ /(U1 — Up)uwzde +z’/(A1 — A) - (u1Vug — ug - Vuy )dx + /((h — q2)urdH™ !

Q1 Q1 D}

holds for every fi,fa € C2°(Xs), where uj,us are the solutions of (1) associated with the
respective boundary data and potentials. For the sake of simplicity, here we set U; := V; + |A;|?
and Aj = AAJ'VVJ'V(IJ" ~

Let ¢; € L*(X;) and ¢; € Sta,A;,A;,v;,; for j =1,2. By Lemma 4.2, for every k € N we can
find fl(k), Q(k) € C¢°(33) such that

k _ k _ .
Iy — ul s 2y < &4 and oy —ulPlo ) <k, =12,

where u{®) solves (1) with boundary value f;k) and potentials A;,V;,q;. We now substitute

J
®) 00

these solutions u; into formula (32) and send k — oo. Given the approximations above,
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by Cauchy-Schwarz the limits can be moved inside the integrals. In fact,

k k n— k k
(@1 — a2)ulPus?[dH" ™ < a1 — @2l oo o |0l |5 2 o) 1uS 5 | 22080

|

¥
- NG N0
<c(llor —uy sy le2cmy) + o1 llzmn) (2 — us Iy lle2sy) + [ P2llL2(s,))
<c(1+[[¢1llze) (X + lP2llezyy) < ¢

ul? (A1 = As) - VulPda < (|41 — Asl| 1= [ud® oy |2 @0 Vs o | 20

A

k k
< e(llor — ui® )y 2@y + 11l 2 @n) (V92 — Vus? o, | 2n) + V42l 201))
k k
c(ln — o, n) + 101l en) (102 — u$ oy @1y + 12l ri o)
(I + |1l ar o)X + 1¥2lla1 ) < c,

and similarly for the other terms. Eventually, we have proved that the following formula holds
for every ¢; € L?(%) and Y € Sra,a;,4;,v;,q; for j=1,2:

(3)
[ 1= 40) 2V = i) de+ [
Q

Q

IAINA

(U1 = Uz)r¢padz +/ (g1 — q2)P12dH™ 1 =0 .

PN
If we substitute ¢ = 13 = 0 and ¢2 = 1 into (33), we are left with only

/ (1 — @2)prdH" ' =0,
P

which by the arbitrary choice of ¢; € L%(¥1) implies q; = ¢z in 1. In light of this, formula (33)
is reduced to

(34) / (A1 — Az) . (’(/szwl - ¢1V’(/J2) dx +/ (U1 — Ug)wl%dw =0.

Q1 1951
The problem of deducing information about the magnetic and electric potentials from the above
equation has been studied e.g. in | , , ], see also the survey | ]. In all
these uniqueness results the key step consists in the construction of suitable complex geometrical
optics solutions of the form

w(z) = 7 (a(z) + hr(z, b))

for appropriate phase functions ¢, v, amplitudes a and decaying errors r. Substituting such a
special solution into equation (34) and using our Runge approximation results from Lemma 4.2
allows us to deduce that V; = V5 and dA; = dAs as in the cited references, which concludes the
proof of Theorem 1. g

5. SIMULTANEOUS RUNGE APPROXIMATION s € (0,1)

Similarly as in deriving the results in the previous section, we can also deduce simultaneous
Runge approximation results for the “Caffarelli-Silvestre extension” for general s € (0,1).
In analogy to the setting in the previous section we thus set

SsAv.g ={u€ L*(Q,d"*%): wuis a weak solution to (5) in Q},
Seavg:={uec H(Q,d72*): uis a weak solution to (5) in Q1 } C L*(Qy,d"~%).

In order to illustrate these ideas we only discuss the L?(X1) x L?(Qy,d'~2%) approximation
result in the case that A = 0.
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Proposition 5.1. Assume that A =0 and that V,q satisfy the conditions from (3) and (2) and
let Py be the associated Poisson operator. Then the set

Rips 1= {(u|21’u|91) : ulgl = Psflg1 and ’U,‘Q1 = Psf‘Ql with f c CSO(ZQ)} C LQ(Zl) X Ss,O,V,q

is dense in L*(31) x 5570,\/),1 equipped with the L*(1) x L?(Qy,d*=2%) topology. The operator Py
denotes the Poisson operator from Definition 3.6.

Proof. Step 1: Set-up. The argument is similar as in the one for Lemma 1.1. To this end, we first
note that with respect to the L?(2) scalar product, we have that (L?(£2,d*=2%))* ~ L?(Q, d**71).
As a consequence, as above, we seek to prove that if (vy,vs) € L?(31) x L?(Q,d?*~1) satisfies
(v1,v2) L (uls,,ulq) with u = Py(f) with f € C°(Z2) (with orthogonality with respect to the
L%(%1) x L?(£) scalar product), then also (vq,v2) L L*(21) X Ss0,v,4 holds. To this end, we
consider weak solutions to the adjoint problem

—V - d'7?Vw + d 2 Vw = vyxq, in Q,

(35) d(ggo d*2*0,w + qw = —vy on ¥y,

w=0on 0N\ X;.
Let us thus assume that (vy,ve) € L3(31) x L?(Q,d?*~ 1) are such that for all u = P,(f) with
f € C(31) we have
(36) 0 = (v1,u)p2(s,) + (v2,u)L2()-

We remark that due to the assumptions that vo € L2(Q,d?*~1) and u € L?(,d*~2%) the bulk
L?(Q) scalar product is well-defined.

Step 2: Orthogonality. We argue on the level of the strong equation. This can be justified
as in the proof of Lemma 1.1 using the boundedness and convergence results from Lemma 3.8.
Beginning with the bulk contribution and using the dual equation, we then obtain

(u,v2)r2(0y) = (U, =V - d" "3V + d' > Vw) 120
= (u, lim d1—2sayw>m — (lim dl_%&,u,w)*’s
d—0 ) d—0
= (u, qw)r2(s,) — (U, v1)L2(x,) — (qu, w)2(s,) + (f, lim A0, w). s
= —(U, UI)L2(21) + <f7 il_rf%) dlizsan>*,Sa
where u = Py(f) and f € C°(Z2) and (-, )« denotes the H°(0N), H*(0N) duality pairing.
Combining this with (36), we obtain that
0= (f, lim d*=%0,w), , for all f € C°(Xy).
d—0

Hence, (}lim d*=2%9,w = 0 on 5. Since moreover also w|sg, = 0, boundary unique continuation
-0

for the fractional Schrodinger equation (35) implies that w = 0 in Q\ ;. Indeed, it is possible to
flatten the boundary 0f2 by a suitable diffeomorphism and then invoke the unique continuation
results from for instance | , Jor | ]. Now, by definition of w (see (35)), this however
implies that v; = 0.

Further, for h € gs,O,V,q; by the vanishing of w|sq, and giil’(l) d*=250,w|aq, , we infer that

(h,v2)r2(0,) = (h, =V - d" 3V + Vd' "> w) 2(0,)
= (=V-d""BVh + d 2 Vh,w) 12, = 0.

Here the last equality follows from the fact that h € S, v,y Thus, in particular, va 1 S5 ov.q,
which concludes the argument. (|
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Using the simultaneous bulk and boundary approximation result of Proposition 5.1, it is
possible to recover V' and ¢ simultaneously also in this weighted setting:

Theorem 3. Let Q C R", n > 3, be an open, bounded and C>-reqular domain. Suppose
that d € C?(Q). Assume Q1 € Q is an open, bounded set with Q\ Q1 simply connected and
that 31,%9 C 0Q are two disjoint, relatively open sets. If the potentials q1,q2 € L°(X1) and
V1,V € C°() in the equation (5) are such that

As,l = As,O,Vl,ql = As,O,Vg,qz = As,2 ,
then q1 = g2 and Vi = V,.

Proof. By virtue of the Alessandrini identity we obtain

0= /dl_QS(Vl = Vo)urtizdzr + /(Q1 — qo)urUgdH" Y,
Q 21
for uq, ue weak solutions to (5). Now an approximation argument as in the proof of Theorem 1
implies that for every ¢; € L?(21) and ¢; € Ss0,v,,4, and j € {1,2} we obtain

0= /d172s(v1 — Vo) oda + /(fh — q2)Pr1ad M
Q1 P
With this in hand, the proof that ¢; = ¢o is immediate by choosing 1; = ¥3 =0, ¢1 € C°(X1)
arbitrary and ¢o = 1. The uniqueness V; = V5 follows by a reduction of the problem in ; to
a Schrodinger type problem. Carrying out a Liouville transform (see for instance | ]), the
equation

—V - d'"7*Vu+ Vd' " u=0in O
is transferred to the Schrédinger type problem

1—2s

—Aw+ (Q+Vd =2 )w=0in Oy,

1—2s

where @Q = Addl_ii and w = d 2 u. We note that Q € L>(£y) since d € C%*(Q) and
dist(0€21,0€?) > 0. Now, standard CGO constructions allow to obtain solutions of the form

wy = eig.z(eikw + 7,1), Wo = eig'.z(efik-w +7,2)’
with £, € C", ke R, - £ =k-£ =0, = —Re(§) +iIm(§) and ||7;][z2(q,) = 0 as [§'| — oo.
Then the functions
Uj 1= d%wj, jE {1,2}

however solve the equation

d°7 (=V - d" 2V, + Vd"*w;) = 0 in O
in a weak sense. Due to the assumed regularity of d, they also satisfy
—V - d'""*Vw; + Vd' " *w; = 0in

in a weak sense. By virtue of the result from Proposition 5.1 we may thus approximate these
functions by functions 1; € Ss0,v,q- Inserting these into the Alessandrini identity, recalling that
q1 = q2 and passing to the limit in the approximation parameter then implies

0= /(V1 — Va)e*F .
(951

As a consequence, also V; = V5. O
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Remark 5.2. While in the study of the question (Q1) the situation in which Q1 € Q, the
construction of CGOs to the degenerate equation (5) can essentially be avoided by using the non-
degeneracy of the equation in 1, this can no longer be circumuvented in the setting of question
(Q2).

We refer to the next two sections for the construction of a new family of CGO type solutions
for a closely related equation. These will be used to answer the question (Q2) in the case s € (%, 1)
and will also provide a partial answer in the case s = %
6. ON A CARLEMAN ESTIMATE FOR THE “CAFFARELLI-SILVESTRE EXTENSION”

In this and the next section we address the question (Q2) for s > % in the absence of magnetic
potentials. As a major ingredient, we here construct CGO solutions to the equation

Ve, PVu+ 2, P Vu=0inQ,

lim ac}L;%S@nHu +qu =0 on Xy,
:En+1*>0

(37)

where 21 = QN {z,4+1 = 0} is assumed to be a smooth, n-dimensional set and 95 is C*° regular
(the arguments from below show that C"-regular with m = m(s) > 0 would suffice). The CGO
construction is achieved by virtue of a duality argument and a suitable Carleman estimate.

The degenerate behaviour of the equation is reflected in the form of the CGOs. In order
to avoid issues with the Muckenhoupt weight in the equation at z,4; = 0, using the notation
x=(2,2p41) € R’j_ﬂ, we only consider wave vectors ¢ € C™ with &’-¢’ = 0 which are orthogonal
to e,y1. More precisely, we seek to construct solutions of the form

u(w) = ¢ (a(z) + r(x)).

with amplitudes a(z) = ik @ Fikni1elly ke R+ and errors v : Q — R. We emphasize that
the nonlinear (in x,1) phase dependence ik, 1225, is also a consequence of the degenerate
elliptic character of the equation (see the estimate for Ls ¢y n (68) in the proof of Proposition
1.2). The function 7 : © — R is an error for which we seek to produce decay estimates as
|€'| = oo by means of a suitable Carleman estimate.

We begin by a discussion of the Carleman estimate which underlies our CGO construction.

Proposition 6.1 (Carleman estimate). Let s € [5,1) and let & € C™ be such that & - &' = 0.

Assume that Q C RT_I is a smooth domain and that Q N {Znt1 = 0} = Xy is a smooth,
n-dimensional set. If s = 1, further assume that llgll oo s,y is sufficiently small. Let f €
(HY(,25,73%))" with supp(f) € QU QN {211 = 0}) and g €7L2(21), Then, for u €
HéQ\ET,O(Q’ 23 NC with u=0 and zl_l)%lg 2} 3 0,u =0 on 0N\ Iy being a weak solution to
. V-2, 3°Vu=finQ,
38 : 1-2s
xnlgn—w Tpi1 Onp1u+qu =g on 3y,

we have

’ s gl.w/ 1 5/.1‘/ ﬁ glvw/ ﬂ
(30) (17 Mle> " ullLoeyy + €€ wp fy ullo) + e ™ 2,2y VullLe e

rog =28 o 1o 1=2s _ ’ot
< O ]lle* ™ w2y Flizag) + Nl 2,71 Follraoy + 1€ lle®  gllrasyy)-

Here the constant C' > 0 depends on ||q||p=(s,) and F = (Fo, F) € L*(RE, R"+2) s the Riesz
representation of f, i.e., it is such that

fv) = (’U7$,’1.L_7_%SF0)L2(Q) + (Vv,xiflsﬁ)m(g) for allv e H%Qw};ﬁf).
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We remark that [|F[| 2 i) = Il g o220

1 n+1 ))*

Remark 6.2. We remark that as 09 is smooth and as xn,+1 = 0 on 31, we have that x,11
vanishes to infinite order at 0X1, i.e. that the domain is arbitrarily flat in a neighbourhood of
0.

Proof. We argue in three steps using a splitting strategy. More precisely, we write u = uy + uq
where u; (weakly) solves the problem

~V 20 3V + K|§’\2 3 = —fin Q,

lim 2'32%0,.1u; = —qu+ g on ¥
Ti1—0 n+1 n+1W1 q g 1

711;_186 up =0 on 90\ 3.

By the Lax-Milgram theorem, a unique (weak) solution to this problem exists in H'(Q, z,,5%)

if K > 0 is sufficiently large. It satisfies
(20 73°Vur, Vo)a + KIE P (23 Pu1, ©)a = (Fo, 257 0)e + (F, 237 Ve)a + (—qu + g,¢)s,

for any ¢ € H'(Q,2,.7). Here the notation (-,-)o and (-,-)x, refer to the L2(€) and L*(%;)
scalar products respectively. The function us = u — u; is defined accordingly.

Step 1: Estimate for ui. We first estimate u;. To this end, we test the equation for u; with
@ = |¢'|2e2* €'y, This yields
1€ P (@h 33V, V(e S ) + KIE @35 u, e S w)a = €7 (—qu + g, e ur)s,
— € P(Fo, ah3 3™ un)a — €17 (F, 2137V (€ u)a.
Using Young’s inequality and choosing K > 0 sufficiently large this implies that

K 1-2s ’ogt 1—-2s rogt
5|§'|4||$nﬁ1 et u1||2L2(Q) + |§/|2H~’Cnﬁ1 et VUlH%%Q)

40 1=2s . ~ 1-2s ;o re’
(40) < CIE Pl 2y ¢ € Flla) + Cllay 2y, ¢ € Follay + €€ P21 € urBags,)

+Cel€ P2 (e glifeqs,) + lallieplle™ S ullias,))-

Now the boundary-bulk interpolation estimate from Lemma 2.5 allows us to further add a bound-
ary contribution to the left hand side of this:

Y K 1—-2s 1ot 1-2s 1ot
€225 e S a2 s,y + §|§/\4||$nﬁ1 e CurllTaiq) + 1€ P 12,31 € VurFa)

41 1-2s Il ~ 1=2s re! 3
W) < O P2y e Pl + Cllenzy €€ Follbaggy + €€ )le” € uaBagsy)

O P2 (e gllT2 s, + Nl Ty le” S ullfas,))-
In particular, this allows us to absorb the boundary contributions involving u; from the right
hand side of (41) into the left hand side of this inequality. As a consequence, we obtain the
bound

. vy K 1-2s oy 1-2s -
&[22 e ¢ U1||2L2(21) + §|f/\4||$n+21 e’ u1H2L2(Q) + |f/|2||$n+21 et VUIH%%Q)

42 1-2s LE/' ’ ~ 1-2s Z/- ’
W2) < O P2y e Pl + CllanZy ¢ Foll g+

+ Ol P (le™ € gliiem,) + lallZe s, lle”  ulliss,)-
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Step 2: Estimate for us. Next we estimate the contribution from ug which (weakly) solves
the equation

1-2s 12,.1-2s :
V-2, 17°Vuy = =K' |72, [ 1°u; in Q,

lim 2'720,,1us =0on X
(43) 10 n+1 Un+1U2 1,

20337 0yuz = 0 on 0N\ Ty,

In order to estimate uy, we first assume that u; € C%*(Q) for some o € (0,1). With only
slight modifications it is then possible to invoke the regularity results from | , Appendix
A]. Indeed, the regularity estimates from [ , Proposition 8.2] yield C*“ regularity up to
the boundary in int(X;). Classical, uniformly elliptic regularity estimates in turn yield C%®
regularity in a neighbourhood of 9Q\ ¥; up to the boundary. Thus, it remains to discuss the
regularity in a neighbourhood of 9%; up to the boundary. This however follows from the C?
regularity of the boundary which implies that the approximation by the flat problem at that
point is still valid. Combining these results yields the global C?®(Q) regularity of us.

In order to estimate us, we conjugate the operator Ly := V - x};ﬁsv with the weight e ¢
This yields the conjugated operator

Loy =V 2,3V —22,.3°¢ . V.

2s5—1 2s5—1

Next, we define uy = xnfl e~"¢w and multiply the operator l~157¢ by x,7; . As a conse-
quence, the operator acting on w turns into
251 _ 251
Lsy:=2,%1 V- x}z+2lsvxn—i1 -2t -V,
and since £’ | e, 11 the boundary condition on 3; correspondingly becomes

2s—1
. 1-2 ==
(44) . lirln_>0 2,101 (x, 2 w) = 0.
On 9Q \ ¥; the boundary contributions however is non-trivial and turns into
2s—1 2s5—1

: 1-2s 32 : 1-2s
(45) il_r)% xn-&-l 8V(xn-i1 UJ) = il_a%xn-i-l (V ' 5/)(.%”_’2_1 U))

Up to boundary contributions the bulk part of the operator can be split into its symmetric
and antisymmetric parts:

2s—1 2s—1

2s—1 1_9 2s—1
S¢ = xn-ﬁl V- xn-i—lsvxn-il ’
Ay=—2¢ V.

Expanding the norm, computing the boundary terms (BC) and using the regularity of ug, we
thus infer

(46) ILs,swl720) = [1Sswll72 () + [[Aswl|72 (o) + (BO).

We emphasise that the C*“ regularity of us allows us to carry out the expansion of L sw
as classically differentiable functions away from the boundary and that the resulting boundary
contributions are given as classical boundary integrals. Using the observations from (44) and
(45) these are of the form

(BC) = (BC)1 + (BC)a,

where the contributions from (BC); come from shifting (Spw, Agw)r2() = (w, SgAgw)r2(q) +
(BC)y and the ones from (BC)y from (Sgw, Agw) 2y = —(ApSsw, w)r2(q) + (BCO)2.
We next estimate these boundary contributions individually.
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Step 2a: (BC);. For the boundary contribution (BC); we obtain

(BO)y :== —2(z iﬁfa ( Ty P w) ¢ V( Ty P w))L?(aQ)
+ 2(z,, ¢4 W xn+2188 ((¢"-V')(x Ew)))w(am

2($3L+2155 (x, 21 w) §-V'(x, 7 w)rzoa)

(1
2(xn+1 w, 1’111+219[(5' V)] 'V(%?w))m(am
(

2s—1

+ 2o, Fy wn HE VIO T W)z
=2z, 3 (v )(%H w), & V' (x, 7 w))L2(OQ)
— 2, 7y w, a2 V] Vi, 2, w) a0

+2((¢ V)2 (v €)@ ?y ) a Ty w)egon).

Here we have used (44) and (45) in the third equality. We now discuss these contributions
separately. We split the derivative {’ - V' into a tangential and a normal contribution. If 7;(z),
j =1,...,n are unit vectors depending smoothly on z and forming with the addition of v(z) an
orthonormal basis of R**1, then we can write

)0, + ZTj(x)(Tj(x) V),

and therefore
(48) & V' =[¢[(eg - v Z e (@) - V)] = [§'[[(egr - v(2))0y + B(z) - V4],

where eg/ = ﬁf’ , B is a smooth vector function whose norm is bounded uniformly, independently
of [¢| and whose j-th component is e - 7;(x), and the operator V. represents the tangential
derivatives 7;(z) - V.

For the first contribution in (47), we use the splitting (48) in combination with (44), (45) for
the normal derivatives and integrate by parts in the tangential directions:

2(95%1218(%5')( T, w) -V ( T, w))L2(aQ)
= 2Pl 3w o) (@, By w), (eer - 1)0u(w, Ty W) 12 (00)
2P (2 v - e (@ T 0), Bx) - Vo (wndy w))12(00)
(49) = ¢ P([eh 3 - ee)? (2,2, W), (207 w)) 120
HIE P 0 )00, Vo ) oo
= —[¢'P (2, ]y w)ldivon (B@)ahi3 (v - )] 2,y w)z2(om)
12 P23 - ee) ) Fy ). (@7 ©))r200)-

We remark that both boundary terms are controlled by

(50) |f/|3||l’nﬁ1 w”%%ag\zl)-
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Indeed, to observe this, it suffices to prove that for x € 9Q2 with x,,+1 — 0 we have that for the
weights

(51) @122 () - ee)?] = 0, [divaa(B(z)z) 2 ((@) - eer))] = 0 as @11 — 0.

Parametrizing the boundary 92 in a neighbourhood of 931, we obtain that if 9 is sufficiently
smooth and thus sufficiently flat at 9 the claim of (51) can always be ensured. Indeed, in this
case the boundary can be locally parametrized by ¥(z) = (2/, |2’ — v(2)|™), where (') is a
smooth function describing 0%;. Thus, expressing x,11 and v(2’)-eg in terms of ', for instance
yields

jen 31 (') - )] < O jwra e’ — (@) a! — 4 (@) = 0,

as ' — v(2') and thus z,4+1 — 0 by choosing m = m(s) > 0 sufficiently large (which is ensured
by the boundary smoothness, see Remark 6.2). Since in local coordinates the expression for the
divergence only involves derivatives in the tangential directions, the same argument applies to
the second expression in (49). Together with the boundedness of Q2 this proves the bound (50).

The third term in (47) can be treated analogously as the first term in (47) . To this end, we
first note that

2(E Va2 (- &) (w Tw)] T02) )12 00)
(52) =2l E Ve B w), w2 w) 20

+2(w, 2 W)€ V@2 W D)2y )12 (00)-

Hence, the first contribution is of the same form as the term from (49). It suffices to deal with
the second one and to prove that

(€ V) (@33 (v-€))] =0

for x € 9Q with x,,+1 — 0. This however follows in the same way as in (51) and implies that
the contributions in (52) are also controlled by terms of the form (50).

Finally, it remains to deal with the second contribution in (47). For this we observe that
(&' - V')v does not have any normal component. Thus, an integration by parts yields

= 2w 7y w, T2 V] V(T w))ragon

(53) = — (2,371 VWL VG [wl) o0
= ([divoq(z, (€ VIWD](@, 71 w), (2,71 W) 12(00)-
It remains to prove that
[divoq (2,57°[(€" - V' )V])] = 0

for x € 0Q with z,41 — 0, as this then ensures that also the boundary contribution in (53)
is controlled by (50). The desired estimate however follows from the explicit parametrization
P(x) = (¢, |2’ —y(2z")|™), which yields that

[divaa(@is (€ - V) < Cla’ = ()"0 -2 +m=2g).

Thus, for m = m(s) > 0 sufficiently large, the claim follows.

Inspecting the quantities in (49)-(53) and recalling that & L e, 1, we note that all right hand
side contributions in (49)-(53) are really only integrals over 92\ ;. Thus, due to the assumed
boundary regularity of 2 and the boundedness of €2, all of the contributions on the right hand
side of (47) are bounded in terms of (50).
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Last but not least, we seek to estimate the quantity (50) by bulk contributions of u;. Rewriting
(50) in terms of usg, recalling that us = v — u; and that u|ém\zf1 = 0, we infer that all boundary
contributions in (BC); are controlled by

(54) €' le™ uzllZa o5y < 1617 o™ willZz o5
Using the trace estimate from Lemma 2.4 and the fact that s >1 5, We deduce that
|§ | ”65 o ’LL2||L2 (0Q\Z7) < ‘g | H€§ o U1||L2 (BQ\T1)
(55) < CUE M w132 ) + 1€ PIV (S ur) 132 (0y)
! 1=2s ’oot 1-2s
S C(E et w2y wallFei) + 1€ 1PN 2,21 VunF2())-
Step 2b: (BC)2. Next we deal with the contributions in (BC) These are of the form

2s—1 2s 71
(2,5 V-2 3V (2, 7 w), (£ )w)200) = K| P (2,7, 2 et “ur, (€ v)w) 2 (00
+2(&" - V'w, (£ - v)w) p2(00)-
Here we have used the bulk equation for w which, due to the regularity of w, is continuous up
to the boundary.
Splitting &’ - V' into tangential and normal components as in (48), the second term can be
dealt with similarly as in the argument for (53): Indeed,

(56)

2s5—1

2(¢" - V'w, (€ v)w) 2090y = 2/ (ee 'V/( z, 2 w), (e v)Th 30T, 2 W) 2 (00)
2s—1
2|§‘ (0 ( n+1 w) (65" )2 24—21 (In+1 w))L2(aQ)
—E'P(x, n+1 w, (z rzw)[divﬁﬂ(ﬁ(ef’ V)2 )12 00)

2s5—1

=2[¢'P((= n+1 w) (eer - V)2, 37 (2,71 w))r2(00)

25-1 . o
P Fy w, (w7 w)divea(Blee - 1)ak 3 1200
Using the regularity of 92, both terms can be estimates by a contribution of the form (50).
For the first term on the right hand side of (56), we note that

—1

—K[¢']? ( T, 8 e ur, (€ - v)w) 200y = K[ (e8 " ur, b 2 (¢ - V) T, 1 W)L2(o0)-

2s—1 ! ’ . . .
Since z,,1%(¢'-v) — 0 for z € 09 with an —> 0 and since z,, 7; w = e uy, it is only active at

) 1-2s
the boundary 90\ ;. Rewriting w = €& @ s i1 U2 =¢e® " 1,7, (u—uy) and using the boundary
conditions for uy, the first term in (56) hence turns into
9 roo 1-2 ’ot
KIE P (e5 " ur, 2,337 (€ - v)e®  un) 2 oo sy -
Due to the boundary regularity, we observe that this contribution is bounded by
(57) CK[EP e

Uy ||L2 (0O\1)’

where C' = C(Q) > 1. Using the boundary trace estimate from Lemma 2.4 (with p = |¢/|2) we
may control this by bulk contributions:

KIE P e w2 po sy < CEUEPIV(ES T u) 220y + €1l ullF2(q))
(58) < CK(I€'P[le® ™ Vur[[F2(q) + €115 unllZ20)

! ! 1-2s ’oo 1-2s
< CK(\f/FH@g e VU1||2L2(Q) + |f/|4||@£ Tt u1||2L2(Q))'
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Step 2c: Antisymmetric and symmetric terms. Next, we invoke the compact support of u to
deduce a lower bound for Ag: Rewriting w = €S % uy = €5 (u—uy), then the compact support
of u in the tangential slices yields by virtue of Poincaré’s inequality that

[Agwl||r2(0) > [I€- V'(a, n+1 W21 €€ )|y — 1€ |||39n+1 V(e u)ll 2@

> Y e Fy e € ullay — €]l Er V(e un) )

2 . % &
(59) > C_1|§'|H~Tnﬁ1 e € uz)| 20y — 1€']l2, 71 V(€S )l r2(a)

LS e
— [ lwy 2y (€5 ur)l[r2(e)

1—2s I 1—2s /et
= CNE llwlr2() — 1€l 21 V(™ S ur)llzai) — 1€ e, 21 (€7 wn)lr2a)
e 1z2s 1-2s
> CHE w2y — 1€ 1le” € @, 21 Vurll2) — 1€ 12,21 (67 )l 2 (-
Testing the symmetric part of the operator with w itself, we further obtain that
1-2s 2s-1
2,71 V(2,71 w2 < 19wl 2@ llwllz2 o)

2s—1 2s—1
: 1—-2s 2 2
+ (zlimag 2,00 (2, 2 w), 2, 21 W) 2 00)

< ||S¢U)||L2(Q)||U)HL2(Q)

2s—1
+ (z }l+21s(§ v)(w Ty iy w) T, w)L?(aQ)

= ||S¢w||L2(Q)||w||L2(Q)
1—92s , 2s—1 2s—1
+ (21" (€ V) (@, 2y w), 2,y w)m(an\zi)'

We may now estimate the boundary contribution arising in these estimates as above (see (44),
(45)), as it is controlled by (50).

Step 2d: Conclusion of the estimate for us.
Thus, for [¢/| > 1, combining the estimates (46)-(60), in total, the Carleman estimate turns
into
, 1-2s 251
(61) €' wliz2e0) + 2,71 V(e nil W)HLZ(n
< C(ILagwllzzey + 1€ 17 s V(e € ur) 2@y + 1€ Planty (¢ u)llz2@)-

Next we seek to complement (61) with a boundary contribution on the left hand side of the
Carleman inequality. To this end, we use the boundary-bulk-interpolation estimate from Lemma
2.5. This implies that

sy 21 , lz2s 2s-1 1-20 251
€ | By wllp2 ey < ClE M,y (2, F0 w2 + 2,y Ve, £ w)llz @)
As a consequence, the estimate (61) becomes

1P 1z, 2y wllpe sy + 1€ lwllp2 ) + 12,21 Ve, 2 w2

(62) , ., 1=2s 1-2s i
< O(|Ls,gwl r2) + [€]ll€” ¢ 2,2y Vurllzz) + 1€ P2, 2y (€7 S un)|l2())-
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Returning to us then yields the bound
(63)
sz’ -€ / x’-¢’ % - %
1€'* |le u2||L2(21) + [¢']]le Thnt1 u2||L2(Q) + [le Lpi1 vu?”m(RTl)

) 1z2s ) 1z2s 12,
< O(ILs o™ vy ua)llpageneny + 1611”07y Vunllzzie) + 18Pl fy (€7 ur)llz2()

’oet 1-2s 1-2s ’oet 1-2s 1ol

= C(KIEPlle” € w, 2y wallrz) + 1€ e, 21 V(™ Cu)lliz) + 1€ P 2,2 (€7 w) | r2q))
s opr 1=2s s oer 1=2s

S CKIEPlle” € a2y urlla) + 1€ 1€ 2, 2y Vull2q).

Now, if u; € Hl(Q,xifls) is not C%*(Q) for some a € (0,1), we simply replace u; by
U1 ¢ = (u1Xq) * g € C*(Q) (where yq is the characteristic function of  and ¢, is a standard
mollifier) and consider the equation (43) with u; replaced by u; .. We denote the corresponding
solution by wugz .. This allows us to derive all estimates including (63) with wuy,us replaced by
1, and us,. Combining the estimate (63), weak lower semi-continuity and the H(Q,z, 5%
regularity of u; then allows us to pass to the limit € — 0. This then also yields (63) with the
functions uq, us (instead of u ¢, us ().

Step 3: Conclusion. Combining the estimates from (42) and (63), by the triangle inequality,
we obtain that
111" = ulla(sy) + €€ 2, 3y ullz2o) + (€7 2, 2y Vullpzo)
’ ! 1;25 ’ ! ﬂ
< CKIEPe™ < w2y mllzaqe) + 1€l ¢ 2,7y Va2
1=2s -2, .,
+ CHCanl e? ¢ F||L2(Q) + C|§'\_1||xn+21 e € F0||L2(Q)+
+ C€|£'|75 (”61 23 QHLZ(Zl) + ”q”LM(El)Hez £ UHL2(21))
1 152~ roo lz2s
< CK|¢||ef 2,2, Fllr20) + CK|le* 2,2 Follr2(q)
+ CKIE T (e < gllzacm + lallzesplle” < ullzace,))-

Now, if s > % and [£'| > 1 is sufficiently large (depending on ||¢||L(s,)), it is possible to
absorb the boundary term involving ¢ on the right hand side into the left hand side of (64). If
s = 1, the absorption is still possible if we assume that ||g||r~(s,) is sufficiently small. Under

these assumptions, (64) thus turns into the desired estimate (39). O

Remark 6.3. We expect that for s = % it might be possible to improve the Carleman estimate
by relying on the Lopatinskii condition. For s € (%, 1) this is less clear. We postpone this to a
future project.

As a corollary to Proposition 6.1 we note that the estimate (39) remains true if in (38) we
consider the bulk equation

V2, PVu+Vaz Fu=finQ,

with f € (H'(Q,z13%))".

Corollary 6.4. Lets € [1,1), ¢ € C™ such that £'-¢' = 0. Assume that the same conditions as in

Proposition 6.1 hold for Q, q, f and g. Let V € L>=() and assume that u € H{;Q\ZTO(Q’ 1::;215)
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with w =0 and lilrgQ xibfls&,u =0 on 0N\ X is a weak solution to
T—

V2, BVu+ Vel Pfu=finQ,

lim xrlljfls@nﬂu + qu = g on 21.
xn+1—>0

(65)

Then, we have
/. !’ /. ’ ﬁ /. ’ ﬁ
(66) €' le* ull 2wy + € 11€5 2, 7y ullrz (o) + €5 @,y VL2
rog 1=2s o s 1z2s _ ’oat
< C(E e @, 2y Fllrzo) + e 2,21 Follrag) +1€1°lle* " gllrz(sny))-
Here the constant C' > 0 depends on ||q|| o< (s, and ||V || 1= (o), while F = (Fy, F) € LR}, R"+2)
is the Riesz representation of f, i.e., it is such that

flv) = (’l)71',}L;215F0)L2(Q) + (me};jsﬁ)m(g) for allv e Hl(Q“T}LflS).

Proof. The proof follows directly by a reduction to the setting of Proposition 6.1. Indeed, we
interpret (65) as an equation of the form (38) with f = f — 3371;215 Vu. If the Riesz representative
of f had been given by F = (F,, F), the one for f is now given by F = (Fo —Vu,F). As a

consequence, (39) turns into
’ot rog l=2s 1o 1=2s
€1l ull s,y + 1€ w2y wllzaa) + e 2,2y Vallzz(e)

/. ’ ﬂ ~ /. 7 ﬂ . /. ’
< C(IEle* " @, 2y Fllrzo) + lle ™ 221 (Fo = Vallzzge) + 1617l gllzaes,y).
Applying the triangle inequality, we obtain

! ;g 1=2s ;0 1=2s
€11 " ull e,y + 1€ 1€ 2, By ullrz) + e 2,2 Ve
ro =28 o 1o 1=2s rog 1=2s
<C(¢ e w2y Flleegy + e " 2,2 Follz) + IV Iee@lle® * 2,21 ull2 )

+HIET e gllzaesy))-

Now choosing |¢'| > 1 so large that C||V||f=(q) < $]¢'], it is possible to absorb the contribution
involving V' from the right hand side into the left hand side of the Carleman estimate. This
implies the desired bound. O

7. CONSTRUCTION OF CGOS FOR THE GENERALIZED CAFFARELLI-SILVESTRE EXTENSION

We shall now use estimate (39) in order to prove the result of Proposition 1.2 and to thus
deduce the existence of CGOs (associated with the weak form of the equation (9)) by means of
a duality argument.

Proof of Proposition 1.2. Fix k € R™*! and consider two vectors (1, (> € (k* Nep, ) such that
|C1] = |¢a] and ¢y - ¢ = 0. This is possible by the assumption n > 3, since then dim(k* ﬂe#_H) >
(n+1)—2=n—12> 2. If now we let £ := (4 +i(s, we can observe that the condition £'- & =0
is satisfied. One also has &' - k' = £’ - k = 0, the two equalities being respectively consequences of
¢ €ep g and ¢ € kL.

Substituting the required solution u(z) = e’ (eik/'z/“k"“miil +r(z)) into problem (37), we
are left with an equivalent problem for the function r(x):

~ AN - 2s .
Lig/’v(ezk x tikn g1 + 7") =01in Q,

(67) . R . 2s 1.0 . 2s
lim 01&1,4316 n+1(€lk o Fikn 41237 + ’I“) + q(ezk @' +ikn 12,7 + 7’) =0on X;.
Tn41—
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Here L*,, , = V- 2} 3V + 2, 3°V 4 22 3¢ - V.
We shall first Study the following norm:
(68)

”is_&/ zk - +zkn+1mn+1||L2 Q20 1y = ||(L o+ xiﬁsv)(eik’.m’+ikn+1x§;1)”LQ(QJ?QI
< oy 2y Vel R ) L8 () g
< WVllw@llan s ez + 1V - 21330V + 205706 V)l = Fikenmi| o ooy
= [Vl oo oyl " 2oy + (@2 * 1817 + (28)225507 2h2 4
< IV llz= @y + K Pl Nz + 452K2 0 2555 2l 2o

< Co,vis < 0.

) ik’ +zkn+1ﬂ¢n+1 HLz(Q

In the last step we have used our assumption that s > 1/2 and that & - k = 0. If we define
f@) = =L gy (i,

then by (68) we have proved that [|f|[;2q 25 = O(1) with respect to |¢/| — oco. Next, we

compute that for almost every z’ € ¥;

. _ RSN 2s R 2s
lim (x}l+21san+lezk x +zkn+1xn+1 + q(x/)ezk ' +ikn41 a:"Jrl)
Typy1—0

= e |q(2') + 2si kn 41| < Cyp < 0.
Thus, we define
g(a') i= —e* ¥ (2sikpy1 + q(a)),
and obtain that [|g||z2(s,) < Cqx|Z1|/2 = O(1) with respect to |¢'| — occ.

In light of the above computations, we can rewrite (67) as an inhomogeneous problem for r:

le_f/7v7n = f ln Q,
(69) lim an $Opy1r +qr =g on Xq.
$n+1—)
We will construct a solution to the problem (69) with the claimed decay properties by using
a duality argument and the Carleman estimate (66).
To this end, we first recall the function space C from (12) in Section 2.1.2 which is a subvector

space of L?(Q,22°;") and has the property that

wnlgn_m(xnjrlsanﬂw + qw) € Lz(El) and ﬂzlﬁvw € L2(Q, xifll) (H1 (Q, 711+21S))*
and supp(f)‘g/’vw) Cc QU (QN{zp41 =0}).
We define the operator B : C — L*(X), w~ lim xn_H fOnr1w + qu.

Tp41—>
We now seek to study a suitable functional which bu1lds on the injectivity of the following

mapping: For u € C consider
(70) (ﬂzxvu? Bsu) — u.

In order to derive the injectivity of the map in (70), we invoke the Carleman estimates from
Proposition 6.1 and Corollary 6.4. To this end, we rephrase the Carleman estimate from Propo-
sition 6.1 and Corollary 6.4 in terms of an estimate for the operators Lg y and Bs. For uw € C

we consider the Carleman estimate of Corollary 6.4 for the function o := e~*"¢y. This function
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clearly satisfies the boundary conditions stated in Corollary 6.4 on 9Q\X;. Now, if u is a solution
to the equation

Ly yu=finQ,
Bs(u) = g on Xy,
for some f € (H*(Q,2,3°))* and g € L?(2), then the function @ satisfies an equation of the

form (65) with a bulk inhomogeneity f = efgl‘mlf and a boundary inhomogeneity § = 6*5/'95/9.

If (Fy, F) was the Riesz representative of f in (H'(Q,2;,,3°))*, then the Riesz representative of f

is given by (Fo, F) := (e=% ¢ Fy—e *"¢' F, .1, e % "¢ F). The Carleman estimate from Corollary
6.4 for u is thus applicable and yields
sl A el 52
P lle> ™ allzemyy + 1€l ™ @, 1 @2y + lle” ™, 2y Va2

s 1z2s = 1o =28 o _ Il
< C(E e 2y Fllrzy + lle® a3y Follzag + €171l gllracsy)-

Using the triangle inequality, this can now be rewritten in terms of u, the operators Es,y and
B, and then becomes

€ Null ey + 1€l fy wllzz@) + 2,7y Vullzz@)
120 _ 120 .
(71) < C(|€'llzn 21 Flizzory + lzn 2 Follzo) + €1 gl 2 (sy)
< C(|§/|||L§/,VU||(Hl(Q,szjS)*) + €T 1Bs(u)ll 2 (21))-

As a result, we infer that the map (70) is injective.
Building on this observation, we obtain that the linear functional

T: Ly (C) x Bs(C) = R, (L yu, Beu) = (u, f)r2(0) + (u,9)12(sy)

is well defined.
Moreover, using (71), the bound

(s Frzea) + (w9 ezl < lull g2 -2 1Fll 20,0200 + lullz2 ey 9l 220

< Cavisllullzeer 2 + Carmllullraesy

< (Covsl€ |7+ Com, |§/‘7S)(H|€/|FHL2(Q,$7111213) 1 Foll 200120 + €T Bs (W)l 2(x))

<c(le)7M + |§/|7S)(||E§/,VU||(H;C(Q,zj;’?))* + [|Bsul

L2,(5h))-

holds for a constant ¢ = cq x, k,v,q- Here ig,)vu =V . F + F, in the sense of distributions. The

subscript denotes the use of semiclassical norms with |¢/|~! as a small parameter, i.e.

||L21)VU;||(ch(Q7x:L1215))* = |||£/|F||L2(Q7$71Ljr2ls) + |‘FQHL2(Q7_,E3L—+215),
1Bsullzz, () = €11 Bsull L2z,

As a consequence, as a functional on a subset of (HL.(Q,2,73%))* x L2,(21), we have ||T|| =

O(|¢'|7#) for [€'| — co. Since for s € [3,1) the vector space ig,yv(C) x Bs(C) is a subvector space

of (HL,(Q,2133%))* x L?,(X1), by the Hahn-Banach theorem, the functional T’ can be extended

to act on all of (HL,(,2}33%))* x L2,(X1) while maintaining the same norm.
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Making use of the Riesz representation theorem, we find some 7 € (HL(Q,,.3%))* and

7y € L2,(X1) such that for every choice of v = (vi,v2) € (HL(Q,2,,75%))* x L2,(1) it holds that

T(v1,v2) = (01,71) (1 (01720 T (V2:72) L2, (20)

2.0 =71 =O('™).

However, if we let 7; be the Riesz representative of 71 in H!,(Q,2,77°) and define ry :=
|€'|>725F,, we can compute

Pl o120 + 172

T(v1,02) = (01,71) (1 (.0t 20y)- T+ (V2 € 2725F2) L2 () = (v1,71) + (v2,72) 25,

11 Irell 2y = €17 NIE P52l L2y = IIET 5 F2llL2mn) = IP2lli2,s0)
il 00253y =1l 2253
where (-, ) denotes the (H ;C(Q,x}lff))ﬁ HL(Q, ;v,llfls) duality pairing. This eventually gives
T(vi,v2) = (v1,71) + (V2,72)12(5,) s
”Tl”Lz(Q’I;ﬁS) + |£’|71||VT1||L2(Q7I:L1218) + |§/|571||T’2HL2(Z1) =
(72) /1s—1
= 1l @ai2e) HIET 2l

n+1
L2z = O(I€'177) .
Using that L2, (9, 22°5") C (H2,(, z),73%))" with the identification that the functional £, asso-

sc
ciated with vy € L2,(Q,22°7}") is given by

Lo, (f) == (v1, f)r2(q) for f € L2(Q,2,75°),

we have that for v; € L2,(9, xii_ll)

= Il @.ap520y- + 1172l

(73) <1)1,T1> = <A€U1,T1> = (Ul,Tl)LQ(Q).

Integrating by parts, we next deduce the equations satisfied by r1,7s. Formally this follows
by integrating the equations by parts twice and then inserting suitable test functions. Since a
priori no weighted second derivatives of rq, 7o are given, we need to argue more carefully. To this
end, recalling (73), we compute for « € C with u = d,u =0 on Xy
(u, 2 + (0, 9)12(sy) = T(LE yu, By(u))

= (ig/u7 Tl)LQ(Q) + (as}LffVu, Tl)L2(Q) + (Bg (u), TQ)LQ(EI)
= (x}LffVu, VTl)L2(Q) — Q(I}L:_qugl . V’u, Tl)Lz(Q) + (a:;ffVu, Tl)LQ(Q)
+ (Bs(u),m2 — r1)12(3,) + (qu, 1) L2(5,)-

(74)

As a consequence, considering u € C2°(§2) we infer that the function 7, is a weak solution to
the bulk equation

.z/z/’v’rl = f in Q
and
(75) (u, f)LZ(Q) = (x}zflsVu, VTI)L2(Q) — 2(35717412155/ . V'u, T'1)L2(Q) —+ (l’,}l:LQlSV’U,, 7“1)L2 (Q)

for all w € C°(Q2). Next, by an approximation result which uses the fact that s > %, we
obtain that the identity (75), which a priori only holds for u € CZ°(€2), also remains true for
u € 22%,C°(Q2). Combining this with (74), thus implies in turn that for u € 225 ,C°(Q) we

have the following boundary equation

(76) (u, g)L?(zl) = (Bs(u), 2 — 7“1)L2(21) + (qu, Tl)L2(21)~
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Using this observation, we now consider a suitable test function to deduce further information
from (76): Let h € C°(X1) and consider an open set X such that supp(h) C ¥ C ;. Let
¢ > 0 be so small that ¥ x (0,¢) CC Q and consider ¢ € C°(€) such that ¥ (z) = 1 if z €
supp(h) x [0,€/2) and ¢(z) = 0 if z ¢ ¥ x [0,€]. Finally, let u(z) = 225 ¢ (z)h(z’).

Observe that since supp(u) C X1 x (0,¢) CC Q we have u = 9,u = 0 on Xg. Moreover, since
Yh € CX(Q), we have u € 225 ,C°(Q). Thus, u is a valid test function. We can compute

Bsu = lim an *Opt1u + qu = h(z") lim xnﬂ O (Y()x2 ) = 25 h(2)

Tnt1—0 Tpt1—>

by the properties of . Also, u(x) =0 if € ¥;. Thus, (76) is reduced to

0= (Bsu,r2 — 1) 12(2,) = 25(h, 72 = 71)12(5y)
which implies 71 = r9 in ¥; by the arbitrary choice of h.
As a consequence, this implies that r; satisfies the equation

(u, f)r2@) + (w,9)12(s,) = — (2,337 Vu, Vi) 2) + 22, 3°€ - Vi, 1) 20

+ (In+1 Vau,r1)p2 o) + (qu, 1) L2(s,)

for all u € C. Now by density of C in H*(£2, xiff) (see Proposition 2.3), this exactly corresponds
to 71 being a weak solution of the equation

Lsgvrlzfinﬂ

lim $n+1 5Opa17m1 +qri =g on X.
.’,Cn+1—>

Finally, we recall that since we proved that ry = ro in ¥4, formula (72) now reads
Irill o 0t-2e) + 1T IVl 2 pr-2e) + 11 Il Lo (ey) = 171 = O(1'17)
which yields the desired correction function r := r; and the claimed estimates. 0

With the construction of CGO solutions to (9) in hand, we now turn to the associated inverse
problem. Arguing as in Section 3, it is possible to prove the well-posedness of the weak formu-
lation of the problem (9) outside of a discrete set of eigenvalues. More precisely, to obtain this
we consider the associated bilinear form

B, v (u,v) ::/ T3V - Vvdx—i—/in_ﬁsuvdx—|—/quvdm’,
Q Q 31

for u,v € HY(Q,z}7 +215) Further we investigate the Dirichlet problem (9) for data f belonging
to the abstract space
1-2 1-2
R:= Hl(Q n+18)/H§2,0(Q xn—i—ls)’

endowed with the usual quotient topology

£l = inf {ullrs i } -
This choice is motivated by the the observation that for all u,v € H'(, a:,llfls) we have for the
corresponding remainder classes [u], [v] € R

[u] =] & ulg, =vls,,
and thus the equivalence classes of R can be interpreted as restrictions on Yo of functions
belonging to H' (2, x}lff) In view of this interpretation, one can make sense of the assertion
ulg, = f, with u € HY(Q, m,llfls) and f € R, as equivalent to u € f. Moreover, by the properties
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of the infimum for all f € R with ||f|[g > 0 and € > 0, we can find u € H'(Q,z.33°) with
u|s, = f such that

”uHHl(Q,x};jS) <|fllr+e

By just choosing € < || f|| g we deduce that for all boundary data f on X there exists an extension
E(f) € HY(Q, 3371;215) such that

VB (D1 00120y < 2 F I

This lets us argue similarly as in Section 3, and we obtain analogous well-posedness results.
We denote the dual space of R by R*. In the following we assume that zero is not a Dirichlet
eigenvalue and thus define for f € R a Dirichlet-to-Neumann operator A,y : R — R* by setting

<As,q,Vf> 9)R* R = qu(uf, E,g).

Here E,g denotes a H'((, x};js) extension of the function g € R. Relying on similar arguments
as for the Dirichlet-to-Neumann maps studied in Section 3, the map /~\57q7v is continuous from
R into R*.

With the CGO solutions available, we can now address the proof of Theorem 2. Indeed, with
the given special solutions, the solution to our inverse problem now follows from the Alessandrini
identity.

Proof of Theorem 2. Let V :=V; — V5 and q := q1 — g2. The assumption that A; = Ay and the
Alessandrini identity from Lemma 3.13 allow us to write that, for any solutions u, us to (1),

/ Xﬂvul’lTQxi;deer/ Xz, quitizdr’ = 0.
Rn+1 R™

We shall test this identity using our special CGO solutions. Fix &, k as in Proposition 1.2 and
let

wn (z) : £ (e(ikl-$’+ikn+1ziil)/2 +r1(z)),

ug(x) _ eé/m/ (e—(ik’-z’+ikvz+1fﬁii1)/2 + T’Q(l‘)) )

Here if & = (4 +i(s, we set 5/ := —(1 +i(o. Substituting these into the above identity gives rise
to

0 :/ XQV‘I}ljglg (T’ﬂ”g + (Tl +Tz)e(ik',meriknJrlxiil)/Q + eik'.xl+ikn+1m3ﬁ“) do+
Rn+1
+/ X5, q (7"17“2 4 (rl + 7”2)6%/"'”//2 + 6ik/'zl) d.TI )

We now aim to estimate the terms involving r; and 79, showing that they can be dropped in
the limit |¢/| — oo. Recall from Proposition 1.2 that

71l 2,020y + sl e ces) = OUET*)

+1
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for j = 1,2, and thus since s € (1/2,1) we have both |7}l ;2(q
|€'| = oo. Therefore,

#172%) — 0 and ||rj||L2(21) — 0 as
/R eVl rirslde < [V @71l 2gom=20) 72 2o ei=20) = 0.
Y ~ 1/2—¢
[Rn+1 |e(z x4 +1In+1)/2XQVx71L+21ST'1|d-T < HVHL“’(Q)HrlHLz(Qz:;js)Hx”/Jrl QHLZ(Q) =0,
/ Xz qriralde’ < Jlall e oIl 22 lrll 2ages) = 0

/ |2 qrlda’ < gl (o) 71l 22 [21]2 = 0,
as &' — oo, and similarly for the remaining terms. The Alessandrini identity is thus reduced to
/ XQVJ}}L:_%SGUC/':”/Hk"‘*'lmis“da? +/ leqeik/'zldl‘/ =0,
R'rz+1 n

which after the change of variables (', yn+1) = (¢/,225%,) in the first integral takes the form

QV s s—2 k- ik’ 2’
(77) / (><2> (yﬂy,llfl )y,llérl 2tk Ydy +/ leqe’k Tdr' =0.
Rnr+1 S R™

Let S(R™*!) and S'(R™1) respectively be the sets of Schwartz functions and tempered dis-
tributions over R"**. Consider d,, ., (0) € &’'(R"*1) defined by

Tn+1

<5$n,+1 (0)7 ¢> = Qb((zl, 0))d$l

R

for all ¢ € S(R"!). Then

v s s—
) i= (A ) a2 o) () b1, )50 )

where X[0,00)(Zn+1) denotes the characteristic function of [0,0) is also a tempered distribution,
since for all ¢ € S(R"*1) we have

14 sy 1/s—
I(f, )] = /R’ » (XQQS) (w’,xi/fl)xiéﬂ 2X[o,oo)($n+1)¢(93)d$ +/ (s 0)(@)@((2, 0))da’
Vllz= @ 5=
< T”/Qwiil 2|p(a)|d + lgl| oo ) / [6((a',0))|da’
- V=0

1/s—-2
< follm (2 [ ol 20+l Il ) < .
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The Fourier transform of f belongs to &’'(R"*1) as well, and by definition it is the tempered
distribution given by

(7.0) = 7| (X557 ) a2 Voo )| (96000 + (0., O x50 )

= | (A28 @l oo | 0,000 + [ (@i o)

n

xaV 1/2s\ 1/s
:/]R +1 (b(k)/]R +1 (23) (@', 2, 2 X 0,00 (@ ) Fdardk

+ / (x5, 9)(2) / o(k)e™ * dkda’
R Rn+1

= [ ot ( [ (85 watlalleran s [ <><zlq><x’>eik"f’dx'> ak
+

for all ¢ € S(R"1), where for convenience of notation, we both use the notation f and F f to
denote the Fourier transform. By (77) the last expression vanishes, which proves that f = 0.
Now the Fourier inversion theorem for tempered distributions allows us to deduce that (f,¢) =0
for every ¢ € S(R"*1). Testing this equality with an arbitrary function ¢ € C°() we get

V S S
0= ((220) (a2 oo (1) + 8 5,001, )

_ xaV 1/5—2
7/]Rn+1 ( 2s ) Tt dz
+

which by the arbitrary choice of ¢ implies V' = 0in 2, and we are left with f(z) = ., ., (0)(x=,¢)(2").
Let now ¢ € C°(%4), and consider n € C*°(R) such that n(x) =1if z € (—1,1) and n(x) =0

if x ¢ (—2,2). Since it belongs to C°(R™*1), the function ¢(x) := z/)(a:’)n(mnH) is a suitable

test function for (f, ) = 0, and by using it we obtain

0= (£.0) = (Fres Oz, bl = [ xsuavda’
Eventually, by the arbitrary choice of ¥ we conclude that ¢ =0 in ¥;. 0

As a corollary of this argument we remark that while for s = % with the described method
we cannot simultaneously prove uniqueness for the potentials ¢ and V (due to the lack of the
decay of r on the boundary), this method still allows us to prove uniqueness for V' given a fixed

potential g:

Corollary 7.1. Let Q) C RQL_'H, n > 2, be an open, bounded and smooth domain. Assume that
Y1 = 00N {zpy1 = 0} and Xo C N\ X1 are two relatively open, non-empty subsets of the
boundary such that 1 U Yo = 0Q. Let s = % If the potentials g € L (%) and Vi, V5 € L™(Q)
relative to problem (9) are such that

A= AS,th = AS7V27q =i Ag,

then V3 = V5.

Proof. The proof follows that of Theorem 2, but it is significantly easier due to the lack of
boundary terms. Again we let V' := V; — V5, but this time the Alessandrini identity from Lemma

3.13 reduces to simply
/ xoVuiugdr =0,
Rn+1
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where 1, us solve (1). Fix ¢,k € R"™! as in Lemma 1.2 with the modification from Remark 5.2,
and for ¢ = ¢ + (o set & := —(;1 + i¢s. Testing the equation above with the following CGOs

ur(z) = e (€2 £ ri(2)),  ua(z) == e (e7 /2 4ry(2)),

leads to
0= / xaoV (7’17"2 +(r1 + 7”2)6““‘7”/2 + e”””) dzx .
Rn+1

In our current case s = 1/2, Proposition 1.2 does not grant any decay for the correction
functions 7; on the boundary; however, we will make use only of their decay estimate in the
bulk. Given that |7} 120 = O(|¢'|~'/?), by Cauchy-Schwarz

/Rn+1 IxaVrirslde < |V Le@llrllzz@llrzllze @) = O™,
| e xaVnide < IVl @l 2 ez = O0E1772).
Therefore, by finding the limit |¢/| — oo of the tested equation we obtain
0= / xaVe*edy = FlxaV](k)
R+

for all k € R™™!. It now follows from the Fourier inversion theorem that V = 0 on €, that is,
the potentials V; and V5 must coincide. O

APPENDIX A. PROOF OF PROPOSITION 2.3
In this section, we provide the proof of Proposition 2.3. To this end, we begin by showing the
following auxiliary result:

Lemma A.1. The set C®°(R) is dense in HY (R, 71L+215)

Proof of Lemma A.1. We consider ¢ : R"*! — R such that supp(¢) C Bj (0), ¢ > 0 and
Jonirpdz = 1. Set ¢ (z) = € " tp(L). Further let f € HY(R™, z}73%). We construct a
smooth sequence f. such that f — f in H' (R}, ;LJFQIS). To this end define f.(z) := (f*pe)(x).
Then, since f € LZOC(R"H), we obtain that f. is smooth. Moreover, as a consequence of the
maximal function estimate for weights in the Muckenhoupt class (see for instance Theorem 1.2
in | | with the difference of working with half-balls instead of balls) f., Vf. = (Vf).

L2(R%H, 2173%). In order to prove the convergence, we only show f. — f in LR}, 2)73%)

n+1
(the statement for the gradient is then analogous) and begin by collecting a number of auxiliary

observations. We note that for each Q C erfl, by the maximal function estimates we also have
that

(78) ||fe||L2(Q,z;;§S) = CHf||L2(N(Q,e), N

Tnti )

Here N(Q,€) denotes an € neighbourhood of @ in R%™'. Now, since f € L2(R1 2,73%),

for each § > 0 there exists R > 1 such that ”fHL?(R”“\BR 21720 < § and thus by (78) also
|l 72+t 1-25y < 0. Moreover, again by the integrability of , there exists 4 > 0 such that
L2(R}T\Br.zp %)
+ 3Ly

1AW 22 (Bregena<syatze) 1 ello(Brngany, <5y.at2e) <6
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Finally in Bag N {41 > 6/2} there exists a sequence f € C®(Bayg N {x,y1 > 6/2}) such that
fr— fin L? (R"+1 711+219). Since (fx)e := fx * pe — fr uniformly on compact sets, we may thus
also conclude that

Ik = W ell 2 (Baniann2y.aiz3) <0
Also, by (78)
er - (fk)e||L2(BRm{zn+125},zil12;S) = H(f - fk)e||L2(BRﬂ{In+1ZS},z:;jS)
< C”f - fk||L2(B2Rﬂ{wn+125/2}7 iff)
Combining the above observations, infer that

If - f€||L2(R1+1,x}L1215 < Hf”m(Riﬂ\BfR, 29y + erHL2 (RYTN\BR,x,73°)

+ HfHLz(BRm{ang&},z;fﬁs) + ||fe||L2(BRm{a;n+1§S} . 33)
+ Hf_ fe”L? (BrN{xni1>6},a 1—25)

<30+ |f = fellL2(Brnwnir =51, ;cn;ﬁb)

< 30 + ||fk - (fk) ||L2 BRﬁ{zn+1>§} z + ||f fk||L2 BRO{:E"+1>5} Il 25)
+11fe = (fr)e ||L2 (BRN{@nt1>8},x i+1 )

< 66.

Arguing analogously on the level of the derivative implies the claim. O

Next we define the following auxiliary set

Cx(Q) :={f€C™Q): 36> 05t fly,.s =0}
Using this, we turn to the proof of the approximation result.

Proof of Proposition 2.3. Using Lemma (A.1), we argue in three steps.

Step 1: Density of | H}V(Rn\xl 5 SR 122y ¢ Hﬂin\El SR p1o2sy
5€(0,80) o ’
This follows by rescaling: Indeed, by translation we may assume that = 0 is a center of

the star-shaped set ¥;. Now let u € Hy.\y, o R 2)173%). Then, as C>°(R’™) is dense in
HY(RH, 2),73°), there exists (ug)ren C C®(R}T) such that wy, — win H* (R}, 2)73%). Since
Y, is star-shaped, if we define d := dist(0,0%1) and us(x) := u (mm) for § € (0,d), then we
have that us € HN(R"\El 5, O(Rn 1 711+215) and

(79)

d d
lus = ull g s o220y < llus — i (H) s ey ey =+ Ml (d 5 ) — kg gy o2

+ |lu — ug ||H1(R1+1@1+21<)

Now, the first and third contributions in (79) converge to zero by definition of uy as approxima-
tions to u. The middle right hand side contribution converges to zero by the assumed regularity
of up and a Taylor approximation up to order one.
Using a partition of unity and straightening out the boundary by a suitable diffeomorphism
this also implies that ) (%J )H o\z1.8).0( 20 3°) C HY, ((Q,21,3°) is dense.
€(0,40
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Step 2: Density of C%, () C HéQ\ZI’O(Q,x};QlS).
1-2s

By Step 1 it suffices to prove that ~ (J CR5, 5:(2) C Hzlv(zg 5/2),0(8L 7, 11°) is dense in
€€(0,6/2) ’ e
Hjl\/(zz,5),0(9’ z)3°%) for all sufficiently small § > 0.
By virtue of a partition of unity and by straightening out the boundary, it suffices to consider
ue HYRTH, x}bfls) satisfying one of the following two cases:

(i) u|g~ has compact, but non-trivial support in ¥,
(ii) w

a =0,

and to prove a corresponding approximation result in these cases. The first case arises when
working with a patch of the partition of unity which includes N (31, €), the second occurs for any
other patch (we remark that without loss of generality, it is possible to arrange for this).

Step 2a: Case (i). For case (i) we in turn argue in two steps.

Step 2a, part 1; constant modification at x,+1 = 0. First we define the function %, such that
(2, Tny1) = u(@’,0) for 41 € [0,2€] and @ (2", 2p41) = 0 for x, 41 > 26. We observe that
e = 0 in R\ (21 x [0,2¢]). We further consider 7 : [0,00) — [0,1] with n € C>([0, 00)),
n(t) =1 on [0,1], supp(n) C [0,2] and |Vn| < C. Based on this we define n(t) := n(%) and
Ue 1= Ne(Tnt1)Te() + (1 — Ne(zn+1))u(z). We claim that ue — u in HY(RTH, 2)73°).

To this end, we observe that

e — UHLZ(RQH,I}L;?) = [|Ime (e — U)HLZ(]R"x[O,Qe],x}Ljrzls)

S ||u(x,7 0) — u(z)||L2(R"><[0,25],a::;+r‘;s) — O,
by the integrability of u(z’,0) — u(x). For the derivative we note that
(80) Vu—Vue = (u— 1) Vne + neV(u — Ge).

Due to the support conditions for n. and by the fact that V(u — @.) € L2(R™ x [0, 2¢p), :c,llfls)
for some fixed ¢y > 0, we have that

17V (u — ﬁe)HLZ(RTrlyxlnfls) —0

as e — 0.
For the first contribution in the expression for the gradient (80), we use the fundamental
theorem (which makes use of the approximation statement from Lemma A.1): We have that

Tn+1

|(u — @) (2)] = Ju(z’, 2ng1) —u(a’,0)] < / |On-1u(a’,)]dt.

Thus, using Hélder’s inequality, we obtain

Tn41

@) <o [ £l 0P

[}
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As a consequence, an integration yields

[ (v — QE)VWEHH(RTL“@;;?) < CeMlu - aeHL2(R"><[075]’Q:;1215)
Tn+1 2
< Cet! / 17280 1w’ t)| 2 dt

0 L2(R" x[0,e],2172°)

€ 1/2 ¢
< Ces! (/ x;flsdanrl) /t1*25|an+1u(z/,t)|2dt
0
0

< Cses_lel_s||Vu||L2(RnX[

1
2

L?(R")

1-2
0,e,x,,17°)

= Cs||VU||L2(R7LX[O7€],I3L—+§S —0ase—0,

since Vu € H 1(R1H, x};‘_zls) This proves the claimed convergence u. — u.

Step 2a, part 2, mollification. As a second step, we start with a function u. as obtained in
Step 2a, part 1 which by a slight abuse of notation (by dropping the index) we denote by w.
For this function, we now consider us(z) := u * s(x), where 6 € (0,€) and @s(z) := 06" 1p(%)
with [ p(y)dy =1, ¢ € C‘X’(Riﬂ) is a mollifier supported in B; . By the properties of the

Ry
function v (in particular, recall that v = 0 in (R™ \ £1) x [0,¢€]), for § > 0 sufficiently small,
the function us € C*° (R’ N HY(R}T, 21 77°) then satisfies that supp(us|rs) C N(X1,0) and
us — win HY(RTT 21 75%).

Combining both steps from Steps 2a by means of a diagonal argument then implies the claim
for case (i).

Step 2b: The case (#). Now for case (ii) we argue as in the classical case, but replace the
trace inequalities by correspondingly weighted ones; we refer to | , Chapter 5.5, Theo-

rem 2]. We present some of the details for completeness. First by the density of C'*° (R’_ﬁ“) C

HY(RH, 2)73°) there exists a sequence () meny C O (R}T) such that u,, — uwin HY(RYH, 2. 73°).

Due to trace estimates similarly as in Lemma 2.5 and the fact that u|gn = 0 we have wu,|g» — 0.
Now by the fundamental theorem we obtain

Tt
(' 200)| < 2, 0) [ 1D (o, 1)
0
Integrating and applying Holder’s inequality implies that
Trin
i () Bny < Cllum Oy + 5s [ 872 [Vt ot Eoqanyct)
0
In particular, for m — oo, by the vanishing of the trace of u, we arrive at
Toi1

(81) (s 2na )2 @ny < Cois / 72Vl )72 o -

We now define

Wy = u(1 = Gn)s
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where (, (2) := {(ma,41) and ¢ € C°°(R) is such that ((¢) =1 for t € [0,1] and ¢ = 0 on (2, c0)
and 0 < ¢ < 1. We obtain
Ony1Wp = (1 - (m)an—&-lu - mucl|mzn+1a
0w = (1 = (m)0ju for all j € {1,...,n}.
Thus,
2/m
IV (w, — um)||2LQ(Ri+1’$:rzls) < C||CmVu||2LQ(Rn+17Z;ﬁS) + COm? / /x,llff\uﬁdm’dxnﬂ.
0 Rn
By construction, the first term converges to zero, as (,, # 0 only for x,; € (0,2/m). For the
second contribution we use (81). This yields

2/m 2/m
w? [ [P dsnn = [ okl o) g dnen
0 Rn 0
2/m Tn+1
< Cm? / _— / E25)|Vu(-, )2 g Aty 1
0 0
2/m 2/m
S W e
0 0

< C”V“HH(RHX[0,2/m],xif’13) — 0 as m — oo.

Step 3: Density of C C HY o(Q,21,3°).

Let u € OF(92). We now approximate this function by a function of the desired structure.
Working in boundary normal coordinates x = z’ 4 tv(z') we define @.(x) := u(z’") for x € 9Qq.
Let now 7. be a smooth cut-off function which is equal to one in 9¢). supported in 9o, with

[V'ne| < C and |0,me] < €. We then set uc(z) := ne(z)ic(z) + (1 — ne)u(x). Then,

lu — ueH[ﬂ(Q,zLﬁS) = [|7e(u — ﬁé)”L?(Q,z}lﬁs)-
Since u € C*°(£2), we have |ne(x)||u(z) — Ge(z)] < C  sup |du(z)|t < Ce. Thus,
zEsupp(ne)

||U - UEHLQ(Q’I;;’A;S) S 05661*5.
For the derivative we note that
191 =l g nr-20y = IV (= )]l 220
< l(u— ae)(vné)”m(g,z;ﬁs) + 7V (u — ﬁs)”m(g,ﬁff)-
Now using that |Vn.| < Ce™!, |u — | < Ce and |V(u — )| < C, we obtain
190 = ) gr20y < [0 = @) (V00 g2y + (9 = )2
< Cw,(supp(ne))? < Cyel ™,

where for €' C R’™" measurable w,(€)') := [ z,7°dz. We note that the function u, has the
Q/

desired property defining C. Indeed, by the construction of @, we have u, = 0 on 33 and by
construction of 4, and of 7. we also have 0,1 = 0 on 0. It remains to argue that 0, 1u. =0
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in N(31,6) x [0,6) for some § > 0 small. This on the one hand follows from the fact that in
%1 x [0,€/2] the boundary normal coordinates are simply Euclidean coordinates © = (2/, Z5,11)
and that the function 4. does not depend on the z,; variable there by definition. On the other
hand, we also have that in V(2s, €) for some € > 0 the function u € C% () satisfies u = 0. As a
consequence, the function @.(x) =0inaset {x € Q:x =2'+tv, 2’ € N(X1,6)\ X1, ¢t € [0,20]}

for some small § > 0. This however implies that Vi, = 0 on this set, which entails that
Ont+1ue = 0 also in a set N(Xq,6) x [0, ).
Combining all the steps from above by a diagonal argument concludes the proof. O
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ABSTRACT. We study an inverse problem for the fractional Schrédinger equation (FSE) with
a local perturbation by a linear partial differential operator (PDQO) of the order smaller than
the order of the fractional Laplacian. We show that one can uniquely recover the coefficients
of the PDO from the Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This
is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev
multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives.
Our study generalizes recent results for the zeroth and first order perturbations to higher order
perturbations.

1. INTRODUCTION

Let s € Rt \ Z, © C R" a bounded open set where n > 1, Q. = R" \ Q its exterior and
P(z, D) a linear partial differential operator (PDO) of order m € N

P(z,D) = Z ao(z)D*

|a|<m

where the coefficients a, = ao(z) are functions defined in 2. We study a nonlocal inverse
problem for the perturbed fractional Schrodinger equation

() (=A)*u+ P(z,D)u=0in Q
u = fin Q.
where (—A)? is a nonlocal pseudo-differential operator (—A)*u = F~1(|-|** @) in contrast to the
local operator P(x, D). In the inverse problem, one aims to recover the local operator P from
the associated Dirichlet-to-Neumann map.
We always assume that 0 is not a Dirichlet eigenvalue of the operator ((—A)* + P(x, D)), i.e.

If u e H*(R") solves ((—A)® 4+ P(z,D))u =0 in  and ul|g, = 0, then u = 0.

Our data for the inverse problem is the Dirichlet-to-Neumann (DN) map Ap: H%(Q.) —
(H*(€))* which maps Dirichlet exterior values to a nonlocal version of the Neumann boundary
value (see section [ and [3.1)). The main question that we study in this article is whether the
DN map Ap determines uniquely the coefficients a, in Q. In other words, does Ap, = Ap,
imply that aj o = a2 in Q for all |a| < m? We prove that the answer is positive under certain
restrictions on the coefficients a, and the order of the PDOs.

This gives positive answer to the uniqueness problem [I0, Question 2.5] posed by the first
three authors in a previous work. The precise statement in [I0] asks to prove uniqueness for
the higher order fractional Calderén problem in the case of a bounded domain with smooth
boundary and PDOs with smooth coefficients (up to the boundary). The positive answer to
this question follows from theorem The study of the fractional Calderéon problem was
initiated by Ghosh, Salo and Uhlmann in the work [I5] where the uniqueness for the associated
inverse problem is proved when m =0, s € (0,1) and ap € L*>(Q2).
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We briefly note that by Peetre’s theorem any linear operator L: C2°(2) — C2°(£2) which
does not increase supports, i.e. spt(Lf) C spt(f) for all f € C*(f), is in fact a differential
operator [30] (see also the original work [32]). Therefore our results apply to any local operator
satisfying such properties and it is enough to study PDOs only. For a more general formulation
of Peetre’s theorem on the level of vector bundles, see [31].

1.1. Main results. We denote by M(H*~l®l — H=*%) the space of all bounded Sobolev mul-
tipliers between the Sobolev spaces H*~1*(R™) and H—*(R"). We denote by My(H*" 1ol —
H™7) C M(HS_‘CYI — H~*%) the space of bounded Sobolev multipliers that can be approximated
with smooth compactly supported functions in the multiplier norm of M (Hs~l®l — H=%). We
also write H™°(Q2) for the local Bessel potential space with bounded derivatives. See section
for more detailed definitions.

Our first theorem is a generalization of [36, Theorem 1.1] which considered the case m = 0
with s € (0,1). It also generalizes [10, Theorem 1.5] which considered the higher order cases
s € RT\ Z when m = 0.

Theorem 1.1. Let Q C R™ be a bounded open set where n > 1. Let s € Rt \ Z and m € N be
such that 2s > m. Let
Pi= > a;uD% j=1.2,

o] <m
be linear PDOs of order m with coefficients a; . € MO(HS_“"| — H™*). Given any two open
sets Wi, Wy C Q., suppose that the DN maps Ap, for the equations ((—A)® + Pj)u = 0 in €2
satisfy

AP1f|W2 = AP2f|W2
for all f € C(Wy). Then Pilg = Palq.

In theorem|L.1jone can pick the lower order coefficients (|a| < s) from LP(f2) for high enough p
(especially from L*°(2)) and higher order coefficients (s < |a| < 2s) from the closure of C2°(12)
in H™*°(Q) for certain values of r € R. Lemmas and give more examples of Sobolev
spaces which belong to the space of multipliers My(H s=lol 5 | ~%). We also note that when
|a| = 0, then the space of multipliers My(H® — H~*) coincides with the one studied in [36].

It follows that the space of multipliers is trivial for higher order operators, i.e. M(H s=lol
H™%) = {0} when s — |a] < —s. It would be possible to state theorem for higher order
PDOs, but that forces a, = 0 for all |a| > 2s. For this reason we only consider PDOs whose
order is m < 2s. See lemma and the related remarks for more details.

Our second theorem generalizes [7, Theorem 1.1] and [I5, Theorem 1.1] where similar results
are proved when m = 0,1 and s € (0,1). It also generalizes [I0, Theorem 1.5] where the case
m =0 and s € RT \ Z was studied.

Theorem 1.2. Let Q C R" be a bounded Lipschitz domain where n > 1. Let s € RT \ Z and
m € N be such that 2s > m. Let

Pi(z,D) = > aja(x)D% j=12,
|| <m

be linear PDOs of order m with coefficients a;o € H" () where

0 if la] —s <0,
(2) To = {\a|—s+(5 if ol —se{1/2,3/2,...},
o] —s  if otherwise

for any fized § > 0. Given any two open sets Wi, Wy C ., suppose that the DN maps Ap, for
the equations ((—A)* + Pj(x, D))u = 0 in Q satisfy

AP1f|W2 = APQf‘W2

for all f € C*(Wy). Then Pi(z, D) = Psy(z, D).
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Our first theorem is formulated for general bounded open sets and the second theorem for
Lipschitz domains. The difference arises in the proof of the well-posedness of the inverse prob-
lem. We note that theorem holds for coefficients a, which are smooth up to the boundary
(aa = glo where g € C*°(R"™)). The conditions imply that one can choose a, € L>*(1)
for every a such that |a| < s. The case || = s never happens, as s is assumed not to be an
integer. If || > s, we have a, € HI*I=5°(Q) when |a| —s ¢ {1/2,3/2,...}. Thus the conditions
coincide with [7, [15] when m = 0,1 and s € (0,1).

Our article is roughly divided into two parts. The first part of the article (theorem and
section [3]) generalizes the study of the uniqueness problem for singular potentials in [36] and
the second part (theorem and section [4]) generalizes the uniqueness problem for bounded
first order perturbations in [7].

The approach to prove theorems and is the following. First one shows that the
inverse problem is well-posed and the corresponding bilinear forms are bounded. This leads
to the boundedness of the DN maps and an Alessandrini identity. By a unique continuation
property of the higher order fractional Laplacian one obtains a Runge approximation property
for equation . Using the Runge approximation and the Alessandrini identity for suitable test
functions one proves the uniqueness of the inverse problem.

1.2. On the earlier literature. Equation and theorems and are related to the
Calder6n problem for the fractional Schrodinger equation first introduced in [I5]. There one
tries to uniquely recover the potential ¢ in 2 by doing measurements in the exterior €2.. This
is a nonlocal (fractional) counterpart of the classical Calderén problem arising in electrical
impedance tomography where one obtains information about the electrical properties of some
bounded domain by doing voltage and current measurements on the boundary [39, 40]. In
[36] the study of the fractional Calderén problem is extended for “rough” potentials ¢, i.e.
potentials which are in general bounded Sobolev multipliers. First order perturbations were
studied in [7] assuming that the fractional part dominates the equation, i.e. s € (1/2,1), and
that the perturbations have bounded fractional derivatives. A higher order version (s € R\ Z)
of the fractional Calder6n problem was introduced and studied in [10]. These three articles
[7, 10, 36] motivate the study of higher order (rough) perturbations to the fractional Laplacian
(—A)* in equation (1)). The natural restriction for the order of P(x, D) in theorems[L.1and
is then 2s > m so that the fractional part governs the equation .

The fractional Calderén problem for s € (0,1) has been studied in many settings. We refer
to the survey [37] for a more detailed treatment. In the work [36] stability was proved for
singular potentials, and in [34] the related exponential instability was shown. The fractional
Calder6n problem has also been solved under single measurement [14]. The perturbed equation
is related to the fractional magnetic Schrodinger equation which is studied in [9) 24) 25| 26]. See
also [4] for a fractional Schrodinger equation with a lower order nonlocal perturbation. Other
variants of the fractional Calderén problem include semilinear fractional (magnetic) Schrodinger
equation [19, 20] 24] 25], fractional heat equation [21],35] and fractional conductivity equation [8]
(see also [0l 13] for equations arising from a nonlocal Schrodinger-type elliptic operator). In the
recent work [10], the first three authors of this article studied higher order versions (s € R™\ Z)
of the fractional Calderén problem and proved uniqueness for the Calderén problem for the
fractional magnetic Schrédinger equation (up to a gauge). This article continues these studies
by showing uniqueness for the fractional Schrodinger equation with higher order perturbations
and gives positive answer to the question 2.5 posed in [10].

1.3. Examples of fractional models in the sciences. Equations involving fractional Lapla-
cians like have applications in mathematics and natural sciences. Fractional Laplacians
appear in the study of anomalous and nonlocal diffusion, and these diffusion phenomena can
be used in many areas such as continuum mechanics, graph theory and ecology just to mention
a few [2, 5, 12, 27, 33]. Another place where the fractional counterpart of the classical Lapla-
cian naturally shows up is the formulation of fractional quantum mechanics [22], 23]. For more
applications of fractional mathematical models, see [5] and the references therein.
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1.4. The organization of the article. In section [2| we introduce the notation and give pre-
liminaries on Sobolev spaces and fractional Laplacians. We also define the spaces of rough
coefficients (Sobolev multipliers) and discuss some of the basic properties. In section 3| we prove
theorem in detail. Finally, in section 4| we prove theorem but as the proofs of both
theorems are very similar we do not repeat all identical steps and we keep our focus in the
differences of the proofs.
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2. PRELIMINARIES

In this section we recall some basic theory of Sobolev spaces, Fourier analysis and fractional
Laplacians on R™. We also introduce the spaces of Sobolev multipliers and prove a few properties
for them. Some auxiliary lemmas which are needed in the proofs of our main theorems are given
as well. We follow the references [1], [15] 29] 28], 38, [41] (see also section 3 in [10]).

2.1. Sobolev spaces. The (inhomogeneous) fractional L?-based Sobolev space of order r € R
is defined to be

H™(R") = {u € L' (R") : F1((-)"a) € L*(R")}
equipped with the norm
ull g (remy = |F

)
Here 4 = F(u) is the Fourier transform of a tempered distribution u € .#/(R"), F~! is the
inverse Fourier transform and (z) = (1 + |z[*)%/2. We define the fractional Laplacian of order
s € R\ Zas (—A)Sp = F1(|]* ¢) where ¢ € .#(R") is a Schwartz function. Then (—A)*
extends to a bounded operator (—A)%: H"(R") — H"2%(R") for all » € R by density of .7 (R")
in H"(R™).

Let 2 C R™ be an open set and F' C R” a closed set. We define the following Sobolev spaces

H}(R”) = {u e H"(R") : spt(u) C F}

H"(Q) = closure of C°(2) in H"(R")
H' () = {ulq :uwe H'(R")}
Hy(Q) = closure of C°(2) in H"(Q).

It follows that H"(Q) C Hj(Q), H'(Q) C HL(R™), (H"(Q))" = H"(Q) and (H"(Q))* =

EI () for any open set 2 and r € R. If Q is in addition a Lipschitz domain, then we have

H"() = HG(R") for all r € R and Hj(Q) = HG(R") when r > —1/2 such that r ¢ {1,353}
More generally, let 1 < p < oo and r € R. We define the Bessel potential space

H™P(R") = {u € ' (R") : F1((-)"a) € LP(R™)}
equipped with the norm

D —a

)
We also write F~1({-)"@) =: J"u where the Fourier multiplier J = (Id—A)'/2 is called the Bessel

potential. We have the continuous inclusions H"?(R") < H"P(R") whenever r > ¢ [41]. By the
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Mikhlin multiplier theorem one can show that (—A)®: H™P(R") — H"~2%P(R") is continuous
whenever s > 0 and 1 < p < co. The local version of the space H™P(R") is defined as earlier by
the restrictions

H"™P(Q) ={u|qg:ue H"P(R")}
where 2 C R™ is any open set. This space is equipped with the quotient norm
[0l ey = E {0l gy 2 w € HPRT), wlo = v}.

We have the continuous inclusions H"P(Q) — H"?(Q)) whenever r > t by the definition of the
quotient norm.
We also define the spaces

HPP(R™) = {u e H"P(R") : spt(u) C F'}
H"™P(Q) = closure of C°(Q) in H™P(R™)
HyP () = closure of C2°(Q) in H™P(Q)

where F' C R” is a closed set. Note that H™P(Q) C HP(Q) since the restriction map
lo: H™P(R™) — H™P(Q) is by definition continuous. One can also see that H™P(Q2) C HJ"(R").
If Q is a bounded C*°-domain and 1 < p < oo, then we have [38, Theorem 1 in section 4.3.2]
~r7p — T‘7p n
H (Q)fHﬁ (R"), seR
1
HYP(Q) = H™(Q), 5 < .
p
Some authors (especially in [7, 36]) use the notation W"P(§2) for Bessel potential spaces.
We have decided to use the notation H™P(2) so that these spaces are not confused with the
Sobolev-Slobodeckij spaces which are in general different from the Bessel potential spaces [11].
The equation we study is nonlocal. Instead of putting boundary conditions we impose
exterior values for the equation. This can be done by saying that v = f in Q. if u— f € H*(Q).
Motivated by this we define the (abstract) trace space X = H"(R")/H"(Q2), i.e. functions in
X are the same (have the same trace) if they agree in Q.. If Q is a Lipschitz domain, then we
have X = H"(§2e) and X* = Hg"(R").

2.2. Properties of the fractional Laplacian. The fractional Laplacian admits two important
properties which we need in our proofs. The first one is unique continuation property (UCP)
which is used in proving the Runge approximation property.

Lemma 2.1 (UCP). Let s € Rt \Z, r € R and v € H"(R"). If (—=A)%uly = 0 and uly =0
for some nonempty open set V.C R™, then u = 0.

Lemma [2.1]is proved in [I0] for s > 1 by reducing the problem to the UCP result for s € (0,1)
in [I5]. Note that such property is not true for local operators like the classical Laplacian (—A).
The second property we need is the Poincaré inequality, which is used in showing that the
fractional Calderén problem is well-posed.

Lemma 2.2 (Poincaré inequality). Let s € RY \ Z, K C R" compact set and v € Hj (R™).
There exists a constant ¢ = ¢(n, K, s) > 0 such that

||UHL2(Rn) <c H(_A)s/zu)

L2(R")

Many different proofs for lemma are given in [10]. We note that in the literature, the
fractional Poincaré inequality is typically considered only when s € (0,1).

Finally, we recall the fractional Leibniz rule, also known as the Kato-Ponce inequality. It
is used to show the boundedness of the bilinear forms associated to the perturbed fractional
Schrodinger equation in the case when the coefficients of the PDO have bounded fractional
derivatives.
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Lemma 2.3 (Kato-Ponce inequality). Let s >0, 1 <r < o0, 1< g <00 and1 < py < 0o such

that % = i + q% = p% + q% [ff c LPQ(R"); Jsf c LPI(RH)7 g€ qu(R") and J%g € Lq2(R”)7

then J*(fg) € L"(R™) and
HJs(fg)HLT(R”) < C(”JsfHLm(Rn) HgHqu(R”) + ”fHLP2(R") ||Jsg||Lq2(R")>
where J® is the Bessel potential of order s and C' = C(s,n,r,p1,p2,q1,q2)-
The proof of lemma [2.3| can be found in [I7] (see also [16], [1§]).

2.3. Spaces of rough coefficients. Following [28, Ch. 3], we introduce the space of multipliers
M(H" — H') between pairs of Sobolev spaces. Here we are assuming that r,¢ € R. The
coefficients of P(z, D) in theorem will be picked from such spaces of multipliers.

If f € D'(R™) is a distribution, we say that f € M(H" — H') whenever the norm

1£llne = sup{|(F.uv)] s w0 € C2R), gy = N0l ey = 1}

is finite. Here (-, -) is the duality pairing. By My(H" — H') we indicate the closure of C>°(R")
in M(H" — H') Cc D'(R™). If f € M(H" — H') and u,v € C>(R") are both non-vanishing,
we have the multiplier inequality

(3)

u v
|<fa ’LL’U>| = [
[wll ey 101 -t (moy

By density (2.3 can be extended to act over v € H"(R"),v € H {(R"). Moreover, each
f € M(H" — H") gives rise to a multiplication map my : H"(R™) — H'(R") defined as

(my(u),v) == (f,uv) forall uwe H"(R"),ve H (R").

[l e ey N0l =2 emy < Nl lall e ey 101 -2 eny -

We have as well the unique adjoint multiplication map m} : H “{(R") — H~"(R") such that
(m}(v),u) := (f,uv) forall uwe H(R"),ve HYR™).

Since one sees that the adjoint of my is m}, the chosen notation is justified. For convenience,
in the rest of the paper we will just write fu for both my(u) and m}(u).

Remark 2.4. The spaces of rough coefficients we use are generalizations of the ones considered
in [36]. In fact, the space Z—35(R™) used there coincides with our space M(H® — H™*).

In the next lemma we state some elementary properties of the spaces of multipliers. Other
interesting properties may be found in [28].

Lemma 2.5. Let \,u > 0 and r,t € R. Then

(i) M(H" — H') = M(H™" — H™"), and the norms associated to the two spaces also
coincide.

(ii) M(H™A — H™*) < M(H" — H?) continuously.
(iii) M(H" — H') = {0} whenever r < t.
Proof. Let f € D'(R™) be a distribution. Then by just using the definition we see that
1l = sup {1, w0} 5,0 € CZRY), Jull gy = ol amy = 1}
= sup{[(f,vu)| ; v,u € CR"), [0l g (gny = llull g--n (@ny = 1} = [[fll-t,—r-
Observe that the given definition of || f||,+ is equivalent to the following:
1l = sup{l (s v 5 0,0 € CE®), [l g gamy < 1, 0 geqamy < 1-
Since A, u > 0, we also have
ol gy < Nllgrggmy s 10—y < ol s -

This implies || f|/r: < [|f|lr—x,t4+p, Which in turn gives the wanted inclusion.
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(ii1)| If 0 < r < t, then this was considered in [28, Ch. 3]. The proof given there recalls the
easier one for Sobolev spaces ([28, Sec. 2.1]), which is based on the explicit computation of
derivatives of aptly chosen exponential functions.

If r < ¢ < 0, then by point [(i)] we have M(H" — H*) = M(H~* — H™"). We need to show
that M(H~t — H™") = {0} whenever 0 < —t < —r. This reduces the problem back to the case
of non-negative Sobolev scales.

If r <0 <t then —r > 0. Now by point we have M(H" — H') C M(H™t") —
H'Y) = M(L? — H'). It is therefore enough to show that this last space is trivial, which again
immediately follows from the case of non-negative Sobolev scales.

If r < 0 <t, then the problem can be reduced again to the earlier cases. O

Remark 2.6. We also have Mo(H™™* — H'™) C My(H" — H*) whenever \, i > 0, since the
inclusion in 18 continuous.

Remark 2.7. In light of lemma we are only interested in M(H" — H') in the case
r > t, the case r < t being trivial. For our theorem this translates into the condition
m < 2s. We decided not to consider the limit case m = 2s in this work, as our machinery (in
particular, the coercivity estimate ) breaks down in this case. However, it should be noted
that since by assumption we have m € Z and s € 7, the equality m = 2s can only arise if m is
odd, which forces s =1/2 + k with k € Z. This case was excluded in [7,[15] as well.

The next lemmas relate our spaces of multipliers with some special Bessel potential spaces.
This is interesting since in the coming section [3| we will consider the inverse problem for coeffi-
cients coming from such spaces. We start with a general result.

Lemma 2.8. Let  C R" be an open set and let t € R and r € R be such that t > max{0,7}.
The following inclusions hold:
(i) H™>=(Q) C Mo(H™" — H~') whenever r’ > max{0,r}.
(i1) HS/’OO(Q) C Mo(H™" — H~') whenever ' > max{0,r} such that ' ¢ {3,3,3,...} and
Q is a Lipschitz domain.
(iii) H" () C Mo(H™" — H™') whenever ' > t and r' > n/2. The same holds true for
Hg (R™) if Q is a Lipschitz domain, and for H} (Q) when Q is a Lipschitz domain and

¢ f{i,3,3. .}

Proof. Throughout the proof we assume that u,v € C2°(R") such that [[ul yj—rgny = 0]l gre(rny =
1. In parts and we can assume that r' < t since if v’ > ¢, then we have the continu-
ous inclusion H™®(Q) < H""*°(Q) where max{0,7} < " < t (such " always exists since
t > max{0,r}).

Let f € H'>(Q). Now f = fi + f> where f € C2(2) and | fal o o ) < €. Then

|(f2, uv)| < HfQUHHT'(R") HUHH*T'(R") <C Hf2”HT'v°°(R") ”UHHT'(R") HUHH—T(R”)
S CE ”UHHt(Rn) = CE.
Here we used the Kato-Ponce inequality (lemma

‘ J" (fav) < C([[f2ll oo (o

and the assumption max{0,r} <+’ <t. Therefore || f — fi||_, _, = [|f2||_, _; < C'e which shows
that f € Mo(H™" — H™Y).

Let f € Hy™(Q). Now f = f1 + fo where f; € C°(Q2) and 1f2ll o7 00y < € By the
definition of the quotient norm H-HH,J,OO(Q) we can take F' € H™°(R") such that Flg = fo
and HFHHr’,oo(Rn) <2 ||f2]]HT/7w(Q). The assumptions imply the duality (H~" (Q))* = Hj' (Q)

7
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H" (Q). Using the Kato-Ponce inequality for the extension F' we obtain as in the proof of part

that

[ 77 )] gy < I Wiy e ey < 2C el ey I ey < 2
and hence
|[(f2, uv)| < HfQUH(H*T'(Q))* HUHH*T'(Q) < Hf2UHHr ||U”H T(R™)
< ’ J" (F) < 2Ce.
L2(Rn)

This shows that f € Mo(H ™" — H™").

(iii)| Let f € H" (). Now f = fi + f» where fi € C(Q) and || fol| o (gny < €.
Theorem 7.3] implies the continuity of the multiplication H™ (R") x H 1t(]R”) H (R™) when
r’ >t and 7’ > n/2. We obtain

(o) < ol g gy Nl ey < C 1 Foll g ey 101 ey el gy ey < Ce

Hence f € My(H™" — H™'). If Q is a Lipschitz domain, then H% (R™) = H"' (). If in addition
¢ {132 .}, we also have H}' (Q) = H"' (Q). O
Note that the assumptions in theorem satisfy the conditions of the previous lemma since
then r = |a| — s and ¢ = s. The following lemma gives examples of spaces of lower order
coefficients (|a| < s).
Lemma 2.9. Let Q C R"™ be an open set and t > 0. The following inclusions hold:
(i) LP(Q) C Mo(H® — H™') whenever 2 < p < oo and p > n/t. Especially, if Q is bounded,
then L>(Q) C My(H® — H™Y).
(ii) H™(Q) € Mo(HY — H™') whenever r > 0 and r > n/2 —t. The same holds true for
H%(]R") if Q is a Lipschitz domain, and for H[(S2) when Q is Lipschitz domain and
135
¢ {5, 5,5, )
froof. Throughout the proof we assume that u, v € C2°(R") such that [[ul[ p2gny = [|0]l gre(rn) =
K%’Let f € LP(Q2). By density of C°(€2) in LP(Q2) we have f = fi + f2 where f1 € C°(Q)
and ‘fg

the continuity of the multiplication LP(R") x H*(R") <+ L?(R") (|3, Theorem 7.3]) and we have
(Foruw)| < || ot g, Nl 2y < | 2]

This gives that f € Mo(HY — H~%). If Q is bounded, we have L>®(2) — LP(Q) for all
1 < p < o0, giving the second claim.

mLet f € H(Q). Now we have f = fi + fo where f; € C°(Q) and | f2ll grr (mny < €. The
assumptions on r imply that the multiplication H"(R") x H*(R") — L?(R") is continuous ([3),
Theorem 7.3]). We obtain

’ < € where ]?2 is the zero extension of fo € LP(£2). The assumptions on p imply

(R™)

Lo [0]l ey < Ce

[(f2,u0)| < || fovl 2y [l 2y < C N foll ey N0 e ggny < Ce

and therefore f € Mo(H" — H~'). The claims for HZ 5(R™) and H{j($) follow as in the proof of
part |(iii) m of lemma |2 - 8| from the usual identifications for Lipschtiz domains. O

As mentioned above we put ¢ = s > 0 in theorem and the condition in lemma [2.9] is
satisfied. Note that under the assumption |a| < s we have My(H® — H~%) C My(H*l*l —
H~*). Hence we can choose the lower order coefficients from a less regular space in theorem
(compare to lemma [2.8)).
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3. MAIN THEOREM FOR SINGULAR COEFFICIENTS

In this section, to shorten the notation, we will write [|-|| 4., ||-||;2 and so on for the global
norms in R” when the base set is not written explicitly.

3.1. Well-posedness of the inverse problem. Consider the problem

(4) (—A)%u + Z ao(D%u) =F in Q,
lo]<m
u=f in Q.
and the corresponding adjoint-problem
(5) (—A)'w + ) () D*(aqu) = F* in Q,
la|<m
u' = f* in Q..

Note that if u,u* € H*(R") and a, € M(H*l®l — H=%) = M(H® — H!*=%), then a,(D%u) €
H7%(R"™) and D*(aqu*) € H™*(R™) matching with (—A)%u, (—A)*u* € H7*(R").
The problems (3.1]) and (3.1)) are associated to the bilinear forms

(6) Bp(v,w) 1= ((=A)"v, (=A)*Pw)gn + Y (aa, (D v)w)ge
laj<m

and

(7) Bp(v,w) := ((=A)*%v, (=A)Pw)gn + > (g, v(D*w))gn,
la]<m

defined on v,w € C°(R™). In the latter terms of the bilinear forms we have written the dual
pairing as (-,-)gn since a, is now a distribution in the whole space R™ in contrast to section
where a,, is an object defined only in €.

Remark 3.1. Observe that Bp is not symmetric, which motivates the introduction of the bi-
linear form B}. Moreover, one sees by simple inspection that Bp(v,w) = Bp(w,v) for all
v,w € CX(R™). This identity holds for v,w € H*(R™) as well by density, thanks to the follow-
ing boundedness lemma.

Lemma 3.2 (Boundedness of the bilinear forms). Let s € Rt \Z and m € N such that 2s > m,
and let aq € M(H*"1®l — H=%). Then Bp and By, extend as bounded bilinear forms on
H*(R™) x H5(R™).

Proof of lemma[3.2 We only prove the boundedness of Bp, as for B}, one can proceed in the
same way. The proof is a simple calculation following from inequality (2.3)). Let u,v € C2°(R"™).
We can then estimate that

|Bp (v, w)] < [{(=28)%0, (=) 2w)ga] + Y [{da, D*vw)gn]

laj<m

IN

ol sy [0 s ey + D aallsjag,—s | D0l gramtol oy ]l s n)

laj<m

<1+ D Naallscjan—s | Tl 0]l ms@n)-
|| <m
Now the claim follows from the density of C°(R™) in H*(R™). O

Next we shall prove existence and uniqueness of solutions for the problems (3.1)) and (3.1).
To this end, we will use the following form of Young’s inequality, which holds for all a,b,n € RT
9



and p,q € (1,00) such that 1/p+1/¢ = 1:

(8) ap < "

aP + nb?.
The validity of ([3.1) is easily proved by choosing a1 = a(qn)~'/¢ and b; = b(¢qn)'/¢ in Young’s
inequality a1by < af/p + b%/q.

Lemma 3.3 (Well-posedness). Let Q C R™ be a bounded open set. Let s € Rt \ Z and m € N
be such that 2s > m, and let a, € My(H*~1®l — H=%). There exist a real number > 0 and a
countable set X C (—p,00) of eigenvalues A\ < Ao < ... — 00 such that if X € R\ X, for any
f e H(R") and F € (H*(Q))* there ewists unique u € H*(R™) such that u — f € H*(Q) and

Bp(u,v) — Mu,v)q = F(v) for all ve H%(Q).
One has the estimate
lallzrsny < € (1l + 1 oy ) -
The function u is also the unique u € H*(R™) satisfying

+ Z agD* =X |u=F

lo|<m
in the sense of distributions in Q) and uw — f € ﬁs(Q) Moreover, if (3.1) holds then 0 ¢ .

Proof. Let @ :=u — f. The above problem is reduced to finding a unique @ € H 5(€2) such that
Bp(u,v) — Mu,v)q = F( ), where F := F — Bp(f,-) + M(f,-)a. Observe that the modified
functional F belongs to (H*())* as well, since by lemma [3.2| we have for all v € H*()

F ()] < [F)] + Bp(f,0)] + AL 0)al < (1P ey + (€ + A1 arsae) ol s -

Since a, € MO(H5_|O‘| — H7?), for any € > 0 we can write aq = @q,1 + a2, Where aq €
C®(R™) N M(H*"1*l = H~*) and laa2lls—|a|,—s < € Thus by formula (2.3), the continuity of
the multiplication H"(R™) x H*(R™) — H?*(R™) for large enough r € R (see [3, Theorem 7.3])
and the fact that a1 € C°(R™) C H"(R") for all 7 € R we obtain

9)
[{aa, D*vw)| < |{aq,1, D*vw)| + [(@qa,2, DY vw)]
< laaallzr @) 1Dl z-s @ 1wl zs@n) + laa2lls—|a), s Dl gs-tar@n |0 s @)
< cllwllarsqen) (

where r € R is large enough (r > max{s,n/2} is sufficient). If |a| < s, from formulas (3.1)) and
(3.1) with p = ¢ = 2 we get directly

(10) (@ D*00)| < C ([[0] s gy 0] 2y + llolro )

< O(e M olFaqam + ellollirsry)

@ 10l ot-s ey + €llvll e )

for a constant C independent of v, w, €. If instead |«| > s (observe that we can not have |a| = s,
because s can not be an integer), we use the interpolation inequality

2 1
ol grei—= gy < Cll 2ty ™ol Gy = Cllolzagay 10l 5

in order to get

2 1
[, D®vw)| < Cllwlar=gany (1072l 10l + ellell e ) -

10



Then by formula (3.1]) with

2—lal/s = v H\Of|/5 1 s 8

L2(Rn) Hs(R") P:F7 q:ma

a= v
|

n==e
we obtain

aas D) < ey (5 ollaeny + llolren)
for a constant C' independent of v, w, . Now we use formula again, but this time we choose

a= vl 2@y, b=lvllgegny, a=p=2 n=e/ElD

This leads to

1) {aa Do) < © 525 o]l aggem ol rocamy + el Rn))

< (ol oy + 20l

< & (0l + ellol % m)
< O (52 0] Zagg + 0]
= LZ(Rn) Hs(Rn)

where C, C’ are constants changing from line to line. Observe that C’ can be taken independent

of a. Eventually, using and . we get
(12)  Bp(v,v) > |r<—A>S/%HL2<Rn> = 3 (aa, Do)

laf<m

2 ”(—A)S/ZUH%%W) - <(62;"” + 671)””“%2(11@) + EHUH%IS(R”)> -
By the higher order Poincaré inequality (lemma [2.2)) (4.1)) turns into
Bp(v,v) = ¢ (H(_A)S/QUH%Q(RW) + ||U|\%2(Rn)) ~ ((62;”1 + 6_1)”””%2(1@) + GHUH%{S(R"))

> cllolf3goqgny = € (€777 + € [0lZaqan) + ellolliroqen))

for some constant ¢ = ¢(2,n, s) changing from line to line. For e small enough, this eventually
gives the coercivity estimate

2 2
(13) Bp(v,v) = col|[vllgs@ny — #llvllZ2gn)
for some constants ¢y, i > 0 independent of v.
As a consequence of the coercivity estimate, Bp(-,-) + u(-,-) L2(Re) 1S an equivalent inner
product on H 5(Q2). Therefore, by the Riesz representation theorem there exists a bounded

linear operator G/, : (H*(Q))* — H5() associating each functional in (H*(€))* to its unique
representative in the inner product Bp(-,-) + u(:, ) 2(rn) on H*(Q). Thus @ := = G, I verifies

Bp(t,v) + p{t, v) p2@mny = F(v) forall ve H(Q)

and it is the required unique solution @ € H *(§2). Moreover, G, induces a compact, self-adjoint
and positive operator G, : L*(Q) — L%(Q2) by the compact Sobolev embedding theorem. The
remaining claims follow from the spectral theorem for G/, and from the Fredholm alternative
as in [15]. O

By the above lemma both problems (3.1) and (3.1) have a countable set of Dirichlet

eigenvalues. Throughout the paper we will assume that the coefficients a, are such that 0 is
11



not a Dirichlet eigenvalue for either of the problems. That is, we assume that

Ly e solves (— u + ao D% = 01in ) and ulg, =0,
(14) if H?*(R™) sol A)® la|<m GaD? 0in Q and ulg, =0
thenu =0
and
(15) {if u* € H*(R") solves (—A)%u* + Z‘a|§m(—1)|a\D°‘(aau*) =01in Q and u*|g, =0,
then u* =

With this in mind, we shall define the DN maps. Consider the abstract trace space X :=
H*(R™)/H*(Q2) equipped with the quotient norm

[[f]llx == inf |If = @lgsmn), [f€H(R")
pEHS(Q)

and its dual space X*. We use these in order to define the DN maps associated to the problems
(3.1) and (3.1]), which we study in the following lemma.

Lemma 3.4 (DN maps). Let Q C R" be a bounded open set. Let s € R\ Z and m € N such
that 2s > m, and let ao € Mo(H*~1®l — H=%). There ezist two continuous linear maps

Ap: X — X* defined by (Ap[f],]g]) := Bp(uys,g)
and

Ap: X — X*  defined by (Ap[f],[g]) :== Bp(u}, g)
where uy, u} are the unique solutions to the equations

(—A)u + Z aaDu=0 in Q u—feH Q)

la|<m
and
—i—Z DD agu*) =0 in Q, u*—fe H Q)
la|<m
with f,g € H*(R™). Moreover, the identity (Ap[f],[g]) = ([f], Aplg]) holds.
Proof. We show well-definedness and continuity only for Ap, the proof being similar for A%.
We note that such unique solutions exist by lemma
If € H%(2), then uslg, = f = urie|a., and also uy, usie both solve (—A)*u+ Pu =0 in

(). By unicity of solutions, we must then have that uy and uy,4 coincide. On the other hand,
if v € H*(Q2), then ¢|q, = 0. These two facts imply the well-definedness of Ap, since

Bp(ufig, 9+ 1) = Bp(ug,g) + Bp(ug,¥) = Bp(uy, g).
The continuity of Ap is an easy consequence of lemma [3.2] and the estimate in lemma[3.3] If
f.g € HR") and 6, € H*(Q), then

[(APf] D] = [Bp(us—g,9 = )| < Cllug—gllasllg — ¢llas < CIIf = dllmsllg — llar-
By taking the infimum on both sides with respect to ¢ and 1, we end up with

[(Ap[f], 9D <C inf ||f = ¢llgs inf g —llas = Cll[f]llxIlg]llx-
€Hs(Q) YeH(Q)

The well-posedness result proved above implies that for all f,g € H*(R"™) we have (Ap[f], [g])
Bp(uy,eq), where e4 is a generic extension of glg, from Q. to R™. In particular, (Ap[f],[g]) =
Bp(uy,uy). By lemma|3.2f this leads to

<AP[f] l9]) = Bp(ug, uy) = Bp(ug,us) = (Ap[gl, [f])
which conlcudes the proof. O

Remark 3.5. We should observe at this point that a priori Ap has no reason to be the adjoint
of Ap, as the symbols would suggest. However, the identity we proved in lemma|3.4) shows that

this is in fact true, and thus there is no abuse of notation.
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3.2. Proof of injectivity. The proof of injectivity is based on an Alessandrini identity and
the Runge approximation property for our operator, following the scheme developed in [15].

Lemma 3.6 (Alessandrini identity). Let Q C R™ be a bounded open set. Let s € Rt \ Z and
m € N such that 2s > m. Forj = 1,2, let aj, € Mo(H*™l®l — H=*). For any f1, f» € H*(R"),
let uy,ul € H*(R™) respectively solve
(—=A)’uy + Z a1D% =0 in Q, u—fie€ fIS(Q)

ol <m

and
5+ Z DDYagpuz) =0 in Q uh—foe H*(Q).
|la|<m
Then we have the integral identity
(Ap, = Ap)[A], [f2)) = D ((ar.a — a2,0), Durus).
a|<m

Proof. The proof is a simple computation following from lemma

((Ap, = Ap)Ails [f2]) = (A [f1], [f2]) — (Ar[f1], [f2]) = (Ap [Ail, [f2]) — (LAl AR, Lf2])
= Bp, (u1,u3) — Bp,(us,u1) = Y ((a1,0 — 2,0), Dugu). O
la|<m

Lemma 3.7 (Runge approximation property). Let Q, W C R"™ respectively be a bounded open
set and a non-empty open set such that W N Q = (0. Let s € RT\ Z and m € N be such that
2s >m, and let a, € Mo(H*™1®l — H=5). Moreover, let R := {us—f: f € C*(W)} C H¥(Q)
where uy solves

(—A)uy + Z ao D%y =0 in Q, wup—fe H5()

|a]<m
and R* := {u} — [ feCX(W)} C H5(Q) where u} solves
P+ Z Dl pe (aquy) =0 in Q, uy—f€ H5(9).
lo|<m

Then R and R* are dense in H*(Q).

Proof. The proofs of the two statements are similar, so we show only the density of R in H*(£).
By the Hahn-Banach theorem, it is enough to prove that any functional F' acting on H 5(Q)
that vanishes on R must be identically 0. Thus, let F' € (H5(2))* and assume Flup—f)=0
for all f € C’é’O(W) Let ¢ be the unique solution of

(16) Ayg+ Y (-DDagg) =—F in Q, ¢eH(Q).

la|<m

In other words, ¢ is the unique function in H*() such that By (¢, w) = —F(w) for all w €
H?*(Q2). Then we can compute

(17) 0=F(uy — f) = =Bp(¢,uy — f) = Bp(¢, f)
= (A f,(=A)%¢) + > (aa, D" f9)
laf<m
= (f,(=4)%¢).

On the first line of (3.2) we used that ¢ € Hs (2) and uy solves the equation in 2, and on the last

line we used the support condition for f. By the arbitrariety of f € C°(W) we have obtained

that (—A)®¢ = 0 in W, and on the same set we also have ¢ = 0. Using the unique continuation
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result for the higher order fractional Laplacian given in lemma we deduce ¢ = 0 on all of
R™. The vanishing of the functional F' now follows easily from the definition of ¢. O

Remark 3.8. We remark that using the same proof one can show that rqR C L?*() and
rqR* C L*(Q) are dense in L*(S)), where rq is the restriction to Q. If F € L*(Q), then F
induces an element in (H*(Q))* via the inner product F(w) := (F, row)q, where w € H*(Q).
Hence one can choose the solution ¢ in equation with F' as a source term and complete
the proof as in equation showing that (rqR)*+ = {0} in L*(Q) (similarly (roR*)* = {0} ).

We are ready to prove the main result of the paper.

Proof of theorem[1.1 Step 1. Since one can always shrink the sets Wi and W if necessary,
we can assume without loss of generality that W3 N Wy = 0. Let vy,ve € C°(Q2). By the

Runge approximation property proved in lemma we can find two sequences of functions
{fiktren C CX(Wj), j = 1,2, such that

k= fietvr+rig, uy, = for vt rog
where uq g, u3 . € H %(£2) respectively solve
(—A)SULk + Z al,aDaulyk =0 in Q, uLk — fl,k S ﬁS(Q)
la]<m
and

Yusy+ > (DD ageus,) =0 in Q, upy— for € HY(Q)

laj<m

and ry g, r2x — 0in ﬁs(Q) as k — o0o. By the assumption on the DN maps and the Alessandrini
identity from lemma [3.6] we have

(18) 0= <(AP1 - APZ)[fl,k]? [f?,k’]> = Z <(a1’a _ a’2,a)aDau17ku;’k>
loe|<m
fd Z <(a1,a - a2,a), DaT’Lkuch) + Z <(al7a _ a27a)’ DaU1T27k>
la|<m la|<m
+ Z <(a1,oc - CLQ,a), Do‘vlvg).
la]<m

However, for the first two terms on the right hand side of (3.2)) we can deduce

> {(ara — ag.a), D¥rigus )| < D [{(ara — az,a), Drygus )|

lo|<m la|<m
< Cllusillaslrelms Y lave = azalls—jal,—s = 0
loe|<m
and

| Z ((a1,0 — a2,0), D v1r21)| < Z [((a1,a — a2,a), D17 )]

laj<m laj<m

lorllzs ) llata = azalls—jaf,—s — 0

la|<m
as k — oo. Thus by taking the limit in formula (3.2)) we obtain
(19) Z ((a1,0 — a2,q), D*vyv2) =0 for all wvy,vy € CZ°(Q).

laj<m
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Step 2. Assume that we have a1 o|o = a2.|q for all a such that |a| < N for some N € N.
We show that the equality of the coefficients also holds for « for which |a] = N and this will
prove the theorem by the principle of complete induction.

To this end, consider vy € CZ°(Q2), and then take v; € C°() such that v(z) = z*
on supp(ve) € Q. Recall that since o = (a1, a9,...,a,) € N" is a multi-index and = =

(x1,22,...,xy) € R™, the symbol z% is intended to mean x{'z3%...x%". With this choice of

v1, v2, equation (3.2]) becomes

(20) 0= (a1 —azp), Dovivs) = Y ((a1,— ag), D’ (x*)va)

|8]<m N<|Bl<m
= > llarg—a2p), D’ (@va) + > (a1, — agg), D (x%)vy)
N<|Bl<m |B|=N, fa

+ ((a1,0 — a2,0), D*(x%)v2).
If |5] > N = |a], then there must exist k& € {1,2,...,n} such that 8y > aj. This is true also if
|B] = N with 8 # «a. In both cases we can compute
D (a) = (07}a1") (97225°) ... (97raf") =0
because 85,’@“&:2’“ = 0. Therefore formula (3.2)) becomes
0= ((a1,a — az,a), D*(%)v2)rr = al{a1,a — a2, V2)rn

which by the arbitrariety of vo € C2°(€2) implies a; o|o = a2,4|q also for a for which |a| = N.
Step 3. We have proved that a1 o|o = a2,a|q for all o of the order |a| < m. Since this entails
Pi|q = P|q, the proof is complete. O

4. MAIN THEOREM FOR BOUNDED COEFFICIENTS

We shall now study the case when the coefficients of PDOs are from the bounded spaces
H7">>°(Q). It should be noted, however, that most of the considerations of the previous section
still apply identically.

4.1. Well-posedness of the inverse problem. We shall define the bilinear forms for the

problems (3.1)) and (3.1]) respectively by (3.1]) and (3.1)), just as in the case of singular coefficients.
These will turn out to be bounded in H*(R™) x H*(R™) as well, but the proof we give of this

fact is a fortiori different. Since now we assume that a, € H™>(Q) C L>®(Q) for r, > 0, the
duality pairing (an, D*vw) becomes an inner product over € and we write (a(z)D%,w) to
emphasize that the coefficients a, = aq(x) are now functions defined in €.

Lemma 4.1 (Boundedness of the bilinear forms). Let & C R™ be a bounded Lipschitz domain
and s € RY\ Z, m € N such that 2s > m. Let a, € H">(Q), with 1, defined as in (1.2)).
Then Bp and B} extend as bounded bilinear forms on H®(R™) x H*(R™).

Remark 4.2. Since s € RT \ Z and || < m < 2s, we also have that max(0, || —s) <714 < s
for 6 >0 small (see equation (1.2))).

Proof of lemma[4.1. We only prove the boundedness of Bp, as for B}, one can proceed in the
same way. If v,w € C(R"), then

/aawDavdx
Q

Since 2 is a Lipschitz domain and rq > —1/2, rq ¢ {3,2,2...}, we have (H ()" =
Hi>(©2) € H™(R2). Therefore

21 [aa(z)D%, w)al < Cllaqw||gra @)Dl g-ra (@) < ClAawl] gra @ D0l g-ra @)

< Il (Aaw) | 2 [0 1ot 0
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where J = (Id — A)'/2 is the Bessel potential and A, is an extension of a, from Q to R” such
that Aulo = ao and [|[Aa||gra.co@n) < 2[|aallfra.c (). Since 74 > 0, we may estimate the last
term of (4.1)) by the Kato-Ponce inequality given in lemma

[T (Aaw)|| 2gny < C (| Aall Lo @m)ll T w| L2 @ny + 11T Aall oo @y lw]| 2(rnY)

< Cl|Aal| rrasee gmy[|wl] rra (mey < Cllaal| grasco (@) l|wl] grra (mey-
Substituting this into (4.1)) gives
(22) [(aa(z) D, w)a| < Cllaallgra.co(@)lwll mra @)l g1ei-ra )
< Cllaall gra.c@)llwl] ms ey |0]] s mm)

given that both r, < s and |a| — r, < s hold by remark Eventually we obtain

|Bp(v,w)] < [{(=A)"v, (=A)Pw)gn| + Y (a0 D, w)gn|
la|<m
< wllgs@emllvlgs@n + Y Cllaal ey lwllzs @ 0l s @
la]<m
< Cllwllgs@n)llvll s mn)- O
Next we shall prove existence and uniqueness of solutions for the problems (3.1)) and ( .

The reasoning is similar to the one for the proof of lemma[3.3] but the details of the computatlons
are quite different.

Lemma 4.3 (Well-posedness). Let Q C R™ be a bounded Lipschitz domain and s € RT \ Z,
m € N such that 2s > m. Let aq, € H™*(Q), with ro, defined as in (1.2)). There exist a real
number p > 0 and a countable set 3 C (—,Li, o0) of eigenvalues A\ < A < ... = oo such that if
A€ R\ X, forany f € H*(R") and F € (H*(Q2))* there exists a unique uw € H*(R™) such that
u— fe H*) and
Bp(u,v) — Mu,v)g = F(v)  for all ve H*(Q).
One has the estimate
lullzs ey < € (1 llsemy + 1F N 75y )

The function u is also the unique u € H*(R™) satisfying

ro | (—A)° + Z ag(x)D* =X |u=F

lo|<m
in the sense of distributions in Q and u — f € H*(). Moreover, if (3.1)) holds then 0 ¢ X.

Proof. Again it is enough to find unique @ € H*(Q) such that Bp(ii,v) — Ai,v)q = F(v),
where F':= F — Bp(f,-) + X(f,-)q. Consider v,w € C°(2) and r, # 0. Since 0 < r, < s, the

interpolation inequality
1 «@ «
HwnHm(Rn < Cllwll gz ol e
holds. Using this and formula (4.1]) we get, for a constant C' = C(2, n, s,7,) which may change

from line to line,

(23)  [{aa(@) D0, w)al < Cllaa eIl e ] e @)
1 «@ [e%
< Cllaall sy [0l e 10l 2 (s o 5
< laal| grrasee (@)l[v ] s rmy (Cem/(m_s wll 2@y +6Hw||Hs(Rn)) :

In the last step of (4.1) we used formula (3.1]) with

8 o S o T/ o 1-rq/s _
0= 2 p= e b= el o= Ol =
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If instead r, = 0, just by formula (4.1) we already have
[(@a(z) D%, w)q| < CHaa”LOO(Q)||U||HS(R")||U)HL2(R")-

Moreover, the two estimates above also hold for v,w € H*(€) by the density of C°°(€) in
H?*(Q2). Now we use formula (3.1]) again, but this time we choose

q=p=2, b=|lg@r, a=Ivlwy, n= s/ (s=ra)
This leads to

[(@a (@)D, v)al < llaal s 10]lmsgn) (CE/ 0= 0] 2n) + ellvllarsgan) )

= |laall mra-e (o) (Cfra/(Ta*s)HUHm(Rn) 0]l s ey + €lloll s oy

ra+s

< llaall mra= 9 (CGW‘S [Vl1 72 gy + €(C + 1)\|”H%1s(Rn))
rats

< Cllaallras@) (€557 02z + ellel3ren)

M+ts
< CMaal ros () <€M*s HU”%Q(R”) + EHUH%S(R”))
where C = C(Q,n,s,1,) and C' = C'(Q,n,s) are constants changing from line to line and

M € [0, s) is defined by M := max|4|<m Ta- Eventually

(24) Bp(0,0) 2 | (~A)20) 3y — 3 [(aa(@) D%, v)ql

ol <rm
Mis
> ||(—A)S/QUH%2(Rn) - <€M*S [0]172 gy + €||U||%{s(w)> > laallmra @)
|a|<m
5 Mis
(A2 gy = C'C” (5 02y + ellolrn)

where O — E\a|§m laa |l ra.(q) is a constant independent of € and v. By the higher order
Poincaré inequality (lemma [2.2)) (4.1]) turns into

. Mis
Br(0,0) > € (I(-8)"20 g+ Iol3aqan) — CC” (S5 ol + ooy
M+s
> c||v||%{s(Rn) - c'c” (EM*S ||UH%2(R”) + EH’UH%Is(Rn))

for some constant ¢ = ¢(€2,n,s) changing from line to line. For e small enough (notice that
M — s < 0), this eventually gives the coercivity estimate

(25) Bp(v,v) > co||v||%{5(Rn) - MHU”%?(]R”)
for some constants cg, u > 0 independent of v. The proof is now concluded as in lemma|3.3 [

Assuming as in Section [3] that both (3.1]) and (3.1)) hold, by means of the above lemma [4.3] we
can define the DN-maps Ap, A} just as in lemma We also arrive at the same Alessandrini
identity and Runge approximation property which we get in lemmas [3.6) and [3.7]

Lemma 4.4 (DN maps). Let Q C R" be a bounded Lipschitz domain and s € R* \ Z, m € N
such that 2s > m. Let aq € H™ (), with 1 defined as in (1.2). There exist two continuous
linear maps

Ap: X — X* defined by (Ap[f],[g]) :== Bp(uy,g)
and
Np: X — X* defined by (Np[f],lg]) == Bp(u},g)
where uy, u} are the unique solutions to the equations
(A)Yu+ Y aa(z)Du=0 in Q, u-—feH(Q)
la|<m
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and
“+ > (-)DYaa(z)uT) =0 in Q, ut— fe HY(Q)
jaf <m

with f,g € H*(R™). Moreover, the identity (Ap[f],[g]) = ([f], Aplg]) holds.

Lemma 4.5 (Alessandrini identity). Let Q C R™ be a bounded Lipschitz domain and s € RT\Z,
m € N such that 2s > m. Let a, € H™>(Q), with ro defined as in (1.2). For any fi, fo €
H*(R™), let uy,us € H¥(R™) respectively solve

)iug + Z a1 o(z) D% =0 in Q, ul—fléﬁls(ﬂ)
la|<m
and
5+ Y (DD aga(z)us) =0 in Q, uj— fr € H(Q).

la|<m

Then we have the integral identity
(Ap, = AR (o)) = D (410 — a2,0) D ur, u3)o.
|ao| <m

Lemma 4.6 (Runge approximation property). Let Q, W C R"™ respectively be a bounded Lips-
chitz domain and a non-empty open set such that WNQ = 0. Let s € RT\Z, m € N such that
2s > m. Let aq € H™™(Q), with ro defined as in (L.2). Moreover, let R := {uy — f: f €
Ce(W)} € H3(Q), where us solves

—AYur+ Y aa(@)Dup=0 in Q, uy—feH(Q)

|| <m
and R* := {u; —f:feC®(W)} C H5Q), where u} solves

P Y (DD aa(@)uy) =0 in Q, uf— f € HY(Q).

lal<m

Then R and R* are dense in H*(2).

4.2. Proof of injectivity.

Proof of theorem[1.3 The proof is virtually identical to the one of theorem the unique
difference being in the way the error terms of the Runge approximation are estimated. We make
use of , which relied on the Kato-Ponce inequality instead of multiplier space estimates. In
this way we get

D (01,0 = 02,0) D P15 mn | <Y [((a1,a — 62,0) D1k, U3 4 ) En |

la|<m laj<m

< Cllus gll = ey Irel ey Y llat.a = az.allgras) — 0

la|<m
and
| ) (016 — a2,0) D01, rap)e | £ Y (01,0 — 62,0) D1, 72 )R
la|<m la|<m

< Cllra il s eyl vl s (mey Z llat,a —

laj<m

() — 0.0
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