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Abstract

This dissertation studies the inverse problem for a specific partial differential equation,
the so called fractional Calderón problem or inverse problem for the fractional Schrödinger
equation. The dissertation focuses mainly on uniqueness results for inverse problems
involving the Dirichlet to Neumann map, the object encoding exterior measurements in
the model. The included articles show how this information suffices to determine the
parameters involved in the problems considered.

The first article considers a fractional version of the inverse problem for the conductivity
equation, showing that the unknown conductivity can be recovered from the DN map even
in the case of a single measurement. The technique employed is the fractional Liouville
reduction, which allows one to state the problem in terms of the fractional Schrödinger
equation. The second article extends the known result for the fractional Schrödinger
equation to the magnetic case, showing how a nonlocal perturbation and a potential can
be both recovered up to a natural gauge. This resembles the results known for the local
case. The third article explores the fractional Schrödinger equation in a high order regime,
proving the injectivity of the relative DN map in both the perturbed and unperturbed
cases. This requires a high order Poincaré inequality, which has been studied in the
same paper. The fifth article follows the third one, extending the study to general local
high-order perturbations: the coefficients of any local lower order operator are shown to
be recoverable from the DN map. The fourth article studies the perturbed fractional
Calderón problem by means of the Caffarelli-Silvestre extension, transforming it into a
local problem with mixed Robin boundary conditions, eventually showing that the bulk
and boundary potentials can be recovered simultaneously. This requires some technical
Carleman estimates and the construction of a new class of CGO solutions.

The introduction of the dissertation contains a survey of the literature related to both
the classical and fractional Calderón problems, as well as a collection of the definitions of
the function spaces appearing in the articles. The appendix is an informal introduction
to key concepts in inverse problems and EIT, thought for the use of the general public.
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Tiivistelmä

Tämän väitöskirjan tarkoitus on syventää ymmärrystä tietystä osittaisdifferentiaaliy-
htälöiden inversio-ongelmasta, niin sanotusta fraktionaalisesta Calderónin ongelmasta tai
fraktionaalisen Schrödingerin yhtälön inversio-ongelmasta. Väitöskirja keskittyy pääasi-
assa mallin ulkomittauksia karakterisoivan objektin eli Dirichlet-to-Neumann -kuvauksen
(DN-kuvauksen) injektiivisyyteen. Väitöskirjaan sisältyvät artikkelit osoittavat, kuinka
DN-kuvaus riittää määräämään ongelman tuntemattomat aineparametrit.

Ensimmäisessä artikkelissa tarkastellaan johtavuusyhtälöä koskevan inversio-ongelman
fraktionaalista versiota ja osoitetaan, että tuntematon johtavuus voidaan määrittää DN-
kuvauksesta jopa yhden mittauksen tapauksessa. Käytetty tekniikka on fraktionaali-
nen Liouvillen reduktio, jonka avulla ongelman voi lausua fraktionaalisen Schrödingerin
yhtälön muodossa. Toinen artikkeli laajentaa fraktionaalisen Schrödingerin yhtälön tun-
netun tuloksen magneettiseen tapaukseen osoittaen, kuinka epälokaali perturbaatio ja
potentiaali voidaan molemmat määrittää luonnollista epäyksikäsitteisyyttä lukuunot-
tamatta. Tämä muistuttaa lokaalin tapauksen tunnettuja tuloksia. Kolmannessa ar-
tikkelissa tutkitaan korkean kertaluvun fraktionaalista Schrödingerin yhtälöä ja osoite-
taan DN-kuvauksen injektiivisyys sekä perturboidussa että ei-perturboidussa tilanteessa.
Tähän tarvitaan korkean kertaluvun Poincarén epäyhtälöä, jota on tutkittu samassa ar-
tikkelissa. Viides artikkeli on jatkoa kolmannelle laajentaen tarkastelun yleisille lokaaleille
korkean asteen perturbaatioille: minkä tahansa lokaalin alemman asteen operaattorin
kertoimien osoitetaan olevan määritettävissä DN-kuvauksesta. Neljännessä artikkelissa
tutkitaan perturboitua fraktionaalista Calderónin ongelmaa Caffarellin-Silvestren laajen-
nuksen avulla muuttamalla se lokaaliksi ongelmaksi, jolla on sekoitetut Robin-reunaehdot.
Lopulta osoitetaan, että sisä- ja reunapotentiaalit voidaan määrittää samanaikaisesti.
Tämä vaatii joitain teknisiä Carlemanin estimaatteja ja CGO-ratkaisujen uuden luokan
rakentamista.

Väitöskirjan johdanto sisältää kirjallisuuskatsauksen sekä klassisesta että fraktionaalis-
esta Calderónin ongelmasta ja kokoelman artikkeleissa esiintyvien funktioavaruuksien
määritelmistä. Liite on epävirallinen suurelle yleisölle tarkoitettu johdanto inversio-
ongelmien ja sähköimpedanssitomografian (EIT) avainkäsitteisiin.
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1. Introduction

1.1. The classical Calderón problem. The problem of whether it is possible to de-
termine the electrical conductivity inside of a domain by measurements performed on
its boundary is one of the oldest and most classical inverse problems for partial differ-
ential equations. It first entered the mathematical literature in the year 1980, when the
prominent Argentinian mathematician Alberto Calderón published his results about the
method nowadays called Electric Impedance Tomograhy (EIT) as a way of prospecting
for minerals. The famous analyst considered this problem in the 1940’s while working as
an engineer at YPF (Yacimientos Petrolíferos Fiscales, or Fiscal Oilfields), but did not
publish the obtained results until many years later. The idea consists in first delivering
current to the ground by means of some aptly placed electrodes, and then measuring the
resulting voltage. The measurements should contain information about the composition
of the materials hidden underground, since each substance is characterized by a specific
electric conductivity and thus can influence the flow of current ([124, 138]).

The main characteristic that makes this method interesting is that it is non-invasive,
meaning that it allows the recovery of information about the inside of an object from
measurements on its surface. It is easy to see how this may be applied in the field of
medical imaging: taking advantage of the fact that the tissues composing the human
body have different electric conductivities ([66]), it is possible to obtain a representation
of the internal structure of the body of a patient using electric measurements performed
on his skin. This has lead to great advances in various occasions (see for instance [49] for
cancer detection, [25] for the monitoring of vital functions, and many more [56]). Other
applications of the EIT method were invented in seismic and industrial imaging (see e.g.
[52]).

Let us now introduce the Calderón problem in mathematical language. We represent
the object whose electric properties we want to study (may it be an industrial product,
the body of a patient or the whole Earth) with a bounded open set Ω ⊂ Rn with Lipschitz
boundary. The unknown will be the electric conductivity γ : Ω → (0,∞) of the object.
Next, we consider the Dirichlet problem for the conductivity equation

{
∇ · (γ∇u) = 0 in Ω
u = f on ∂Ω

,

1



and enconde the boundary measurements in the so called Dirichlet-to-Neumann (DN)
map Λγ : H1/2(∂Ω) → H−1/2(∂Ω) . Λγ associates prescribed voltages to measured
currents. The inverse problem thus consists in deducing γ from the knowledge of Λγ.
Using the substitution q = (∆

√
γ)/
√
γ, one can reformulate the Calderón problem as an

inverse problem for the Schrödinger equation:
{

(−∆ + q)u = 0 in Ω
u|∂Ω = f

This method is known as Liouville reduction [124]. In order to have unique solutions
to the above equation, it is typical to assume that 0 is not a Dirichlet eigenvalue of the
operator (−∆ + q). Given that one can express the DN map Λq for the Schrödinger
equation in terms of the DN map Λγ for the conductivity equation, the inverse problem
now requires to determine the potential q uniquely from Λq.

The Calderón problem can be generalized to contain first order perturbations. The
result is the inverse problem for the magnetic Schrödinger equation (see [104]), which re-
quires to find the electric and magnetic potentials existing in a medium using information
derived solely from voltage and current measurements on its boundary. The components
of such field are A for the magnetic potential and q for the electric one. The Dirichlet
problem for the magnetic Schrödinger equation looks like

{
(−∆)Au+ qu := −∆u− i∇ · (Au)− iA · ∇u+ (|A|2 + q)u = 0 in Ω
u = f on ∂Ω

,

where f is the prescribed boundary value for the voltage u. As in the conductivity case,
the DN map ΛA,q : H1/2(∂Ω) → H−1/2(∂Ω) encodes the boundary measurements. The
inverse problem thus consists in finding A, q in Ω knowing just ΛA,q. This is however
impossible to do in general, because the problem contains a natural gauge: while the
electric potential q can be recovered completely, the magnetic potential A can only be
recovered up to a gradient if Ω is known to be simply connected (see [104] for the case
n ≥ 3 and [82] for n = 2). It is however interesting to note that in the recent result [86]
the authors proved the possibility to recover both the electric and the magnetic potential
in a nonlinear magnetic Schrödinger equation from partial data.

This perturbed version of the Calderón problem has a connexion with the inverse
scattering problem with a fixed energy ([104]). Moreover it arises by reduction in the
study of the Maxwell ([98]), Schrödinger ([40]), Dirac ([105]) and Stokes equations ([55]),
as well as in the study of isotropic elasticity ([106]).

1.2. The fractional Calderón problem. Another generalization of the Calderón prob-
lem consists in replacing the Laplace operator (−∆) with the fractional Laplacian (−∆)s,
where s ∈ (0, 1). This new operator, which will be defined in section 3.6, is in many ways
different from the classical Laplacian: the main difference is that (−∆)s is a nonlocal
operator, in the sense that it does not preserve supports. Because of this, the fractional
Laplacian enjoys properties of unique continuation and approximation which are impos-
sible for the classical Laplacian. Eventually, this means that stronger results are possible
for the associated inverse problem (see 2).

As we have seen in section 1.1, the Calderón problem is eventually reduced to the
study of the inverse problem for the Schrödinger equation. For this reason it is considered
appropriate to use the name fractional Calderón problem when referring to the inverse
problem for the fractional Schrödinger equation (see however our article (A) for a deeper
understanding of this connection). This problem was introduced in the seminal paper

2



[46] in the following form. Let Ω ⊂ Rn be a bounded open set, s ∈ (0, 1), and define
Ωe := Rn \ Ω as the exterior of Ω. Consider the direct problem

{
((−∆)s + q)u = 0 in Ω

u = f on ∂Ω

and its associated DN map Λq : Hs(Ωe) → (Hs(Ωe))
∗. We see that Λq is well-defined as

a bounded linear operator as soon as the potential q is such that 0 is not a Dirichlet
eigenvalue of ((−∆)s + q), that is

If u ∈ Hs(Rn) solves ((−∆)s + q)u = 0 in Ω and u|Ωe = 0, then u = 0.

Moreover, one proves that under stronger assumptions the DN map has the form Λqf =
(−∆)su|Ωe (see lemma 3.1 in [46]). The inverse problem now consists in recovering the po-
tential q from the knowledge of the DN map Λq. Many results were reached in uniqueness,
stability and recoverability for the fractional Calderón problem (see section 2.2).

Fractional inverse problems have recently attracted the interest of numerous fields of
science. This is mainly due to the fact that the fractional Laplace operator can be
related to the process of anomalous diffusion ([139]), and thus the fractional Schrödinger
equation can be used to describe those diffusion processes in which the dependence of
the mean squared displacement on time is non linear ([7]). Many results were obtained
for instance in turbulent fluid dynamics ([29], [31]), ecology ([57], [96], [110]), image
processing ([48]), mathematical finance ([3], [90], [127]), quantum mechanics [87, 88],
elasticity ([128]) and physics in general ([37], [39], [47], [87], [100], [142]), among many
others ([125, 115, 7, 113, 15]).

Another application of the fractional Calderón problem is for indirectly detecting cor-
rosion. This kind of problem can be formulated by means of the Robin inverse problem
([67, 68, 126, 11]), which in turn can be related to the inverse problem for the fractional
Schrödinger equation via the Caffarelli-Silvestre extension ([18], (D)).

2. Calderón type problems

2.1. The classical Calderón problem. Being a prototypical elliptic inverse problem,
the Calderón problem has received large attention since its formulation ([20]). In this
section we will recall the main known results and open problems, while referring to the
surveys [138, 124] for greater detail.

2.1.1. Boundary determination. The first and most natural question is whether the con-
ductivity γ and its normal derivatives can be recovered at the boundary. Kohn and
Vogelius showed that this can be done and obtained uniqueness results for real-analytic
([72]) and piecewise real-analytic ([74]) conductivities. These results are local, in the
sense that the DN map needs to be known just in an open set of the boundary in order to
determine γ in that open set. A stability result based on a microlocal technique ([133])
then extends the uniqueness to continuous conductivities. In all the above methods, the
trick always is to test the DN map against functions oscillating rapidly at the boundary
point where the conductivity is to be determined.

2.1.2. CGO solutions. Complex geometrical optics (CGO) solutions to the conductivity
equation were first devised by Sylvester and Uhlmann ([132, 131]) with the goal of emu-
lating the behaviour of Calderón’s exponential solutions ([20]) at high frequencies. These
are functions of the form

u(x) = ex·ρ(1 + ψ(x, ρ)) ,
3



where the error ψ is small when |ρ| is large and vanishes when |ρ| → ∞. The construction
in the cited papers is suited for C2 conductivities, but it has been upgraded to different
regularity assumptions ([104, 123, 134]) and even to the case of the magnetic Schrödinger
equation ([80]). The significance of these CGO solutions is that they can be used as test
functions for the reconstruction of the conductivity from the DN map.

2.1.3. Results in dimension n ≥ 3. Using specific CGO solutions to test an integral
identity derived from the assumption that Λγ1 = Λγ2 via a reduction to the classical
Schrödinger equation, it is possible to show the uniqueness result γ1 = γ2 for strictly
positive C2 conductivities ([132]). This requires the boundary determination from [72] as
well. In the following years this result has been improved on various occasions. In [51]
Haberman and Tataru showed uniqueness for C1 conductivities, in [23] Caro and Rogers
extended the result to Lipschitz conductivities, and in [50] Haberman treated the case of
conductivities belonging to W 1,n ∩ L∞(Ω), n = 3, 4, thus showing that the gradient of
the conductivity does not need to be bounded. Whether uniqueness still holds for less
regular conductivities in higher dimension is an open problem at the time of writing.

The main stability result in dimension n ≥ 3 was proved by Alessandrini in [4], where
a logarithmic modulus of continuity was shown to appear

‖γ1 − γ2‖L∞ ≤ C
(
|log‖Λ1 − Λ2‖ 1

2
,− 1

2
|−σ + ‖Λ1 − Λ2‖ 1

2
,− 1

2

)
, σ ∈ (0, 1)

for smooth conductivities. The optimality of this estimate was later proved by Mandache
([95]), showing that the Calderón problem is severely ill-posed. However, better results
were obtained by adding a-priori information about the conductivity ([5, 112]). It is
thought ([103]) that the stability estimates get better closer to the boundary. It was also
proved ([65]) that in the case n = 3 the inverse problem for the Helmoltz equation shows
increased stability at high frequencies.

A reconstruction result for the Schrödinger equation was obtained by Nachman and
Novikov ([102, 108]). Using the CGO construction, they showed that the potential q
can be determined from the associated DN map Λq. Using the Liouville reduction and
the boundary determination results cited above, they were able to reconstruct the corre-
sponding conductivity γ as well.

2.1.4. Partial data. It is often impossible to perform measurements on the whole bound-
ary of the domain, as some parts of it might be inaccessible. Whenever the DN map is
known only on part of the boundary, we are dealing with a partial data problem. The
question of whether it is possible to determine the potential q from measurements per-
formed only on an arbitrary open subset of the boundary is an open problem (see [36]
for a result in the linearized case). However, Isakov proved uniqueness ([64]) when the
remaining part of the boundary belongs to a plane or a sphere, making use of a reflection
trick. This technique was later generalized to the Maxwell system ([22]; see also the
related paper [109] for the general inverse problem). In the case in which the domain is
only known to be strictly convex, [70] grants global identifiability for a DN map measured
on any open subset of the boundary for functions supported in a neighbourhood of its
complement. The method in [70] extends that of [132], as it requires a new kind of CGO
solutions of the form

u = e−
1
h

(φ+iψ)(a+ r) ,

where ψ solves an eikonal equation, a is a smooth solution of a complex transport equa-
tion, h is a small parameter and r is an error function whose L2 norm vanishes as h→ 0.
It is also essential that φ is a limiting Carleman weight, and the existence of such func-
tion is granted by Carleman estimates. This uniqueness result was then improved with a
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reconstruction method ([101]) and extended to both the magnetic case ([35, 71, 79, 136])
and the Maxwell system ([26]).
An extreme partial data case was studied in [107], where just one voltage-current mea-
surement was shown to suffice for the estimation of the size of an inclusion embedded in
a two-dimensional body with discontinuous conductivity.

2.1.5. Results in dimension n = 2. In two dimensions also methods from complex analysis
are available. While the Calderón problem in 2D is formally determined by variable
counting, one can also construct a larger class of CGO solutions in this case. This has led
to better results in the case n = 2, first and foremost the one by Astala and Päivärinta
([9]) which shows uniqueness for an L∞ conductivity. Their technique has also been
used for numerical reconstruction procedures ([62, 63]). Bukhgeim ([16]) proved that a
potential q ∈ C1 can be uniquely determined starting from Cauchy data. This result was
later improved by Blåsten, Imanuvilov and Yamamoto for q ∈ Lp, p > 2 ([13]), and again
by Blåsten, Tzou and Wang for p > 4/3 ([14]). Uniqueness was also proved in [30] for
an unbounded conductivity with a specific a-priori estimate depending on the domain Ω.
Further, in [60] Imanuvilov, Uhlmann and Yamamoto solved the partial data problem in
two dimensions for the Schrödinger equation, and thus for the conductivity equation as
well, by showing that the potential is uniquely determined in a bounded domain by the
Cauchy data on an arbitrary open subset of the boundary.

2.1.6. Anisotropic conductivities. In some materials, such as crystals or muscle tissue,
the electrical properties in a point depend on direction. In these cases, the conductivity
is better represented by a positive definite, smooth, symmetric matrix, and it is said to
be anisotropic. The version of the Calderón problem which asks to recover such matrix
conductivity from the associated DN map has been shown by Tartar not to be solvable
in general because of a natural gauge ([73]). However, uniqueness up to the gauge class
for n = 2 has been proved in [8] for L∞ conductivities, using a change of variable (the
isothermal coordinates, [2, 130]) to reduce the problem to the isotropic one. In the case
n ≥ 3 the problem is of geometric nature and better discussed on manifolds ([89]). We
refer to [138] and the references therein for more details.

2.1.7. Inaccurately known boundary. The accuracy of the recovered conductivities can be
affected by multiple factors, among which the exact knowledge of the boundary and the
contact impedances. In a typical application, the experimenter may not have precise data
about the shape of the boundary of the domain of interest. In a series of papers ([75,
76, 77, 78]) various aspects of this problem were addressed and some new computational
methods were proposed.

2.2. The fractional Calderón problem. The fractional version of the Calderón prob-
lem has been object of intensive study in the years following its formulation in the sem-
inal paper [46] by Ghosh, Salo and Uhlmann. This problem enjoys several properties
that distinguish it from its classical counterpart and make it somehow more manageable
([33, 34, 118, 116, 43]). Already from a heuristic point of view, a simple variable count
shows that the problem is overdetermined in any dimension. In this section we list some
of the main results and techniques, referring to [125] for more details and references.

2.2.1. Uniqueness. The main uniqueness result was achieved in the paper [46] itself for
L∞ potentials. The proof is based on a strong approximation property enjoyed by the
fractional Schrödinger equation, the Runge approximation property, which itself depends
on the unique continuation property for the fractional Laplacian. It is interesting to
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note that the principal uniqueness result is already formulated for all dimensions and for
partial data, while the corresponding problem is open in the classical case for n ≥ 3 and
requires a different technique in dimension 2. Low regularity was investigated in [118],
where the proof of uniqueness was extended to potentials in Ln/2s(Ω) and W−s,n/s(Ω).

2.2.2. Stability. Similarly to its classical counterpart, the fractional Calderón problem
was shown to be severely ill-posed, due to the presence of a logarithmic modulus of
continuity. In a series of papers from year 2017 ([120, 118, 119, 117]), Rüland and Salo
showed that one has

‖q1 − q2‖Ln/2s(Ω) ≤ C|log‖Λq1 − Λq2‖∗|−σ , σ ∈ (0, 1) ,

and moreover that this type of stability is optimal. This result was made possible by a
careful analysis of the quantitative aspects of the estimates contained in the uniqueness
proof for low regularity potentials.

2.2.3. Reconstruction and single measurement. The possibility of recovering and even
reconstructing a low regularity potential q from its associated DN map Λq was shown
in [45], even in the case of a single measurement. Ths kind of result is specific to the
fractional case, and sets it strongly apart from the classical problem. The methods
involved require a unique continuation property from sets of vanishing measure, as well
as various regularization schemes. More related results for full-data reconstruction were
obtained using monotonicity methods ([53, 54]).

2.2.4. Related problems. Perturbed versions of the fractional Calderón problem have been
studied in several recent papers. Variable coefficients were considered in two different
settings in our paper (A) about the fractional conductivity equation and in [44], where
an anisotropic case was studied. Different versions of a fractional magnetic Schrödinger
equation have been the object of several works, among which our papers (B) and (C)
(see also [91, 93, 24]). A lower order nonlocal perturbation was introduced in [12], while
our paper (E) considers general local perturbations. Other variants include semilinear
equations ([83, 84]), the fractional heat equation ([85, 118]) and nonlocal Schrödinger-type
elliptic operators ([21]), among many others (see for instance [94, 121, 42]).

At this stage there are of course many problems left open in the field. Some of them
were outlined in our article (C).

3. Preliminaries: function spaces and the fractional Laplacian

In this section we recall the main function spaces used in the included articles, as well
as the definition of the omnipresent fractional Laplace operator. We follow [1, 46, 99, 97,
135, 140] as references.

3.1. Inhomogeneous fractional L2-based Sobolev spaces. Let r ∈ R. If u ∈ S (Rn)
is a Schwartz function, let

(Fu)(ξ) = û(ξ) =

∫

Rn
e−ix·ξu(x)dx

indicate the Fourier transform of u. The Fourier transform can be extended to act as an
isomorphism F : S ′(Rn) → S ′(Rn) on tempered distributions. By F−1(u) we indicate
the inverse Fourier transform of u. The inhomogeneous fractional L2-based Sobolev space
of order r ∈ R is

Hr(Rn) := {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ L2(Rn)} ,
6



and its norm is defined as

‖u‖Hr(Rn) =
∥∥F−1(〈·〉rû)

∥∥
L2(Rn)

,

where 〈x〉 := (1 + |x|2)1/2. If Ω, F ⊂ Rn respectively are an open and a closed set, then
define

Hr
F (Rn) = {u ∈ Hr(Rn) : spt(u) ⊂ F}
H̃r(Ω) = closure of C∞c (Ω) in Hr(Rn)

Hr(Ω) = {u|Ω : u ∈ Hr(Rn)}
Hr

0(Ω) = closure of C∞c (Ω) in Hr(Ω) ,

where we use the symbol spt(u) to indicate the support of u. To the space Hr(Ω) we
associate the quotient norm

‖v‖Hr(Ω) = inf{‖w‖Hr(Rn) : w ∈ Hr(Rn), w|Ω = v} .

The following inclusions among the above spaces hold for any open set Ω and r ∈ R:

H̃r(Ω) ⊂ Hr
0(Ω), H̃r(Ω) ⊂ Hr

Ω
(Rn), (H̃r(Ω))∗ = H−r(Ω), (Hr(Ω))∗ = H̃−r(Ω) .

If in particular Ω is a Lipschitz domain, we also have

H̃r(Ω) = Hr
Ω

(Rn), for all r ∈ R ,

Hr
0(Ω) = Hr

Ω
(Rn), if r > −1/2 and r /∈

{
1

2
,
3

2
,
5

2
. . .

}
.

3.2. Bessel potential spaces. More in general, if 1 ≤ p ≤ ∞ and r ∈ R we can define
the Bessel potential space

Hr,p(Rn) = {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ Lp(Rn)}

and its norm

‖u‖Hr,p(Rn) =
∥∥F−1(〈·〉rû)

∥∥
Lp(Rn)

.

The name is due to the fact that J := (Id − ∆)1/2 is called the Bessel potential,
and thus F−1(〈·〉rû) = Jru. Similarly to what we did in 3.1, we define the spaces
Hr,p
F (Rn), H̃r,p(Ω), Hr,p(Ω) and Hr,p

0 (Ω) for Ω, F ⊂ Rn an open and a closed set. As
before we get the inclusions

H̃r,p(Ω) ⊂ Hr,p
0 (Ω), H̃r,p(Ω) ⊂ Hr,p

Ω
(Rn)

for all r ∈ R, 1 ≤ p ≤ ∞ and Ω ⊂ Rn open. Moreover, if Ω is a bounded C∞-domain
and 1 < p <∞ by [135, Section 4.3.2, Theorem 1] we have

H̃r,p(Ω) = Hr,p

Ω
(Rn), for all r ∈ R ,

Hr,p
0 (Ω) = Hr,p(Ω), if r ≤ 1

p
.

7



3.3. Homogeneous fractional L2-based Sobolev spaces. The norm of the fractional
Sobolev space Hr(Rn) is not homogeneous with respect to the scaling ξ → λξ. It is also
possible to define a variety of fractional Sobolev space for which this homogeneity holds:
we let

Ḣr(Rn) = {u ∈ S ′(Rn) : û ∈ L1
loc(Rn) and |·|r û ∈ L2(Rn)}

and define

‖u‖Ḣr(Rn) =

(∫

Rn
|ξ|2r |û(ξ)|2 dξ

)1/2

to be its norm. For negative r we have the inclusion Ḣr(Rn) ( Hr(Rn), while for positive
r we have Hr(Rn) ( Ḣr(Rn). When r < n/2, we have that Ḣr(Rn) is a Hilbert space;
in this case we also have that S0(Rn) is dense in Ḣr(Rn), where S0(Rn) ⊂ S (Rn) is
defined as

S0(Rn) = {ϕ ∈ S (Rn) : ϕ̂|B(0,ε) = 0 for some ε > 0} .

3.4. Semiclassical Sobolev spaces. Let h ∈ (0, 1) and r ∈ R. If u ∈ L2(Rn), we define
the semiclassical Fourier transform ([143]) as

Fscu(ξ) :=

∫

Rn
e−

i
h
x·ξu(x)dx .

Correspondingly, the semiclassical Sobolev norm will be

‖u‖2
Hr
sc(Rn) := (2πh)−n ‖〈·〉rFscu|‖2

L2(Rn) .

The semiclassical Sobolev spaces L2
sc(Rn) andH1

sc(Rn) are then defined as those subspaces
of L2(Rn) where the semiclassical norms ‖ · ‖2

L2
sc(Rn), ‖ · ‖2

H1
sc(Rn) are finite. Observe that

in these two special cases we have

‖u‖L2
sc(Rn) = ‖u‖L2(Rn) and ‖u‖H1

sc(Rn) = ‖u‖L2(Rn) + h−1‖∇u‖L2(Rn) .

3.5. Sobolev multiplier spaces. Let r, t ∈ R. Following [97, Ch. 3], we say that a
distribution f belongs to M(Hr → H t) if and only if the norm

‖f‖r,t := sup{|〈f, uv〉| ; u, v ∈ C∞c (Rn), ‖u‖Hr(Rn) = ‖v‖H−t(Rn) = 1}

is finite. Since it holds that |〈f, uv〉| ≤ ‖f‖r,t ‖u‖Hr(Rn) ‖v‖H−t(Rn), by density f acts as a
multiplier between Hr(Rn) and H−t(Rn).

One can prove many interesting properties of these multiplier spaces (see for instance
[97]). We have

M(Hr → H t) = M(H−t → H−r) , for all r, t ∈ R ,

M(Hr → H t) = {0} , if r < t ,

and if λ, µ ≥ 0 then also

M(Hr−λ → H t+µ) ↪→M(Hr → H t) .

LetM0(Hr → H t) be the closure of C∞c (Rn) inM(Hr → H t) ⊂ D′(Rn). For this space
we have

M0(Hr−λ → H t+µ) ⊆M0(Hr → H t) .
8



3.6. The fractional Laplacian. The fractional Laplacian (−∆)s is the main operator
studied in the included articles. It is a nonlocal operator of order 2s, and for this reason
its behaviour is quite different from that of the classical Laplacian, which can be described
as a local differential operator of order 2. It is however true that at the limit s→ 1− we
recover the classical behaviour from the nonlocal operator [32].

One may define the fractional Laplacian in many different equivalent ways [81] in the
most typical regime s ∈ (0, 1). We use the definition (−∆)sϕ := F−1(|·|2s ϕ̂), which is
valid for ϕ ∈ S (Rn). In this case, a simple computation shows that (−∆)s : S (Rn) →
Hr−2s(Rn) is linear and continuous. Therefore, it is possible to uniquely extend it to act
on Hr(Rn) for every r ∈ R, in which case we have

(−∆)s : Hr(Rn)→ Hr−2s(Rn) .

We can do something similar for the homogeneous fractional Sobolev spaces. In this
case we define (−∆)sϕ := F−1(|·|2s ϕ̂) for ϕ ∈ S0(Rn), observe that (−∆)s : S0(Rn) →
Ḣr−2s(Rn) is an isometry with respect to ‖·‖Ḣr(Rn), and eventually extend the operator
to a continuous map

(−∆)s : Ḣr(Rn)→ Ḣr−2s(Rn)

by density, whenever r < n/2.
The fractional Laplacian can be studied more generally for s > −n/4 and u ∈ Hr(Rn),

r ∈ R. In this case we see that (−∆)su = F−1(|·|2s û) ∈ S ′(Rn), that is, (−∆)su makes
sense as a tempered distribution (see for instance section 2.2 in our paper (C)).

4. Main results

In this section we will review the results achieved in the included articles. Each of the
following subsections is dedicated to one of the articles (A) to (E). For each one of them
we will give some context, the relevant definitions, the statements of the theorems and a
sketch of their proofs.

4.1. Uniqueness for the inverse problem for the fractional conductivity equa-
tion, (A). The main goal of article (A) is to define and study a fractional counterpart
of the classical Calderón problem. In light of the recent paper [46], it was expected that
we could achieve better results than the classical ones employing the intrinsic nonlocality
of the fractional operators. We have proved in (A) that this is indeed the case.

Fix s ∈ (0, 1) and consider the fractional gradient operator ∇s : C∞c (Rn)→ L2(R2n)

∇su(x, y) := −C
1/2
n,s√
2

u(y)− u(x)

|y − x|n/2+s+1
(y − x) .

Since one sees that ‖∇su‖2
L2(R2n) ≤ ‖u‖2

Hs(Rn), this operator can be extended by density
to act on Hs(Rn). We also define the fractional divergence operator (∇·)s : L2(R2n) →
H−s(Rn) in such a way that it is the adjoint of∇s. These operators were firstly introduced
in the more general framework of [38]. They should be thought of as nonlocal counterparts
of the standard divergence and gradient; just as in the classical case, they have the
interesting property that (−∆)su = (∇·)s∇su ([(A), Lemma 2.1]).

We set up the Dirichlet problem for the fractional conductivity equation as
{

Cs
γu := (∇·)s(γ(x)1/2γ(y)1/2∇su) = 0 in Ω

u = f in Ωe
.
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One shows that this problem is well-posed ([(A), Theorem 3.1]), and thus the DN map
Λs
γ : Hs(Ωe)→ (Hs(Ωe))

∗ can be defined in a weak sense ([(A), Lemma 3.3]). The inverse
problem we are interested in now asks to recover γ knowing Λs

γ.
The main results in paper (A) are the two following theorems. Theorem 4.1 gives

uniqueness for the inverse problem for the nonlocal conductivity equation, while theo-
rem 4.2 gives a uniqueness result and a reconstruction procedure in the case of a single
measurement.

Theorem 4.1. ((A), Theorem 1.1) Let Ω ⊂ Rn, n ≥ 1, be a bounded open set, s ∈ (0, 1),
and for j = 1, 2 let γj : Rn → R be such that

{
for some γj, γj ∈ R, 0 < γj ≤ γj(x) ≤ γj <∞, for a.e. x ∈ Rn

γ
1/2
j (x)− 1 := mj(x) ∈ W 2s,n/2s

c (Ω)
.

Suppose W1,W2 ⊂ Ωe are open sets, and that the DN maps for the conductivity equations
in Ω relative to γ1 and γ2 satisfy

Λs
γ1

[f ]|W2 = Λs
γ2

[f ]|W2 , ∀f ∈ C∞c (W1) .

Then γ1 = γ2.

Theorem 4.2. ((A), Theorem 1.2) Let Ω ⊂ Rn, n ≥ 1 be a bounded open set, s ∈ (0, 1),
ε > 0, and let γ : Rn → R be such that

{
for some γ, γ ∈ R, 0 < γ ≤ γ(x) ≤ γ <∞, for a.e. x ∈ Rn

γ1/2(x)− 1 := m(x) ∈ W 2s+ε,p
c (Ω), for p > n/ε

.

Suppose W1,W2 ⊂ Ωe are open sets, with Ω ∩ W1 = ∅. Given any fixed function g ∈
H̃s(W1) \ {0}, γ is uniquely determined and can be reconstructed from the knowledge of
Λs
γ[g]|W2.

The proofs of the two above theorems are achieved by reduction. The plan is to express
the inverse problem for the fractional conductivity equation as an inverse problem for the
fractional Schrödinger equation, which is in turn well understood thanks to the previous
results ([120], [45]).

Thus our first step is to show that the fractional conductivity equation can be rephrased
as a special case of the fractional Schrödinger equation for an appropriate choice of the
potential q, namely q = (−∆)s(1−γ1/2)

γ1/2
. In fact, as shown in [(A), Theorem 3.1] we have

that for all u ∈ Hs(Rn)

Cs
γu = γ1/2((−∆)s + q)(uγ1/2)

holds, which entails that for all g ∈ Hs(Ωe)
{

Cs
γu = 0 in Ω

u = g in Ωe
⇔

{ (
(−∆)s + q

)
w = 0 in Ω

w = γ1/2g in Ωe

,

with w = γ1/2u. This is reminiscent to one of the strategies used to study the classical
conductivity equation, the so called Liouville reduction ([124]).

This is of course not enough, as one still needs to show that the DN map for the
new Schrödinger problem can be deduced from the DN map of the original fractional
conductivity problem. This issue is dealt with in [(A), Lemma 3.4] by means of the
following integral identity, holding for all f, v ∈ Hs(Rn) with support in Ωe:

Λs
qγ [f ]([v])− Λs

γ[f ]([v]) =

∫

Ωe

fv(−∆)smdx .
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Once the reduction procedure is complete, one can apply the results [120], [45] cited
above, which respectively have the effect of either proving uniqueness for the potential q
or even reconstructing it from a single measurement. The key points in these works are
the strong uniqueness and approximation results obtained in [34].

In order to complete our proof, we will need to show that the information we have
obtained about q is enough to show the uniqueness and reconstruction results for γ. This
last step makes use of the uniqueness of solutions of the fractional Schrödinger equation,
which was proved in [46].

The last section of article (A) shows how the fractional conductivity equation naturally
arises as continuous limit of a long jump random walk with weights, as it is to expect for
an equation concerning anomalous diffusion [139].

4.2. Uniqueness for the inverse problem for the fractional Schrödinger equa-
tion in a magnetic field, (B). In article (B) our main goal is to define and study
a fractional version of the classical inverse problem for the magnetic Schrödinger equa-
tion. This was, in a sense, previously studied in the paper [24], whose authours find
that no gauge exists for a certain magnetic Schrödinger equation in which all the lower
order terms are local. This turned out to be the case also in the following related works
[92, 93, 91]. In contrast, we have proved in (B) that our version of the fractional mag-
netic Schrödinger equation (FMSE), which is in a sense completely nonlocal, does indeed
posses a natural gauge.

Fix s ∈ (0, 1) and a vector potential A. Here we assume that A = A(x, y) depends on
two spatial variables x, y ∈ Rn, in order to account for the nonlocality of the problem.
We define the magnetic versions ∇s

A and (∇·)sA of the fractional gradient and divergence
operators weakly as

〈∇s
Au, v〉 := 〈∇su+ Au, v〉

and
〈(∇·)sAv, u〉 := 〈v,∇s

Au〉 ,
for all u ∈ Hs(Rn) and v ∈ L2(R2n). These respectively act as operators ∇s

A : Hs(Rn)→
L2(R2n) and (∇·)sA : L2(R2n)→ H−s(Rn). Observe that this way of constructing magnetic
divergence and gradient resembles the one used in the classical case [104]. The magnetic
fractional Laplacian will be the combination of the two, namely (−∆)sA := (∇·)sA(∇s

A)
acting from Hs(Rn) to H−s(Rn). One sees immediately that in the case A ≡ 0 this
reduces back to the fractional Laplacian (see (B)).
Next we set up the Dirichlet problem for the fractional magnetic Schrödinger equation as

{
(−∆)sAu+ qu = 0 in Ω
u = f in Ωe

,

and define the DN map Λs
A,q : Hs(Ωe) → (Hs(Ωe))

∗. Again, the inverse problem is to
recover A and q in Ω from Λs

A,q. This turns out to be impossible in general, because
of the natural gauge associated to the equation. We say that the couples of potentials
(A1, q1) and (A2, q2) are in gauge when it happens that the corresponding operators
(−∆)sAj + qj coincide, and we indicate this eventuality with (A1, q1) ∼ (A2, q2). As we
have proved in [(B), Lemmas 3.8, 3.9], for all couples (A1, q1) it is possible to find a
different couple (A2, q2) such that (A1, q1) ∼ (A2, q2). Thus, we say that the fractional
magnetic Schrödinger equation enjoys the gauge ∼.

Observe that the gauge holding for MSE, which we indicate with ≈, is quite different
from ∼. One may define ≈ as

(A1, q1) ≈ (A2, q2) ⇔ ∃φ ∈ G : (−∆)sA1
(uφ) + q1uφ = φ((−∆)sA2

u+ q2u) ,
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for all u ∈ Hs(Rn), where G := {φ ∈ C∞(Rn) : φ > 0, φ|Ωe = 1}. In lemmas 3.9 and 3.10
of (B) we proved that FMSE enjoys only ∼, while MSE only enjoys ≈. The reason of
this difference emerges from the nonlocality of FMSE: as shown in formula (10) in (B),
the coefficient of the gradient term in FMSE is related only to the antisymmetric part Aa
of the vector potential A, and such antisymmetry requirement does not allow FMSE to
enjoy ≈. It follows that, in contrast to the classical case, the scalar potential q can not
be in general uniquely determined for FMSE.

It is clear from the discussion above that we can only hope to recover (A, q) up to ∼;
this is what we prove in our main theorem:

Theorem 4.3. ((B), Theorem 1.1) Let Ω ⊂ Rn, n ≥ 2 be a bounded open set, s ∈ (0, 1),
and let (Ai, qi) ∈ P for i = 1, 2. Suppose W1,W2 ⊂ Ωe are open sets, and that the
DN maps for the fractional magnetic Schrödinger equations in Ω relative to (A1, q1) and
(A2, q2) satisfy

Λs
A1,q1

[f ]|W2 = Λs
A2,q2

[f ]|W2 , ∀f ∈ C∞c (W1) .

Then (A1, q1) ∼ (A2, q2), that is, the potentials coincide up to the gauge ∼.
Here P is a class of potentials verifying certain technical regularity assumptions (see sec-

tion 3 in (B)). The proof of the above theorem is based on a technique initially developed
for the fractional case with A ≡ 0 in [46]. The first step is to show that the fractional
magnetic Schrödinger operator enjoys the so called weak unique continuation property
([(B), Lemmas 3.4, 4.1]), a very nonlocal property which states that any u ∈ Hs(Rn)
such that u = (−∆)sAu = 0 in some open set W must vanish identically everywhere. This
is easily achieved thanks to our assumptions on P and the previous work [114].

Next, we prove the Runge approximation property ([(B), Lemma 3.15]) for the frac-
tional magnetic Schrödinger operator. This property states that any L2(Ω) function may
be approximated arbitrarily well by the restriction to Ω of a solution to the fractional
magnetic Schrödinger equation with some exterior value f ∈ C∞c (W ), where W is any
open subset of Ωe. For this proof we use the Hahn-Banach theorem and the previously
cited weak unique continuation property.

We also need an Alessandrini identity, that is an integral identity relating the differ-
ence of the DN maps corresponding to potentials (A1, q1), (A2, q2) to the differences of
the potentials themselves. This is obtained in [(B), Lemma 3.13]. In order to extract
useful information from this identity, we test it with some aptly shaped solutions to the
fractional magnetic Schrödinger equation, which in turn are cooked up using the Runge
approximation property. Eventually, this lets us reconstruct the gauge class to which our
couples of potentials (Aj, qj) must belong.

Article (B) also contains a discussion of how our fractional magnetic Schrödinger equa-
tion naturally arises as a continuous limit of a long jump random walk with weights
depending on position. This feels like a natural generalization of both [139] and our arti-
cle (A). In the last section of the paper, we briefly entertain the idea of a hybrid fractional
conductivity-magnetic equation and show that for it we can get similar results as for the
purely magnetic case.

4.3. The higher order fractional Laplacian: unique continuation property,
Poincaré inequality and higher order fractional magnetic Schrödinger equa-
tion, (C). The third included paper deals with some properties of the high order frac-
tional Laplacian, i.e. of the nonlocal operator (−∆)s, with s ∈ (−n/2,∞) \ Z. In
particular, we investigate the unique continuation property and the Poincaré inequality,
achieving quite satisfactory results in both cases.
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We are interested in the unique continuation property for the fractional Laplacian be-
cause it has been by now extensively employed in showing uniqueness results for fractional
Schrödinger equations [45, 46, 120]. It dates back to at least Riesz [111]; subsequently
it has been used in [59] for Riesz potentials Iα. In the case s ∈ (0, 1), the unique con-
tinuation property of (−∆)s for functions in Hr(Rn), r ∈ R, was proved in [46] with a
technique based on Carleman estimates and Caffarelli-Silvestre extensions ([114, 17, 18]).
The unique continuation property for the fractional Schrödinger equation is also strictly
related to the fractional Landis conjecture, which asks to determine the maximal vanish-
ing rate at infinity of solutions of (−∆)su + qu = 0 ([122]). Our result generalizes the
unique continuation property to all s ∈ (−n/2,∞) \ Z:

Theorem 4.4. ((C), Theorem 1.1) Let s ∈ (−n/4,∞) \ Z and u ∈ Hr(Rn), r ∈ R. If
(−∆)su|V = 0 and u|V = 0 for some nonempty open set V ⊂ Rn, then u = 0. The claim
holds also for s ∈ (−n/2,−n/4] \ Z if u ∈ Hr,1(Rn) or u ∈ O ′C(Rn).

We propose a proof of the above theorem by reduction: using the decomposition
(−∆)su = (−∆)s−k(−∆)ku, with k ∈ Z and s ∈ (0, 1), we can achieve the desired
result by invoking [46]. Of course this trick will only work for u belonging to aptly chosen
function spaces. In the corollaries [(C), Corollaries 4.4, 4.5, 4.6] we obtain related results
for the case of Bessel potential spaces and homogeneous Sobolev spaces, while in [(C),
Corollary 4.2] we study Riesz potentials and in [(C), Corollary 4.3] we consider a slightly
stronger result in the case of compact support.

The second property of the higher order fractional Laplacian (−∆)s, s ≥ 0, which
we study in article (C) is the Poincaré inequality. It will be needed in the proof of
the well-posedness of the inverse problem for the fractional Schrödinger equation. The
higher order fractional Poincaré inequality has already appeared in [141] for smooth
functions in a bounded Lipschitz domain, and in [10] for homogeneous Sobolev norms.
Our contribution is to have extended some known results, given alternative proofs, and
studied the connection between the fractional and the classical Poincaré constants.

Theorem 4.5. ((C), Theorem 1.4) Let s ≥ t ≥ 0, K ⊂ Rn a compact set and u ∈
Hs
K(Rn). There exists a constant c̃ = c̃(n,K, s) > 0 such that

∥∥(−∆)t/2u
∥∥
L2(Rn)

≤ c̃
∥∥(−∆)s/2u

∥∥
L2(Rn)

.

For the sake of illustrating some possibly unnoticed connections between methods, in
our paper we present five different proofs for the fractional Poincaré inequality. The first
of the proofs is very direct, and consists in splitting low and high frequencies in the Fourier
side of the L2 norm of the fractional Laplacian; this has the pleasant effect of giving an
estimate for the Poincaré constant. The second proof, which is quite technical, derives
from the approach considered in [46] and is based on several estimates, most notably
the Hardy-Littlewood-Sobolev inequality. The third proof extends the result obtained in
[24] by means of a reduction argument. Using the interpolation of homogeneous Sobolev
spaces, we obtain a fourth proof and also an explicit constant in terms of the classical
Poincaré constant. Finally, the fifth proof uses some uncertainty inequalities from [41].

Eventually, with all the previous results in mind, we consider the higher order fractional
Schrödinger equation. We have achieved uniqueness results for the associated inverse
problem at first in the case of a singular electric potential [(C), Theorems 1.5, 1.6],
which generalizes the results obtained in [46, 120], and then in the case of non vanishing
magnetic potential, which in turn generalizes our paper (B).
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The first step towards these results consists in defining the higher order fractional
gradient in a way that is reminiscent of the one we used in our first paper (A), keeping
in mind that we now expect to get a tensor of order bsc + 1. We assume the following
definition

∇su(x, y) :=
C1/2
n,{s}√

2

∇bscu(x)−∇bscu(y)

|y − x|n/2+{s}+1
⊗ (y − x)

to hold for u smooth and compactly supported. We shall then extend this to u ∈ Hs(Rn)
by density. Next, we define the higher order fractional divergence (∇·)s by duality, and
the magnetic counterparts of the fractional gradient and divergence operators as in (B).
Their composition (−∆)sA = (∇·)sA∇s

A is our higher order magnetic fractional Laplacian,
which reduces to the magnetic fractional Laplacian considered in (B) as soon as s ∈ (0, 1),
and eventually to the fractional Laplacian (−∆)s itself if A vanishes.

Thanks to [(C), Lemma 7.4], we can express the corresponding fractional magnetic
Schrödinger equation in a more convenient form, which highlights the fractional Lapla-
cian and the perturbation components of the equation. Using this and our higher order
Poincaré inequality, we can prove the coericivity estimate for the bilinear form associated
to the fractional magnetic Schrödinger equation ([(C), Lemma 7.5]), which eventually
leads to the proof of well-posedness for the corresponding Dirichlet problem and the def-
inition of the DN map ([(C), Lemma 7.6]). This is enough to state the inverse problem,
for which we prove uniqueness in our main theorem:

Theorem 4.6. ((C), Theorem 1.7) Let Ω ⊂ Rn, n ≥ 2, be a bounded open set, s ∈ R+\Z,
and let Ai, qi verify assumptions (1)-(5) for i = 1, 2. Let W1,W2 ⊂ Ωe be open sets. If
the DN maps for the fractional magnetic Schrödinger equations in Ω relative to (A1, q1)
and (A2, q2) satisfy

Λs
A1,q1

[f ]|W2 = Λs
A2,q2

[f ]|W2 , for all f ∈ C∞c (W1) ,

then (A1, q1) ∼ (A2, q2), that is, the potentials coincide up to gauge.

The assumptions (1)-(5) are purely technical, and coincide with the ones required by
the previous results in our paper (B) and in [46] when s ∈ (0, 1) and A = 0. Observe
that, just as in our previous paper (B), we obtain here that the problem has a natural
gauge ∼: we will say that (A1, q1) and (A2, q2) are in gauge if and only if they give rise
to the same equation, that is (−∆)sA1

+ q1 = (−∆)sA2
+ q2 as operators. It is thus clear

that recovery may only be possible within the limits prescribed by the gauge, which is
exactly what we prove.

The proof itself is based on the weak unique continuation property and the Runge
approximation property, which hold for the higher order fractional magnetic Schrödinger
equation as a consequence of [(C), Remark 7.7]. We can also write an integral identity for
the equation; testing it with some aptly shaped exponential functions eventually produces
the wanted result.

Part of article (C) is dedicated to the Radon transform and region of interest tomogra-
phy. We have proved that a unique continuation property holds for the normal operator
of the d-plane transform for odd d ([(C), Corollary 4.8]), and as a consequence that the
X-ray transform enjoys a uniqueness property ([(C), Corollary 4.9]). These interesting
results are however auxiliary to the topic of the present work, and thus we will not discuss
them any further.
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4.4. The classical Calderón problem with mixed boundary conditions, (D).
This article provides a different point of view on fractional, nonlocal inverse problems by
adopting a local “Caffarelli-Silvestre perspective”. This is interesting in the reconstruction
of non-directly measurable potentials on the boundary in addition to electric and magnetic
potentials in the interior of a medium. In order to clarify the connection to the fractional
Calderón problem, we shall first describe the set-up of the problem at hand.

Let Ω ⊂ Rn be an open, bounded, smooth domain, and assume that Σ1,Σ2 ⊂ ∂Ω
are two disjoint, relatively open, smooth non-empty sets. In this setting we consider the
following magnetic Schrödinger equation with mixed boundary conditions

−∆u− iA · ∇u− i∇ · (Au) + (|A|2 + V )u = 0 in Ω,

∂νu+ qu = 0 on Σ1,

u = f on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2),

(1)

where the coefficients are supposed to be smooth and ν · A = 0 on ∂Ω. Here the set Σ1

represents an inaccessible part of the boundary where an unknown Robin coefficent q is
present. The inverse problem consists in recovering the potentials A, V and q from the
usual measurements encoded in the partial DN map ΛA,V,q : H̃

1
2 (Σ2) 7→ H−

1
2 (Σ2), f |Σ2 7→

∂νu|Σ2 . We thus combine a classical Calderón problem with a Robin inverse problem,
which arises for instance in the study of corrosion detection ([61]). In particular, we aim
at a simultaneous recovery of the potentials; see the survey [69] for some partial results.
The following is the result we achieved in (D) for the simple model described above:

Theorem 4.7. ((D), Theorem 1) Let Ω ⊂ Rn, n ≥ 3, be an open, bounded and C2-regular
domain. Assume Ω1 b Ω is an open, bounded set with Ω \ Ω1 simply connected and that
Σ1,Σ2 ⊂ ∂Ω are two disjoint, relatively open sets. If the potentials q1, q2 ∈ L∞(Σ1),
A1, A2 ∈ C1(Ω1,Rn) and V1, V2 ∈ L∞(Ω1) in the equation (1) are such that

Λ1 := ΛA1,V1,q1 = ΛA2,V2,q2 =: Λ2 ,

then q1 = q2, V1 = V2 and dA1 = dA2.

Observe that in theorem 4.7 we have allowed some “safety distance" between the com-
pact set Ω1 in which the interior potentials are defined and the sets Σ1,Σ2 on the bound-
ary. Also notice that the magnetic potential is only recovered in the sense that dA1 = dA2;
the existence of this gauge is however expected and is reminiscent of [104].

Our proof is based on the Runge approximation ideas from [6, 119], which allow the
approximation of full data CGO solutions in Ω1 by partial data solutions in the whole
domain Ω. We of course have to deal with the additional challenge due to the potential
q on the piece Σ1 of the boundary. However, we have proved that simultaneous density
results both in the bulk and on the boundary are possible in [(D), Lemmas 1.1, 4.2]: for
instance, if

S̃V,q := {u ∈ H1(Ω1) : u is a weak solution to (1) in Ω} ⊂ L2(Ω1),

we prove the following simultaneous boundary and bulk approximation result:

Lemma 4.8. Assume the consuete geometrical setting holds for Ω,Ω1 and Σ1,Σ2. Let
V ∈ L∞(Ω), q ∈ L∞(∂Ω). Then the set

Rbb := {(u|Σ1 , u|Ω1) : u|Σ1 = Pf |Σ1 and u|Ω1 = Pf |Ω1 with f ∈ C∞c (Σ2)} ⊂ L2(Σ1)× L2(Ω1)

is dense in L2(Σ1)× S̃V,q with the L2(Σ1)×L2(Ω1) topology. Here P denotes the Poisson
operator.
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The rest of the proof of theorem 4.7 is an application of the above Runge approximation
property and of an Alessandrini identity, similar to what was done in the previous articles
(A)-(C).

The above problem can be made more interesting by introducing operators whose
conductivities or potentials depend on the distance to the boundary. Let d : Ω→ [0,∞)
be a smooth function coinciding with the distance to the boundary in a neighbourhood
of ∂Ω, and let s ∈ (0, 1). Consider the problem

−∇ · d1−2s∇u− iAd1−2s · ∇u− i∇ · (d1−2sAu) + d1−2s(|A|2 + V )u = 0 in Ω,

lim
d(x)→0

d1−2s∂νu+ qu = 0 on Σ1,

u = f on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2).

(2)

The associated DN map will be

Λs,A,V,q : H̃s(Σ2)→ H−s(Σ2), f |Σ2 7→ lim
d(x)→0

d(x)1−2s∂νu|Σ2 .

We now wish to clarify the relation between this problem (and the previous one, which
corresponds to the case s = 1/2) and the fractional Calderón problem. This is done by
means of the so called Caffarelli-Silvestre extension [18]. Given a function u ∈ Hs(Rn),
we study the degenerate elliptic problem

∇ · x1−2s
n+1 ∇ũ = 0 in Rn+1

+ ,

ũ = u on Rn × {0}.(3)

It is possible to prove that the degenerate DN operator associated to this equation is
(−∆)s, the fractional Laplacian. More exactly we have

(−∆)su := cs lim
xn+1→0

x1−2s
n+1 ∂n+1ũ(x) .

This idea has been explored also in [129, 19]. In this sense, it is possible to understand
equation (2) as a localized version of the inverse problem consisting in recovering the
potentials Ã, Ṽ and q̃ in the fractional Schrödinger equation

(−(∇+ iÃ)2 + Ṽ )su+ q̃u = 0 in Σ1 ⊂ Rn,

u = f on Rn \ Σ1,

supp(f) ⊆ Σ2, from an associated DN map. In (2), the bounded domain Ω ⊂ Rn plays
the same role as Rn+1

+ in (3).

We study problem (2) in the simplified assumptions that Σ1 := Ω ∩ {xn+1 = 0},
Σ2 = ∂Ω \Σ1 and A = 0. Such geometric assumptions are not uncommon in partial data
problems. Thus we consider

∇ · x1−2s
n+1 ∇u+ V x1−2s

n+1 u = 0 in Ω,

u = f on Σ2,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = 0 on Σ1,

(4)
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for q ∈ L∞(Σ1), V ∈ L∞(Ω) and, for instance, f ∈ C∞c (Σ2). After having shown that the
direct problem is well-posed, one can consider the associated DN map

ΛV,q : f 7→ lim
xn+1→∂Ω

x1−2s
n+1 ∂νu|Σ2

and ask the relative inverse problem of simultaneously recovering q and V knowing ΛV,q.
For this question we achieved the following result in the regime s ∈ (1/2, 1):

Theorem 4.9. ((D), Theorem 2) Let Ω ⊂ Rn+1
+ , n ≥ 3, be an open, bounded and smooth

domain. Assume that Σ1 := ∂Ω ∩ {xn+1 = 0} and Σ2 ⊂ ∂Ω \ Σ1 are two relatively open,
non-empty subsets of the boundary such that Σ1 ∪ Σ2 = ∂Ω. Let s ∈ (1/2, 1). If the
potentials q1, q2 ∈ L∞(Σ1) and V1, V2 ∈ L∞(Ω) relative to problem (4) are such that

Λ1 := Λs,V1,q1 = Λs,V2,q2 =: Λ2 ,

then q1 = q2 and V1 = V2.

Since now V may be supported up to the sets Σ1,Σ2, the Runge approximation tech-
nique can not be applied anymore in Ω. We thus resort to CGO solutions to test the
Alessandrini identity deriving from the assumption that Λ1 = Λ2. However, because of
the additional Robin boundary condition on Σ1, we can not directly apply the CGO so-
lutions for the magnetic Schrödinger equation known to the literature. There has been
previous work in this respect in [27, 28] for mixed boundary condition, but in our case we
also have the additional challenge posed by the unknown potential q. In the next theo-
rem, we construct a new family of CGO solutions suited for unknown bulk and boundary
potentials:

Theorem 4.10. Let Ω ⊂ Rn+1
+ , n ≥ 3, be an open, bounded smooth domain. Assume

that Σ1 = ∂Ω ∩ (Rn × {0}) is a relatively open, non-empty subset of the boundary, and
that Σ2 = ∂Ω \ Σ1. Let s ∈ [1/2, 1) and let V ∈ L∞(Ω) and q ∈ L∞(Σ1). Then there
exists a non-trivial solution u ∈ H1(Ω, x1−2s

n+1 ) of the problem

∇ · x1−2s
n+1 ∇u+ x1−2s

n+1 V u = 0 in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = 0 on Σ1,

of the form u(x) = eξ
′·x′(eik

′·x′+ikn+1x2sn+1 + r(x)), where k ∈ Rn+1, ξ′ ∈ Cn is such that
ξ′ · ξ′ = 0, k · ξ′ = 0, and

• if s = 1/2, then ‖r‖L2(Ω) = O(|ξ′|− 1
2 ), ‖r‖H1(Ω) = O(|ξ′| 12 ) and ‖r‖L2(Σ1) = O(1);

• if s > 1/2, then ‖r‖L2(Ω,x1−2s
n+1 ) = O(|ξ′|−s), ‖r‖H1(Ω,x1−2s

n+1 ) = O(|ξ′|1−s) and ‖r‖L2(Σ1) =

O(|ξ′|1−2s).

This is proved by duality relying on new Carleman estimates for a Caffarelli-Silvestre
type extension problem, as shown in the quite technical proofs of [(D), Proposition 6.1]
and [(D), Corollary 6.4]. Using the CGO solutions from theorem 4.10 we are then able
to completely prove theorem 4.9.

4.5. Uniqueness for the higher order fractional Calderón problem with local
perturbations, (E). Firstly introduced in [46] as a fractional counterpart to the classical
Calderón problem ([137, 138]), the fractional Calderón problem was later studied in the
cases of “rough" potentials ([120]) and first order perturbations ([24]). Our article (C)
introduced and studied the higher order case s ∈ R+ \ Z. This framework motivates the
study of higher order perturbations to the fractional Laplacian, which was proposed as
an open problem in [(C), Question 2.5] and is the main focus of our article (E).
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Consider a linear partial differential operator

P (x,D) =
∑

|α|≤m
aα(x)Dα

of order m ∈ N, where the coefficients aα are functions defined in a bounded open set
Ω ⊂ Rn and n ≥ 1. Let s ∈ R+ \ Z. The Dirichlet problem for the perturbed fractional
Schrödinger equation then is

{
(−∆)su+ P (x,D)u = 0 in Ω

u = f in Ωe

.

We assume that the order m of the local perturbation P (x,D) is such that the fractional,
nonlocal part governs the equation, that is we let 2s > m.

As our first step towards the formulation of the inverse problem, we need to prove the
well-posedness of the direct problem. We achieve this in [(E), Lemmas 3.3, 4.3] for two
different classes of coefficients aα, namely for Fourier multipliers and bounded Sobolev
spaces. We can then define the DN map ΛP : Hs(Ωe)→ (Hs(Ωe))

∗ encoding our data for
the inverse problem, which in turn can be formulated in the following way: does the DN
map ΛP determine uniquely the coefficients aα in Ω? In other words, does ΛP1 = ΛP2

imply that a1,α = a2,α in Ω for all |α| ≤ m?
Our main theorems 4.11 and 4.12 prove that this is indeed the case for both Fourier

multipliers and bounded coefficients. In particular, our first theorem generalizes the
results obtained in [120, Theorem 1.1] for the case m = 0, s ∈ (0, 1) and in [(C), Theorem
1.5] for the case m = 0, s ∈ R+ \ Z.
Theorem 4.11. ((E), Theorem 1.1) Let Ω ⊂ Rn be a bounded open set where n ≥ 1. Let
s ∈ R+ \ Z and m ∈ N be such that 2s > m. Let

Pj =
∑

|α|≤m
aj,αD

α, j = 1, 2,

be linear PDOs of order m with coefficients aj,α ∈ M0(Hs−|α| → H−s). Given any two
open setsW1,W2 ⊂ Ωe, suppose that the DN maps ΛPi for the equations ((−∆)s+Pj)u = 0
in Ω satisfy

ΛP1f |W2 = ΛP2f |W2

for all f ∈ C∞c (W1). Then P1|Ω = P2|Ω.
On the other hand, our second theorem is a generalization of both [24, Theorem 1.1],

[46, Theorem 1.1], which studied the cases m ∈ {0, 1}, s ∈ (0, 1), and of [(C), Theorem
1.5], in which the case m = 0, s ∈ R+ \ Z was considered.

Theorem 4.12. ((E), Theorem 1.2) Let Ω ⊂ Rn be a bounded Lipschitz domain where
n ≥ 1. Let s ∈ R+ \ Z and m ∈ N be such that 2s > m. Let

Pj(x,D) =
∑

|α|≤m
aj,α(x)Dα, j = 1, 2,

be linear PDOs of order m with coefficients aj,α ∈ Hrα,∞(Ω) where

rα :=

{
0 if |α| − s < 0,

|α| − s+ δ if |α| − s ∈ {1/2, 3/2, ...},
|α| − s if otherwise
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for any fixed δ > 0. Given any two open sets W1,W2 ⊂ Ωe, suppose that the DN maps
ΛPi for the equations ((−∆)s + Pj(x,D))u = 0 in Ω satisfy

ΛP1f |W2 = ΛP2f |W2

for all f ∈ C∞c (W1). Then P1(x,D) = P2(x,D).

The proofs of theorems 4.11 and 4.12 are structurally similar, but differ in many tech-
nical details. In particular, the boundedness of the bilinear forms associated to the
equations and the well-posedness of the direct problem are achieved in the second case
by using the assumption that ∂Ω is Lipschitz and the Kato-Ponce inequality. Both for
Fourier multipliers and for bounded coefficients, such proofs involve the Riesz represen-
tation theorem and some ad hoc estimates.

Since P (x,D) is by assumption a local operator, the weak unique continuation property
is easily shown to hold true. This opens the way to the proof of the Runge approximation
property, which is given in [(E), Lemmas 3.7, 4.6]; observe that in this case we obtain the
density in H̃s(Ω), and not just L2(Ω), of the set of restrictions to Ω of the solutions to
our equation. We then find in [(E), Lemmas 3.6, 4.5] that an Alessandrini identity holds
for our equation, namely

〈(ΛP1 − ΛP2)[f1], [f2]〉 =
∑

|α|≤m
〈(a1,α − a2,α), Dαu1u

∗
2〉 ,

where u1, u
∗
2 ∈ Hs(Rn) respectively solve

(−∆)su1 +
∑

|α|≤m
a1,αD

αu1 = 0 in Ω, u1 − f1 ∈ H̃s(Ω)

and

(−∆)su∗2 +
∑

|α|≤m
(−1)|α|Dα(a2,αu

∗
2) = 0 in Ω, u∗2 − f2 ∈ H̃s(Ω)

for some f1, f2 ∈ Hs(Rn). Next, we test the above integral identity with appropriate
solutions to the equation, cooked up by means of the Runge approximation property.
This is done using the principle of complete induction: at each step we test the identity
with a different solution and deduce that a1,α = a2,α for one of the multi-indices in the
sum, thus making it shorter by one term. After a finite amount of steps, the proof is
complete.
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a b s t r a c t

This paper shows global uniqueness in two inverse problems for a fractional
conductivity equation: an unknown conductivity in a bounded domain is uniquely
determined by measurements of solutions taken in arbitrary open, possibly disjoint
subsets of the exterior. Both the cases of infinitely many measurements and a single
measurement are addressed. The results are based on a reduction from the fractional
conductivity equation to the fractional Schrödinger equation, and as such represent
extensions of previous works. Moreover, a simple application is shown in which the
fractional conductivity equation is put into relation with a long jump random walk
with weights.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper introduces and studies a fractional conductivity equation, and establishes uniqueness and
reconstruction results for related inverse problems. The main point of interest is a fractional version of the
standard Calderón problem [5], which requires to find the electrical conductivity of a medium from voltage
and current measurements on its boundary.

Let Ω ⊂ Rn be a bounded open set with a regular enough boundary (e.g., let ∂Ω be Lipschitz),
representing a medium whose electrical properties must be studied. The Dirichlet problem for the
conductivity equation asks to find a function u satisfying

{
∇ · (γ∇u) = 0 in Ω
u = f on ∂Ω

,

where f is some prescribed boundary value and γ is the electrical conductivity of the medium. The boundary
measurements are given by the Dirichlet-to-Neumann (or DN) map Λγ : H1/2(∂Ω) → H−1/2(∂Ω) , which is
defined weakly using the bilinear form of the equation. The inverse problem consists in finding the function
γ in Ω from the knowledge of Λγ .
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The classical Calderón problem we stated above has general mathematical interest, as it serves as a model
case for the study of inverse problems for elliptic equations, and is of course useful in the applied fields of
medical, seismic and industrial imaging. The survey [19] provides many more details on this topic. The main
physical motivation, and actually Calderón’s original one, comes from electrical mineral prospecting. In this
application, the electrical properties of a patch of soil are measured by an array of electrodes distributed
on the ground, with the goal of determining whether any economically interesting mineral source is present
underneath.
On the other hand, fractional mathematical models are nowadays widely used in many fields of science. It
is known for example that they arise in the study of turbulent fluids such as the atmosphere. They also
appear in probability theory as generators of certain Levy processes, and because of this they are used in
mathematical finance. For the many modern applications of fractional models, check e.g. [4].
It is therefore very promising to study a fractional extension of the Calderón problem, in view of its many
potential applications. This is the model we introduce below.

Fix s ∈ (0, 1) and consider the new operators (∇·)s and ∇s, which in this paper are called fractional
divergence and fractional gradient. Their rigorous definitions will be given in Section 2 following [9], but for
now they can be thought of as non-local counterparts of the standard divergence and gradient. They are
“nonlocal” because they do not preserve supports, in the sense that ∇su|Ω can only be computed knowing
u over all of Rn. Later on we will show that, just as in the local case, the combination of these operators
gives the fractional Laplacian, that is (−∆)su = (∇·)s∇su.

Remark. It is worth noticing at this point that our choice for the names of the non-local operators, which
has been guided by the similarity with the local case, is not universal. In [9], for example, our fractional
gradient is called adjoint of the fractional divergence, while the name fractional gradient is assigned to a
completely different operator which does not play any role in this paper.

We set up the Dirichlet problem for the fractional conductivity equation as
{

(∇·)s(Θ · ∇su) = 0 in Ω
u = f in Ωe

,

where Θ is an interaction matrix depending on γ. Because of the non-local nature of the operators, the
exterior value is given over all of Ωe = Rn \Ω . In Section 3 it will be shown that the bilinear form associated
to the conductivity equation is positive definite; this assures that 0 is not an eigenvalue of (∇·)s(γ∇s), and
therefore the problem above is well-posed. Consequently, the DN map Λs

γ : Hs(Ωe) → (Hs(Ωe))∗ can be
defined in a weak sense starting from the bilinear form of the equation. The inverse problem asks to recover
γ in Ω from Λs

γ .
The following theorems are the main results in this paper. The first one solves the injectivity question

relative to the inverse problem for the non-local conductivity equation in any dimension n ≥ 1.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 1, be a bounded open set, s ∈ (0, 1), and for j = 1,2 let γj : Rn → R be
such that {

for some γj , γj ∈ R, 0 < γj ≤ γj(x) ≤ γj < ∞, for a.e. x ∈ Rn

γ
1/2
j (x) − 1 := mj(x) ∈ W

2s,n/2s
c (Ω)

.

Suppose W1,W2 ⊂ Ωe are open sets, and that the DN maps for the conductivity equations in Ω relative to
γ1 and γ2 satisfy

Λs
γ1 [f ]|W2 = Λs

γ2 [f ]|W2 , ∀f ∈ C∞
c (W1) .

Then γ1 = γ2.
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The second theorem gives a uniqueness result and even a reconstruction procedure for the same inverse
problem with a single measurement.

Theorem 1.2. Let Ω ⊂ Rn, n ≥ 1 be a bounded open set, s ∈ (0, 1), ϵ > 0, and let γ : Rn → R be such
that {

for some γ, γ ∈ R, 0 < γ ≤ γ(x) ≤ γ < ∞, for a.e. x ∈ Rn

γ1/2(x) − 1 := m(x) ∈ W 2s+ϵ,p
c (Ω), for p > n/ϵ

.

Suppose W1,W2 ⊂ Ωe are open sets, with Ω ∩ W1 = ∅. Given any fixed function g ∈ H̃s(W1) \ {0}, γ is
uniquely determined and can be reconstructed from the knowledge of Λs

γ [g]|W2 .

Remark. In the theorems above we make some regularity assumptions on m: namely, it is required to
belong to Sobolev spaces of the form W k,p

c (Ω), which are defined in Section 2. Such assumptions are needed
in order to be able to apply the previous results [10,16], which are recalled in Section 3 and constitute the
core of the proofs of our theorems.

A tool that is often used for treating the second order conductivity equation is Liouville’s reduction, which
consists in rephrasing the problem in terms of the function w = γ1/2u and the potential q = ∆γ1/2

γ1/2 . It is
easily shown that the resulting equation is −∆w + qw = 0, i.e. Schrödinger’s equation. The idea behind
the proofs of Theorems 1.1 and 1.2 is to use a reduction similar to Liouville’s, but suited for a non-local
setting: as it will be shown in Section 3, the potential will be q = − (−∆)sm

γ1/2 . The problems considered are
thus transformed into special cases of inverse problems for the fractional Schrödinger equation. These are in
turn well understood and dealt with thanks to the previous results [10,16]. The key points in these works are
the strong uniqueness and approximation results obtained in [7]. For an overview of the fractional Calderón
problem and many more references, see the survey [17].

This paper is organized as follows. Section 1 is the introduction. Section 2 is devoted to preliminaries
and definitions, including Sobolev spaces and non-local operators. Section 3 first defines the conductivity
equation and the DN map, then proves the main theorems. Section 4 contains an analysis of the limit case
s → 1−, which is expected to give the local problem. The last part, Section 5, is devoted to a simple model
for a random walk with long jumps from which the fractional conductivity equation naturally arises.

2. Preliminaries

In this section the main function spaces, operators and notations of the paper will be introduced. For the
Sobolev spaces, the notation will be the usual one (check, e.g., [11]). The non-local operators are based on
the theoretical framework presented in [8].

Sobolev spaces. If k ∈ R, p ∈ (1,∞) and n ∈ N \ {0}, the symbols W k,p = W k,p(Rn) indicate the usual
Lp-based Sobolev space. If Ω ⊂ Rn is an open set, the symbol W k,p

c (Ω) indicates that subset of W k,p whose
elements can be approximated in the Sobolev norm by functions belonging to C∞

c (Ω).
In particular, given s ∈ (0, 1) and n ∈ N\ {0}, the symbols Hs = Hs(Rn) = W s,2(Rn) indicate the standard
L2-based Sobolev space with norm

∥u∥Hs(Rn) = ∥F−1(⟨ξ⟩sû)∥L2(Rn) ,

where ⟨ξ⟩ := (1 + |ξ|2)1/2. The notation for the Fourier transform is û(ξ) = Fu(ξ) =
∫
Rn e

−ix·ξu(x)dx . If
U,F ⊂ Rn are an open and a closed set, define

Hs(U) = {u|U , u ∈ Hs(Rn)} ,
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H̃s(U) = closure of C∞
c (U) in Hs(Rn) , and

Hs
F (Rn) = {u ∈ Hs(Rn) : supp(u) ⊂ F} .

The set Hs(U) is equipped with the norm ∥u∥Hs(U) = inf{∥w∥Hs(Rn);w ∈ Hs(Rn), w|U = u}. If U is a
Lipschitz domain, the Sobolev spaces H̃s(U) and Hs

Ū
(Rn) can be naturally identified for all real s. For more

details on this topic, check [11].
If U ⊂ Rn is a bounded open set and s ∈ (0, 1), let X = Hs(Rn)/H̃s(U) be the abstract trace space.

If U is a Lipschitz domain, X is the quotient Hs(Rn)/Hs
Ū

(Rn), in which two functions u, v ∈ Hs(Rn) are
equivalent if and only if u|Ue = v|Ue .

Remark. There exist several other definitions of Sobolev spaces. In fact ([6], prop. 3.4), given s ∈ (0, 1)
and an open set U ⊂ Rn whose boundary is regular enough (in the sense of [6], prop. 2.2), Hs(U) might
just as well be defined as

Ȟs(U) =
{
u ∈ L2(U) : |u(x) − u(y)|

|x− y|n/2+s
∈ L2(U2)

}
,

with the natural norm
∥u∥Ȟs(U) =

(
∥u∥2

L2(U) + [u]2
Ȟs(U)

)1/2
,

[u]Ȟs(U) :=
(∫

U

∫

U

|u(x) − u(y)|2

|x− y|n+2s dx dy

)1/2

.

(1)

Non-local operators. If u ∈ S(Rn), its fractional Laplacian is

(−∆)su(x) := Cn,s lim
ϵ→0+

∫

Rn\Bϵ(x)

u(y) − u(x)
|y − x|n+2s dy ,

where Cn,s := 4sΓ(n/2+s)
πn/2|Γ(−s)| is a constant satisfying (see [6])

lim
s→1−

Cn,s

s(1 − s) = 4n
ωn−1

. (2)

This choice assures that the Fourier symbol of the fractional Laplacian is |ξ|2s, i.e. the equality (−∆)su(x) =
F−1(|ξ|2s

û(ξ)) holds. If k ∈ R and p ∈ (1,∞), (−∆)s extends as a bounded map [14], Chapter 4 and [18]

(−∆)s : W k,p(Rn) → W k−2s,p(Rn) . (3)

For the sake of completeness, it should be added that there exist many equivalent definitions for the fractional
Laplacian [15]. As shown by change of variables in [6], one of them is

(−∆)sv(x) = −Cn,s

2 PV

∫

Rn

δv(x, y)
|y|n+2s dy , (4)

which holds if v is a Schwartz function. The symbol δv(x, y), which is quite recurrent in this paper, is defined
as follows:

δv(x, y) := v(x+ y) + v(x− y) − 2v(x) . (5)

This way of writing the fractional Laplacian is very useful for removing the singularity at the origin: in fact,
if v is a smooth function, by means of a Taylor expansion one gets

v(x+ y) + v(x− y) − 2v(x)
|y|n+2s ≤ ∥D2v∥L∞

|y|n+2s−2 ,

which is integrable near 0.
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Motivated by the elementary decomposition ∆u = ∇ · (∇u), the next step will be to define two fractional
counterparts of such differential operators, following [8]. These will share the non-local nature of the fractional
Laplacian.
Let u ∈ C∞

c (Rn), x, y ∈ Rn. The fractional gradient of u at points x and y is the vector

∇su(x, y) := −C1/2
n,s√

2
u(y) − u(x)

|y − x|n/2+s+1 (y − x) . (6)

Using the result (Proposition 3.6, [6]), formula (1) and the fact that 0 ≤ |ξ|/⟨ξ⟩ ≤ 1, it is easy to find the
following inequality:

∥∇su∥2
L2(R2n) = Cn,s

2

∫

Rn

∫

Rn

|u(x) − u(y)|2

|x− y|n+2s dx dy = Cn,s

2 [u]2
Ȟs(Rn)

= ∥(−∆)s/2u∥2
L2(Rn) = ∥|ξ|sû(ξ)∥2

L2(Rn) =


|ξ|s
⟨ξ⟩s

⟨ξ⟩sû(ξ)


2

L2(Rn)

≤ ∥⟨ξ⟩sû(ξ)∥2
L2(Rn) = ∥u∥2

Hs(Rn) .

(7)

Thus the linear operator ∇s maps C∞
c (Rn) into L2(R2n). What is more, since C∞

c (Rn) is dense in Hs(Rn)
one can extend ∇s so that it is defined in Hs(Rn) and formula (7) still holds.
The next operator is defined by duality. Let u ∈ Hs(Rn), v ∈ L2(R2n); the fractional divergence is that
operator (∇·)s : L2(R2n) → H−s(Rn) such that the following formula holds:

⟨(∇·)sv, u⟩L2(Rn) = ⟨v,∇su⟩L2(R2n) . (8)

The next simple lemma allows the composition of the fractional divergence and its adjoint into the
fractional Laplacian.

Lemma 2.1. Let u ∈ Hs(Rn). Then the equality (∇·)s(∇su)(x) = (−∆)su(x) holds in weak sense, with
(∇·)s(∇su) ∈ H−s(Rn).

Proof. Let u, ϕ ∈ Hs(Rn), and by density for all i ∈ N let ui, ϕi be smooth, compactly supported functions
such that ∥u− ui∥Hs(Rn) ≤ 1/i and ∥ϕ− ϕi∥Hs(Rn) ≤ 1/i. By Cauchy–Schwarz inequality and formula (7),
it is seen that

⟨∇su,∇sϕ⟩ = lim
i→∞

(⟨∇s(u− ui),∇sϕ⟩ + ⟨∇sui,∇sϕ⟩) = lim
i→∞

⟨∇sui,∇sϕ⟩ ,

and thus ⟨∇su,∇sϕ⟩ = limi→∞⟨∇sui,∇sϕi⟩. Now compute

⟨∇sui,∇sϕi⟩ = Cn,s

2

∫

Rn

∫

Rn

ui(y) − ui(x)
|y − x|n+2s (ϕi(y) − ϕi(x)) dydx

= Cn,s

2

∫

Rn

∫

Rn

ui(x± z) − ui(x)
|z|n+2s (ϕi(x± z) − ϕi(x)) dzdx

= Cn,s

4

∫

Rn

∫

Rn

1
|z|n+2s

{
− ϕi(x)δui(x, z) + (uiϕi)(x+ z) + (uiϕi)(x− z)

− ui(x)(ϕi(x+ z) + ϕi(x− z))
}
dzdx .

By adding and subtracting the term 2(uiϕi)(x) we then get

⟨∇sui,∇sϕi⟩ = Cn,s

4

∫

Rn

∫

Rn

−ϕi(x)δui(x, z) + δ(uiϕi)(x, z) − ui(x)δϕi(x, z)
|z|n+2s dzdx.
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This integral can be split in three parts, which are all well defined because of the above consideration about
the removal of the singularity at the origin:

⟨∇sui,∇sϕi⟩ = 1
2

(
⟨ϕi, (−∆)sui⟩ − ⟨1, (−∆)s(uiϕi)⟩ + ⟨ui, (−∆)sϕi⟩

)

= ⟨ϕi, (−∆)sui⟩ .

The last line follows from the fact that ui, ϕi ∈ C∞
c (Rn), which means that the first and last terms are

equal. Moreover, the second term vanishes because, by Fubini’s theorem,

⟨1, (−∆)s(uiϕi)⟩ = −Cn,s

2

∫

Rn

∫

Rn

(uiϕi)(x+ y) + (uiϕi)(x− y) − 2(uiϕi)(x)
|y|n+2s dydx

= −Cn,s

2

∫

Rn

1
|y|n+2s

∫

Rn
((uiϕi)(x+ y) + (uiϕi)(x− y) − 2(uiϕi)(x)) dxdy ,

and the integral in dx is of course independent of y and equal to 0. Therefore ⟨∇sui,∇sϕi⟩ = ⟨(−∆)sui, ϕi⟩,
and eventually

⟨(∇·)s(∇s)u, ϕ⟩ := ⟨∇su,∇sϕ⟩ = lim
i→∞

⟨∇sui,∇sϕi⟩ = lim
i→∞

⟨(−∆)sui, ϕi⟩

= lim
i→∞

(
⟨(−∆)s(ui − u), ϕi⟩ + ⟨(−∆)su, ϕi − ϕ⟩

)
+ ⟨(−∆)su, ϕ⟩

= ⟨(−∆)su, ϕ⟩ ,

just as wanted. Notice that the limit vanishes because ∥(−∆)sw∥H−s ≤ ∥w∥Hs . This proves the first
statement; the second one now follows from the previous remark about the extensions of the fractional
Laplacian. □

Remark. ∇s and (∇·)s can be respectively identified with the operators D∗ and D from [8], where the
antisymmetric vector mapping α(x, y) : R2n → Rn is chosen as

α(x, y) = C1/2
n,s√

2
y − x

|y − x|n/2+s+1 . (9)

The choice of α comes from the fact that we want to have (∇·)s(∇su) = (−∆)su, which at least for u ∈ S
means

(−∆)su(x) = 2
∫

Rn
(u(x) − u(y))|α(x, y)|2dy .

Thus the most natural choice would be to have |α(x, y)| = C1/2
n,s√

2|y−x|n/2+s , which motivates our choice of α.
In this case we also have, for u ∈ C∞

c (Rn),

|∇su| = C1/2
n,s√

2
|u(y) − u(x)|
|y − x|n/2+s

. (10)

Anyway, different choices of α could in principle be considered.

3. Main results

Non-local conductivity equation. Let Ω ⊂ Rn be an open set; we call Ωe = Rn \ Ω the exterior domain.
Let γ : Rn → R be a measurable function such that there exist γ, γ ∈ R such that 0 < γ ≤ γ(x) ≤ γ < ∞

for all x ∈ Rn, and let m(x) := γ1/2(x) − 1 belong to W 2s,n/2s
c (Ω). The assumptions for the conductivity γ
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are similar to the ones that are typically made in the second order case. The values of γ(x) for x ∈ supp
m represent the conductivity in the object of study. Outside of this region γ(x) ≡ 1, because the electrical
properties of the surroundings are thought of as constant.

Let Θ : R2n → R2n be the variable matrix Θ(x, y) := γ(x)1/2γ(y)1/2Id. The interaction matrix Θ

represents how readily an electron will jump from x to y. We assume the material to be isotropic, meaning
that the interaction does not depend on direction; therefore, Θ(x, y) is a symmetrical scalar multiple of the
identity matrix.

Remark. According to formula (3), it makes sense to compute (−∆)sm, and it belongs to W 0,n/2s(Rn) =
Ln/2s(Rn).

By using the boundedness of γ and Lemma 2.1 it is seen that if u ∈ Hs(Rn), then Θ · ∇su ∈ L2(R2n):

∥Θ · ∇su∥2
L2(R2n) =

∫

R2n
γ(x)γ(y)∇su · ∇su dx dy ≤ γ2∥∇su∥2

L2(R2n) < ∞.

Let u ∈ Hs(Rn). The non-local conductivity operator is Cs
γu := (∇·)s(Θ · ∇su), while the non-local

conductivity equation is the statement Cs
γu = 0 in Ω .

The next theorem reduces the conductivity equation to Schrödinger’s.

Theorem 3.1. Let u ∈ Hs(Rn), g ∈ Hs(Ωe), w = γ1/2u, f = γ1/2g and q = − (−∆)sm

γ1/2 . u solves the
conductivity equation with exterior value g if and only if w solves Schrödinger’s equation with exterior value
f , that is {

(∇·)s(Θ · ∇su) = 0 in Ω
u = g in Ωe

⇔
{ (

(−∆)s + q
)
w = 0 in Ω

w = f in Ωe

.

Moreover, the following formula holds for all w ∈ Hs(Rn):

Cs
γ(γ−1/2w) = γ1/2((−∆)s + q)w .

Proof. Start by observing that m is a Fourier multiplier on Hs, because we have the embedding
(W 2s,n/2s ∩ L∞) × Hs ↪→ Hs (check Lemma 6, [3]). This of course means that also γ1/2 = 1 + m is a
Fourier multiplier on Hs, which in turn implies that w ∈ Hs and f ∈ Hs(Ωe). Moreover, the computation

qw = − (−∆)sm

γ1/2 γ1/2u = −u(−∆)sm

and the observation that, by Theorem 6.1 in [1] and Sobolev embedding theorem,

Ln/2s ×Hs ↪→ L2n/(n+2s) ↪→ H−s

imply that ((−∆)s + q)w ∈ H−s.
Our proof will be very similar to the one of the previous Lemma 2.1. Take ϕ ∈ Hs, and for all i ∈ N let
ϕi, ui ∈ C∞

c (Rn) be such that ∥ϕ − ϕi∥Hs < 1/i and ∥u − ui∥Hs < 1/i. By definition, Cauchy–Schwarz
inequality and formula (7) we get

⟨Cs
γu, ϕ⟩ = ⟨(∇·)s(Θ · ∇su), ϕ⟩ = ⟨Θ · ∇su,∇sϕ⟩

= lim
i→∞

(
⟨Θ · ∇su,∇sϕi⟩ + ⟨Θ · ∇su,∇s(ϕ− ϕi)⟩

)

= lim
i→∞

⟨Θ · ∇su,∇sϕi⟩ = lim
i→∞

⟨Θ · ∇sui,∇sϕi⟩ .

(11)



8 G. Covi / Nonlinear Analysis 193 (2020) 111418

By change of variables,

⟨Θ · ∇sui,∇sϕi⟩ = Cn,s

2

∫

Rn

∫

Rn
γ(x)1/2γ(y)1/2 (ui(y) − ui(x)) (ϕi(y) − ϕi(x))

|y − x|n+2s dydx

= Cn,s

2

∫

Rn

∫

Rn
γ(x)1/2γ(x± z)1/2 (ui(x± z) − ui(x)) (ϕi(x± z) − ϕi(x))

|z|n+2s dzdx

= Cn,s

4

∫

Rn

∫

Rn

{
γ(x)1/2γ(x+ z)1/2 (ui(x+ z) − ui(x)) (ϕi(x+ z) − ϕi(x))

|z|n+2s

+ γ(x)1/2γ(x− z)1/2 (ui(x− z) − ui(x)) (ϕi(x− z) − ϕi(x))
|z|n+2s

}
dzdx .

Now consider the integrand function. By defining wi := γ1/2ui it can be rewritten as

γ(x)1/2

|z|n+2s

{
− ϕi(x)

(
wi(x+ z) + wi(x− z) − ui(x)(γ1/2(x+ z) + γ1/2(x− z))

)
+

(wiϕi)(x+ z) + (wiϕi)(x− z) − ui(x)
(

(γ1/2ϕi)(x+ z) + (γ1/2ϕi)(x− z)
)}

,

so that, if we add and subtract the term 2wi(x) from the first line and the term 2(wiϕi)(x) from the second
one, by formula (5) we get

γ(x)1/2

|z|n+2s

{
δ(wiϕi)(x, z) − ui(x)δ(γ1/2ϕi)(x, z) − ϕi(x)

(
δwi(x, z) − ui(x)δ(γ1/2 − 1)(x, z)

)}
.

Therefore
⟨Θ · ∇sui,∇sϕi⟩ = Cn,s

4

∫

Rn

∫

Rn

γ(x)1/2

|z|n+2s

{
δ(wiϕi)(x, z) − ui(x)δ(γ1/2ϕi)(x, z)

− ϕi(x)
(
δwi(x, z) − ui(x)δ(γ1/2 − 1)(x, z)

)}
,

and the interior integral can be split in the following four parts by Lemma 2.1, since the δ’s make each of
them integrable at the origin:

⟨Θ · ∇sui,∇sϕi⟩ = 1
2

∫

Rn

{
− γ1/2(−∆)s(wiϕi) + wi(−∆)s(γ1/2ϕi)

+ ϕiγ
1/2(−∆)swi − ϕiγ

1/2ui(−∆)s(γ1/2 − 1)
}

= 1
2

∫

Rn

{
(1 − γ1/2)(−∆)s(wiϕi) + wi(−∆)s(γ1/2ϕi)

+ ϕiγ
1/2(−∆)swi − ϕiγ

1/2wi
(−∆)s(γ1/2 − 1)

γ1/2

}
.

In the last line, we have added the term 1
2
∫
Rn(−∆)s(wiϕi), which equals 0. Now by the first part of the

proof we can compute

⟨Θ · ∇sui,∇sϕi⟩ = ⟨γ1/2ϕi, ((−∆)s + q)wi⟩
2 + ⟨−(γ1/2 − 1), (−∆)s(wiϕi)⟩ + ⟨wi, (−∆)s(γ1/2ϕi)⟩

2

= ⟨γ1/2ϕi, ((−∆)s + q)wi⟩
2 + ⟨−((−∆)sm)ui, γ

1/2ϕi⟩ + ⟨(−∆)swi, γ
1/2ϕi⟩

2

= ⟨γ1/2ϕi, ((−∆)s + q)wi + qwi + (−∆)swi⟩
2

= ⟨γ1/2ϕi, ((−∆)s + q)wi⟩ .
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Eventually, by using this and (11),

⟨Cs
γu, ϕ⟩ = lim

i→∞
⟨γ1/2ϕi, ((−∆)s + q)wi⟩ = ⟨ϕ, γ1/2((−∆)s + q)w⟩ .

This last step holds true because

lim
i→∞

|⟨γ1/2(ϕi − ϕ), ((−∆)s + q)wi⟩| ≤ c lim
i→∞

∥ϕi − ϕ∥Hs∥((−∆)s + q)wi∥H−s = 0

and
lim

i→∞
|⟨γ1/2ϕ, ((−∆)s + q)(wi − w)⟩| ≤ c∥ϕ∥Hs lim

i→∞
∥((−∆)s + q)(wi − w)∥H−s

≤ c∥ϕ∥Hs(1 + ∥q∥Ln/2s) lim
i→∞

∥wi − w∥Hs = 0 .
□

Bilinear form. Let s ∈ (0, 1), u, v ∈ Hs(Rn), and define the bilinear form Bs
γ : Hs ×Hs → R as follows

Bs
γ [u, v] =

∫

Rn

∫

Rn
∇sv · (Θ · ∇su)dy dx . (12)

Bs
γ is a useful instrument to show the well-posedness of the direct problem for the conductivity equation.

In [8], Theorem 4.9, it is proved that for all F ∈ (H̃s(Ω))∗ there exists a unique solution uF ∈ H̃s(Ω) to
Bs

γ [u, v] = F (v), ∀v ∈ H̃s(Ω). This is equivalent to saying that for all F ∈ (H̃s(Ω))∗ there exists one and
only one uF ∈ Hs(Ω) such that Cs

γu = F in Ω , uF |Ωe = 0. To treat the case of non-zero exterior value,
suppose f ∈ Hs(Rn) and let uf = u+ f , where u ∈ Hs(Ω) is the unique solution to the problem

{
Cs

γu = F −Bs
γ [f, ·] in Ω

u = 0 in Ωe
. Then

{
Cs

γu = F in Ω
u = f in Ωe

has uf ∈ Hs(Rn) as its unique solution. Moreover, it follows from [11] that

∥uf ∥Hs(Rn) ≤ c(∥F∥(H̃s(Ω))∗ + ∥f∥Hs(Rn)) . (13)

The next lemma collects some properties of Bs
γ .

Lemma 3.2. Let v, w ∈ Hs(Rn), f, g ∈ Hs(Ωe) and uf , ug ∈ Hs(Rn) be such that Cs
γuf = Cs

γug = 0 in
Ω , uf |Ωe = f and ug|Ωe = g. Then

1. Bs
γ [v, w] = Bs

γ [w, v] (symmetry),
2. |Bs

γ [v, w]| ≤ γ∥v∥Hs(Rn)∥w∥Hs(Rn) ,
3. Bs

γ [uf , eg] = Bs
γ [ug, ef ] ,

where eg, ef ∈ Hs(Rn) are extensions of g, f respectively.

Proof. Symmetry is showed by using (6) in (12),

Bs
γ [v, w] = Cn,s

2

∫

Rn

∫

Rn
γ(x)1/2γ(y)1/2 (v(y) − v(x)) (w(y) − w(x))

|y − x|n+2s dy dx .

For the second point, using Hölder’s inequality and the known estimate for the L2 norm of the fractional
gradient,

|Bs
γ [v, w]| ≤ ∥∇sv∥L2(R2n)∥Θ · ∇sw∥L2(R2n) ≤ γ∥∇sv∥L2(R2n)∥∇sw∥L2(R2n)

≤ γ∥v∥Hs(Rn)∥w∥Hs(Rn) .

In order to prove the last point, use the definition of fractional divergence (8)

Bs
γ [uf , ug] =

∫

Rn

∫

Rn
∇sug · (Θ · ∇suf )dy dx =

∫

Rn
ugCs

γuf dx ,
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then observe that Cs
γuf = 0 in Ω and ug = g in Ωe, so that actually

Bs
γ [uf , ug] =

∫

Ωe

ugCs
γuf dx =

∫

Ωe

gCs
γuf dx =

∫

Rn
egCs

γuf dx = Bs
γ [uf , eg] .

This completes the proof, since by symmetry

Bs
γ [uf , eg] = Bs

γ [uf , ug] = Bs
γ [ug, uf ] = Bs

γ [ug, ef ] . □

DN map. The main use of the bilinear form in this paper is the definition of the DN map. In the case of
the fractional Calderón problem for the Schrödinger equation with an unknown potential q, such map is
Λq : X → X∗,

Λq[f ]([v]) =
∫

Rn
v(−∆)swf dx+

∫

Ω

qvwf dx ,

as defined in [11]. In the above formula, f, v ∈ Hs(Rn) and wf ∈ Hs(Rn) is the unique solution to
(−∆)sw + qw = 0 in Ω with w − f ∈ H̃s(Ω).

Lemma 3.3. There exists a bounded, linear, self-adjoint map Λs
γ : X → X∗ defined by

⟨Λs
γ [f ], [g]⟩ = Bs

γ [uf , g], ∀f, g ∈ Hs(Rn) ,

where X is the abstract quotient space Hs(Rn)/H̃s(Ω) and uf ∈ Hs(Rn) solves Cs
γu = 0 in Ω with

u− f ∈ H̃s(Ω).

Proof. The DN map needs to be well defined, that is for all ϕ, ψ ∈ H̃s(Ω) and f, g ∈ Hs(Rn) the equality
Bs

γ [uf , g] = Bs
γ [uf+ϕ, g + ψ] must hold. By Lemma 3.2,

Bs
γ [uf+ϕ, g + ψ] = Bs

γ [uf+ϕ, g] +Bs
γ [uf+ϕ, ψ] = Bs

γ [f + ϕ, ug] +
∫
ψCs

γuf+ϕ dx

= Bs
γ [f, ug] +Bs

γ [ϕ, ug] = Bs
γ [uf , g] +

∫
ϕCs

γug dx = Bs
γ [uf , g] ,

since uf+ϕ, ug are solutions to the conductivity equation, and ϕ, ψ are supported in Ω . The boundedness of
Λs

γ follows from the second point of Lemma 3.2 and Eq. (13). In fact,

|⟨Λs
γ [f ], [g]⟩| = |Bs

γ [uf , g]| ≤ c∥uf ∥Hs(Rn)∥g∥Hs(Rn)

≤ c∥f∥Hs(Rn)∥g∥Hs(Rn) , ∀f ∈ [f ], ∀g ∈ [g] ,

which implies
|⟨Λs

γ [f ], [g]⟩| ≤ c inf
f∈[f ]

∥f∥Hs(Rn) inf
g∈[g]

∥g∥Hs(Rn) = c∥[f ]∥X∥[g]∥X .

Self-adjointness is trivial, in light of point (3) of Lemma 3.2:

⟨Λs
γ [f ], [g]⟩ = Bs

γ [uf , g] = Bs
γ [ug, f ] = ⟨Λs

γ [g], [f ]⟩ = ⟨[f ],Λs
γ [g]⟩ . □

Lemma 3.4. Let f, v ∈ Hs(Rn) be such that supp(f), supp(v) ⊂ Ωe. The DN maps for the conductivity
equation Λs

γ and for the corresponding Schrödinger equation Λqγ satisfy

Λqγ [f ]([v]) − Λs
γ [f ]([v]) =

∫

Ωe

fv(−∆)smdx .
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Proof. First of all observe that we have γ1/2f = f and γ1/2v = v, because supp(f)∩supp(m) = ∅ and
supp(v)∩supp(m) = ∅. With this in mind and making use of Theorem 3.1 it is easy to compute

Λs
γ [f ]([v]) = Bs

γ [uf , v] =
∫

Rn

∫

Rn
∇sv · (Θ · ∇suf ) dydx

=
∫

Rn
vCs

γuf dx =
∫

Rn
vγ1/2 ((−∆)s + qγ)wf dx

=
∫

Rn
γ1/2v(−∆)swf dx+

∫

Rn
γ1/2vqγwf dx

=
∫

Rn
v(−∆)swf dx−

∫

Ωe

vf(−∆)smdx .

Moreover, recalling the assumptions about the supports,

Λqγ [f ]([v]) =
∫

Rn
v(−∆)swf dx+

∫

Ω

qγvwf dx =
∫

Rn
v(−∆)swf dx .

The statement of the Lemma is thus proved by taking the difference of the last two formulas. □

The definition of the DN map given above, which is abstract in nature, lets us formulate and solve the
inverse problems completely. Nonetheless, in the next theorem we will give a more concrete definition of the
DN map under stronger assumptions.

Theorem 3.5. Let Ω be a bounded open set with C∞ boundary, let s ∈ (0, 1) and let γ1/2 = 1 +m, with
m ∈ C∞

c (Ω) and 0 < γ ≤ γ(x), for all x ∈ Rn. For any β ≥ 0 such that β ∈ (s− 1/2, 1/2) the restriction of
Λs

γ to Hs+β(Ωe) is the map

Λs
γ : Hs+β(Ωe) → H−s+β(Ωe), Λs

γf = Cs
γuf |Ωe ,

where uf ∈ Hs+β(Rn) solves Cs
γu = 0 in Ω with u|Ωe = f , f ∈ Hs+β(Ωe).

Proof. Start by observing that the embedding Ha × Hc ↪→ Hc can be made to work for any c ∈ R, if a
is taken accordingly large enough: in the case c < 0, use Theorem 8.1 from [1] with a > n/2, while if c ≥ 0
use Theorem 7.3 with a > max{n/2, c}. Since now m ∈ C∞

c (Ω) ⊂ Ha(Rn) for all a ≥ 0, and consequently
(−∆)sm ∈ Ha−2s for all a ≥ 0, we have that h ∈ Hc implies mh, (−∆)smh ∈ Hc. It also easily follows that
γ1/2h, γ−1/2h ∈ Hc.

Now take f ∈ Hs+β(Ωe); by the above observations, g := γ1/2f ∈ Hs+β(Ωe), and so there exists a unique
wg ∈ Hs+β satisfying ((−∆)s +qγ)w = 0 in Ω , w|Ωe = g. This was proved in [11], Lemma 3.1, making use of
earliest results found in [12,21] and [13]. Now let uf := γ−1/2wg. Again by the above observations we have
uf ∈ Hs+β(Ωe), and by Theorem 3.1 uf is the unique solution of Cs

γu = 0, u|Ωe = f . We also have

∥Cs
γuf ∥Hβ−s = ∥γ1/2((−∆)s + qγ)wg∥Hβ−s

≤ ∥γ1/2(−∆)swg∥Hβ−s + ∥wg(−∆)sm∥Hβ−s < ∞ ,

and moreover, if eh ∈ Hs+β(Rn) is any extension of a given h ∈ Hs+β(Ωe),

⟨Λs
γf, h⟩ = Bs

γ [uf , eh] =
∫

Rn

∫

Rn
∇seh · (Θ · ∇suf ) dydx = ⟨Cs

γuf , eh⟩ .

Given an open set U and a function u, let rUu := u|U . The statement would be proved if we could decompose

⟨Cs
γuf , eh⟩ = ⟨rΩCs

γuf , rΩeh⟩Ω + ⟨rΩeCs
γuf , rΩeeh⟩Ωe ,
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because then since uf solves the fractional conductivity equation in Ω we would be able to conclude
⟨Λs

γf, h⟩ = ⟨rΩeCs
γuf , h⟩Ωe . In order to use the above decomposition we need to find an α ∈ (−1/2, 1/2)

such that Cs
γuf ∈ Hα and eh ∈ H−α, as in the proof of Lemma 3.1 in [11]; this task is easily accomplished

by taking α = β − s. □

Two inverse problems. The two main uniqueness results about the Calderón problem for the fractional
Schrödinger equation are [16], Theorem 1.1, and [10], Theorem 1:

Injectivity (Infinitely Many Measurements). Let Ω ⊂ Rn, n ≥ 1, be bounded open, let s ∈ (0, 1), and let
q1, q2 ∈ Ln/2s(Rn) be such that 0 is not an eigenvalue of (−∆)s + qj. Let also W1,W2 ⊂ Ωe be open. If the
DN maps for the equations ((−∆)s + qj)u = 0 in Ω satisfy

Λq1 [f ]|W2 = Λq2 [f ]|W2 , ∀f ∈ C∞
c (W1) ,

then q1 = q2 in Ω .

Uniqueness and reconstruction (Single Measurement). Let Ω ⊂ Rn, n ≥ 1, be bounded open, let
s ∈ (0, 1), and suppose that 0 is not an eigenvalue of (−∆)s + q. Let also W1,W2 ⊂ Ωe be open, with
Ω ∩W1 = ∅. Assume that either

• s ∈ [ 1
4 , 1) and q ∈ L∞(Ω), or

• q ∈ C0(Ω).

Given any fixed function g ∈ H̃s(W1) \ {0}, the potential q is uniquely determined and can be reconstructed
from the knowledge of Λq[g]|W2 .

By using the results stated above, one can prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. If W1 ∩W2 ̸= ∅, there still exist two open sets W ′
1 ⊂ W1 and W ′

2 ⊂ W2 such that
W ′

1 ∩W ′
2 = ∅; so without loss of generality assume that W1, W2 and Ω are three pairwise disjoint open sets.

Let v ∈ C∞
c (W2); the hypothesis of the theorem then reads

Λs
γ1 [f ]([v]) = Λs

γ2 [f ]([v]), for f ∈ C∞
c (W1) .

Since γ1 = γ2 = 1 in Ωe, one has γ−1/2
1 f = γ

−1/2
2 f = f in all of Rn. Therefore, from the previous equality

and from Lemma 3.4
Λqγ1

[f ]([v]) = Λs
γ1 [f ]|([v]) +

∫

Ωe

fv(−∆)sm1 dx

= Λs
γ1 [f ]([v]) = Λs

γ2 [f ]([v]) = Λqγ2
[f ]([v]) ,

where the integral disappears because supp(f)∩ supp(v) = ∅. Hence

Λqγ1
[f ]|W2 = Λqγ2

[f ]|W2 , for f ∈ C∞
c (W1) . (14)

It is known that (−∆)smj ∈ Ln/2s(Rn). Therefore,

∥qγj
∥n/2s

Ln/2s(Rn) =
∫

Rn

⏐⏐⏐⏐⏐
(−∆)smj

γ
1/2
j

⏐⏐⏐⏐⏐

n/2s

dx ≤ γ−n/4s
j

∥(−∆)smj∥n/2s

Ln/2s(Rn) < ∞ .

Using this and condition (14), one gets qγ1 = qγ2 in Ω by the previously stated injectivity result with
infinitely many measurements.



G. Covi / Nonlinear Analysis 193 (2020) 111418 13

Now let m̄ = m2 −m1; of course supp(m̄) ⊂ Ω , and in Ω

0 = γ
1/2
1 γ

1/2
2 (qγ1 − qγ2) = γ

1/2
1 (−∆)sm2 − γ

1/2
2 (−∆)sm1

= (−∆)sm2 − (−∆)sm1 +m1(−∆)sm2 −m2(−∆)sm1

= (1 +m1)(−∆)sm̄− m̄(−∆)sm1 .

(15)

Formula (15) can be written as (−∆)sm̄− (−∆)sm1
1+m1

m̄ = 0, which shows that m̄ solves the following Dirichlet
problem for the fractional Schrödinger equation:

{
(−∆)su− (−∆)sm1

1+m1
u = 0 in Ω

u = 0 in Ωe

.

Observe that the equation that u must satisfy in Ω is the fractional conductivity equation with conductivity
γ1, by Theorem 3.1. Thus the problem above is well-posed, and so m̄ = 0 in Ω . This in turn implies m1 = m2,
which is the same as saying γ1 = γ2 in Ω . □

Proof of Theorem 1.2. By reasoning as before, W1 and W2 can be again supposed to be disjoint. If
v ∈ Hs(W2), by Lemma 3.4

Λqγ [f ]([v]) =
∫

Ωe

fv(−∆)smdx+ Λs
γ [f ]([v]), ∀f ∈ Hs(Rn) ,

so that, by taking f = γ1/2g,
Λqγ [γ1/2g]([v]) = Λs

γ [g]|W2([v]) .
Hence Λqγ [γ1/2g]|W2 is completely known from Λs

γ [g]|W2 . Fix ϵ > 0 and observe that the condition
m ∈ W 2s+ϵ,p

c (Ω),∀p > n/ϵ implies m ∈ W
2s,n/2s
c (Ω) and (−∆)sm ∈ C0(Rn) by Sobolev embedding theorem.

Therefore qγ ∈ C0(Ω), and by the previously stated result concerning uniqueness and reconstruction with a
single measurement, qγ can be reconstructed uniquely. By the definition of qγ , m solves

{
(−∆)sm− qγm = −qγ in Ω
m = 0 in Ωe

,

and thus m can be recovered by solving the above problem for Schrödinger’s equation. □

4. A limit case

Now the previous considerations will be extended to the case s → 1−. Since for the fractional Laplacian
one has lims→1−(−∆)su = −∆u [6], it is logical to expect something similar for the other non-local operators.
The following holds:

Lemma 4.1. Let u ∈ H1(Rn). Then lims→1− ∥∇su∥L2(R2n) = ∥∇u∥L2(Rn).

Remark. This result is a special case of the one given in [2], namely when p = 2. However, since our proof
is much easier than the one of the general case, we will still include it for completeness.

Proof. Given i ∈ N, let ui ∈ C∞
c (Rn) be such that ∥u − ui∥H1(Rn) ≤ 1/i. By the definition of fractional

divergence and Lemma 2.1,

lim
s→1−

∥∇su∥2
L2(R2n) = lim

s→1−

∫

Rn
u(−∆)su dx

= lim
i→∞

lim
s→1−

(∫

Rn
u(−∆)s(u− ui) dx+

∫

Rn
u(−∆)sui dx

)
.

(16)
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Since the following estimates hold [11],
⏐⏐⏐
∫

Rn
u(−∆)s(u− ui) dx

⏐⏐⏐ =
⏐⏐⏐
∫

Rn
(−∆)s/2u(−∆)s/2(u− ui) dx

⏐⏐⏐

≤
∫

Rn
|(−∆)s/2u| |(−∆)s/2(u− ui)| dx

≤ ∥(−∆)s/2u∥L2 ∥(−∆)s/2(u− ui)∥L2

≤ ∥u∥Hs ∥u− ui∥Hs ≤ ∥u∥H1 ∥u− ui∥H1 ≤ c/i ,

(17)

one gets that
∫
Rn u(−∆)s(u − ui) dx → 0 upon taking the limits. Moreover (−∆)sui ∈ ⋂

k∈NH
k(Rn) ⊂

L2(Rn), and so the second integral in (16) is finite by Hölder. Hence

lim
i→∞

lim
s→1−

∫

Rn
u(−∆)sui dx = lim

i→∞

∫

Rn
u lim

s→1−
(−∆)sui dx

= − lim
i→∞

∫

Rn
u∆ui dx = lim

i→∞

∫

Rn
∇u∇ui dx

=
∫

Rn
|∇u|2 dx+ lim

i→∞

∫

Rn
∇u∇(ui − u) dx = ∥∇u∥2

L2(Rn) ,

(18)

since the last limit is easily shown to equal 0 by means of Hölder’s inequality. The result is obtained by
combining (16)–(18). □

Remark. It is not always true that ∇su(x, y) → ∇u(x)δ(x − y) in distributional sense; quite counter-
intuitively, lims→1− ∇su = 0 in distributional sense for all u ∈ C∞

c (Rn). In fact, if u ∈ C∞
c (Rn) and

ϕ ∈ C∞
c (R2n), then for some n-dimensional balls B1, B2, B3 centered at the origin,

|⟨∇su, ϕ⟩| ≤
∫

R2n
|ϕ(x, y)| |∇su(x, y)| dxdy =

∫

R2n
|ϕ(x, y)| C1/2

n,s√
2

|u(y) − u(x)|
|y − x|n/2+s

dxdy

≤ c C1/2
n,s

∫

B1

∫

B2

|u(y) − u(x)|
|y − x|n/2+s

dxdy ≤ c C1/2
n,s

∫

B1

∫

B2

1
|y − x|n/2+s−1 dxdy

≤ c C1/2
n,s

∫

B1

∫

B3

1
|z|n/2+s−1 dzdy ≤ c C1/2

n,s .

Since C1/2
n,s is bounded by a constant which is independent of s and also lims→1− C1/2

n,s = 0, by dominated
convergence the computation above implies

⟨ lim
s→1−

∇su, ϕ⟩ = lim
s→1−

⟨∇su, ϕ⟩ = 0 .

Observe that this computation is valid also for a more general definition of the fractional gradient, namely
one in which α is naturally chosen in such a way that (10) still holds.

Next, some limit results for the non-local conductivity operator and its DN map. In the rest of this section,
the function m will be taken from W

2,n/2s
c (Ω), which embeds into the usual W 2s,n/2s

c (Ω).

Lemma 4.2. If u ∈ H2(Rn), lims→1− Cs
γu = ∇ · (γ∇u) in distributional sense.

Proof. Let ϕ ∈ C∞
c (Rn). By reducing the conductivity operator to Schrödinger’s, one is able to write

lim
s→1−

∫

Rn
ϕ(x)(∇·)s(Θ · ∇su)(x) dx = lim

s→1−

∫

Rn
ϕCs

γu dx

= lim
s→1−

∫

Rn

(
ϕγ1/2(−∆)sw − ϕγ1/2u(−∆)sm

)
dx .

(19)
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Observe now that since ϕ ∈ C∞
c (Rn) and u ∈ H2(Rn), we have ϕu ∈ H2(Rn) as well. Moreover, since s < 1,

we certainly have m ∈ W
2,n/2s
c (Ω) ∩ L∞(Rn) ⊂ W

2,n/2
c (Ω) ∩ L∞(Rn); this means that γ1/2 is a Fourier

multiplier on H2(Rn), and therefore w, γ1/2uϕ and γ1/2ϕ all belong to H2(Rn). We can compute

∥(−∆)sm∥H−2 =
F−1

(
|ξ|2s

1 + |ξ|2
m̂(ξ)

)
L2

≤ c∥F−1m̂(ξ)∥L2 = c∥m∥L2 . (20)

In fact, it is easily seen that the function hs(x) := x2s

1+x2 takes values in [0, 1) for all non-negative x and
for all s ∈ (0, 1), which makes hs a Fourier multiplier on L2. Since m belongs to L∞(Rn) and has compact
support, we see that ∥(−∆)sm∥H−2 ≤ c∥m∥L2 < ∞, i.e. (−∆)sm ∈ H−2(Rn). By using again (20) with m

replaced by w, we get ∥(−∆)sw∥H−2 ≤ c∥w∥L2 ; since w ∈ H2(Rn), this leads to (−∆)sw ∈ H−2(Rn).
The above discussion lets us rewrite Eq. (19) in the form

lim
s→1−

⟨ϕ, (∇·)s(Θ · ∇su)⟩ = lim
s→1−

⟨ϕγ1/2, (−∆)sw⟩ − lim
s→1−

⟨ϕγ1/2u, (−∆)sm⟩ . (21)

Trivially, |h1(x) − hs(x)| ≤ 2 for all non-negative x and for all s ∈ (0, 1). With this in mind we can compute

∥(−∆)m− (−∆)sm∥H−2 =
F−1

(
|ξ|2 − |ξ|2s

1 + |ξ|2
m̂(ξ)

)
L2

≤ c∥F−1m̂(ξ)∥L2 = c∥m∥L2 < ∞ ,

which means that

lim
s→1−

∥ − ∆m− (−∆)sm∥H−2 = lim
s→1−

F−1 ((h1(x) − hs(x))m̂(ξ))


L2

=
 lim

s→1−
(h1(x) − hs(x))m̂(ξ)


L2

= 0 .

Thus (−∆)sm → −∆m in H−2(Rn) as s → 1−, and the same proof can be used to show the analogous
result for (−∆)sw as well. We can now deduce from Eq. (21) that

lim
s→1−

⟨ϕ, (∇·)s(Θ · ∇su)⟩ = ⟨ϕγ1/2,−∆w⟩ − ⟨ϕγ1/2u,−∆m⟩ .

Performing some elementary vector calculus computation on this last formula the desired result is
immediately obtained:

lim
s→1−

∫

Rn
ϕCs

γu dx =
∫

Rn
ϕ∇ · (γ∇u) dx . □

Lemma 4.3. Let u, v ∈ H1(Rn). Then lims→1 B
s
γ [u, v] =

∫
Rn γ∇u · ∇v dx.

Proof. For all i ∈ N, let ui, vi ∈ C∞
c (Rn) be such that ∥u − ui∥H1(Rn) ≤ 1/i and ∥v − vi∥H1(Rn) ≤ 1/i.

Then we can compute

lim
s→1−

Bs
γ [u, v] = lim

i→∞
lim

s→1−

(
Bs

γ [u− ui, v] +Bs
γ [ui, v − vi] +Bs

γ [ui, vi]
)
. (22)

By Hölder’s inequality we see that

|Bs
γ [u− ui, v]| = |⟨∇s(u− ui),Θ · ∇sv⟩| ≤ ∥∇s(u− ui)∥L2∥Θ · ∇sv∥L2

≤ γ∥u− ui∥Hs∥v∥Hs ≤ γ∥u− ui∥H1∥v∥H1 ,
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so that the first term on the right hand side of (22) vanishes upon taking the limits. The second term behaves
similarly, and so we are left with lims→1− Bs

γ [u, v] = limi→∞ lims→1− Bs
γ [ui, vi]. Now apply Lemma 4.2 to

deduce that
lim

s→1−
Bs

γ [u, v] = lim
i→∞

lim
s→1−

Bs
γ [ui, vi] = lim

i→∞
lim

s→1−
⟨∇sui,Θ · ∇svi⟩

= lim
i→∞

lim
s→1−

⟨ui,Cs
γvi⟩ = lim

i→∞
⟨ui,∇ · (γ∇vi)⟩

= lim
i→∞

⟨∇ui, γ∇vi⟩ .

The result is now recovered by decomposing this term as in (22) and then applying again Hölder’s
inequality. □

Corollary 4.4. Let f, g ∈ H1(Rn). Then lims→1−⟨Λs
γ [f ], [g]⟩ =

∫
Rn γ∇uf · ∇g dx.

Proof. The result immediately follows from the previous Lemma and from the definition ⟨Λs
γ [f ], [g]⟩ =

Bs
γ [uf , g]. □

5. A simple model: the random walk

This section shows how the non-local conductivity equation naturally arises from weighted long jump
random walks. This is an extension of [20], where the fractional Laplacian is related to unweighted long
jump random walks.

Let h > 0, τ = h2s, k ∈ Zn, x ∈ hZn and t ∈ τZ. Consider a random walk on the lattice hZn, subject to
discrete time steps belonging to τZ. Define

f(x, k) :=
{
γ1/2(x+ hk)|k|−n−2s if k ̸= 0
0 if k = 0

.

Observe that, ∀x ∈ hZn,
∑

k∈Zn

f(x, k) =
∑

k∈Zn\{0}
f(x, k) =

∑

k∈Zn\{0}
γ1/2(x+ hk)|k|−n−2s

≤ γ1/2
∑

k∈Zn\{0}
|k|−n−2s

< ∞,
(23)

and therefore it makes sense to define a normalized version of f(x, k), namely

P (x, k) :=

⎧
⎨
⎩

(∑
j∈Zn f(x, j)

)−1
γ1/2(x+ hk)|k|−n−2s if k ̸= 0

0 if k = 0
.

Of course one has 0 ≤ P (x, k) ≤ 1, and from the definition it follows that

∑

k∈Zn

P (x, k) =
∑

k∈Zn\{0}
P (x, k) =

∑
k∈Zn\{0} γ

1/2(x+ hk)|k|−n−2s

∑
j∈Zn\{0} γ

1/2(x+ hj)|j|−n−2s = 1 . (24)

P (x, k) is the probability that a particle found at point x+ hk will jump to x in the next discrete step.
With γ ≡ 1 one recovers the case [20], where the probability only depends on the distance between the two
points. A non constant function γ can instead account for spatially changing properties of the medium, so
that the jumping probability is higher from a point whose conductivity is large, while still decreasing with
distance.
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Let u(x, t) be the probability that at some instant t the particle is found at point x. It is clearly related
to the previous state of the particle by the equation

u(x, t+ τ) =
∑

k∈Zn\{0}
P (x, k)u(x+ hk, t) .

Now compute the time derivative of u(x, t):

∂tu(x, t) = lim
τ→0

u(x, t+ τ) − u(x, t)
τ

= lim
h→0

1
h2s

⎛
⎝ ∑

k∈Zn\{0}
P (x, k)u(x+ hk, t) − u(x, t)

⎞
⎠

= lim
h→0

1
h2s

∑

k∈Zn\{0}
P (x, k) (u(x+ hk, t) − u(x, t)) ,

where the last line is due to the normalization property (24) of P (x, k). So,

∂tu(x, t) = lim
h→0

∑
k∈Zn\{0}

[
γ1/2(x+ hk)|k|−n−2s (u(x+ hk, t) − u(x, t))

]

h2s
∑

j∈Zn\{0} γ
1/2(x+ hj)|j|−n−2s . (25)

The denominator is finite, as observed in (23), and also bounded away from 0:
∑

k∈Zn\{0}
γ1/2(x+ hk)|k|−n−2s ≥ γ1/2

∑

k∈Zn\{0}
|k|−n−2s

> 0 . (26)

By using (26) in Eq. (25), one can compute

∂tu(x, t) = lim
h→0

∑
k∈Zn\{0}

[
hnγ1/2(x+ hk)|hk|−n−2s (u(x+ hk, t) − u(x, t))

]

∑
j∈Zn\{0} γ

1/2(x+ hj)|j|−n−2s

= C

∫

Rn

γ1/2(x+ z)
|z|n+2s (u(x+ z, t) − u(x, t)) dz

= C

γ(x)1/2

∫

Rn

γ1/2(x)γ1/2(y)
|y − x|n+2s (u(y, t) − u(x, t)) dy ,

because the sum approximates the Riemannian integral. Eventually, ∂tu(x, t) = C

γ(x)1/2 Cs
γu. If u(x, t) is

independent of t, the fractional conductivity equation Cs
γu = 0 is recovered.
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[14] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, 1990.
[15] M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (1) (2015) 2017.
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Abstract

This paper shows global uniqueness in an inverse problem for a fractional mag-

netic Schrödinger equation (FMSE): an unknown electromagnetic field in a

bounded domain is uniquely determined up to a natural gauge by infinitely

many measurements of solutions taken in arbitrary open subsets of the exterior.

The proof is based on Alessandrini’s identity and the Runge approximation

property, thus generalizing some previous works on the fractional Laplacian.

Moreover, we show with a simple model that the FMSE relates to a long jump

random walk with weights.

Keywords: Fractional magnetic Schrödinger equation, Non-local operators,

Inverse problems, Calderón problem

2010 MSC: 35R11, 35R30

1. Introduction

This paper studies a fractional version of the Schrödinger equation in a mag-

netic field, or a fractional magnetic Schrödinger equation (FMSE), establishing

a uniqueness result for a related inverse problem. We thus deal with a non-local

counterpart of the classical magnetic Schrödinger equation (MSE) (see [33]),

which requires to find up to gauge the scalar and vector potentials existing in a

medium from voltage and current measurements on its boundary.

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, representing

a medium containing an unknown electromagnetic field. The solution of the

Dirichlet problem for the MSE is a function u satisfying{
(−∆)Au+ qu := −∆u− i∇ · (Au)− iA · ∇u+ (|A|2 + q)u = 0 in Ω

u = f on ∂Ω
,

Preprint submitted to Inverse Problems December 3, 2019
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1 INTRODUCTION

where f is the prescribed boundary value and A, q are the vector and scalar

potentials in the medium. The boundary measurements are encoded in ΛA,q :

H1/2(∂Ω)→ H−1/2(∂Ω) , the Dirichlet-to-Neumann (or DN) map. The inverse

problem consists in finding A, q in Ω up to gauge by knowing ΛA,q.

The study of the local MSE has both mathematical and practical interest,

since it constitutes a substantial generalization of the Calderón problem (see [6]).

This problem first arose for the prospection of the ground in search of valuable

minerals. In the method known as Electrical Impedance Tomography (EIT),

electrodes are placed on the ground in order to deliver voltage and measure

current flow; the resulting data carries information about the conductivity of the

materials underground, allowing deductions about their composition ([42]). A

similar method is also used in medical imaging. Since the tissues of a body have

different electrical conductivities ([26]), using the same setup harmless currents

can be allowed to flow in the body of a patient, thus collecting information about

its internal structure. This technique can be applied to cancer detection ([20]),

monitoring of vital functions ([8]) and more (see e.g. [23]). Various engineering

applications have also been proposed. A recent one (see [21]) describes a sensing

skin consisting of a thin layer of conductive copper paint applied on concrete.

In case of cracking of the block, the rupture of the surface would result in a local

decrease in conductivity, which would in turn be detected by EIT, allowing the

timely substitution of the failing block. The version of the problem with non-

vanishing magnetic field is interesting on its own, as it is related to the inverse

scattering problem with a fixed energy (see [33]). First order terms also arise

by reduction in the study of numerous other inverse problems, among which

isotropic elasticity ([35]), special cases of Maxwell and Schrödinger equations

([31], [16]), Dirac equations ([34]) and the Stokes system ([22]). The survey [39]

contains more references on inverse boundary value problems for the MSE.

Below we introduce a fractional extension of the local problem. This is mo-

tivated by the connection between anomalous diffusion and random walks, as

explained in the end of the Introduction and in Section 5. Fix s ∈ (0, 1), and

consider the fractional divergence and gradient operators (∇·)s and ∇s. These

are based on the theoretical framework laid down in [13], [14], and were intro-

duced in [10] as non-local counterparts of the classical divergence and gradient.

They are defined to be the adjoint of each other, and also they have the ex-

pected property that (∇·)s∇s = (−∆)s, the fractional Laplacian. Fix now a

2
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1 INTRODUCTION

vector potential A, and consider the magnetic versions (∇·)sA and ∇sA of the

above operators. These correspond to (−i∇+A)· and (−i∇+A), whose com-

bination results in the local magnetic Laplacian (−∆)A. Analogously, we will

show how (∇·)sA and ∇sA can be combined in a fractional magnetic Laplacian

(−∆)sA. As expected, this operator will reduce to the known (−∆)s if A = 0.

The next step will be setting up the Dirichlet problem for FMSE as{
(−∆)sAu+ qu = 0 in Ω

u = f in Ωe
.

Since our operators are non-local, the exterior values are taken over Ωe =

Rn \Ω. The well-posedness of the direct problem is granted by the assumption

that 0 is not an eigenvalue for the left hand side of FMSE (see e.g. [38]). We

can therefore define the DN map ΛsA,q : Hs(Ωe)→ (Hs(Ωe))
∗ from the bilinear

form associated to the equation. The inverse problem is to recover A and q

in Ω from ΛsA,q. Because of a natural gauge ∼ enjoyed by FMSE, solving the

inverse problem completely is impossible; however, the gauge class of the solving

potentials can be fully recovered:

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 1 be a bounded open set, s ∈ (0, 1), and let

(Ai, qi) ∈ P for i = 1, 2. Suppose W1,W2 ⊂ Ωe are non empty open sets, and

that the DN maps for the FMSEs in Ω relative to (A1, q1) and (A2, q2) satisfy

ΛsA1,q1 [f ]|W2 = ΛsA2,q2 [f ]|W2 , ∀f ∈ C∞c (W1) .

Then (A1, q1) ∼ (A2, q2), that is, the potentials coincide up to the gauge ∼.

The set P of potentials and the gauge ∼ are defined in Section 3. P contains

all potentials (A, q) satisfying certain properties, among which (p5): supp(A) ⊆
Ω2. We suspect this assumption to be unnecessary, but we nonetheless prove

our Theorem in this easier case, and highlight the occasions when (p5) is used.

The proof is based on three preliminary results: the integral identity for

the DN map, the weak unique continuation property (WUCP) and the Runge

approximation property (RAP). The WUCP is easily proved by reducing our

case to that of the fractional Laplacian (−∆)s, for which the result is already

known (see e.g. [37], [17]). For this we use (p5). The proof of the RAP then

comes from the WUCP and the Hahn-Banach theorem. Eventually, we use

this result, the integral identity and (p5) to complete the proof by means of

Alessandrini’s identity. This technique generalizes the one studied in [17].

3
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1 INTRODUCTION

We consider Theorem 1.1 to be very satisfactory, as gauges show up in the

local case s = 1 as well (again, see [33]). For comparison see [7], where it is

shown that no gauge exists for a fractional Schrödinger equation with a local

first-order perturbation of the form b(x) · ∇u(x). As observed in Section 3, our

operator can be regarded as a fractional Schrödinger equation with a non-local

perturbation of the kind ∫
Rn
b(x, y) · ∇su(x, y)dy ,

and thus our results extend the investigation in [7] in a rather natural way. One

may also compare our operator with the one studied in [3]. In such work the au-

thors consider non-local lower-order perturbations of the fractional Schrödinger

equation of the form (−∆)
t/2
Ω b(x)(−∆)

t/2
Ω u(x), where the symbol (−∆)

t/2
Ω de-

notes the regional fractional Laplacian. In the case of complete data, [3] shows

that the perturbation b and the potential q can be completely recovered; how-

ever, in the case of a single measurement, the authors interestingly find that

there exist natural obstacles to the full recovery of both b and q.

Besides the purely mathematical appeal, we believe that the problem we are

considering may also be interesting from a practical point of view. As a matter

of fact, fractional mathematical models are nowadays quite common in many

different fields of science, including image processing ([19]), physics ([13], [15],

[18], [28], [32], [44]), ecology ([25], [30], [36]), turbulent fluid dynamics ([9], [11])

and mathematical finance ([1], [29], [40]). For more references, see [5]. All these

applications involve anomalous diffusion, i.e. a diffusion process in which events

that are quite far from the mean are still allowed to happen with a relatively high

probability. As a consequence, one can model such phenomena with anomalous

diffusion random walks. These are ”anomalous” in the sense that the variance

of the length of the jumps is not finite as in the classical diffusion case. The

authors of [43] have proved how the fractional Laplacian corresponds to a long

jump random walk of this kind. In Section 5 we extend their line of reasoning to

our magnetic fractional operator, showing that its leading term corresponds to

a long jump random walk with weights. We also prove that this is an anomalous

diffusion random walk.
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2 PRELIMINARIES

2. Preliminaries

Operators on bivariate vector functions.

Definition 2.1. Let A ∈ C∞c (Rn × Rn,Cn). The symmetric, antisymmetric,

parallel and perpendicular parts of A at points x, y are

As(x, y) :=
A(x, y) +A(y, x)

2
, Aa(x, y) := A(x, y)−As(x, y) ,

A‖(x, y) :=

{
A(x,y)·(x−y)
|x−y|2 (x− y) if x 6= y

A(x, y) if x = y
, A⊥(x, y) := A(x, y)−A‖(x, y) .

The L2 norms of A with respect to the first and second variable at point x are

J1A(x) :=

(∫
Rn
|A(y, x)|2 dy

)1/2

, J2A(x) :=

(∫
Rn
|A(x, y)|2 dy

)1/2

.

Remark 2.2. Being A ∈ C∞c , these two integrals are finite and the definitions

make sense. Moreover, since Aa · As is an antisymmetric scalar function and

A‖ ·A⊥ = 0, by the following computations

‖A‖2L2 = ‖Aa +As‖2L2 = ‖Aa‖2L2 + ‖As‖2L2 + 2〈Aa, As〉

= ‖Aa‖2L2 + ‖As‖2L2 + 2

∫
R2n

Aa ·As dx dy = ‖Aa‖2L2 + ‖As‖2L2 ,
(1)

‖A‖2L2 = ‖A‖ +A⊥‖2L2 = ‖A‖‖2L2 + ‖A⊥‖2L2 + 2〈A‖, A⊥〉

= ‖A‖‖2L2 + ‖A⊥‖2L2 + 2

∫
R2n

A‖ ·A⊥ dx dy = ‖A‖‖2L2 + ‖A⊥‖2L2

(2)

the four operators (·)s, (·)a, (·)‖, (·)⊥ can be extended to act from L2(R2n) to

L2(R2n). This is true of J1A and J2A as well:

‖J1A‖2L2(Rn) =

∫
Rn
|(J1A)(x)|2 dx =

∫
R2n

|A(y, x)|2 dy dx = ‖A‖2L2(R2n) . (3)

Lemma 2.3. The equalities defining (·)s, (·)a, (·)‖, (·)⊥ in Definition 2.1 for

A ∈ C∞c still hold a.e. for A ∈ L2(R2n).

Proof. We prove the Lemma only for (·)s, as the other cases are similar. For all

i ∈ N, let Ai ∈ C∞c (R2n,Cn) such that ‖A−Ai‖L2 ≤ 1/i. By (1),∥∥∥∥As − A(x, y) +A(y, x)

2

∥∥∥∥
L2

≤

5
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2 PRELIMINARIES

≤ ‖(A−Ai)s‖L2 +

∥∥∥∥Ais − Ai(x, y) +Ai(y, x)

2

∥∥∥∥
L2

+

∥∥∥∥ (A(x, y)−Ai(x, y)) + (A(y, x)−Ai(y, x))

2

∥∥∥∥
L2

= ‖(A−Ai)s‖L2 +

∥∥∥∥ (A(x, y)−Ai(x, y)) + (A(y, x)−Ai(y, x))

2

∥∥∥∥
L2

≤ 2‖A−Ai‖L2 ≤ 2/i .

Remark 2.4. If A ∈ C∞c , the operators (·)s, (·)a, (·)‖, (·)⊥ commute with each

other; because of Lemma 2.3, this still holds a.e. for A ∈ L2(R2n). Thus in the

following we use e.g. the symbol As‖ for both (As)‖ and (A‖)s.

Sobolev spaces. Let Ω ⊂ Rn be open and r ∈ R, p ∈ (1,∞), n ∈ N \ {0}.
By the symbols W r,p = W r,p(Rn) and W r,p

c (Ω) we denote the usual Lp-based

Sobolev spaces. We also let Hs = Hs(Rn) = W s,2(Rn) be the standard L2-

based Sobolev space with norm ‖u‖Hs(Rn) = ‖F−1(〈ξ〉sû)‖L2(Rn) , where s ∈ R,

〈ξ〉 := (1 + |ξ|2)1/2 and the Fourier transform is

û(ξ) = Fu(ξ) =

∫
Rn
e−ix·ξu(x)dx .

One should note that there exist many equivalent definitions of fractional

Sobolev spaces (see e.g. [12]). Using the Sobolev embedding and multiplication

theorems (see e.g. [4], [2]), these spaces can often be embedded into each other:

Lemma 2.5. Let s ∈ (0, 1), p :=max{2, n/2s} and h ≥ 0. Then the embeddings

(e1). Hs ×Hs ↪→ Ln/(n/2+sp−2s) ,

(e2). Hs × Lp ↪→ L2n/(n+2s) ,

(e3). L2p × L2 ↪→ L2n/(n+2s) ,

(e4). L2p ×Hs ↪→ L2 ,

(e5). L2p × L2p ↪→ Lp ,

(e6). Hsp−2s ↪→ Lp ,

(e7). L2n/(n+2h) ↪→ H−h

hold, where × indicates the pointwise product.

Let U,F ⊂ Rn be an open and a closed set. We define the spaces

Hs(U) = {u|U , u ∈ Hs(Rn)} ,

H̃s(U) = closure of C∞c (U) in Hs(Rn) , and

6
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2 PRELIMINARIES

Hs
F (Rn) = {u ∈ Hs(Rn) : supp(u) ⊂ F} ,

where ‖u‖Hs(U) = inf{‖w‖Hs(Rn);w ∈ Hs(Rn), w|U = u}. For s ∈ (0, 1) and

a bounded open set U ⊂ Rn, let X := Hs(Rn)/H̃s(U). If U is a Lipschitz

domain, then then H̃s(U) and Hs
Ū

(Rn) can be identified for all s ∈ R (see [17]);

therefore, X = Hs(Rn)/Hs
Ū

(Rn), and its elements are equivalence classes of

functions from Hs(Rn) coinciding on Ue. X is called abstract trace space.

Non-local operators. If u ∈ S(Rn), its fractional Laplacian is (see [27], [12])

(−∆)su(x) := Cn,s lim
ε→0+

∫
Rn\Bε(x)

u(x)− u(y)

|y − x|n+2s
dy ,

for a constant Cn,s. Its Fourier symbol is |ξ|2s, i.e. (−∆)su(x) = F−1(|ξ|2sû(ξ)).

By [24], Ch. 4 and [41], (−∆)s extends as a bounded map (−∆)s : W r,p(Rn)→
W r−2s,p(Rn) for r ∈ R and p ∈ (1,∞). Let α(x, y) : R2n → Rn be the map

α(x, y) =
C1/2
n,s√

2

y − x
|y − x|n/2+s+1

.

If u ∈ C∞c (Rn) and x, y ∈ Rn, the fractional gradient of u at points x and y is

∇su(x, y) := (u(x)− u(y))α(x, y) , (4)

and is thus a symmetric and parallel vector function of x and y. Since it was

proved in [10] that ‖∇su‖2L2(R2n) ≤ ‖u‖
2
Hs(Rn), and thus that the linear op-

erator ∇s maps C∞c (Rn) into L2(R2n), we see that ∇s can be extended to

∇s : Hs(Rn) → L2(R2n). Using a proof by density similar to the one for

Lemma 2.3, one sees that (4) still holds a.e. for u ∈ Hs(Rn).

If u ∈ Hs(Rn) and v ∈ L2(R2n), the fractional divergence is defined as that

operator (∇·)s : L2(R2n)→ H−s(Rn) satisfying

〈(∇·)sv, u〉L2(Rn) = 〈v,∇su〉L2(R2n) , (5)

i.e. it is by definition the adjoint of the fractional gradient. As observed in [10],

Lemma 2.1, if u ∈ Hs(Rn) the equality (∇·)s(∇su)(x) = (−∆)su(x) holds in

weak sense, and (∇·)s(∇su) ∈ H−s(Rn).

Lemma 2.6. Let u ∈ C∞c (Rn). There exists a constant kn,s such that

F(∇su)(ξ, η) = kn,s

(
ξ

|ξ|n/2+1−s +
η

|η|n/2+1−s

)
Fu(ξ + η) .

7
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2 PRELIMINARIES

Proof. As u ∈ C∞c (Rn), we know that ∇su ∈ L2(R2n), and we can compute its

Fourier transform in the variables ξ, η. By a change of variables,

F(∇su)(ξ, η) =
C1/2
n,s√

2

∫
Rn

∫
Rn
e−ix·ξe−iy·η

u(x)− u(y)

|y − x|n/2+s+1
(y − x) dx dy

= k′n,s

∫
Rn

e−iz·η

|z|n/2+s+1
z

∫
Rn
e−ix·(ξ+η)(u(x)− u(x+ z)) dx dz

= k′n,s

∫
Rn

z

|z|n/2+s+1
e−iz·η Fu(ξ + η)(1− eiz·(ξ+η)) dz

= k′′n,s Fu(ξ + η)

∫
Rn

(e−iz·η − eiz·ξ)∇z(|z|1−n/2−s) dz

= k′′n,s Fu(ξ + η)
(
ηF(|z|1−n/2−s)(η) + ξF(|z|1−n/2−s)(−ξ)

)
= kn,s

(
ξ

|ξ|n/2+1−s +
η

|η|n/2+1−s

)
Fu(ξ + η) .

Lemma 2.7. The fractional gradient extends as a bounded map

∇s : Hr(Rn)→ 〈Dx +Dy〉r−sL2(R2n) ,

and if r ≤ s then also ∇s : Hr(Rn)→ Hr−s(R2n) .

Proof. Start with u ∈ C∞c (Rn), and let r ∈ R. Then

‖∇su‖2〈Dx+Dy〉r−sL2 = (〈Dx +Dy〉r−s∇su, 〈Dx +Dy〉r−s∇su)L2

= (〈Dx +Dy〉2(r−s)∇su,∇su)L2

= (F(〈Dx +Dy〉2(r−s)∇su),F(∇su))L2 .

(6)

From the previous Lemma we can deduce that

F(〈Dx +Dy〉2(r−s)∇su) = (1 + |ξ + η|2)r−sF(∇su)

= (1 + |ξ + η|2)r−skn,s

(
ξ

|ξ|n/2+1−s +
η

|η|n/2+1−s

)
Fu(ξ + η)

= kn,s

(
ξ

|ξ|n/2+1−s +
η

|η|n/2+1−s

)
F(〈Dx〉2(r−s)u)(ξ + η)

= F(∇s(〈Dx〉2(r−s)u)) .

Using the properties of the fractional gradient and (6),

‖∇su‖2〈Dx+Dy〉r−sL2 = (F(∇s(〈Dx〉2(r−s)u)),F(∇su))L2

= (∇s(〈Dx〉2(r−s)u),∇su)L2 = (〈Dx〉2(r−s)u, (−∆)su)L2

= (〈Dx〉r−s(−∆)s/2u, 〈Dx〉r−s(−∆)s/2u)L2

= ‖(−∆)s/2u‖2Hr−s ≤ c‖u‖
2
Hr .

8
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3 DEFINITION AND PROPERTIES OF FMSE

An argument by density completes the proof of the first part of the statement.

For the second one, observe that r ≤ s implies

‖v‖2Hr−s = (〈Dx,y〉r−sv, 〈Dx,y〉r−sv)L2 = (〈Dx,y〉2(r−s)v, v)L2

= ((1 + |ξ|2 + |η|2)r−sv̂, v̂)L2 ≤ c((1 + |ξ + η|2)r−sv̂, v̂)L2

= c(〈Dx +Dy〉2(r−s)v, v)L2 = c‖v‖2〈Dx+Dy〉r−sL2 ,

and so 〈Dx +Dy〉r−sL2(R2n) ⊆ Hr−s(R2n).

As a consequence of the above Lemma, the fractional divergence can be similarly

extended as (∇·)s : Ht(R2n)→ Ht−s(Rn) for all t ≥ s.

3. Definition and properties of FMSE

Fractional magnetic Schrödinger equation. Let Ω ⊂ Rn be open, Ωe =

Rn\Ω be the exterior domain, and also recall that p :=max{2, n/2s}. The vector

potential and scalar potential are two functions A : R2n 7→ Cn and q : Rn 7→ R.

The following properties are of interest:

(p1). J1A, J2A ∈ L2p(Rn) ,

(p2). As‖ ∈ Hsp−s(R2n,Cn) ,

(p3). Aa‖(x, y) · (y − x) ≥ 0, for all x, y ∈ Rn ,

(p4). q ∈ Lp(Ω) ,

(p5). A ∈ L2(R2n), supp(A) ⊆ Ω2 .

With respect to the above properties, we define four sets of potentials:

A0 := {vector potentials A verifying (p1)− (p3)},
A := {vector potentials A verifying (p1)− (p3) and (p5)},
P0 := {pairs of potentials (A, q) verifying (p1)− (p4)},
P := {pairs of potentials (A, q) verifying (p1)− (p5)}.

Remark 3.1. The peculiar definitions for the spaces in (p1), (p2) and (p4) are

due to computational necessities: they make the following quantities

‖qu‖H−s , ‖(∇·)sAs‖‖Lp , ‖(J2A)2‖Lp , ‖uJ2A‖L2

9
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3 DEFINITION AND PROPERTIES OF FMSE

finite for u ∈ Hs, as needed in Remark 3.6, Lemma 3.3 and (7). This is easily

proved by using Lemma 2.5. However, if n ≥ 4, then p = n/2s, and so in this

case L2p = Ln/s and Hsp−s = Hn/2−s; this simplifies the assumptions for n

large enough.

Let A ∈ A0 and u ∈ Hs(Rn). By (p1) and (e4),

‖A(x, y)u(x)‖L2(R2n) =

(∫
Rn
u(x)2

∫
Rn
|A(x, y)|2dy dx

)1/2

=

(∫
Rn
u(x)2 J2A(x)2 dx

)1/2

= ‖uJ2A‖L2(Rn)

≤ k‖u‖Hs‖J2A‖L2p <∞ ,

(7)

and thus the magnetic fractional gradient of u can be defined as the function

∇sAu : R2n → Cn such that

〈∇sAu, v〉 := 〈∇su+A(x, y)u(x), v〉 , for all v ∈ L2(R2n) . (8)

By the same computation, ∇sA acts as an operator ∇sA : Hs(Rn)→ L2(R2n).

Let A ∈ A0, u ∈ Hs(Rn) and v ∈ L2(R2n). The magnetic fractional divergence

is defined by duality as that operator (∇·)sA : L2(R2n)→ H−s(Rn) such that

〈(∇·)sAv, u〉 := 〈v,∇sAu〉 .

By construction, the magnetic fractional divergence and gradient can be com-

bined; we call magnetic fractional Laplacian (−∆)sA := (∇·)sA(∇sA) that operator

from Hs(Rn) to H−s(Rn) such that, for all u, v ∈ Hs(Rn),

〈(−∆)sAu, v〉 = 〈∇sAu,∇sAv〉 . (9)

Remark 3.2. If A ≡ 0, the magnetic fractional Laplacian (−∆)sA is reduced to

its non-magnetic counterpart (−∆)s, as expected. Since the fractional Laplacian

is well understood (see e.g. [17]), from now on we assume A 6≡ 0.

Lemma 3.3. Let A ∈ L2(R2n) ∩ A0 and u ∈ Hs(Rn). The equation

(−∆)sAu = (−∆)su+ 2

∫
Rn

(
Aa‖ · ∇su

)
dy +

(
(∇·)sAs‖ +

∫
Rn
|A|2 dy

)
u

(10)

holds in weak sense.

10
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3 DEFINITION AND PROPERTIES OF FMSE

Proof. By (9), (−∆)sAu ∈ H−s(Rn), and in order to prove (10) in weak sense

one needs to compute 〈(−∆)sAu, v〉 for v ∈ Hs(Rn). By (9) and (8),

〈(−∆)sAu, v〉 = 〈∇su+A(x, y)u(x),∇sv +A(x, y)v(x)〉

= 〈∇su,∇sv〉+ 〈Au,Av〉+ 〈∇su,Av〉+ 〈∇sv,Au〉 ,

where all the above terms make sense, since by formula (7) ∇su,∇sv,Au and

Av all belong to L2(R2n). The new term 〈∇su,A(y, x)v(x)〉 is also finite, so

〈(−∆)sAu, v〉 = 〈∇su,∇sv〉+ 〈Au,Av〉+

+ 〈∇su,A(x, y)v(x)〉 − 〈∇su,A(y, x)v(x)〉+

+ 〈∇su,A(y, x)v(x)〉+ 〈∇sv,A(x, y)u〉 .

(11)

For the first term on the right hand side of (11), by definition,

〈∇su,∇sv〉 = 〈(∇·)s∇su, v〉 = 〈(−∆)su, v〉 . (12)

For the second one, by the embeddings (e5), (e2) and (e7),

〈Au,Av〉 =

〈
u(x)

∫
Rn
|A(x, y)|2dy, v

〉
= 〈u(J2A)2, v〉 . (13)

Since u ∈ Hs(Rn), by (3) we deduce J2(∇su) ∈ L2(Rn). Now (e3) implies that

J2(∇su)J2A ∈ L
2n
n+2s . On the other hand, by Cauchy-Schwarz∥∥∥∥∫

Rn
∇su ·Ady‖

2n
n+2s

L
2n
n+2s (Rn)

=

∫
Rn

∣∣∣∣∫
Rn
∇su ·Ady

∣∣∣∣ 2n
n+2s

dx

≤
∫
Rn

(∫
Rn
|∇su| |A|dy

) 2n
n+2s

dx ≤
∫
Rn

(∫
Rn
|∇su|2dy

∫
Rn
|A|2dy

) n
n+2s

dx

=

∫
Rn
|J2(∇su) J2A|

2n
n+2s dx = ‖J2(∇su) J2A‖

2n
n+2s

L
2n
n+2s (Rn)

,

and so
∫
Rn ∇

su ·Ady ∈ L
2n
n+2s . Now 〈

∫
Rn ∇

su ·Ady, v〉 is finite by (e7), and

〈∇su,A(x, y) v(x)〉 − 〈∇su,A(y, x)v(x)〉 =

=

〈∫
Rn
∇su ·A(x, y)dy, v

〉
−
〈∫

Rn
∇su ·A(y, x)dy, v

〉
=

〈∫
Rn
∇su · (A(x, y)−A(y, x))dy, v

〉
=

〈
2

∫
Rn
∇su ·Aa dy, v

〉
=

〈
2

∫
Rn
∇su ·Aa‖ dy, v

〉
.

(14)

11

Page 11 of 30 AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

3 DEFINITION AND PROPERTIES OF FMSE

The last steps use Lemma 2.3 to write Aa for A ∈ L2 and to see that ∇su is

a.e. a parallel vector for u ∈ Hs(Rn), which implies ∇su · Aa⊥ = 0 a.e.. This

computes the third and fourth terms on the right hand side of (11). For the

last two terms observe that, since A(y, x)v(x) − A(x, y)v(y) is antisymmetric,

by Lemma 2.3 we have 〈∇su,A(y, x)v(x)−A(x, y)v(y)〉 = 0, and so

〈∇su,A(y, x) v(x)〉+ 〈∇sv,Au〉

=

∫
R2n

A(x, y) · (v(y)∇su+ u(x)∇sv) dx dy

=

∫
R2n

A · α
(
v(y)(u(x)− u(y)) + u(x)(v(x)− v(y))

)
dx dy

=

∫
R2n

As‖ · α
(
u(x)v(x)− u(y)v(y)

)
dx dy

= 〈As‖,∇s(uv)〉 = 〈u(∇·)sAs‖, v〉 .

(15)

On the third line of (15) the integrand is the product of a symmetric, parallel

vector and A; this reduces A to As‖. From (e1), (e7) and Lemma 2.7 one sees

that ∇s(uv) ∈ Hs−sp, and now 〈As‖,∇s(uv)〉 makes sense by (p2). Eventually,

(5), (e6), (e2) and (e7) explain the last step. Equation (10) follows from (11),

(12), (13), (14) and (15).

Lemma 3.4. Let A ∈ L2(R2n) ∩ A0. There exists a symmetric distribution

σ ∈ D′(R2n) such that σ ≥ 1 and Aa‖ = α(σ − 1) a.e..

Proof. Because of Lemma 2.3, Aa‖ is a parallel vector almost everywhere, and

thus ‖Aa‖ − (Aa‖)‖‖L2 = 0. Again by Lemma 2.3,

0 = ‖Aa‖ − (Aa‖)‖‖L2 =

∥∥∥∥Aa‖ − Aa‖ · (x− y)

|x− y|2
(x− y)

∥∥∥∥
L2

=

∥∥∥∥∥Aa‖ −
(
−
√

2

C1/2
n,s

Aa‖ · (x− y)

|x− y|1−n/2−s

)
C1/2
n,s√

2

y − x
|y − x|n/2+s+1

∥∥∥∥∥
L2

=

∥∥∥∥∥Aa‖ −
((

1 +

√
2

C1/2
n,s

Aa‖ · (y − x)

|x− y|1−n/2−s

)
− 1

)
α

∥∥∥∥∥
L2

.

Moreover, if φ ∈ C∞c (R2n) and Br1 , Br2 are balls in Rn centered at the origin
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3 DEFINITION AND PROPERTIES OF FMSE

such that supp(φ) ⊂ Br1 ×Br2 , then by (1), (2) and Cauchy-Schwarz inequality∣∣∣∣∣
〈

1 +

√
2

C
1/2
n,s

|y − x|n/2+s

(
Aa‖ ·

y − x
|y − x|

)
, φ

〉∣∣∣∣ =

=

∣∣∣∣∣
∫
Rn

∫
Rn

(
1 +

√
2

C
1/2
n,s

|y − x|n/2+s

(
Aa‖ ·

y − x
|y − x|

))
φ dy dx

∣∣∣∣∣
≤
∫
Rn

∫
Rn

∣∣∣∣∣1 +

√
2

C
1/2
n,s

|y − x|n/2+s

(
Aa‖ ·

y − x
|y − x|

)∣∣∣∣∣ |φ| dy dx
≤ ‖φ‖L∞

∫
Br1

∫
Br2

∣∣∣∣∣1 +

√
2

C
1/2
n,s

|y − x|n/2+s

(
Aa‖ ·

y − x
|y − x|

)∣∣∣∣∣ dy dx
≤ k‖φ‖L∞

(
1 +

∫
Br1

∫
Br2

|y − x|n/2+s

∣∣∣∣Aa‖ · y − x|y − x|

∣∣∣∣ dy dx
)

≤ k‖φ‖L∞
(

1 +

∫
Br1

∫
Br2

(|x|+ |y|)n/2+s|Aa‖| dy dx

)

≤ k′‖φ‖L∞
(

1 +

∫
Br1

∫
Br2

|Aa‖| dy dx

)
≤ k′‖φ‖L∞

(
1 + ‖Aa‖‖2L2(R2n)

)
≤ k′‖φ‖L∞

(
1 + ‖A‖2L2(R2n)

)
<∞ .

Thus it makes sense to define a distribution σ ∈ D′(R2n) such that

〈σ, φ〉 =

〈
1 +

√
2

C
1/2
n,s

|y − x|n/2+s

(
Aa‖ ·

y − x
|y − x|

)
, φ

〉

holds for all φ ∈ C∞c (R2n). Given that Aa‖ is antisymmetric, it is clear that σ

is symmetric; moreover, property (p3) assures that σ ≥ 1.

Remark 3.5. If u ∈ S(Rn), by the previous Lemma we can rewrite the leading

term of (−∆)sA as

Cn,s PV
∫
Rn
σ(x, y)

u(x)− u(y)

|x− y|n+2s
dy .

This shows the connection between the magnetic and classical fractional Lapla-

cians: if σ(x, y) ≡ 1, i.e. if Aa‖ ≡ 0, the formula above defines (−∆)su.

Moreover, if σ(x, y) is separable (i.e. there are functions σ1, σ2 : Rn → R such

that σ(x, y) = σ1(x)σ2(y)) we get the fractional conductivity operator (see [10]).

Consider (A, q) ∈ P0 and f ∈ Hs(Ωe). We say that u ∈ Hs(Rn) solves
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3 DEFINITION AND PROPERTIES OF FMSE

FMSE with exterior value f if and only if{
(−∆)sAu+ qu = 0 in Ω

u = f in Ωe

holds in weak sense, that is if and only if u−f ∈ H̃s(Ω) and, for all v ∈ Hs(Rn),

〈(−∆)sAu, v〉+ 〈qu, v〉 = 0 . (16)

Remark 3.6. By (p1), (p2) and (p4), formula (16) makes sense. This was

already partially shown in the above discussion about the magnetic fractional

Laplacian. For the last term, just use (p4), (e2) and (e7).

Old gauges, new gauges. Let (G, ·) be the abelian group of all strictly positive

functions φ ∈ C∞(Rn) such that φ|Ωe = 1. For (A, q), (A′, q′) ∈ P0, define

(A, q) ∼ (A′, q′) ⇔ (−∆)sAu+ qu = (−∆)sA′u+ q′u , (17)

(A, q) ≈ (A′, q′) ⇔ ∃φ ∈ G : (−∆)sA(uφ) + quφ = φ((−∆)sA′u+ q′u) (18)

for all u ∈ Hs(Rn). Both ∼ and ≈ are equivalence relations on P0, and thus we

can consider the quotient spaces P0/ ∼ and P0/ ≈. Moreover, since φ ≡ 1 ∈ G,

we have (A, q) ∼ (A′, q′)⇒ (A, q) ≈ (A′, q′).

We say that FMSE has the gauge ∼ if for each (A, q) ∈ P0 there exists

(A′, q′) ∈ P0 such that (A′, q′) 6= (A, q) and (A, q) ∼ (A′, q′). Similarly, we

say that FMSE has the gauge ≈ if for each (A, q) ∈ P0 there exist φ ∈ G,

(A′, q′) ∈ P0 such that φ 6≡ 1, (A′, q′) 6= (A, q) and (A, q) ≈ (A′, q′).

Remark 3.7. The definitions (17) and (18), which have been given for FMSE,

can be extended to the local case in the natural way.

If s = 1, it is known that (−∆)A(uφ) + quφ = φ
(

(−∆)A+∇φφ
u+ qu

)
for all

φ ∈ G and u ∈ H1(Rn). If we choose φ 6≡ 1, we have
(
A+ ∇φ

φ , q
)
6= (A, q) and

(A, q) ≈
(
A+ ∇φ

φ , q
)

, which shows that MSE has the gauge ≈. On the other

hand, if (A, q) ∼ (A′, q′) then necessarily A = A′ and q = q′: thus, MSE does

not enjoy the gauge ∼. We now treat the case s ∈ (0, 1).

Lemma 3.8. Let (A, q), (A′, q′) ∈ P0. Then (A, q) ∼ (A′, q′) if and only if

Aa‖ = A′a‖ and Q = Q′, where

Q := q +

∫
Rn
|A|2 dy + (∇·)sAs‖ , Q′ := q′ +

∫
Rn
|A′|2 dy + (∇·)sA′s‖ .

14
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3 DEFINITION AND PROPERTIES OF FMSE

Proof. One direction of the implication is trivial: by (10) and the definition, it

is clear that if Aa‖ = A′a‖ and Q = Q′ then (−∆)sAu+ qu = (−∆)sA′u+ q′u.

For the other one, use Lemmas 3.3 and 3.4 to write (−∆)sAu+qu = (−∆)sA′u+q′u

as

0 = 2

∫
Rn
|α|2(σ′ − σ)(u(y)− u(x)) dy + u(x)(Q−Q′)

= Cn,s
∫
Rn

(σ′ − σ)
u(y)− u(x)

|x− y|n+2s
dy + u(x)(Q−Q′) .

(19)

Fix ψ ∈ C∞c (Rn), x ∈ Rn and u(y) := ψ(y)e−1/|x−y||x − y|n+2s; one sees that

u ∈ S, since it is compactly supported and all the derivatives of the smooth

function e−1/|x−y| vanish at x. Thus u ∈ Hs, and we can substitute it in (19):

0 =

∫
Rn

(σ(x, y)− σ′(x, y))e−1/|x−y|ψ(y) dy = 〈(σ(x, ·)− σ′(x, ·))e−1/|x−y|, ψ〉 .

Being ψ arbitrary and e−1/|x−y| non-negative, we deduce that y 7→ σ(x, y) −
σ′(x, y) is zero for any fixed x, that is, σ = σ′. Then Aa‖ = A′a‖ by Lemma 3.4,

and also Q = Q′ by (19).

Lemma 3.9. Let A 6≡ 0. Then FMSE has the gauge ∼.

Proof. If (A, q) ∈ P0 and A′ ∈ A0 is such that Aa‖ = A′a‖, then by the previous

Lemma (A, q) ∼ (A′, q′) if and only if Q = Q′, that is

q′ = q +

∫
Rn
|A|2 dy + (∇·)sAs‖ −

∫
Rn
|A′|2 dy − (∇·)sA′s‖ .

Since A,A′ ∈ A0, we have As‖, A
′
s‖ ∈ H

sp−s and J2A,J2A
′ ∈ L2p. By the

former fact, (∇·)sAs‖, (∇·)sA′s‖ belong to Hsp−2s and eventually to Lp because

of (e6). By the latter fact and (e5),
∫
Rn |A|

2 dy,
∫
Rn |A

′|2 dy ∈ Lp. Also, q ∈ Lp

because (A, q) ∈ P0. This implies that (p4) holds for the q′ computed above.

Hence, if we find A′ ∈ A0 such that Aa‖ = A′a‖, and then take q′ as above, we

get a (A′, q′) ∈ P0 in gauge ∼ with a given (A, q) ∈ P0. We now show how to

do this with A 6= A′, which implies that FMSE enjoys ∼.

Fix (A, q) ∈ P0, and for the case A⊥ 6≡ 0 let A′ := A‖ − A⊥. Then A 6= A′,

because A⊥ 6= A′⊥; moreover, from A‖ = A′‖ we get Aa‖ = A′a‖ and A′s‖ = As‖ ∈
Hsp−s. Eventually, |A′|2 = |A′‖|

2 + |A′⊥|2 = |A‖|2 + | −A⊥|2 = |A‖|2 + |A⊥|2 =

|A|2 implies J2A
′ = J2A, and A′ verifies (p1). If instead we have A⊥ ≡ 0,

let A′ = A‖ + RA‖, where R is any π/2 rotation. Then as before Aa‖ = A′a‖
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3 DEFINITION AND PROPERTIES OF FMSE

and A′s‖ = As‖ ∈ Hsp−s, because A‖ = A′‖. We also have A 6= A′, because

A⊥ = 0 6= RA‖ = A′⊥. Finally, since J2A ∈ Lp, A′ verifies (p1):

J2A
′ =

(∫
Rn
|A′|2dy

)1/2

=

(∫
Rn
|A′‖|

2 + |A′⊥|2dy
)1/2

=

(∫
Rn
|A‖|2 + |RA‖|2dy

)1/2

=

(∫
Rn

2|A‖|2dy
)1/2

=
√

2J2A .

Lemma 3.10. FMSE does not have the gauge ≈.

Proof. Let (A, q), (A′, q′) ∈ P0 such that (A, q) ≈ (A′, q′). Then there exists

φ ∈ G such that (−∆)sA(uφ) + quφ = φ((−∆)sA′u + q′u) for all u ∈ Hs. Fix

ψ ∈ C∞c (Rn), x ∈ Rn and u(y) := ψ(y)e−1/|x−y||x − y|n+2s as in Lemma 3.8.

Then u ∈ S, and by Lemma 3.3 and Remark 3.5,

0 = Cn,s PV
∫
Rn

(
σ(x, y)

u(x)φ(x)− u(y)φ(y)

|x− y|n+2s
− σ′(x, y)

u(x)φ(x)− u(y)φ(x)

|x− y|n+2s

)
dy

+ u(x)φ(x)(Q−Q′)

= Cn,s PV
∫
Rn

u(y)

|x− y|n+2s
(σ′(x, y)φ(x)− σ(x, y)φ(y)) dy

= Cn,s
∫
Rn
ψ(y)e−1/|x−y| (σ′(x, y)φ(x)− σ(x, y)φ(y)) dy .

Here the principal value disappears because the integral is not singular. Given

the arbitrarity of ψ and the non negativity of the exponential, we deduce

σ(x, y)φ(y) = σ′(x, y)φ(x) for all y 6= x. On the other hand, since σ, σ′ are

symmetric and φ > 0, by taking the symmetric part of each side

σ(x, y)
φ(x) + φ(y)

2
= (σ(x, y)φ(y))s = (σ′(x, y)φ(x))s = σ′(x, y)

φ(x) + φ(y)

2
.

This implies σ = σ′, and the equation can be rewritten as σ(x, y)(φ(y)−φ(x)) =

0. Being σ > 0, it is clear that φ must be constant, and therefore equal to 1.

This means that whenever (A, q), (A′, q′) ∈ P0 are such that (A, q) ≈ (A′, q′)

with some φ ∈ G, then φ ≡ 1, i.e. FMSE does not have the gauge ≈.

By the last two Lemmas, FMSE enjoys ∼, but not ≈. Observe that the

reverse is true for the classical magnetic Schrödinger equation. This surprising

difference is due to the non-local nature of the operators involved: FMSE has ∼
because the coefficient of its gradient term is not the whole vector potential A,

as in the classical case, but just a part of it. On the other hand, the restriction

imposed by the antisymmetry of such part motivates the absence of ≈.
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3 DEFINITION AND PROPERTIES OF FMSE

Bilinear form. Let s ∈ (0, 1), u, v ∈ Hs(Rn), and define the bilinear form

BsA,q : Hs ×Hs → R as follows:

BsA,q[u, v] =

∫
Rn

∫
Rn
∇sAu · ∇sAv dydx+

∫
Rn
quv dx .

Observe that by Fubini’s theorem and Lemmas 3.3, 3.4

BsA,q[u, u] = 〈(−∆)su, u〉+ 2〈∇su,Aa‖u〉+ 〈Qu, u〉

= 〈∇su,∇su〉+ 2〈∇su, α(σ − 1)u〉+ 〈Qu, u〉

= 〈∇su,∇su+ (σ − 1)α(u(x)− u(y))〉+ 〈Qu, u〉

= 〈∇su, σ∇su〉+ 〈Qu, u〉 .

Since again by Lemma 3.4 we have σ ≥ 1, for the first term

〈∇su, σ∇su〉 =

∫
R2n

σ|∇su|2 dydx ≥
∫
R2n

|∇su|2 dydx = 〈(−∆)su, u〉 ,

and thus BsA,q[u, u] ≥ Bs0,Q[u, u]. Now Lemma 2.6 from [38] gives the well-

posedness of the direct problem for FMSE, in the assumption that 0 is not an

eigenvalue for the equation: if F ∈ (H̃s(Ω))∗ then there exists a unique solution

uF ∈ Hs(Ω) to BsA,q[u, v] = F (v), ∀v ∈ H̃s(Ω), that is a unique uF ∈ Hs(Ω)

such that (−∆)sAu + qu = F in Ω, uF |Ωe = 0. For non-zero exterior value, see

e.g. [10] and [17]; one also gets the estimate

‖uf‖Hs(Rn) ≤ c(‖F‖(H̃s(Ω))∗ + ‖f‖Hs(Rn)) . (20)

Lemma 3.11. Let v, w ∈ Hs(Rn), f, g ∈ Hs(Ωe) and uf , ug ∈ Hs(Rn) be such

that ((−∆)sA+q)uf = ((−∆)sA+q)ug = 0 in Ω, uf |Ωe = f and ug|Ωe = g. Then

1. BsA,q[v, w] = BsA,q[w, v] (symmetry),

2. |BsA,q[v, w]| ≤ k‖v‖Hs(Rn)‖w‖Hs(Rn) ,

3. BsA,q[uf , eg] = BsA,q[ug, ef ] ,

where eg, ef ∈ Hs(Rn) are extensions of g, f respectively.

Proof. Symmetry follows immediately from the definition. For the second point,

use (e2), (e7) and the definition of magnetic fractional gradient to write

|BsA,q[v, w]| = |〈∇sAv,∇sAw〉+ 〈qv, w〉| ≤ |〈∇sAv,∇sAw〉|+ |〈qv, w〉|

≤ ‖∇sAv‖L2‖∇sAw‖L2 + ‖qv‖H−s‖w‖Hs

≤ k′‖v‖Hs‖w‖Hs + k′′‖q‖Lp‖v‖Hs‖w‖Hs ≤ k‖v‖Hs‖w‖Hs .
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3 DEFINITION AND PROPERTIES OF FMSE

For the third point, first compute

BsA,q[uf , ug] =

∫
Rn

((−∆)sAuf + quf )ug dx =

∫
Ωe

((−∆)sAuf + quf )ug dx

=

∫
Ωe

((−∆)sAuf + quf )eg dx = BsA,q[uf , eg] ,

and then BsA,q[uf , eg] = BsA,q[uf , ug] = BsA,q[ug, uf ] = BsA,q[ug, ef ].

The DN-map and the integral identity.

Lemma 3.12. There exists a bounded, linear, self-adjoint map ΛsA,q : X → X∗

defined by

〈ΛsA,q[f ], [g]〉 = BsA,q[uf , g], ∀f, g ∈ Hs(Rn) ,

where X is the abstract quotient space Hs(Rn)/H̃s(Ω) and uf ∈ Hs(Rn) solves

(−∆)sAuf + quf = 0 in Ω with u− f ∈ H̃s(Ω).

Proof. We first prove that the tentative definition of the DN-map does not

depend on the representatives of the equivalence classes involved. Let φ, ψ ∈
H̃s(Ω) and compute by Lemma 3.11

BsA,q[uf+φ, g + ψ] =

∫
Ωe

(g + ψ)((−∆)sA + q)uf+φ dx

=

∫
Ωe

g((−∆)sA + q)uf dx = BsA,q[uf , g] .

The ψ disappears because it vanishes in Ωe, while the φ plays actually no role,

since f = f + φ over Ωe implies uf+φ = uf . The boundedness of ΛsA,q follows

from 3.11 and (20): first compute

|〈ΛsA,q[f ], [g]〉| = |BsA,q[uf , g]| ≤ k‖uf‖Hs‖g‖Hs ≤ c‖f‖Hs‖g‖Hs ,

for all f ∈ [f ], g ∈ [g], and then observe that this implies

|〈ΛsA,q[f ], [g]〉| ≤ k inf
f∈[f ]

‖f‖Hs inf
g∈[g]
‖g‖Hs = k‖[f ]‖X‖[g]‖X .

Finally, we prove the self-adjointness from Lemma 3.11:

〈ΛsA,q[f ], [g]〉 = BsA,q[uf , eg] = BsA,q[ug, ef ] = 〈ΛsA,q[g], [f ]〉 = 〈[f ],ΛsA,q[g]〉 .

The DN-map will now be used to prove an integral identity.
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3 DEFINITION AND PROPERTIES OF FMSE

Lemma 3.13. Let (A1, q1), (A2, q2) ∈ P, f1, f2 be exterior data belonging to

Hs(Rn) and ui ∈ Hs(Rn) be the solution of (−∆)sAiui + qiui = 0 with ui− fi ∈
H̃s(Ω) for i = 1, 2. The following integral identity holds:

〈(ΛsA1,q1 − ΛsA2,q2)f1, f2〉 =

= 2
〈∫

Rn
((A1)a‖ − (A2)a‖) · ∇su1 dy, u2

〉
+ 〈(Q1 −Q2)u1, u2〉 .

(21)

Proof. The proof is a computation based on the results of Lemmas 3.12 and 3.3:

〈(ΛsA1,q1 − ΛsA2,q2)f1, f2〉 = BsA1,q1 [u1, u2]−BsA2,q2 [u1, u2]

= 〈∇su1,∇su2〉+ 2
〈∫

Rn
(A1)a‖ · ∇su1 dy, u2

〉
+ 〈Q1u1, u2〉−

− 〈∇su1,∇su2〉 − 2
〈∫

Rn
(A2)a‖ · ∇su1 dy, u2

〉
− 〈Q2u1, u2〉

= 2
〈∫

Rn
((A1)a‖ − (A2)a‖) · ∇su1 dy, u2

〉
+ 〈(Q1 −Q2)u1, u2〉 .

The WUCP and the RAP. Let W ⊆ Ωe be open and u ∈ Hs(Rn) be such

that u = 0 and (−∆)sAu+ qu = 0 in W . If this implies that u = 0 in Ω as well,

we say that FMSE has got the WUCP. It is known that WUCP holds if both A

and q vanish, that is, in the case of the fractional Laplace equation (see [38]).

Let R = {uf |Ω, f ∈ C∞c (W )} ⊂ L2(Ω) be the set of the restrictions to Ω of

those functions uf solving FMSE for some smooth exterior value f supported

in W . If R is dense in L2(Ω), we say that FMSE has got the RAP.

Remark 3.14. The WUCP and the RAP are non-local properties. For example,

the RAP shows a certain freedom of the solutions to fractional PDEs, since it

states that they can approximate any L2 function. This is not the case for a local

operator, e.g. the classical Laplacian, whose solutions are much more rigid.

Lemma 3.15. The WUCP implies the RAP in the case of FMSE.

Proof. We follow the spirit of the analogous Lemma of [17]. Let v ∈ L2(Ω), and

assume that 〈v, w〉 = 0 for all w ∈ R. Then if f ∈ C∞c (W ) and φ ∈ H̃s(Ω)
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4 MAIN RESULTS

solves (−∆)sAφ+ qφ = v in Ω, we have

0 = 〈v, uf |Ω〉 = 〈v, uf − f〉 =

∫
Rn
v(uf − f) dx

=

∫
Ω

v(uf − f) dx =

∫
Ω

((−∆)sAφ+ qφ)(uf − f) dx

=

∫
Rn

((−∆)sAφ+ qφ)(uf − f) dx

= BsA,q[φ, uf ]−
∫
Rn

((−∆)sAφ+ qφ)f dx .

However, BsA,q[φ, uf ] =
∫
Rn((−∆)sAuf + quf )φdx = 0, and so

∫
Rn((−∆)sAφ +

qφ)f dx = 0. Given the arbitrarity of f ∈ C∞c (W ), this implies that (−∆)sAφ+

qφ = 0 in W . Now we use the WUCP: from (−∆)sAφ+ qφ = 0 and φ = 0 in W ,

an open subset of Ωe, we deduce that φ = 0 in Ω as well. By the definition of φ

and the fact that v ∈ L2(Ω) it now follows that v ≡ 0. Thus if 〈v, w〉 = 0 holds

for all w ∈ R, then v ∈ L2(Ω) must vanish; by the Hahn-Banach theorem this

implies that R is dense in L2(Ω).

4. Main results

The inverse problem. We prove Theorem 1.1 under the assumption (A, q) ∈
P, while for all the previous results we only required (A, q) ∈ P0. We find that

(p5) makes physical sense, as the random walk interpretation of FMSE suggests;

however, we move the consideration of the general case to future work.

By (p5) and Lemma 3.4 we easily deduce that σ(x, y) ≡ 1 whenever (x, y) 6∈ Ω2,

since in this case Aa‖(x, y) = 0. Another consequence of (p5) is:

Lemma 4.1. Let (A, q) ∈ P. Then FMSE enjoys the WUCP.

Proof. Suppose that for all x ∈ W ⊆ Ωe we have u(x) = 0, (−∆)sAu(x) +

q(x)u(x) = 0. This in particular implies that (−∆)sAu(x) = 0. Since x 6∈ Ω,

for almost every y ∈ Rn we must have A(x, y) = A(y, x) = 0 by property (p5),

which means that Aa‖(x, y) = 0. It is now an easy consequence of Lemma

3.3 that (−∆)su(x) = 0 for all x ∈ W . The known WUCP for the fractional

Laplacian ([17]) gives the wanted result.

We are ready to solve the inverse problem, which we restate here:
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4 MAIN RESULTS

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 1 be a bounded open set, s ∈ (0, 1), and let

(Ai, qi) ∈ P for i = 1, 2. Suppose W1,W2 ⊂ Ωe are non empty open sets, and

that the DN maps for the FMSEs in Ω relative to (A1, q1) and (A2, q2) satisfy

ΛsA1,q1 [f ]|W2 = ΛsA2,q2 [f ]|W2 , ∀f ∈ C∞c (W1) .

Then (A1, q1) ∼ (A2, q2), that is, the potentials coincide up to the gauge ∼.

Proof. Without loss of generality, let W1 ∩ W2 = ∅. Let fi ∈ C∞c (Wi), and

let ui ∈ Hs(Rn) solve (−∆)sAiui + qiui = 0 with ui − fi ∈ H̃s(Ω) for i = 1, 2.

Knowing that the DN maps computed on f ∈ C∞c (W1) coincide when restricted

to W2 and the integral identity (21), we write Alessandrini’s identity :

0 = 〈(ΛsA1,q1 − ΛsA2,q2)f1, f2〉

= 2
〈∫

Rn
((A1)a‖ − (A2)a‖) · ∇su1 dy, u2

〉
+ 〈(Q1 −Q2)u1, u2〉 .

(22)

We can refine (22) by substituting every instance of ui with ui|Ω. In fact, since

ui is supported in Ω ∪Wi and (Ω ∪W1) ∩ (Ω ∪W2) = Ω,

〈(Q1 −Q2)u1, u2〉 =

∫
Rn
u1u2(Q1 −Q2) dx =

∫
Ω

u1u2(Q1 −Q2) dx

=

∫
Ω

u1|Ωu2|Ω(Q1 −Q2) dx =

∫
Rn
u1|Ωu2|Ω(Q1 −Q2) dx.

Moreover, by property (p5),〈∫
Rn
∇su1 · ((A1)a‖ − (A2)a‖) dy, u2

〉
=

=

∫
Rn
u2

∫
Rn

((A1)a‖ − (A2)a‖) · ∇su1 dy dx

=

∫
Rn
u2(x)

∫
Rn

(σ1(x, y)− σ2(x, y)) |α|2(u1(x)− u1(y)) dy dx

=

∫
Ω

(u2|Ω)(x)

∫
Ω

(σ1(x, y)− σ2(x, y)) |α|2
(

(u1|Ω)(x)− (u1|Ω)(y)
)
dy dx .

Eventually we get

0 = 2

∫
Rn

(u2|Ω)(x)

∫
Rn

(σ1(x, y)− σ2(x, y)) |α|2
(

(u1|Ω)(x)− (u1|Ω)(y)
)
dy dx+

+

∫
Rn
u1|Ωu2|Ω(Q1 −Q2) dx .

(23)
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5 A RANDOM WALK INTERPRETATION FOR FMSE

The RAP holds by Lemmas 3.15 and 4.1. Fix any f ∈ L2(Ω), and let f
(k)
i ∈

C∞c (Wi) for i = 1, 2 and k ∈ N be such that u
(k)
1 |Ω → 1, u

(k)
2 |Ω → f in L2.

Inserting these solutions in (23) and taking the limit as k → ∞ implies that∫
Rn f(Q1 − Q2) dx = 0, so that, given that f ∈ L2(Ω) is arbitrary, we deduce

Q1(x) = Q2(x) for x ∈ Ω. Coming back to (23), we can write∫
Rn

(u2|Ω)(x)

∫
Rn

(σ1(x, y)− σ2(x, y))
(u1|Ω)(x)− (u1|Ω)(y)

|x− y|n+2s
dy dx = 0,

where ui ∈ Hs(Rn) once again solves (−∆)sAiui+ qiui = 0 with ui−fi ∈ H̃s(Ω)

for some fi ∈ C∞c (Wi) and i = 1, 2. Choosing u
(k)
2 |Ω → f in L2 for some

arbitrary f ∈ L2, by the same argument∫
Rn

(σ1(x, y)− σ2(x, y))
(u1|Ω)(x)− (u1|Ω)(y)

|x− y|n+2s
dy = 0

for x ∈ Ω. Fix now some x ∈ Ω and an arbitrary ψ ∈ C∞c (Ω). Since g(y) :=

ψ(y)e−1/|x−y||x− y|n+2s ∈ S ⊂ L2(Ω) as in Lemma 3.8, by the RAP we find a

sequence u
(k)
1 |Ω → g. Substituting these solutions and taking the limit,∫

Rn
(σ1(x, y)− σ2(x, y))ψ(y)e−1/|x−y| dy = 0 .

Thus we conclude that for all x ∈ Ω it must be σ1(x, y) = σ2(x, y) for all y ∈ Ω,

i.e. σ1 = σ2 over Ω2. But then σ1 and σ2 coincide everywhere, because they are

both 1 in R2n \Ω2. This means that (A1)a‖ = (A2)a‖. Moreover, since by (p2),

(p4) and (p5) we have Q1 = 0 = Q2 over Ωe, by the argument above Q1 = Q2

everywhere. It thus follows from Lemma 3.8 that (A1, q1) ∼ (A2, q2).

5. A random walk interpretation for FMSE

Diffusion phenomena can often be seen as continuous limits of random walks.

The classical result for the Laplacian was extended in [43] to the fractional one

by considering long jumps. Similarly, the fractional conductivity equation was

shown in [10] to arise from a long jump random walk with weight γ1/2, where

γ is the conductivity. We now show how the leading term in FMSE is itself the

limit of a long jump random walk with weights. For simplicity, here we take σ

as smooth and regular as needed. Let h > 0, τ = h2s, k ∈ Zn, x ∈ hZn and

t ∈ τZ. We consider a random walk on hZn with time steps from τZ. Define

f(x, k) :=

σ(x, x+ hk)|k|−n−2s if k 6= 0

0 if k = 0
,
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5 A RANDOM WALK INTERPRETATION FOR FMSE

and then observe that ∀x ∈ hZn∑
k∈Zn

f(x, k) =
∑

k∈Zn\{0}

f(x, k) =
∑

k∈Zn\{0}

σ(x, x+ hk)|k|−n−2s

≤ ‖σ‖L∞
∑

k∈Zn\{0}

|k|−n−2s <∞ .

Thus we can normalize f(x, k), and get the new function P (x, k)

P (x, k) :=


(∑

j∈Zn f(x, j)
)−1

σ(x, x+ hk)|k|−n−2s if k 6= 0

0 if k = 0
. (24)

P (x, k) takes values in [0, 1] and verifies
∑
k∈Zn P (x, k) = 1; we interpret it as

the probability that a particle will jump from x+ hk to x in the next step.

Remark 5.1. Let us compare P (x, k) for the fractional Laplacian, conductivity

and magnetic Laplacian operators. P (x, k) always decreases when k increases;

the fractional Laplacian, which has σ(x, y) ≡ 1, treats all the points of Rn

equally: no point is intrinsically more likely to be reached at the next jump; the

fractional conductivity operator, which has σ(x, y) =
√
γ(x)γ(y), distinguishes

the points of Rn: those with high conductivity are more likely to be reached.

However, the conductivity field is independent from the current position of the

particle. The magnetic fractional Laplacian operator has no special σ(x, y) and

it distinguishes the points of Rn in a more subtle way, as the conductivity field

depends on the position of the particle: the same point may have high conduc-

tivity if the particle is at x and a low one if it is at y.

Remark 5.2. We now see why σ > 0 and σ(x, y) = 1 if (x, y) 6∈ Ω2: these are

needed for y 7→ σ(x, y) to be a conductivity as in [10] for all x ∈ Rn.

Let u(x, t) be the probability that the particle is at point x at time t. Then

u(x, t+ τ) =
∑

k∈Zn\{0}

P (x, k)u(x+ hk, t) .

We can compute ∂tu(x, t) as the limit for τ → 0 of the difference quotients, and

then substitute the above formula (see [10]). As the resulting sum approximates

the Riemannian integral, we eventually get that for some constant C > 0

∂tu(x, t) = C

∫
Rn
σ(x, y)

u(y, t)− u(x, y)

|x− y|n+2s
dy .
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5 A RANDOM WALK INTERPRETATION FOR FMSE

If u(x, t) is independent of t, the leading term of FMSE is recovered.

We shall now prove that the random walk we are considering represents

anomalous diffusion. In a classical diffusion scenario, very long jumps should

happen with very low probability. This is mathematically reflected in the prop-

erty that the variance of the length of the jumps is finite. However, this is not

the case for our random walk:

Lemma 5.3. If s ∈ (0, 1), then the second moment of the length of the jumps

of the random walk (24) is infinity. Moreover, if s ∈ (1/2, 1) the first moment

is finite, and if s ∈ (0, 1/2] it is infinity.

Proof. Fix any point x ∈ Rn, and let s ∈ (0, 1). The second moment of the

length of the jumps of the random walk (24) is proportional to∑
k∈Zn\{0}

|k|2σ(x, x+ hk)

|k|n+2s
≥

∑
k∈Zn\{0}

1

|k|n+2s−2
.

By the integral test for the convergence of a series, we deduce that the above

series diverges because∫
Rn\B1

dx

|x|n+2s−2
= c

∫ ∞
1

ρ1−2sdρ = c ρ2−2s
∣∣∞
ρ=1

=∞ .

Thus the second moment is infinity. For the first moment, let M > diam(Ω)/h.

Then (x, x + hk) 6∈ Ω2 for |k| > M , either because x 6∈ Ω or because, if x ∈ Ω,

then |hk| >diam(Ω) and therefore x + hk 6∈ Ω. Thus by (p5) we know that

σ(x, x+ hk) = 1 if |k| > M . Of course we have∑
k∈Zn\{0}

|k|σ(x, x+ hk)

|k|n+2s
=

∑
|k|>M

k∈Zn\{0}

1

|k|n+2s−1
+

∑
|k|≤M

k∈Zn\{0}

σ(x, x+ hk)

|k|n+2s−1
,

because the second sum in the right hand side has only a finite amount of finite

terms, and is therefore finite itself. For the other sum in the right hand side,

we use again the integral test: the first moment will be finite if and only if the

integral ∫
Rn\BM

dx

|x|n+2s−1
= c

∫ ∞
M

ρ−2sdρ

is itself finite. We see that this happens if and only if s ∈ (1/2, 1), which

concludes the proof.
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6 ONE SLIGHT GENERALIZATION

Remark 5.4. If s ∈ (1/2, 1), the variance of the length of the jumps of the

random walk (24) is infinity because of the above Lemma. Therefore, in this

case the random walk represents anomalous diffusion.

6. One slight generalization

We now briefly consider a fractional magnetic conductivity equation (FMCE)

and show that it shares similar features as FMSE. Let (A, q) ∈ P and let γ

be a conductivity in the sense of [10]. Consider u ∈ Hs(Rn). Since ∇sA :

Hs(Rn)→ L2(R2n), if Θ(x, y) :=
√
γ(x)γ(y)Id by the properties of γ we know

that Θ · ∇sAu ∈ L2(R2n). Thus we define the fractional magnetic conductivity

operator

Csγ,Au(x) := (∇·)sA(Θ · ∇sAu)(x) , Csγ,A : Hs(Rn)→ H−s(Rn) .

We say that u ∈ Hs(Rn) solves the FMCE with exterior value f ∈ Hs(Ωe) if{
Csγ,Au(x) + q(x)u(x) = 0 in Ω

u = f in Ωe

holds in weak sense.

Lemma 6.1. Let u ∈ Hs(Rn), g ∈ Hs(Ωe), w = γ1/2u and f = γ1/2g. More-

over, let (A, q) ∈ P and

q′ := q′γ,A,q =
q

γ
− (∇·)sAs‖ +

(∇·)s(Aγ1/2(y))

γ1/2(x)
− (−∆)s(γ1/2)

γ1/2(x)
+

+

∫
Rn

(
− ∇

s(γ1/2) ·A
γ1/2(x)

+ |A|2
(γ1/2(y)

γ1/2(x)
− 1
))

dy .

FMCE with potentials (A, q), conductivity γ and exterior value g is solved by u

if and only if w solves FMSE with potentials (A, q′) and exterior value f , i.e.{
Csγ,Au+ qu = 0 in Ω

u = g in Ωe
⇔

{
(−∆)sAw + q′w = 0 in Ω

w = f in Ωe
.

Moreover, the following formula holds for all w ∈ Hs(Rn):

Csγ,A(γ−1/2w) + qγ−1/2w = γ1/2
(

(−∆)sA + q′
)
w .
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6 ONE SLIGHT GENERALIZATION

Proof. Let us start from some preliminary computations. One sees that

∇sw = ∇s(γ1/2u) = γ1/2(y)∇su+ u(x)∇s(γ1/2)

= γ1/2(y)∇su+ w(x)
∇s(γ1/2)

γ1/2(x)
,

from which ∇su = ∇sw
γ1/2(y)

− w(x) ∇s(γ1/2)
γ1/2(x)γ1/2(y)

, and eventually

∇sAu =
∇sw
γ1/2(y)

− w(x)
∇s(γ1/2)

γ1/2(x)γ1/2(y)
+A(x, y)

w(x)

γ1/2(x)
. (25)

By the definition of magnetic fractional divergence, if v ∈ Hs(Rn),

〈(∇·)sA(Θ · ∇sAu), v〉 = 〈γ1/2(x)γ1/2(y)∇sAu,∇sAv〉

= 〈γ1/2(x)γ1/2(y)∇sAu,∇sv〉+ 〈γ1/2(x)γ1/2(y)∇sAu,Av〉

= 〈γ1/2(x)γ1/2(y)∇sAu,∇sv〉+
〈∫

Rn
γ1/2(y)∇sAu ·Ady, γ1/2v

〉
.

Applying formula (25), we get

〈(∇·)sA(Θ · ∇sAu), v〉 = 〈γ1/2(x)∇sw,∇sv〉+ 〈w(x)(A(x, y)γ1/2(y)−∇s(γ1/2)),∇sv〉

+
〈∫

Rn
γ1/2(y)

( ∇sw
γ1/2(y)

− w(x)
∇s(γ1/2)

γ1/2(x)γ1/2(y)
+A(x, y)

w(x)

γ1/2(x)

)
·Ady, γ1/2v

〉
= 〈γ1/2(x)∇sw,∇sv〉+ 〈w(x)(A(x, y)γ1/2(y)−∇s(γ1/2)),∇sv〉 (26)

+
〈∫

Rn

(
∇sw ·A− w(x)

∇s(γ1/2) ·A
γ1/2(x)

+ |A|2w(x)
γ1/2(y)

γ1/2(x)

)
dy, γ1/2v

〉
.

We treat the resulting terms separately. For the first one, by symmetry,

〈γ1/2(x)∇sw,∇sv〉 = 〈∇sw, γ1/2(x)∇sv〉 = 〈∇sw,∇s(vγ1/2)− v(y)∇s(γ1/2)〉

= 〈(−∆)sw, vγ1/2〉 − 〈∇sw, v(y)∇s(γ1/2)〉 = 〈(−∆)sw, vγ1/2〉 − 〈∇sw, v(x)∇s(γ1/2)〉

= 〈(−∆)sw, vγ1/2〉 −
〈∫

Rn
∇sw · ∇

s(γ1/2)

γ1/2(x)
dy, γ1/2v

〉
. (27)

For the second part of (26), we will compute as follows:

〈A(x, y)γ1/2(y)−∇s(γ1/2), w(x)∇sv〉 =

= 〈A(x, y)γ1/2(y)−∇s(γ1/2),∇s(vw)− v(y)∇sw〉

=
〈

(∇·)s
(
A(x, y)γ1/2(y)−∇s(γ1/2)), vw

〉
−
〈(
A(x, y)γ1/2(y)−∇s(γ1/2)

)
v(y),∇sw

〉
=
〈( (∇·)s(Aγ1/2(y))

γ1/2(x)
− (−∆)s(γ1/2)

γ1/2(x)

)
w(x), vγ1/2

〉
−
〈(
A(y, x)γ1/2(x)−∇s(γ1/2)

)
v(x),∇sw

〉
26

Page 26 of 30AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

REFERENCES

=
〈( (∇·)s(Aγ1/2(y))

γ1/2(x)
− (−∆)s(γ1/2)

γ1/2(x)

)
w(x), vγ1/2

〉
− (28)

−
〈∫

Rn
A(y, x) · ∇sw dy, vγ1/2

〉
+
〈∫

Rn

∇s(γ1/2)

γ1/2(x)
· ∇sw dy, vγ1/2

〉
.

Substituting (27) and (28) into (26), we conclude the proof:

〈(∇·)sA(Θ · ∇sAu), v〉 = 〈(−∆)sw, vγ1/2〉 −
〈∫

Rn
∇sw · ∇

s(γ1/2)

γ1/2(x)
dy, γ1/2v

〉
+

+
〈( (∇·)s(Aγ1/2(y))

γ1/2(x)
− (−∆)s(γ1/2)

γ1/2(x)

)
w(x), vγ1/2

〉
−

−
〈∫

Rn
A(y, x) · ∇sw dy, vγ1/2

〉
+
〈∫

Rn

∇s(γ1/2)

γ1/2(x)
· ∇sw dy, vγ1/2

〉
+

+
〈∫

Rn

(
∇sw ·A− w(x)

∇s(γ1/2) ·A
γ1/2(x)

+ |A|2w(x)
γ1/2(y)

γ1/2(x)

)
dy, γ1/2v

〉
=
〈

(−∆)sw + 2

∫
Rn
Aa‖ · ∇sw dy + w(x)

(∫
Rn
|A|2 dy + (∇·)sAs‖

)
, vγ1/2

〉
+

+
〈{
−(∇·)sAs‖ +

(∇·)s(Aγ1/2(y))

γ1/2(x)
− (−∆)s(γ1/2)

γ1/2(x)
+

+

∫
Rn

(
− ∇

s(γ1/2) ·A
γ1/2(x)

+ |A|2
(γ1/2(y)

γ1/2(x)
− 1
))

dy

}
w(x), vγ1/2

〉
= 〈(−∆)sAw + (q′ − q/γ)w, vγ1/2〉 .

Thus the FMCEs can be reduced to FMSEs; hence, we know that FMCE enjoys

the same gauges as FMSE, and most importantly we can consider and solve an

analogous inverse problem.
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UNIQUE CONTINUATION PROPERTY AND POINCARÉ INEQUALITY

FOR HIGHER ORDER FRACTIONAL LAPLACIANS WITH

APPLICATIONS IN INVERSE PROBLEMS

GIOVANNI COVI, KEIJO MÖNKKÖNEN, AND JESSE RAILO

Abstract. We prove a unique continuation property for the fractional Laplacian (−∆)s when
s ∈ (−n/2,∞) \ Z where n ≥ 1. In addition, we study Poincaré-type inequalities for the
operator (−∆)s when s ≥ 0. We apply the results to show that one can uniquely recover, up
to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated
to the higher order fractional magnetic Schrödinger equation. We also study the higher order
fractional Schrödinger equation with singular electric potential. In both cases, we obtain a
Runge approximation property for the equation. Furthermore, we prove a uniqueness result
for a partial data problem of the d-plane Radon transform in low regularity. Our work extends
some recent results in inverse problems for more general operators.

1. Introduction

The fractional Laplacian (−∆)s, s ∈ (−n/2,∞) \Z, is a non-local operator by definition and
thus differs substantially from the ordinary Laplacian (−∆). The non-local behaviour can be
exploited when solving fractional inverse problems. In section 3.1, we prove that (−∆)s admits
a unique continuation property (UCP) for open sets, that is, if u and (−∆)su both vanish in
a nonempty open set, then u vanishes everywhere. Clearly this property cannot hold for local
operators. We give many other versions of UCPs as well.

We have also included a quite comprehensive discussion of the Poincaré inequality for the
higher order fractional Laplacian (−∆)s, s ≥ 0, in section 3.2. We give many proofs for the
higher order fractional Poincaré inequality based on various different methods in the literature.
The higher order fractional Poincaré inequality appears earlier at least in [84] for functions in
C∞c (Ω) where Ω is a bounded Lipschitz domain. Also similar inequalities are proved in the
book [4] for homogeneous Sobolev norms but without referring to the fractional Laplacian.
However, we have extended some known results, given alternative proofs, and studied a con-
nection between the fractional and the classical Poincaré constants. We believe that section 3.2
will serve as a helpful reference on fractional Poincaré inequalities in the future.

Our main applications are fractional Schrödinger equations with and without a magnetic
potential, and the d-plane Radon transforms with partial data. We apply the UCP result
and the Poincaré inequality for higher order fractional Laplacians to show uniqueness for the
associated fractional Schrödinger equation and the Runge approximation properties. UCPs
have also applications in integral geometry since certain partial data inverse problems for the
Radon transforms can be reduced to unique continuation problems of the normal operators.
We remark that the normal operators of the Radon transforms are negative order fractional
Laplacians (Riesz potentials) up to constant coefficients.

In this section, we introduce our models, discuss some related results and present our main
theorems and corollaries. We start with the classical Calderón problem as a motivation.

1.1. The Calderón problem. We will study a non-local version of the famous Calderón prob-
lem called the fractional Calderón problem. A survey of the fractional Calderón problem is given
in [79]. The Calderón problem is a classical inverse problem where one wants to determine the

Date: September 4, 2020.
Key words and phrases. Inverse problems, unique continuation, fractional Laplacian, fractional Schrödinger

equation, fractional Poincaré inequality, Radon transform.
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electrical conductivity on some sufficiently smooth domain by boundary measurements [77, 83].
Suppose that Ω ⊂ Rn is a domain with regular enough boundary ∂Ω. The electrical conduc-
tivity is usually represented as a bounded positive function γ, and the conductivity equation
is

{
∇ · (γ∇u) = 0 in Ω

u|∂Ω = f
(1)

where f is the potential on the boundary ∂Ω and u is the induced potential in Ω. The data in
this problem is the Dirichlet-to-Neumann (DN) map Λγ(f) = (γ∂νu)|∂Ω, where ν is the outer
unit normal on the boundary. The DN map basically tells how the applied voltage on the
boundary induces normal currents on the boundary by the electrical properties of the interior.
The inverse problem is to determine γ from the DN map Λγ . One of the associated basic
questions is the uniqueness problem, that is, whether γ1 = γ2 follows from Λγ1 = Λγ2 .

Equation (1) can be reduced to a Schrödinger equation
{

(−∆ + q)u = 0 in Ω
u|∂Ω = f

(2)

where q = (∆
√
γ)/
√
γ now represents the electric potential in Ω. One typically assumes that 0

is not a Dirichlet eigenvalue of the operator (−∆+q) to obtain unique solutions to equation (2).
The inverse problem then is to know whether one can determine the electric potential q uniquely
from the DN map Λq, which can be expressed in terms of the normal derivative Λqf = ∂νu|∂Ω

for regular enough boundaries. For more details on the classical Calderón problem and its
applications to medical, seismic and industrial imaging, see [77, 83].

1.2. Fractional Schrödinger equation. In this article, we focus on the fractional Schrödinger
equation and its generalization, the fractional magnetic Schrödinger equation. The main differ-
ence between the classical and fractional Schrödinger operators is that the first one is local and
the second one is non-local. This can be seen since the Laplacian (−∆) is local as a differential
operator while the fractional counterpart (−∆)s, s ∈ R+ \Z, is a non-local Fourier integral op-
erator. In other words, the value (−∆)su(x), s ∈ R+\Z, depends on the values of u everywhere,
not just in a small neighbourhood of x ∈ Rn. Fractional Laplacians have a close connection
to Levý processes and have been used in many areas of mathematics and physics, for example
to model anomalous and nonlocal diffusion, and also in the formulation of fractional quantum
mechanics where the fractional Schrödinger equation arises naturally as a generalization of the
ordinary Schrödinger equation [3, 7, 18, 28, 50, 51, 58, 71].

Since the fractional Laplacian is a non-local operator, it is more natural to fix exterior values
for the solutions of the equation instead of just boundary values. This motivates the study of
the following exterior value problem, first introduced in [28],

{
((−∆)s + q)u = 0 in Ω

u|Ωe = f
(3)

where Ωe = Rn \ Ω is the exterior of Ω. The associated DN map for equation (3) is a bounded
linear operator Λq : Hs(Ωe)→ (Hs(Ωe))

∗ which, under stronger assumptions, has an expression
Λqf = (−∆)su|Ωe [28]. We assume that the potential q is such that the following holds:

(4) If u ∈ Hs(Rn) solves ((−∆)s + q)u = 0 in Ω and u|Ωe = 0, then u = 0.

In other words, condition (4) requires that 0 is not a Dirichlet eigenvalue of the operator
((−∆)s + q).

In section 5, we will prove that, under certain assumptions, one can uniquely determine the
potential q in equation (3) from exterior measurements when s ∈ R+ \ Z, and we also prove
a Runge approximation property for equation (3) (see also section 1.5). These generalize the
results in [28, 75] to higher fractional powers of s. The proofs basically reduce to the fact that
the operator (−∆)s has the following UCP: if (−∆)su|V = 0 and u|V = 0 for some nonempty

2



open set V ⊂ Rn, then u = 0 everywhere. This reflects the fact that (−∆)s is a non-local
operator since such UCP can never hold for local operators.

Unique continuation of the fractional Laplacian has been extensively studied and used to
show uniqueness results for fractional Schrödinger equations [14, 27, 28, 75]. One version was
already proved by Riesz [28, 70] and similar methods were used in [41] to show a UCP of
Riesz potentials Iα which can be seen as fractional Laplacians with negative exponents. See
also [45] for a unique continuation result of Riesz potentials. UCP of (−∆)s for functions in
Hr(Rn), r ∈ R, was proved in [28] when s ∈ (0, 1). The proof is based on Carleman estimates
from [72] and on Caffarelli-Silvestre extension [8, 9]. Using the known result for s ∈ (0, 1), we
provide an elementary proof which generalizes the UCP for all s ∈ (−n/2,∞) \ Z. With the
same trick we obtain several other unique continuation results. There are also strong unique
continuation results for s ∈ (0, 1) if one assumes more regularity from the function [22, 72].
In the strong UCP, one replaces the condition u|V = 0 by the requirement that u vanishes to
infinite order at some point x0 ∈ V . The higher order case s ∈ R+ \ (Z∪ (0, 1)) has been studied
recently by several authors [23, 26, 86]. These results however assume some special conditions
on the function u, i.e. they require that u is in a Sobolev space which depends on the power s
of the fractional Laplacian (−∆)s. We only require that u is in some Sobolev space Hr(Rn)
where r ∈ R can be an arbitrarily small (negative) number.

See also [45] where the author proves a higher order Runge approximation property by s-
harmonic functions in the unit ball when s ∈ R+ \ Z (compare to theorem 1.7). Here s-
harmonicity simply means that (−∆)su = 0 in some domain Ω. The s-harmonic approximation
in the case s ∈ (0, 1) was already studied in [17]; similar higher regularity approximation results
are proved in [11, 28] for the fractional Schrödinger equation.

1.3. Fractional magnetic Schrödinger equation. Section 6 of this paper extends the study
of the fractional magnetic Schrödinger equation (FMSE) begun in [14], expanding the uniqueness
result for the related inverse problem to the cases when s ∈ R+ \Z. The direct problem for the
classical magnetic Schrödinger equation (MSE) consists in finding a function u satisfying

{
(−∆)Au+ qu = −∆u− i∇ · (Au)− iA · ∇u+ (|A|2 + q)u = 0 in Ω

u|∂Ω = f

where Ω ⊂ Rn is some bounded open set with Lipschitz boundary representing a medium, f
is the boundary value for the solution u, and A, q are the vector and scalar potentials of the
equation. In the associated inverse problem, we are given measurements on the boundary in the
form of a DN map ΛA,q : H1/2(∂Ω)→ H−1/2(∂Ω), and we are asked to recover A, q in Ω using
this information. It was shown in [60] that this is only possible up to a natural gauge: one can
uniquely determine the potential q and the magnetic field curlA, but the magnetic potential
A can not be determined in greater detail. The inverse problem for MSE is of great interest,
because it generalizes the non-magnetic case by adding some first order terms, and shows a
quite different behavior. It also possesses multiple applications in the sciences: the papers
[60, 62, 56, 20, 61] and [35] give some examples of this, treating the inverse scattering problem
with a fixed energy, isotropic elasticity, the Maxwell, Schrödinger and Dirac equations and the
Stokes system. We refer to the survey [76] for many more references on inverse boundary value
problems related to MSE.

We are interested in the study of a high order fractional version of the MSE. There have been
many studies in this direction (see for instance [54, 52, 53]). In our work, we will build upon
the results from [14] and generalize them to higher order. Thus, for us the direct problem for
FMSE asks to find a function u which satisfies{

(−∆)sAu+ qu = 0 in Ω
u|Ωe = f

where Ω, f , A and q play a similar role as in the local case, s ∈ R+\Z and (−∆)sA is the magnetic
fractional Laplacian. This is a fractional version of (−i∇+A)·(−i∇+A), the magnetic Laplacian
from which MSE arises. In section 6, we will construct the fractional magnetic Laplacian based
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on the fractional gradient operator ∇s. The fractional gradient is based on the framework laid
down in [18, 19], and has been studied in the papers [15, 14]. One should keep in mind that for
s > 1 the fractional gradient is a tensor of order bsc rather than a vector. In the corresponding
inverse problem, we assume to know the DN map ΛsA,q : Hs(Ωe)→ (Hs(Ωe))

∗, and we wish to

recover A, q in Ω. In the cases when s ∈ (0, 1), it has been shown that the pair A, q can only be
recovered up to a natural gauge [14]. We generalize this result to the case s ∈ R+ \ Z. This is
achieved by first proving a weak UCP and the Runge approximation property for FMSE, and
then testing the Alessandrini identity for the equation with suitably chosen functions.

Remark 1.1. The case of the high order magnetic Schrödinger equation, that is the one in
which s ∈ N, s 6= 1, is still open at the time of writing to the best of the authors’ knowledge.
Our methods are purely nonlocal, and thus cannot be applied to the integer case. It was however
showed in [60], as cited above, that a uniqueness result up to a natural gauge holds when s = 1.

1.4. Radon transforms and region of interest tomography. Unique continuation results
have also applications in integral geometry. It was proved in [41] that the normal operator of
the X-ray transform admits a UCP in the class of compactly supported distributions. This was
done by considering the normal operator as a Riesz potential. We generalize the result for the
normal operator of the d-plane transform Rd where d ∈ N is odd such that 0 < d < n. In the
case d = 1 the transform Rd corresponds to the X-ray transform and in the case d = n − 1 to
the Radon transform. The UCP of the normal operator Nd = R∗dRd implies uniqueness for the
following partial data problem: if f integrates to zero over all d-planes which intersect some
nonempty open set V and f |V = 0, then f = 0. This can be seen as a complementary result to
the Helgason support theorem for the d-plane transform [36]. Helgason’s theorem says that if f
integrates to zero over all d-planes not intersecting a convex and compact set K and f |K = 0,
then f = 0. The d-plane transform Rd is injective on continuous functions which decay rapidly
enough at infinity and also on compactly supported distributions [36]. The d-plane transform
has been recently studied in the periodic case on the flat torus [2, 40, 67] but also in other
settings [16, 37, 69]. Weighted and limited data Radon transforms (d = n − 1) have been
studied recently for example in [25, 29, 30, 31].

When d = 1, partial data problems as discussed above arise for example in seismology and
medical imaging. In [41], it is explained how one can use shear wave splitting data to uniquely
determine the difference of the anisotropic perturbations in the S-wave speeds, and also how
one can use local measurements of travel times of seismic waves to uniquely determine the
conformal factor in the linearization. Both of these problems reduce to the following partial
data result: if f integrates to zero over all lines which intersect some nonempty open set V
and f |V = 0, then f = 0. In medical imaging, one typically wants to reconstruct a specific
part of the human body. Can this be done by using only X-rays which go though our region
of interest (ROI)? Generally this is not possible even for C∞c -functions [43, 63, 81], but if we
know some information of f in the ROI, then the reconstruction can be done. For example,
if the function f is piecewice constant, piecewice polynomial or analytic in the ROI, then f
can be uniquely determined from the X-ray data [42, 43, 85]. Also, if we know the X-ray data
through the ROI and the values of f in an arbitrarily small open set inside the ROI, then f
is uniquely determined everywhere [13, 41]. For practical applications of ROI tomography in
medical imaging, see for example [87, 88]. See also [44, 65, 66] for a discussion of the difficulties
of obtaining stable reconstruction in partial data problems for the X-ray transform (visible and
invisible singularities).

1.5. Main results. We briefly introduce the basic notation; more details can be found in

sections 2, 4, 5 and 6. Let Hr(Rn) be the L2 Sobolev space of order r ∈ R and H̃r(Ω)
the closure of C∞c (Ω) in Hr(Rn) when Ω is an open set. The L1 Bessel potential space is
denoted by Hr,1(Rn). We define Hr

K(Rn) ⊂ Hr(Rn) to be those Sobolev functions which have
support in the compact set K. The fractional Laplacian is defined via the Fourier transform
(−∆)su = F−1(|·|2s û). Then (−∆)s : Hr(Rn) → Hr−2s(Rn) is a continuous operator when
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s ∈ R+ \ Z. The d-plane transform Rd takes a function which decreases rapidly enough at
infinity and integrates it over d-dimensional planes where 0 < d < n. The normal operator
of the d-plane transform is defined as Nd = R∗dRd where R∗d is the adjoint operator. Further,
we denote by D′(Rn) the space of all distributions, E ′(Rn) the space of compactly supported
distributions, O ′C(Rn) the space of rapidly decreasing distributions and C∞(Rn) the set of
rapidly decreasing continuous functions. The space of singular potentials Z−s0 (Rn) is a certain
subset of distributions D′(Rn) and can be interpreted as a set of bounded multipliers from
Hs(Rn) to H−s(Rn).

The following theorem extends a result in [28] and has a central role in this article. We call
it the UCP of the operator (−∆)s.

Theorem 1.2. Let n ≥ 1, s ∈ (−n/4,∞) \ Z and u ∈ Hr(Rn) where r ∈ R. If (−∆)su|V = 0
and u|V = 0 for some nonempty open set V ⊂ Rn, then u = 0. The claim holds also for
s ∈ (−n/2,−n/4] \ Z if u ∈ Hr,1(Rn) or u ∈ O ′C(Rn).

Theorem 1.2 is proved in section 3.1. The UCP of (−∆)s implies corresponding UCP for
Riesz potentials (see corollary 3.2 and [41, Theorem 5.2]). This in turn implies the following
UCP for the normal operator of the d-plane transform Nd when d is odd; the case d = 1 was
already studied in [41].

Corollary 1.3. Let n ≥ 2 and let f belong to either E ′(Rn) or C∞(Rn). Let d ∈ N be odd such
that 0 < d < n. If Ndf |V = 0 and f |V = 0 for some nonempty open set V ⊂ Rn, then f = 0.

From the UCP of Nd we obtain the next result which is in a sense complementary to the
Helgason support theorem for the d-plane transform [36, Theorem 6.1]. It extends a result
in [41] where the authors prove a similar uniqueness property for the X-ray transform.

Corollary 1.4. Let n ≥ 2, V ⊂ Rn a nonempty open set and f ∈ C∞(Rn). Let d ∈ N be odd
such that 0 < d < n. If f |V = 0 and Rdf = 0 for all d-planes intersecting V , then f = 0. The
claim holds also for f ∈ E ′(Rn) when the assumption Rdf = 0 for all d-planes intersecting V is
understood in the sense of distributions.

If d is even, then f is uniquely determined in V by its integrals over d-planes which intersect V ,
i.e. Rdf = 0 for all d-planes intersecting V implies f |V = 0 (see remark 4.2). The authors do
not know if the result of corollary 1.4 holds when d is even. However, if d is even, then the result
of corollary 1.3 cannot be true as the normal operator Nd is the inverse of a local operator. See
section 4 for the proofs and the definition of the d-plane transform of distributions.

The following result is a general version of the Poincaré inequality which we need for the
well-posedness of the inverse problem for the fractional Schrödinger equation.

Theorem 1.5. Let n ≥ 1, s ≥ t ≥ 0, K ⊂ Rn a compact set and u ∈ Hs
K(Rn). There exists a

constant c̃ = c̃(n,K, s) > 0 such that∥∥∥(−∆)t/2u
∥∥∥
L2(Rn)

≤ c̃
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

.

The constant c̃ can be expressed in terms of the classical Poincaré constant when s ≥ 1 (see
theorem 3.17. See section 3.2 for several proofs of the Poincaré inequality. From the unique
continuation of (−∆)s we obtain results for the higher order fractional Schrödinger equation
with singular electric potential. The following theorems generalize the results in [28, 75] for
higher exponents s ∈ R+ \ (Z ∪ (0, 1)).

Theorem 1.6. Let n ≥ 1, Ω ⊂ Rn a bounded open set, s ∈ R+ \ Z, and q1, q2 ∈ Z−s0 (Rn)
which satisfy condition (4). Let W1,W2 ⊂ Ωe be open sets. If the DN maps for the equations
(−∆)su+mqi(u) = 0 in Ω satisfy Λq1f |W2 = Λq2f |W2 for all f ∈ C∞c (W1), then q1|Ω = q2|Ω.

Theorem 1.7. Let n ≥ 1 and s ∈ R+ \ Z. Let Ω ⊂ Rn be a bounded open set and Ω1 ⊃ Ω
any open set such that int(Ω1 \ Ω) 6= ∅. If q ∈ Z−s0 (Rn) satisfies condition (4), then any

g ∈ H̃s(Ω) can be approximated arbitrarily well in H̃s(Ω) by solutions u ∈ Hs(Rn) to the
equation (−∆)su+mq(u) = 0 in Ω such that spt(u) ⊂ Ω1.
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We remark that the approximation property in theorem 1.7 also holds in L2(Ω) when one
takes restrictions of the solutions (see [28, Theorem 1.3]). In [17, 45] the authors prove similar
approximation results: Ck-functions can be approximated (in the Ck-norm) in the unit ball by
s-harmonic functions, i.e. functions u which satisfy (−∆)su = 0 in B1(0) (see also [28, Remark
7.3]). Theorems 1.6 and 1.7 are proved in section 5. The proofs are almost identical to those in
[28, 75] and only slight changes need to be done. We will present the main ideas of the proofs
for clarity and in order to make a comparison to the more complicated case of FMSE.

We have achieved the following result on the Calderón problem for FMSE:

Theorem 1.8. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set, s ∈ R+ \ Z, and let Ai, qi verify
assumptions (a1)-(a5) in section 6 for i = 1, 2. Let W1,W2 ⊂ Ωe be open sets. If the DN maps
for the FMSEs in Ω relative to (A1, q1) and (A2, q2) satisfy

ΛsA1,q1 [f ]|W2 = ΛsA2,q2 [f ]|W2 for all f ∈ C∞c (W1),

then (A1, q1) ∼ (A2, q2), that is, the potentials coincide up to gauge.

An in-depth clarification of the assumptions and the definition of the gauge involved in the
proof are presented in section 6.

1.6. Organization of the article. This article is organized as follows. Section 2 is devoted
to preliminaries. We introduce our notation and definitions of relevant quantities. In sections
3.1 and 3.2 we prove the unique continuation property of (−∆)s for s ∈ (−n/2,∞) \Z and give
several proofs for the fractional Poincaré inequality. We introduce some applications in integral
geometry and partial data problems of the d-plane transform in section 4. In section 5, we show
the uniqueness and the Runge approximation results for the higher order fractional Schrödinger
equation with singular electric potential. We prove the uniqueness result up to a gauge for the
higher order fractional magnetic Schrödinger equation in section 6. Finally, in section 7, we
discuss other problems that would now naturally continue our work. There are many potential
recent results in inverse problems which perhaps can be generalized to higher order fractional
Laplacians using our unique continuation result and fractional Poincaré inequality.

Acknowledgements. The authors wish to thank Yi-Hsuan Lin for suggesting to study higher
order fractional Calderón problems and for his idea of reducing the UCP of higher order frac-
tional Laplacians to the case s ∈ (0, 1). The authors are grateful to Mikko Salo for proposing
a proof for the fractional Poincaré inequality for n = 1 and s ∈ (1/2, 1), and for many other
helpful discussions. We thank Joonas Ilmavirta for discussions about integral geometry. The
authors wish to thank the anonymous referees for helpful comments and suggestions to improve
the article. G.C. was partially supported by the European Research Council under Horizon
2020 (ERC CoG 770924). K.M. and J.R. were supported by Academy of Finland (Centre of
Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963).

2. Preliminaries

In this section, we will go through our basic notations and definitions. The following theory of
distributions, Fourier analysis and Sobolev spaces can be found in many books (see for example
[1, 4, 6, 38, 39, 57, 59, 78, 82]). We write |·| for both the Euclidean norm of vectors and the
absolute value of complex numbers. We denote by N0 the set of natural numbers including zero.

2.1. Distributions and Fourier transform. We denote by E(Rn) the set of smooth functions
equipped with the topology of uniform convergence of derivatives of all order on compact sets.
We also denote by D(Rn) the set of compactly supported smooth functions with the topology of
uniform convergence of derivatives of all order in a fixed compact set. The topological duals of
these spaces are denoted by D′(Rn) and E ′(Rn). Elements in the space E ′(Rn) can be identified
as distributions in D′(Rn) with compact support.
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We also use the space of rapidly decreasing smooth functions, i.e. Schwartz functions. Define
the Schwartz space as

S (Rn) =

{
ϕ ∈ C∞(Rn) :

∥∥∥〈·〉N∂βϕ
∥∥∥
L∞(Rn)

<∞ for all N ∈ N and β ∈ Nn0
}
,

where 〈x〉 = (1+|x|2)1/2, equipped with the topology induced by the seminorms
∥∥〈·〉N∂βϕ

∥∥
L∞(Rn)

.

The continuous dual of S (Rn) is denoted by S ′(Rn) and its elements are called tempered distri-
butions. We have the continuous inclusions E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn). The Fourier transform
of u ∈ L1(Rn) is defined as

(Fu)(ξ) = û(ξ) =

∫

Rn
e−ix·ξu(x)dx

and it is an isomorphism F : S (Rn) → S (Rn). By duality the Fourier transform is also an
isomorphism F : S ′(Rn)→ S ′(Rn). By density of S (Rn) in L2(Rn) the Fourier transform can
be extended to an isomorphism F : L2(Rn)→ L2(Rn). The following subset of Schwartz space

S0(Rn) = {ϕ ∈ S (Rn) : ϕ̂|B(0,ε) = 0 for some ε > 0}
is used to define fractional Laplacians on homogeneous Sobolev spaces.

Finally, we denote by O ′C(Rn) the space of rapidly decreasing distributions. One has that
T ∈ O ′C(Rn) if and only if for any N ∈ N there exist M(N) ∈ N and continuous functions gβ
such that

T =
∑

|β|≤M(N)

∂βgβ ,

where 〈·〉Ngβ is a bounded function for every |β| ≤ M(N). Alternatively one can characterize
O ′C(Rn) via the Fourier transform: it holds that F : O ′C(Rn)→ OM (Rn) is a bijective map where
OM (Rn) is the space of smooth functions with polynomially bounded derivatives of all orders.
We have the continuous inclusions E ′(Rn) ⊂ O ′C(Rn) ⊂ S ′(Rn). For example C∞(Rn) ⊂
O ′C(Rn), where f ∈ C∞(Rn) if and only if f is continuous and 〈·〉Nf is bounded for every

N ∈ N. The convolution formula for the Fourier transform f̂ ∗ g = f̂ ĝ holds in the sense of
distributions when f ∈ O ′C(Rn) and g ∈ S ′(Rn). For more details on distributions, see the
classic books [38, 39, 82].

2.2. Fractional Laplacian on Sobolev spaces. Let r ∈ R. We define the inhomogeneous
fractional L2 Sobolev space of order r to be the set

Hr(Rn) = {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ L2(Rn)}
equipped with the norm

‖u‖Hr(Rn) =
∥∥F−1(〈·〉rû)

∥∥
L2(Rn)

.

The spaces Hr(Rn) are Hilbert spaces for all r ∈ R. It follows that both S (Rn) and S0(Rn)
are dense in Hr(Rn) for all r ∈ R. Note that

O ′C(Rn) ⊂
⋃

r∈R
Hr(Rn).

If s ∈ (0, 1), the fractional Laplacian can be defined in several equivalent ways [46]. We will
take the Fourier transform approach which allows us to define it as a continuous map on Sobolev
spaces for all s ∈ R+ \ Z. Define the fractional Laplacian of order s ∈ R+ \ Z as (−∆)sϕ =

F−1(|·|2s ϕ̂) for ϕ ∈ S (Rn). Then (−∆)s : S (Rn) → Hr−2s(Rn) is linear and continuous with
respect to the norm ‖·‖Hr(Rn) by a simple calculation. Thus we can uniquely extend it to a

continuous linear operator (−∆)s : Hr(Rn)→ Hr−2s(Rn) as (−∆)su = limk→∞(−∆)sϕk, where
ϕk ∈ S (Rn) is such that ϕk → u in Hr(Rn).

On the other hand, if s > −n/4, one can always define (−∆)su for u ∈ Hr(Rn) as the

tempered distribution (−∆)su = F−1(|·|2s û), note that we also allow integer values of s here.
This can be seen in the following way: let ϕk ∈ S (Rn) such that ϕk → 0 in S (Rn). It holds that
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|·|−β ∈ L1
loc(Rn) if and only if β < n. Taking N ∈ N large enough and using Cauchy-Schwartz

we obtain
∫

Rn
|x|2s |û(x)| |ϕk(x)|dx ≤

(∫

Rn
〈x〉2r |û(x)|2 dx

)1/2(∫

Rn
|x|4s 〈x〉−2r |ϕk(x)|2 dx

)1/2

≤ C
(∫

Rn

|x|4s
〈x〉2N dx

)1/2 ∥∥〈·〉N−rϕk
∥∥
L∞(Rn)

→ 0.

Hence |·|2s û ∈ S ′(Rn) and also (−∆)su = F−1(|·|2s û) ∈ S ′(Rn). The definition can be
relaxed to s > −n/2 if we assume that 〈·〉tû ∈ L∞(Rn) for some t ∈ R. This holds for example
if u ∈ O ′C(Rn) or u ∈ Hr,1(Rn) (see the definition of Bessel potential spaces below). When
s ≥ 0, we again obtain that (−∆)s : Hr(Rn) → Hr−2s(Rn) is continuous. It follows from the
properties of the Fourier transform that (−∆)k(−∆)s = (−∆)k+s when s > −n/2 and k ∈ N.
This relation will be used many times.

Fractional Laplacians with negative powers s have a connection to Riesz potentials. Let α ∈ R
such that 0 < α < n. We define the Riesz potential Iα : O ′C(Rn) → S ′(Rn) as Iαf = f ∗ hα,

where the kernel is hα(x) = |x|−α. It follows that Iα is continuous in the distributional sense
and Iα = (−∆)−s, up to a constant factor, where s = (n − α)/2. On the other hand, if

−n/2 < s < 0, then one can write (−∆)sf = f ∗ |·|−2s−n = I2s+nf , also up to a constant factor.
Hence fractional Laplacians with negative powers correspond to Riesz potentials and vice versa.

Following [4], one can define fractional Laplacians and Riesz potentials on homogeneous
Sobolev spaces. Let us define

Ḣr(Rn) = {u ∈ S ′(Rn) : û ∈ L1
loc(Rn) and |·|r û ∈ L2(Rn)}

and equip it with the norm

‖u‖Ḣr(Rn) =

(∫

Rn
|ξ|2r |û(ξ)|2 dξ

)1/2

.

The norm ‖u‖Ḣr(Rn) is homogeneous with respect to scaling ξ → λξ in contrast to the norm

‖u‖Hr(Rn). We have the inclusions Ḣr(Rn) ( Hr(Rn) for r < 0 and Hr(Rn) ( Ḣr(Rn) for

r > 0. If r < n/2, then Ḣr(Rn) is a Hilbert space and S0(Rn) is dense in Ḣr(Rn). Let s ≥ 0

and define (−∆)sϕ = F−1(|·|2s ϕ̂) for ϕ ∈ S0(Rn). Then (−∆)s : S0(Rn) → Ḣr−2s(Rn) is an
isometry with respect to the norm ‖·‖Ḣr(Rn) and by density can be extended to a continuous

map (−∆)s : Ḣr(Rn) → Ḣr−2s(Rn) when r < n/2. Similarly one obtains that Iα : Ḣr(Rn) →
Ḣr+n−α(Rn) is a continuous map for r < α−n/2 and corresponds to fractional Laplacians with
negative powers, up to a constant factor.

The fractional Laplacian can also be defined on Bessel potential spaces. Let 1 ≤ p <∞. We
define

Hr,p(Rn) = {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ Lp(Rn)}
and equip it with the norm

‖u‖Hr,p(Rn) =
∥∥F−1(〈·〉rû)

∥∥
Lp(Rn)

.

It follows that Hr,p(Rn) is a Banach space and S (Rn) is dense in Hr,p(Rn) for all r ∈ R. By
the Mikhlin multiplier theorem, one obtains that the operator (−∆)s : Hr,p(Rn)→ Hr−2s,p(Rn)
is continuous for s ≥ 0 and 1 < p < ∞. The fractional Laplacian is also defined in the

space Hr,1(Rn) since Hr,1(Rn) ↪→ H
2r−n−ε

2 (Rn) for any ε > 0 by the continuity of the Fourier
transform F : L1(Rn)→ L∞(Rn).

One can define fractional Laplacians on more general spaces. It follows that if s ∈ (−n/2, 1],
then (−∆)s : S (Rn)→ Ss(Rn) is continuous where Ss(Rn) is the set

Ss(Rn) = {ϕ ∈ C∞(Rn) : 〈·〉n+2s∂βϕ ∈ L∞(Rn) for all β ∈ Nn0}
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equipped with the topology induced by the seminorms
∥∥〈·〉n+2s∂βϕ

∥∥
L∞(Rn)

. One can then

extend (−∆)s by duality to a continuous map (−∆)s : (Ss(Rn))∗ → S ′(Rn). See [28, 80] for
more details and a characterization of the dual (Ss(Rn))∗.

2.3. Trace spaces and singular potentials. Let U, F ⊂ Rn be an open and a closed set.
We define the following Sobolev spaces

Hr(U) = {u|U : u ∈ Hr(Rn)}
H̃r(U) = closure of C∞c (U) in Hr(Rn)

Hr
0(U) = closure of C∞c (U) in Hr(U)

Hr
F (Rn) = {u ∈ Hr(Rn) : spt(u) ⊂ F}.

It is obvious that H̃r(U) ⊂ Hr
U

(Rn) and H̃r(U) ⊂ Hr
0(U). In nonlocal problems, we impose

exterior values for the equation instead of boundary values. Therefore exterior values are con-

sidered to be the same if their difference is in the space H̃r(U). For example, in equation (3)

the condition u|Ωe = f means that u− f ∈ H̃s(Ω), i.e. u and f are equal outside Ω, where Ω is

bounded open set. This motivates the definition of the abstract trace space X = Hr(Rn)/H̃r(Ω)
which identifies functions in Ωe. If Ω is a Lipschitz domain, then we have Hr

0(Ω) = Hr
Ω

(Rn)

when r > −1/2, r /∈ {1/2, 3/2, . . . }, H̃r(Ω) = Hr
Ω

(Rn), X = Hr(Ωe) and X∗ = H−r
Ωe

(Rn). Thus

for more regular domains it could be more convenient to work with the spaces Hr
Ω

(Rn), but in
this article we do not assume any regularity of the set Ω. For more theory of Sobolev spaces on
(non-Lipschitz) domains and their properties, see [12, 57].

We also use some properties of singular potentials which were introduced in [75]. Let t ≥ 0
and define Z−t(U) as a subspace of distributions D′(U) equipped with the norm

‖f‖Z−t(U) = sup{|〈f, u1u2〉U | : ui ∈ C∞c (U), ‖ui‖Ht(Rn) = 1} ,
where 〈·, ·〉U is the dual pairing. We denote by Z−t0 (U) the closure of C∞c (U) in Z−t(U). El-
ements in Z−t(Rn) can be seen as multipliers: every f ∈ Z−t(Rn) induces a map mf : Ht(Rn)→
H−t(Rn) defined as 〈mf (u), v〉Rn = 〈f, uv〉Rn . Also |〈f, uv〉Rn | ≤ ‖f‖Z−t(Rn) ‖u‖Ht(Rn) ‖v‖Ht(Rn),

and this inequality can be seen as a motivation for the definition of the space Z−t(Rn). Clearly

we have Z−t0 (Rn) ⊂ Z−t(Rn). If U is bounded, then L
n
2t (U) ⊂ Z−t0 (Rn) for 0 < t < n/2 and

L∞(U) ⊂ Z−t0 (Rn) in the sense of zero extensions. Further, it holds that Lp(U) ⊂ Z−t0 (Rn)
when p > max{1, n/2t} (see section 6). We will only need these basic inclusions. For a more
detailed treatment of the space of singular potentials Z−t(U), see [55, 75].

3. Unique continuation property and Poincaré inequality

3.1. Unique continuation results. In this section, we prove theorem 1.2 and give several
other unique continuation results for fractional Laplacians and Riesz potentials in inhomoge-
neous and homogeneous Sobolev spaces. Even though we do not need all the results to solve
the inverse problems considered in this article, we still state those variants since they are not
given in earlier literature to the best of our knowledge. The strategy to prove results in this
chapter is straightforward: if something is true for (−∆)s when s ∈ (0, 1), then by the splitting
(−∆)s = (−∆)k(−∆)s−k it should also be true for all powers s whenever the operations and
claims are meaningful.

First we need a basic lemma for polyharmonic distributions, i.e. distributions which satisfy
(−∆)kg = 0 for some integer k ∈ N. We sketch the proof since it reflects the method of reduction
we repeatedly use in this section.

Lemma 3.1. Let V ⊂ Rn be any nonempty open set. If g ∈ D′(Rn) satisfies (−∆)kg = 0 and
g|V = 0 for some k ∈ N, then g = 0.

Proof. The proof is by induction. The case k = 1 is true since harmonic distributions are
harmonic functions and therefore analytic [59]. Assume that the lemma holds for some k =
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m ∈ N. If (−∆)m+1g = 0 and g|V = 0, then (−∆)m((−∆)g) = 0 and (−∆)g|V = 0 since (−∆)
is a local operator. The induction assumption implies (−∆)g = 0, and since also g|V = 0, we
obtain g = 0 by harmonicity. This implies the claim. Alternatively one could use the fact that
polyharmonic distributions are analytic [59, Theorem 7.30]. �

Now we can prove theorem 1.2. The idea is to reduce the general case back to the one where
s ∈ (0, 1) and use the UCP proved in [28]. Note that the corresponding UCP cannot hold for
local operators such as (−∆)k when k ∈ N. Therefore we have to assume that s ∈ R \ Z. For
the proof of the case s ∈ (0, 1), see [28, Theorem 1.2].

Proof of theorem 1.2. Because of our assumptions for u, the fractional Laplacian (−∆)su for
s ∈ (−n/2,∞) \ Z is well-defined, see section 2.2. Assume that k − 1 < s < k for some

k ∈ N. Now we can split (−∆)su = (−∆)s−(k−1)((−∆)k−1u) where s − (k − 1) ∈ (0, 1). Since

the operator (−∆)k−1 is local, we obtain (−∆)s−(k−1)((−∆)k−1u)|V = 0 and (−∆)k−1u|V = 0

where (−∆)k−1u ∈ Hr−2(k−1)(Rn). By the UCP of (−∆)s−(k−1), we have (−∆)k−1u = 0. Since
u is polyharmonic and u|V = 0, lemma 3.1 implies u = 0.

If −n/2 < s < 0, s 6∈ Z, choose k ∈ N such that k+ s > 0. Then by the locality of (−∆)k we
obtain (−∆)k+su|V = 0 and u|V = 0. The first part of the proof implies the claim. �

Note that theorem 1.2 implies UCP for equations of the type (−∆)su + Lu = 0 where L is
any local operator. Especially, this holds if L = P (x,D) where

P (x,D) =
∑

|α|≤m
aα(x)Dα

is a differential operator of order m.
The following unique continuation result of Riesz potentials was presented in [41]. We use it

to show uniqueness for partial data problems of the d-plane transform in section 4. We recall
the short proof since it relies on the UCP of the fractional Laplacian.

Corollary 3.2. Let α ∈ R such that 0 < α < n and (α − n)/2 ∈ R \ Z. Let f ∈ O ′C(Rn) and
V ⊂ Rn some nonempty open set. If Iαf |V = 0 and f |V = 0, then f = 0.

Proof. Recall that f ∈ Hr(Rn) for some r ∈ R. We can write Iαf = (−∆)−sf where s =
(n − α)/2. Choose k ∈ N such that k − s > 0. By locality of (−∆)k we obtain the conditions
(−∆)k−sf |V = 0 and f |V = 0. Theorem 1.2 implies f = 0. �

It is also independently proved in [41], without using the UCP of (−∆)s, that if f ∈ E ′(Rn),
then one can replace the condition Iαf |V = 0 by the requirement ∂β(Iαf)(x0) = 0 for some
x0 ∈ V and all β ∈ Nn0 . In fact, this can be used to prove a slightly stronger result for (−∆)s

in the case of compact support.

Corollary 3.3. Let u ∈ E ′(Rn), V ⊂ Rn some nonempty open set and s ∈ (−n/2,∞) \ Z. If
∂β((−∆)su)(x0) = 0 and u|V = 0 for some x0 ∈ V and all β ∈ Nn0 , then u = 0.

Proof. Let k−1 < s < k where k ∈ N. Now (−∆)s = (−∆)k(−∆)s−k = (−∆)kIα where α = n+
2s−2k ∈ (n−2, n). Furthermore, ∂β(−∆)su = ∂βIα(−∆)ku since the Riesz potential commutes
with derivatives. By the locality of (−∆)k we obtain the conditions ∂β(Iα(−∆)ku)(x0) = 0 and
(−∆)ku|V = 0 where (−∆)ku ∈ E ′(Rn). By [41, Theorem 1.1], we must have (−∆)ku = 0.
Since also u|V = 0, we obtain u = 0 by lemma 3.1.

Let then s ∈ (−n/2, 0), s 6∈ Z, and pick k ∈ N such that s + k > 0. All the derivatives
∂β((−∆)su)(x0) vanish, and hence ((−∆)k∂β)((−∆)su)(x0) = 0. Now ((−∆)k∂β)((−∆)su) =
∂β((−∆)s+ku) and we get the conditions ∂β((−∆)s+ku)(x0) = 0 and u|V = 0. The first part of
the proof gives the claim. �

The UCP of (−∆)s also extends to homogeneous Sobolev spaces. The following result is a
simple consequence of theorem 1.2. See [22, 23] for related results (strong UCP and measurable
UCP in some special cases).
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Corollary 3.4. Let s ∈ R+ \ Z and u ∈ Ḣr(Rn), r < n/2. If (−∆)su|V = 0 and u|V = 0 for
some nonempty open set V ⊂ Rn, then u = 0.

Proof. If r < 0, then u ∈ Hr(Rn) and the claim follows from theorem 1.2. Let r > 0 and
choose k ∈ N such that r − 2k < 0. Now (−∆)k(−∆)s = (−∆)s(−∆)k holds in S0(Rn) so
by the density of S0(Rn) and the locality of (−∆)k we obtain (−∆)s((−∆)ku)|V = 0 and

(−∆)ku|V = 0, where (−∆)ku ∈ Ḣr−2k(Rn) ⊂ Hr−2k(Rn). Hence (−∆)ku = 0 by theorem 1.2
and since u|V = 0 we obtain u = 0 by lemma 3.1. �

Since (−∆)k(−∆)−s = (−∆)k−s also holds by the density of S0(Rn), one can reduce the case
of negative exponents to the case of positive exponents. Thus one obtains the corresponding
UCP for the Riesz potential Iα in Ḣr(Rn) where r < α − n/2. By the Sobolev embedding
theorem we obtain the following unique continuation result for Bessel potential spaces when
1 ≤ p ≤ 2.

Corollary 3.5. Let s ∈ R+ \ Z, 1 ≤ p ≤ 2 and u ∈ Hr,p(Rn), r ∈ R. If (−∆)su|V = 0 and
u|V = 0 for some nonempty open set V ⊂ Rn, then u = 0.

Proof. If p = 1, then F−1(〈·〉rû) ∈ L1(Rn) which implies 〈·〉rû ∈ L∞(Rn) since F : L1(Rn) →
L∞(Rn) is continuous. Hence u ∈ Ht(Rn) for some t ∈ R and the claim follows from theo-
rem 1.2. Let then 1 < p ≤ 2. By the Sobolev embedding theorem (see e.g. [6, Theorem 6.5.1])
Hr,p(Rn) ↪→ Hr1,p1(Rn) when r1 ≤ r, 1 < p ≤ p1 <∞ and

r − n

p
= r1 −

n

p1
.

Choose p1 = 2. Then for any 1 < p ≤ 2 the previous equality holds when

r1 =
2rp+ n(p− 2)

2p
≤ r.

Hence u ∈ Hr1,2(Rn) = Hr1(Rn) and by theorem 1.2 we obtain u = 0. �

For higher exponents p, we can prove the following version of unique continuation considering
the Fourier transform.

Corollary 3.6. Let r ≥ 0, 2 ≤ p < ∞ and s ∈ R+ \ Z. Let u ∈ Hr,p(Rn) and V ⊂ Rn some
nonempty open set. If (−∆)sû|V = 0 and û|V = 0, then u = 0.

Proof. By the inclusion Hr,p(Rn) ↪→ Lp(Rn) for r ≥ 0, we can assume u ∈ Lp(Rn). If p = 2,
then û ∈ L2(Rn). By theorem 1.2, we obtain û = 0 and hence u = 0. If 2 < p < ∞, then we
have that û ∈ H−t(Rn) where t > n(1/2− 1/p) by [38, Theorem 7.9.3]. Again we obtain û = 0
by theorem 1.2 and eventually u = 0. �

Note that if u has compact support, then by the Paley-Wiener theorem the condition û|V = 0
already implies that u = 0.

3.2. The fractional Poincaré inequality. This subsection is dedicated to the proofs of a

fractional Poincaré inequality. It serves the goal of estimating the L2-norm of u ∈ H̃s(Ω) with

that of its fractional Laplacian (−∆)s/2u. We give five possible proofs for the fractional Poincaré
inequality. We believe that giving several proofs will be helpful in subsequent works. This also
illustrates some connections between methods which might have been unnoticed before.

The first proof is the most direct one and is based on splitting of frequencies on the Fourier
side. The second proof utilizes several estimates (most importantly Hardy-Littlewood-Sobolev
inequalities). This proof is motivated by the approach taken in [28]. Third proof uses a reduction
argument to extend the inequality proved in [11] for all powers s ≥ 0. Fourth proof is based
on interpolation of homogeneous Sobolev spaces and it also gives an explicit constant in terms
of the classical Poincaré constant. Fifth proof uses uncertainty inequalities which are treated
in [24].
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We begin our first proof by dividing the Fourier side into high and low frequencies. We
only use simple estimates in the proof. In this approach we also get a control on the Poincaré
constant. The result is basically the same as [4, Proposition 1.55].

Theorem 3.7 (Poincaré inequality). Let s ≥ 0, K ⊂ Rn compact set and u ∈ Hs
K(Rn). There

exists a constant c = c(n,K, s) > 0 such that

‖u‖L2(Rn) ≤ c
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

.

Proof. We divide the integration into high and low frequencies

‖u‖2L2(Rn) =

∫

|ξ|≤ε
|û(ξ)|2 dξ +

∫

|ξ|>ε
|û(ξ)|2 dξ

where ε > 0 is determined later on. Let us analyze the first part. Since u ∈ L2(Rn) and has
support in K, Hölder’s inequality implies

|û(ξ)| ≤ ‖u‖L1(Rn) ≤ |K|1/2 ‖u‖L2(Rn) .

Thus we have∫

|ξ|≤ε
|û(ξ)|2 dξ ≤

∫

|ξ|≤ε
|K| ‖u‖2L2(Rn) dξ = εn |K| |B(0, 1)| ‖u‖2L2(Rn)

where |K| and |B(0, 1)| are the measures of K and the unit ball B(0, 1). For high frequencies
we can do the following trick

∫

|ξ|>ε
|û(ξ)|2 dξ =

∫

|ξ|>ε

|ξ|2s |û(ξ)|2

|ξ|2s
dξ ≤ ε−2s

∥∥∥(−∆)s/2u
∥∥∥

2

L2(Rn)
.

Now choose 0 < ε < (|K| |B(0, 1)|)−1/n. Then one obtains the inequality

‖u‖L2(Rn) ≤
ε−s√

1− εn |K| |B(0, 1)|

∥∥∥(−∆)s/2u
∥∥∥
L2(Rn)

. �

Remark 3.8. Choosing ε = (2 |K| |B(0, 1)|)−1/n one obtains the following inequality in theo-
rem 3.7

‖u‖L2(Rn) ≤
√

2(2 |K| |B(0, 1)|)s/n
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

.

If K is a ball, the constant in this inequality has the same scaling with respect to the diameter of
the set as in theorem 3.17, i.e. c ≈ (diam(K))s. Further, one can use similar method of proof
as in theorem 3.7 to show Poincaré inequalities for more general pseudodifferential operators on
certain manifolds. See [84] for details.

Provided we have the Poincaré inequality, we can prove the generalized version of it. See
also [4, Corollary 1.56] for a similar inequality when K is a ball. In that case one can take

c̃ ≈ (diam(K))s−t. The cases s ≥ t ≥ 1 and s ≥ 1 ≥ t ≥ 0 are also proved for u ∈ H̃s(Ω) in
theorem 3.17.

Proof of theorem 1.5. Since s ≥ t ≥ 0 we have the continuous embeddings Ht(Rn) ↪→ Ḣt(Rn)
and Hs(Rn) ↪→ Ht(Rn). Using the Poincaré inequality in theorem 3.7 we obtain∥∥∥(−∆)t/2u

∥∥∥
L2(Rn)

= ‖u‖Ḣt(Rn) ≤ ‖u‖Ht(Rn) ≤ ‖u‖Hs(Rn) ≤ 2
s+1
2

(
‖u‖L2(Rn) + ‖u‖Ḣs(Rn)

)

≤ 2
s+1
2

(
c
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

+
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

)

= c̃
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

where the constants c and c̃ do not depend on u. In the fourth step we used the elementary
inequality (a+ b)r ≤ 2r(ar + br) for a, b ≥ 0. This concludes the proof. �

We then start preparation for our second proof by stating some known lemmas:
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• lemma 3.9 is the continuity of Riesz potentials,
• lemma 3.10 is the L2 boundedness of inverse of elliptic second order operators,
• lemma 3.11 is a convolution Lp estimate from below by an inhomogeneous Hölder norm,
• lemma 3.12 is a specific form of the Poincaré inequality for fractional Laplacians, and
• lemma 3.13 is a simple commutation property for the gradient and a Fourier multiplier.

Lemma 3.9 (Theorem 4.5.3 in [38]). Let t ≥ 0, 1 < p < ∞ be such that n > tp, and define

q = np
n−tp . Then the Riesz potential (−∆)−t/2 : Lp(Rn)→ Lq(Rn) is continuous.

Lemma 3.10 (Section 6 in [21]). Let Ω ⊂ Rn be a bounded domain and f ∈ L2(Ω). If
w ∈ H1

0 (Ω) is the unique solution of the problem
{

(−∆)w = f in Ω
w|∂Ω = 0

,

then there exists a constant C = C(Ω) such that

(5) ‖w‖L2(Ω) ≤ C‖f‖L2(Ω) .

Lemma 3.11 (Theorem 4.5.10 in [38]). Let ψ ∈ C1(Rn \ {0}) be homogeneous of degree −n/a,
p ∈ [1,∞] and γ = n(1 − 1/a − 1/p) be such that γ ∈ (0, 1). Then if v ∈ Lp(Rn) ∩ E ′(Rn) we
have

sup
x 6=y

{ |(ψ ∗ v)(x)− (ψ ∗ v)(y)|
|x− y|γ

}
≤ C‖v‖Lp(Rn),

where C does not depend on w.

Lemma 3.12 (Formula (1.3) in [64]). Let 1 < p ≤ q < ∞ and f ∈ Wn/p,p(Rn). There is a
constant C = C(n, p) such that

(6) ‖f‖Lq(Rn) ≤ Cq1−1/p‖(−∆)n/2pf‖1−p/qLp(Rn)‖f‖
p/q
Lp(Rn) .

This estimate is proved using sharp Hardy-Littlewood-Sobolev inequalities.

Lemma 3.13. Let t ≥ 0 and f ∈ H1+2t(Rn). Then [∇, (−∆)t]f = 0, that is, the gradient and
the fractional Laplacian of exponent t commute.

Proof. The proof is just a trivial computation with Fourier symbols:

F(∇(−∆)tf) = iξ|ξ|2tf̂(ξ) = |ξ|2tiξf̂(ξ) = F((−∆)t(∇f)) . �
We are now ready to state and prove the fractional Poincaré inequality.

Theorem 3.14 (Poincaré inequality). Let Ω ⊂ Rn be a bounded domain, s ∈ [0,∞) and

u ∈ H̃s(Ω). There exists a constant c = c(n,Ω, s) such that

‖u‖L2(Rn) ≤ c‖(−∆)s/2u‖L2(Rn) .

Proof. In the inequalities the constants (usually denoted by c, C, etc.) do not depend on
the function which is being estimated and can change from line to line. We let the symbol
s′ = s− bsc indicate the fractional part of the exponent s, with the convention that s′ ∈ [0, 1).
First observe that by using lemma 3.9 with p = 2 and Hölder’s inequality we get the following
useful estimate

(7) ‖u‖L2(Rn) ≤ CΩ‖u‖Lq(Rn) ≤ c‖(−∆)t/2u‖L2(Rn)

when u ∈ H̃t(Ω) where q and t are as in lemma 3.9. Our proof is divided in several cases.

Case 1: bsc ∈ 2Z, s′ = 0Case 1: bsc ∈ 2Z, s′ = 0Case 1: bsc ∈ 2Z, s′ = 0.

Recall that H̃2h(Ω) ⊂ H2h
0 (Ω). We show that if u ∈ H2h

0 (Ω) and h ∈ N then there exists a
constant c = c(n,Ω, h) such that

(8) ‖(−∆)hu‖L2(Rn) ≥ c‖u‖L2(Rn) .
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The estimate (8) holds trivially if h = 0, while if h = 1 then (8) follows from the boundedness
of the inverse lemma 3.10. Assume now that h ≥ 2, and by induction that (8) holds for h− 1.

Then (−∆)u ∈ H2h−2
0 (Ω), so we can apply (8) and (5) to get

‖(−∆)hu‖L2(Rn) = ‖(−∆)h−1(−∆u)‖L2(Rn) ≥ c‖(−∆)u‖L2(Rn) ≥ c′‖u‖L2(Rn) .

In the next steps we consider s 6∈ N.

Case 2: bsc ∈ 2Z, s′ ∈ (0, 1/2)Case 2: bsc ∈ 2Z, s′ ∈ (0, 1/2)Case 2: bsc ∈ 2Z, s′ ∈ (0, 1/2) or bsc ∈ 2Z, s′ ∈ [1/2, 1), n ≥ 2bsc ∈ 2Z, s′ ∈ [1/2, 1), n ≥ 2bsc ∈ 2Z, s′ ∈ [1/2, 1), n ≥ 2.
Now it holds that n > 2s′, and there exists k ∈ N such that s ∈ (2k, 2k + 1) and we can write

(−∆)s/2u = (−∆)s
′/2(−∆)ku. Since (−∆)ku ∈ H̃s−2k(Ω) = H̃s′(Ω), we can apply formula (7)

‖(−∆)ku‖L2(Rn) ≤ c‖(−∆)s/2u‖L2(Rn) .

Since u ∈ Hs
0(Ω) ⊂ H2k

0 (Ω), we can get the result using formula (8).

Case 3: bsc ∈ 2Z, s′ ∈ (1/2, 1), n = 1Case 3: bsc ∈ 2Z, s′ ∈ (1/2, 1), n = 1Case 3: bsc ∈ 2Z, s′ ∈ (1/2, 1), n = 1.

As in the second case, there exists k ∈ N such that s ∈ (2k, 2k+1) and we can write (−∆)s/2u =

(−∆)s
′/2(−∆)ku. However, since now n < 2s′, we cannot directly use formula (7).

Assume first that w ∈ C∞c (Ω). Then we can take y0 ∈ Ω such that w(y0) = 0 and x0 ∈ Ω such
that w(x0) = ‖w‖L∞(Ω). With these choices and for any γ > 0 we can write

(9) ‖w‖L2(Rn) ≤ C‖w‖L∞(Ω) ≤ C
w(x0)− w(y0)

|x0 − y0|γ
.

We now let γ = s′ − n/2 = s′ − 1/2 ∈ (0, 1/2), and define ψ = |x|s′−1, v = (−∆)s
′/2w. By the

mapping properties of the fractional Laplacian and the Mikhlin theorem, we can observe that
v ∈ Lp(R) for all 1 < p <∞ (see [1, Theorem 7.2]). Using the continuity of the Riesz potential
in lemma 3.9, we see that for a constant c = c(n, s) the following holds almost everywhere:

w = (−∆)−s
′/2((−∆)s

′/2w) = (−∆)−s
′/2v = cI1−s′v = c|x|s′−1 ∗ v = c(ψ ∗ v) .

Let χR be the characteristic function of the ball BR of radius R > 0, and define wR =
c(ψ ∗ (χRv)), with c as above. We see that

wR(x) = c(ψ ∗ (χRv))(x) = c

∫

R
ψ(x− y)χR(y)v(y)dy ,

and the integrand is dominated by |ψ(x− y)v(y)|. This is an integrable function, since
∫

R
|ψ(x− y)v(y)|dy =

∫

R
ψ(x− y)|v(y)|dy = I1−s′(|v|)(x) ,

and the Riesz potential is well defined almost everywhere on Lp(R) for any 1 < p < 1/s′. Now
the dominated convergence theorem gives that wR(x)→ w(x) as R→∞ for almost every fixed
x ∈ R.

Let ε > 0 and x′0, y
′
0 ∈ R be such that |x0−x′0| < ε, |y0−y′0| < ε and wR(x′0), wR(y′0) converge

to w(x′0), w(y′0) as R→∞. Applying lemma 3.11 with p = 2, n = 1 and a = 1− s′, we see that

wR(x′0)− wR(y′0)

|x0 − y0|γ
≤ sup

x 6=y

{
wR(x)− wR(y)

|x− y|γ
}

= c sup
x 6=y

{
(ψ ∗ (χRv))(x)− (ψ ∗ (χRv))(y)

|x− y|γ
}

≤ C‖χRv‖L2(R) ≤ C‖v‖L2(R) = C‖(−∆)s
′/2w‖L2(R) .

We now first take the limit for R→∞ and then the one for ε→ 0. By the smoothness of w,
this gives
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(10)
w(x0)− w(y0)

|x0 − y0|γ
≤ C‖(−∆)s

′/2w‖L2(R) .

Combining formulas (9) and (10) we get ‖w‖L2(Rn) ≤ C‖(−∆)s
′/2w‖L2(Rn), and the same

inequality holds for w ∈ H̃s′(Ω) by density. Let now w := (−∆)ku ∈ H̃s−2k(Ω) = H̃s′(Ω). The
result is then obtained applying formula (8).

Case 4: bsc ∈ 2Z, s′ = 1/2, n = 1Case 4: bsc ∈ 2Z, s′ = 1/2, n = 1Case 4: bsc ∈ 2Z, s′ = 1/2, n = 1.

Let w := (−∆)ku ∈ H̃s−2k(Ω) = H̃s′(Ω). Here we make use of formula (6) with p = 2, q = 3 in
order to estimate

(11) ‖w‖L2(Rn) = ‖w‖3L2(Rn)‖w‖−2
L2(Rn)

≤ ‖w‖3L3(Rn)‖w‖−2
L2(Rn)

≤ C‖(−∆)n/4w‖L2(Rn) .

Since n/4 equals s′/2 for n = 1, the results follows from (11) and (8).

Case 5: bsc 6∈ 2ZCase 5: bsc 6∈ 2ZCase 5: bsc 6∈ 2Z.
Let u ∈ C∞c (Ω). In this case s = s′ + 2k + 1 for some k ∈ N, therefore we can calculate

‖(−∆)s/2u‖L2(Rn) = ‖(−∆)1/2(−∆)(s′+2k)/2u‖L2(Rn)

= ‖∇(−∆)(s′+2k)/2u‖L2(Rn)

= ‖(−∆)(s′+2k)/2∇u‖L2(Rn)

≥ C‖∇u‖L2(Rn) ≥ C‖u‖L2(Rn) .

(12)

The second equality in (12) is just an L2 property of the gradient and the (−∆)1/2 operator.
The third equality in (12) follows from lemma 3.13. The first inequality in (12) follows from the

even cases, given that bs′ + 2kc ∈ 2Z and ∇u ∈ H̃s′+2k(Ω) componentwise. The last inequality
follows from the classical Poincaré inequality. The rest follows by approximation. �

Remark 3.15. Third way to prove the Poincaré inequality is using the known result in the case
n ≥ 1 and s ∈ (0, 1) [11, Lemma 2.2]. This result is proved using Caffarelli-Silvestre exten-
sion. Then one can use similar reduction argument to prove it for all s ≥ 0 and u ∈ C∞c (Ω).
Namely, one shows using the classical Poincaré inequality that the claim holds for all s ∈ [0, 2).
The higher order fractional cases are obtained by splitting the fractional Laplacian as (−∆)s =

(−∆)k(−∆)t/2 where t ∈ (0, 2). Boundedness of the inverse and the fractional Poincaré in-
equality for t ∈ (0, 2) imply the claim for fractional exponents. Integer order exponents are

obtained from the boundedness of the inverse as before. The inequality for u ∈ H̃s(Ω) follows
by approximation.

For the fourth proof we use the following interpolation lemma of homogeneous Sobolev spaces
which is a simple consequence of Hölder’s inequality, see [4, Proposition 1.32].

Lemma 3.16. Let s0 ≤ r ≤ s1 and f ∈ Ḣs0(Rn) ∩ Ḣs1(Rn). Then f ∈ Ḣr(Rn) and

‖f‖Ḣr(Rn) ≤ ‖f‖
1−θ
Ḣs0 (Rn)

‖f‖θ
Ḣs1 (Rn)

, r = (1− θ)s0 + θs1.

Using the interpolation lemma and the usual Poincaré inequality we can easily prove the
following theorem. Note that we also obtain explicit constant from the proof.

Theorem 3.17 (Poincaré inequality). Let s ≥ t ≥ 1 or s ≥ 1 ≥ t ≥ 0, Ω ⊂ Rn bounded open

set and u ∈ H̃s(Ω). The following inequality holds

∥∥∥(−∆)t/2u
∥∥∥
L2(Rn)

≤ Cs−t
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

where C = C(n,Ω) is the classical Poincaré constant.
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Proof. Let s ≥ t ≥ 1 and u ∈ C∞c (Ω). The usual Poincaré inequality can be written in terms of
the homogeneous Sobolev norm as

‖u‖L2(Rn) = ‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω) = C ‖∇u‖L2(Rn) = C ‖u‖Ḣ1(Rn)

where C = C(n,Ω). We use the interpolation lemma 3.16 twice. First choose s0 = 0, r = 1 and
s1 = t ≥ 1. Now θ = 1/t and by the classical Poincaré inequality we obtain

‖u‖Ḣ1(Rn) ≤ ‖u‖
1−θ
L2(Rn) ‖u‖

θ
Ḣt(Rn)

≤ C1−θ ‖u‖1−θ
Ḣ1(Rn)

‖u‖θ
Ḣt(Rn)

.

From this we get the following inequality

‖u‖Ḣ1(Rn) ≤ C
1−θ
θ ‖u‖Ḣt(Rn)

for all u ∈ C∞c (Ω). Hence

‖u‖L2(Rn) ≤ C ‖u‖Ḣ1(Rn) ≤ Ct ‖u‖Ḣt(Rn) .

Then choose s0 = 0, r = t and s1 = s ≥ t in lemma 3.16. Now θ = t/s and by the previous
inequality

‖u‖Ḣt(Rn) ≤ ‖u‖
1−θ
L2(Rn) ‖u‖

θ
Ḣs(Rn)

≤ Ct(1−θ) ‖u‖1−θ
Ḣt(Rn)

‖u‖θ
Ḣs(Rn)

.

From this we obtain ∥∥∥(−∆)t/2u
∥∥∥
L2(Rn)

≤ Cs−t
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

for u ∈ C∞c (Ω).
Let then s ≥ 1 ≥ t ≥ 0 and u ∈ C∞c (Ω). First interpolate for s ≥ 1 ≥ t to obtain

‖u‖Ḣ1(Rn) ≤ ‖u‖
1−θ
Ḣt(Rn)

‖u‖θ
Ḣs(Rn)

, θ =
1− t
s− t .

Second, interpolate for 1 ≥ t ≥ 0 and use the previous inequality and the classical Poincaré
inequality to get

‖u‖Ḣt(Rn) ≤ ‖u‖
1−θ̃
L2(Rn) ‖u‖

θ̃
Ḣ1(Rn)

≤ C1−θ̃ ‖u‖1−θ
Ḣt(Rn)

‖u‖θ
Ḣs(Rn)

, θ̃ = t,

which eventually implies the inequality∥∥∥(−∆)t/2u
∥∥∥
L2(Rn)

= ‖u‖Ḣt(Rn) ≤ Cs−t ‖u‖Ḣs(Rn) = Cs−t
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

for all u ∈ C∞c (Ω).

Then let u ∈ H̃s(Ω). By definition there is a sequence ϕk ∈ C∞c (Ω) such that

ϕk → u in Hs(Rn).

The continuity of (−∆)t/2 implies that

(−∆)t/2ϕk → (−∆)t/2u in Hs−t(Rn).

The embedding Hs−t(Rn) ↪→ L2(Rn) is continuous and thus

(−∆)t/2ϕk → (−∆)t/2u in L2(Rn).

By the continuity of the norm and (−∆)s/2 we finally obtain
∥∥∥(−∆)t/2u

∥∥∥
L2(Rn)

= lim
k

∥∥∥(−∆)t/2ϕk

∥∥∥
L2(Rn)

≤ Cs−t lim
k

∥∥∥(−∆)s/2ϕk

∥∥∥
L2(Rn)

= Cs−t
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

. �

We remark that the case t = 0 and s = 1 corresponds to the classical Poincaré inequality
since ‖∇u‖L2(Rn) =

∥∥(−∆)1/2u
∥∥
L2(Rn)

. Also the constant Cs−t is the expected one. In the usual

Poincaré inequality we take one derivative and the constant is C. In the higher order version
we take t and s derivatives and the constant naturally becomes Cs−t. The constant C can be
taken to be proportional to the diameter of the set, C ≈ diam(Ω).
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Remark 3.18. Fifth way to prove the Poincaré inequality is using uncertainty inequalities. If
u ∈ L2(Rn), then there is a constant c = c(n, s) such that

(13) ‖u‖2L2(Rn) ≤ c ‖|·|s u‖L2(Rn) ‖|·|s û‖L2(Rn) ,

see the discussion after theorem 4.1 in [24]. We can interpret this inequality as

‖u‖2L2(Rn) ≤ c
∥∥∥(−∆)s/2(F−1(u))

∥∥∥
L2(Rn)

∥∥∥(−∆)s/2u
∥∥∥
L2(Rn)

whenever the terms on the right hand side of equation (13) are finite. If u is supported in some
fixed compact set K, then one obtains similar inequality as in theorem 3.7, i.e.

‖u‖L2(Rn) ≤ c′
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

holds for all u ∈ Hs
K(Rn) and for some constant c′ = c′(n,K, s).

Remark 3.19. The Poincaré inequality for the operator (−∆)s/2 implies also Poincaré inequal-

ity for the fractional gradient ∇s : Hs(Rn)→ L2(R2n,Mbsc+1) which is defined as

∇su(x, y) :=
C1/2
n,s′√

2

∇bscu(x)−∇bscu(y)

|y − x|n/2+s′+1
⊗ (y − x),

see section 6 for more details. If s ≥ t ≥ 0 and u ∈ C∞c (Ω), then
∥∥∇tu

∥∥
L2(R2n,Mbsc+1)

=
∥∥∥(−∆)t/2u

∥∥∥
L2(Rn)

≤ c̃
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

= c̃ ‖∇su‖L2(R2n,Mbsc+1) ,

where the constant c̃ does not depend on u. By approximation and the continuity of ∇s the

previous inequality is also true for u ∈ H̃s(Ω).

4. Applications to integral geometry

In this section we discuss how the UCP of Riesz potentials can be used in partial data problems
in integral geometry. We follow [36] for the treatment of the d-plane transform, theory of X-ray
transform and Radon transform can also be found in [63, 68, 81]. Let d ∈ {1, . . . , n − 1} and
denote by Pd the space of all d-dimensional affine planes in Rn. We define the d-plane transform
of a function f to be

Rdf(A) =

∫

x∈A
f(x)dm(x)

where A ∈ Pd and m is the Hausdorff measure on A. The adjoint of Rd is defined as

R∗dg(x) =

∫

A3x
g(A)dµ(A)

where g is a function on Pd and µ is the associated measure. These transforms are defined for
functions such that the integrals exist. The case d = 1 corresponds to the usual X-ray transform
and d = n−1 to the Radon transform. The normal operator of the d-plane transform Nd = R∗dRd
has an expression Ndf = cn,d(f ∗ |·|−(n−d)) where cn,d is a constant depending on n and d. The
normal operator is well defined if f is a function that decreases rapidly enough at infinity [36].
This holds for example if f ∈ C∞(Rn) where C∞(Rn) is the space of continuous functions which
decrease faster than any polynomial at infinity (see section 2.1 for a precise definition). Thus,

up to a constant factor, Nd can be represented as a Riesz potential Nd = Iα = (−∆)−d/2 where
α = n− d ∈ {1, . . . , n− 1}.

The transforms Rd and R∗d can be extended to distributions by duality. Let f ∈ E ′(Rn) and

g ∈ D′(Rn). Since Rd : D(Rn) → D(Pd) and R∗d : E(Pd) → E(Rn) are continuous [32], we can
define the following operations

〈Rdf, ψ〉 = 〈f,R∗dψ〉 , ψ ∈ E(Pd)

〈R∗dg, ϕ〉 = 〈g,Rdϕ〉 , ϕ ∈ D(Rn).
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Therefore Rdf ∈ E ′(Pd) and R∗dg ∈ D′(Rn). This shows that the normal operator Nd =

R∗dRd : E ′(Rn) → D′(Rn) is always defined and Ndf = cn,d(f ∗ |·|−(n−d)) holds in the sense of
distributions. Let V ⊂ Rn be a nonempty open set and f ∈ E ′(Rn). We say that Rdf vanishes
on all d-planes intersecting V , if 〈Rdf, ϕ〉 = 0 for all ϕ ∈ C∞c (Pd

V ) where Pd
V is the set of all

d-planes intersecting V . If V = B(0, R) is a ball, ϕ ∈ C∞c (Pd
V ) means that ϕ is smooth and

ϕ(A) = 0 for all d-planes A for which d(0, A) > r for some r < R. For more details on the range
of the d-plane transform and duality in integral geometry, see [32] and [36, Chapter II].

Remark 4.1. The UCP of Riesz potentials (corollary 3.2) immediately implies the UCP of the
normal operator of the d-plane transform when d is odd (corollary 1.3) since Nd ≈ In−d and
d/2 6∈ Z. However, such UCP cannot hold if d is even, which can be shown by contradiction.
Assume that corollary 1.3 holds when d is even. Take any nonzero f ∈ C∞c (Rn). By the prop-

erties of the Fourier transform and Riesz potentials we have (−∆)d/2f = (−∆)−d/2((−∆)df) =

Nd(−∆)df up to a constant factor. Since d is even (−∆)d/2 is a local operator and we obtain
Nd(−∆)df |V = (−∆)df |V = 0 where V ⊂ Rn is an open set outside the support of f and
(−∆)df ∈ C∞c (Rn). By the assumption we would get that (−∆)df = 0, i.e. f is polyharmonic.
But this implies f = 0 by lemma 3.1, which is a contradiction. Hence the UCP cannot hold for
Nd when d even.

Using the UCP of Nd we can now prove corollary 1.4.

Proof of corollary 1.3. Consider first f ∈ C∞(Rn). Taking the adjoint, we get the conditions
Ndf |V = 0 and f |V = 0. By corollary 1.3 we obtain f = 0 whenever d is odd. Then let
f ∈ E ′(Rn). We can assume that V = B(0, R) is a ball of radius R centered at the origin. As
in [36] we define the “convolution”

(g × ϕ)(A) =

∫

Rn
g(y)ϕ(A− y)dy

where g ∈ C∞c (Rn), ϕ ∈ C∞c (Pd), A ∈ Pd and A− y is a d-plane shifted by y ∈ Rn. Then one
can calculate that R∗d(g × ϕ) = g ∗ R∗dϕ (see [36, Proof of theorem 5.4]). Let jε ∈ C∞c (Rn) be
the standard mollifier and consider the mollifications f ∗ jε ∈ C∞c (Rn). By the properties of the
convolutions

(14) 〈Rd(f ∗ jε), ϕ〉 = 〈f ∗ jε, R∗dϕ〉 = 〈f, jε ∗R∗dϕ〉 = 〈f,R∗d(jε × ϕ)〉 = 〈Rdf, jε × ϕ〉 .
Take r > 0 and ε > 0 small enough so that r + ε < R. Let ϕ ∈ C∞c (Pd) such that ϕ(A) = 0
for all d-planes which satisfy d(0, A) > r. Then (jε × ϕ)(A) = 0 for all d-planes for which
d(0, A) > r+ε. Thus jε×ϕ ∈ C∞c (Pd

V ) and by (14) it follows that Rd(f ∗jε) = 0 for all d-planes
intersecting B(0, r). We also have (f ∗ jε)|B(0,r) = 0 and the first part of the proof implies the
claim for f ∗ jε for small ε > 0. Since f ∗ jε → f in E ′(Rn) when ε → 0, we obtain the claim
for f . �

Remark 4.2. When d is even, corollary 1.4 does not say that the result is false. It only indicates
that we cannot use the UCP of the normal operator in the proof. This boils down to the fact
that (−∆)s does not admit the UCP for s ∈ Z. However, if d is even, then the function f is
determined uniquely in V by its integrals over d-planes which intersect V . Namely, if Rdf = 0
on all d-planes intersecting V , then Ndf |V = 0. Since Nd ≈ (−∆)−d/2, one can invert Ndf by

the local operator (−∆)d/2 to obtain f |V = 0. Hence the ROI problem is uniquely solvable in
this case without the additional knowledge of f in an open set inside the ROI.

Remark 4.3. We also note that unlike in the global data case lower dimensional data does not
determine higher dimensional data. In other words, Rkf = 0 for all k-planes intersecting V
does not necessarily imply that Rdf = 0 for all d-planes which intersect V where 0 < k < d < n.
Thus one cannot reduce the partial data problem for k-planes to the partial data problem for
d-planes.
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5. Higher order fractional Schrödinger equation with singular potential

In this section, we study the fractional Schrödinger equation with higher order fractional
Laplacian and singular potential. Let Ω ⊂ Rn be a bounded open set, s ∈ R+ \ Z and consider
the equation

{
((−∆)s + q)u = 0 in Ω

u|Ωe = f
(15)

where u ∈ Hs(Rn), f ∈ Hs(Rn) is the exterior value of u and q ∈ L∞(Ω) represents the electric
potential. When the potential q is more singular one has to interpret the product qu in a suitable
way. If q ∈ Z−s0 (Rn), then q acts as a multiplier and induces a map mq : Hs(Rn) → H−s(Rn)
defined by 〈mq(u), v〉Rn = 〈q, uv〉Rn . Then equation (15) becomes

{
(−∆)su+mq(u) = 0 in Ω

u|Ωe = f.
(16)

We will prove that the generalized DN map Λq for equation (16) determines the restriction
of the potential q ∈ Z−s0 (Rn) to Ω uniquely from exterior measurements. We also obtain the

Runge approximation property for equation (16): any function g ∈ H̃s(Ω) can be approximated
arbitrarily well by solutions of (16).

Similar results were proved in [75] when 0 < s < 1. Our theorems generalize those results
for higher order fractional Laplacians. The proofs rely essentially on the same thing: the UCP
of the operator (−∆)s which was proved for s ∈ R+ \ Z in section 3.1. Also the higher order
Poincaré inequality is needed for the well-posedness of the inverse problem. In this section, we
provide the basic ideas for the proofs of the lemmas, which are reminescent of the ones in [75]
and [28]. We will mainly follow the same notation as in those articles.

The strategy to prove theorems 1.6 and 1.7 is the following. First one constructs a bilinear
form and proves that unique weak solutions are obtained in the complement of a countable set
of eigenvalues. One also proves that 0 is not an eigenvalue when (4) holds. Then one defines the
abstract DN map and proves the Alessandrini identity using it. Using the UCP of (−∆)s one
obtains the Runge approximation property for equation (16). From the Runge approximation
and the Alessandrini identity, one can prove the uniqueness result for the inverse problem.

If U ⊂ Rn is open and u, v ∈ L2(U), we denote the inner product by

〈u, v〉U =

∫

U
uvdx.

We also use the same notation 〈·, ·〉U for dual pairing.
The following lemma guarantees the existence of unique weak solutions (see [75, Lemma 2.6]).

Lemma 5.1. Let Ω ⊂ Rn be bounded open set, s ∈ R+\Z and q ∈ Z−s0 (Rn). For v, w ∈ Hs(Rn)
define the bilinear form Bq as

Bq(v, w) =
〈

(−∆)s/2v, (−∆)s/2w
〉
Rn

+ 〈mq(v), w〉Rn .

The following claims hold:

(a) There is a countable set Σ = {λi}∞i=1 ⊂ R, λ1 ≤ λ2 ≤ . . . → ∞, with the following

property: if λ /∈ Σ, then for any F ∈ (H̃s(Ω))∗ and f ∈ Hs(Rn) there is unique
u ∈ Hs(Rn) satisfying

Bq(u,w)− λ 〈u,w〉Rn = F (w) for w ∈ H̃s(Ω), u− f ∈ H̃s(Ω)

with the norm estimate

‖u‖Hs(Rn) ≤ C
(
‖F‖

(H̃s(Ω))∗ + ‖f‖Hs(Rn)

)

where C is independent of F and f .
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(b) The function u in (a) is the unique u ∈ Hs(Rn) satisfying

((−∆)su+mq(u)− λu)|Ω = F

in the sense of distributions with u− f ∈ H̃s(Ω).
(c) One has 0 /∈ Σ if (4) holds. If q ∈ L∞(Ω) and q ≥ 0, then Σ ⊂ (0,∞) and (4) always

holds.

Proof. The constants in the inequalities do not depend on the function v in the proof. It is

enough to solve the problem in (a) for u − f = v ∈ H̃s(Ω). Using the fractional Poincaré
inequality (theorem 1.5) we obtain

‖v‖2Hs(Rn) ≤ C
(∥∥∥(−∆)s/2v

∥∥∥
2

L2(Rn)
+ ‖v‖2L2(Rn)

)
≤ C ′

∥∥∥(−∆)s/2v
∥∥∥

2

L2(Rn)
.

Let 0 < ε < 1/C ′ where the constant C ′ > 0 comes from the previous inequality. Since q ∈
Z−s0 (Rn), we can find qs ∈ C∞c (Rn) and qr ∈ Z−s(Rn) such that q = qs+qr and ‖qr‖Z−s(Rn) < ε.

When we take µ = ‖q−s ‖L∞(Rn) where q−s = −min{0, qs(x)}, we obtain the coercivity condition

Bq(v, v) + µ 〈v, v〉Rn ≥
∥∥∥(−∆)s/2v

∥∥∥
2

L2(Rn)
+ 〈qr, vv〉Rn ≥

1

C ′
‖v‖2Hs(Rn) − ε ‖v‖2Hs(Rn) .

Hence v, w 7→ Bq(v, w) + µ 〈v, w〉Rn defines an equivalent inner product in H̃s(Ω). The proof is

then completed as in [28]: the Riesz representation theorem implies that for every F̃ ∈ (H̃s(Ω))∗

there is unique v = GµF̃ ∈ H̃s(Ω) such that Bq(v, w) + µ 〈v, w〉Rn = F̃ (w) for all w ∈ H̃s(Ω).

The map Gµ : (H̃s(Ω))∗ → H̃s(Ω) induces a compact, self-adjoint and positive definite operator

G̃µ : L2(Ω)→ L2(Ω) by the compact Sobolev embedding theorem. The spectral theorem for the

self-adjoint compact operator G̃µ implies the claim in (a). Part (b) holds since C∞c (Ω) is dense

in H̃s(Ω). The first claim in (c) follows from the Fredholm alternative. The second claim in (c)

is essentially the same as in [28, Lemma 2.3] and is proved by replacing H̃s(Ω) with HΩ(Rn) in
the proof of (a). �

Recall the definition of the abstract trace space X = Hs(Rn)/H̃s(Ω) which we equip with
the quotient norm

‖[f ]‖X = inf
ϕ∈H̃s(Ω)

‖f − ϕ‖Hs(Rn) , f ∈ Hs(Rn).

The following lemma implies that the DN map is well-defined and continuous. The result
follows immediately from the definition of the bilinear form Bq(·, ·) and from the continuity of

(−∆)s/2 : Hs(Rn)→ L2(Rn) (see [28, Lemma 2.4]).

Lemma 5.2. Let Ω ⊂ Rn be bounded open set, s ∈ R+ \Z and q ∈ Z−s0 (Rn) which satisfies (4).
Then the map Λq : X → X∗, 〈Λq[f ], [g]〉 = Bq(uf , g), is linear and continuous, where uf ∈
Hs(Rn) solves (−∆)su+mq(u) = 0 in Ω with u− f ∈ H̃s(Ω). One also has the self-adjointness
property 〈Λq[f ], [g])〉 = 〈[f ],Λq[g]〉 for f, g ∈ Hs(Rn).

Proof. Since uf is a solution to (−∆)su + mq(u) = 0 in Ω with uf − f ∈ H̃s(Ω) and solutions

are unique, we obtain Bq(uf+ϕ, g + ψ) = Bq(uf , g) for ϕ,ψ ∈ H̃s(Ω). This implies that Λq is

well-defined. Further, using continuity of (−∆)s/2 and the norm estimate for solution uf from
lemma 5.1, we obtain

|〈Λq[f ], [g]〉| ≤
∥∥∥(−∆)s/2uf

∥∥∥
L2(Rn)

∥∥∥(−∆)s/2g
∥∥∥
L2(Rn)

+ ‖q‖Z−s(Rn) ‖uf‖Hs(Rn) ‖g‖Hs(Rn)

≤ C ‖f‖Hs(Rn) ‖g‖Hs(Rn) ,

where C does not depend on f and g. By the definition of the quotient norm |〈Λq[f ], [g]〉| ≤
C ‖[f ]‖X ‖[g]‖X , so Λq is continuous. Choosing g = ug we obtain by symmetry of Bq(·, ·)

〈Λq[f ], [g]〉 = Bq(uf , ug) = 〈Λq[g], [uf ]〉 = 〈[f ],Λq[g]〉
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where we used the fact that uf − f ∈ H̃s(Ω). �

We immediately obtain the Alessandrini identity from lemma 5.2 (see [75, Lemma 2.7]). We
use some abuse of notation and write f instead of [f ].

Lemma 5.3 (Alessandrini identity). Let Ω ⊂ Rn be bounded open set, s ∈ R+ \ Z and q1, q2 ∈
Z−s0 (Rn) which satisfy (4). For any f1, f2 ∈ X one has

〈(Λq1 − Λq2)f1, f2〉 = 〈mq1−q2(u1), u2〉Rn

where ui ∈ Hs(Rn) solves (−∆)sui +mqi(ui) = 0 in Ω with ui − fi ∈ H̃s(Ω).

Proof. Using the self-adjointness of Λq and the property Bq(ui, g+ψ) = Bq(ui, g) for ψ ∈ H̃s(Ω),
we obtain

〈(Λq1 − Λq2)f1, f2〉 = 〈Λq1f1, f2〉 − 〈f1,Λq2f2〉 = Bq1(u1, f2)−Bq2(u2, f1)

= Bq1(u1, f2 + (u2 − f2))−Bq2(u2, f1 + (u1 − f1))

= Bq1(u1, u2)−Bq2(u1, u2) = 〈mq1−q2(u1), u2〉Rn
which gives the claim. �

From the UCP of (−∆)s (theorem 1.2), we obtain the following approximation result (see
[75, Lemma 8.1]).

Lemma 5.4. Let Ω ⊂ Rn be bounded open set, s ∈ R+ \Z and q ∈ Z−s0 (Rn) which satisfies (4).
Denote by Pq : X → Hs(Rn), Pqf = uf , where uf ∈ Hs(Rn) is the unique solution to (−∆)su+

mq(u) = 0 in Ω with u − f ∈ H̃s(Ω) given by lemma 5.1. Let W ⊂ Ωe be any open set and
define the set

R = {Pqf − f : f ∈ C∞c (W )}.
Then R is dense in H̃s(Ω).

Proof. By the Hahn-Banach theorem it is enough to show that if F ∈ (H̃s(Ω))∗ and 〈F, v〉 = 0

for all v ∈ R, then F = 0. Let F ∈ (H̃s(Ω))∗ and assume that

〈F, Pqf − f〉 = 0, f ∈ C∞c (W ).

Let ϕ ∈ H̃s(Ω) be the solution to

(−∆)sϕ+mq(ϕ) = F in Ω, ϕ|Ωe = 0

which exists by lemma 5.1. This means that Bq(ϕ,w) = 〈F,w〉 for all w ∈ H̃s(Ω). Let

uf = Pqf ∈ Hs(Rn) where uf − f ∈ H̃s(Ω). Now

〈F, Pqf − f〉 = Bq(ϕ, uf − f) = −Bq(ϕ, f)

since uf is a solution to (−∆)su + mq(u) = 0 in Ω and ϕ ∈ H̃s(Ω). Thus Bq(ϕ, f) = 0 for all
f ∈ C∞c (W ). Using the fact that spt(ϕ) and spt(f) are disjoint, we obtain

0 =
〈

(−∆)s/2ϕ, (−∆)s/2f
〉
Rn

= 〈(−∆)sϕ, f〉Rn .

Here we used that
〈
(−∆)s/2u, (−∆)s/2v

〉
Rn = 〈(−∆)su, v〉Rn for u, v ∈ S (Rn) and the equality

holds also in Hs(Rn) by density. Hence ϕ|W = (−∆)sϕ|W = 0 and theorem 1.2 implies ϕ = 0
and eventually F = 0. �

We remark that exactly the same proof gives the density of rΩR in L2(Ω) where rΩ is the
restriction to Ω (see [28, Lemma 5.1]). Now it is easy to prove theorems 1.6 and 1.7.
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Proof of theorem 1.6. Since we can always shrink the sets Wi, we can assume without loss of
generality that W 1∩W 2 = ∅ and (W 1∪W 2)∩Ω = ∅. Using the Alessandrini identity (lemma
5.3), we obtain

〈mq1−q2(u1), u2〉Rn = 0

for any ui ∈ Hs(Rn) which solves (−∆)sui +mqi(ui) = 0 in Ω with exterior values in C∞c (Wi).

Let v1, v2 ∈ H̃s(Ω). By lemma 5.4 there are sequences of exterior values fk1 ∈ C∞c (W1) and
fk2 ∈ C∞c (W2) with sequences of solutions uk1, u

k
2 ∈ Hs(Rn) such that

• (−∆)suki +mqi(u
k
i ) = 0 in Ω

• uki − fki ∈ H̃s(Ω)

• uki = fki + vi + rki where rki
k→∞−−−→ 0 in H̃s(Ω).

When we insert the solutions uki into the Alessandrini identity, use the support conditions and
take the limit k →∞, we obtain

〈mq1−q2(v1), v2〉Rn = 0.

Let ϕ ∈ C∞c (Ω). Choose v1 = ϕ and v2 ∈ C∞c (Ω) such that v2 = 1 in a neighborhood of spt(ϕ).
This implies

0 = 〈mq1−q2(v1), v2〉Rn = 〈q1 − q2, v1v2〉Rn = 〈q1 − q2, ϕ〉Rn
which is equivalent to that q1|Ω = q2|Ω as distributions. �

Proof of theorem 1.7. Since int(Ω1\Ω) 6= ∅, there is open set W ⊂ Ωe such that W ⊂ Ω1\Ω. By

lemma 5.4, the set R is dense in H̃s(Ω). Hence, we can approximate any g ∈ H̃s(Ω) arbitrarily

well by solutions u ∈ Hs(Rn) to the equation (−∆)su + mq(u) = 0 in Ω with u − f ∈ H̃s(Ω).

Since f ∈ C∞c (W ) we especially have spt(u) ⊂ Ω1. �

6. Higher order fractional magnetic Schrödinger equation

In this section we will be dealing with the definition of the FMSE, as well as with the proof
of the injectivity result for the corresponding inverse problem. For the sake of simplicity, let
us fix the convention throughout this section that the symbol 〈·, ·〉 indicates both the scalar
product (duality pairing) on L2(Rn) and the one on L2(R2n), the distinction between the two
being always possible by checking the number of free variables inside the brackets. We also let
the norms ‖·‖L2 , ‖·‖Hs etc. to denote the norms over the whole Rn or R2n when the base set is
not specified.

6.1. High order bivariate functions. Let l, n ∈ N, and consider a family A of scalar two-
point functions indexed over the set {1, ..., n}l. A generic member of the family is determined
by a vector (i1, ..., il) such that ij ∈ {1, ..., n} for all j ∈ {1, ..., l}, and it is a function Ai1,...,il :
R2n → R. We call such family A a bivariate function of order l. One can see the family A as
a function A : R2n →Ml, where Ml is the set of all n× ...× n = nl arrays of real numbers, i.e.
tensors of order l.

Let a, b ∈ N, and let A,B be bivariate functions of orders a and b respectively, in the variables
x1, x2. The tensor product of A and B is the bivariate function of order a+ b given by

(A⊗B)i1,...,ia,j1,...,jb(x1, x2) := Ai1,...,ia(x1, x2)Bj1,...,jb(x1, x2) .

In particular, for a vector ξ ∈ Rn we let ξ⊗0 = 0, ξ⊗1 = ξ and recursively ξ⊗m = ξ⊗(m−1) ⊗ ξ.
Let A,B as before, but assume now that a ≥ b. The contraction of A and B is the bivariate
function of order a− b given by

(A ·B)i1,...,ia−b(x1, x2) :=
n∑

j1,...,jb=1

Ai1,...,ia−b,j1,...,jb(x1, x2)Bj1,...,jb(x1, x2) .
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If A = B, then of course a = b, so that A · A is a scalar function of the variables (x1, x2). One

sees that |A| := (A · A)1/2 defines a norm for fixed x1 and x2, and that this coincides with the
usual one when A is a vector function.

Lemma 6.1. Let a, b ∈ N, and let A,B, v be bivariate functions of orders a, b and 1 respectively,
in the variables x1, x2. Assume that a ≥ b+ 1; then

A · (B ⊗ v) = (A · v) ·B .

Proof. The proof is just a simple computation:

[A · (B ⊗ v)]i1,...,ia−b−1
=

n∑

j1,...,jb+1=1

Ai1,...,ia−b−1,j1,...,jb+1
(B ⊗ v)j1,...,jb+1

=
n∑

j1,...,jb+1=1

Ai1,...,ia−b−1,j1,...,jb+1
Bj1,...,jbvjb+1

=
n∑

j1,...,jb=1

Bj1,...,jb

n∑

jb+1=1

Ai1,...,ia−b−1,j1,...,jb+1
vjb+1

=
n∑

j1,...,jb=1

Bj1,...,jb(A · v)i1,...,ia−b−1,j1,...,jb

= [(A · v) ·B]i1,...,ia−b−1
. �

Let A be a bivariate function of any order. Following [14], we recall the definitions of the
symmetric and antisymmetric parts of A with respect to the variables x and y and the L2 norms
of A with respect to the first and second variable at point x:

As(x, y) :=
A(x, y) +A(y, x)

2
, Aa(x, y) := A(x, y)−As(x, y) ,

J1A(x) :=

(∫

Rn
|A(y, x)|2 dy

)1/2

, J2A(x) :=

(∫

Rn
|A(x, y)|2 dy

)1/2

.

It is easily seen that A ∈ L2 implies As, Aa ∈ L2, since

(17) ‖As‖L2 =

∥∥∥∥
A(x, y) +A(y, x)

2

∥∥∥∥
L2

≤ ‖A‖L2 , ‖Aa‖L2 =

∥∥∥∥
A(x, y)−A(y, x)

2

∥∥∥∥
L2

≤ ‖A‖L2 .

A bivariate function A of any order will be called symmetric if A = As almost everywhere,
and antisymmetric if A = Aa almost everywhere.

Lemma 6.2. Let A ∈ L1(R2n,Ml) be an antisymmetric bivariate function of order l for some
l ∈ N. Then

∫
R2n A(x, y) dydx = 0 .

Proof. Let D+, D− be the sets respectively above and under the diagonal D := {(x, y) ∈ R2n :
x = y} of R2n. Since

∫
D± A(x, y) dydx ≤

∫
D± |A(x, y)| dydx ≤ ‖A‖L1 < ∞, we can decompose

the integral as
∫
R2n A(x, y) dydx =

∫
D+ A(x, y) dydx+

∫
D− A(x, y) dydx. Given the symmetry of

the sets D+ and D−, this can be rewritten as
∫
R2n A(x, y) dydx =

∫
D+(A(x, y) +A(y, x)) dydx ,

which vanishes by virtue of the antisymmetry of A. �

6.2. Fractional operators. Let s ∈ R+ \ Z, u ∈ C∞c (Rn) and x, y ∈ Rn. Let bsc := sup{n ∈
N : n < s} and s′ := s− bsc, so that by definition s′ ∈ (0, 1). The fractional gradient of order s
of u at points x and y is the following symmetric bivariate function of order bsc+ 1:

∇su(x, y) :=
C1/2
n,s′√

2

∇bscu(x)−∇bscu(y)

|y − x|n/2+s′+1
⊗ (y − x) .
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Observe that this definition coincides with the usual one for s ∈ (0, 1), since in this case bsc = 0
and s′ = s. One can compute

‖∇su‖2
L2(R2n,Mbsc+1)

=
Cn,s′

2

∫

Rn

∫

Rn

|∇bscu(x)−∇bscu(y)|2
|x− y|n+2s′ dx dy

=
Cn,s′

2
[∇bscu]2

Ḣs′ (Rn)
=
∥∥∥(−∆)s

′/2∇bscu
∥∥∥

2

L2(Rn)

= ‖|ξ|s′ξ⊗bscû(ξ)‖2L2(Rn) = ‖|ξ|sû(ξ)‖2L2(Rn)

=
∥∥∥(−∆)s/2u

∥∥∥
2

L2(Rn)
≤ ‖u‖2Hs(Rn) .

Thus, by the density of C∞c in Hs, ∇s can be extended to a continuous operator ∇s : Hs(Rn)→
L2(R2n,Mbsc+1). One sees by density that the formula given for ∇su in the case u ∈ C∞c (Rn)
still holds almost everywhere for u ∈ Hs(Rn). Thus if u, v ∈ Hs, by the above computation,

〈∇su,∇su〉 = ‖(−∆)s/2u‖2L2 = 〈(−∆)s/2u, (−∆)s/2u〉 = 〈(−∆)su, u〉 ,
so that by the polarization identity and the self-adjointness of (−∆)s,

〈∇su,∇sv〉 =
〈∇s(u+ v),∇s(u+ v)〉 − 〈∇su,∇su〉 − 〈∇sv,∇sv〉

2

=
〈(−∆)s(u+ v), u+ v〉 − 〈(−∆)su, u〉 − 〈(−∆)sv, v〉

2

=
〈(−∆)su, v〉+ 〈(−∆)sv, u〉

2
= 〈(−∆)su, v〉 .

This proves that if the fractional divergence (∇·)s : L2(R2n,Mbsc+1) → H−s(Rn) is defined as
the adjoint of ∇s, then weakly (∇·)s∇s = (−∆)s for s ∈ R+ \Z. This result was already proved
in [15], but only for the case s ∈ (0, 1). If we define the antisymmetric bivariate vector function

α(x, y) :=
C1/2
n,s′√

2

y − x
|y − x|n/2+s′+1

then for u ∈ Hs the identity

∇su(x, y) = (∇bscu(x)−∇bscu(y))⊗ α(x, y)

holds almost everywhere.

We now define the magnetic versions of the above operators. Fix p > max{1, n/2s}, and let
A be a bivariate function of order bsc+ 1 such that

(a1) J2A ∈ L2p(Rn)
(a2) spt(A) ⊂ Ω× Ω.

With such choice of p, the embedding Hs × L2p ↪→ L2 always holds by [5, Theorem 6.1], recall
that W r(Rn) = Hr(Rn) with equivalent norms when r ∈ R and W r(Rn) is the L2 Sobolev-
Slobodecki space [5, 57]. Therefore, if u ∈ Hs,

‖A(x, y)u(x)‖L2(R2n,Mbsc+1) =

(∫

Rn
|u(x)|2

∫

Rn
|A(x, y)|2dy dx

)1/2

=

(∫

Rn
|u(x)|2 |J2A(x)|2 dx

)1/2

= ‖uJ2A‖L2(Rn)

≤ c‖u‖Hs‖J2A‖L2p <∞,
where c does not depend on u and A. This allows the definition of ∇sAu(x, y) := ∇su(x, y) +

A(x, y)u(x) and its adjoint (∇·)sA just as in [14], in such a way that∇sA : Hs(Rn)→ L2(R2n,Mbsc+1)

and (∇·)sA : L2(R2n,Mbsc+1) → H−s(Rn). By definition, the magnetic fractional Laplacian
(−∆)sA : Hs → H−s will be the composition (∇·)sA∇sA. Let now q be a scalar field such that
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(a3) q ∈ Lp(Ω).

By [5, Theorem 8.3] we have the embedding Hs × Lp ↪→ H−s and hence qu ∈ H−s holds for
u ∈ Hs. We can thus define the magnetic Schrödinger operator (−∆)sA + q : Hs → H−s and
the fractional magnetic Schrödinger equation (FMSE)

(−∆)sAu+ qu = 0 .

In the next Lemma we write (−∆)sA in a more convenient form. To this scope, we introduce
the bivariate function of order bsc given by S(x, y) := A(x, y) · α(x, y), for which we assume
that

(a4) |S(x, y)| ≤ S̃(y) for a.e. x, y ∈ Rn, with S̃ ∈ L2,

(a5) S(x, y) ∈ Hbsc(R2n,Mbsc).

Remark 6.3. Assumption (a4) is really relevant only when bsc 6= 0, as it will be clear from
the proof; in the case s ∈ (0, 1), this assumption can be reduced. We refer to [14] for a set of
sufficient conditions in that regime. Moreover, with a more careful analysis, one could reduce
the exponent of the space to which S̃ belongs. However, we decided to keep L2 for the sake of
simplicity.

Lemma 6.4. Let A be a bivariate function of order bsc + 1 satisfying conditions (a1), (a2)
(a4), (a5), and let u ∈ Hs. There exist linear operators N,Mβ acting on bivariate functions of
order bsc, with β a multi-index of length |β| ≤ bsc, such that the equation

(−∆)sAu(x) =(−∆)su(x) +
∑

|β|≤bsc
∂βu(x)(Mβ(S))(x)+

+

∫

Rn
u(y)(N(S))(x, y) dy + u(x)

∫

Rn
|A(x, y)|2dy

holds in weak sense.

Proof. If v ∈ Hs, then in weak sense

(18) 〈(−∆)sAu, v〉 = 〈∇su,∇sv〉+ 〈∇su,Av〉+ 〈∇sv,Au〉+ 〈Au,Av〉 ,
where all the terms on the right hand side are finite, as observed above.

Step 1. Let us start by computing the third term on the right hand side of (18). The bivariate
function ∇sv(x, y)[A(x, y)u(x)]a is antisymmetric, and by Cauchy-Schwartz and formula (17)
we have ‖∇sv (Au)a‖L1 ≤ ‖∇sv‖L2‖(Au)a‖L2 ≤ ‖v‖Hs‖Au‖L2 < ∞. Therefore Lemma 6.2
gives 〈∇sv, (Au)a〉 = 0, and we can use Lemma 6.1 to write

〈∇sv,Au〉 = 〈∇sv,Au〉 − 〈∇sv, (Au)a〉 = 〈∇sv, (Au)s〉
= 〈(∇bscv(x)−∇bscv(y))⊗ α, (Au)s〉
= 〈∇bscv(x)−∇bscv(y), (Au)s · α〉(19)

= 〈∇bscv(x)−∇bscv(y), (A · αu)a〉
= 〈∇bscv(x)−∇bscv(y), (Su)a〉 .

The bivariate function [∇bscv(x)+∇bscv(y)][S(x, y)u(x)]a is antisymmetric, and we can estimate
its L1 norm by means of the triangle inequality as

‖(∇bscv(x) +∇bscv(y))(Su)a‖L1 ≤ ‖(∇bscv(x)−∇bscv(y))(Su)a‖L1 + ‖2∇bscv(x)(Su)a‖L1 .

The first term on the right hand side equals ‖∇sv (Au)s‖L1 by computation (19), so that it is
finite by ‖∇sv (Au)s‖L1 ≤ ‖∇sv‖L2‖(Au)s‖L2 ≤ ‖v‖Hs‖Au‖L2 < ∞. We estimate the other
term again by triangular inequality as

(20) ‖2∇bscv(x)(Su)a‖L1 ≤ ‖∇bscv(x)S(x, y)u(x)‖L1 + ‖∇bscv(x)S(y, x)u(y)‖L1 .
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The estimation of the second term on the right hand side of (20) can be done as follows, and
similarly for the other one:

‖∇bscv(x)S(y, x)u(y)‖L1 =

∫

Rn
|∇bscv(x)|

∫

Rn
|S(y, x)| |u(y)| dydx

≤
∫

Rn
|∇bscv(x)|S̃(x)

∫

Ω
|u(y)| dydx

≤ c‖u‖L2

∫

Rn
|∇bscv(x)|S̃(x)dx(21)

≤ c‖u‖L2‖∇bscv(x)‖L2‖S̃‖L2

≤ c‖u‖Hs‖v‖Hs‖S̃‖L2 <∞,
where the constant c can change from line to line and does not depend on v, u and S.
Thus we have proved that ‖2∇bscv(x)(Su)a‖L1 < ∞, which in turn implies that ‖(∇bscv(x) +

∇bscv(y))(Su)a‖L1 < ∞. Now we can use again Lemma 6.2 to conclude that 〈∇bscv(x) +

∇bscv(y), (Su)a〉 = 0. From this fact and formula (19), integrating by parts,

〈∇sv,Au〉 = 〈∇bscv(x)−∇bscv(y), (Su)a〉+ 〈∇bscv(x) +∇bscv(y), (Su)a〉
= 2〈∇bscv(x), (Su)a〉 = 〈∇bscv(x), S(x, y)u(x)− S(y, x)u(y)〉
= 〈∇bscv(x), S(x, y)u(x)〉 − 〈∇bscv(x), S(y, x)u(y)〉

= (−1)bsc
〈
v, (∇·)bscx

(
u(x)

∫

Rn
S(x, y)dy

)〉

− (−1)bsc
〈
v, (∇·)bscx

∫

Rn
S(y, x)u(y)dy

〉
.

In the last term the derivatives can pass under the integral sign by means of the dominated
convergence theorem, since |S(x, y)u(y)| ≤ S̃(y)|u(y)|, and

∫
Rn S̃(y)|u(y)|dy ≤ ‖S̃‖L2‖u‖L2 <

∞. Eventually,

〈∇sv,Au〉 = (−1)bsc
〈
v, (∇·)bscx

(
u(x)

∫

Rn
S(x, y)dy

)〉
(22)

+ (−1)bsc+1

〈
v,

∫

Rn
u(y)(∇·)bscx S(y, x)dy

〉
.

Step 2. Next we compute the second term on the right hand side of (18). With a computation

similar to (19), we obtain 〈∇su,Av〉 = 〈∇bscu(x) − ∇bscu(y), S(x, y)v(x)〉; moreover, we have
estimates similar to the ones in (21), and so we can split the integral. Eventually, we integrate
by parts and get

〈∇su,Av〉 = 〈∇bscu(x), S(x, y)v(x)〉 − 〈∇bscu(y), S(x, y)v(x)〉

=

〈
v(x),∇bscu(x) ·

∫

Rn
S(x, y)dy

〉
−
〈
v(x),

∫

Rn
∇bscu(y) · S(x, y)dy

〉
(23)

=

〈
v(x),∇bscu(x) ·

∫

Rn
S(x, y)dy

〉
+ (−1)bsc+1

〈
v(x),

∫

Rn
u(y)(∇·)bscy S(x, y)dy

〉
.

Step 3. The properties 〈(−∆)su, v〉 = 〈∇su,∇sv〉 and 〈Au,Av〉 =
〈
v, u

∫
Rn |A(x, y)|2dy

〉
hold,

as proved in [14]. Using this information and formulas (22), (23) we can write the fractional
magnetic Schrödinger operator as

〈(−∆)su, v〉+

〈
∇bscu(x) ·

∫

Rn
S(x, y)dy + (−1)bsc(∇·)bscx

(
u(x)

∫

Rn
S(x, y)dy

)
, v

〉
+

+ (−1)bsc+1

〈∫

Rn
u(y)

(
(∇·)bscx S(y, x) + (∇·)bscy S(x, y)

)
dy, v

〉
+

〈
u

∫

Rn
|A|2dy, v

〉
.
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Let us compute the left hand side of the second bracket and collect the resulting terms according
to the order of their derivatives of u. For every multi-index β such that |β| ≤ bsc we can find a
linear operator Mβ such that

∇bscu(x) ·
∫

Rn
S(x, y)dy + (−1)bsc(∇·)bscx

(
u(x)

∫

Rn
S(x, y)dy

)
=

∑

|β|≤bsc
∂βu(x)Mβ(S) .

We can also define the following linear operator:

N(S) = (−1)bsc+1
(

(∇·)bscx S(y, x) + (∇·)bscy S(x, y)
)
.

With these new definitions, we can rewrite the fractional magnetic Schrödinger operator as in
the statement of the Lemma. �

6.3. The bilinear form and the DN map. For every s ∈ R+ \ Z and u, v ∈ Hs we define
the bilinear form Bs

A,q : Hs ×Hs → R as in [14]:

Bs
A,q(u, v) =

∫

Rn

∫

Rn
∇sAu · ∇sAv dydx+

∫

Rn
quv dx .

Lemma 6.5. There are constants µ′, k′ > 0 such that, for all u ∈ Hs,

Bs
A,q(u, u) + µ′〈u, u〉 ≥ k′‖u‖2Hs .

Proof. The formula we want to prove is called coercivity estimate. Using (18), we can write

Bs
A,q(u, u) =

∫

Rn

∫

Rn
∇sAu · ∇sAu dydx+

∫

Rn
qu2 dx

=

∫

Rn
u(−∆)sAu dx+

∫

Rn
qu2 dx = 〈(−∆)sAu, u〉+ 〈qu, u〉

= 〈(−∆)su, u〉+ 2〈∇su,Au〉+

〈(
q +

∫

Rn
|A(x, y)|2dy

)
u, u

〉

= 〈(−∆)su, u〉+ 2

〈∫

Rn
∇su ·Ady, u

〉
+ 〈Qu, u〉 ,(24)

where Q(x) := q(x) +
∫
Rn |A(x, y)|2dy belongs to Lp since Cauchy-Schwartz and assumptions

(a1) and (a3) imply the embedding L2p × L2p ↪→ Lp. Since we always have Lp ×Hs ↪→ H−s,
we get 〈Qu, u〉 ≤ ‖u‖Hs‖Qu‖H−s ≤ ‖Q‖Lp‖u‖2Hs . For the second term on the right hand side
of (24) we first perform an estimate by means of the Young inequality

2

〈∫

Rn
∇su ·Ady, u

〉
≤ ε−1‖u‖2L2 + ε

∥∥∥∥
∫

Rn
∇su ·Ady

∥∥∥∥
2

L2

,

then estimate the second term with the Cauchy-Schwartz inequality, in light of (a4):

ε

∥∥∥∥
∫

Rn
∇su ·Ady

∥∥∥∥
2

L2

= ε

∥∥∥∥
∫

Rn

(
(∇bscu(x)−∇bscu(y))⊗ α

)
·Ady

∥∥∥∥
2

L2

= ε

∥∥∥∥
∫

Rn
(∇bscu(x)−∇bscu(y)) · (A · α) dy

∥∥∥∥
2

L2

= ε

∥∥∥∥
∫

Ω
(∇bscu(x)−∇bscu(y)) · S(x, y) dy

∥∥∥∥
2

L2(Ω)

≤ ε
∥∥∥∥∥

(∫

Ω
|∇bscu(x)−∇bscu(y)|2dy

)1/2(∫

Ω
|S(x, y)|2 dy

)1/2
∥∥∥∥∥

2

L2(Ω)

= ε

∫

Ω

(∫

Ω
|∇bscu(x)−∇bscu(y)|2dy

∫

Ω
|S(x, y)|2 dy

)
dx
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≤ ε
∫

Ω

(∫

Ω
(|∇bscu(x)|+ |∇bscu(y)|)2dy

∫

Ω
S̃2(y) dy

)
dx

= ε‖S̃‖2L2(Ω)

∫

Ω

∫

Ω
(|∇bscu(x)|+ |∇bscu(y)|)2dydx

≤ 2ε‖S̃‖2L2(Ω)

∫

Ω

∫

Ω
(|∇bscu(x)|2 + |∇bscu(y)|2)dydx

≤ 4|Ω|ε‖S̃‖2L2(Ω)‖∇bscu‖2L2 ≤ c ε‖∇bscu‖2Hs′ ≤ c ε‖u‖2Hs ,

where the constant c can change from line to line and does not depend on u.
Eventually

2

〈∫

Rn
∇su ·Ady, u

〉
≤ ε−1‖u‖2L2 + c ε‖u‖2Hs ,

which leads to

(25) Bs
A,q(u, u) ≥ Bs

0,Q(u, u)− ε−1‖u‖2L2 − c ε‖u‖2Hs .

Since C∞c (Ω) is dense in Lp(Ω), for every δ > 0 we can find functions Qs, Qr such that Qs ∈
C∞c (Ω), ‖Qr‖Lp(Ω) ≤ δ and Q = Qs + Qr. Also, if φj ∈ C∞c (Ω) and ‖φj‖Hs = 1 for j = 1, 2,

then |〈Qrφ1, φ2〉| ≤ c‖φ1‖Hs‖φ2‖Hs‖Qr‖Lp ≤ cδ by the embedding Lp×Hs ↪→ H−s. Therefore,

‖Qr‖Z−s = sup
‖φj‖Hs=1

{|〈Qrφ1, φ2〉|} ≤ cδ ,

which means that Q belongs to the closure of C∞c (Ω) in Z−s(Rn), that is Q ∈ Z−s0 (Rn). Now
by Lemma 5.1 we know the coercivity estimate for the non-magnetic high exponent case; this
lets us write (25) as

Bs
A,q(u, u) + (µ+ ε−1)〈u, u〉 ≥ (k − c ε)‖u‖2Hs ,

which is the coercivity estimate for Bs
A,q as soon as ε is fixed small enough and µ′ := µ + ε−1,

k′ := k − c ε are defined. �

By means of the lemma above, if we assume 0 is not an eigenvalue for the equation, we
can proceed as in the proof of Lemma 2.6 from [75] and get the well-posedness of the direct

problem for FMSE. This can be stated as follows: if F ∈ (H̃s(Ω))∗, there exists unique solution

u ∈ Hs(Rn) to Bs
A,q(u, v) = F (v) for all v ∈ H̃s(Ω), i.e. unique u ∈ Hs(Rn) such that

(−∆)sAu+ qu = F in Ω, u|Ωe = 0. This is also true for non-vanishing exterior value f ∈ Hs(Rn)
(see [15] and [28]), and the following estimate holds:

(26) ‖u‖Hs(Rn) ≤ c(‖F‖(H̃s(Ω))∗ + ‖f‖Hs(Rn)),

where c does not depend on F and f .
One can prove (see Lemma 3.11 from [14]) that Bs

A,q also enjoys these properties:

(1) Bs
A,q(v, w) = Bs

A,q(w, v) , for all v, w ∈ Hs,

(2) |Bs
A,q(v, w)| ≤ c‖v‖Hs(Rn)‖w‖Hs(Rn) for all v, w ∈ Hs, where c does not depend on v

and w.
(3) Bs

A,q(u1, e2) = Bs
A,q(u2, e1) , for uj ∈ Hs solution to the direct problem for FMSE with

exterior value fj ∈ Hs(Ωe) and ej any extension of fj to Hs, j = 1, 2.

Lemma 6.6. Let X = Hs(Rn)/H̃s(Ω) be the abstract quotient space, and let u1 ∈ Hs be the
solution to the direct problem for FMSE with exterior value f1 ∈ Hs(Ωe). Then

〈ΛsA,q[f1], [f2]〉 = Bs
A,q(u1, f2), fj ∈ Hs, j = 1, 2

defines a bounded, linear, self-adjoint map ΛsA,q : X → X∗. We call ΛsA,q the DN map.

Proof. The proof follows trivially from properties (1)-(3) of Bs
A,q and (26). �
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6.4. The gauge. Consider two couples of potentials (A1, q1) and (A2, q2). We say that (A1, q1) ∼
(A2, q2) if and only if the following conditions are met:

• N(S1 − S2) = 0 for almost every x, y ∈ Rn
• M(0,...,0)(S1 − S2) +

∫
Rn(|A1|2 − |A2|2)dy + (q1 − q2) = 0 for almost every x ∈ Rn

• Mβ(S1 − S2) = 0 for all 1 ≤ |β| ≤ bsc and almost every x ∈ Rn.
It is clear from the linearity of N and Mα that ∼ is an equivalence relation, and so the set of
all couples of potentials is divided into equivalence classes by ∼. We call these gauge classes,
and if (A1, q1) ∼ (A2, q2) we say that (A1, q1) and (A2, q2) are in gauge.
Observe that this gauge ∼ coincides with the one defined in [14] if s ∈ (0, 1), although it looks
quite different. Since in this case bsc = 0, there is no third condition. In the language of that
paper, the first condition reads

0 = −N(S1 − S2) = S1(y, x) + S1(x, y)− S2(y, x)− S2(x, y)

= (A1(x, y)−A2(x, y)) · α(x, y) + (A1(y, x)−A2(y, x)) · α(y, x)

= (A1(x, y)−A1(y, x)−A2(x, y) +A2(y, x)) · α(x, y)

= 2(A1 −A2)a · α = 2(A1 −A2)a‖ · α ,
which is equivalent to (A1)a‖ = (A2)a‖, since the two vectors in the last scalar product have the
same direction. Given this fact, for any v ∈ Hs the first term in the second condition weakly is

〈M(0,...,0)(S1 − S2), v〉 = 2〈S1 − S2, v〉 = 2〈α · (A1 −A2), v〉 = 2〈α · (A1 −A2)‖, v〉
= 2〈α · (A1 −A2)s‖, v〉 = 2〈αv, (A1 −A2)s‖〉 = 2〈(αv)s, (A1 −A2)s‖〉
= 〈α(x, y)v(x) + α(y, x)v(y), (A1 −A2)s‖〉
= 〈α(x, y)(v(x)− v(y)), (A1 −A2)s‖〉
= 〈∇sv, (A1 −A2)s‖〉 = 〈v, (∇·)s((A1 −A2)s‖)〉 ,

which lets us rewrite the second condition as

(∇·)s(A1)s‖ +

∫

Rn
|A1|2dy + q1 = (∇·)s(A2)s‖ +

∫

Rn
|A2|2dy + q2 .

Remark 6.7. Observe that the gauge enjoyed by the FMSE is quite different from the one
holding for the MSE. For the sake of simplicity, we shall compare the classical case with the
fractional one in the regime s ∈ (0, 1), following section 3 in [14].

Given lemma 6.4, one sees that the following is an equivalent definition for the gauge ∼ above:

(A1, q1) ∼ (A2, q2) ⇔ (−∆)sA1
u+ q1u = (−∆)sA2

u+ q2u ,

for all u ∈ Hs(Rn). One may also define the accessory gauge ≈ as

(A1, q1) ≈ (A2, q2) ⇔ ∃φ ∈ G : (−∆)sA1
(uφ) + q1uφ = φ((−∆)sA2

u+ q2u) ,

for all u ∈ Hs(Rn), where G := {φ ∈ C∞(Rn) : φ > 0, φ|Ωe = 1}. These definitions can be
extended to the MSE in the natural way. It was proved in lemmas 3.9 and 3.10 of [14] that the
FMSE enjoys the gauge ∼, but not ≈. In the same discussion, it was argued that the opposite
holds for MSE. The reason for this surprising discrepancy should be looked for in the nonlocal
structure of the FMSE. As apparent in formula (10) in [14], the coefficient of the gradient term
in FMSE is not related to the whole vector potential A itself, but only to its antisymmetric part
Aa. It is such antisymmetry requirement what eventually does not allow the FMSE to enjoy ≈
as the MSE. As a result, the scalar potential q can not be in general uniquely determined as in
the classical case.

6.5. Main result.

Remark 6.8. Assume W ⊆ Ωe is an open set and u ∈ Hs satisfies u = 0 and (−∆)sAu+ qu =
0 in W . We say that the fractional magnetic Schrödinger operator enjoys the weak unique
continuation property (WUCP) if we can deduce that u = 0 in Ω. This was proved in [14] by
using the UCP of the fractional Laplacian for s ∈ (0, 1); since we know by Theorem 1.2 that
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UCP still holds for (−∆)s in the regime s ∈ R+ \ Z, we can deduce WUCP for (−∆)sA + q by
the same proof.

Proof of theorem 1.8. Step 1. Without loss of generality, let W1 ∩W2 = ∅. Let fi ∈ C∞c (Wi),

and let ui ∈ Hs(Rn) solve (−∆)sAiui + qiui = 0 with ui − fi ∈ H̃s(Ω) for i = 1, 2. Knowing
that the DN maps computed on f ∈ C∞c (W1) coincide when restricted to W2, using Lemmas
6.4 and 6.6 we write this integral identity

0 = 〈(ΛsA1,q1 − ΛsA2,q2)f1, f2〉 = Bs
A1,q1(u1, u2)−Bs

A2,q2(u1, u2)

=

〈
u2,

∑

|β|≤bsc
∂βu1Mβ(S1 − S2)

〉
+

〈
u2,

∫

Rn
u1(y)N(S1 − S2) dy

〉
+

+

〈
u2, u1

(∫

Rn
(|A1|2 − |A2|2)dy + (q1 − q2)

)〉
.

Since if x 6∈ Ω or y 6∈ Ω we have A1(x, y) = A2(x, y) and q1(x) = q2(x), we can restrict u1, u2

and ∂βu1 over Ω in the previous formula; it is also true that (∂βu1)|Ω = ∂β(u1|Ω), and therefore

0 =

〈
u2|Ω,

∑

|β|≤bsc
∂β(u1|Ω)Mβ(S1 − S2)

〉
+

〈
u2|Ω,

∫

Rn
u1|Ω(y)N(S1 − S2) dy

〉
+

+

〈
u2|Ω, u1|Ω

(∫

Rn
(|A1|2 − |A2|2)dy + (q1 − q2)

)〉
.

This is the Alessandrini identity, which now we will test with certain solutions in order to obtain
information about the potentials. The appropriate test solutions will be produced by means of
the Runge approximation property (RAP), which holds for the FMSE because of Remark 6.8
and Lemma 3.15 in [14]. This property says that the set R = {uf |Ω : f ∈ C∞c (W )} ⊂ L2(Ω)
of the restrictions to Ω of those functions uf solving FMSE for some smooth exterior value f
supported in W is dense in L2(Ω).

Step 2. Given any f ∈ L2(Ω), by the RAP we can find a sequence of solutions (u2)k → f in
L2 sense as k → ∞. Substituting these in the Alessandrini identity and taking limits, by the
arbitrarity of f we can deduce that

0 =
∑

|β|≤bsc
∂β(u1|Ω)Mβ(S1 − S2) +

∫

Rn
u1|Ω(y)N(S1 − S2) dy+

+ u1|Ω
(∫

Rn
(|A1|2 − |A2|2)dy + (q1 − q2)

)

holds for every solution u1 ∈ Hs and almost every point x ∈ Ω. Fix x ∈ Ω. Consider now any
ψ ∈ C∞c (Ω) and let g(y) := e−1/|x−y|ψ(y), g(x) = 0. Since e−1/|x−y| is smooth, it is easy to

see that g ∈ C∞c (Ω) ⊂ L2(Ω); also, by the properties of e−1/|x−y| one has that ∂βg(x) = 0 for
all multi-indices β. By the RAP we can find a sequence of solutions (u1)k → g in L2 sense as
k →∞. Substituting these in the above identity and taking limits, we get

∫

Rn
e−1/|x−y|ψ(y)N(S1 − S2) dy = 0 ,

which by the arbitrarity of ψ and the positivity of the exponential now implies N(S1 − S2) = 0
for almost all x, y ∈ Ω. We can now return to the above equation with this new information:
for every solution u1 ∈ Hs and almost every x ∈ Ω,

0 =
∑

|β|≤bsc
∂β(u1|Ω)Mβ(S1 − S2) + u1|Ω

(∫

Rn
(|A1|2 − |A2|2)dy + (q1 − q2)

)
.
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For every multi-index β we can consider the function hβ(x) = xβ = xβ11 . . . xβnn , which belongs
to L2(Ω). Let (hβ)k be a sequence of solutions approximating hβ in L2, which exists by the
RAP. We will first substitute (h(0,...,0))k into the last formula, take limits and deduce

M(0,...,0)(S1 − S2) +

∫

Rn
(|A1|2 − |A2|2)dy + (q1 − q2) = 0 ,

which has the effect of reducing the equation to
∑

1≤|β|≤bsc
∂β(u1|Ω)Mβ(S1 − S2) = 0.

If bsc ≥ 1, we will repeat the last steps with each hβ such that |β| = 1, deducing Mβ(S1−S2) = 0
for every such β, and subsequently

∑

2≤|β|≤bsc
∂β(u1|Ω)Mβ(S1 − S2) = 0.

Repeating this process for a total of bsc times eventually leads to

Mβ(S1 − S2) = 0 ∀ 1 ≤ |β| ≤ bsc ,
which proves the theorem by the definition of the gauge ∼. �

7. Possible generalizations and applications beyond this article

We discuss some possible directions for the future research on higher order fractional inverse
problems, fractional Poincaré inequalities and unique continuation properties. It seems that
now it would be the most natural to reconsider many of the recent developments in fractional
inverse problems for higher order operators. We outline here some problems which we would
like to see solved in the future.

We have split this section in three in order to emphasize some open problems which we find
especially interesting. We do not claim that answers to all questions are positive and it would be
interesting to see why and where the greatest difficulties, or even counterexamples, would show
up. We first list the most natural directions to continue our work on higher order fractional
Calderón problems. One could study for example the following cases:

(i) Is reconstruction from a single measurement [15, 27] possible also in the higher order
cases?

(ii) Is there stability [75] in the higher order cases?
(iii) Is there exponential instability [73] in the higher order cases?
(iv) Is there uniqueness for the Calderón problem for fractional semilinear Schrödinger equa-

tions [47, 48] in the higher order cases?
(v) Do the monotonicity methods [33, 34] extend to the higher order cases?
(vi) Is there uniqueness for the conductivity type fractional Calderón problems [10, 15] in

the higher order cases?
(vii) Could recent results on fractional heat equations [49, 74] be generalized to the higher

order cases?
(viii) Does the higher regularity Runge approximation in [11, 28] generalize to higher order

cases?

7.1. Unique continuation problems. We state here some unique continuation problems,
which do not follow directly from the earlier results and the techniques that we have developed
for this article.

Question 7.1 (UCP for Bessel potentials). Let s ∈ R+ \Z, p ∈ [1,∞) and r ∈ R. Let V ⊂ Rn
be an open set. Suppose that f ∈ Hr,p(Rn), f |V = 0 and (−∆)sf |V = 0. Show that f ≡ 0 or
give a counterexample.
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The positive answer to question 7.1 is known when p ∈ [1, 2] (see corollary 3.5). If f has
compact support, then the answer is positive for all p ∈ [1,∞) (see corollary 3.3). Question 7.1
is also open for the exponents s ∈ (0, 1) when p > 2. See section 3.1 for details.

Question 7.2 (Measurable UCP). Let s ∈ R+ \ Z and r ∈ R. Let V ⊂ Rn be an open set
and E ⊂ V a measurable set with positive measure. Suppose that f ∈ Hr(Rn), f |E = 0 and
(−∆)sf |V = 0. Show that f ≡ 0 or give a counterexample.

The positive answer to question 7.2 is known when s ∈ (0, 1) [27]. Question 7.2 with a
potential q from a suitable class of functions is also an interesting and more challenging problem.
See [27, Proposition 5.1] for more details.

Question 7.3 (Alternative strong UCP). Let s ∈ R+ \ Z and r ∈ R. Let V ⊂ Rn be an open
set. Suppose that f ∈ Hr(Rn), f |V = 0 and ∂β((−∆)sf)(x0) = 0 for some x0 ∈ V and all
β ∈ Nn0 . Show that f ≡ 0 or give a counterexample.

Question 7.3 can be seen as a version of the strong unique continuation property (see e.g.
[22, 26, 72]) with interchanged decay conditions. When f has compact support, the answer to
question 7.3 is positive for s ∈ (−n/2,∞) \ Z (see corollary 3.3).

The problems posed in questions 7.1–7.3 for the fractional Laplacian are interesting math-
ematical problems on their own right, but they also have important applications in inverse
problems. The UCPs can be used to show Runge approximation properties for nonlocal equa-
tions such as the fractional Schrödinger equation (see theorem 1.7), which in turn can be used to
show uniqueness for the corresponding nonlocal inverse problem (see theorem 1.6). The UCPs
have also applications in integral geometry, where the uniqueness of the ROI problem for the
d-plane transform can be reduced to a unique continuation problem for the fractional Laplacian
(see remark 4.1 and corollaries 1.3 and 1.4).

7.2. Fractional Poincaré inequality for Lp-norms. In section 3.2 we prove the fractional
Poincaré inequality for L2-norms in multiple ways. The inequality is needed for the well-
posedness of the inverse problem for the fractional Schrödinger equation. One could try to
extend the Poincaré inequality for general Lp-norms. This suggests the following natural ques-
tion which is also interesting from the pure mathematical point of view.

Question 7.4. Let s ≥ 0, 1 ≤ p < ∞, K ⊂ Rn compact set and u ∈ Hs,p(Rn) such that
spt(u) ⊂ K. Show that there exists a constant c = c(n,K, s, p) such that

(27) ‖u‖Lp(Rn) ≤ c
∥∥∥(−∆)s/2u

∥∥∥
Lp(Rn)

or give a counterexample.

Since we have presented several proofs for the Poincaré inequality in the case p = 2, one could
try some of our methods to solve question 7.4. However, some of our proofs are heavily based
on Fourier analysis and those approaches might be difficult to generalize to the Lp-case when
p 6= 2. Like in theorem 1.5 and in theorem 3.17, another interesting question is whether one can
replace u in the left-hand side of equation (27) with (−∆)t/2u when 0 ≤ t ≤ s, and whether the
constant c in equation (27) can be expressed in terms of the classical Poincaré constant when
s ≥ 1.

7.3. The Calderón problem for determining a higher order PDO. In this discussion,
we try to make as simple assumptions as possible. The whole point is to introduce a new
inverse problem that we think is a very natural and interesting one, at least from a pure
mathematical point of view. Therefore the optimal regularity in the statement of the problem
is not as important. Let Ω be a domain with smooth boundary. Suppose that P (x,D) =∑
|α|≤m aα(x)Dα is a partial differential operator (PDO) of order m with smooth coefficients on

Ω. We argue in section 3.1 that the operator (−∆)s + P (x,D) admits the UCP (in open sets).
It is shown in the seminal work of Ghosh, Uhlmann and Salo [28] that if P (x,D) is of order

m = 0, then one can determine the zeroth order coefficient (i.e. the potential q) from the
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associated DN map. It was then later shown in [11] that if P (x,D) is of order m = 1, then
one can also determine the coefficients (i.e. the potential q and the magnetic drift b) from the
associated DN map whenever the order of (−∆)s is large enough, namely when 2s > 1. This
and our work on higher order Calderón problems motivate the following inverse problem.

Question 7.5. Suppose that Ω ⊂ Rn is a bounded open domain with smooth boundary. Let
Pj(x,D), j = 1, 2, be smooth PDOs of order m ∈ N in Ω. Let s ∈ R+ \ Z be such that 2s > m.
Given any two open sets W1,W2 ⊂ Ωe, suppose that the DN maps ΛPi for the equations

((−∆)s + Pj(x,D))uj = 0 in Ω

satisfy ΛP1f |W2 = ΛP2f |W2 for all f ∈ C∞c (W1). Show that P1(x,D) = P2(x,D) or give a
counterexample.

Another interesting question is whether the strong UCP [26] can be extended to higher order
PDOs.
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[75] A. Rüland and M. Salo. The fractional Calderón problem: Low regularity and stability. Nonlinear Analysis,

2019.
[76] M. Salo. Recovering first order terms from boundary measurements. J. Phys.: Conf. Ser., 73, 2007.
[77] M. Salo. Calderón problem. 2008. Lecture notes.
[78] M. Salo. Fourier analysis and distribution theory. 2013. Lecture notes.
[79] M. Salo. The fractional Calderón problem. Journées équations aux dérivées partielles, Exp. No.(7), 2017.
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land

Email address: jesse.railo@math.ethz.ch

35



(D)

On some partial data Calderón type problems with
mixed boundary conditions

Giovanni Covi and Angkana Rüland

Preprint (June 2020)
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BOUNDARY CONDITIONS

GIOVANNI COVI AND ANGKANA RÜLAND

Abstract. In this article we consider the simultaneous recovery of bulk and boundary po-

tentials in (degenerate) elliptic equations modelling (degenerate) conducting media with in-

accessible boundaries. This connects local and nonlocal Calderón type problems. We prove
two main results on these type of problems: On the one hand, we derive simultaneous bulk

and boundary Runge approximation results. Building on these, we deduce uniqueness for
localized bulk and boundary potentials. On the other hand, we construct a family of CGO

solutions associated with the corresponding equations. These allow us to deduce uniqueness

results for arbitrary bounded, not necessarily localized bulk and boundary potentials. The
CGO solutions are constructed by duality to a new Carleman estimate.

1. Introduction

There has been a substantial amount of work on nonlocal inverse problems in the last years (see
for instance the survey articles [Sal17, Rül18] and the references cited below). These nonlocal
equations arise naturally in many problems from applications including, for instance, finance
[AB88, Sch03, Lev04], ecology [RR09, H+10, MV17], image processing [GO08], turbulent fluid
mechanics [Con06], quantum mechanics [Las00, Las18] and elasticity [Sch89] as well as many
other fields [GL97, MK00, Eri02, DGLZ12, AVMRTM10, DZ10, DGV13, RO15, BV16]. In this
article, we provide yet another point of view on these non-local inverse problems by adopting
a local “Caffarelli-Silvestre perspective”. The resulting equations and the associated inverse
problems are of interest in their own right, modelling for instance situations in which there are
unknown, not-directly measurable fluxes or potentials on the boundary of an electric device in
addition to electric and/or magnetic potentials in the interior of it. Moreover, we also include
situations in which the conducting property of the (electric) medium may deteriorate or improve
towards the boundary. In this setting of unknown and not directly accessible boundary and bulk
potentials at possibly degenerate conductivities, we are interested in the reconstruction of both
of these boundary and bulk potentials which are coupled through possibly degenerate, linear
elliptic equations.

1.1. A model setting. As a model case, we consider the following problem set-up with non-
degenerate conductivities: Let Ω ⊂ Rn be an open, bounded, C2-regular (or smooth) domain,
modelling the conducting body. Assume that Σ1,Σ2 ⊂ ∂Ω are two disjoint, relatively open,
smooth non-empty sets. Consider the following magnetic Schrödinger equation with mixed
boundary conditions

−∆u− iA · ∇u− i∇ · (Au) + (|A|2 + V )u = 0 in Ω,

∂νu+ qu = 0 on Σ1,

u = f on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2),

(1)

1
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where, for simplicity, the coefficients are supposed to satisfy the conditions that

V ∈ L∞(Ω,R), A ∈ L∞(Ω,Rn), q ∈ L∞(∂Ω,R),(2)

and that

ν ·A = 0 on ∂Ω.(3)

In analogy to the setting of the Schrödinger version of the partial data Calderón problem we
seek to recover the potentials A, V and q from boundary measurements encoded in the (partial)
Dirichlet-to-Neumann map

ΛA,V,q : H̃
1
2 (Σ2) 7→ H−

1
2 (Σ2), f |Σ2 7→ ∂νu|Σ2 .

In a formally correct way this will be defined by means of the bilinear form

BA,V,q(u, v) :=

ˆ

Ω

∇u · ∇v + ivA · ∇u− iAu · ∇v + V uvdx+

ˆ

Σ1

quvdHn−1 for u, v ∈ H1(Ω,C),

(4)

in Definition 3.9 in Section 3 below. Here u denotes the complex conjugate of u.
We remark that in contrast to the “usual” partial data, magnetic Schrödinger version of the

Calderón problem, in (1) the first boundary condition yields a new ingredient: Besides the partial
data character of the problem which is encoded in the measurement of data on Σ2 only, we now
also consider a setting in which a part of the domain, Σ1, is modelled as inaccessible and on
which we also seek to recover an unknown boundary flux/potential. This is closely related to the
so-called inverse Robin problem which arises, for instance, in corrosion detection (see [Ing97] and
the references below). We thus combine a Calderón with a Robin inverse problem, studying a
setting in which in addition to the bulk potentials in the interior of the domain Ω also unknown
boundary potentials and mixed-type boundary conditions are present.

In this framework it is our objective to investigate the following questions:

(Q1) Let us assume that A, V, q and ΛA,V,q are as above. Can we then simultaneously recover
the boundary potential q, the magnetic potential A and the bulk potential V , if the bulk
(gradient) potentials A and V are supported in a set Ω1 b Ω which is open and bounded?

(Q2) Is this recovery still possible – at least for V and q – if the bulk potentials are not
compactly supported in Ω? In particular, is this possible, if there is no longer some
safety distance between Ω1 and the boundary parts given by Σ1 and Σ2?

Let us comment on these questions: Both of these are partial data problems with the objective
of reconstructing unknown potentials simultaneously on the boundary and in the bulk (see [KS14]
for a survey on the known partial data results). As explained in the sequel, the effect of the
boundary and bulk potentials however is expected to differ quite substantially in the context of
the inverse problem.

On the one hand, the magnetic and scalar potentials A and V are local, interior potentials.
The dimension counting heuristics on the recovery of these follow from the ones for the classical
Calderón problem: One seeks to recover unknown objects of n degrees of freedom from the
(partial) Dirichlet-to-Neumann map, an operator which encodes 2(n − 1) degrees of freedom.
Building on the seminal result [SU87], a canonical tool to address the associated uniqueness
question for the “local” potentials A, V are complex geometric optics (CGO) solutions. It is
further well-known that the presence of the magnetic potential creates additional difficulties
due to the resulting gauge invariances. In spite of this, both in the full and the partial data
settings, CGO solutions have been constructed starting with the works [NSU95, Sun93], see also
[Chu14, CT16]. These however do not cover our mixed-data set-up in which additional unknowns
are present on the boundary.
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On the other hand, the heuristics on the recovery of the boundary potential give hope for sub-
stantially stronger boundary uniqueness results: Indeed, recalling from the argument above that
the Dirichlet-to-Neumann operator formally contains 2(n− 1) degrees of freedom, we note that
the recovery of q which is a function of n−1 degrees of freedom is always overdetermined. Hence,
in analogy to [GRSU20], even single measurement results for the uniqueness of the boundary
data can be expected (see [CJ99, ADPR03] for results of this type for the Robin inverse prob-
lem). We view this as a “non-local” reconstruction problem at the boundary; a connection to
the fractional Calderón problem is explained below.

In dealing with the questions (Q1) and (Q2) we thus combine ideas from “local” and “non-
local” inverse problems. Here in our analysis of the question (Q1) the softer “non-local” effects
dominate, while in our approach towards the problem (Q2), the “local” interior effects prevail.
In particular, we thus

• address question (Q1) using simultaneous Runge approximation results in the bulk and
on the boundary (see Sections 4-5),

• deal with question (Q2) by constructing suitable CGO solutions (see Sections 6-7).

Indeed, in (1) we view the boundary data on Σ1 as a local formulation à la Caffarelli-Silvestre
[CS07] of a Schrödinger equation for the half-Laplacian on Σ1. Then, using the fact that in
question (Q1) the local interior potentials A, V are only supported in a compact subset of Ω
which has some safety distance to Σ1,Σ2, this indicates that the problem can be reduced to
a full data type problem by means of Runge approximation results. In order to deal with the
interior potentials, we recall the Runge approximation ideas developed in [AU04] and quantified
in [RS19b]. These allow one to approximate full data CGO solutions in Ω1 by partial data
solutions in the whole domain Ω. Compared to [AU04] in our setting of (1), we have to deal
with the additional challenge that also on the boundary of Ω an unknown potential is present.
However, due to the disjointness of the domains Σ1 and Σ2 and motivated by the interpretation
of the equation on Σ1 as a fractional Schrödinger equation, it is possible to prove corresponding
simultaneous density results both in the bulk and on the boundary (see Proposition 5.1).

In contrast to the setting of the question (Q1), the question (Q2) is dominated by “local”
effects. Since now V may be supported in the whole domain Ω and may in particular be supported
up to the sets Σ1,Σ2, the Runge approximation techniques are no longer applicable in Ω. In
order to nevertheless address the uniqueness question, we thus construct CGO solutions. Here
we can however not directly make use of the known full/partial data CGO solutions from the
magnetic Schrödinger problem, due to the presence of the additional boundary condition on Σ1

in (1). A related difficulty had earlier been addressed in [Chu14, Chu15] in the context of partial
data problems. However with respect to the setting in [Chu15] our equation on the boundary
imposes an additional challenge in that the potential q is assumed to be unknown and the
problem is of mixed-data type. Thus, aiming at uniqueness results by means of CGO solutions,
we construct a new family of CGO solutions which takes into account both the unknown bulk
and boundary potentials. This relies on new Carleman estimates for a Caffarelli-Silvestre type
extension problem (see Proposition 6.1 and Corollary 6.4).

1.2. A family of (degenerate) boundary-bulk partial data Schrödinger problems. Be-
fore discussing our main results, let us present a variation of the problem outlined above in
which we also study operators whose conductivities or potentials depend on the distance to the
boundary. More precisely, for s ∈ (0, 1) and for the potentials A, V, q satisfying the conditions in
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(3) and (2), we consider the following equation

−∇ · d1−2s∇u− iAd1−2s · ∇u− i∇ · (d1−2sAu) + d1−2s(|A|2 + V )u = 0 in Ω,

lim
d(x)→0

d1−2s∂νu+ qu = 0 on Σ1,

u = f on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2).

(5)

Here d : Ω→ [0,∞) denotes a smooth function which is equal to the distance to the boundary in
a neighbourhood of the boundary. If not otherwise explained, all the functions and in particular
u, v in the sequel will be complex-valued. As in the case s = 1

2 we define an associated (partial)
Dirichlet-to-Neumann map as

Λs,A,V,q : H̃s(Σ2)→ H−s(Σ2), f |Σ2
7→ lim

d(x)→0
d(x)1−2s∂νu|Σ2

.

Again, in a formally precise way it is defined by means of the bilinear form

Bs,A,V,q(u, v) =

ˆ

Ω

d1−2s∇u · ∇v − d1−2sivA · ∇u+ d1−2siAu · ∇v + d1−2s(V + |A|2)uvdx

+

ˆ

Σ1

quvdHn−1 for u, v ∈ H1(Ω, d1−2s).

(6)

For the equation (5) and the Dirichlet-to-Neumann map (6) (and a slight variant of it, see (9)
below) we seek to investigate the analogues of the questions (Q1) and (Q2) for s ∈ (0, 1), i.e. the
reconstruction of the scalar, magnetic and boundary potentials from the generalized Dirichlet-
to-Neumann map in the cases that the interior potentials are either supported away from the
boundary or reach up to the boundary.

These questions share the same type of local and nonlocal features as explained above. How-
ever, the relation to the fractional Laplacian may become more transparent. To illustrate this,
we recall the Caffarelli-Silvestre extension [CS07] which allows one to compute the fractional
Laplacian through a problem of the type (5) in the unbounded domain Rn+1

+ . To this end, given
a function u ∈ Hs(Rn) one considers the degenerate elliptic problem

∇ · x1−2s
n+1 ∇ũ = 0 in Rn+1

+ ,

ũ = u on Rn × {0}.(7)

The fractional Laplacian then turns into the generalized Dirichlet-to-Neumann operator associ-
ated with this equation; (−∆)su := cs lim

xn+1→0
x1−2s
n+1 ∂n+1ũ(x). The idea of realizing the fractional

Laplacian as a (degenerate) Dirichlet-to-Neumann operator of a local, degenerate elliptic equa-
tion has been further extended to rather general variable coefficient settings, see for instance
[ST10, CS16]. In this sense, we view the equation (5) and also (1) as a localized proxy for the

inverse problem of recovering the potentials Ã, Ṽ and q̃ in the fractional Schrödinger equation

(−(∇+ iÃ)2 + Ṽ )su+ q̃u = 0 in Ω̃ ⊂ Rn−1,

u = f on W̃ ⊂ Rn−1 \ Ω̃,
(8)

from an associated Dirichlet-to-Neumann map. We note that in (5) the set Ω ⊂ Rn plays the role
of the extended space Rn+1

+ in (7). As a word of caution we however remark that, following the
classical formulation of the Caffarelli-Silvestre extension (7) as an equation in n+ 1 dimensions,
the formulation of the problem (7) is shifted by one dimension with respect to our setting in
(5). In contrast to the Caffarelli-Silvestre extension problem associated with (8), (5) has the
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advantage that we can work in a bounded domain Ω. This allows us to circumvent the discussion
of various issues which arise in the inverse problem for the full Caffarelli-Silvestre extension of
(8). We emphasize that just as (5) the problem (8) has a natural gauge invariance. In particular
it represents yet another nonlocal model with gauge invariances besides the ones which had been
introduced and analysed in [BGU18, Cov20a, CLR20, Li20a].

1.3. Main results. As one of the main results of this article we provide a complete answer (at
L∞ regularity) for the uniqueness question in (Q1) in the case s = 1

2 .

Theorem 1. Let Ω ⊂ Rn, n ≥ 3, be an open, bounded and C2-regular domain. Assume Ω1 b Ω
is an open, bounded set with Ω \ Ω1 simply connected and that Σ1,Σ2 ⊂ ∂Ω are two disjoint,
relatively open sets. If the potentials q1, q2 ∈ L∞(Σ1), A1, A2 ∈ C1(Ω1,Rn) and V1, V2 ∈ L∞(Ω1)
in the equation (1) are such that

Λ1 := ΛA1,V1,q1 = ΛA2,V2,q2 =: Λ2 ,

then q1 = q2, V1 = V2 and dA1 = dA2.

This relies on simultaneous approximation results for the bulk and boundary measurements.
For instance, restricting first to the case in which A = 0 and considering the sets

SV,q := {u ∈ L2(Ω) : u is a weak solution to (1) in Ω},
S̃V,q := {u ∈ H1(Ω1) : u is a weak solution to (1) in Ω} ⊂ L2(Ω1),

we prove the following simultaneous boundary and bulk approximation result.

Lemma 1.1. Assume that the conditions from Section 2.3 hold for Ω,Ω1 and Σ1,Σ2. Let
V ∈ L∞(Ω), q ∈ L∞(∂Ω). Then the set

Rbb := {(u|Σ1 , u|Ω1) : u|Σ1 = Pf |Σ1 and u|Ω1 = Pf |Ω1 with f ∈ C∞c (Σ2)} ⊂ L2(Σ1)× L2(Ω1)

is dense in L2(Σ1)×S̃V,q with the L2(Σ1)×L2(Ω1) topology. Here P denotes the Poisson operator
from Definition 3.3.

We remark that substantial generalizations are possible for these type of approximation results.
These involve both approximations in stronger topologies and more general Schrödinger type
operators. We refer to Lemma 4.2 and the discussion in Sections 4 and 5 for more on this.

Similar approximation results also hold in the setting of the problem (5), see for instance
Proposition 5.1. Furthermore, an analogous uniqueness result as in Theorem 1 can also proved
in this situation, see Theorem 3. In spite of the degenerate character of the equation (5) this
is reduced to the construction of CGO solutions to a non-degenerate Schrödinger type problem
and an application of the Runge approximation result.

We next turn to a variant of the problem (5) and investigate the question (Q2) for this model.
Here we follow the usual notation from the Caffarelli-Silvestre extension which was also already
used in (7) and assume that Ω ⊂ Rn+1 is an open set. We emphasise that we thus increase
the dimension of the problem under consideration by one with respect to our discussion of the
question (Q1). Here, in order to simplify the geometric setting which in partial data problems
is not uncommon, we assume that Σ1 := Ω ∩ {xn+1 = 0} and that Σ2 = ∂Ω \ Σ1. In contrast
of considering (5) we study a slight variation of it. For q ∈ L∞(Σ1), V ∈ L∞(Ω) we investigate
solutions to

∇ · x1−2s
n+1 ∇u+ V x1−2s

n+1 u = 0 in Ω,

u = f on Σ2,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = 0 on Σ1.

(9)
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Here, for instance, f ∈ C∞c (Σ2). Using the same ideas as in Section 3, it can be shown that this
problem is well-posed if zero is not an eigenvalue with respect to our mixed data setting. Thus,
an associated Dirichlet-to-Neumann map can be (formally) defined as the map,

ΛV,q : f 7→ lim
xn+1→∂Ω

x1−2s
n+1 ∂νu|Σ2

.

We refer to Section 7 for a more detailed discussion of the Dirichlet-to-Neumann map associated
with (9) and the function spaces it acts on. Now no longer imposing conditions on the support
of V , we seek to recover both V and q. Since this implies that Runge approximation methods
are no longer applicable in the interior of Ω, we instead rely on a new Carleman inequality for
the equation (9) (see Proposition 6.1 and Corollary 6.4) and by duality construct CGO solutions
from it:

Proposition 1.2. Let Ω ⊂ Rn+1
+ , n ≥ 3, be an open, bounded smooth domain. Assume that

Σ1 = ∂Ω ∩ (Rn × {0}) is a relatively open, non-empty subset of the boundary, and that Σ2 =
∂Ω \ Σ1. Let s ∈ [1/2, 1) and let V ∈ L∞(Ω) and q ∈ L∞(Σ1). Then there exists a non-trivial
solution u ∈ H1(Ω, x1−2s

n+1 ) of the problem

∇ · x1−2s
n+1 ∇u+ x1−2s

n+1 V u = 0 in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = 0 on Σ1,

(10)

of the form u(x) = eξ
′·x′(eik

′·x′+ikn+1x
2s
n+1 +r(x)), where k ∈ Rn+1, ξ′ ∈ Cn is such that ξ′ ·ξ′ = 0,

k · ξ′ = 0, and

• if s = 1/2, then ‖r‖L2(Ω) = O(|ξ′|− 1
2 ), ‖r‖H1(Ω) = O(|ξ′| 12 ) and ‖r‖L2(Σ1) = O(1);

• if s > 1/2, then ‖r‖L2(Ω,x1−2s
n+1 ) = O(|ξ′|−s), ‖r‖H1(Ω,x1−2s

n+1 ) = O(|ξ′|1−s) and ‖r‖L2(Σ1) =

O(|ξ′|1−2s).

Remark 1.3. We remark that by inspection of the proof given in Section 7 below, one observes
that for s = 1

2 one only needs to assume that n ≥ 2 and may work with ξ′ ∈ Rn+1 instead of
ξ′ ∈ Rn.

Remark 1.4. Instead of considering CGOs of the form

u(x) = eξ
′·x′(eik

′·x′+ikn+1x
2s
n+1 + r(x)),

by the same arguments we can also construct CGOs of the form

u(x) = eξ
′·x′(eik

′·x′−kn+1x
2s
n+1 + r(x))

for kn+1 > 0 which thus have some decay behaviour in the xn+1-direction in the amplitude.

We emphasize that the CGOs here contain new ingredients compared to the classical CGOs in
that the amplitude contains the normal contribution kn+1x

2s
n+1 instead of a linear phase. Also,

in order to avoid dealing with the non-degeneracy of the equation, with respect to the classical
CGOs, we loose one dimension in the case s ∈ ( 1

2 , 1), having to restrict ourselves to n ≥ 3 (and
thus n+ 1 ≥ 4).

Relying on this new family of CGO solutions for s ∈ ( 1
2 , 1), we give a complete answer to the

question (Q2) for n ≥ 3:

Theorem 2. Let Ω ⊂ Rn+1
+ , n ≥ 3, be an open, bounded and smooth domain. Assume that

Σ1 := ∂Ω ∩ {xn+1 = 0} and Σ2 ⊂ ∂Ω \ Σ1 are two relatively open, non-empty subsets of the
boundary such that Σ1 ∪ Σ2 = ∂Ω. Let s ∈ (1/2, 1). If the potentials q1, q2 ∈ L∞(Σ1) and
V1, V2 ∈ L∞(Ω) relative to problem (9) are such that

Λ1 := Λs,V1,q1 = Λs,V2,q2 =: Λ2 ,
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then q1 = q2 and V1 = V2.

This provides the first uniqueness result combining both local and nonlocal features of the
described form in Calderón type problems. We hope that these ideas could also be of interest in
the study of (8).

In the case s = 1
2 , the lack of sufficiently strong boundary decay estimates only allows us to

recover V given q (see Proposition 7.1 and Remark 6.3). We seek to study improvements of this
in future work.

1.4. Connection to the literature. The study of nonlocal fractional Calderón type problems
has been very active in the last years: After its formulation and the study of its uniqueness
properties in [GSU20], optimal stability and uniqueness in scaling critical spaces have been
addressed in [RS20a, RS18]. In [GRSU20] single measurement reconstruction results have been
proved, see also [HL19, HL20] for full-data reconstruction results by monotonicity methods.
Further, variable coefficient versions were studied in [GLX17, Cov20b] and magnetic potentials
were introduced in [BGU18, Cov20a, CLR20, Li20a]. We refer to the articles [LLR19, Lin20,
Li20b, CMR20, RS19c, GFR19] for further variants of related nonlocal problems. Reviews for
the fractional Calderón problem with additional literature can be found in [Sal17, Rül18].

In all these works, a striking flexibility property of nonlocal equations is used, see also [DSV17,
DSV19, RS19a, Rül19, GFR20]: As a consequence of the antilocality of the fractional Laplacian
(see [Ver93]), one obtains that the set of solutions to a given fractional Schrödinger problem with
scaling-critical or subcritical potential in Ω is already dense in L2(Ω). This allows one to prove
uniqueness and reconstruction results by means of Runge approximation properties. These often
lead to substantially stronger results for the nonlocal inverse problems than the known ones (e.g.
partial data, low regularity) for the classical local case. Apart from the intrinsic interest in the
described effects of anti- and nonlocality, these nonlocal inverse problems are also of relevance
in various applications and in order to obtain an improved understanding of the classical, local
Calderón problem.

By virtue of the Caffarelli-Silvestre extension, the described fractional Schrödinger inverse
problems are also closely connected to (degenerate) versions of the Robin inverse problem as
proposed and formulated for instance in [KS95, KSV96, SVX98, BCC08]. These problems arise
in the indirect detection of corrosion through electrostatic measurements and in thermal imaging
techniques. Mathematically, under sufficiently strong regularity conditions on the potentials and
the measurement sets, these can be addressed using ideas on unique continuation, see for instance
[CFJL03, Sin07, AS06, Cho04, BBL16, BCH11, HM19] for uniqueness, stability and reconstruc-
tion results on the Robin inverse problem. In contrast to our setting which combines unknown
potentials on the boundary and in the bulk, the literature on the inverse Robin boundary prob-
lem however typically does not consider a combination of these two challenges. Typically, in
works on the inverse Robin problem, a setting complementary to the classical Calderón prob-
lem is studied, where it is assumed that the bulk properties of the material are known, while
reconstruction at inaccessible boundaries is explored.

The classical, local Calderón problem is a prototypical and well-studied elliptic inverse prob-
lem. It had originally been formulated and studied in its linearized version by Calderón, see
[Cal06]. For n ≥ 3 the uniqueness question for the full, nonlinear problem had been solved in
the seminal work [SU87] by introducing CGO solutions. For recent, low regularity contributions
on uniqueness, we refer to [CR16, HT13, Hab15]. Also stability [Ale88], reconstruction [Nac88]
and partial data [KS14] problems have been addressed. We refer to [Uhl09] for a more detailed
survey on the results for the Calderón problem.

In this article, we seek to combine both effects, local and nonlocal, with the objective of con-
necting these and providing new perspectives on them. Studying boundary and bulk potentials
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simultaneously, we thus combine both the local (bulk) effects and the nonlocal (boundary) effects
of the two classes of inverse problems described above. By studying the questions (Q1) and (Q2)
outlined above, we illustrate that either effect can dominate. Combining the two settings we
investigate an interesting model problem in its own right and hope to to derive ideas and results
connecting the local and nonlocal realms.

1.5. Organization of the remainder of the article. The remainder of the article is organized
as follows. In the next section, we introduce our notation and recall some results on weighted
Sobolev spaces. Next, we discuss the well-posedness of problems (1) and (5). Building on this,
in Sections 4 and 5 we address the question (Q1). Here we also provide the proofs of Theorem 1
and Lemma 1.1. In Section 6 we prove a new Carleman estimate for the generalized Caffarelli-
Silvestre extension in (9). Arguing by duality, we derive the existence of CGO solutions for these
in Section 7 and thus present the proof of Proposition 1.2. Building on this, we provide the proof
of Theorem 2 there. Last but not least, we provide a proof of the density result of Proposition
2.3 in the appendix.

2. Notation and Auxiliary Results

2.1. Function spaces. In the following we will make use a number of function spaces. Unless
explicitly stated, all function spaces consist of complex valued functions.

2.1.1. Weighted Sobolev spaces. We will fix s ∈ (0, 1) and assume that Ω ⊂ Rn is an open,
bounded, C2-regular domain. We let d : Ω→ [0,∞) denote a C1-regular function which close to
the boundary ∂Ω measures the distance to ∂Ω and is extended to Ω in a C1-regular way. Then
we set:

L2(Ω, d1−2s) := {u : Ω→ C measureable : ‖d 1−2s
2 u‖L2(Ω) <∞},

H1(Ω, d1−2s) := {u : Ω→ C measureable : ‖d 1−2s
2 u‖L2(Ω) + ‖d 1−2s

2 ∇u‖L2(Ω) <∞}.

We further use the following notation for fractional Sobolev spaces:

Hs(Ω) := {u|Ω : u ∈ Hs(Rn)},

and equip it with the quotient topology

‖u‖Hs(Ω) := inf{‖U‖Hs(Rn) : U |Ω = u}.

It will also be convenient to work with functions obtained by completion of smooth functions
with compact support:

H̃s(Ω) := closure of C∞c (Rn) in Hs(Rn).

We remark that in our setting of sufficiently regular domains, we have that

H̃s(Ω) = Hs
Ω
,

where Hs
Ω

:= {u ∈ Hs(Rn) : supp(u) ⊂ Ω}. Working in charts, similar definitions hold for

functions on (sub)manifolds.
We recall the following extension and trace estimates which we will be using for the weighted

H1(Ω, d1−2s) spaces. We remark that both Lemmas 2.1 and 2.2 are not new and had first been
proved in [Nek93]. We only provide a (rough) argument for these for completeness and the
convenience of the reader.
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Lemma 2.1. Let Ω ⊂ Rn be an open, bounded, C2-regular set and let u ∈ H1(Ω, d1−2s). Then
there exists a continuous trace operator into Hs(∂Ω), i.e. u|∂Ω exists in a weak sense, coincides
with u|∂Ω if u ∈ C∞(Ω) and

‖u|∂Ω‖Hs(∂Ω) ≤ C‖u‖H1(Ω,d1−2s).

Proof. The claim follows from the flat result (see for instance [RS20a, Lemma 4.4] for this) and
a partition of unity. Indeed, using boundary normal coordinates and a partition of unity {ηk}
whose elements have a sufficiently small support we obtain with uk = uηk and ũk(x) := uk◦φk(x)
where φk locally maps the boundary of Ω to the flat boundary {xn+1 = 0}

C(‖d 1−2s
2 ∇u‖L2(Ω) + ‖d 1−2s

2 u‖L2(Ω)) ≥
M∑

k=1

(
‖d 1−2s

2 ∇uk‖L2(Ω) + ‖d 1−2s
2 uk‖L2(Ω)

)

≥ C−1
M∑

k=1

(
‖x

1−2s
2

n+1 ∇ũk‖L2(Rn+1
+ ) + ‖x

1−2s
2

n+1 ũk‖L2(Rn+1
+ )

)

≥ C−1
M∑

k=1

‖ũk‖Hs({xn+1=0})

≥ C−1
M∑

k=1

‖uk‖Hs(∂Ω) ≥ C−1‖u‖Hs(∂Ω).

Here C > 1 is a generic constant which may change from line to line. In the estimates, we have
used that |∇φk| can be chosen as small as desired in the support of uk (by possibly enlarging
M ∈ N) and that ‖ũk‖Hs({xn+1=0}) ∼ ‖uk‖Hs(∂Ω) (see for instance [McL00, Theorem 3.23]). �

Lemma 2.2. Let Ω ⊂ Rn be an open, bounded, C2-regular set. For f ∈ Hs(∂Ω) there exists a
continuous extension operator Es(f) into H1(Ω, d1−2s), i.e. E(f)|∂Ω = f and

‖Esf‖H1(Ω,d1−2s) ≤ C‖f‖Hs(∂Ω).

Proof. Again, this follows by relying on a partition of unity {ηk}k∈N and a flatting argument.

Flattening ∂Ω by local diffeomorphisms φk with small C1 norm, we consider f̃k := (fηk) ◦ φk.

As f̃k may be assumed to be compactly supported in {xn+1 = 0}, we obtain an extension ũk
satisfying the bound

‖ũk‖H1(Rn×[0,4],x1−2s
n+1 ) ≤ C‖f̃k‖Hs(Rn).(11)

One possibility of achieving this is by choosing ũk to be the solution to

∇ · x1−2s
n+1 ∇u = 0 in Rn+1

+ ,

u = f̃k on Rn × {0}.
We, for instance, refer to the Appendix in [GFR19] for the derivation of the associated estimates
of the form (11). Finally, using the local diffeomorphisms φk and the behaviour of the Hs(∂Ω)
and H1(Rn+1

+ , x1−2s
n+1 ) norms under diffeomorphisms, the estimate (11) turns into a corresponding

estimate in Ω. Defining u :=
M∑
k=1

ηkũk ◦ φ−1
k then concludes the proof. �

With the trace estimates in hand, we further define the following spaces including boundary
data. To this end, let Σ ⊂ ∂Ω be a C2-regular, relatively open set. Then,

H1
Σ,0(Ω, d1−2s) := {u : Ω→ C : ‖d 1−2s

2 u‖L2(Ω) + ‖d 1−2s
2 ∇u‖L2(Ω) <∞, u|Σ = 0}.
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2.1.2. Test functions for the CGO construction. In addition to the weighted Sobolev spaces from
above, in our construction of complex geometric optics solutions, we will make use of the following
function spaces: For Ω ⊂ Rn+1

+ with Ω ∩ {xn+1 = 0} := Σ, we set

x2s
n+1C

∞
c (Ω) := {f : Ω→ C : f(x) = x2s

n+1h(x′, xn+1) with h ∈ C∞c (Ω)},
where we use the notation

C∞c (Ω) := {h : Ω→ C : h is infinitely often continuously differentiable and supp(h) ⊂ Ω ∪ Σ}.

We stress that this in particular enforces that h, ∂νh = 0 on ∂Ω\Σ but that h does not necessarily
vanish on Σ.

For Σ1 ⊂ ∂Ω a smooth, n-dimensional, star-shaped set, we further consider

C̃ := {f : Ω→ R : f ∈ C∞(Ω) with f |N(Σ2,ε) = 0, ∂νf |N(Σ2,ε) = 0,

∂n+1f(x) = 0 for x ∈ N(Σ1, ε)× [0, t] for some ε > 0, t > 0}.

For simplicity of notation, we have set Σ2 := ∂Ω \ Σ1 and denote by N(Σ2, ε), N(Σ1, ε) an
ε-neighbourhood of Σ1,Σ2 on ∂Ω.

As an important property which we will make use of in our construction of CGO solutions,
we state a density result for the space C:
Proposition 2.3. Assume that the conditions from above hold. Then the set C̃ ⊂ H1

Σ2,0
(Ω, x1−2s

n+1 )
is dense.

We postpone the proof of Proposition 2.3 to the appendix.
Finally, for s ∈ (0, 1) we define

C := C̃ + x2s
n+1C

∞
c (Ω).(12)

We will use this space extensively in Section 7.

2.1.3. Semiclassical spaces and the Fourier transform. In our construction of CGOs it will be
useful to work with semiclassical Sobolev spaces. To this end, we use the following notation for
the Fourier transform

û(y) = Fu(y) =

ˆ

Rn+1

e−ix·yu(x)dx .

We introduce the following definitions for the semiclassical Sobolev spaces. Let ξ′ ∈ Cn.
Eventually we will consider the limit case |ξ′| → ∞, and thus for us |ξ′|−1 constitutes a small
parameter. Following [Zwo12], we define the semiclassical Fourier transform as

Fscu(y) :=

ˆ

Rn+1

e−i|ξ
′|x·yu(x)dx ,

and then use it in order to define the semiclassical Sobolev norm

‖u‖2Hssc(Rn+1) :=

( |ξ′|
2π

)n+1

‖〈y〉s|Fscu(y)|‖2L2(Rn+1) ,

where s ∈ R, u ∈ L2(Rn+1) and 〈y〉 := (1 + |y|2)1/2 for y ∈ Rn+1. The cases of interest for us
are s = 0 and s = 1, for which we have

‖u‖L2
sc(Rn+1) = ‖u‖L2(Rn+1) and ‖u‖H1

sc(Rn+1) = ‖u‖L2(Rn+1) + |ξ′|−1‖∇u‖L2(Rn+1) .

The semiclassical Sobolev spaces L2
sc(Rn+1) and H1

sc(Rn+1) are then defined as the subspaces of
L2(Rn+1) where the corresponding semiclassical norms are finite. Moreover, if Ω is some open
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subset of Rn+1 and w(x) is a weight function, we define the weighted semiclassical Sobolev space
Hs
sc(Ω, w) as the subspace of L2(Rn+1) where the norm

‖u‖2Hssc(Ω,w) :=

( |ξ′|
2π

)n+1

‖〈y〉s|Fscu(y)|‖2L2(Ω,w)

is finite. In the special cases s = 0 and s = 1 this of course gives

‖u‖L2
sc(Ω,w) = ‖u‖L2(Ω,w) and ‖u‖H1

sc(Ω,w) = ‖u‖L2(Ω,w) + |ξ′|−1‖∇u‖L2(Ω,w) .

2.2. Trace estimates. In this section we collect a number of (weighted) trace estimates. These
are not new and have already been used in for instance [Rül15, Rül17, RW19].

We begin with the case s = 1
2 :

Lemma 2.4. Let Ω ⊂ Rn be an open, bounded, C2-regular domain. Then there exist constants
C = C(Ω, ∂Ω) > 1, c0 = c0(Ω) > 1 such that for all u ∈ H1(Ω) and µ ≥ c0 it holds

‖u‖L2(∂Ω) ≤ C(µ−1‖∇u‖L2(Ω) + µ‖u‖L2(Ω)).

Proof. By density, we may without loss of generality assume that u is smooth. We work in
boundary normal coordinates and denote the coordinates by x = (x′, t), where x = x′ + τν(x′),
x′ ∈ ∂Ω and ν(x′) denotes the inner unit normal to ∂Ω at x′. By the fundamental theorem, we
thus write for some t > 0

u(x′, 0) =

t
ˆ

0

∂su(x′, s)ds+ u(x′, t).

As a consequence, by Hölder,

|u(x′, 0)|2 ≤ C(t

t
ˆ

0

|∂su(x′, s)|2ds+ |u(x′, t)|2).

Integrating over x′ ∈ ∂Ω thus yields

‖u‖2L2(∂Ω) ≤ Ct
ˆ

∂Ω

t
ˆ

0

|∂su(x′, s)|2dsdx′ + ‖u(·, t)‖2L2(∂Ω)

≤ Ct‖∇u‖2L2(Ω) + ‖u‖2L2(∂Ωt)
.

Integrating in t ∈ (0, µ−1) with µ ≥ C0(Ω) > 0 leads to

µ−1‖u‖2L2(∂Ω) ≤ Cµ−2‖∇u‖2L2(Ω) + ‖u‖2L2(Ω).

Multiplying by µ > 0 implies the desired result. �

More generally, also a weighted trace estimate holds for s ∈ (0, 1):

Lemma 2.5. Let Ω ⊂ Rn be an open, bounded, C2-regular domain. Let d : Ω → [0,∞) be a
C1 regular function which close to the boundary ∂Ω coincides with the distance function to ∂Ω.
Then there exist constants C = C(Ω, ∂Ω) > 1, c0 = c0(Ω) > 1 such that for all u ∈ H1(Ω) and
µ ≥ c0 it holds

‖u‖L2(∂Ω) ≤ C(µ−s‖d 1−2s
2 ∇u‖L2(Ω) + µ1−s‖d 1−2s

2 u‖L2(Ω)).
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Proof. As above, we only prove the result for u smooth and work in boundary normal coordinates
x = (x′, t) as in the proof of Lemma 2.4. Again the fundamental theorem in combination with
Hölder’s inequality, yields

|u(x′, 0)| ≤
t
ˆ

0

|∂ru(x′, r)|dr + |u(x′, r)|

≤ Csts
(
ˆ r

0

r1−2s|∂ru(x′, r)|2dr
) 1

2

+ |u(x′, r)|.

Squaring this and integrating in the tangential coordinates yields for t = t(Ω) > 0 sufficiently
small that

‖u‖2L2(∂Ω) ≤ Ct2s‖t
1−2s

2 ∂tu‖2L2(Ω) + C‖u‖2L2(∂Ωt)
.

Integrating this in t ∈ [r, 2r] for r ∈ (0, r0) and r0 = r0(Ω) > 0 entails that

r‖u‖2L2(∂Ω) ≤ Cr2s+1‖t 1−2s
2 ∂tu‖2L2(Ω) + C‖u‖2L2(Ω)

≤ Cr2s+1‖t 1−2s
2 ∂tu‖2L2(Ω) + Cr2s−1‖t 1−2s

2 u‖2L2(Ω)

≤ Cr2s+1‖d 1−2s
2 ∇u‖2L2(Ω) + Cr2s−1‖d 1−2s

2 u‖2L2(Ω).

Dividing by r > 0 and defining µ−1 = r, we obtain the desired result for µ ≥ r−1
0 . �

2.3. Notation for sets. In the following we will work with Calderón type problems with mixed
boundary conditions. To this end, we will use the following notation in the remainder of the
article. In Sections 3-5 we will always assume that Ω ⊂ Rn+1

+ is a relatively open, C2-regular
set. Furthermore, the sets Σ1,Σ2 ⊂ ∂Ω are C2-regular and satisfy Σ1 ∩ Σ2 = ∅. For the sake
of simplicity, in the sequel we will always assume that Ω1 b Ω is a bounded, open set such that
Ω \ Ω1 is simply connected. In Sections 6 and 7 we will in addition assume that all sets are
smooth and that Σ1 is star-shaped.

Working with sets in the neighbourhood of ∂Ω or with some distance to ∂Ω, we further define
for δ ∈ (0, 1) sufficiently small

Ωδ := {x ∈ Ω : dist(x, ∂Ω) ≥ δ},
∂Ωδ := {x+ tν(x) : x ∈ ∂Ω, t ∈ (0, δ)} ⊂ Ω.

(13)

Here for x ∈ ∂Ω ⊂ Rn the vector ν(x) ∈ Sn−1 denotes the inner unit normal at the point x. For
a subset Σ ⊂ ∂Ω we further set

N(Σ, δ) := {x ∈ ∂Ω : dist(x,Σ) ≤ δ}.

3. Well-Posedness of the Mixed Boundary Value Problems (1) and (5)

In this section, we discuss the well-posedness of the (weak) forms of the equations (1) and (5)
in the associated energy spaces. Based on this, we define the associated Dirichlet-to-Neumann
maps and derive the central Alessandrini identities which we will use in the following sections
when dealing with the associated inverse problems.

We begin by discussing the well-posedness of the problem (1).

Proposition 3.1 (Well-posedness, s = 1
2 ). Let BA,V,q denote the bilinear form from (4) and let

Ω,Σ1,Σ2 be as above. Then, there exists a countable set M ⊂ C such that if λ ∈ C \M , for all
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F ∈ (H1
∂Ω\Σ1,0

(Ω))∗, f2 ∈ H
1
2

Σ2
and f1 ∈ H−

1
2 (Σ1), there is u ∈ H1

∂Ω\(Σ1∪Σ2),0(Ω) with u|Σ2 = f2

and with

BA,V,q(u, v)− λ(u, v)L2(Ω) = 〈F, v〉+ (f1, v)L2(Σ1),(14)

for all v ∈ H1
∂Ω\Σ1,0

(Ω). Here 〈·, ·〉 denotes the (H1
∂Ω\Σ1,0

(Ω))∗, H1
∂Ω\Σ1,0

(Ω) duality pairing.

If λ /∈M , there exists a constant C > 0 such that

‖u‖H1(Ω) ≤ C(‖F‖(H1
∂Ω\Σ1,0

(Ω))∗ + ‖f1‖
H−

1
2 (Σ1)

+ ‖f2‖
H

1
2 (Σ2)

).(15)

Remark 3.2. We remark that in Proposition 3.1, compared to the problem in (1), we consider
the slightly more general setting of constructing (weak) solutions to

Lλu := −∆u− iA · ∇u− i∇ · (Au) + (|A|2 + V + λ)u = F in Ω,

∂νu+ qu = f1 on Σ1,

u = f2 on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2).

(16)

This will be convenient when discussing density properties by studying the adjoint equation (see
Section 4).

For λ /∈ M , we will refer to solutions of (14) with the described properties as weak solutions
to (16). It is this notion of a solution that we will work with in the sequel.

Proof. We argue in several steps.

Step 1: Reduction. We first reduce the problem to the case of f2 = 0 by considering u =
u1 +E(f2) where E(f2) is an H1

∂Ω\Σ2,0
(Ω) extension of f2 satisfying the bound ‖E(f2)‖H1(Ω) ≤

C‖f2‖
H

1
2 (Σ2)

. This is possible by for instance defining E(f2) to be the harmonic extension

of f2 into Ω. The function u1 thus solves a similar problem as the original function u with
a new functional F̃ := F − Lλ(E(f2)) ∈ (H1

∂Ω\Σ1,0
(Ω))∗, but now in addition satisfies f̃2 :=

u1|Σ2
= 0. Here the expression Lλ(E(f2)) is understood in the weak sense, i.e. as the functional

H1
∂Ω\Σ1,0

(Ω) 3 v 7→ −BA,V,q(E(f2), v). With slight abuse of notation, in the following we will

only work with the function u1 and drop the subindex in the notation for u1 and the tildas in
the data.

Step 2: Continuity.
We observe that for v ∈ H1

∂Ω\Σ1,0
(Ω) as above, we have (using the trace inequality)

|BA,V,q(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω).

Here the constant C > 0 depends on λ, ‖q‖L∞ , ‖A‖L∞ , ‖V ‖L∞ . This proves the continuity of the
bilinear form.

Step 3: Coercivity. We next study the coercivity properties of the bilinear form. By Cauchy-
Schwarz ∣∣∣∣∣∣

ˆ

∂Ω

quvdHn−1

∣∣∣∣∣∣
≤ ‖q‖L∞(∂Ω)‖u‖L2(∂Ω)‖v‖L2(∂Ω).

Thus, by the trace inequality from Lemma 2.4 we infer that
∣∣∣∣∣∣

ˆ

∂Ω

q|u|2dHn−1

∣∣∣∣∣∣
≤ C‖q‖L∞(∂Ω)‖u‖2L2(∂Ω) ≤ C‖q‖L∞(∂Ω)(µ

−2‖∇u‖2L2(Ω) + µ2‖u‖2L2(Ω)).
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Choosing µ > 1 such that C‖q‖L∞(∂Ω)µ
−2 ≤ 1

10 , we thus obtain
∣∣∣∣∣∣

ˆ

∂Ω

q|u|2dHn−1

∣∣∣∣∣∣
≤ 1

10
‖∇u‖2L2(Ω) + C‖q‖L2(∂Ω)‖u‖2L2(Ω).

Moreover, by Young’s inequality,
∣∣∣∣∣∣

ˆ

Ω

uA · ∇udx

∣∣∣∣∣∣
≤ 1

10
‖∇u‖2L2(Ω) + C‖A‖2L∞(Ω)‖u‖2L2(Ω).

Noting that by Poincaré’s inequality there exists a constant C > 0 such that for all u ∈
H1
∂Ω\Σ1,0

(Ω) we have

C‖∇u‖L2(Ω) ≥ ‖u‖H1(Ω),

and combining this with the previous estimates for the lower order bulk and boundary contri-
butions, we thus obtain that for µ = ‖V−‖L∞(Ω) + C1‖A‖L∞(Ω) + C1‖q‖L∞(∂Ω) with suitable
constants C1, C2 > 0, we have

Bµ(u, u) := BA,V,q(u, u) + µ(u, u)L2(Ω) ≥ C2‖u‖2H1(Ω).

Step 4: Conclusion. By the discussion in Steps 2 and 3 above, Bµ(·, ·) is a scalar product
and the Riesz representation theorem is applicable. Since F ∈ (H1

∂Ω\Σ1,0
(Ω))∗ and also for

f1 ∈ H−
1
2 (Σ1) the map

H1
∂Ω\Σ1,0

(Ω) 3 v 7→ (v, f1)L2(Σ1),

is a bounded linear functional on H1
∂Ω\Σ1,0

(Ω), this yields the existence of a unique function

u := Gµ(F, f1) such that

Bµ(u, v) = 〈F, v〉+ (f1, v)L2(Σ1) for all v ∈ H1
∂Ω\Σ1,0

(Ω).

Moreover, the operator

Gµ : (H1
∂Ω\Σ1,0

(Ω))∗ ×H− 1
2 (Σ1)→ H1

∂Ω\Σ1,0
(Ω)

is bounded. Now, the equation

BA,V,q(u, v)− λ(u, v) = F̃ (v)

with v as above and F̃ a functional on this space, is equivalent to

u = Gµ((µ+ λ)u+ F̃ ).(17)

As Gµ : L2(Ω)×L2(Σ1)→ L2(Ω) is compact and self-adjoint, the spectral theorem for compact,

self-adjoint operators yields the existence of a set M̃ such that for λ /∈ M̃ (17) is (uniquely)

solvable. Hence, the original equation is (uniquely) solvable outside of the set M :=
{

1
λj+µ

}∞
j=1

.

�

With the well-posedness result available, it is possible to define the Poisson operator associated
with the equation (1).
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Definition 3.3. Let M ⊂ C be as in Proposition 3.1 and assume that 0 /∈M . Let f ∈ H
1
2

Σ2
and

let u ∈ H1(Ω) be the solution constructed in Proposition 3.1 with F = 0, f1 = 0 and f2 = f .
Then, we define the Poisson operator

P : H
1
2

Σ2
→ H1(Ω), f 7→ u.

We remark that by the apriori estimates from Proposition 3.1 the Poisson operator is bounded.

With the well-posedness of (1) at our disposal, we proceed to the well-posedness of the equation
(5).

Proposition 3.4 (Well-posedness, s ∈ (0, 1)). Let Bs,A,V,q denote the bilinear form from (6).
Then, there exists a countable set M ⊂ C such that if λ ∈ C\M for any F ∈ (H1

∂Ω\Σ1,0
(Ω, d1−2s))∗,

f2 ∈ Hs
Σ2

and f1 ∈ H−s(Σ1) there is u ∈ H1
∂Ω\(Σ1∪Σ2),0(Ω, d1−2s) with u|Σ2

= f2 and with

Bs,A,V,q(u, v)− λ(u, v)L2(Ω) = 〈F, v〉+ (f1, v)L2(Σ1)

for all v ∈ H1
∂Ω\Σ1,0

(Ω, d1−2s). Here 〈·, ·〉 denotes the (H1(Ω, d1−2s))∗, H1(Ω, d1−2s) duality

pairing. If λ /∈M , there exists a constant C > 0 such that

‖u‖H1(Ω,d1−2s) ≤ C(‖F‖(H1
∂Ω\Σ1,0

(Ω,d1−2s))∗ + ‖f‖Hs(Σ2)).(18)

Remark 3.5. As in Proposition 3.1, compared to the problem in (5), we here consider the slightly
more general setting of constructing (weak) solutions to

−∇ · d1−2s∇u− iAd1−2s · ∇u− i∇ · (d1−2sAu) + d1−2s(|A|2 + V )u = F in Ω,

lim
d(x)→0

d1−2s∂νu+ qu = f1 on Σ1,

u = f2 on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2).

(19)

Again this will be convenient when discussing density properties by means of studying the adjoint
equation. For convenience of notation, we define

Lλ,su := −∇ · d1−2s∇u− iAd1−2s · ∇u− i∇ · (d1−2sAu) + d1−2s(|A|2 + V )u.

As in the case s = 1
2 , for λ /∈ M we define a weak solution to (19) to be the corresponding

function u ∈ H1
∂Ω\(Σ1∪Σ2),0(Ω, d1−2s) from Proposition 3.4.

The proof of Proposition 3.1 follows along similar lines as the proof of Proposition 3.4. Due to
the presence of the weights we however need to rely on suitable modifications of the boundary-
bulk inequalities as recalled in Section 2.1.

Proof. Step 1: Reduction. As in the proof of Proposition 3.1 we first reduce the setting to f2 = 0
by considering u = u1 +Es(f2), where Es(f2) ∈ H1

∂Ω\Σ2,0
(Ω, d1−2s) is obtained from Lemma 2.2

and has the property that ‖Es(f2)‖H1
∂Ω\Σ2,0

(Ω,d1−2s) ≤ C‖f2‖Hs(Σ2).

Working with the equation for u1 yields an equation of the desired form with u1|Σ2 = f̃2 = 0

and a new inhomogeneity F̃ := F −Lλ,s(Es(f2)) ∈ (H1
∂Ω\Σ1,0

(Ω, d1−2s))∗. As in the case s = 1
2 ,

the functional Lλ,s(E(f2)) is interpreted weakly, in that it is given by

H1
∂Ω\Σ1,0

(Ω, d1−2s) 3 v 7→ Bs,A,V,q(Es(f2), v).

With a slight abuse of notation, we drop the subscript in the notation for u1 and the tildas in
the notation for the data in the following.
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Step 3: Continuity. The continuity of the bilinear form then is a consequence of the following
observations and estimates:

(i) Continuity of the boundary terms. We observe that by Lemma 2.1
∣∣∣∣∣∣

ˆ

∂Ω

quvdx

∣∣∣∣∣∣
≤ ‖q‖L∞(∂Ω)‖u‖L2(∂Ω)‖v‖L2(∂Ω)

≤ ‖q‖L∞(∂Ω)‖u‖Hs(∂Ω)‖v‖Hs(∂Ω)

≤ C‖q‖L∞(∂Ω)‖u‖H1(Ω,d1−2s)‖v‖H1(Ω,d1−2s).

(ii) Continuity of the bulk terms. As the continuity of all the bulk terms follows analogously,
we only discuss the first magnetic term: In this case, by Cauchy-Schwarz, we obtain

∣∣∣∣∣∣

ˆ

Ω

d1−2svA1 · ∇udx

∣∣∣∣∣∣
≤ ‖A1‖L∞(Ω)‖v‖L2(Ω,d1−2s)‖u‖H1(Ω,d1−2s).

(iii) Boundedness of the right hand side. The mapping

H−s(Σ1) 3 f1 7→ (f1, v)L2(Σ1)

for v ∈ H1
∂Ω\Σ1,0

(Ω, d1−2s) satisfies the bound
∣∣(f1, v)L2(Σ1)

∣∣ ≤ ‖f1‖H−s(Σ1)‖v‖Hs(∂Ω) ≤ ‖f1‖H−s(Σ1)‖v‖H1(Ω,d1−2s).

It is thus a bounded linear functional on (H1
∂Ω\Σ1,0

(Ω, d1−2s))∗. Similarly, for F ∈
(H1

∂Ω\Σ1,0
(Ω, d1−2s))∗, by definition, the map v 7→ 〈F, v〉 is a bounded linear functional

on H1
∂Ω\Σ1,0

(Ω, d1−2s).

Step 4: Coercivity. For the coercivity estimate, we need to bound Bs,A,V,q(u, u) from below.
Again the bulk estimates follow from the Cauchy-Schwarz and Young’s inequality. The main
point is to consider the boundary contributions and to prove their coercivity. This is a conse-
quence of the trace estimate from Lemma 2.5. Indeed, we deduce that for µ > 1 to be chosen
below ∣∣∣∣∣∣

ˆ

∂Ω

q|u|2dx

∣∣∣∣∣∣
≤ ‖q‖L∞(∂Ω)‖u‖2L2(∂Ω)

≤ C‖q‖L∞(∂Ω)(µ
−2s‖d 1−2s

2 ∇u‖2L2(Ω) + µ2−2s‖d 1−2s
2 u‖2L2(Ω)).

Choosing µ > 1 such that

C‖q‖L∞(∂Ω)µ
−2s ≤ 1

10
,

we thus infer that∣∣∣∣∣∣

ˆ

∂Ω

q|u|2dx

∣∣∣∣∣∣
≤ 1

10
‖u‖2H1(Ω,d1−2s) + C‖q‖

1
s−1

L∞(Ω)‖u‖2L2(Ω,d1−2s).

Next we note that there exists a constant C > 0 such that for all u ∈ H1
∂Ω\Σ1,0

(Ω) it holds that

C‖∇u‖L2(Ω,d1−2s) ≥ ‖u‖H1(Ω,d1−2s).

This follows from the fact that u|∂Ω\Σ1
= 0 and an application of Poincaré’s inequality, see for

instance [RS20a, Lemma 4.7] and the proof of Lemma 2.5. Combining all these observations
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and also invoking the estimate in Step 3(ii) for the bulk contributions (to which we still apply
Young’s inequality), we hence infer that the bilinear form Bs,A,V,q(·, ·) is coercive, i.e. that

Bs,A,V,q(u, u) ≥ 1

2
‖u‖2H1(Ω,d1−2s) − Clow‖u‖2L2(Ω,d1−2s),

where the constant Clow > 0 depends on s, ‖A‖L∞(Ω), ‖V ‖L∞(Ω), ‖q‖L∞(∂Ω), n.

Step 5: Conclusion. With the available upper and lower bounds, we conclude as in the proof
of Proposition 3.1. More precisely, for µ > Clow the bilinear form Bs,µ(u, v) := Bs,A,V,q(u, v) +
µ(u, v)L2(Ω,d1−2s) is a scalar product. Hence, in combination with the third estimate in Step

3, the Riesz representation theorem is applicable and yields a unique solution u = G(F̄ ) ∈
H1
∂Ω\Σ1,0

(Ω, d1−2s) with F̄ = (F, f1) to the equation

Bs,µ(u, v) = (F, v)L2(Ω) + (f1, v)L2(Σ1) for all v ∈ H1
∂Ω\Σ1,0

(Ω, d1−2s).

Using the compactness of the space L2(Ω, d1−2s) ⊂ H1(Ω, d1−2s) and the fact that

Gµ : L2(Ω, d2s−1)×L2(Σ1) ⊂ (H1
∂Ω\Σ1,0

(Ω, d1−2s))∗×H−s(Σ1)

→ H1
∂Ω\Σ1,0

(Ω, d1−2s) ⊂ L2(Ω, d1−2s),

the claim on the set M ⊂ R follows from the spectral theorem for self-adjoint, compact operators
in the same way as in Proposition 3.1 (see for instance [McL00, Theorem 2.37 and Corollary
2.39]). �

As in the case s = 1
2 the well-posedness result allows us to define the Poisson operator

associated with the Schrödinger equation (5).

Definition 3.6. Let M ⊂ C be as in Proposition 3.4 and assume that 0 /∈ M . Let f ∈ Hs
Σ2

and let u ∈ H1(Ω, d1−2s) be the solution constructed in Proposition 3.1 with F = 0, f1 = 0 and
f2 = f . Then, we define the Poisson operator

Ps : Hs
Σ2
→ H1(Ω, d1−2s), f 7→ u.

Again this operator is bounded by the apriori estimates from the well-posedness result in
Proposition 3.4.

In order to simplify our discussion, for convenience we will, for the remainder of the article,
always make the following assumption:

Assumption 3.7. For the remainder of the article we will assume that zero is not an eigenvalue
of the Schrödinger operators (1) and (5), i.e. we will assume that λ = 0 /∈M , where M denotes
the sets constructed in Propositions 3.1 and 3.4, respectively.

We remark that as a consequence of Proposition 3.4, we also obtain the following regularity
result for the weighted normal derivative:

Lemma 3.8. Let u be a weak solution to (5) possibly also with a bulk inhomogeneity F ∈
L2(Ω, d2s−1). Then, there exists a constant C > 0 such that for each δ > 0 sufficiently small we
have that d1−2s∂νu ∈ H−s(∂Ωδ) with

‖d1−2s∂νu‖H−s(∂Ωδ) ≤ C
(
‖F‖L2(Ω,d2s−1) + ‖u‖Hs(∂Ω)

)
,(20)

where ∂Ωδ := {x+ tν(x) : x ∈ ∂Ω, t ∈ (0, δ)} and where ν(x) denotes the inward pointing unit
normal at a point x ∈ ∂Ω. Moreover,

‖ lim
d→0

d1−2s∂νu− d1−2s∂νu‖H−s(∂Ωδ) → 0 as δ → 0.(21)



18 GIOVANNI COVI AND ANGKANA RÜLAND

Proof. The fact that for any δ ∈ (0, 1) sufficiently small d1−2s∂νu|∂Ωδ ∈ H−s(∂Ωδ) with a uniform
estimate (in δ > 0) follows by duality and the weak form of the equation: Indeed, due to the
validity of the equation (5) and the fact that this is a uniformly elliptic equation away from ∂Ω,
we have that d1−2s∂νu ∈ L2(∂Ωδ) for any δ > 0. Integrating by parts, we further observe that
for any w ∈ Hs(∂Ωδ) and an associated extension Es(w) ∈ H1(Ωδ, d

1−2s), we obtain

(w, d1−2s∂νu)L2(∂Ωδ) = Bs,A,V,q(Es(w), u).(22)

Using (22) and the boundary estimate from Lemma 2.2, we hence estimate

|(w, d1−2s∂νu)L2(∂Ωδ)| ≤ |(Es(w), F )L2(Ωδ)|+ |(∇Es(w), d1−2s∇u)L2(Ωδ)|
≤ C‖w‖Hs(∂Ωδ)(‖u‖H1(Ω,d1−2s) + ‖F‖L2(Ω,d2s−1))

≤ C‖w‖Hs(∂Ωδ)(‖u‖Hs(∂Ω) + ‖F‖L2(Ω,d2s−1)).

Thus, taking the supremum in w ∈ Hs(∂Ωδ) with ‖w‖Hs(∂Ωδ) = 1 implies the claim (20).
Moreover, by the definition of the normal derivative by means of the bilinear form as in (22)

for δ1, δ2 > 0 small,

‖(d1−2s∂νu)(·+ δ1ν)− (d1−2s∂νu)(·+ δ2ν)‖H−s(∂Ω)

= sup
‖w‖Hs(∂Ω)≤1

(w, (d1−2s∂νu)(·+ δ1ν)− (d1−2s∂νu)(·+ δ1ν))L2(∂Ω)

= sup
‖w‖Hs(∂Ω)≤1

(
(Es(w)χΩδ1

− Es(w)χΩδ2
, F )L2(Ω)

+(d1−2s(χΩδ1
∇Es(w)− χΩδ2

∇Es(w)),∇u)L2(Ω)

)

≤ C‖w‖Hs(∂Ω)

(
‖(χΩδ1

− χΩδ2
)F‖L2(Ω,d2s−1) + ‖d1−2s(χΩδ1

− χΩδ2
)∇u‖L2(Ω)

)
→ 0

as δ1, δ2 → 0.

Here we used that ∇u ∈ L2(Ω, d1−2s) by the apriori estimates from the well-posedness results
and have set Ωδ := {x ∈ Ω : dist(x, ∂Ω) ≥ δ} for δ > 0 sufficiently small. This proves that
{(d1−2s∂νu)(· + n−1ν)}n∈N is a Cauchy sequence in H−s(∂Ω), that lim

n→∞
(d1−2s∂νu)(· + n−1ν)

exists in H−s(∂Ω) as n→∞ and that (21) holds. �

With the well-posedness results of Propositions 3.1, 3.4 and the global Assumption 3.7 in
hand, we can now also define the (partial data) Dirichlet-to-Neumann maps which we will study
in the sequel.

Definition 3.9 (Partial Dirichlet-to-Neumann maps). Let s ∈ (0, 1) and let BA,V,q(·, ·) and
Bs,A,V,q(·, ·) denote the bilinear forms from (4), (6). We then define the (partial) Dirichlet-to-

Neumann maps ΛA,V,q : H̃
1
2 (Σ2)→ H−

1
2 (Σ2) and Λs,A,V,q : H̃s(Σ2)→ H−s(Σ2) weakly as

〈ΛA,V,qf, g〉∗ := BA,V,q(uf , E(g)),

〈Λs,A,V,qf, g〉∗s := Bs,A,V,q(uf , Es(g)),

where E(g) denotes an H1
∂Ω\(Σ1∪Σ2),0(Ω) extension of g into Ω and uf denotes a weak solution

(in the sense of Proposition 3.1 of (1)). Similarly, Es(g) is an H1
∂Ω\(Σ1∪Σ2),0(Ω, d1−2s) extension

of g into Ω and uf denotes a weak solution (in the sense of Proposition 3.4) of (5). Here the

notation 〈·, ·〉∗ and 〈·, ·〉∗s denotes the duality pairing between H−
1
2 (Σ2) and H

1
2 (Σ2) and between

H−s(Σ2) and Hs(Σ2), respectively.

Remark 3.10. By definition we of course have that ΛA,V,q = Λ 1
2 ,A,V,q

.

As in the standard (partial data) setting, these Dirichlet-to-Neumann maps are well-defined
and do not depend on the choice of the extension.
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Lemma 3.11. Let ΛA,V,q : H̃
1
2 (Σ2) → H−

1
2 (Σ2) and Λs,A,V,q : H̃s(Σ2) → H−s(Σ2) be as in

Definition 3.9. Then these maps are well-defined, i.e. they do not depend on the choice of the
extension E(g) and Es(g). Moreover, both maps are linear and bounded.

Proof. The independence of the choice of the extension follows from the well-posedness theory.

Indeed, considering two extensions E(g) and Ẽ(g) of g ∈ H̃1/2(Σ2), we deduce that E(g)−Ẽ(g) ∈
H1
∂Ω\Σ1,0

(Ω). Hence, we obtain that BA,V,q(uf , E(g)− Ẽ(g)) = 0 since uf is a weak solution to

the equation (1). A similar argument holds for the weighted operator. The linearity of the map
follows from the linearity of the Schrödinger equations (1) and (5). The boundedness follows
from the apriori estimates (15) and (18). �

As in the classical setting, the (partial data) Dirichlet-to-Neumann maps are self-adjoint
operators:

Lemma 3.12 (Symmetry). Let ΛA,V,q and Λs,A,V,q be as in (3.9). Then, we have

〈ΛA,V,qf, g〉∗ = 〈f,ΛA,V,qg〉∗,
〈Λs,A,V,qf, g〉∗s = 〈g,Λs,A,V,qg〉∗s .

Proof. The claim follows from the fact that two solutions uf and ug associated with the data f, g

in (1) or (5) are particular extensions of f, g ∈ H̃s(Σ2). Since the bilinear forms BA,V,q(·, ·) and
Bs,A,V,q(·, ·) are symmetric (with respect to the complex scalar product) the claim follows. �

Furthermore, a central Alessandrini identity involving all potentials holds true:

Lemma 3.13 (Alessandrini). Let Aj , Vj , qj and Λs,Aj ,Vj ,qj with j ∈ {1, 2} be as above. Then,
for two solutions u1, u2 of (5) associated with the respective boundary data and potentials,

〈(Λs,A1,V1,q1 − Λs,A2,V2,q2)f1, f2〉∗s =

ˆ

Ω

(V1 − V2 +A2
1 −A2

2)u1u2d
1−2sdx

+ i

ˆ

Ω

d1−2s(A1 −A2) · (u1∇u2 − u2 · ∇u1)dx

+

ˆ

Σ1

(q1 − q2)u1u2dHn−1.

Proof. This follows by using the symmetry result of Lemma 3.12 in combination with the struc-
ture of Bs,A,V,q and the fact that all (bulk, boundary and gradient) potentials are real valued:

〈(Λs,A1,V1,q1 − Λs,A2,V2,q2)f1, f2〉∗s = 〈Λs,A1,V1,q1f1, f2〉∗s − 〈f1,Λs,A2,V2,q2f2〉∗s
= Bs,A1,V1,q1(u1, u2)−Bs,A2,V2,q2(u1, u2)

=

ˆ

Ω

(V1 − V2 +A2
1 −A2

2)u1u2d
1−2sdx+

ˆ

Σ1

(q1 − q2)u1u2dHn−1

+ i

ˆ

Ω

d1−2s(A1 −A2) · (u1∇u2 − u2 · ∇u1)dx.

This proves the claim. �
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4. Simultaneous Runge Approximation in the Bulk and on the Boundary –
Resolution of the Question (Q1) for s = 1

2

In this section we discuss the resolution of the question (Q1) for the case s = 1
2 by proving

simultaneous Runge approximation results. This requires a certain “safety distance” between Ω1

and the sets Σ1,Σ2 and a topological condition on the connectedness of Ω \Ω1. We refer to the
set-up which had been layed out in Section 2.3 for the precise conditions. Although our setting
could have been generalized to allow for Ω1 including some boundary portions (see for instance
[RS20b]), for clarity of exposition, we do not address this in the present article.

Let

SA,V,q := {u ∈ L2(Ω) : u is a weak solution to (1) in Ω},
S̃A,V,q := {u ∈ H1(Ω1) : u is a weak solution to (1) in Ω1} ⊂ L2(Ω1).

(23)

Here by a weak solution we mean a solution as obtained in our well-posedness discussion in
Section 3. For simplicity, we also simply set SV,q := S0,V,q and S̃V,q := S̃0,V,q.

As a first step towards answering the question (Q1), we prove the simultaneous Runge ap-
proximation result (in the absence of magnetic potentials) from Lemma 1.1.

Remark 4.1. Together with the (known) existence results of whole space CGO solutions, this
approximation result allows us to recover the potentials V ∈ L∞(Ω1) and q ∈ L∞(∂Ω) simulta-
neously in the inverse problem for (1). Instead of explaining this at this point already, we refer
to the proof of Theorem 1, where this is deduced even in the presence of magnetic potentials.

Proof of Lemma 1.1. By the Hahn-Banach theorem, it suffices to prove that if v = (v1, v2) ∈
L2(Σ1)×L2(Ω1) satisfies v ⊥ Rbb (with respect to the scalar product in L2(Σ1)×L2(Ω1)), then
we have

v ⊥ (L2(Σ1)× S̃V,q).

To this end, let f ∈ C∞c (Σ2) and define u := Pf . Moreover, let w be a solution to the
associated adjoint problem

−∆w + V w = v2χΩ1 in Ω,

∂νw + qw = v1 on Σ1,

w = 0 on ∂Ω \ Σ1.

(24)

Here χΩ1
denotes the characteristic function of the set Ω1. By the assumption v ⊥ Rbb and the

definitions of u and w, we have

0 = (v1, u|Σ1
)L2(Σ1) + (v2, u|Ω1

)L2(Ω1)

= 〈∂νw + qw, u− f〉∗ + (−∆w + V w, u)L2(Ω)

= 〈∂νw + qw, u− f〉∗ + (−∆u+ V u,w)L2(Ω) + 〈∂νu,w〉∗ − 〈u, ∂νw〉∗
= 〈qw, u〉∗ − 〈∂νw + qw, f〉∗ + 〈∂νu,w〉∗
= −〈∂νw + qw, f〉∗ ,

(25)

where we integrated by parts twice and where 〈·, ·〉∗ denotes the H−
1
2 (Σ1), H

1
2 (Σ1) duality

pairing. We remark that this computation which – a priori is formal, since due to the mixed
boundary conditions w, u may not be in H2(Ω) – can be justified by considering the identities in
a smaller domain Ωε for ε > 0 sufficiently small first and then passing to the limit ε→ 0. More
precisely, by standard regularity theory, we obtain that w, u ∈ H2(Ωε) which allows us to justify
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the following manipulations:

(∂νw + qw, u− u|∂Ωε\Σ1,ε
)L2(∂Ωε) + (−∆w + V w, u)L2(Ωε)

= (∂νw + qw, u− u|∂Ωε\Σ1,ε
)L2(∂Ωε) + (−∆u+ V u,w)L2(Ωε) + (∂νu,w)L2(∂Ωε) − (u, ∂νw)L2(∂Ωε)

= (∂νw + qw, u− u|∂Ωε\Σ1,ε
)L2(∂Ωε) + (∂νu,w)L2(∂Ωε) − (u, ∂νw)L2(∂Ωε).

Here ∂Ωε is defined as in (13) and Σ1,ε := {x ∈ Ω : x = y+ εν(y), y ∈ Σ1}. Then passing to the
limit ε→ 0 and using the observations from Lemma 3.8 allows us to recover the first and fourth
lines in (25), i.e.

(∂νw + qw, u− u|∂Ωε\Σ1,ε
)L2(∂Ωε) + (−∆w + V w, u)L2(Ωε)

→ 〈∂νw + qw, u− f〉∗ + (v2, u|Ω1
)L2(Ω1),

(∂νw + qw, u− u|∂Ωε\Σ1,ε
)L2(∂Ωε) + (∂νu,w)L2(∂Ωε) − (u, ∂νw)L2(∂Ωε)

→ 〈qw, u〉∗ − 〈∂νw + qw, f〉∗ + 〈∂νu,w〉∗.
This then allows us to conclude the identity 〈∂νw+ qw, f〉∗ = 0 as in the formal argument from
(25).

By the arbitrary choice of f ∈ C∞c (Σ2), (25) yields that ∂νw+ qw = 0 in Σ2, which in turn by
the defining property of w gives ∂νw|Σ2

= w|Σ2
= 0. Thus now the unique continuation property

(see for instance [ARRV09]) implies that w = 0 in Ω \ Ω1, and therefore

(26) w|Σ1
= ∇w|Σ1

= 0 and w|∂Ω1
= ∇w|∂Ω1

= 0 .

The first part of (26) implies v1 = 0 by the definition of the associated dual problem (24). In

particular, (v1, ψ1)L2(Σ1) = 0 for all ψ1 ∈ L2(Σ1). If now ψ2 ∈ S̃V,q, denoting the H−
1
2 (∂Ω1),

H
1
2 (∂Ω1) duality pairing by 〈·, ·〉∗,∂Ω1 and integrating by parts we get

(v2, ψ2)L2(Ω1) = (−∆w + V w,ψ2)L2(Ω1)

= (−∆ψ2 + V ψ2, w)L2(Ω1) + 〈∂νψ2, w〉∗,∂Ω1 − 〈ψ2, ∂νw〉∗,∂Ω1 ,

which vanishes because of the second part of formula (26) and because ψ2 ∈ S̃V,q (which is also
true in the weak form of the equation by definition). Hence,

(v, ψ)L2(Σ1)×L2(Ω1) = 0 for all ψ = (ψ1, ψ2) ∈ (L2(Σ1)× S̃V,q) ,
that is, v ⊥ (L2(Σ1)× S̃V,q) with respect to the L2(Σ1)× L2(Ω1) scalar product as desired. �

For our next step towards the solution of question (Q1), we shall consider a generalization of
equation (1), namely

Lu := −∇ · (g∇u)− iA1 · ∇u− i∇ · (A2u) + V u = 0 in Ω,

ν · (g∇u) + qu = 0 on Σ1,

u = f on Σ2,

u = 0 on ∂Ω \ (Σ1 ∪ Σ2),

(27)

where g = (gij)i,j=1,...,n is a C2 metric, i.e. a symmetric, positive definite, elliptic, C2-regular
matrix valued function on Ω, and the magnetic potentials A1 and A2 do not necessarily coincide.
We avoid discussing the well-posedness for this and refer to [McL00] and [GT15] for a discussion
of it. In the sequel, we will assume the well-posedness of this problem and its associated dual
problem.

In connection to the problem (27) we define the sets

Sg,A1,A2,V,q := {u ∈ L2(Ω) : u is a weak solution to (27) in Ω},
S̃g,A1,A2,V,q := {u ∈ H1(Ω1) : u is a weak solution to (27) in Ω1} ⊂ L2(Ω1).
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The next Lemma 4.2 shows that the result of Lemma 1.1 still holds for equation (27), and the
approximation can even be given in H1(Ω1) instead of L2(Ω1).

Lemma 4.2. Assume that the set-up is as above. Then, the set

Rbb := {(u|Σ1
, u|Ω1

) : u|Σ1
= Pf |Σ1

and u|Ω1
= Pf |Ω1

with f ∈ C∞c (Σ2)} ⊂ L2(Σ1)×H1(Ω1)

is dense in L2(Σ1) × S̃g,A1,A2,V,q equipped with the L2(Σ1) ×H1(Ω1) topology. Here P denotes
the Poisson operator which is defined in analogy to Definition 3.3 and in particular maps data
f ∈ C∞c (Σ2) into the associated (weak) solution u to the equation (27).

Proof. We use the same strategy as in the proof of the previous Lemma. Let (v1, v
∗
2) ∈ L2(Σ1)×

(H1(Ω1))∗, and consider the unique Riesz representative v2 ∈ H1(Ω1) of the functional v∗2 ∈
(H1(Ω1))∗. By the Hahn-Banach theorem, it suffices to prove that if v = (v1, v2) ∈ L2(Σ1) ×
H1(Ω1) satisfies v ⊥ Rbb with respect to the scalar product in L2(Σ1)×H1(Ω1), then we have

v ⊥ (L2(Σ1)× S̃g,A1,A2,V,q).

To this end, let f ∈ C∞c (Σ2) and define u := Pf . Moreover, let w be a solution to the
associated adjoint problem

L∗w = ṽ∗2 in Ω,

ν · (g∇w) + (q − iν ·A1 − iν ·A2)w = v1 on Σ1,

w = 0 on ∂Ω \ Σ1,

(28)

where L∗ := −∇ · (g∇) + iA2 · ∇ + i∇ · A1 + V and ṽ∗2(·) := v∗2(·|Ω1
). First we observe that

ṽ∗2 ∈ (H1
b (Ω))∗ := (H1

∂Ω\Σ1,0
(Ω) + H̃

1
2 (Σ2 ∪ Σ1))∗. The associated bound is easily proved, since

for u ∈ H1
b (Ω)

|ṽ∗2(u)| = |v2
∗(u|Ω1

)| ≤ ‖v2
∗‖ ‖u|Ω1

‖H1(Ω1) ≤ ‖v∗2‖ ‖u‖H1(Ω) .

Now we have

(v2, u|Ω1
)H1(Ω1) = v∗2(u|Ω1

) = ṽ∗2(u) ,

which by the assumption v ⊥ Rbb leads to

0 = (v1, u|Σ1
)L2(Σ1) + (v2, u|Ω1

)H1(Ω1)

= 〈ν · (g∇w) + (q − iν ·A1 − iν ·A2)w, u|Σ1
〉∗ + ṽ∗2(u)

= 〈ν · (g∇w) + (q − iν ·A1 − iν ·A2)w, u− f〉∗ + (L∗w, u)L2(Ω) .

(29)

As in the previous proof, 〈·, ·〉∗ denotes the H
1
2 (∂Ω), H−

1
2 (∂Ω) duality pairing.

Integrating by parts twice (which can be justified in the same way as in the previous section),
we obtain the following formula linking the operators L and L∗:

(Lu,w)Ω − (u, L∗w)Ω = −(∇ · (g∇u), w)Ω − i(A1 · ∇u,w)Ω − i(∇ · (A2u), w)Ω

+ (∇ · (g∇w), u)Ω − i(A2 · ∇w, u)Ω − i(∇ · (A1w), u)Ω

= −〈ν · (g∇u), w〉∗ − i〈ν · (A1 +A2)u,w〉∗ + 〈u, ν · (g∇w)〉∗ .
(30)

Here we have used (·, ·)Ω as a shorthand notation for (·, ·)L2(Ω). Combining formulas (29) and
(30), we infer

〈ν · (g∇w) + (q − iν ·A1 − iν ·A2)w, f〉∗ = 0 ,

which by the arbitrary choice of f ∈ C∞c (Σ2) gives

ν · (g∇w) + (q − iν ·A1 − iν ·A2)w = 0 on Σ2 .
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Thus, by definition of the adjoint equation (28), we are left with

L∗w = 0 in Ω \ Ω1,

ν · (g∇w) = 0 on Σ2,

w = 0 on Σ2,

and now the UCP (see for instance [ARRV09]) leads to w = 0 in Ω \ Ω1. As a consequence of
this fact, we obtain w|∂(Ω\Ω1) = 0 and ∇w|∂(Ω\Ω1) = 0, which in particular implies

(31) w|Σ1
= ∇w|Σ1

= 0 and w|∂Ω1
= ∇w|∂Ω1

= 0 .

The first part of (31) implies v1 = 0 by the associated dual problem (28). In particular,
〈v1, ψ1〉∗ = 0 for all ψ1 ∈ L2(Σ1).

Let now ψ2 ∈ S̃g,A1,A2,V,q. If E : H1(Ω1)→ H1(Ω) is any extension operator, we have

(v2, ψ2)H1(Ω1) = (v2, (Eψ2)|Ω1
)H1(Ω1) = v∗2((Eψ2)|Ω1

)

= ṽ∗2(Eψ2) = (L∗w,Eψ2)L2(Ω) = (L∗w,ψ2)L2(Ω1) .

Using the integration by parts formula (30) with Ω1 instead of Ω, we infer

(v2, ψ2)H1(Ω1) = (L∗w,ψ2)L2(Ω1)

= (Lψ2, w)Ω1
+ 〈ν · (g∇ψ2), w〉∗,∂Ω1

+ i〈ν · (A1 +A2)ψ2, w〉∗,∂Ω1 − 〈ψ2, ν · (g∇w)〉∗,∂Ω1 .

Here we have denoted the H−
1
2 (∂Ω1), H

1
2 (∂Ω1) duality pairing by 〈·, ·〉∗,∂Ω1

.
The right hand side of the above equation vanishes because of the second part of formula (31)

and because ψ2 ∈ S̃g,A1,A2,V,q. Thus we have obtained that

(v, ψ)L2(Σ1)×H1(Ω1) = 0 for all ψ = (ψ1, ψ2) ∈ (L2(Σ1)× S̃g,A1,A2,V,q) ,

that is, v ⊥ (L2(Σ1)× S̃g,A1,A2,V,q). �

The desired uniqueness result of Theorem 1 now follows from Alessandrini’s identity.

Proof of Theorem 1. Using the assumption that the DN maps coincide and Lemma 3.13 with
s = 1/2, we see that

0 = 〈(Λ1 − Λ2)f1, f2〉∗

=

ˆ

Ω1

(U1 − U2)u1u2dx+ i

ˆ

Ω1

(A1 −A2) · (u1∇u2 − u2 · ∇u1)dx+

ˆ

Σ1

(q1 − q2)u1u2dHn−1(32)

holds for every f1, f2 ∈ C∞c (Σ2), where u1, u2 are the solutions of (1) associated with the
respective boundary data and potentials. For the sake of simplicity, here we set Uj := Vj + |Aj |2
and Λj := ΛAj ,Vj ,qj .

Let φj ∈ L2(Σ1) and ψj ∈ S̃Id,Aj ,Aj ,Vj ,qj for j = 1, 2. By Lemma 4.2, for every k ∈ N we can

find f
(k)
1 , f

(k)
2 ∈ C∞c (Σ2) such that

‖φj − u(k)
j |Σ1

‖L2(Σ1) < k−1 and ‖ψj − u(k)
j |Ω1

‖H1(Ω1) < k−1 , j = 1, 2 ,

where u
(k)
j solves (1) with boundary value f

(k)
j and potentials Aj , Vj , qj . We now substitute

these solutions u
(k)
1 , u

(k)
2 into formula (32) and send k → ∞. Given the approximations above,
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by Cauchy-Schwarz the limits can be moved inside the integrals. In fact,
ˆ

Σ1

|(q1 − q2)u
(k)
1 u

(k)
2 |dHn−1 ≤ ‖q1 − q2‖L∞(Σ1)‖u(k)

1 |Σ1‖L2(Σ1)‖u(k)
2 |Σ1‖L2(Σ1)

≤ c(‖φ1 − u(k)
1 |Σ1‖L2(Σ1) + ‖φ1‖L2(Σ1))(‖φ2 − u(k)

2 |Σ1‖L2(Σ1) + ‖φ2‖L2(Σ1))

≤ c(1 + ‖φ1‖L2(Σ1))(1 + ‖φ2‖L2(Σ1)) < c ,

ˆ

Ω1

|u(k)
1 (A1 −A2) · ∇u(k)

2 |dx ≤ ‖A1 −A2‖L∞(Ω1)‖u(k)
1 |Ω1‖L2(Ω1)‖∇u(k)

2 |Ω1‖L2(Ω1)

≤ c(‖ψ1 − u(k)
1 |Ω1‖L2(Ω1) + ‖ψ1‖L2(Ω1))(‖∇ψ2 −∇u(k)

2 |Ω1‖L2(Ω1) + ‖∇ψ2‖L2(Ω1))

≤ c(‖ψ1 − u(k)
1 |Ω1

‖H1(Ω1) + ‖ψ1‖H1(Ω1))(‖ψ2 − u(k)
2 |Ω1

‖H1(Ω1) + ‖ψ2‖H1(Ω1))

≤ c(1 + ‖ψ1‖H1(Ω1))(1 + ‖ψ2‖H1(Ω1)) < c ,

and similarly for the other terms. Eventually, we have proved that the following formula holds
for every φj ∈ L2(Σ1) and ψj ∈ S̃Id,Aj ,Aj ,Vj ,qj for j = 1, 2:

ˆ

Ω1

(A1 −A2) · (ψ2∇ψ1 − ψ1∇ψ2) dx+

ˆ

Ω1

(U1 − U2)ψ1ψ2dx+

ˆ

Σ1

(q1 − q2)φ1φ2dHn−1 = 0 .

(33)

If we substitute ψ1 = ψ2 = 0 and φ2 = 1 into (33), we are left with only
ˆ

Σ1

(q1 − q2)φ1dHn−1 = 0 ,

which by the arbitrary choice of φ1 ∈ L2(Σ1) implies q1 = q2 in Σ1. In light of this, formula (33)
is reduced to

(34)

ˆ

Ω1

(A1 −A2) · (ψ2∇ψ1 − ψ1∇ψ2) dx+

ˆ

Ω1

(U1 − U2)ψ1ψ2dx = 0 .

The problem of deducing information about the magnetic and electric potentials from the above
equation has been studied e.g. in [NSU95, Tol98, FKSU07], see also the survey [Sal06]. In all
these uniqueness results the key step consists in the construction of suitable complex geometrical
optics solutions of the form

u(x) = e
φ+iψ
h (a(x) + hr(x, h)) ,

for appropriate phase functions φ, ψ, amplitudes a and decaying errors r. Substituting such a
special solution into equation (34) and using our Runge approximation results from Lemma 4.2
allows us to deduce that V1 = V2 and dA1 = dA2 as in the cited references, which concludes the
proof of Theorem 1. �

5. Simultaneous Runge Approximation s ∈ (0, 1)

Similarly as in deriving the results in the previous section, we can also deduce simultaneous
Runge approximation results for the “Caffarelli-Silvestre extension” for general s ∈ (0, 1).

In analogy to the setting in the previous section we thus set

Ss,A,V,q := {u ∈ L2(Ω, d1−2s) : u is a weak solution to (5) in Ω},
S̃s,A,V,q := {u ∈ H1(Ω, d1−2s) : u is a weak solution to (5) in Ω1} ⊂ L2(Ω1, d

1−2s).

In order to illustrate these ideas we only discuss the L2(Σ1) × L2(Ω1, d
1−2s) approximation

result in the case that A = 0.
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Proposition 5.1. Assume that A = 0 and that V, q satisfy the conditions from (3) and (2) and
let Ps be the associated Poisson operator. Then the set

Rbbs := {(u|Σ1
, u|Ω1

) : u|Σ1
= Psf |Σ1

and u|Ω1
= Psf |Ω1

with f ∈ C∞c (Σ2)} ⊂ L2(Σ1)× Ss,0,V,q
is dense in L2(Σ1)× S̃s,0,V,q equipped with the L2(Σ1)×L2(Ω1, d

1−2s) topology. The operator Ps
denotes the Poisson operator from Definition 3.6.

Proof. Step 1: Set-up. The argument is similar as in the one for Lemma 1.1. To this end, we first
note that with respect to the L2(Ω) scalar product, we have that (L2(Ω, d1−2s))∗ ∼ L2(Ω, d2s−1).
As a consequence, as above, we seek to prove that if (v1, v2) ∈ L2(Σ1) × L2(Ω, d2s−1) satisfies
(v1, v2) ⊥ (u|Σ1

, u|Ω) with u = Ps(f) with f ∈ C∞c (Σ2) (with orthogonality with respect to the

L2(Σ1) × L2(Ω1) scalar product), then also (v1, v2) ⊥ L2(Σ1) × S̃s,0,V,q holds. To this end, we
consider weak solutions to the adjoint problem

−∇ · d1−2s∇w + d1−2sV w = v2χΩ1
in Ω,

lim
d(x)→0

d1−2s∂νw + qw = −v1 on Σ1,

w = 0 on ∂Ω \ Σ1.

(35)

Let us thus assume that (v1, v2) ∈ L2(Σ1) × L2(Ω, d2s−1) are such that for all u = Ps(f) with
f ∈ C∞c (Σ1) we have

0 = (v1, u)L2(Σ2) + (v2, u)L2(Ω).(36)

We remark that due to the assumptions that v2 ∈ L2(Ω, d2s−1) and u ∈ L2(Ω, d1−2s) the bulk
L2(Ω) scalar product is well-defined.

Step 2: Orthogonality. We argue on the level of the strong equation. This can be justified
as in the proof of Lemma 1.1 using the boundedness and convergence results from Lemma 3.8.
Beginning with the bulk contribution and using the dual equation, we then obtain

(u, v2)L2(Ω1) = (u,−∇ · d1−2s∇w + d1−2sV w)L2(Ω)

= 〈u, lim
d→0

d1−2s∂νw〉∗,s − 〈 lim
d→0

d1−2s∂νu,w〉∗,s
= (u, qw)L2(Σ1) − (u, v1)L2(Σ1) − (qu, w)L2(Σ1) + 〈f, lim

d→0
d1−2s∂νw〉∗,s

= −(u, v1)L2(Σ1) + 〈f, lim
d→0

d1−2s∂νw〉∗,s,

where u = Ps(f) and f ∈ C∞c (Σ2) and 〈·, ·〉∗,s denotes the H−s(∂Ω), Hs(∂Ω) duality pairing.
Combining this with (36), we obtain that

0 = 〈f, lim
d→0

d1−2s∂νw〉∗,s for all f ∈ C∞c (Σ2).

Hence, lim
d→0

d1−2s∂νw = 0 on Σ2. Since moreover also w|Σ2
= 0, boundary unique continuation

for the fractional Schrödinger equation (35) implies that w ≡ 0 in Ω\Ω1. Indeed, it is possible to
flatten the boundary ∂Ω by a suitable diffeomorphism and then invoke the unique continuation
results from for instance [Rül15, FF14] or [Yu17]. Now, by definition of w (see (35)), this however
implies that v1 ≡ 0.

Further, for h ∈ S̃s,0,V,q, by the vanishing of w|∂Ω1 and lim
d→0

d1−2s∂νw|∂Ω1 , we infer that

(h, v2)L2(Ω1) = (h,−∇ · d1−2s∇w + V d1−2sw)L2(Ω1)

= (−∇ · d1−2s∇h+ d1−2sV h,w)L2(Ω1) = 0.

Here the last equality follows from the fact that h ∈ S̃s,0,V,q. Thus, in particular, v2 ⊥ S̃s,0,V,q,
which concludes the argument. �
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Using the simultaneous bulk and boundary approximation result of Proposition 5.1, it is
possible to recover V and q simultaneously also in this weighted setting:

Theorem 3. Let Ω ⊂ Rn, n ≥ 3, be an open, bounded and C3-regular domain. Suppose
that d ∈ C2(Ω). Assume Ω1 b Ω is an open, bounded set with Ω \ Ω1 simply connected and
that Σ1,Σ2 ⊂ ∂Ω are two disjoint, relatively open sets. If the potentials q1, q2 ∈ L∞(Σ1) and
V1, V2 ∈ C∞c (Ω1) in the equation (5) are such that

Λs,1 := Λs,0,V1,q1 = Λs,0,V2,q2 =: Λs,2 ,

then q1 = q2 and V1 = V2.

Proof. By virtue of the Alessandrini identity we obtain

0 =

ˆ

Ω1

d1−2s(V1 − V2)u1u2dx+

ˆ

Σ1

(q1 − q2)u1u2dHn−1,

for u1, u2 weak solutions to (5). Now an approximation argument as in the proof of Theorem 1

implies that for every φj ∈ L2(Σ1) and ψj ∈ S̃s,0,Vj ,qj and j ∈ {1, 2} we obtain

0 =

ˆ

Ω1

d1−2s(V1 − V2)ψ1ψ2dx+

ˆ

Σ1

(q1 − q2)φ1φ2dHn−1.

With this in hand, the proof that q1 = q2 is immediate by choosing ψ1 = ψ2 = 0, φ1 ∈ C∞c (Σ1)
arbitrary and φ2 = 1. The uniqueness V1 = V2 follows by a reduction of the problem in Ω1 to
a Schrödinger type problem. Carrying out a Liouville transform (see for instance [Sal08]), the
equation

−∇ · d1−2s∇u+ V d1−2su = 0 in Ω1

is transferred to the Schrödinger type problem

−∆w + (Q+ V d
1−2s

2 )w = 0 in Ω1 ,

where Q := ∆d
1−2s

2

d
1−2s

2

and w := d
1−2s

2 u. We note that Q ∈ L∞(Ω1) since d ∈ C2(Ω) and

dist(∂Ω1, ∂Ω) > 0. Now, standard CGO constructions allow to obtain solutions of the form

w1 = eiξ·x(eik·x + r1), w2 = eiξ
′·x(e−ik·x + r2),

with ξ, ξ′ ∈ Cn, k ∈ Rn, ξ · ξ = k · ξ = 0, ξ′ = −Re(ξ) + iIm(ξ) and ‖rj‖L2(Ω1) → 0 as |ξ′| → ∞.
Then the functions

uj := d
2s−1

2 wj , j ∈ {1, 2}
however solve the equation

d
2s−1

2 (−∇ · d1−2s∇wj + V d1−2swj) = 0 in Ω1

in a weak sense. Due to the assumed regularity of d, they also satisfy

−∇ · d1−2s∇wj + V d1−2swj = 0 in Ω1

in a weak sense. By virtue of the result from Proposition 5.1 we may thus approximate these
functions by functions ψj ∈ Ss,0,V,q. Inserting these into the Alessandrini identity, recalling that
q1 = q2 and passing to the limit in the approximation parameter then implies

0 =

ˆ

Ω1

(V1 − V2)e2ik·xdx.

As a consequence, also V1 = V2. �
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Remark 5.2. While in the study of the question (Q1) the situation in which Ω1 b Ω, the
construction of CGOs to the degenerate equation (5) can essentially be avoided by using the non-
degeneracy of the equation in Ω1, this can no longer be circumvented in the setting of question
(Q2).

We refer to the next two sections for the construction of a new family of CGO type solutions
for a closely related equation. These will be used to answer the question (Q2) in the case s ∈ ( 1

2 , 1)

and will also provide a partial answer in the case s = 1
2 .

6. On a Carleman Estimate for the “Caffarelli-Silvestre Extension”

In this and the next section we address the question (Q2) for s ≥ 1
2 in the absence of magnetic

potentials. As a major ingredient, we here construct CGO solutions to the equation

∇ · x1−2s
n+1 ∇u+ x1−2s

n+1 V u = 0 in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = 0 on Σ1,

(37)

where Σ1 = Ω∩{xn+1 = 0} is assumed to be a smooth, n-dimensional set and ∂Ω is C∞ regular
(the arguments from below show that Cm-regular with m = m(s) > 0 would suffice). The CGO
construction is achieved by virtue of a duality argument and a suitable Carleman estimate.

The degenerate behaviour of the equation is reflected in the form of the CGOs. In order
to avoid issues with the Muckenhoupt weight in the equation at xn+1 = 0, using the notation
x = (x′, xn+1) ∈ Rn+1

+ , we only consider wave vectors ξ′ ∈ Cn with ξ′ ·ξ′ = 0 which are orthogonal
to en+1. More precisely, we seek to construct solutions of the form

u(x) = eξ
′·x′(a(x) + r(x)).

with amplitudes a(x) = eik
′·x′+ikn+1x

2s
n+1 , k ∈ Rn+1, and errors r : Ω → R. We emphasize that

the nonlinear (in xn+1) phase dependence ikn+1x
2s
n+1 is also a consequence of the degenerate

elliptic character of the equation (see the estimate for L̃s−ξ′,V in (68) in the proof of Proposition

1.2). The function r : Ω → R is an error for which we seek to produce decay estimates as
|ξ′| → ∞ by means of a suitable Carleman estimate.

We begin by a discussion of the Carleman estimate which underlies our CGO construction.

Proposition 6.1 (Carleman estimate). Let s ∈ [ 1
2 , 1) and let ξ′ ∈ Cn be such that ξ′ · ξ′ = 0.

Assume that Ω ⊂ Rn+1

+ is a smooth domain and that Ω ∩ {xn+1 = 0} =: Σ1 is a smooth,

n-dimensional set. If s = 1
2 , further assume that ‖q‖L∞(Σ1) is sufficiently small. Let f ∈

(H1(Ω, x1−2s
n+1 ))∗ with supp(f) ⊂ Ω ∪ (Ω ∩ {xn+1 = 0}) and g ∈ L2(Σ1). Then, for u ∈

H1
∂Ω\Σ1,0

(Ω, x1−2s
n+1 ) ∩ C with u = 0 and lim

x→∂Ω
x1−2s
n+1 ∂νu = 0 on ∂Ω \ Σ1 being a weak solution to

∇ · x1−2s
n+1 ∇u = f in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = g on Σ1,

(38)

we have

|ξ′|s‖eξ′·x′u‖L2(Σ1) + |ξ′|‖eξ′·x′x
1−2s

2
n+1 u‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ C(|ξ′|‖eξ′·x′x
1−2s

2
n+1 F̃‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 F0‖L2(Ω) + |ξ′|1−s‖eξ′·x′g‖L2(Σ1)).
(39)

Here the constant C > 0 depends on ‖q‖L∞(Σ1) and F = (F0, F̃ ) ∈ L2(Rn+1
+ ,Rn+2) is the Riesz

representation of f , i.e., it is such that

f(v) = (v, x1−2s
n+1 F0)L2(Ω) + (∇v, x1−2s

n+1 F̃ )L2(Ω) for all v ∈ H1(Ω, x1−2s
n+1 ).
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We remark that ‖F‖L2(Ω,x1−2s
n+1 ) = ‖f‖(H1(Ω,x1−2s

n+1 ))∗ .

Remark 6.2. We remark that as ∂Ω is smooth and as xn+1 = 0 on Σ1, we have that xn+1

vanishes to infinite order at ∂Σ1, i.e. that the domain is arbitrarily flat in a neighbourhood of
∂Σ1.

Proof. We argue in three steps using a splitting strategy. More precisely, we write u = u1 + u2

where u1 (weakly) solves the problem

−∇ · x1−2s
n+1 ∇u1 +K|ξ′|2x1−2s

n+1 u1 = −f in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u1 = −qu+ g on Σ1,

x1−2s
n+1 ∂νu1 = 0 on ∂Ω \ Σ1.

By the Lax-Milgram theorem, a unique (weak) solution to this problem exists in H1(Ω, x1−2s
n+1 )

if K > 0 is sufficiently large. It satisfies

(x1−2s
n+1 ∇u1,∇ϕ)Ω +K|ξ′|2(x1−2s

n+1 u1, ϕ)Ω = (F0, x
1−2s
n+1 ϕ)Ω + (F̃ , x1−2s

n+1 ∇ϕ)Ω + (−qu+ g, ϕ)Σ1

for any ϕ ∈ H1(Ω, x1−2s
n+1 ). Here the notation (·, ·)Ω and (·, ·)Σ1

refer to the L2(Ω) and L2(Σ1)
scalar products respectively. The function u2 = u− u1 is defined accordingly.

Step 1: Estimate for u1. We first estimate u1. To this end, we test the equation for u1 with
ϕ := |ξ′|2e2x′·ξ′u1. This yields

|ξ′|2(x1−2s
n+1 ∇u1,∇(e2x′·ξ′u1))Ω +K|ξ′|4(x1−2s

n+1 u1, e
2x′·ξ′u1)Ω = |ξ′|2(−qu+ g, e2x′·ξ′u1)Σ1

− |ξ′|2(F0, x
1−2s
n+1 e

2x′·ξ′u1)Ω − |ξ′|2(F̃ , x1−2s
n+1 ∇(e2ξ′·x′u1))Ω.

Using Young’s inequality and choosing K > 0 sufficiently large this implies that

K

2
|ξ′|4‖x

1−2s
2

n+1 e
x′·ξ′u1‖2L2(Ω) + |ξ′|2‖x

1−2s
2

n+1 e
x′·ξ′∇u1‖2L2(Ω)

≤ C|ξ′|2‖x
1−2s

2
n+1 e

x′·ξ′ F̃‖2L2(Ω) + C‖x
1−2s

2
n+1 e

x′·ξ′F0‖2L2(Ω) + ε|ξ′|2+2s‖ex′·ξ′u1‖2L2(Σ1)

+ Cε|ξ′|2−2s(‖ex′·ξ′g‖2L2(Σ1) + ‖q‖2L∞(Σ1)‖ex
′·ξ′u‖2L2(Σ1)).

(40)

Now the boundary-bulk interpolation estimate from Lemma 2.5 allows us to further add a bound-
ary contribution to the left hand side of this:

|ξ′|2+2s‖ex′·ξ′u1‖2L2(Σ1) +
K

2
|ξ′|4‖x

1−2s
2

n+1 e
x′·ξ′u1‖2L2(Ω) + |ξ′|2‖x

1−2s
2

n+1 e
x′·ξ′∇u1‖2L2(Ω)

≤ C|ξ′|2‖x
1−2s

2
n+1 e

x′·ξ′ F̃‖2L2(Ω) + C‖x
1−2s

2
n+1 e

x′·ξ′F0‖2L2(Ω) + ε|ξ′|2+2s‖ex′·ξ′u1‖2L2(Σ1)

+ Cε|ξ′|2−2s(‖ex′·ξ′g‖2L2(Σ1) + ‖q‖2L∞(Σ1)‖ex
′·ξ′u‖2L2(Σ1)).

(41)

In particular, this allows us to absorb the boundary contributions involving u1 from the right
hand side of (41) into the left hand side of this inequality. As a consequence, we obtain the
bound

|ξ′|2+2s‖ex′·ξ′u1‖2L2(Σ1) +
K

2
|ξ′|4‖x

1−2s
2

n+1 e
x′·ξ′u1‖2L2(Ω) + |ξ′|2‖x

1−2s
2

n+1 e
x′·ξ′∇u1‖2L2(Ω)

≤ C|ξ′|2‖x
1−2s

2
n+1 e

x′·ξ′ F̃‖2L2(Ω) + C‖x
1−2s

2
n+1 e

x′·ξ′F0‖2L2(Ω)+

+ Cε|ξ′|2−2s(‖ex′·ξ′g‖2L2(Σ1) + ‖q‖2L∞(Σ1)‖ex
′·ξ′u‖2L2(Σ1)).

(42)



ON SOME PARTIAL DATA CALDERÓN TYPE PROBLEMS WITH MIXED BOUNDARY CONDITIONS 29

Step 2: Estimate for u2. Next we estimate the contribution from u2 which (weakly) solves
the equation

∇ · x1−2s
n+1 ∇u2 = −K|ξ′|2x1−2s

n+1 u1 in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u2 = 0 on Σ1,

x1−2s
n+1 ∂νu2 = 0 on ∂Ω \ Σ1.

(43)

In order to estimate u2, we first assume that u1 ∈ C0,α(Ω) for some α ∈ (0, 1). With only
slight modifications it is then possible to invoke the regularity results from [KRS19, Appendix
A]. Indeed, the regularity estimates from [KRS19, Proposition 8.2] yield C2,α regularity up to
the boundary in int(Σ1). Classical, uniformly elliptic regularity estimates in turn yield C2,α

regularity in a neighbourhood of ∂Ω \ Σ1 up to the boundary. Thus, it remains to discuss the
regularity in a neighbourhood of ∂Σ1 up to the boundary. This however follows from the C2

regularity of the boundary which implies that the approximation by the flat problem at that
point is still valid. Combining these results yields the global C2,α(Ω) regularity of u2.

In order to estimate u2, we conjugate the operator Ls := ∇ · x1−2s
n+1 ∇ with the weight ex

′·ξ′ .
This yields the conjugated operator

L̃s,φ := ∇ · x1−2s
n+1 ∇− 2x1−2s

n+1 ξ
′ · ∇′.

Next, we define u2 = x
2s−1

2
n+1 e

−x′·ξ′w and multiply the operator L̃s,φ by x
2s−1

2
n+1 . As a conse-

quence, the operator acting on w turns into

Ls,φ := x
2s−1

2
n+1 ∇ · x1−2s

n+1 ∇x
2s−1

2
n+1 − 2ξ′ · ∇′,

and since ξ′ ⊥ en+1 the boundary condition on Σ1 correspondingly becomes

lim
xn+1→0

x1−2s
n+1 ∂n+1(x

2s−1
2

n+1 w) = 0.(44)

On ∂Ω \ Σ1 the boundary contributions however is non-trivial and turns into

lim
d→0

x1−2s
n+1 ∂ν(x

2s−1
2

n+1 w) = lim
d→0

x1−2s
n+1 (ν · ξ′)(x

2s−1
2

n+1 w).(45)

Up to boundary contributions the bulk part of the operator can be split into its symmetric
and antisymmetric parts:

Sφ = x
2s−1

2
n+1 ∇ · x1−2s

n+1 ∇x
2s−1

2
n+1 ,

Aφ = −2ξ′ · ∇′.
Expanding the norm, computing the boundary terms (BC) and using the regularity of u2, we
thus infer

‖Ls,φw‖2L2(Ω) = ‖Sφw‖2L2(Ω) + ‖Aφw‖2L2(Ω) + (BC).(46)

We emphasise that the C2,α regularity of u2 allows us to carry out the expansion of Ls,φw
as classically differentiable functions away from the boundary and that the resulting boundary
contributions are given as classical boundary integrals. Using the observations from (44) and
(45) these are of the form

(BC) = (BC)1 + (BC)2,

where the contributions from (BC)1 come from shifting (Sφw,Aφw)L2(Ω) = (w, SφAφw)L2(Ω) +
(BC)1 and the ones from (BC)2 from (Sφw,Aφw)L2(Ω) = −(AφSφw,w)L2(Ω) + (BC)2.

We next estimate these boundary contributions individually.
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Step 2a: (BC)1. For the boundary contribution (BC)1 we obtain

(BC)1 := −2(x1−2s
n+1 ∂ν(x

2s−1
2

n+1 w), ξ′ · ∇′(x
2s−1

2
n+1 w))L2(∂Ω)

+ 2(x
2s−1

2
n+1 w, x

1−2s
n+1 ∂ν((ξ′ · ∇′)(x

2s−1
2

n+1 w)))L2(∂Ω)

= −2(x1−2s
n+1 ∂ν(x

2s−1
2

n+1 w), ξ′ · ∇′(x
2s−1

2
n+1 w))L2(∂Ω)

− 2(x
2s−1

2
n+1 w, x

1−2s
n+1 [(ξ′ · ∇′)ν] · ∇(x

2s−1
2

n+1 w))L2(∂Ω)

+ 2(x
2s−1

2
n+1 w, x

1−2s
n+1 (ξ′ · ∇′)∂ν(x

2s−1
2

n+1 w))L2(∂Ω)

= −2(x1−2s
n+1 (ν · ξ′)(x

2s−1
2

n+1 w), ξ′ · ∇′(x
2s−1

2
n+1 w))L2(∂Ω)

− 2(x
2s−1

2
n+1 w, x

1−2s
n+1 [(ξ′ · ∇′)ν] · ∇(x

2s−1
2

n+1 w))L2(∂Ω)

+ 2((ξ′ · ∇′)[x1−2s
n+1 (ν · ξ′)(x

2s−1
2

n+1 w)], x
2s−1

2
n+1 w)L2(∂Ω).

(47)

Here we have used (44) and (45) in the third equality. We now discuss these contributions
separately. We split the derivative ξ′ · ∇′ into a tangential and a normal contribution. If τj(x),
j = 1, ..., n are unit vectors depending smoothly on x and forming with the addition of ν(x) an
orthonormal basis of Rn+1, then we can write

∇ = ν(x)∂ν +
n∑

j=1

τj(x)(τj(x) · ∇) ,

and therefore

ξ′ · ∇′ = |ξ′|[(eξ′ · ν(x))∂ν +
n∑

j=1

(eξ′ · τj(x))(τj(x) · ∇)] = |ξ′|[(eξ′ · ν(x))∂ν + β(x) · ∇τ ] ,(48)

where eξ′ := 1
|ξ′|ξ

′, β is a smooth vector function whose norm is bounded uniformly, independently

of |ξ′| and whose j-th component is eξ′ · τj(x), and the operator ∇τ represents the tangential
derivatives τj(x) · ∇.

For the first contribution in (47), we use the splitting (48) in combination with (44), (45) for
the normal derivatives and integrate by parts in the tangential directions:

2(x1−2s
n+1 (ν · ξ′)(x

2s−1
2

n+1 w), ξ′ · ∇′(x
2s−1

2
n+1 w))L2(∂Ω)

= 2|ξ′|2(x1−2s
n+1 (ν · eξ′)(x

2s−1
2

n+1 w), (eξ′ · ν)∂ν(x
2s−1

2
n+1 w))L2(∂Ω)

+ 2|ξ′|2(x1−2s
n+1 (ν · eξ′)(x

2s−1
2

n+1 w), β(x) · ∇τ (x
2s−1

2
n+1 w))L2(∂Ω)

= 2|ξ′|3([x1−2s
n+1 (ν · eξ′)3](x

2s−1
2

n+1 w), (x
2s−1

2
n+1 w))L2(∂Ω)

+ |ξ′|2(x1−2s
n+1 (ν · eξ′)β(x),∇τ (x2s−1

n+1 |w|2))L2(∂Ω)

= −|ξ′|2((x
2s−1

2
n+1 w)[div∂Ω(β(x)x1−2s

n+1 (ν · eξ′))], x
2s−1

2
n+1 w)L2(∂Ω)

+ 2|ξ′|3([x1−2s
n+1 (ν · eξ′)3](x

2s−1
2

n+1 w), (x
2s−1

2
n+1 w))L2(∂Ω).

(49)

We remark that both boundary terms are controlled by

|ξ′|3‖x
2s−1

2
n+1 w‖2L2(∂Ω\Σ1).(50)
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Indeed, to observe this, it suffices to prove that for x ∈ ∂Ω with xn+1 → 0 we have that for the
weights

[x1−2s
n+1 (ν(x) · eξ′)3]→ 0, [div∂Ω(β(x)x1−2s

n+1 (ν(x) · eξ′))]→ 0 as xn+1 → 0.(51)

Parametrizing the boundary ∂Ω in a neighbourhood of ∂Σ1, we obtain that if ∂Ω is sufficiently
smooth and thus sufficiently flat at ∂Ω the claim of (51) can always be ensured. Indeed, in this
case the boundary can be locally parametrized by ψ(x) = (x′, |x′ − γ(x′)|m), where γ(x′) is a
smooth function describing ∂Σ1. Thus, expressing xn+1 and ν(x′) ·eξ′ in terms of x′, for instance
yields

|x1−2s
n+1 (ν(x′) · eξ′)| ≤ Cγ,|∇′γ||x′ − γ(x′)|m(1−2s)|x′ − γ(x′)|m−1 → 0,

as x′ → γ(x′) and thus xn+1 → 0 by choosing m = m(s) > 0 sufficiently large (which is ensured
by the boundary smoothness, see Remark 6.2). Since in local coordinates the expression for the
divergence only involves derivatives in the tangential directions, the same argument applies to
the second expression in (49). Together with the boundedness of Ω this proves the bound (50).

The third term in (47) can be treated analogously as the first term in (47) . To this end, we
first note that

2((ξ′ · ∇′)[x1−2s
n+1 (ν · ξ′)(x

2s−1
2

n+1 w)], x
2s−1

2
n+1 w)L2(∂Ω)

= 2(x1−2s
n+1 (ν · ξ′)(ξ′ · ∇′)(x

2s−1
2

n+1 w), x
2s−1

2
n+1 w)L2(∂Ω)

+ 2((x
2s−1

2
n+1 w)[(ξ′ · ∇′)(x1−2s

n+1 (ν · ξ′))], x
2s−1

2
n+1 w)L2(∂Ω).

(52)

Hence, the first contribution is of the same form as the term from (49). It suffices to deal with
the second one and to prove that

[(ξ′ · ∇′)(x1−2s
n+1 (ν · ξ′))]→ 0

for x ∈ ∂Ω with xn+1 → 0. This however follows in the same way as in (51) and implies that
the contributions in (52) are also controlled by terms of the form (50).

Finally, it remains to deal with the second contribution in (47). For this we observe that
(ξ′ · ∇′)ν does not have any normal component. Thus, an integration by parts yields

− 2(x
2s−1

2
n+1 w, x

1−2s
n+1 [(ξ′ · ∇′)ν] · ∇(x

2s−1
2

n+1 w))L2(∂Ω)

= −(x1−2s
n+1 [(ξ′ · ∇′)ν],∇(x2s−1

n+1 |w|2))L2(∂Ω)

= ([div∂Ω(x1−2s
n+1 [(ξ′ · ∇′)ν])](x

2s−1
2

n+1 w), (x
2s−1

2
n+1 w))L2(∂Ω).

(53)

It remains to prove that

[div∂Ω(x1−2s
n+1 [(ξ′ · ∇′)ν])]→ 0

for x ∈ ∂Ω with xn+1 → 0, as this then ensures that also the boundary contribution in (53)
is controlled by (50). The desired estimate however follows from the explicit parametrization
ψ(x) = (x′, |x′ − γ(x′)|m), which yields that

|[div∂Ω(x1−2s
n+1 [(ξ′ · ∇′)ν])]| ≤ C|x′ − γ(x′)|m(1−2s)+m−2|ξ′|.

Thus, for m = m(s) > 0 sufficiently large, the claim follows.
Inspecting the quantities in (49)-(53) and recalling that ξ′ ⊥ en+1, we note that all right hand

side contributions in (49)-(53) are really only integrals over ∂Ω \ Σ1. Thus, due to the assumed
boundary regularity of Ω and the boundedness of Ω, all of the contributions on the right hand
side of (47) are bounded in terms of (50).
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Last but not least, we seek to estimate the quantity (50) by bulk contributions of u1. Rewriting
(50) in terms of u2, recalling that u2 = u− u1 and that u|∂Ω\Σ1

= 0, we infer that all boundary

contributions in (BC)1 are controlled by

|ξ′|3‖eξ′·x′u2‖2L2(∂Ω\Σ1)
≤ |ξ′|3‖eξ′·x′u1‖2L2(∂Ω\Σ1)

.(54)

Using the trace estimate from Lemma 2.4 and the fact that s ≥ 1
2 , we deduce that

|ξ′|3‖eξ′·x′u2‖2L2(∂Ω\Σ1)
≤ |ξ′|3‖eξ′·x′u1‖2L2(∂Ω\Σ1)

≤ C(|ξ′|4‖eξ′·x′u1‖2L2(Ω) + |ξ′|2‖∇(eξ
′·x′u1)‖2L2(Ω))

≤ C(|ξ′|4‖eξ′·x′x
1−2s

2
n+1 u1‖2L2(Ω) + |ξ′|2‖eξ′·x′x

1−2s
2

n+1 ∇u1‖2L2(Ω)).

(55)

Step 2b: (BC)2. Next we deal with the contributions in (BC)2. These are of the form

(x
2s−1

2
n+1 ∇ · x1−2s

n+1 ∇(x
2s−1

2
n+1 w), (ξ′ · ν)w)L2(∂Ω) = −K|ξ′|2(x

1−2s
2

n+1 e
ξ′·x′u1, (ξ

′ · ν)w)L2(∂Ω)

+ 2(ξ′ · ∇′w, (ξ′ · ν)w)L2(∂Ω).
(56)

Here we have used the bulk equation for w which, due to the regularity of w, is continuous up
to the boundary.

Splitting ξ′ · ∇′ into tangential and normal components as in (48), the second term can be
dealt with similarly as in the argument for (53): Indeed,

2(ξ′ · ∇′w, (ξ′ · ν)w)L2(∂Ω) = 2|ξ′|2(eξ′ · ∇′(x
2s−1

2
n+1 w), (eξ′ · ν)x1−2s

n+1 x
2s−1

2
n+1 w)L2(∂Ω)

= 2|ξ′|2(∂ν(x
2s−1

2
n+1 w), (eξ′ · ν)2x1−2s

n+1 (x
2s−1

2
n+1 w))L2(∂Ω)

− |ξ′|2(x
2s−1

2
n+1 w, (x

2s−1
2

n+1 w)[div∂Ω(β(eξ′ · ν)x1−2s
n+1 )])L2(∂Ω)

= 2|ξ′|3((x
2s−1

2
n+1 w), (eξ′ · ν)3x1−2s

n+1 (x
2s−1

2
n+1 w))L2(∂Ω)

− |ξ′|2(x
2s−1

2
n+1 w, (x

2s−1
2

n+1 w)[div∂Ω(β(eξ′ · ν)x1−2s
n+1 )])L2(∂Ω).

Using the regularity of ∂Ω, both terms can be estimates by a contribution of the form (50).
For the first term on the right hand side of (56), we note that

−K|ξ′|2(x
1−2s

2
n+1 e

ξ′·x′u1, (ξ
′ · ν)w)L2(∂Ω) = −K|ξ′|2(eξ

′·x′u1, x
1−2s
n+1 (ξ′ · ν)x

2s−1
2

n+1 w)L2(∂Ω).

Since x1−2s
n+1 (ξ′ ·ν)→ 0 for x ∈ ∂Ω with xn+1 → 0 and since x

2s−1
2

n+1 w = eξ
′·x′u2, it is only active at

the boundary ∂Ω\Σ1. Rewriting w = eξ
′·x′x

1−2s
2

n+1 u2 = eξ
′·x′x

1−2s
2

n+1 (u−u1) and using the boundary
conditions for u1, the first term in (56) hence turns into

K|ξ′|2(eξ
′·x′u1, x

1−2s
n+1 (ξ′ · ν)eξ

′·x′u1)L2(∂Ω\Σ1).

Due to the boundary regularity, we observe that this contribution is bounded by

CK|ξ′|3‖eξ′·x′u1‖2L2(∂Ω\Σ1)
,(57)

where C = C(Ω) > 1. Using the boundary trace estimate from Lemma 2.4 (with µ = |ξ′| 12 ) we
may control this by bulk contributions:

K|ξ′|3‖eξ′·x′u1‖2L2(∂Ω\Σ1)
≤ CK(|ξ′|2‖∇(eξ

′·x′u1)‖2L2(Ω) + |ξ′|4‖eξ′·x′u1‖2L2(Ω))

≤ CK(|ξ′|2‖eξ′·x′∇u1‖2L2(Ω) + |ξ′|4‖eξ′·x′u1‖2L2(Ω))

≤ CK(|ξ′|2‖eξ′·x′x
1−2s

2
n+1 ∇u1‖2L2(Ω) + |ξ′|4‖eξ′·x′x

1−2s
2

n+1 u1‖2L2(Ω)).

(58)



ON SOME PARTIAL DATA CALDERÓN TYPE PROBLEMS WITH MIXED BOUNDARY CONDITIONS 33

Step 2c: Antisymmetric and symmetric terms. Next, we invoke the compact support of u to
deduce a lower bound for Aφ: Rewriting w = eξ

′·x′u2 = eξ
′·x′(u−u1), then the compact support

of u in the tangential slices yields by virtue of Poincaré’s inequality that

‖Aφw‖L2(Ω) ≥ ‖ξ′ · ∇′(x
1−2s

2
n+1 e

x′·ξ′u)‖L2(Ω) − |ξ′|‖x
1−2s

2
n+1 ∇(ex

′·ξ′u1)‖L2(Ω)

≥ C−1|ξ′|‖x
1−2s

2
n+1 e

x′·ξ′u‖L2(Ω) − |ξ′|‖x
1−2s

2
n+1 ∇(ex

′·ξ′u1)‖L2(Ω)

≥ C−1|ξ′|‖x
1−2s

2
n+1 e

x′·ξ′u2‖L2(Ω) − |ξ′|‖x
1−2s

2
n+1 ∇(ex

′·ξ′u1)‖L2(Ω)

− |ξ′|‖x
1−2s

2
n+1 (ex

′·ξ′u1)‖L2(Ω)

= C−1|ξ′|‖w‖L2(Ω) − |ξ′|‖x
1−2s

2
n+1 ∇(ex

′·ξ′u1)‖L2(Ω) − |ξ′|‖x
1−2s

2
n+1 (ex

′·ξ′u1)‖L2(Ω)

≥ C−1|ξ′|‖w‖L2(Ω) − |ξ′|‖ex
′·ξ′x

1−2s
2

n+1 ∇u1‖L2(Ω) − |ξ′|2‖x
1−2s

2
n+1 (ex

′·ξ′u1)‖L2(Ω).

(59)

Testing the symmetric part of the operator with w itself, we further obtain that

‖x
1−2s

2
n+1 ∇(x

2s−1
2

n+1 w)‖L2(Ω) ≤ ‖Sφw‖L2(Ω)‖w‖L2(Ω)

+ ( lim
x→∂Ω

x1−2s
n+1 ∂ν(x

2s−1
2

n+1 w), x
2s−1

2
n+1 w)L2(∂Ω)

≤ ‖Sφw‖L2(Ω)‖w‖L2(Ω)

+ (x1−2s
n+1 (ξ′ · ν)(x

2s−1
2

n+1 w), x
2s−1

2
n+1 w)L2(∂Ω)

= ‖Sφw‖L2(Ω)‖w‖L2(Ω)

+ (x1−2s
n+1 (ξ′ · ν)(x

2s−1
2

n+1 w), x
2s−1

2
n+1 w)L2(∂Ω\Σ1).

(60)

We may now estimate the boundary contribution arising in these estimates as above (see (44),
(45)), as it is controlled by (50).

Step 2d: Conclusion of the estimate for u2.
Thus, for |ξ′| ≥ 1, combining the estimates (46)-(60), in total, the Carleman estimate turns

into

|ξ′|‖w‖L2(Ω) + ‖x
1−2s

2
n+1 ∇(x

2s−1
2

n+1 w)‖L2(Ω)

≤ C(‖Ls,φw‖L2(Ω) + |ξ′|‖x
1−2s

2
n+1 ∇(ex

′·ξ′u1)‖L2(Ω) + |ξ′|2‖x
1−2s

2
n+1 (ex

′·ξ′u1)‖L2(Ω)).
(61)

Next we seek to complement (61) with a boundary contribution on the left hand side of the
Carleman inequality. To this end, we use the boundary-bulk-interpolation estimate from Lemma
2.5. This implies that

|ξ′|s‖x
2s−1

2
n+1 w‖L2(Σ1) ≤ C|ξ′|‖x

1−2s
2

n+1 (x
2s−1

2
n+1 w)‖L2(Ω) + ‖x

1−2s
2

n+1 ∇(x
2s−1

2
n+1 w)‖L2(Ω).

As a consequence, the estimate (61) becomes

|ξ′|s‖x
2s−1

2
n+1 w‖L2(Σ1) + |ξ′|‖w‖L2(Ω) + ‖x

1−2s
2

n+1 ∇(x
2s−1

2
n+1 w)‖L2(Ω)

≤ C(‖Ls,φw‖L2(Ω) + |ξ′|‖ex′·ξ′x
1−2s

2
n+1 ∇u1‖L2(Ω) + |ξ′|2‖x

1−2s
2

n+1 (ex
′·ξ′u1)‖L2(Ω)).

(62)
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Returning to u2 then yields the bound

|ξ′|s‖ex′·ξ′u2‖L2(Σ1) + |ξ′|‖ex′·ξ′x
1−2s

2
n+1 u2‖L2(Ω) + ‖ex′·ξ′x

1−2s
2

n+1 ∇u2‖L2(Rn+1
+ )

≤ C(‖Ls,φ(ex
′·ξ′x

1−2s
2

n+1 u2)‖L2(Rn+1
+ ) + |ξ′|‖ex′·ξ′x

1−2s
2

n+1 ∇u1‖L2(Ω) + |ξ′|2‖x
1−2s

2
n+1 (ex

′·ξ′u1)‖L2(Ω))

= C(K|ξ′|2‖ex′·ξ′x
1−2s

2
n+1 u1‖L2(Ω) + |ξ′|‖x

1−2s
2

n+1 ∇(ex
′·ξ′u1)‖L2(Ω) + |ξ′|2‖x

1−2s
2

n+1 (ex
′·ξ′u1)‖L2(Ω))

≤ C(K|ξ′|2‖ex′·ξ′x
1−2s

2
n+1 u1‖L2(Ω) + |ξ′|‖ex′·ξ′x

1−2s
2

n+1 ∇u1‖L2(Ω)).

(63)

Now, if u1 ∈ H1(Ω, x1−2s
n+1 ) is not C0,α(Ω) for some α ∈ (0, 1), we simply replace u1 by

u1,ε := (u1χΩ) ∗ϕε ∈ C0,α(Ω) (where χΩ is the characteristic function of Ω and ϕε is a standard
mollifier) and consider the equation (43) with u1 replaced by u1,ε. We denote the corresponding
solution by u2,ε. This allows us to derive all estimates including (63) with u1, u2 replaced by

u1,ε and u2,ε. Combining the estimate (63), weak lower semi-continuity and the H1(Ω, x1−2s
n+1 )

regularity of u1 then allows us to pass to the limit ε → 0. This then also yields (63) with the
functions u1, u2 (instead of u1,ε, u2,ε).

Step 3: Conclusion. Combining the estimates from (42) and (63), by the triangle inequality,
we obtain that

|ξ′|s‖ex′·ξ′u‖L2(Σ1) + |ξ′|‖ex′·ξ′x
1−2s

2
n+1 u‖L2(Ω) + ‖ex′·ξ′x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ CK|ξ′|2‖ex′·ξ′x
1−2s

2
n+1 u1‖L2(Ω) + |ξ′|‖ex′·ξ′x

1−2s
2

n+1 ∇u1‖L2(Ω)

+ C‖x
1−2s

2
n+1 e

x′·ξ′ F̃‖L2(Ω) + C|ξ′|−1‖x
1−2s

2
n+1 e

x′·ξ′F0‖L2(Ω)+

+ Cε|ξ′|−s
(
‖ex′·ξ′g‖L2(Σ1) + ‖q‖L∞(Σ1)‖ex

′·ξ′u‖L2(Σ1)

)

≤ CK|ξ′|‖eξ′·x′x
1−2s

2
n+1 F̃‖L2(Ω) + CK‖eξ′·x′x

1−2s
2

n+1 F0‖L2(Ω)

+ CεK|ξ′|1−s(‖ex
′·ξ′g‖L2(Σ1) + ‖q‖L∞(Σ1)‖ex

′·ξ′u‖L2(Σ1)).

(64)

Now, if s > 1
2 and |ξ′| � 1 is sufficiently large (depending on ‖q‖L∞(Σ1)), it is possible to

absorb the boundary term involving q on the right hand side into the left hand side of (64). If
s = 1

2 , the absorption is still possible if we assume that ‖q‖L∞(Σ1) is sufficiently small. Under
these assumptions, (64) thus turns into the desired estimate (39). �

Remark 6.3. We expect that for s = 1
2 it might be possible to improve the Carleman estimate

by relying on the Lopatinskii condition. For s ∈ ( 1
2 , 1) this is less clear. We postpone this to a

future project.

As a corollary to Proposition 6.1 we note that the estimate (39) remains true if in (38) we
consider the bulk equation

∇ · x1−2s
n+1 ∇u+ V x1−2s

n+1 u = f in Ω,

with f ∈ (H1(Ω, x1−2s
n+1 ))∗.

Corollary 6.4. Let s ∈ [ 1
2 , 1), ξ′ ∈ Cn such that ξ′·ξ′ = 0. Assume that the same conditions as in

Proposition 6.1 hold for Ω, q, f and g. Let V ∈ L∞(Ω) and assume that u ∈ H1
∂Ω\Σ1,0

(Ω, x1−2s
n+1 )
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with u = 0 and lim
x→∂Ω

x1−2s
n+1 ∂νu = 0 on ∂Ω \ Σ1 is a weak solution to

∇ · x1−2s
n+1 ∇u+ V x1−2s

n+1 u = f in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = g on Σ1.

(65)

Then, we have

|ξ′|s‖eξ′·x′u‖L2(Σ1) + |ξ′|‖eξ′·x′x
1−2s

2
n+1 u‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ C(|ξ′|‖eξ′·x′x
1−2s

2
n+1 F̃‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 F0‖L2(Ω) + |ξ′|1−s‖eξ′·x′g‖L2(Σ1)).
(66)

Here the constant C > 0 depends on ‖q‖L∞(Σ1) and ‖V ‖L∞(Ω), while F = (F0, F̃ ) ∈ L2(Rn+1
+ ,Rn+2)

is the Riesz representation of f , i.e., it is such that

f(v) = (v, x1−2s
n+1 F0)L2(Ω) + (∇v, x1−2s

n+1 F̃ )L2(Ω) for all v ∈ H1(Ω, x1−2s
n+1 ).

Proof. The proof follows directly by a reduction to the setting of Proposition 6.1. Indeed, we
interpret (65) as an equation of the form (38) with f̃ = f −x1−2s

n+1 V u. If the Riesz representative

of f had been given by F = (F0, F̃ ), the one for f̃ is now given by F̄ = (F0 − V u, F̃ ). As a
consequence, (39) turns into

|ξ′|s‖eξ′·x′u‖L2(Σ1) + |ξ′|‖eξ′·x′x
1−2s

2
n+1 u‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ C(|ξ′|‖eξ′·x′x
1−2s

2
n+1 F̃‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 (F0 − V u)‖L2(Ω) + |ξ′|1−s‖eξ′·x′g‖L2(Σ1)).

Applying the triangle inequality, we obtain

|ξ′|s‖eξ′·x′u‖L2(Σ1) + |ξ′|‖eξ′·x′x
1−2s

2
n+1 u‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ C(|ξ′|‖eξ′·x′x
1−2s

2
n+1 F̃‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 F0‖L2(Ω) + ‖V ‖L∞(Ω)‖eξ
′·x′x

1−2s
2

n+1 u‖L2(Ω)

+ |ξ′|1−s‖eξ′·x′g‖L2(Σ1)).

Now choosing |ξ′| > 1 so large that C‖V ‖L∞(Ω) ≤ 1
2 |ξ′|, it is possible to absorb the contribution

involving V from the right hand side into the left hand side of the Carleman estimate. This
implies the desired bound. �

7. Construction of CGOs for the Generalized Caffarelli-Silvestre Extension

We shall now use estimate (39) in order to prove the result of Proposition 1.2 and to thus
deduce the existence of CGOs (associated with the weak form of the equation (9)) by means of
a duality argument.

Proof of Proposition 1.2. Fix k ∈ Rn+1 and consider two vectors ζ1, ζ2 ∈ (k⊥ ∩ e⊥n+1) such that

|ζ1| = |ζ2| and ζ1 · ζ2 = 0. This is possible by the assumption n ≥ 3, since then dim(k⊥∩e⊥n+1) ≥
(n+ 1)− 2 = n− 1 ≥ 2. If now we let ξ′ := ζ1 + iζ2, we can observe that the condition ξ′ · ξ′ = 0
is satisfied. One also has ξ′ · k′ = ξ′ · k = 0, the two equalities being respectively consequences of
ξ′ ∈ e⊥n+1 and ξ′ ∈ k⊥.

Substituting the required solution u(x) = eξ
′·x′(eik

′·x′+ikn+1x
2s
n+1 + r(x)) into problem (37), we

are left with an equivalent problem for the function r(x):

L̃s−ξ′,V (eik
′·x′+ikn+1x

2s
n+1 + r) = 0 in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1(eik

′·x′+ikn+1x
2s
n+1 + r) + q(eik

′·x′+ikn+1x
2s
n+1 + r) = 0 on Σ1.

(67)
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Here L̃s−ξ′,V = ∇ · x1−2s
n+1 ∇+ x1−2s

n+1 V + 2x1−2s
n+1 ξ

′ · ∇′.
We shall first study the following norm:

‖L̃s−ξ′,V eik
′·x′+ikn+1x

2s
n+1‖L2(Ω,x2s−1

n+1 ) = ‖(L̃s−ξ′ + x1−2s
n+1 V )(eik

′·x′+ikn+1x
2s
n+1)‖L2(Ω,x2s−1

n+1 )

≤ ‖x
1−2s

2
n+1 V e

ik′·x′+ikn+1x
2s
n+1‖L2(Ω) + ‖L̃s−ξ′(eik

′·x′+ikn+1x
2s
n+1)‖L2(Ω,x2s−1

n+1 )

≤ ‖V ‖L∞(Ω)‖x1/2−s
n+1 ‖L2(Ω) + ‖(∇ · x1−2s

n+1 ∇+ 2x1−2s
n+1 ξ

′ · ∇′)eik′·x′+ikn+1x
2s
n+1‖L2(Ω,x2s−1

n+1 )

= ‖V ‖L∞(Ω)‖x1/2−s
n+1 ‖L2(Ω) + ‖(x1/2−s

n+1 |k′|2 + (2s)2x
3s−3/2
n+1 k2

n+1)eik
′·x′+ikn+1x

2s
n+1‖L2(Ω)

≤ (‖V ‖L∞(Ω) + |k′|2)‖x1/2−s
n+1 ‖L2(Ω) + 4s2k2

n+1‖x3s−3/2
n+1 ‖L2(Ω)

≤ CΩ,V,k,s <∞.

(68)

In the last step we have used our assumption that s ≥ 1/2 and that ξ′ · k = 0. If we define

f(x) := −L̃s−ξ′,V (eik
′·x′+ikn+1x

2s
n+1),

then by (68) we have proved that ‖f‖L2(Ω,x2s−1
n+1 ) = O(1) with respect to |ξ′| → ∞. Next, we

compute that for almost every x′ ∈ Σ1∣∣∣∣ lim
xn+1→0

(x1−2s
n+1 ∂n+1e

ik′·x′+ikn+1x
2s
n+1 + q(x′)eik

′·x′+ikn+1x
2s
n+1)

∣∣∣∣

= |eik′·x′ ||q(x′) + 2si kn+1| ≤ Cq,k <∞ .

Thus, we define

g(x′) := −eik′·x′(2si kn+1 + q(x′)),

and obtain that ‖g‖L2(Σ1) ≤ Cq,k|Σ1|1/2 = O(1) with respect to |ξ′| → ∞.

In light of the above computations, we can rewrite (67) as an inhomogeneous problem for r:

L̃s−ξ′,V r = f in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1r + qr = g on Σ1.

(69)

We will construct a solution to the problem (69) with the claimed decay properties by using
a duality argument and the Carleman estimate (66).

To this end, we first recall the function space C from (12) in Section 2.1.2 which is a subvector
space of L2(Ω, x2s−1

n+1 ) and has the property that

lim
xn+1→0

(x1−2s
n+1 ∂n+1w + qw) ∈ L2(Σ1) and L̃sξ′,V w ∈ L2(Ω, x2s−1

n+1 ) ⊂ (H1(Ω, x1−2s
n+1 ))∗

and supp(L̃sξ′,V w) ⊂ Ω ∪ (Ω ∩ {xn+1 = 0}).
We define the operator Bs : C → L2(Σ1), w 7→ lim

xn+1→0
x1−2s
n+1 ∂n+1w + qw.

We now seek to study a suitable functional which builds on the injectivity of the following
mapping: For u ∈ C consider

(L̃sξ′,V u,Bsu) 7→ u.(70)

In order to derive the injectivity of the map in (70), we invoke the Carleman estimates from
Proposition 6.1 and Corollary 6.4. To this end, we rephrase the Carleman estimate from Propo-
sition 6.1 and Corollary 6.4 in terms of an estimate for the operators L̃sξ′,V and Bs. For u ∈ C
we consider the Carleman estimate of Corollary 6.4 for the function ũ := e−x

′·ξ′u. This function
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clearly satisfies the boundary conditions stated in Corollary 6.4 on ∂Ω\Σ1. Now, if u is a solution
to the equation

L̃sξ′,V u = f in Ω,

Bs(u) = g on Σ1,

for some f ∈ (H1(Ω, x1−2s
n+1 ))∗ and g ∈ L2(Σ1), then the function ũ satisfies an equation of the

form (65) with a bulk inhomogeneity f̃ = e−ξ
′·x′f and a boundary inhomogeneity g̃ = e−ξ

′·x′g.

If (F0, F̄ ) was the Riesz representative of f in (H1(Ω, x1−2s
n+1 ))∗, then the Riesz representative of f̃

is given by (F̃0,
˜̄F ) := (e−x

′·ξ′F0−e−x
′·ξ′ F̄n+1, e

−x′·ξ′ F̄ ). The Carleman estimate from Corollary
6.4 for ũ is thus applicable and yields

|ξ′|s‖eξ′·x′ ũ‖L2(Σ1) + |ξ′|‖eξ′·x′x
1−2s

2
n+1 ũ‖L2(Ω) + ‖eξ′·x′x

1−2s
2

n+1 ∇ũ‖L2(Ω)

≤ C(|ξ′|‖eξ′·x′x
1−2s

2
n+1

˜̄F‖L2(Ω) + ‖eξ′·x′x
1−2s

2
n+1 F̃0‖L2(Ω) + |ξ′|1−s‖ex′·ξ′ g̃‖L2(Σ1)).

Using the triangle inequality, this can now be rewritten in terms of u, the operators L̃sξ′,V and
Bs and then becomes

|ξ′|s‖u‖L2(Σ1) + |ξ′|‖x
1−2s

2
n+1 u‖L2(Ω) + ‖x

1−2s
2

n+1 ∇u‖L2(Ω)

≤ C(|ξ′|‖x
1−2s

2
n+1 F̄‖L2(Ω+) + ‖x

1−2s
2

n+1 F0‖L2(Ω) + |ξ′|1−s‖g‖L2(Σ1))

≤ C(|ξ′|‖L̃sξ′,V u‖(H1(Ω,x1−2s
n+1 )∗) + |ξ′|1−s‖Bs(u)‖L2(Σ1)).

(71)

As a result, we infer that the map (70) is injective.
Building on this observation, we obtain that the linear functional

T : L̃sξ′,V (C)× Bs(C)→ R, (L̃sξ′,V u,Bsu) 7→ (u, f)L2(Ω) + (u, g)L2(Σ1)

is well defined.
Moreover, using (71), the bound

|(u, f)L2(Ω) + (u, g)L2(Σ1)| ≤ ‖u‖L2(Ω,x1−2s
n+1 )‖f‖L2(Ω,x2s−1

n+1 ) + ‖u‖L2(Σ1)‖g‖L2(Σ1)

≤ CΩ,V,k,s‖u‖L2(Ω,x1−2s
n+1 ) + Cq,k,Σ1

‖u‖L2(Σ1)

≤ (CΩ,V,k,s|ξ′|−1 + Cq,k,Σ1 |ξ′|−s)(‖|ξ′|F̃‖L2(Ω,x1−2s
n+1 ) + ‖F0‖L2(Ω,x1−2s

n+1 ) + ‖|ξ′|1−sBs(u)‖L2(Σ1))

≤ c(|ξ′|−1 + |ξ′|−s)(‖L̃sξ′,V u‖(H1
sc(Ω,x

1−2s
n+1 ))∗ + ‖Bsu‖L2

sc(Σ1)).

holds for a constant c = cΩ,Σ1,k,V,q. Here L̃sξ′,V u = ∇ · F̃ + F0 in the sense of distributions. The

subscript denotes the use of semiclassical norms with |ξ′|−1 as a small parameter, i.e.

‖L̃sξ′,V u‖(H1
sc(Ω,x

1−2s
n+1 ))∗ := ‖|ξ′|F̃‖L2(Ω,x1−2s

n+1 ) + ‖F0‖L2(Ω,x1−2s
n+1 ),

‖Bsu‖L2
sc(Σ1) := ‖|ξ′|1−sBsu‖L2(Σ1).

As a consequence, as a functional on a subset of (H1
sc(Ω, x

1−2s
n+1 ))∗ × L2

sc(Σ1), we have ‖T‖ =

O(|ξ′|−s) for |ξ′| → ∞. Since for s ∈ [ 1
2 , 1) the vector space L̃sξ′,V (C)×Bs(C) is a subvector space

of (H1
sc(Ω, x

1−2s
n+1 ))∗ × L2

sc(Σ1), by the Hahn-Banach theorem, the functional T can be extended

to act on all of (H1
sc(Ω, x

1−2s
n+1 ))∗ × L2

sc(Σ1) while maintaining the same norm.



38 GIOVANNI COVI AND ANGKANA RÜLAND

Making use of the Riesz representation theorem, we find some r̃1 ∈ (H1
sc(Ω, x

1−2s
n+1 ))∗ and

r̃2 ∈ L2
sc(Σ1) such that for every choice of v = (v1, v2) ∈ (H1

sc(Ω, x
1−2s
n+1 ))∗×L2

sc(Σ1) it holds that

T (v1, v2) = (v1, r̃1)(H1
sc(Ω,x

1−2s
n+1 ))∗ + (v2, r̃2)L2

sc(Σ1) ,

‖r̃1‖(H1
sc(Ω,x

1−2s
n+1 ))∗ + ‖r̃2‖L2

sc(Σ1) =‖T‖ = O(|ξ′|−s).

However, if we let r1 be the Riesz representative of r̃1 in H1
sc(Ω, x

1−2s
n+1 ) and define r2 :=

|ξ′|2−2sr̃2, we can compute

T (v1, v2) = (v1, r̃1)(H1
sc(Ω,x

1−2s
n+1 ))∗ + (v2, |ξ′|2−2sr̃2)L2(Σ1) = 〈v1, r1〉+ (v2, r2)L2(Σ1) ,

|ξ′|s−1‖r2‖L2(Σ1) = |ξ′|s−1‖|ξ′|2−2sr̃2‖L2(Σ1) = ‖|ξ′|1−sr̃2‖L2(Σ1) = ‖r̃2‖L2
sc(Σ1) ,

‖r1‖H1
sc(Ω,x

1−2s
n+1 ) =‖r̃1‖(H1

sc(Ω,x
1−2s
n+1 ))∗ ,

where 〈·, ·〉 denotes the (H1
sc(Ω, x

1−2s
n+1 ))∗, H1

sc(Ω, x
1−2s
n+1 ) duality pairing. This eventually gives

T (v1, v2) = 〈v1, r1〉+ (v2, r2)L2(Σ1) ,

‖r1‖L2(Ω,x1−2s
n+1 ) + |ξ′|−1‖∇r1‖L2(Ω,x1−2s

n+1 ) + |ξ′|s−1‖r2‖L2(Σ1) =

= ‖r1‖H1
sc(Ω,x

1−2s
n+1 ) + |ξ′|s−1‖r2‖L2(Σ1)

= ‖r̃1‖(H1
sc(Ω,x

1−2s
n+1 ))∗ + ‖r̃2‖L2

sc(Σ1) = O(|ξ′|−s) .

(72)

Using that L2
sc(Ω, x

2s−1
n+1 ) ⊂ (H1

sc(Ω, x
1−2s
n+1 ))∗ with the identification that the functional `v1

asso-

ciated with v1 ∈ L2
sc(Ω, x

2s−1
n+1 ) is given by

`v1
(f) := (v1, f)L2(Ω) for f ∈ L2

sc(Ω, x
1−2s
n+1 ),

we have that for v1 ∈ L2
sc(Ω, x

2s−1
n+1 )

〈v1, r1〉 := 〈`v1
, r1〉 = (v1, r1)L2(Ω).(73)

Integrating by parts, we next deduce the equations satisfied by r1, r2. Formally this follows
by integrating the equations by parts twice and then inserting suitable test functions. Since a
priori no weighted second derivatives of r1, r2 are given, we need to argue more carefully. To this
end, recalling (73), we compute for u ∈ C with u = ∂νu = 0 on Σ2

(u, f)L2(Ω) + (u, g)L2(Σ1) = T (L̃sξ′,V u,Bs(u))

= (L̃sξ′u, r1)L2(Ω) + (x1−2s
n+1 V u, r1)L2(Ω) + (Bs(u), r2)L2(Σ1)

= (x1−2s
n+1 ∇u,∇r1)L2(Ω) − 2(x1−2s

n+1 ξ
′ · ∇′u, r1)L2(Ω) + (x1−2s

n+1 V u, r1)L2(Ω)

+ (Bs(u), r2 − r1)L2(Σ1) + (qu, r1)L2(Σ1).

(74)

As a consequence, considering u ∈ C∞c (Ω) we infer that the function r1 is a weak solution to
the bulk equation

L̃sξ′,V r1 = f in Ω

and

(u, f)L2(Ω) = (x1−2s
n+1 ∇u,∇r1)L2(Ω) − 2(x1−2s

n+1 ξ
′ · ∇′u, r1)L2(Ω) + (x1−2s

n+1 V u, r1)L2(Ω)(75)

for all u ∈ C∞c (Ω). Next, by an approximation result which uses the fact that s ≥ 1
2 , we

obtain that the identity (75), which a priori only holds for u ∈ C∞c (Ω), also remains true for
u ∈ x2s

n+1C
∞
c (Ω). Combining this with (74), thus implies in turn that for u ∈ x2s

n+1C
∞
c (Ω) we

have the following boundary equation

(u, g)L2(Σ1) = (Bs(u), r2 − r1)L2(Σ1) + (qu, r1)L2(Σ1).(76)
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Using this observation, we now consider a suitable test function to deduce further information
from (76): Let h ∈ C∞c (Σ1) and consider an open set Σ such that supp(h) ⊂ Σ ⊂ Σ1. Let
ε > 0 be so small that Σ × (0, ε) ⊂⊂ Ω and consider ψ ∈ C∞c (Ω̄) such that ψ(x) = 1 if x ∈
supp(h)× [0, ε/2) and ψ(x) = 0 if x 6∈ Σ× [0, ε]. Finally, let u(x) = x2s

n+1ψ(x)h(x′).

Observe that since supp(u) ⊂ Σ1 × (0, ε) ⊂⊂ Ω we have u = ∂νu = 0 on Σ2. Moreover, since
ψh ∈ C∞c (Ω), we have u ∈ x2s

n+1C
∞
c (Ω). Thus, u is a valid test function. We can compute

Bsu = lim
xn+1→0

x1−2s
n+1 ∂n+1u+ qu = h(x′) lim

xn+1→0
x1−2s
n+1 ∂n+1(ψ(x)x2s

n+1) = 2s h(x′)

by the properties of ψ. Also, u(x) = 0 if x ∈ Σ1. Thus, (76) is reduced to

0 = (Bsu, r2 − r1)L2(Σ1) = 2s(h, r2 − r1)L2(Σ1) ,

which implies r1 = r2 in Σ1 by the arbitrary choice of h.
As a consequence, this implies that r1 satisfies the equation

(u, f)L2(Ω) + (u, g)L2(Σ1) = −(x1−2s
n+1 ∇u,∇r1)L2(Ω) + 2(x1−2s

n+1 ξ
′ · ∇′u, r1)L2(Ω)

+ (x1−2s
n+1 V u, r1)L2(Ω) + (qu, r1)L2(Σ1),

for all u ∈ C. Now by density of C in H1(Ω, x1−2s
n+1 ) (see Proposition 2.3), this exactly corresponds

to r1 being a weak solution of the equation

L̃s−ξ,V r1 = f in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1r1 + qr1 = g on Σ1.

Finally, we recall that since we proved that r1 = r2 in Σ1, formula (72) now reads

‖r1‖L2(Ω,x1−2s
n+1 ) + |ξ′|−1‖∇r1‖L2(Ω,x1−2s

n+1 ) + |ξ′|s−1‖r1‖L2(Σ1) = ‖T‖ = O(|ξ′|−s) ,
which yields the desired correction function r := r1 and the claimed estimates. �

With the construction of CGO solutions to (9) in hand, we now turn to the associated inverse
problem. Arguing as in Section 3, it is possible to prove the well-posedness of the weak formu-
lation of the problem (9) outside of a discrete set of eigenvalues. More precisely, to obtain this
we consider the associated bilinear form

B̃q,V (u, v) :=

ˆ

Ω

x1−2s
n+1 ∇u · ∇vdx+

ˆ

Ω

V x1−2s
n+1 uvdx+

ˆ

Σ1

quvdx′,

for u, v ∈ H1(Ω, x1−2s
n+1 ). Further we investigate the Dirichlet problem (9) for data f belonging

to the abstract space

R := H1(Ω, x1−2s
n+1 )/H1

Σ2,0(Ω, x1−2s
n+1 ),

endowed with the usual quotient topology

‖f‖R := inf
u∈f

{
‖u‖H1(Ω,x1−2s

n+1 )

}
.

This choice is motivated by the the observation that for all u, v ∈ H1(Ω, x1−2s
n+1 ) we have for the

corresponding remainder classes [u], [v] ∈ R
[u] = [v] ⇔ u|Σ2

= v|Σ2
,

and thus the equivalence classes of R can be interpreted as restrictions on Σ2 of functions
belonging to H1(Ω, x1−2s

n+1 ). In view of this interpretation, one can make sense of the assertion

u|Σ2
= f , with u ∈ H1(Ω, x1−2s

n+1 ) and f ∈ R, as equivalent to u ∈ f . Moreover, by the properties
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of the infimum for all f ∈ R with ‖f‖R > 0 and ε > 0, we can find u ∈ H1(Ω, x1−2s
n+1 ) with

u|Σ2 = f such that

‖u‖H1(Ω,x1−2s
n+1 ) ≤ ‖f‖R + ε.

By just choosing ε ≤ ‖f‖R we deduce that for all boundary data f on Σ2 there exists an extension
Es(f) ∈ H1(Ω, x1−2s

n+1 ) such that

‖Es(f)‖H1(Ω,x1−2s
n+1 ) ≤ 2‖f‖R.

This lets us argue similarly as in Section 3, and we obtain analogous well-posedness results.
We denote the dual space of R by R∗. In the following we assume that zero is not a Dirichlet

eigenvalue and thus define for f ∈ R a Dirichlet-to-Neumann operator Λ̃q,V : R→ R∗ by setting

〈Λ̃s,q,V f, g〉R∗,R = Bq,V (uf , Esg).

Here Esg denotes a H1(Ω, x1−2s
n+1 ) extension of the function g ∈ R. Relying on similar arguments

as for the Dirichlet-to-Neumann maps studied in Section 3, the map Λ̃s,q,V is continuous from
R into R∗.

With the CGO solutions available, we can now address the proof of Theorem 2. Indeed, with
the given special solutions, the solution to our inverse problem now follows from the Alessandrini
identity.

Proof of Theorem 2. Let V := V1 − V2 and q := q1 − q2. The assumption that Λ1 = Λ2 and the
Alessandrini identity from Lemma 3.13 allow us to write that, for any solutions u1, u2 to (1),

ˆ

Rn+1

χΩV u1u2x
1−2s
n+1 dx+

ˆ

Rn
χΣ1qu1u2dx

′ = 0 .

We shall test this identity using our special CGO solutions. Fix ξ, k as in Proposition 1.2 and
let

u1(x) := eξ
′·x′(e(ik′·x′+ikn+1x

2s
n+1)/2 + r1(x)) ,

u2(x) := eξ̃
′·x′(e−(ik′·x′+ikn+1x

2s
n+1)/2 + r2(x)) .

Here if ξ′ = ζ1 + iζ2, we set ξ̃′ := −ζ1 + iζ2. Substituting these into the above identity gives rise
to

0 =

ˆ

Rn+1

χΩV x
1−2s
n+1

(
r1r2 + (r1 + r2)e(ik′·x′+ikn+1x

2s
n+1)/2 + eik

′·x′+ikn+1x
2s
n+1

)
dx+

+

ˆ

Rn
χΣ1q

(
r1r2 + (r1 + r2)eik

′·x′/2 + eik
′·x′
)
dx′ .

We now aim to estimate the terms involving r1 and r2, showing that they can be dropped in
the limit |ξ′| → ∞. Recall from Proposition 1.2 that

‖rj‖L2(Ω,x1−2s
n+1 ) + ‖rj‖L2(Σ1) = O(|ξ′|1−2s)
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for j = 1, 2, and thus since s ∈ (1/2, 1) we have both ‖rj‖L2(Ω,x1−2s
n+1 ) → 0 and ‖rj‖L2(Σ1) → 0 as

|ξ′| → ∞. Therefore,

ˆ

Rn+1

|χΩV x
1−2s
n+1 r1r2|dx ≤ ‖V ‖L∞(Ω)‖r1‖L2(Ω,x1−2s

n+1 )‖r2‖L2(Ω,x1−2s
n+1 ) → 0 ,

ˆ

Rn+1

|e(ik′·x′+ikn+1x
2s
n+1)/2χΩV x

1−2s
n+1 r1|dx ≤ ‖V ‖L∞(Ω)‖r1‖L2(Ω,x1−2s

n+1 )‖x
1/2−s
n+1 ‖L2(Ω) → 0 ,

ˆ

Rn
|χΣ1qr1r2|dx′ ≤ ‖q‖L∞(Σ1)‖r1‖L2(Σ1)‖r2‖L2(Σ1) → 0 ,

ˆ

Rn
|eik′·x′/2χΣ1

qr1|dx′ ≤ ‖q‖L∞(Σ1)‖r1‖L2(Σ1)|Σ1|1/2 → 0,

as |ξ′| → ∞, and similarly for the remaining terms. The Alessandrini identity is thus reduced to

ˆ

Rn+1

χΩV x
1−2s
n+1 e

ik′·x′+ikn+1x
2s
n+1dx+

ˆ

Rn
χΣ1

qeik
′·x′dx′ = 0 ,

which after the change of variables (y′, yn+1) = (x′, x2s
n+1) in the first integral takes the form

(77)

ˆ

Rn+1

(
χΩV

2s

)
(y′, y1/2s

n+1 )y
1/s−2
n+1 eik·ydy +

ˆ

Rn
χΣ1

qeik
′·x′dx′ = 0 .

Let S(Rn+1) and S ′(Rn+1) respectively be the sets of Schwartz functions and tempered dis-
tributions over Rn+1. Consider δxn+1(0) ∈ S ′(Rn+1) defined by

〈δxn+1
(0), φ〉 =

ˆ

Rn
φ((x′, 0))dx′

for all φ ∈ S(Rn+1). Then

f(x) :=

(
χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1) + δxn+1(0)(χΣ1q)(x

′)

where χ[0,∞)(xn+1) denotes the characteristic function of [0,∞) is also a tempered distribution,

since for all φ ∈ S(Rn+1) we have

|〈f, φ〉| =
∣∣∣∣
ˆ

Rn+1

(
χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1)φ(x)dx+

ˆ

Rn
(χΣ1

q)(x′)φ((x′, 0))dx′
∣∣∣∣

≤ ‖V ‖L∞(Ω)

2s

ˆ

Ω

x
1/s−2
n+1 |φ(x)|dx+ ‖q‖L∞(Σ1)

ˆ

Σ1

|φ((x′, 0))|dx′

≤ ‖φ‖L∞
(‖V ‖L∞(Ω)

2s

ˆ

Ω

x
1/s−2
n+1 dx+ ‖q‖L∞(Σ1)|Σ1|

)
<∞ .
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The Fourier transform of f belongs to S ′(Rn+1) as well, and by definition it is the tempered
distribution given by

〈f̂ , φ〉 = 〈F
[(

χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1)

]
(k), φ(k)〉+ 〈δxn+1

(0)(χΣ1
q)(x′), φ̂(x)〉

= 〈F
[(

χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1)

]
(k), φ(k)〉+

ˆ

Rn
(χΣ1q)(x

′)φ̂((x′, 0))dx′

=

ˆ

Rn+1

φ(k)

ˆ

Rn+1

(
χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1)eix·kdxdk

+

ˆ

Rn
(χΣ1

q)(x′)
ˆ

Rn+1

φ(k)eik
′·x′dkdx′

=

ˆ

Rn+1

φ(k)

(
ˆ

Rn+1
+

(
χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 eik·xdx+

ˆ

Rn
(χΣ1

q)(x′)eik
′·x′dx′

)
dk

for all φ ∈ S(Rn+1), where for convenience of notation, we both use the notation f̂ and F f to

denote the Fourier transform. By (77) the last expression vanishes, which proves that f̂ = 0.
Now the Fourier inversion theorem for tempered distributions allows us to deduce that 〈f, φ〉 = 0
for every φ ∈ S(Rn+1). Testing this equality with an arbitrary function φ ∈ C∞c (Ω) we get

0 = 〈
(
χΩV

2s

)
(x′, x1/2s

n+1 )x
1/s−2
n+1 χ[0,∞)(xn+1) + δxn+1(0)(χΣ1q)(x

′), φ〉

=

ˆ

Rn+1
+

(
χΩV

2s

)
x

1/s−2
n+1 φdx ,

which by the arbitrary choice of φ implies V = 0 in Ω, and we are left with f(x) = δxn+1
(0)(χΣ1

q)(x′).
Let now ψ ∈ C∞c (Σ1), and consider η ∈ C∞(R) such that η(x) = 1 if x ∈ (−1, 1) and η(x) = 0

if x 6∈ (−2, 2). Since it belongs to C∞c (Rn+1), the function φ(x) := ψ(x′)η(xn+1) is a suitable
test function for 〈f, φ〉 = 0, and by using it we obtain

0 = 〈f, φ〉 = 〈δxn+1(0)(χΣ1q)(x
′), ψ(x′)η(xn+1)〉 =

ˆ

Rn
χΣ1qψ dx

′ .

Eventually, by the arbitrary choice of ψ we conclude that q = 0 in Σ1. �

As a corollary of this argument we remark that while for s = 1
2 with the described method

we cannot simultaneously prove uniqueness for the potentials q and V (due to the lack of the
decay of r on the boundary), this method still allows us to prove uniqueness for V given a fixed
potential q:

Corollary 7.1. Let Ω ⊂ Rn+1
+ , n ≥ 2, be an open, bounded and smooth domain. Assume that

Σ1 := ∂Ω ∩ {xn+1 = 0} and Σ2 ⊂ ∂Ω \ Σ1 are two relatively open, non-empty subsets of the
boundary such that Σ1 ∪ Σ2 = ∂Ω. Let s = 1

2 . If the potentials q ∈ L∞(Σ1) and V1, V2 ∈ L∞(Ω)
relative to problem (9) are such that

Λ1 := Λs,V1,q = Λs,V2,q =: Λ2 ,

then V1 = V2.

Proof. The proof follows that of Theorem 2, but it is significantly easier due to the lack of
boundary terms. Again we let V := V1−V2, but this time the Alessandrini identity from Lemma
3.13 reduces to simply

ˆ

Rn+1

χΩV u1u2dx = 0 ,
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where u1, u2 solve (1). Fix ξ′, k ∈ Rn+1 as in Lemma 1.2 with the modification from Remark 5.2,

and for ξ′ = ζ1 + iζ2 set ξ̃′ := −ζ1 + iζ2. Testing the equation above with the following CGOs

u1(x) := eξ
′·x′(eik·x/2 + r1(x)) , u2(x) := eξ̃

′·x′(e−ik·x/2 + r2(x)),

leads to

0 =

ˆ

Rn+1

χΩV
(
r1r2 + (r1 + r2)eik·x/2 + eik·x

)
dx .

In our current case s = 1/2, Proposition 1.2 does not grant any decay for the correction
functions rj on the boundary; however, we will make use only of their decay estimate in the

bulk. Given that ‖rj‖L2(Ω) = O(|ξ′|−1/2), by Cauchy-Schwarz
ˆ

Rn+1

|χΩV r1r2|dx ≤ ‖V ‖L∞(Ω)‖r1‖L2(Ω)‖r2‖L2(Ω) = O(|ξ′|−1),

ˆ

Rn+1

|eik·x/2χΩV rj |dx ≤ ‖V ‖L∞(Ω)|Ω|1/2‖rj‖L2(Ω) = O(|ξ′|−1/2) .

Therefore, by finding the limit |ξ′| → ∞ of the tested equation we obtain

0 =

ˆ

Rn+1

χΩV e
ik·xdx = F [χΩV ](k)

for all k ∈ Rn+1. It now follows from the Fourier inversion theorem that V = 0 on Ω, that is,
the potentials V1 and V2 must coincide. �

Appendix A. Proof of Proposition 2.3

In this section, we provide the proof of Proposition 2.3. To this end, we begin by showing the
following auxiliary result:

Lemma A.1. The set C∞(Rn+1
+ ) is dense in H1(Rn+1

+ , x1−2s
n+1 ).

Proof of Lemma A.1. We consider ϕ : Rn+1 → R such that supp(ϕ) ⊂ B−1 (0), ϕ ≥ 0 and
´

Rn+1 ϕdx = 1. Set ϕε(x) = ε−n−1ϕ(xε ). Further let f ∈ H1(Rn+1
+ , x1−2s

n+1 ). We construct a

smooth sequence fε such that fε → f in H1(Rn+1
+ , x1−2s

n+1 ). To this end define fε(x) := (f ∗ϕε)(x).

Then, since f ∈ L1
loc(R

n+1
+ ), we obtain that fε is smooth. Moreover, as a consequence of the

maximal function estimate for weights in the Muckenhoupt class (see for instance Theorem 1.2
in [Kil94] with the difference of working with half-balls instead of balls) fε, ∇fε = (∇f)ε ∈
L2(Rn+1

+ , x1−2s
n+1 ). In order to prove the convergence, we only show fε → f in L2(Rn+1

+ , x1−2s
n+1 )

(the statement for the gradient is then analogous) and begin by collecting a number of auxiliary

observations. We note that for each Ω ⊂ Rn+1
+ , by the maximal function estimates we also have

that

‖fε‖L2(Ω,x1−2s
n+1 ) ≤ C‖f‖L2(N(Ω,ε),x1−2s

n+1 ).(78)

Here N(Ω, ε) denotes an ε neighbourhood of Ω in Rn+1
+ . Now, since f ∈ L2(Rn+1

+ , x1−2s
n+1 ),

for each δ > 0 there exists R > 1 such that ‖f‖L2(Rn+1
+ \BR,x1−2s

n+1 ) ≤ δ and thus by (78) also

‖fε‖L2(Rn+1
+ \BR,x1−2s

n+1 ) ≤ δ. Moreover, again by the integrability of f , there exists δ̃ > 0 such that

‖f‖L2(BR∩{xn+1≤δ̃},x1−2s
n+1 ) + ‖fε‖L2(BR∩{xn+1≤δ̃},x1−2s

n+1 ) ≤ δ.
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Finally in B2R ∩ {xn+1 > δ̃/2} there exists a sequence fk ∈ C∞(B2R ∩ {xn+1 > δ̃/2}) such that
fk → f in L2(Rn+1

+ , x1−2s
n+1 ). Since (fk)ε := fk ∗ϕε → fk uniformly on compact sets, we may thus

also conclude that

‖fk − (fk)ε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 ) ≤ δ.

Also, by (78)

‖fε − (fk)ε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 ) = ‖(f − fk)ε‖L2(BR∩{xn+1≥δ̃},x1−2s

n+1 )

≤ C‖f − fk‖L2(B2R∩{xn+1≥δ̃/2},x1−2s
n+1 ).

Combining the above observations, infer that

‖f − fε‖L2(Rn+1
+ ,x1−2s

n+1 ) ≤ ‖f‖L2(Rn+1
+ \BR,x1−2s

n+1 ) + ‖fε‖L2(Rn+1
+ \BR,x1−2s

n+1 )

+ ‖f‖L2(BR∩{xn+1≤δ̃},x1−2s
n+1 ) + ‖fε‖L2(BR∩{xn+1≤δ̃},x1−2s

n+1 )

+ ‖f − fε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 )

≤ 3δ + ‖f − fε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 )

≤ 3δ + ‖fk − (fk)ε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 ) + ‖f − fk‖L2(BR∩{xn+1≥δ̃},x1−2s

n+1 )

+ ‖fε − (fk)ε‖L2(BR∩{xn+1≥δ̃},x1−2s
n+1 )

≤ 6δ.

Arguing analogously on the level of the derivative implies the claim. �

Next we define the following auxiliary set

C∞Σ2
(Ω) := {f ∈ C∞(Ω) : ∃δ > 0 s.t. f |N(Σ2,δ) = 0}.

Using this, we turn to the proof of the approximation result.

Proof of Proposition 2.3. Using Lemma (A.1), we argue in three steps.

Step 1: Density of
⋃

δ∈(0,δ0)

H1
N(Rn\Σ1,δ),0

(Rn+1
+ , x1−2s

n+1 ) ⊂ H1
Rn\Σ1,0

(Rn+1
+ , x1−2s

n+1 ).

This follows by rescaling: Indeed, by translation we may assume that x = 0 is a center of

the star-shaped set Σ1. Now let u ∈ H1
Rn\Σ1,0

(Rn+1
+ , x1−2s

n+1 ). Then, as C∞(Rn+1
+ ) is dense in

H1(Rn+1
+ , x1−2s

n+1 ), there exists (uk)k∈N ⊂ C∞(Rn+1
+ ) such that uk → u in H1(Rn+1

+ , x1−2s
n+1 ). Since

Σ1 is star-shaped, if we define d := dist(0, ∂Σ1) and uδ(x) := u
(

d
d−δx

)
for δ ∈ (0, d), then we

have that uδ ∈ H1
N(Rn\Σ1,δ),0

(Rn+1
+ , x1−2s

n+1 ) and

‖uδ − u‖H1(Rn+1
+ ,x1−2s

n+1 ) ≤ ‖uδ − uk
(

d

d− δ ·
)
‖H1(Rn+1

+ ,x1−2s
n+1 ) + ‖uk

(
d

d− δ ·
)
− uk‖H1(Rn+1

+ ,x1−2s
n+1 )

+ ‖u− uk‖H1(Rn+1
+ ,x1−2s

n+1 ).

(79)

Now, the first and third contributions in (79) converge to zero by definition of uk as approxima-
tions to u. The middle right hand side contribution converges to zero by the assumed regularity
of uk and a Taylor approximation up to order one.

Using a partition of unity and straightening out the boundary by a suitable diffeomorphism
this also implies that

⋃
δ∈(0,δ0)

H1
N(∂Ω\Σ1,δ),0

(Ω, x1−2s
n+1 ) ⊂ H1

Σ2,0
(Ω, x1−2s

n+1 ) is dense.
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Step 2: Density of C∞Σ2
(Ω) ⊂ H1

∂Ω\Σ1,0
(Ω, x1−2s

n+1 ).

By Step 1 it suffices to prove that
⋃

ε∈(0,δ/2)

C∞N(Σ2,δ+ε)
(Ω) ⊂ H1

N(Σ2,δ/2),0(Ω, x1−2s
n+1 ) is dense in

H1
N(Σ2,δ),0

(Ω, x1−2s
n+1 ) for all sufficiently small δ > 0.

By virtue of a partition of unity and by straightening out the boundary, it suffices to consider
u ∈ H1(Rn+1

+ , x1−2s
n+1 ) satisfying one of the following two cases:

(i) u|Rn has compact, but non-trivial support in Σ1,
(ii) u|Rn = 0,

and to prove a corresponding approximation result in these cases. The first case arises when
working with a patch of the partition of unity which includes N(Σ1, ε), the second occurs for any
other patch (we remark that without loss of generality, it is possible to arrange for this).

Step 2a: Case (i). For case (i) we in turn argue in two steps.
Step 2a, part 1; constant modification at xn+1 = 0. First we define the function ũε such that

ũε(x
′, xn+1) = u(x′, 0) for xn+1 ∈ [0, 2ε] and ũε(x

′, xn+1) = 0 for xn+1 > 2ε. We observe that
ũε = 0 in Rn+1

+ \ (Σ1 × [0, 2ε]). We further consider η : [0,∞) → [0, 1] with η ∈ C∞([0,∞)),

η(t) = 1 on [0, 1
2 ], supp(η) ⊂ [0, 2] and |∇η| ≤ C. Based on this we define ηε(t) := η( tε ) and

uε := ηε(xn+1)ũε(x) + (1− ηε(xn+1))u(x). We claim that uε → u in H1(Rn+1
+ , x1−2s

n+1 ).
To this end, we observe that

‖uε − u‖L2(Rn+1
+ ,x1−2s

n+1 ) = ‖ηε(ũε − u)‖L2(Rn×[0,2ε],x1−2s
n+1 )

≤ ‖u(x′, 0)− u(x)‖L2(Rn×[0,2ε],x1−2s
n+1 ) → 0,

by the integrability of u(x′, 0)− u(x). For the derivative we note that

∇u−∇uε = (u− ũε)∇ηε + ηε∇(u− ũε).(80)

Due to the support conditions for ηε and by the fact that ∇(u − ũε) ∈ L2(Rn × [0, 2ε0), x1−2s
n+1 )

for some fixed ε0 > 0, we have that

‖ηε∇(u− ũε)‖L2(Rn+1
+ ,x1−2s

n+1 ) → 0

as ε→ 0.
For the first contribution in the expression for the gradient (80), we use the fundamental

theorem (which makes use of the approximation statement from Lemma A.1): We have that

|(u− ũε)(x)| = |u(x′, xn+1)− u(x′, 0)| ≤
xn+1
ˆ

0

|∂n+1u(x′, t)|dt.

Thus, using Hölder’s inequality, we obtain

|(u− ũε)(x)|2 ≤ x2s
n+1

xn+1
ˆ

0

t1−2s|∂n+1u(x′, t)|2dt.
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As a consequence, an integration yields

‖(u− ũε)∇ηε‖L2(Rn+1
+ ,x1−2s

n+1 ) ≤ Cε−1‖u− ũε‖L2(Rn×[0,ε],x1−2s
n+1 )

≤ Cεs−1

∥∥∥∥∥∥∥




xn+1
ˆ

0

t1−2s|∂n+1u(x′, t)|2dt




1
2

∥∥∥∥∥∥∥
L2(Rn×[0,ε],x1−2s

n+1 )

≤ Cεs−1

(
ˆ ε

0

x1−2s
n+1 dxn+1

)1/2

∥∥∥∥∥∥∥




ε
ˆ

0

t1−2s|∂n+1u(x′, t)|2dt




1
2

∥∥∥∥∥∥∥
L2(Rn)

≤ Csεs−1ε1−s‖∇u‖L2(Rn×[0,ε],x1−2s
n+1 )

= Cs‖∇u‖L2(Rn×[0,ε],x1−2s
n+1 ) → 0 as ε→ 0,

since ∇u ∈ H1(Rn+1
+ , x1−2s

n+1 ). This proves the claimed convergence uε → u.

Step 2a, part 2, mollification. As a second step, we start with a function uε as obtained in
Step 2a, part 1 which by a slight abuse of notation (by dropping the index) we denote by u.
For this function, we now consider uδ(x) := u ∗ ϕδ(x), where δ ∈ (0, ε) and ϕδ(x) := δ−n−1ϕ(xδ )

with
´

Rn+1
+

ϕ(y)dy = 1, ϕ ∈ C∞(Rn+1
+ ) is a mollifier supported in B−1 . By the properties of the

function u (in particular, recall that u = 0 in (Rn \ Σ1) × [0, ε]), for δ > 0 sufficiently small,
the function uδ ∈ C∞(Rn+1

+ ) ∩H1(Rn+1
+ , x1−2s

n+1 ) then satisfies that supp(uδ|Rn) ⊂ N(Σ1, δ) and

uδ → u in H1(Rn+1
+ , x1−2s

n+1 ).
Combining both steps from Steps 2a by means of a diagonal argument then implies the claim

for case (i).

Step 2b: The case (ii). Now for case (ii) we argue as in the classical case, but replace the
trace inequalities by correspondingly weighted ones; we refer to [Eva10, Chapter 5.5, Theo-

rem 2]. We present some of the details for completeness. First by the density of C∞(Rn+1
+ ) ⊂

H1(Rn+1
+ , x1−2s

n+1 ) there exists a sequence (um)m∈N ⊂ C∞(Rn+1
+ ) such that um → u inH1(Rn+1

+ , x1−2s
n+1 ).

Due to trace estimates similarly as in Lemma 2.5 and the fact that u|Rn = 0 we have um|Rn → 0.
Now by the fundamental theorem we obtain

|um(x′, xn+1)| ≤ |um(x′, 0)|+
xn+1
ˆ

0

|Dum(x′, t)|dt.

Integrating and applying Hölder’s inequality implies that

‖um(·, xn+1)‖2L2(Rn) ≤ C(‖um(·, 0)‖2L2(Rn) + x2s
n+1

xn+1
ˆ

0

t1−2s‖∇um(·, t)‖2L2(Rn)dt).

In particular, for m→∞, by the vanishing of the trace of u, we arrive at

‖u(·, xn+1)‖2L2(Rn) ≤ Cx2s
n+1

xn+1
ˆ

0

t1−2s‖∇u(·, t)‖2L2(Rn)dt.(81)

We now define

wm := u(1− ζm),
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where ζm(x) := ζ(mxn+1) and ζ ∈ C∞(R) is such that ζ(t) = 1 for t ∈ [0, 1] and ζ = 0 on (2,∞)
and 0 ≤ ζ ≤ 1. We obtain

∂n+1wm = (1− ζm)∂n+1u−muζ ′|mxn+1
,

∂jwm = (1− ζm)∂ju for all j ∈ {1, . . . , n}.
Thus,

‖∇(wm − um)‖2
L2(Rn+1

+ ,x1−2s
n+1 )

≤ C‖ζm∇u‖2L2(Rn+1,x1−2s
n+1 )

+ Cm2

2/m
ˆ

0

ˆ

Rn
x1−2s
n+1 |u|2dx′dxn+1.

By construction, the first term converges to zero, as ζm 6= 0 only for xn+1 ∈ (0, 2/m). For the
second contribution we use (81). This yields

m2

2/m
ˆ

0

ˆ

Rn
x1−2s
n+1 |u|2dx′dxn+1 = m2

2/m
ˆ

0

x1−2s
n+1 ‖u(·, xn+1)‖2L2(Rn)dxn+1

≤ Cm2

2/m
ˆ

0

xn+1

xn+1
ˆ

0

t1−2s‖∇u(·, t)‖2L2(Rn)dtdxn+1

≤ Cm2




2/m
ˆ

0

xn+1dxn+1




2/m
ˆ

0

t1−2s‖∇u(·, t)‖2L2(Rn)dt

≤ C‖∇u‖L2(Rn×[0,2/m],x1−2s
n+1 ) → 0 as m→∞.

Step 3: Density of C̃ ⊂ H1
Σ1,0

(Ω, x1−2s
n+1 ).

Let u ∈ C∞Σ2
(Ω). We now approximate this function by a function of the desired structure.

Working in boundary normal coordinates x = x′ + tν(x′) we define ũε(x) := u(x′) for x ∈ ∂Ω2ε.
Let now ηε be a smooth cut-off function which is equal to one in ∂Ωε supported in ∂Ω2ε with
|∇′ηε| ≤ C and |∂νηε| ≤ C

ε . We then set uε(x) := ηε(x)ũε(x) + (1− ηε)u(x). Then,

‖u− uε‖L2(Ω,x1−2s
n+1 ) = ‖ηε(u− ũε)‖L2(Ω,x1−2s

n+1 ).

Since u ∈ C∞(Ω), we have |ηε(x)||u(x)− ũε(x)| ≤ C sup
x∈supp(ηε)

|∂tu(x)|t ≤ Cε. Thus,

‖u− uε‖L2(Ω,x1−2s
n+1 ) ≤ Csεε1−s.

For the derivative we note that

‖∇(u− uε)‖L2(Ω,x1−2s
n+1 ) = ‖∇[ηε(u− ũε)]‖L2(Ω,x1−2s

n+1 )

≤ ‖(u− ũε)(∇ηε)‖L2(Ω,x1−2s
n+1 ) + ‖ηε∇(u− ũε)‖L2(Ω,x1−2s

n+1 ).

Now using that |∇ηε| ≤ Cε−1, |u− ũε| ≤ Cε and |∇(u− ũε)| ≤ C, we obtain

‖∇(u− uε)‖L2(Ω,x1−2s
n+1 ) ≤ ‖(u− ũε)(∇ηε)‖L2(Ω,x1−2s

n+1 ) + ‖ηε∇(u− ũε)‖L2(Ω,x1−2s
n+1 )

≤ Cωs(supp(ηε))
1
2 ≤ Csε1−s,

where for Ω′ ⊂ Rn+1
+ measurable ωs(Ω

′) :=
´

Ω′
x1−2s
n+1 dx. We note that the function uε has the

desired property defining C̃. Indeed, by the construction of ũε we have uε = 0 on Σ2 and by
construction of ũε and of ηε we also have ∂ν ũε = 0 on ∂Ω. It remains to argue that ∂n+1uε = 0
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in N(Σ1, δ) × [0, δ) for some δ > 0 small. This on the one hand follows from the fact that in
Σ1 × [0, ε/2] the boundary normal coordinates are simply Euclidean coordinates x = (x′, xn+1)
and that the function ũε does not depend on the xn+1 variable there by definition. On the other
hand, we also have that in N(Σ2, ε̃) for some ε̃ > 0 the function u ∈ C∞Σ2

(Ω) satisfies u = 0. As a
consequence, the function ũε(x) = 0 in a set {x ∈ Ω : x = x′+ tν, x′ ∈ N(Σ1, δ) \Σ1, t ∈ [0, 2δ]}
for some small δ > 0. This however implies that ∇ũε = 0 on this set, which entails that
∂n+1uε = 0 also in a set N(Σ1, δ)× [0, δ).

Combining all the steps from above by a diagonal argument concludes the proof. �
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THE HIGHER ORDER FRACTIONAL CALDERÓN PROBLEM FOR

LINEAR LOCAL OPERATORS: UNIQUENESS

GIOVANNI COVI, KEIJO MÖNKKÖNEN, JESSE RAILO, AND GUNTHER UHLMANN

Abstract. We study an inverse problem for the fractional Schrödinger equation (FSE) with
a local perturbation by a linear partial differential operator (PDO) of the order smaller than
the order of the fractional Laplacian. We show that one can uniquely recover the coefficients
of the PDO from the Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This
is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev
multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives.
Our study generalizes recent results for the zeroth and first order perturbations to higher order
perturbations.

1. Introduction

Let s ∈ R+ \ Z, Ω ⊂ Rn a bounded open set where n ≥ 1, Ωe = Rn \ Ω its exterior and
P (x,D) a linear partial differential operator (PDO) of order m ∈ N

P (x,D) =
∑
|α|≤m

aα(x)Dα

where the coefficients aα = aα(x) are functions defined in Ω. We study a nonlocal inverse
problem for the perturbed fractional Schrödinger equation

(1)

{
(−∆)su+ P (x,D)u = 0 in Ω

u = f in Ωe

where (−∆)s is a nonlocal pseudo-differential operator (−∆)su = F−1(|·|2s û) in contrast to the
local operator P (x,D). In the inverse problem, one aims to recover the local operator P from
the associated Dirichlet-to-Neumann map.

We always assume that 0 is not a Dirichlet eigenvalue of the operator ((−∆)s +P (x,D)), i.e.

If u ∈ Hs(Rn) solves ((−∆)s + P (x,D))u = 0 in Ω and u|Ωe = 0, then u = 0.

Our data for the inverse problem is the Dirichlet-to-Neumann (DN) map ΛP : Hs(Ωe) →
(Hs(Ωe))

∗ which maps Dirichlet exterior values to a nonlocal version of the Neumann boundary
value (see section 2 and 3.1). The main question that we study in this article is whether the
DN map ΛP determines uniquely the coefficients aα in Ω. In other words, does ΛP1 = ΛP2

imply that a1,α = a2,α in Ω for all |α| ≤ m? We prove that the answer is positive under certain
restrictions on the coefficients aα and the order of the PDOs.

This gives positive answer to the uniqueness problem [10, Question 2.5] posed by the first
three authors in a previous work. The precise statement in [10] asks to prove uniqueness for
the higher order fractional Calderón problem in the case of a bounded domain with smooth
boundary and PDOs with smooth coefficients (up to the boundary). The positive answer to
this question follows from theorem 1.2. The study of the fractional Calderón problem was
initiated by Ghosh, Salo and Uhlmann in the work [15] where the uniqueness for the associated
inverse problem is proved when m = 0, s ∈ (0, 1) and a0 ∈ L∞(Ω).

Date: August 25, 2020.
Key words and phrases. Inverse problems, fractional Calderón problem, fractional Schrödinger equation,

Sobolev multipliers.
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We briefly note that by Peetre’s theorem any linear operator L : C∞c (Ω) → C∞c (Ω) which
does not increase supports, i.e. spt(Lf) ⊂ spt(f) for all f ∈ C∞c (Ω), is in fact a differential
operator [30] (see also the original work [32]). Therefore our results apply to any local operator
satisfying such properties and it is enough to study PDOs only. For a more general formulation
of Peetre’s theorem on the level of vector bundles, see [31].

1.1. Main results. We denote by M(Hs−|α| → H−s) the space of all bounded Sobolev mul-

tipliers between the Sobolev spaces Hs−|α|(Rn) and H−s(Rn). We denote by M0(Hs−|α| →
H−s) ⊂M(Hs−|α| → H−s) the space of bounded Sobolev multipliers that can be approximated

with smooth compactly supported functions in the multiplier norm of M(Hs−|α| → H−s). We
also write Hr,∞(Ω) for the local Bessel potential space with bounded derivatives. See section 2
for more detailed definitions.

Our first theorem is a generalization of [36, Theorem 1.1] which considered the case m = 0
with s ∈ (0, 1). It also generalizes [10, Theorem 1.5] which considered the higher order cases
s ∈ R+ \ Z when m = 0.

Theorem 1.1. Let Ω ⊂ Rn be a bounded open set where n ≥ 1. Let s ∈ R+ \ Z and m ∈ N be
such that 2s > m. Let

Pj =
∑
|α|≤m

aj,αD
α, j = 1, 2,

be linear PDOs of order m with coefficients aj,α ∈ M0(Hs−|α| → H−s). Given any two open
sets W1,W2 ⊂ Ωe, suppose that the DN maps ΛPi for the equations ((−∆)s + Pj)u = 0 in Ω
satisfy

ΛP1f |W2 = ΛP2f |W2

for all f ∈ C∞c (W1). Then P1|Ω = P2|Ω.

In theorem 1.1 one can pick the lower order coefficients (|α| < s) from Lp(Ω) for high enough p
(especially from L∞(Ω)) and higher order coefficients (s < |α| < 2s) from the closure of C∞c (Ω)
in Hr,∞(Ω) for certain values of r ∈ R. Lemmas 2.8 and 2.9 give more examples of Sobolev

spaces which belong to the space of multipliers M0(Hs−|α| → H−s). We also note that when
|α| = 0, then the space of multipliers M0(Hs → H−s) coincides with the one studied in [36].

It follows that the space of multipliers is trivial for higher order operators, i.e. M(Hs−|α| →
H−s) = {0} when s − |α| < −s. It would be possible to state theorem 1.1 for higher order
PDOs, but that forces aα = 0 for all |α| > 2s. For this reason we only consider PDOs whose
order is m < 2s. See lemma 2.5 and the related remarks for more details.

Our second theorem generalizes [7, Theorem 1.1] and [15, Theorem 1.1] where similar results
are proved when m = 0, 1 and s ∈ (0, 1). It also generalizes [10, Theorem 1.5] where the case
m = 0 and s ∈ R+ \ Z was studied.

Theorem 1.2. Let Ω ⊂ Rn be a bounded Lipschitz domain where n ≥ 1. Let s ∈ R+ \ Z and
m ∈ N be such that 2s > m. Let

Pj(x,D) =
∑
|α|≤m

aj,α(x)Dα, j = 1, 2,

be linear PDOs of order m with coefficients aj,α ∈ Hrα,∞(Ω) where

rα :=

{
0 if |α| − s < 0,

|α| − s+ δ if |α| − s ∈ {1/2, 3/2, ...},
|α| − s if otherwise

(2)

for any fixed δ > 0. Given any two open sets W1,W2 ⊂ Ωe, suppose that the DN maps ΛPi for
the equations ((−∆)s + Pj(x,D))u = 0 in Ω satisfy

ΛP1f |W2 = ΛP2f |W2

for all f ∈ C∞c (W1). Then P1(x,D) = P2(x,D).
2



Our first theorem is formulated for general bounded open sets and the second theorem for
Lipschitz domains. The difference arises in the proof of the well-posedness of the inverse prob-
lem. We note that theorem 1.2 holds for coefficients aα which are smooth up to the boundary
(aα = g|Ω where g ∈ C∞(Rn)). The conditions (1.2) imply that one can choose aα ∈ L∞(Ω)
for every α such that |α| < s. The case |α| = s never happens, as s is assumed not to be an

integer. If |α| > s, we have aα ∈ H |α|−s,∞(Ω) when |α|−s 6∈ {1/2, 3/2, ...}. Thus the conditions
(1.2) coincide with [7, 15] when m = 0, 1 and s ∈ (0, 1).

Our article is roughly divided into two parts. The first part of the article (theorem 1.1 and
section 3) generalizes the study of the uniqueness problem for singular potentials in [36] and
the second part (theorem 1.2 and section 4) generalizes the uniqueness problem for bounded
first order perturbations in [7].

The approach to prove theorems 1.1 and 1.2 is the following. First one shows that the
inverse problem is well-posed and the corresponding bilinear forms are bounded. This leads
to the boundedness of the DN maps and an Alessandrini identity. By a unique continuation
property of the higher order fractional Laplacian one obtains a Runge approximation property
for equation (1). Using the Runge approximation and the Alessandrini identity for suitable test
functions one proves the uniqueness of the inverse problem.

1.2. On the earlier literature. Equation (1) and theorems 1.1 and 1.2 are related to the
Calderón problem for the fractional Schrödinger equation first introduced in [15]. There one
tries to uniquely recover the potential q in Ω by doing measurements in the exterior Ωe. This
is a nonlocal (fractional) counterpart of the classical Calderón problem arising in electrical
impedance tomography where one obtains information about the electrical properties of some
bounded domain by doing voltage and current measurements on the boundary [39, 40]. In
[36] the study of the fractional Calderón problem is extended for “rough” potentials q, i.e.
potentials which are in general bounded Sobolev multipliers. First order perturbations were
studied in [7] assuming that the fractional part dominates the equation, i.e. s ∈ (1/2, 1), and
that the perturbations have bounded fractional derivatives. A higher order version (s ∈ R+ \Z)
of the fractional Calderón problem was introduced and studied in [10]. These three articles
[7, 10, 36] motivate the study of higher order (rough) perturbations to the fractional Laplacian
(−∆)s in equation (1). The natural restriction for the order of P (x,D) in theorems 1.1 and 1.2
is then 2s > m so that the fractional part governs the equation (1).

The fractional Calderón problem for s ∈ (0, 1) has been studied in many settings. We refer
to the survey [37] for a more detailed treatment. In the work [36] stability was proved for
singular potentials, and in [34] the related exponential instability was shown. The fractional
Calderón problem has also been solved under single measurement [14]. The perturbed equation
is related to the fractional magnetic Schrödinger equation which is studied in [9, 24, 25, 26]. See
also [4] for a fractional Schrödinger equation with a lower order nonlocal perturbation. Other
variants of the fractional Calderón problem include semilinear fractional (magnetic) Schrödinger
equation [19, 20, 24, 25], fractional heat equation [21, 35] and fractional conductivity equation [8]
(see also [6, 13] for equations arising from a nonlocal Schrödinger-type elliptic operator). In the
recent work [10], the first three authors of this article studied higher order versions (s ∈ R+ \Z)
of the fractional Calderón problem and proved uniqueness for the Calderón problem for the
fractional magnetic Schrödinger equation (up to a gauge). This article continues these studies
by showing uniqueness for the fractional Schrödinger equation with higher order perturbations
and gives positive answer to the question 2.5 posed in [10].

1.3. Examples of fractional models in the sciences. Equations involving fractional Lapla-
cians like (1) have applications in mathematics and natural sciences. Fractional Laplacians
appear in the study of anomalous and nonlocal diffusion, and these diffusion phenomena can
be used in many areas such as continuum mechanics, graph theory and ecology just to mention
a few [2, 5, 12, 27, 33]. Another place where the fractional counterpart of the classical Lapla-
cian naturally shows up is the formulation of fractional quantum mechanics [22, 23]. For more
applications of fractional mathematical models, see [5] and the references therein.
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1.4. The organization of the article. In section 2 we introduce the notation and give pre-
liminaries on Sobolev spaces and fractional Laplacians. We also define the spaces of rough
coefficients (Sobolev multipliers) and discuss some of the basic properties. In section 3 we prove
theorem 1.1 in detail. Finally, in section 4 we prove theorem 1.2 but as the proofs of both
theorems are very similar we do not repeat all identical steps and we keep our focus in the
differences of the proofs.
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2. Preliminaries

In this section we recall some basic theory of Sobolev spaces, Fourier analysis and fractional
Laplacians on Rn. We also introduce the spaces of Sobolev multipliers and prove a few properties
for them. Some auxiliary lemmas which are needed in the proofs of our main theorems are given
as well. We follow the references [1, 15, 29, 28, 38, 41] (see also section 3 in [10]).

2.1. Sobolev spaces. The (inhomogeneous) fractional L2-based Sobolev space of order r ∈ R
is defined to be

Hr(Rn) = {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ L2(Rn)}
equipped with the norm

‖u‖Hr(Rn) =
∥∥F−1(〈·〉rû)

∥∥
L2(Rn)

.

Here û = F(u) is the Fourier transform of a tempered distribution u ∈ S ′(Rn), F−1 is the

inverse Fourier transform and 〈x〉 = (1 + |x|2)1/2. We define the fractional Laplacian of order

s ∈ R+ \ Z as (−∆)sϕ = F−1(|·|2s ϕ̂) where ϕ ∈ S (Rn) is a Schwartz function. Then (−∆)s

extends to a bounded operator (−∆)s : Hr(Rn)→ Hr−2s(Rn) for all r ∈ R by density of S (Rn)
in Hr(Rn).

Let Ω ⊂ Rn be an open set and F ⊂ Rn a closed set. We define the following Sobolev spaces

Hr
F (Rn) = {u ∈ Hr(Rn) : spt(u) ⊂ F}

H̃r(Ω) = closure of C∞c (Ω) in Hr(Rn)

Hr(Ω) = {u|Ω : u ∈ Hr(Rn)}
Hr

0(Ω) = closure of C∞c (Ω) in Hr(Ω).

It follows that H̃r(Ω) ⊂ Hr
0(Ω), H̃r(Ω) ⊂ Hr

Ω
(Rn), (H̃r(Ω))∗ = H−r(Ω) and (Hr(Ω))∗ =

H̃−r(Ω) for any open set Ω and r ∈ R. If Ω is in addition a Lipschitz domain, then we have

H̃r(Ω) = Hr
Ω

(Rn) for all r ∈ R and Hr
0(Ω) = Hr

Ω
(Rn) when r > −1/2 such that r /∈ {1

2 ,
3
2 ,

5
2 . . . }.

More generally, let 1 ≤ p ≤ ∞ and r ∈ R. We define the Bessel potential space

Hr,p(Rn) = {u ∈ S ′(Rn) : F−1(〈·〉rû) ∈ Lp(Rn)}
equipped with the norm

‖u‖Hr,p(Rn) =
∥∥F−1(〈·〉rû)

∥∥
Lp(Rn)

.

We also write F−1(〈·〉rû) =: Jru where the Fourier multiplier J = (Id−∆)1/2 is called the Bessel
potential. We have the continuous inclusions Hr,p(Rn) ↪→ Ht,p(Rn) whenever r ≥ t [41]. By the
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Mikhlin multiplier theorem one can show that (−∆)s : Hr,p(Rn) → Hr−2s,p(Rn) is continuous
whenever s ≥ 0 and 1 < p <∞. The local version of the space Hr,p(Rn) is defined as earlier by
the restrictions

Hr,p(Ω) = {u|Ω : u ∈ Hr,p(Rn)}
where Ω ⊂ Rn is any open set. This space is equipped with the quotient norm

‖v‖Hr,p(Ω) = inf{‖w‖Hr,p(Rn) : w ∈ Hr,p(Rn), w|Ω = v}.

We have the continuous inclusions Hr,p(Ω) ↪→ Ht,p(Ω) whenever r ≥ t by the definition of the
quotient norm.

We also define the spaces

Hr,p
F (Rn) = {u ∈ Hr,p(Rn) : spt(u) ⊂ F}

H̃r,p(Ω) = closure of C∞c (Ω) in Hr,p(Rn)

Hr,p
0 (Ω) = closure of C∞c (Ω) in Hr,p(Ω)

where F ⊂ Rn is a closed set. Note that H̃r,p(Ω) ⊂ Hr,p
0 (Ω) since the restriction map

|Ω : Hr,p(Rn)→ Hr,p(Ω) is by definition continuous. One can also see that H̃r,p(Ω) ⊂ Hr,p

Ω
(Rn).

If Ω is a bounded C∞-domain and 1 < p <∞, then we have [38, Theorem 1 in section 4.3.2]

H̃r,p(Ω) = Hr,p

Ω
(Rn), s ∈ R

Hr,p
0 (Ω) = Hr,p(Ω), s ≤ 1

p
.

Some authors (especially in [7, 36]) use the notation W r,p(Ω) for Bessel potential spaces.
We have decided to use the notation Hr,p(Ω) so that these spaces are not confused with the
Sobolev-Slobodeckij spaces which are in general different from the Bessel potential spaces [11].

The equation (1) we study is nonlocal. Instead of putting boundary conditions we impose

exterior values for the equation. This can be done by saying that u = f in Ωe if u− f ∈ H̃s(Ω).

Motivated by this we define the (abstract) trace space X = Hr(Rn)/H̃r(Ω), i.e. functions in
X are the same (have the same trace) if they agree in Ωe. If Ω is a Lipschitz domain, then we
have X = Hr(Ωe) and X∗ = H−r

Ωe
(Rn).

2.2. Properties of the fractional Laplacian. The fractional Laplacian admits two important
properties which we need in our proofs. The first one is unique continuation property (UCP)
which is used in proving the Runge approximation property.

Lemma 2.1 (UCP). Let s ∈ R+ \ Z, r ∈ R and u ∈ Hr(Rn). If (−∆)su|V = 0 and u|V = 0
for some nonempty open set V ⊂ Rn, then u = 0.

Lemma 2.1 is proved in [10] for s > 1 by reducing the problem to the UCP result for s ∈ (0, 1)
in [15]. Note that such property is not true for local operators like the classical Laplacian (−∆).
The second property we need is the Poincaré inequality, which is used in showing that the
fractional Calderón problem is well-posed.

Lemma 2.2 (Poincaré inequality). Let s ∈ R+ \ Z, K ⊂ Rn compact set and u ∈ Hs
K(Rn).

There exists a constant c = c(n,K, s) > 0 such that

‖u‖L2(Rn) ≤ c
∥∥∥(−∆)s/2u

∥∥∥
L2(Rn)

.

Many different proofs for lemma 2.2 are given in [10]. We note that in the literature, the
fractional Poincaré inequality is typically considered only when s ∈ (0, 1).

Finally, we recall the fractional Leibniz rule, also known as the Kato-Ponce inequality. It
is used to show the boundedness of the bilinear forms associated to the perturbed fractional
Schrödinger equation in the case when the coefficients of the PDO have bounded fractional
derivatives.
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Lemma 2.3 (Kato-Ponce inequality). Let s ≥ 0, 1 < r <∞, 1 < q1 ≤ ∞ and 1 < p2 ≤ ∞ such
that 1

r = 1
p1

+ 1
q1

= 1
p2

+ 1
q2

. If f ∈ Lp2(Rn), Jsf ∈ Lp1(Rn), g ∈ Lq1(Rn) and Jsg ∈ Lq2(Rn),

then Js(fg) ∈ Lr(Rn) and

‖Js(fg)‖Lr(Rn) ≤ C(‖Jsf‖Lp1 (Rn) ‖g‖Lq1 (Rn) + ‖f‖Lp2 (Rn) ‖J
sg‖Lq2 (Rn))

where Js is the Bessel potential of order s and C = C(s, n, r, p1, p2, q1, q2).

The proof of lemma 2.3 can be found in [17] (see also [16, 18]).

2.3. Spaces of rough coefficients. Following [28, Ch. 3], we introduce the space of multipliers
M(Hr → Ht) between pairs of Sobolev spaces. Here we are assuming that r, t ∈ R. The
coefficients of P (x,D) in theorem 1.1 will be picked from such spaces of multipliers.

If f ∈ D′(Rn) is a distribution, we say that f ∈M(Hr → Ht) whenever the norm

‖f‖r,t := sup{|〈f, uv〉| ; u, v ∈ C∞c (Rn), ‖u‖Hr(Rn) = ‖v‖H−t(Rn) = 1}

is finite. Here 〈·, ·〉 is the duality pairing. By M0(Hr → Ht) we indicate the closure of C∞c (Rn)
in M(Hr → Ht) ⊂ D′(Rn). If f ∈ M(Hr → Ht) and u, v ∈ C∞c (Rn) are both non-vanishing,
we have the multiplier inequality
(3)

|〈f, uv〉| =

∣∣∣∣∣
〈
f,

u

‖u‖Hr(Rn)

v

‖v‖H−t(Rn)

〉∣∣∣∣∣ ‖u‖Hr(Rn) ‖v‖H−t(Rn) ≤ ‖f‖r,t ‖u‖Hr(Rn) ‖v‖H−t(Rn) .

By density (2.3) can be extended to act over u ∈ Hr(Rn), v ∈ H−t(Rn). Moreover, each
f ∈M(Hr → Ht) gives rise to a multiplication map mf : Hr(Rn)→ Ht(Rn) defined as

〈mf (u), v〉 := 〈f, uv〉 for all u ∈ Hr(Rn), v ∈ H−t(Rn).

We have as well the unique adjoint multiplication map m∗f : H−t(Rn)→ H−r(Rn) such that〈
m∗f (v), u

〉
:= 〈f, uv〉 for all u ∈ Hr(Rn), v ∈ H−t(Rn).

Since one sees that the adjoint of mf is m∗f , the chosen notation is justified. For convenience,

in the rest of the paper we will just write fu for both mf (u) and m∗f (u).

Remark 2.4. The spaces of rough coefficients we use are generalizations of the ones considered
in [36]. In fact, the space Z−s(Rn) used there coincides with our space M(Hs → H−s).

In the next lemma we state some elementary properties of the spaces of multipliers. Other
interesting properties may be found in [28].

Lemma 2.5. Let λ, µ ≥ 0 and r, t ∈ R. Then

(i) M(Hr → Ht) = M(H−t → H−r), and the norms associated to the two spaces also
coincide.

(ii) M(Hr−λ → Ht+µ) ↪→M(Hr → Ht) continuously.

(iii) M(Hr → Ht) = {0} whenever r < t.

Proof. (i) Let f ∈ D′(Rn) be a distribution. Then by just using the definition we see that

‖f‖r,t = sup{|〈f, uv〉| ; u, v ∈ C∞c (Rn), ‖u‖Hr(Rn) = ‖v‖H−t(Rn) = 1}
= sup{|〈f, vu〉| ; v, u ∈ C∞c (Rn), ‖v‖H−t(Rn) = ‖u‖H−(−r)(Rn) = 1} = ‖f‖−t,−r.

(ii) Observe that the given definition of ‖f‖r,t is equivalent to the following:

‖f‖r,t = sup{|〈f, uv〉| ; u, v ∈ C∞c (Rn), ‖u‖Hr(Rn) ≤ 1, ‖v‖H−t(Rn) ≤ 1}.

Since λ, µ ≥ 0, we also have

‖u‖Hr−λ(Rn) ≤ ‖u‖Hr(Rn) , ‖v‖H−(t+µ)(Rn) ≤ ‖v‖H−t(Rn) .

This implies ‖f‖r,t ≤ ‖f‖r−λ,t+µ, which in turn gives the wanted inclusion.
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(iii) If 0 ≤ r < t, then this was considered in [28, Ch. 3]. The proof given there recalls the
easier one for Sobolev spaces ([28, Sec. 2.1]), which is based on the explicit computation of
derivatives of aptly chosen exponential functions.

If r < t ≤ 0, then by point (i) we have M(Hr → Ht) = M(H−t → H−r). We need to show
that M(H−t → H−r) = {0} whenever 0 ≤ −t < −r. This reduces the problem back to the case
of non-negative Sobolev scales.

If r ≤ 0 < t, then −r ≥ 0. Now by point (ii), we have M(Hr → Ht) ⊆ M(Hr+(−r) →
Ht) = M(L2 → Ht). It is therefore enough to show that this last space is trivial, which again
immediately follows from the case of non-negative Sobolev scales.

If r < 0 ≤ t, then the problem can be reduced again to the earlier cases. �

Remark 2.6. We also have M0(Hr−λ → Ht+µ) ⊆M0(Hr → Ht) whenever λ, µ ≥ 0, since the
inclusion in (ii) is continuous.

Remark 2.7. In light of lemma 2.5 (ii) we are only interested in M(Hr → Ht) in the case
r ≥ t, the case r < t being trivial. For our theorem 1.1, this translates into the condition
m ≤ 2s. We decided not to consider the limit case m = 2s in this work, as our machinery (in
particular, the coercivity estimate (4.1)) breaks down in this case. However, it should be noted
that since by assumption we have m ∈ Z and s 6∈ Z, the equality m = 2s can only arise if m is
odd, which forces s = 1/2 + k with k ∈ Z. This case was excluded in [7, 15] as well.

The next lemmas relate our spaces of multipliers with some special Bessel potential spaces.
This is interesting since in the coming section 3 we will consider the inverse problem for coeffi-
cients coming from such spaces. We start with a general result.

Lemma 2.8. Let Ω ⊂ Rn be an open set and let t ∈ R and r ∈ R be such that t > max{0, r}.
The following inclusions hold:

(i) H̃r′,∞(Ω) ⊂M0(H−r → H−t) whenever r′ ≥ max{0, r}.

(ii) Hr′,∞
0 (Ω) ⊂M0(H−r → H−t) whenever r′ ≥ max{0, r} such that r′ /∈ {1

2 ,
3
2 ,

5
2 , . . . } and

Ω is a Lipschitz domain.

(iii) H̃r′(Ω) ⊂ M0(H−r → H−t) whenever r′ ≥ t and r′ > n/2. The same holds true for

Hr′

Ω
(Rn) if Ω is a Lipschitz domain, and for Hr′

0 (Ω) when Ω is a Lipschitz domain and

r′ /∈ {1
2 ,

3
2 ,

5
2 , . . . }.

Proof. Throughout the proof we assume that u, v ∈ C∞c (Rn) such that ‖u‖H−r(Rn) = ‖v‖Ht(Rn) =

1. In parts (i) and (ii) we can assume that r′ < t since if r′ ≥ t, then we have the continu-

ous inclusion Hr′,∞(Ω) ↪→ Hr′′,∞(Ω) where max{0, r} ≤ r′′ < t (such r′′ always exists since
t > max{0, r}).

(i) Let f ∈ H̃r′,∞(Ω). Now f = f1 + f2 where f1 ∈ C∞c (Ω) and ‖f2‖Hr′,∞(Rn) ≤ ε. Then

|〈f2, uv〉| ≤ ‖f2v‖Hr′ (Rn) ‖u‖H−r′ (Rn) ≤ C ‖f2‖Hr′,∞(Rn) ‖v‖Hr′ (Rn) ‖u‖H−r(Rn)

≤ Cε ‖v‖Ht(Rn) = Cε.

Here we used the Kato-Ponce inequality (lemma 2.3)∥∥∥Jr′(f2v)
∥∥∥
L2(Rn)

≤ C(‖f2‖L∞(Rn)

∥∥∥Jr′v∥∥∥
L2(Rn)

+
∥∥∥Jr′f2

∥∥∥
L∞(Rn)

‖v‖L2(Rn))

≤ C ‖f2‖Hr′,∞(Rn) ‖v‖Hr′ (Rn)

and the assumption max{0, r} ≤ r′ < t. Therefore ‖f − f1‖−r,−t = ‖f2‖−r,−t ≤ Cε which shows

that f ∈M0(H−r → H−t).

(ii) Let f ∈ Hr′,∞
0 (Ω). Now f = f1 + f2 where f1 ∈ C∞c (Ω) and ‖f2‖Hr′,∞(Ω) ≤ ε. By the

definition of the quotient norm ‖·‖Hr′,∞(Ω) we can take F ∈ Hr′,∞(Rn) such that F |Ω = f2

and ‖F‖Hr′,∞(Rn) ≤ 2 ‖f2‖Hr′,∞(Ω). The assumptions imply the duality (H−r
′
(Ω))∗ = Hr′

0 (Ω) ⊂
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Hr′(Ω). Using the Kato-Ponce inequality for the extension F we obtain as in the proof of part
(i) that∥∥∥Jr′(Fv)

∥∥∥
L2(Rn)

≤ C ‖F‖Hr′,∞(Rn) ‖v‖Hr′ (Rn) ≤ 2C ‖f2‖Hr′,∞(Ω) ‖v‖Ht(Rn) ≤ 2Cε

and hence

|〈f2, uv〉| ≤ ‖f2v‖(H−r′ (Ω))∗ ‖u‖H−r′ (Ω) ≤ ‖f2v‖Hr′ (Ω) ‖u‖H−r(Rn)

≤
∥∥∥Jr′(Fv)

∥∥∥
L2(Rn)

≤ 2Cε.

This shows that f ∈M0(H−r → H−t).

(iii) Let f ∈ H̃r′(Ω). Now f = f1 + f2 where f1 ∈ C∞c (Ω) and ‖f2‖Hr′ (Rn) ≤ ε. Now [3,

Theorem 7.3] implies the continuity of the multiplication Hr′(Rn) ×Ht(Rn) ↪→ Ht(Rn) when
r′ ≥ t and r′ > n/2. We obtain

|〈f2, uv〉| ≤ ‖f2v‖Ht(Rn) ‖u‖H−t(Rn) ≤ C ‖f2‖Hr′ (Rn) ‖v‖Ht(Rn) ‖u‖H−r(Rn) ≤ Cε.

Hence f ∈M0(H−r → H−t). If Ω is a Lipschitz domain, then Hr′

Ω
(Rn) = H̃r′(Ω). If in addition

r′ /∈ {1
2 ,

3
2 ,

5
2 , . . . }, we also have Hr′

0 (Ω) = H̃r′(Ω). �

Note that the assumptions in theorem 1.1 satisfy the conditions of the previous lemma since
then r = |α| − s and t = s. The following lemma gives examples of spaces of lower order
coefficients (|α| ≤ s).

Lemma 2.9. Let Ω ⊂ Rn be an open set and t > 0. The following inclusions hold:

(i) Lp(Ω) ⊂M0(H0 → H−t) whenever 2 ≤ p <∞ and p > n/t. Especially, if Ω is bounded,
then L∞(Ω) ⊂M0(H0 → H−t).

(ii) H̃r(Ω) ⊂ M0(H0 → H−t) whenever r ≥ 0 and r > n/2 − t. The same holds true for
Hr

Ω
(Rn) if Ω is a Lipschitz domain, and for Hr

0(Ω) when Ω is Lipschitz domain and

r /∈ {1
2 ,

3
2 ,

5
2 , . . . }.

Proof. Throughout the proof we assume that u, v ∈ C∞c (Rn) such that ‖u‖L2(Rn) = ‖v‖Ht(Rn) =
1.

(i) Let f ∈ Lp(Ω). By density of C∞c (Ω) in Lp(Ω) we have f = f1 + f2 where f1 ∈ C∞c (Ω)

and
∥∥∥f̃2

∥∥∥
Lp(Rn)

≤ ε where f̃2 is the zero extension of f2 ∈ Lp(Ω). The assumptions on p imply

the continuity of the multiplication Lp(Rn)×Ht(Rn) ↪→ L2(Rn) ([3, Theorem 7.3]) and we have∣∣∣〈f̃2, uv
〉∣∣∣ ≤ ∥∥∥f̃2v

∥∥∥
L2(Rn)

‖u‖L2(Rn) ≤ C
∥∥∥f̃2

∥∥∥
Lp(Rn)

‖v‖Ht(Rn) ≤ Cε.

This gives that f ∈ M0(H0 → H−t). If Ω is bounded, we have L∞(Ω) ↪→ Lp(Ω) for all
1 ≤ p <∞, giving the second claim.

(ii) Let f ∈ H̃r(Ω). Now we have f = f1 + f2 where f1 ∈ C∞c (Ω) and ‖f2‖Hr(Rn) ≤ ε. The

assumptions on r imply that the multiplication Hr(Rn)×Ht(Rn) ↪→ L2(Rn) is continuous ([3,
Theorem 7.3]). We obtain

|〈f2, uv〉| ≤ ‖f2v‖L2(Rn) ‖u‖L2(Rn) ≤ C ‖f2‖Hr(Rn) ‖v‖Ht(Rn) ≤ Cε

and therefore f ∈M0(H0 → H−t). The claims for Hr
Ω

(Rn) and Hr
0(Ω) follow as in the proof of

part (iii) of lemma 2.8 from the usual identifications for Lipschtiz domains. �

As mentioned above we put t = s > 0 in theorem 1.1 and the condition in lemma 2.9 is
satisfied. Note that under the assumption |α| ≤ s we have M0(H0 → H−s) ⊂ M0(Hs−|α| →
H−s). Hence we can choose the lower order coefficients from a less regular space in theorem 1.1
(compare to lemma 2.8).
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3. Main theorem for singular coefficients

In this section, to shorten the notation, we will write ‖·‖Hs , ‖·‖L2 and so on for the global
norms in Rn when the base set is not written explicitly.

3.1. Well-posedness of the inverse problem. Consider the problem

(−∆)su+
∑
|α|≤m

aα(Dαu) = F in Ω,(4)

u = f in Ωe

and the corresponding adjoint-problem

(−∆)su∗ +
∑
|α|≤m

(−1)|α|Dα(aαu
∗) = F ∗ in Ω,(5)

u∗ = f∗ in Ωe.

Note that if u, u∗ ∈ Hs(Rn) and aα ∈M(Hs−|α| → H−s) = M(Hs → H |α|−s), then aα(Dαu) ∈
H−s(Rn) and Dα(aαu

∗) ∈ H−s(Rn) matching with (−∆)su, (−∆)su∗ ∈ H−s(Rn).
The problems (3.1) and (3.1) are associated to the bilinear forms

BP (v, w) := 〈(−∆)s/2v, (−∆)s/2w〉Rn +
∑
|α|≤m

〈aα, (Dαv)w〉Rn(6)

and

B∗P (v, w) := 〈(−∆)s/2v, (−∆)s/2w〉Rn +
∑
|α|≤m

〈aα, v(Dαw)〉Rn ,(7)

defined on v, w ∈ C∞c (Rn). In the latter terms of the bilinear forms we have written the dual
pairing as 〈·, ·〉Rn since aα is now a distribution in the whole space Rn in contrast to section 4
where aα is an object defined only in Ω.

Remark 3.1. Observe that BP is not symmetric, which motivates the introduction of the bi-
linear form B∗P . Moreover, one sees by simple inspection that BP (v, w) = B∗P (w, v) for all
v, w ∈ C∞c (Rn). This identity holds for v, w ∈ Hs(Rn) as well by density, thanks to the follow-
ing boundedness lemma.

Lemma 3.2 (Boundedness of the bilinear forms). Let s ∈ R+ \Z and m ∈ N such that 2s ≥ m,

and let aα ∈ M(Hs−|α| → H−s). Then BP and B∗P extend as bounded bilinear forms on
Hs(Rn)×Hs(Rn).

Proof of lemma 3.2. We only prove the boundedness of BP , as for B∗P one can proceed in the
same way. The proof is a simple calculation following from inequality (2.3). Let u, v ∈ C∞c (Rn).
We can then estimate that

|BP (v, w)| ≤ |〈(−∆)s/2v, (−∆)s/2w〉Rn |+
∑
|α|≤m

|〈aα, Dαvw〉Rn |

≤ ‖w‖Hs(Rn)‖v‖Hs(Rn) +
∑
|α|≤m

‖aα‖s−|α|,−s‖Dαv‖Hs−|α|(Rn)‖w‖Hs(Rn)

≤

1 +
∑
|α|≤m

‖aα‖s−|α|,−s

 ‖w‖Hs(Rn)‖v‖Hs(Rn).

Now the claim follows from the density of C∞c (Rn) in Hs(Rn). �

Next we shall prove existence and uniqueness of solutions for the problems (3.1) and (3.1).
To this end, we will use the following form of Young’s inequality, which holds for all a, b, η ∈ R+
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and p, q ∈ (1,∞) such that 1/p+ 1/q = 1:

ab ≤ (qη)−p/q

p
ap + ηbq.(8)

The validity of (3.1) is easily proved by choosing a1 = a(qη)−1/q and b1 = b(qη)1/q in Young’s
inequality a1b1 ≤ ap1/p+ bq1/q.

Lemma 3.3 (Well-posedness). Let Ω ⊂ Rn be a bounded open set. Let s ∈ R+ \ Z and m ∈ N
be such that 2s > m, and let aα ∈ M0(Hs−|α| → H−s). There exist a real number µ > 0 and a
countable set Σ ⊂ (−µ,∞) of eigenvalues λ1 ≤ λ2 ≤ ... → ∞ such that if λ ∈ R \ Σ, for any

f ∈ Hs(Rn) and F ∈ (H̃s(Ω))∗ there exists unique u ∈ Hs(Rn) such that u− f ∈ H̃s(Ω) and

BP (u, v)− λ〈u, v〉Ω = F (v) for all v ∈ H̃s(Ω).

One has the estimate

‖u‖Hs(Rn) ≤ C
(
‖f‖Hs(Rn) + ‖F‖

(H̃s(Ω))∗

)
.

The function u is also the unique u ∈ Hs(Rn) satisfying

rΩ

(−∆)s +
∑
|α|≤m

aαD
α − λ

u = F

in the sense of distributions in Ω and u− f ∈ H̃s(Ω). Moreover, if (3.1) holds then 0 /∈ Σ.

Proof. Let ũ := u− f . The above problem is reduced to finding a unique ũ ∈ H̃s(Ω) such that

BP (ũ, v) − λ〈ũ, v〉Ω = F̃ (v), where F̃ := F − BP (f, ·) + λ〈f, ·〉Ω. Observe that the modified

functional F̃ belongs to (H̃s(Ω))∗ as well, since by lemma 3.2 we have for all v ∈ H̃s(Ω)

|F̃ (v)| ≤ |F (v)|+ |BP (f, v)|+ |λ| |〈f, v〉Ω| ≤ (‖F‖
(H̃s(Ω))∗ + (C + |λ|)‖f‖Hs(Rn))‖v‖Hs(Rn).

Since aα ∈ M0(Hs−|α| → H−s), for any ε > 0 we can write aα = aα,1 + aα,2, where aα,1 ∈
C∞c (Rn) ∩M(Hs−|α| → H−s) and ‖aα,2‖s−|α|,−s < ε. Thus by formula (2.3), the continuity of
the multiplication Hr(Rn)×Hs(Rn) ↪→ Hs(Rn) for large enough r ∈ R (see [3, Theorem 7.3])
and the fact that aα,1 ∈ C∞c (Rn) ⊂ Hr(Rn) for all r ∈ R we obtain

|〈aα, Dαvw〉| ≤ |〈aα,1, Dαvw〉|+ |〈aα,2, Dαvw〉|
(9)

≤ ‖aα,1‖Hr(Rn)‖Dαv‖H−s(Rn)‖w‖Hs(Rn) + ‖aα,2‖s−|α|,−s‖Dαv‖Hs−|α|(Rn)‖w‖Hs(Rn)

≤ c‖w‖Hs(Rn)

(
‖aα,1‖Hr(Rn)‖v‖H|α|−s(Rn) + ε‖v‖Hs(Rn)

)
where r ∈ R is large enough (r > max{s, n/2} is sufficient). If |α| < s, from formulas (3.1) and
(3.1) with p = q = 2 we get directly

|〈aα, Dαvv〉| ≤ C
(
‖v‖Hs(Rn)‖v‖L2(Rn) + ε‖v‖2Hs(Rn)

)
(10)

≤ C(ε−1‖v‖2L2(Rn) + ε‖v‖2Hs(Rn))

for a constant C independent of v, w, ε. If instead |α| > s (observe that we can not have |α| = s,
because s can not be an integer), we use the interpolation inequality

‖v‖H|α|−s(Rn) ≤ C‖v‖
1−(|α|−s)/s
L2(Rn)

‖v‖(|α|−s)/sHs(Rn) = C‖v‖2−|α|/s
L2(Rn)

‖v‖|α|/s−1
Hs(Rn)

in order to get

|〈aα, Dαvw〉| ≤ C‖w‖Hs(Rn)

(
‖v‖2−|α|/s

L2(Rn)
‖v‖|α|/s−1

Hs(Rn) + ε‖v‖Hs(Rn)

)
.
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Then by formula (3.1) with

a = ‖v‖2−|α|/s
L2(Rn)

, b = ‖v‖|α|/s−1
Hs(Rn), p =

s

2s− |α|
, q =

s

|α| − s
, η = ε

we obtain

|〈aα, Dαvw〉| ≤ C‖w‖Hs(Rn)

(
ε
s−|α|
2s−|α| ‖v‖L2(Rn) + ε‖v‖Hs(Rn)

)
for a constant C independent of v, w, ε. Now we use formula (3.1) again, but this time we choose

a = ‖v‖L2(Rn), b = ‖v‖Hs(Rn), q = p = 2, η = εs/(2s−|α|).

This leads to

|〈aα, Dαvv〉| ≤ C
(
ε
s−|α|
2s−|α| ‖v‖L2(Rn)‖v‖Hs(Rn) + ε‖v‖2Hs(Rn)

)
(11)

≤ C
(
ε
−|α|

2s−|α| ‖v‖2L2(Rn) + 2ε‖v‖2Hs(Rn)

)
≤ C

(
ε
−|α|

2s−|α| ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
≤ C ′

(
ε
−m

2s−m ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
where C,C ′ are constants changing from line to line. Observe that C ′ can be taken independent
of α. Eventually, using (3.1) and (3.1) we get

BP (v, v) ≥ ‖(−∆)s/2v‖2L2(Rn) −
∑
|α|≤m

|〈aα, Dαvv〉|(12)

≥ ‖(−∆)s/2v‖2L2(Rn) − C
′
(

(ε
−m

2s−m + ε−1)‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
.

By the higher order Poincaré inequality (lemma 2.2) (4.1) turns into

BP (v, v) ≥ c
(
‖(−∆)s/2v‖2L2(Rn) + ‖v‖2L2(Rn)

)
− C ′

(
(ε
−m

2s−m + ε−1)‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
≥ c‖v‖2Hs(Rn) − C

′
(

(ε
−m

2s−m + ε−1)‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
for some constant c = c(Ω, n, s) changing from line to line. For ε small enough, this eventually
gives the coercivity estimate

(13) BP (v, v) ≥ c0‖v‖2Hs(Rn) − µ‖v‖
2
L2(Rn)

for some constants c0, µ > 0 independent of v.
As a consequence of the coercivity estimate, BP (·, ·) + µ〈·, ·〉L2(Rn) is an equivalent inner

product on H̃s(Ω). Therefore, by the Riesz representation theorem there exists a bounded

linear operator Gµ : (H̃s(Ω))∗ → H̃s(Ω) associating each functional in (H̃s(Ω))∗ to its unique

representative in the inner product BP (·, ·) + µ〈·, ·〉L2(Rn) on H̃s(Ω). Thus ũ := GµF̃ verifies

BP (ũ, v) + µ〈ũ, v〉L2(Rn) = F̃ (v) for all v ∈ H̃s(Ω)

and it is the required unique solution ũ ∈ H̃s(Ω). Moreover, Gµ induces a compact, self-adjoint

and positive operator G̃µ : L2(Ω) → L2(Ω) by the compact Sobolev embedding theorem. The

remaining claims follow from the spectral theorem for G̃µ and from the Fredholm alternative
as in [15]. �

By the above lemma 3.3, both problems (3.1) and (3.1) have a countable set of Dirichlet
eigenvalues. Throughout the paper we will assume that the coefficients aα are such that 0 is
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not a Dirichlet eigenvalue for either of the problems. That is, we assume that{
if u ∈ Hs(Rn) solves (−∆)su+

∑
|α|≤m aαD

αu = 0 in Ω and u|Ωe = 0,

then u ≡ 0
(14)

and {
if u∗ ∈ Hs(Rn) solves (−∆)su∗ +

∑
|α|≤m(−1)|α|Dα(aαu

∗) = 0 in Ω and u∗|Ωe = 0,

then u∗ ≡ 0.
(15)

With this in mind, we shall define the DN maps. Consider the abstract trace space X :=

Hs(Rn)/H̃s(Ω) equipped with the quotient norm

‖[f ]‖X := inf
φ∈H̃s(Ω)

‖f − φ‖Hs(Rn), f ∈ Hs(Rn)

and its dual space X∗. We use these in order to define the DN maps associated to the problems
(3.1) and (3.1), which we study in the following lemma.

Lemma 3.4 (DN maps). Let Ω ⊂ Rn be a bounded open set. Let s ∈ R+ \ Z and m ∈ N such

that 2s > m, and let aα ∈M0(Hs−|α| → H−s). There exist two continuous linear maps

ΛP : X → X∗ defined by 〈ΛP [f ], [g]〉 := BP (uf , g)

and
Λ∗P : X → X∗ defined by 〈Λ∗P [f ], [g]〉 := B∗P (u∗f , g)

where uf , u
∗
f are the unique solutions to the equations

(−∆)su+
∑
|α|≤m

aαD
αu = 0 in Ω, u− f ∈ H̃s(Ω)

and

(−∆)su∗ +
∑
|α|≤m

(−1)|α|Dα(aαu
∗) = 0 in Ω, u∗ − f ∈ H̃s(Ω)

with f, g ∈ Hs(Rn). Moreover, the identity 〈ΛP [f ], [g]〉 = 〈[f ],Λ∗P [g]〉 holds.

Proof. We show well-definedness and continuity only for ΛP , the proof being similar for Λ∗P .
We note that such unique solutions exist by lemma 3.3.

If φ ∈ H̃s(Ω), then uf |Ωe = f = uf+φ|Ωe , and also uf , uf+φ both solve (−∆)su+ Pu = 0 in
Ω. By unicity of solutions, we must then have that uf and uf+φ coincide. On the other hand,

if ψ ∈ H̃s(Ω), then ψ|Ωe = 0. These two facts imply the well-definedness of ΛP , since

BP (uf+φ, g + ψ) = BP (uf , g) +BP (uf , ψ) = BP (uf , g).

The continuity of ΛP is an easy consequence of lemma 3.2 and the estimate in lemma 3.3. If

f, g ∈ Hs(Rn) and φ, ψ ∈ H̃s(Ω), then

|〈ΛP [f ], [g]〉| = |BP (uf−φ, g − ψ)| ≤ C‖uf−φ‖Hs‖g − ψ‖Hs ≤ C‖f − φ‖Hs‖g − ψ‖Hs .

By taking the infimum on both sides with respect to φ and ψ, we end up with

|〈ΛP [f ], [g]〉| ≤ C inf
φ∈H̃s(Ω)

‖f − φ‖Hs inf
ψ∈H̃s(Ω)

‖g − ψ‖Hs = C‖[f ]‖X‖[g]‖X .

The well-posedness result proved above implies that for all f, g ∈ Hs(Rn) we have 〈ΛP [f ], [g]〉 =
BP (uf , eg), where eg is a generic extension of g|Ωe from Ωe to Rn. In particular, 〈ΛP [f ], [g]〉 =
BP (uf , u

∗
g). By lemma 3.2 this leads to

〈ΛP [f ], [g]〉 = BP (uf , u
∗
g) = B∗P (u∗g, uf ) = 〈Λ∗P [g], [f ]〉

which conlcudes the proof. �

Remark 3.5. We should observe at this point that a priori Λ∗P has no reason to be the adjoint
of ΛP , as the symbols would suggest. However, the identity we proved in lemma 3.4 shows that
this is in fact true, and thus there is no abuse of notation.
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3.2. Proof of injectivity. The proof of injectivity is based on an Alessandrini identity and
the Runge approximation property for our operator, following the scheme developed in [15].

Lemma 3.6 (Alessandrini identity). Let Ω ⊂ Rn be a bounded open set. Let s ∈ R+ \ Z and

m ∈ N such that 2s > m. For j = 1, 2, let aj,α ∈M0(Hs−|α| → H−s). For any f1, f2 ∈ Hs(Rn),
let u1, u

∗
2 ∈ Hs(Rn) respectively solve

(−∆)su1 +
∑
|α|≤m

a1,αD
αu1 = 0 in Ω, u1 − f1 ∈ H̃s(Ω)

and

(−∆)su∗2 +
∑
|α|≤m

(−1)|α|Dα(a2,αu
∗
2) = 0 in Ω, u∗2 − f2 ∈ H̃s(Ω).

Then we have the integral identity

〈(ΛP1 − ΛP2)[f1], [f2]〉 =
∑
|α|≤m

〈(a1,α − a2,α), Dαu1u
∗
2〉.

Proof. The proof is a simple computation following from lemma 3.4

〈(ΛP1 − ΛP2)[f1], [f2]〉 = 〈ΛP1 [f1], [f2]〉 − 〈ΛP2 [f1], [f2]〉 = 〈ΛP1 [f1], [f2]〉 − 〈[f1],Λ∗P2
[f2]〉

= BP1(u1, u
∗
2)−B∗P2

(u∗2, u1) =
∑
|α|≤m

〈(a1,α − a2,α), Dαu1u
∗
2〉. �

Lemma 3.7 (Runge approximation property). Let Ω,W ⊂ Rn respectively be a bounded open
set and a non-empty open set such that W ∩ Ω = ∅. Let s ∈ R+ \ Z and m ∈ N be such that

2s > m, and let aα ∈M0(Hs−|α| → H−s). Moreover, let R := {uf −f : f ∈ C∞c (W ) } ⊂ H̃s(Ω)
where uf solves

(−∆)suf +
∑
|α|≤m

aαD
αuf = 0 in Ω, uf − f ∈ H̃s(Ω)

and R∗ := {u∗f − f : f ∈ C∞c (W ) } ⊂ H̃s(Ω) where u∗f solves

(−∆)su∗f +
∑
|α|≤m

(−1)|α|Dα(aαu
∗
f ) = 0 in Ω, u∗f − f ∈ H̃s(Ω).

Then R and R∗ are dense in H̃s(Ω).

Proof. The proofs of the two statements are similar, so we show only the density of R in H̃s(Ω).

By the Hahn-Banach theorem, it is enough to prove that any functional F acting on H̃s(Ω)

that vanishes on R must be identically 0. Thus, let F ∈ (H̃s(Ω))∗ and assume F (uf − f) = 0
for all f ∈ C∞c (W ). Let φ be the unique solution of

(16) (−∆)sφ+
∑
|α|≤m

(−1)|α|Dα(aαφ) = −F in Ω, φ ∈ H̃s(Ω).

In other words, φ is the unique function in H̃s(Ω) such that B∗P (φ,w) = −F (w) for all w ∈
H̃s(Ω). Then we can compute

0 = F (uf − f) = −B∗P (φ, uf − f) = B∗P (φ, f)(17)

= 〈(−∆)s/2f, (−∆)s/2φ〉+
∑
|α|≤m

〈aα, Dαfφ〉

= 〈f, (−∆)sφ〉.

On the first line of (3.2) we used that φ ∈ H̃s(Ω) and uf solves the equation in Ω, and on the last
line we used the support condition for f . By the arbitrariety of f ∈ C∞c (W ) we have obtained
that (−∆)sφ = 0 in W , and on the same set we also have φ = 0. Using the unique continuation
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result for the higher order fractional Laplacian given in lemma 2.1 we deduce φ ≡ 0 on all of
Rn. The vanishing of the functional F now follows easily from the definition of φ. �

Remark 3.8. We remark that using the same proof one can show that rΩR ⊂ L2(Ω) and
rΩR∗ ⊂ L2(Ω) are dense in L2(Ω), where rΩ is the restriction to Ω. If F ∈ L2(Ω), then F

induces an element in (H̃s(Ω))∗ via the inner product F (w) := 〈F, rΩw〉Ω, where w ∈ H̃s(Ω).
Hence one can choose the solution φ in equation (3.2) with F as a source term and complete
the proof as in equation (3.2) showing that (rΩR)⊥ = {0} in L2(Ω) (similarly (rΩR∗)⊥ = {0}).

We are ready to prove the main result of the paper.

Proof of theorem 1.1. Step 1. Since one can always shrink the sets W1 and W2 if necessary,
we can assume without loss of generality that W1 ∩ W2 = ∅. Let v1, v2 ∈ C∞c (Ω). By the
Runge approximation property proved in lemma 3.7 we can find two sequences of functions
{fj,k}k∈N ⊂ C∞c (Wj), j = 1, 2, such that

u1,k = f1,k + v1 + r1,k, u∗2,k = f2,k + v2 + r2,k

where u1,k, u
∗
2,k ∈ H̃s(Ω) respectively solve

(−∆)su1,k +
∑
|α|≤m

a1,αD
αu1,k = 0 in Ω, u1,k − f1,k ∈ H̃s(Ω)

and

(−∆)su∗2,k +
∑
|α|≤m

(−1)|α|Dα(a2,αu
∗
2,k) = 0 in Ω, u∗2,k − f2,k ∈ H̃s(Ω)

and r1,k, r2,k → 0 in H̃s(Ω) as k →∞. By the assumption on the DN maps and the Alessandrini
identity from lemma 3.6 we have

0 = 〈(ΛP1 − ΛP2)[f1,k], [f2,k]〉 =
∑
|α|≤m

〈(a1,α − a2,α), Dαu1,ku
∗
2,k〉(18)

=
∑
|α|≤m

〈(a1,α − a2,α), Dαr1,ku
∗
2,k〉+

∑
|α|≤m

〈(a1,α − a2,α), Dαv1r2,k〉

+
∑
|α|≤m

〈(a1,α − a2,α), Dαv1v2〉.

However, for the first two terms on the right hand side of (3.2) we can deduce∣∣∣∣∣∣
∑
|α|≤m

〈(a1,α − a2,α), Dαr1,ku
∗
2,k〉

∣∣∣∣∣∣ ≤
∑
|α|≤m

|〈(a1,α − a2,α), Dαr1,ku
∗
2,k〉|

≤ C‖u∗2,k‖Hs‖r1,k‖Hs

∑
|α|≤m

‖a1,α − a2,α‖s−|α|,−s → 0

and

|
∑
|α|≤m

〈(a1,α − a2,α), Dαv1r2,k〉| ≤
∑
|α|≤m

|〈(a1,α − a2,α), Dαv1r2,k〉|

≤ C‖r2,k‖Hs‖v1‖Hs

∑
|α|≤m

‖a1,α − a2,α‖s−|α|,−s → 0

as k →∞. Thus by taking the limit in formula (3.2) we obtain

(19)
∑
|α|≤m

〈(a1,α − a2,α), Dαv1v2〉 = 0 for all v1, v2 ∈ C∞c (Ω).

14



Step 2. Assume that we have a1,α|Ω = a2,α|Ω for all α such that |α| < N for some N ∈ N.
We show that the equality of the coefficients also holds for α for which |α| = N and this will
prove the theorem by the principle of complete induction.

To this end, consider v2 ∈ C∞c (Ω), and then take v1 ∈ C∞c (Ω) such that v1(x) = xα

on supp(v2) b Ω. Recall that since α = (α1, α2, ..., αn) ∈ Nn is a multi-index and x =
(x1, x2, ..., xn) ∈ Rn, the symbol xα is intended to mean xα1

1 xα2
2 ... xαnn . With this choice of

v1, v2, equation (3.2) becomes

0 =
∑
|β|≤m

〈(a1,β − a2,β), Dβv1v2〉 =
∑

N≤|β|≤m

〈(a1,β − a2,β), Dβ(xα)v2〉(20)

=
∑

N<|β|≤m

〈(a1,β − a2,β), Dβ(xα)v2〉+
∑

|β|=N, β 6=α

〈(a1,β − a2,β), Dβ(xα)v2〉

+ 〈(a1,α − a2,α), Dα(xα)v2〉.

If |β| > N = |α|, then there must exist k ∈ {1, 2, ..., n} such that βk > αk. This is true also if
|β| = N with β 6= α. In both cases we can compute

Dβ(xα) = (∂β1x1x
α1
1 ) (∂β2x2x

α2
2 ) ... (∂βnxnx

αn
n ) = 0

because ∂βkxkx
αk
k = 0. Therefore formula (3.2) becomes

0 = 〈(a1,α − a2,α), Dα(xα)v2〉Rn = α!〈a1,α − a2,α, v2〉Rn

which by the arbitrariety of v2 ∈ C∞c (Ω) implies a1,α|Ω = a2,α|Ω also for α for which |α| = N .
Step 3. We have proved that a1,α|Ω = a2,α|Ω for all α of the order |α| ≤ m. Since this entails

P1|Ω = P2|Ω, the proof is complete. �

4. Main theorem for bounded coefficients

We shall now study the case when the coefficients of PDOs are from the bounded spaces
Hrα,∞(Ω). It should be noted, however, that most of the considerations of the previous section
still apply identically.

4.1. Well-posedness of the inverse problem. We shall define the bilinear forms for the
problems (3.1) and (3.1) respectively by (3.1) and (3.1), just as in the case of singular coefficients.
These will turn out to be bounded in Hs(Rn) ×Hs(Rn) as well, but the proof we give of this
fact is a fortiori different. Since now we assume that aα ∈ Hrα,∞(Ω) ⊂ L∞(Ω) for rα ≥ 0, the
duality pairing 〈aα, Dαvw〉 becomes an inner product over Ω and we write 〈aα(x)Dαv, w〉Ω to
emphasize that the coefficients aα = aα(x) are now functions defined in Ω.

Lemma 4.1 (Boundedness of the bilinear forms). Let Ω ⊂ Rn be a bounded Lipschitz domain
and s ∈ R+ \ Z, m ∈ N such that 2s > m. Let aα ∈ Hrα,∞(Ω), with rα defined as in (1.2).
Then BP and B∗P extend as bounded bilinear forms on Hs(Rn)×Hs(Rn).

Remark 4.2. Since s ∈ R+ \ Z and |α| ≤ m < 2s, we also have that max(0, |α| − s) ≤ rα < s
for δ > 0 small (see equation (1.2)).

Proof of lemma 4.1. We only prove the boundedness of BP , as for B∗P one can proceed in the
same way. If v, w ∈ C∞c (Rn), then

|〈aα(x)Dαv, w〉Ω| =
∣∣∣∣∫

Ω
aαwD

αv dx

∣∣∣∣ ≤ ‖aαw‖(H−rα (Ω))∗‖Dαv‖H−rα (Ω).

Since Ω is a Lipschitz domain and rα > −1/2, rα 6∈
{

1
2 ,

3
2 ,

5
2 ...
}

, we have (H−rα(Ω))∗ =
Hrα

0 (Ω) ⊂ Hrα(Ω). Therefore

|〈aα(x)Dαv, w〉Ω| ≤ C‖aαw‖Hrα (Ω)‖Dαv‖H−rα (Ω) ≤ C‖Aαw‖Hrα (Rn)‖Dαv‖H−rα (Ω)(21)

≤ C‖Jrα(Aαw)‖L2(Rn)‖v‖H|α|−rα (Ω)
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where J = (Id−∆)1/2 is the Bessel potential and Aα is an extension of aα from Ω to Rn such
that Aα|Ω = aα and ‖Aα‖Hrα,∞(Rn) ≤ 2‖aα‖Hrα,∞(Ω). Since rα ≥ 0, we may estimate the last
term of (4.1) by the Kato-Ponce inequality given in lemma 2.3

‖Jrα(Aαw)‖L2(Rn) ≤ C
(
‖Aα‖L∞(Rn)‖Jrαw‖L2(Rn) + ‖JrαAα‖L∞(Rn)‖w‖L2(Rn)

)
≤ C‖Aα‖Hrα,∞(Rn)‖w‖Hrα (Rn) ≤ C‖aα‖Hrα,∞(Ω)‖w‖Hrα (Rn).

Substituting this into (4.1) gives

|〈aα(x)Dαv, w〉Ω| ≤ C‖aα‖Hrα,∞(Ω)‖w‖Hrα (Rn)‖v‖H|α|−rα (Ω)(22)

≤ C‖aα‖Hrα,∞(Ω)‖w‖Hs(Rn)‖v‖Hs(Rn)

given that both rα < s and |α| − rα ≤ s hold by remark 4.2. Eventually we obtain

|BP (v, w)| ≤ |〈(−∆)s/2v, (−∆)s/2w〉Rn |+
∑
|α|≤m

|〈aαDαv, w〉Rn |

≤ ‖w‖Hs(Rn)‖v‖Hs(Rn) +
∑
|α|≤m

C‖aα‖Hrα,∞(Ω)‖w‖Hs(Rn)‖v‖Hs(Rn)

≤ C‖w‖Hs(Rn)‖v‖Hs(Rn). �

Next we shall prove existence and uniqueness of solutions for the problems (3.1) and (3.1).
The reasoning is similar to the one for the proof of lemma 3.3, but the details of the computations
are quite different.

Lemma 4.3 (Well-posedness). Let Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ R+ \ Z,
m ∈ N such that 2s > m. Let aα ∈ Hrα,∞(Ω), with rα defined as in (1.2). There exist a real
number µ > 0 and a countable set Σ ⊂ (−µ,∞) of eigenvalues λ1 ≤ λ2 ≤ ... → ∞ such that if

λ ∈ R \ Σ, for any f ∈ Hs(Rn) and F ∈ (H̃s(Ω))∗ there exists a unique u ∈ Hs(Rn) such that

u− f ∈ H̃s(Ω) and

BP (u, v)− λ〈u, v〉Ω = F (v) for all v ∈ H̃s(Ω).

One has the estimate
‖u‖Hs(Rn) ≤ C

(
‖f‖Hs(Rn) + ‖F‖

(H̃s(Ω))∗

)
.

The function u is also the unique u ∈ Hs(Rn) satisfying

rΩ

(−∆)s +
∑
|α|≤m

aα(x)Dα − λ

u = F

in the sense of distributions in Ω and u− f ∈ H̃s(Ω). Moreover, if (3.1) holds then 0 /∈ Σ.

Proof. Again it is enough to find unique ũ ∈ H̃s(Ω) such that BP (ũ, v) − λ〈ũ, v〉Ω = F̃ (v),

where F̃ := F −BP (f, ·) + λ〈f, ·〉Ω. Consider v, w ∈ C∞c (Ω) and rα 6= 0. Since 0 < rα < s, the
interpolation inequality

‖w‖Hrα (Rn) ≤ C‖w‖
1−rα/s
L2(Rn)

‖w‖rα/sHs(Rn)

holds. Using this and formula (4.1) we get, for a constant C = C(Ω, n, s, rα) which may change
from line to line,

|〈aα(x)Dαv, w〉Ω| ≤ C‖aα‖Hrα,∞(Ω)‖v‖Hs(Rn)‖w‖Hrα (Rn)(23)

≤ C‖aα‖Hrα,∞(Ω)‖v‖Hs(Rn)‖w‖
1−rα/s
L2(Rn)

‖w‖rα/sHs(Rn)

≤ ‖aα‖Hrα,∞(Ω)‖v‖Hs(Rn)

(
Cεrα/(rα−s)‖w‖L2(Rn) + ε‖w‖Hs(Rn)

)
.

In the last step of (4.1) we used formula (3.1) with

q =
s

rα
, p =

s

s− rα
, b = ‖w‖rα/sHs(Rn), a = C‖w‖1−rα/s

L2(Rn)
, η = ε.
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If instead rα = 0, just by formula (4.1) we already have

|〈aα(x)Dαv, w〉Ω| ≤ C‖aα‖L∞(Ω)‖v‖Hs(Rn)‖w‖L2(Rn).

Moreover, the two estimates above also hold for v, w ∈ H̃s(Ω) by the density of C∞c (Ω) in

H̃s(Ω). Now we use formula (3.1) again, but this time we choose

q = p = 2, b = ‖v‖Hs(Rn), a = ‖v‖L2(Rn), η = εs/(s−rα).

This leads to

|〈aα(x)Dαv, v〉Ω| ≤ ‖aα‖Hrα,∞(Ω)‖v‖Hs(Rn)

(
Cεrα/(rα−s)‖v‖L2(Rn) + ε‖v‖Hs(Rn)

)
= ‖aα‖Hrα,∞(Ω)

(
Cεrα/(rα−s)‖v‖L2(Rn)‖v‖Hs(Rn) + ε‖v‖2Hs(Rn)

)
≤ ‖aα‖Hrα,∞(Ω)

(
Cε

rα+s
rα−s ‖v‖2L2(Rn) + ε(C + 1)‖v‖2Hs(Rn)

)
≤ C‖aα‖Hrα,∞(Ω)

(
ε
rα+s
rα−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
≤ C ′‖aα‖Hrα,∞(Ω)

(
ε
M+s
M−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
where C = C(Ω, n, s, rα) and C ′ = C ′(Ω, n, s) are constants changing from line to line and
M ∈ [0, s) is defined by M := max|α|≤m rα. Eventually

BP (v, v) ≥ ‖(−∆)s/2v‖2L2(Rn) −
∑
|α|≤m

|〈aα(x)Dαv, v〉Ω|(24)

≥ ‖(−∆)s/2v‖2L2(Rn) − C
′
(
ε
M+s
M−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

) ∑
|α|≤m

‖aα‖Hrα,∞(Ω)

= ‖(−∆)s/2v‖2L2(Rn) − C
′C ′′

(
ε
M+s
M−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
where C ′′ :=

∑
|α|≤m ‖aα‖Hrα,∞(Ω) is a constant independent of ε and v. By the higher order

Poincaré inequality (lemma 2.2) (4.1) turns into

BP (v, v) ≥ c
(
‖(−∆)s/2v‖2L2(Rn) + ‖v‖2L2(Rn)

)
− C ′C ′′

(
ε
M+s
M−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
≥ c‖v‖2Hs(Rn) − C

′C ′′
(
ε
M+s
M−s ‖v‖2L2(Rn) + ε‖v‖2Hs(Rn)

)
for some constant c = c(Ω, n, s) changing from line to line. For ε small enough (notice that
M − s < 0), this eventually gives the coercivity estimate

(25) BP (v, v) ≥ c0‖v‖2Hs(Rn) − µ‖v‖
2
L2(Rn)

for some constants c0, µ > 0 independent of v. The proof is now concluded as in lemma 3.3. �

Assuming as in Section 3 that both (3.1) and (3.1) hold, by means of the above lemma 4.3 we
can define the DN-maps ΛP ,Λ

∗
P just as in lemma 3.4. We also arrive at the same Alessandrini

identity and Runge approximation property which we get in lemmas 3.6 and 3.7.

Lemma 4.4 (DN maps). Let Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ R+ \ Z, m ∈ N
such that 2s > m. Let aα ∈ Hrα,∞(Ω), with rα defined as in (1.2). There exist two continuous
linear maps

ΛP : X → X∗ defined by 〈ΛP [f ], [g]〉 := BP (uf , g)

and

Λ∗P : X → X∗ defined by 〈Λ∗P [f ], [g]〉 := B∗P (u∗f , g)

where uf , u
∗
f are the unique solutions to the equations

(−∆)su+
∑
|α|≤m

aα(x)Dαu = 0 in Ω, u− f ∈ H̃s(Ω)
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and

(−∆)su∗ +
∑
|α|≤m

(−1)|α|Dα(aα(x)u∗) = 0 in Ω, u∗ − f ∈ H̃s(Ω)

with f, g ∈ Hs(Rn). Moreover, the identity 〈ΛP [f ], [g]〉 = 〈[f ],Λ∗P [g]〉 holds.

Lemma 4.5 (Alessandrini identity). Let Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ R+\Z,
m ∈ N such that 2s > m. Let aα ∈ Hrα,∞(Ω), with rα defined as in (1.2). For any f1, f2 ∈
Hs(Rn), let u1, u

∗
2 ∈ Hs(Rn) respectively solve

(−∆)su1 +
∑
|α|≤m

a1,α(x)Dαu1 = 0 in Ω, u1 − f1 ∈ H̃s(Ω)

and

(−∆)su∗2 +
∑
|α|≤m

(−1)|α|Dα(a2,α(x)u∗2) = 0 in Ω, u∗2 − f2 ∈ H̃s(Ω).

Then we have the integral identity

〈(ΛP1 − ΛP2)[f1], [f2]〉 =
∑
|α|≤m

〈(a1,α − a2,α)Dαu1, u
∗
2〉Ω.

Lemma 4.6 (Runge approximation property). Let Ω,W ⊂ Rn respectively be a bounded Lips-
chitz domain and a non-empty open set such that W ∩Ω = ∅. Let s ∈ R+ \Z, m ∈ N such that
2s > m. Let aα ∈ Hrα,∞(Ω), with rα defined as in (1.2). Moreover, let R := {uf − f : f ∈
C∞c (W ) } ⊂ H̃s(Ω), where uf solves

(−∆)suf +
∑
|α|≤m

aα(x)Dαuf = 0 in Ω, uf − f ∈ H̃s(Ω)

and R∗ := {u∗f − f : f ∈ C∞c (W ) } ⊂ H̃s(Ω), where u∗f solves

(−∆)su∗f +
∑
|α|≤m

(−1)|α|Dα(aα(x)u∗f ) = 0 in Ω, u∗f − f ∈ H̃s(Ω).

Then R and R∗ are dense in H̃s(Ω).

4.2. Proof of injectivity.

Proof of theorem 1.2. The proof is virtually identical to the one of theorem 1.1, the unique
difference being in the way the error terms of the Runge approximation are estimated. We make
use of (4.1), which relied on the Kato-Ponce inequality instead of multiplier space estimates. In
this way we get∣∣∣∣∣∣
∑
|α|≤m

〈(a1,α − a2,α)Dαr1,k, u
∗
2,k〉Rn

∣∣∣∣∣∣ ≤
∑
|α|≤m

|〈(a1,α − a2,α)Dαr1,k, u
∗
2,k〉Rn |

≤ C‖u∗2,k‖Hs(Rn)‖r1,k‖Hs(Rn)

∑
|α|≤m

‖a1,α − a2,α‖Hrα,∞(Ω) → 0

and

|
∑
|α|≤m

〈(a1,α − a2,α)Dαv1, r2,k〉Rn | ≤
∑
|α|≤m

|〈(a1,α − a2,α)Dαv1, r2,k〉Rn |

≤ C‖r2,k‖Hs(Rn)‖v1‖Hs(Rn)

∑
|α|≤m

‖a1,α − a2,α‖Hrα,∞(Ω) → 0.�
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[14] T. Ghosh, A. Rüland, M. Salo, and G. Uhlmann. Uniqueness and reconstruction for the fractional Calderón

problem with a single measurement. Journal of Functional Analysis, 279(1):108505, 2020.
[15] T. Ghosh, M. Salo, and G. Uhlmann. The Calderón problem for the fractional Schrödinger equation. Anal.

PDE 13(2):455-475, 2020.
[16] L. Grafakos and S. Oh. The Kato-Ponce inequality. Communications in Partial Differential Equations,

39(6):1128-1157, 2014.
[17] A. Gulisashvili and M. A. Kon. Exact Smoothing Properties of Schrödinger Semigroups. American Journal

of Mathematics, 118(6):1215–1248, 1996.
[18] T. Kato and G. Ponce. Commutator Estimates and the Euler and Navier-Stokes Equations. Communications

on Pure and Applied Mathematics, 41(7):891–907, 1988.
[19] R.-Y. Lai and Y.-H. Lin. Global uniqueness for the fractional semilinear Schrödinger equation. Proc. Amer.

Math. Soc., 147(3):1189–1199, 2019.
[20] R.-Y. Lai and Y.-H. Lin. Inverse problems for fractional semilinear elliptic equations. 2020. arXiv:2004.00549.
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[34] A. Rüland and M. Salo. Exponential instability in the fractional Calderón problem. Inverse Problems,

34(4):045003, 21, 2018.
[35] A. Rüland and M. Salo. Quantitative approximation properties for the fractional heat equation. Mathematical

Control & Related Fields, pages 233–249, 2019.
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