

# This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Puerta Lombardi, Braulio Michele; Gendy, Chris; Gelfand, Benjamin S.; Bernard, Guy M.; Wasylishen, Roderick E.; Tuononen, Heikki M.; Roesler, Roland

Title: Side-on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel

Year: 2021

Version: Accepted version (Final draft)

Copyright: © 2020 the Authors

Rights: <sub>CC BY 4.0</sub>

Rights url: https://creativecommons.org/licenses/by/4.0/

## Please cite the original version:

Puerta Lombardi, B. M., Gendy, C., Gelfand, B. S., Bernard, G. M., Wasylishen, R. E., Tuononen, H. M., & Roesler, R. (2021). Side-on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel. Angewandte Chemie, 60(13), 7077-7081. https://doi.org/10.1002/anie.202011301

## IP Nickel Complexes Very Important Paper

How to cite:

International Edition: doi.org/10.1002/anie.202011301 German Edition: doi.org/10.1002/ange.202011301

# Side-on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel

Braulio M. Puerta Lombardi<sup>+</sup>, Chris Gendy<sup>+</sup>, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen,\* and Roland Roesler\*

In memory of Professor Suning Wang

**Abstract:** A nickel complex incorporating an  $N_2O$  ligand with a rare  $\eta^2$ -N,N'-coordination mode was isolated and characterized by X-ray crystallography, as well as by IR and solidstate NMR spectroscopy augmented by <sup>15</sup>N-labeling experiments. The isoelectronic nickel CO<sub>2</sub> complex reported for comparison features a very similar solid-state structure. Computational studies revealed that  $\eta^2$ -N<sub>2</sub>O binds to nickel slightly stronger than  $\eta^2$ -CO<sub>2</sub> in this case, and comparably to or slightly stronger than  $\eta^2$ -CO<sub>2</sub> to transition metals in general. Comparable transition-state energies for the formation of isomeric  $\eta^2$ -N,N'- and  $\eta^2$ -N,O-complexes, and a negligible activation barrier for the decomposition of the latter likely account for the limited stability of the N<sub>2</sub>O complex.

Among the numerous oxides of nitrogen, nitrous oxide  $(N_2O)$  is most intimately intertwined with modern human activities. It figures on the WHO's List of Essential Medicines for use in pain management,<sup>[1]</sup> and it also has a long history as a recreational drug dubbed "laughing gas".<sup>[2]</sup> It is used as an oxidant ("nitrous") in racing engines and is a suitable propellant in rockets,<sup>[3]</sup> as well as in whipped cream and cooking oil canisters. Industrially, N<sub>2</sub>O is an important by-product in nitric acid and adipic acid manufacturing.<sup>[4]</sup> Although industrial pollutants are not to be neglected,



natural, enzymatic denitrification processes<sup>[5]</sup> are the main source of N<sub>2</sub>O in the environment and for this reason the gas was proposed to be part of the biosignature of life on exoplanets.<sup>[6]</sup> The widespread use of nitrogen fertilizers led to an enhancement of denitrification processes and N2O rose to prominence as a greenhouse gas 300 times more potent than CO<sub>2</sub>, and "the dominant ozone-depleting substance emitted in the 21st Century".<sup>[7]</sup> Although its decomposition into elements is thermodynamically favorable  $(\Delta_{\rm f} H^{\circ}_{\rm gas} 82.1 \text{ kJ mol}^{-1})$ , the high activation barrier  $(250 \text{ kJ mol}^{-1})^{[8]}$ associated with this process means that N<sub>2</sub>O persists in the atmosphere for an average of 117(8) years.<sup>[9]</sup> Consequently, interest towards using N<sub>2</sub>O as a synthon,<sup>[10]</sup> as well as towards catalyzing its decomposition into elements has increased in recent years,<sup>[11]</sup> in turn prompting investigations meant to elucidate the interaction of this prominent small molecule with metals.

 $N_2O$  reacts readily with numerous metal complexes and organic substrates, mostly as an oxidant but also as a nitrogen atom donor,<sup>[4,10]</sup> and can be trapped by frustrated Lewis pairs<sup>[12]</sup> and N-heterocyclic carbenes (NHCs).<sup>[13]</sup> Its reactivity involving insertion into M–C and M–H bonds is well documented.<sup>[10,14]</sup> In contrast to its isoelectronic counterpart  $CO_2$ , which has a rich coordination chemistry,<sup>[15]</sup> N<sub>2</sub>O has been generally described as a poor, or exceedingly poor ligand due to its weak  $\sigma$ -donating and  $\pi$ -accepting properties, low polarity, and oxidizing character.<sup>[86,16]</sup>

Extensive investigations of ruthenium derivative A (Figure 1), which remained for more than three decades the only known metal complex of nitrous oxide, revealed that N<sub>2</sub>O coordinated in a linear fashion via the terminal nitrogen



Angew. Chem. Int. Ed. 2021, 60, 1-6

© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

These are not the final page numbers!

Wiley Online Library

and was a poor ligand susceptible to reduction and displacement.<sup>[17]</sup> These conclusions were supported by computational studies,<sup>[17c,18]</sup> the spectroscopic characterization of complex **B**<sup>[19]</sup> as well as the NMR characterization of surfacecoordinated N<sub>2</sub>O.<sup>[20]</sup> Confirmation of these findings was provided over the last decade by the comprehensive characterization of discrete, end-on bonded complexes C, D and E (Figure 1).<sup>[21-23]</sup> The rich coordination chemistry of CO<sub>2</sub> suggests that the isoelectronic N<sub>2</sub>O molecule should also be able to adopt a bent, N,N'-side-on coordination mode, which had been probed computationally for surface binding.<sup>[24]</sup> Linear N<sub>2</sub>O bound at the [4Cu:2S] active site of nitrous oxide reductase has been shown to display long, side-on Cu···N contacts.<sup>[25]</sup> Ultimately, the first  $\eta^2$ -*N*,*N'*-N<sub>2</sub>O complex F, which was persistent below -25 °C, was recently characterized and the  $\pi$ -basicity of the metal was shown to be key to its isolation.<sup>[26]</sup>

We reported on a bis(NHC)<sub>2</sub>Ni<sup>0</sup>-GeCl<sub>2</sub> complex incorporating a siloxane-linked (NHC)<sub>2</sub>Ni<sup>0</sup> fragment with a bent L<sub>2</sub>M geometry.<sup>[27]</sup> Computational studies indicated that this fragment featured the frontier orbitals necessary for efficient  $\eta^2$ -interactions with  $\pi$ -acidic ligands.<sup>[18c,28]</sup> Thus, we hypothesized that a bis(NHC)<sub>2</sub> supported Ni<sup>0</sup> would be an excellent candidate for stabilizing side-on,  $\eta^2$ -N<sub>2</sub>O complexes, especially taking into account the resilience of NHC ligands to oxidation. Design of ligand **1**, incorporating a shorter silane linker, aimed to impose a narrow C<sub>NHC</sub>-Ni-C<sub>NHC</sub> angle and increase the  $\pi$ -basicity of the metal.<sup>[29]</sup> This allowed us to characterize analogous  $\eta^2$ -bound Ni<sup>0</sup> complexes of N<sub>2</sub>O and CO<sub>2</sub> and to assess the relative binding ability of the two ligands for the first time.

Prepared by deprotonation of its bis(imidazolium) precursor, ligand **1** reacted with Ni(cod)<sub>2</sub> to yield (**1**)Ni( $\eta^2$ -cod), **2** (Scheme 1). Solution <sup>1</sup>H NMR analysis of **2** revealed a broad, complex spectrum denoting  $C_1$  symmetry, reflected in the <sup>13</sup>C NMR spectrum by the presence of two resonances for the coordinated carbene carbons (200.4 and 208.4 ppm). Reduced conformational fluxionality in complexes containing bis-(NHC)Ni fragments was shown to lead to broad, poorly resolved resonances in the solution NMR spectra, as well as lowering of the expected time-averaged symmetry.<sup>[27]</sup> An Xray diffraction experiment on **2** confirmed chelation of the ligand to Ni in a bent geometry (C1-Ni1-C8 107.9(1)°) (Figure S28) and the  $\eta^2$ -coordination of 1,5-cyclooctadiene.

In solution, complex **2** reacted with 1 atm of  $N_2O$  at room temperature to yield **3**, which was isolated as a yellow crystalline solid. The low solubility of **3** precluded its characterization in solution. As a solid, it can be stored for months at -78 °C and handled at room temperature in vacuum or under an inert atmosphere, but partial decomposition is apparent after 12 hours at room temperature (by IR). Heating to 70 °C in THF leads to dissolution upon  $N_2$ development (Figure S3). The <sup>13</sup>C CP-MAS NMR spectrum of **3** (Figure S19) features two resonances corresponding to the coordinated carbene carbons at 183.7 and 192.5 ppm, similar to the values measured in solution for **2**.

The <sup>15</sup>N CP-MAS NMR resonances for bound  $N_2O$  in an isotopically enriched sample of **3** were observed at 365 and 312 ppm (Figure 2), corresponding to the central and terminal



**Scheme 1.** Synthesis of compounds 1–3 and 5, and the postulated, fleeting  $\eta^2$ -*N*,*O*-isomer 4. Dipp = 2,6-diisopropylphenyl.



Figure 2.  $^{15}N$  CP-MAS NMR spectrum of 3 containing 33%  $^{15}N_2O$ , the latter prepared using an original method (see Supporting Information).

nitrogen atoms in N<sub>2</sub>O, respectively (vs. the gas phase computed values of 395 and 313 ppm). These values are significantly deshielded compared to those observed in the  $\kappa^{1}$ -*N*-N<sub>2</sub>O and the  $\eta^2$ -*N*,*N'*-N<sub>2</sub>O complexes, as well as those for free N<sub>2</sub>O (Table 1). Resonances corresponding to the naturally abundant nitrogen atoms in the imidazole rings appear between 187.5-190.4 ppm, matching literature data for NHC ligands.<sup>[30]</sup> Infrared spectroscopy suggests that  $N_2O$  is side-on,  $\eta^2$ -N,N'-coordinated in 3. The observed  $\nu_{NN}$  stretching and  $v_{\rm NNO}$  bending vibrations (Figure 3) at 1533 and 1138 cm<sup>-1</sup>, respectively (vs. the gas phase computed values of 1725 and  $1243 \text{ cm}^{-1}$ , and the experimental values for **F** of 1624 and 1131 cm<sup>-1</sup>) shift to lower frequencies (1495 and 1121 cm<sup>-1</sup>) in <sup>15</sup>N-enriched samples of **3**. The  $\nu_{NN}$  stretching vibration measured in 3 is the lowest value observed in N<sub>2</sub>O metal complexes, both  $\kappa^1$ -N-N<sub>2</sub>O (2234–2303 cm<sup>-1</sup> for  $\nu_{NN}$  and 1150–1337 cm<sup>-1</sup> for  $\nu_{NO}$  in **A–E**) and  $\eta^2$ -*N*,*N*'-N<sub>2</sub>O (1624 cm<sup>-1</sup> for  $\nu_{\rm NN}$  and 1131 cm<sup>-1</sup> for  $\nu_{\rm NNO}$  in **F**), in agreement with the high  $\pi$ -basicity of the (1)Ni<sup>0</sup> fragment and its strong interaction with the  $\pi^*$  system of N<sub>2</sub>O.

X-ray crystallography revealed for **3** the expected, bent (**1**)Ni fragment ( $\pm$ CNC 104.47(13)°) with the side-on,  $\eta^2$ -*N*,*N*'-coordinated N<sub>2</sub>O ligand completing the coordination

Table 1: Selected <sup>15</sup>N NMR resonances for free and bound N<sub>2</sub>O.

| Cpd.                                              | $N_2 O^{[26]}$                           | <b>B</b> <sup>[19]</sup>               | $\mathbf{D}^{[a],[22]}$          | <b>D</b> <sup>[b], [22]</sup>    | <b>F</b> <sup>[26]</sup>                 | 3                   | <b>3</b> <sup>[c]</sup> |
|---------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|----------------------------------|------------------------------------------|---------------------|-------------------------|
| Solv.<br>δN <sub>term</sub><br>δN <sub>cent</sub> | tol- <i>d</i> <sub>8</sub><br>135<br>218 | CD <sub>2</sub> Cl <sub>2</sub><br>126 | DFB <sup>[d]</sup><br>109<br>245 | DFB <sup>[d]</sup><br>103<br>246 | tol <i>-d</i> <sub>8</sub><br>159<br>309 | solid<br>312<br>365 | gas<br>313<br>395       |

[a]  $E = CH_2$ . [b] E = O. [c] Computed. [d]  $DFB = 1,2-F_2C_6H_4$ .

www.angewandte.org © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Angew. Chem. Int. Ed. 2021, 60, 1-6

These are not the final page numbers!



Figure 3. Overlaid FT-IR spectra for 3 and  $3-(^{15}N_2O)$  (99% isotopically enriched) with spectral difference below.



*Figure 4.* Solid-state structure of one of the two independent molecules of **3** with 50% thermal ellipsoids, and hydrogen atoms omitted. Selected bond lengths [Å] and angles [°] with [calculated values]: N5–N6 1.225(4) [1.210], N5–O1 1.276(4) [1.239], Ni1–N5 1.803(3) [1.821], Ni–N6 1.926(3) [1.910], Ni1–C1 1.901(3) [1.934], Ni1–C8 1.893(3) [1.919]; N5-N6-O1 134.7(3) [138.4], C1-Ni1-C8 104.47(13) [107.7].

sphere of nickel (Figure 4). The metric parameters characterizing the N<sub>2</sub>O moiety (N5–N6 1.225(4) Å and N5–O1 1.276-(4) Å) are consistent with the calculated values and compare well with the N–N bond length measured in **F** (1.212(8) Å). The dihedral angle formed by the N<sub>2</sub>O and C<sub>NHC</sub>NiC<sub>NHC</sub> planes measures only 8.4(3)°.

Aiming to provide a comparison for **3**, its CO<sub>2</sub> analog **5** was prepared by reaction of **2** with 1 atm of CO<sub>2</sub> in THF. The product was stable under an inert atmosphere and did not dissolve in hydrocarbon or ethereal solvents. The solid-state <sup>13</sup>C NMR spectrum of **5** (Figure S21) is very similar to the spectrum of **3**, featuring two carbene resonances (188.2 and 192.2 ppm) and a resonance corresponding to the CO<sub>2</sub> ligand (167.3 ppm). A characteristic  $\nu_{CO}$  stretching vibration is observed in the IR spectrum of **5** at 1695 cm<sup>-1</sup> (vs. the gas phase computed value of 1855 cm<sup>-1</sup>). The solid-state structure of **5** (Figure 5) is very similar to that of **3**. The bond angles in the coordinated CO<sub>2</sub> and N<sub>2</sub>O match closely ( $\angle$ NNO 134.7-(3)° in **3** vs.  $\angle$ OCO 135.0(2)° in **5**) but differences are apparent in the bond distances to their terminal atoms (N5–O1 1.275(3) Å in **3** vs. C35–O2 1.217(3) Å in **5**).

A DFT comparison of the binding energies of L in (1)Ni(L) (with  $\Delta G^{\circ}$  in parenthesis) yielded values of 87 (33) and 110 (56) kJ mol<sup>-1</sup> for L = CO<sub>2</sub> and N<sub>2</sub>O, respectively,



*Figure 5.* Solid-state structure of **5** with 50% thermal ellipsoids, and hydrogen atoms omitted. Selected bond lengths [Å] and angles [°] with [calculated values]: O1–C35 1.283(4) [1.264], C35–O2 1.218(4) [1.206], Ni1–O1 1.949(2) [1.937], Ni–C35 1.828(3) [1.839], Ni1–C1 1.973(3) [1.964], Ni1–C8 1.866(2) [1.856]; O1-C35-O2 134.6(3) [137.5], C1-Ni1-C8 106.95(10) [109.4].

while for a hypothetical complex of (1)Ni with the classic  $\pi$ acceptor ethylene, the energies are even greater, at 129 (74) kJ mol<sup>-1</sup>. Furthermore, an energy decomposition analysis with ETS-NOCV revealed that the instantaneous interaction energies of L in (1)Ni(L) follow a similar trend, largely owing to the significantly stronger orbital interactions (in parathesis): -401 (-643) and  $-415 (-709) \text{ kJ mol}^{-1}$  for  $L = CO_2$ and N<sub>2</sub>O, respectively. The total orbital interaction term can further be decomposed using NOCV, showing a dominant contribution (83% for 3 and 84% for 5) involving donation from the metal to the  $\pi^*$  system of the ligand. Taken as a whole, the results of DFT calculations indicate that N<sub>2</sub>O binds to  $(1)Ni^0$  slightly stronger than CO<sub>2</sub> due to stronger orbital interactions in 3. To probe whether the observed energetic trend is more general, the equilibrium  $TM-CO_2 +$  $N_2O \rightleftharpoons TM-N_2O + CO_2$  (TM = transition metal fragment) was analyzed computationally for 12 crystallographically characterized  $\eta^2$ -C,O-CO<sub>2</sub> complexes and their hypothetical N<sub>2</sub>O analogues. The data (Table S2) showed stronger binding for  $N_2O$  in 9 systems (up to 26 kJ mol<sup>-1</sup>) demonstrating that when bound in  $\eta^2$ -fashion, N<sub>2</sub>O is a comparable or slightly better  $\pi$ -acceptor than CO<sub>2</sub>. However, it needs to be stressed that N<sub>2</sub>O is oxidizing whereas CO<sub>2</sub> is not, for which reason the increased binding energy in the hypothetical N<sub>2</sub>O systems considered above is unlikely to stabilize  $\eta^2$ -N,N-N<sub>2</sub>O complexes over metal or ligand oxidation.

The energy landscape for the formation of **3** from  $(1)Ni^0$ and N<sub>2</sub>O was also probed with computational methods (Figure S31). The results revealed that the formation of 3involves a modest barrier ( $\Delta G^{\dagger} = 38 \text{ kJ mol}^{-1}$ ), with  $\Delta G^{\circ} =$  $-56 \text{ kJmol}^{-1}$ . The formation of the  $\eta^2$ -O,N-N<sub>2</sub>O isomer, 4, though not observed experimentally, was found to involve a greater barrier ( $\Delta G^{\dagger} = 70 \text{ kJ mol}^{-1}$ ) and a minute  $\Delta G^{\circ}$  of -2 kJ mol<sup>-1</sup>. However, **4** appears to be a metastable species and readily converts to  $(1)NiO(N_2)$  almost without a barrier. Barrierless decomposition of  $\eta^2$ -O,N-N<sub>2</sub>O bound to iron has been investigated computationally and matched experimental observations.<sup>[31]</sup> Thus, at a relative energy of  $-63 \text{ kJ mol}^{-1}$ ,  $(1)NiO(N_2)$  represents the lowest energy point on the potential energy surface and confirms that metal-oxo formation is thermodynamically favored over  $\eta^2$ -N,N-N<sub>2</sub>O complex formation, albeit only by 7 kJ mol<sup>-1</sup>. As suggested by the

www.angewandte.org

calculated energy landscape, **3**, unlike **5**, is a kinetic, not a thermodynamic, product, in agreement with its limited stability. Similarly, decomposition of **F** was reported to proceed via formation of a reactive metal-oxo species and transfer of oxygen to the ancillary isocyanide ligand.<sup>[26]</sup>

To summarize, employing the  $\pi$ -basic fragment (1)Ni, we isolated **3** by reaction of **2** with N<sub>2</sub>O. The rare  $\eta^2 - N_1 N'$ coordination mode of the N<sub>2</sub>O ligand in **3** was proved by single-crystal X-ray crystallography, as well as <sup>15</sup>N CP-MAS NMR and IR spectroscopy aided by <sup>15</sup>N isotopic enrichment. The isostructural,  $\eta^2$ -CO<sub>2</sub> complex **5** was also synthesized, allowing a direct comparison of the metal binding properties of the two isoelectronic small molecules of environmental relevance. Computational studies indicate that  $\pi$ -acceptance is the main contributor to N<sub>2</sub>O binding in **3**, and place the  $\eta^2$ -N,N'-metal binding ability of this ligand to the (1)Ni fragment in-between that of CO<sub>2</sub> and ethylene. In general, the  $\eta^2$ -N,N'binding ability of N<sub>2</sub>O to transition metals is found to be comparable to, or slightly better than that of CO<sub>2</sub>. This demonstrates that the need for a strongly  $\pi$ -basic metal fragment comes not so much from the frequently invoked "poor  $\sigma$ -donating and  $\pi$ -accepting properties" of N<sub>2</sub>O, but from the need to stabilize  $\eta^2 - N, N'$ -coordination over the thermodynamically more favorable metal-oxo formation. The well-known oxidizing character of N<sub>2</sub>O may be mostly, if not entirely responsible for the scarcity of  $\eta^2$ -metal complexes employing this ligand, and more of such complexes are expected to be in reach in designs featuring the right balance of  $\pi$ -basicity and resilience to oxidation at the metal center and associated ligands.

### Acknowledgements

Financial support was provided by the Universities of Calgary, Jyväskylä, and Alberta, as well as the NSERC of Canada in the form of Discovery Grants #2019-07195 to R.R. and #2019-06816 to R.E.W. The project received funding from the European Research Council under the EU's Horizon 2020 programme (grant #772510 to H.M.T). R.E.W. acknowledges the CFI and the Government of Alberta for NMR Facilities support. Computational resources were provided by the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) and the University of Calgary.

#### Conflict of interest

The authors declare no conflict of interest.

**Keywords:** back bonding · carbon dioxide · N-heterocyclic carbenes · nickel · nitrous oxide

- World Health Organization. World Health Organization model list of essential medicines: 21<sup>st</sup> list 2019. 2019 Geneva: World Health Organization.
- [2] M. Laing, S. Afr. J. Sci. 2003, 99, 109-114.

[3] V. Zakirov, M. Sweeting, T. Lawrence, J. Sellers, Acta Astronautica 2001, 48, 353-362.

Angewandte

I Edition Chemie

- [4] V. N. Parmon, G. I. Panov, A. Uriarte, A. S. Noskov, *Catal. Today* 2005, 100, 115–131.
- [5] a) N. Lehnert, H. T. Dong, J. B. Harland, A. P. Hunt, C. J. White, *Nat. Rev. Chem.* 2018, *2*, 278–289.
- [6] a) J. L. Grenfell, Phys. Rep. 2017, 713, 1-17.
- [7] A. R. Ravishankara, J. S. Daniel, R. W. Portmann, *Science* 2009, 326, 123–125.
- [8] a) A. H. H. Chang, D. R. Yarkony, J. Chem. Phys. 1993, 99, 6824–6831; b) W. C. Trogler, Coord. Chem. Rev. 1999, 187, 303–327.
- [9] M. J. Prather, J. Hsu, N. M. DeLuca, C. H. Jackman, L. D. Oman, A. R. Douglass, E. L. Fleming, S. E. Strahan, S. D. Steenrod, O. A. Søvde, I. S. A. Isaksen, L. Froidevaux, B. Funke, J. Geophys. Res. Atmos. 2015, 120, 5693-5705.
- [10] K. Severin, Chem. Soc. Rev. 2015, 44, 6375-6386.
- [11] M. Konsolakis, ACS Catal. 2015, 5, 6397-6421.
- [12] a) E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918–9919; b) R. C. Neu, E. Otten, A. Lough, D. W. Stephan, Chem. Sci. 2011, 2, 170–176; c) M. J. Kelly, J. Gilbert, R. Tirfoin, S. Aldridge, Angew. Chem. Int. Ed. 2013, 52, 14094–14097; Angew. Chem. 2013, 125, 14344–14347.
- [13] a) A. G. Tskhovrebov, E. Solari, M. D. Wodrich, R. Scopelliti, K. Severin, *Angew. Chem. Int. Ed.* **2012**, *51*, 232–234; *Angew. Chem.* **2012**, *124*, 236–238; b) A. G. Tskhovrebov, B. Vuichoud, E. Solari, R. Scopelliti, K. Severin, *J. Am. Chem. Soc.* **2013**, *135*, 9486–9492.
- [14] a) G. A. Vaughan, P. B. Rupert, G. L. Hillhouse, J. Am. Chem. Soc. 1987, 109, 5538-5539; b) G. A. Vaughan, C. D. Sofield, G. L. Hillhouse, A. L. Rheingold, J. Am. Chem. Soc. 1989, 111, 5491-5493.
- [15] a) A. Pastor, A. Montilla, F. Galindo, *Adv. Organomet. Chem.* **2017**, 68, 1–91; b) A. Paparo, J. Okuda, *Coord. Chem. Rev.* **2017**, 334, 136–149.
- [16] W. B. Tolman, Angew. Chem. Int. Ed. 2010, 49, 1018–1024; Angew. Chem. 2010, 122, 1034–1041.
- [17] a) J. N. Armor, H. Taube, J. Am. Chem. Soc. 1969, 91, 6874–6876; b) F. Bottomley, W. V. F. Brooks, Inorg. Chem. 1977, 16, 501–502; c) F. Paulat, T. Kuschel, C. Näther, V. K. K. Praneeth, O. Sander, N. Lehnert, Inorg. Chem. 2004, 43, 6979–6994.
- [18] a) D. F.-T. Tuan, R. Hoffmann, *Inorg. Chem.* 1985, 24, 871–876;
  b) H. Yu, G. Jia, Z. Lin, *Organometallics* 2008, 27, 3825–3833;
  c) J. G. Andino, K. G. Caulton, *J. Am. Chem. Soc.* 2011, 133, 12576–12576.
- [19] C. B. Pamplin, E. S. F. Ma, N. Safari, S. J. Rettig, B. R. James, J. Am. Chem. Soc. 2001, 123, 8596–8597.
- [20] a) S. Hu, T. M. Apple, J. Catal. 1996, 158, 199–204; b) V. M. Mastikhin, I. L. Mudrakovsky, S. V. Filimonova, Chem. Phys. Lett. 1988, 149, 175–179; c) V. M. Mastikhin, I. L. Mudrakovsky, S. V. Filimonova, Zeolites 1990, 10, 593–597.
- [21] N. A. Piro, M. F. Lichterman, W. H. Harman, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 2108–2111.
- [22] M. R. Gyton, B. Leforestier, A. B. Chaplin, Angew. Chem. Int. Ed. 2019, 58, 15295-15298; Angew. Chem. 2019, 131, 15439-15442.
- [23] V. Zhuravlev, P. J. Malinowski, Angew. Chem. Int. Ed. 2018, 57, 11697–11700; Angew. Chem. 2018, 130, 11871–11874.
- [24] a) C.-L. Hu, Y. Chen, J.-Q. Li, Y.-F. Zhang, *Chem. Phys. Lett.* **2007**, 438, 213–217; b) A. Heyden, B. Peters, A. T. Bell, F. J. Keil, *J. Phys. Chem. B* 2005, 109, 1857–1873.
- [25] A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, *Nature* 2011, 477, 234–237.
- [26] C. C. Mokhtarzadeh, C. Chan, C. E. Moore, A. L. Rheingold, J. S. Figueroa, J. Am. Chem. Soc. 2019, 141, 15003-15007.
- [27] C. Gendy, A. Mansikkamäki, J. Valjus, J. Heidebrecht, P. C.-Y. Hui, G. M. Bernard, H. M. Tuononen, R. E. Wasylishen, V. K.

ewandte.org © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Angew. Chem. Int. Ed. 2021, 60, 1–6

These are not the final page numbers!



5

Michaelis, R. Roesler, *Angew. Chem. Int. Ed.* **2019**, *58*, 154–158; *Angew. Chem.* **2019**, *131*, 160–164.

- [28] a) T. Ziegler, *Inorg. Chem.* 1985, 24, 1547–1552; b) L. P.
   Wolters, F. M. Bickelhaupt in *Structure and Bonding* (Eds.: O. Eisenstein, S. Macgregor), Springer, Berlin, 2014.
- [29] a) C. Massera, G. Frenking, *Organometallics* 2003, 22, 2758–2765; b) F. Hering, J. Nitsch, U. Paul, A. Steffen, F. M. Bickelhaupt, U. Radius, *Chem. Sci.* 2015, 6, 1426–1432.
- [30] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363.
- [31] a) P. B. Armentrout, L. F. Halle, J. L. Beauchamp, *J. Chem. Phys.* 1982, 76, 2449–2457; b) L. Zhao, Y. Wang, W. Guo, H. Shan, X. Lu, T. Yang, *J. Phys. Chem. A* 2008, *112*, 5676–5683.

Manuscript received: August 19, 2020 Revised manuscript received: October 5, 2020 Accepted manuscript online: October 27, 2020 Version of record online:



## **Communications**



Side-on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel



The characterization of  $\eta^2$ -N,N'-N<sub>2</sub>O and CO<sub>2</sub> complexes of nickel and the associated computational study reveal that the bonding ability of N<sub>2</sub>O to nickel is intermediate between that of CO<sub>2</sub> and that of H<sub>2</sub>C=CH<sub>2</sub>. It is shown that in general, N<sub>2</sub>O  $\eta^2$ -binds to metals comparably to or stronger than CO<sub>2</sub>, indicating that the rarity of  $\eta^2$ -N<sub>2</sub>O metal complexes is due mostly to its oxidizing character and not to its weak  $\sigma$ -donating and  $\pi$ -accepting properties.

6 www.angewandte.org © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Angew. Chem. Int. Ed. 2021, 60, 1-6

These are not the final page numbers!