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INTRODUCTION

Suppose (X, d, 1) is a metric measure space with p Borel regular. Given 1 < p < oo and
a family I' of paths in X, the p-modulus of I' is the number

mod, [ := inf/ PP du,
rJx

where the infimum is taken over all Borel functions p : X — [0, oo] with

/pd321
¥

for every locally rectifiable v € I'. The path modulus is a fundamental tool in geometric
function theory and nonsmooth analysis [12, 23, 28]. For example, it appears in the very
definition of quasiconformal maps: given an orientation preserving homeomorphism f :
U — V between domains U and V' of R", we say that f is quasiconformal if it quasipreserves
the conformal modulus of every path family. That is, there is a constant K > 1, such that

1
Emodnf < mod,, fI" < Kmod,I"

for every family I' of paths of U. If K = 1, we say that f is conformal. This definition is
often called the geometric definition, as opposed to the analytic and metric ones. These
definitions can be extended to large classes of metric spaces. For example, if X and
Y are Ahlfors @Q-regular, we say that a homeomorphism f : X — Y is (geometrically)
quasiconformal if it quasipreserves the Q-modulus of every path family of X. Recall that
(X,d, ) is Ahlfors Q-regular if there is a constant C' > 1, so that

érQ < w(B(z,7)) < Cr¢

for all z € X and r < diam X.

The metric and analytic definitions can be generalized as well, and all of the definitions
are quantitatively equivalent for maps between Ahlfors ()-regular spaces that support weak
(Q)-Poincaré inequalities. Given 1 < p < oo we say that (X, d, i) supports a weak p-Poincaré
inequality with constants A and C' if

1/p
][ lu —up|du < Cr (][ ppdu>
B AB

for every ball B of radius r, every locally integrable function u and upper gradient p of w.

Here
1
ug = ud,u:—/udu.
N ]i 5#(B> B
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A positive Borel function p is an upper gradient of a function v : X — R if

ju(a) — u(b)| < / pds

for every rectifiable path v : [a,b] — X. For example, for locally Lipschitz functions
u : X — R the pointwise Lipschitz constant

u(x) —u
Lip(u)(z) := limsup sup M
r—0  yeB(z,r) r
is an upper gradient of w.
In addition, quasiconformality often agrees with quasisymmetry [11, 27]. We say that
a homeomorphism f : X — Y is (weakly) quasisymmetric if for every triple of points
x,y,z2€ X

dx(z,y) < dx(x,z) implies dy(f(z), f(y)) < Hdy (f(x), f(2)).

For example, all biLipschitz homeomorphisms are quasisymmetric, and so are all snowflake
maps (X,d) — (X, d?), where 0 < ¢ < 1. See e.g. [20, 28] for classic theory of quasicon-
formal maps in euclidean spaces based on the geometric definition, and [10, 12, 27, 30] and
the foundational paper [11] for the metric theory.

Quasiconformal and quasisymmetric maps often arise in the study of parametrization
questions. Generally these questions ask if a homeomorphism between metric spaces can be
assumed to admit desirable metric or analytic properties. A classic result in this direction
is the Riemann mapping theorem, or more generally the uniformization theorem: every
simply connected Riemann surface is conformally equivalent to the plane, the open unit
disk or the sphere. A notable example in the metric setting is the Bonk-Kleiner theorem
[3]: an Ahlfors 2-regular metric 2-sphere is quasisymmetrically equivalent to the standard
2-sphere if and only if it is linearly locally contractible.

Recently a quasiconformal uniformization theorem was proved by Rajala [22]: a metric
plane with locally finite Hausdorff 2-measure is quasiconformally equivalent to a planar
domain if and only if it is reciprocal. This was generalized to general reciprocal surfaces
by Ikonen [15].

Part of the reciprocality property requires that for every topological rectangle D C X
with boundary edges &, ...,& in cyclic order we have

k" < modoI'(&1, &35 D) - modol'(&2, €43 D) < &, (0.1)

where £ > 1 is a fixed constant and I'(§;, £;; D) is the collection of paths of D that connect
& to ;.

If D C R? is a Jordan domain, (0.1) holds with x = 1. In fact, it can be shown [24]
that there exist functions u,v : D — [0,1], such that |Vu| and |Vv| are the minimizing
admissible functions of the moduli in (0.1). Moreover, for M = modyI'(&1,&3; D) the map
f=(u,Mv): D —[0,1] x [0, M] is a homeomorphism that is conformal in the interior of
D and maps the edges &, ..., &4 to the boundary edges of [0, 1] x [0, M].
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For Jordan domains even more is true:
(mOdpF(gla 637 D)>1/p<m0dqr(€27 {47 D))l/q = 17 (02)

for every 1 < p < oo and q = 1%' For conformal moduli, that is p = 2 = ¢, the identity
(0.2) goes back to Ahlfors and Beurling [1], and was generalized to p-moduli by Gehring
[9] and Ziemer [31].

The research presented in this thesis revolves around a phenomenon called the duality
of moduli, of which (0.2) is the most well-known instance. The main goal of the thesis is
to find generalizations or analogues of (0.2) in different settings. Roughly speaking, an
analogue of (0.2) is proved for metric condensers in [A] (with K. Rajala) and for metric
solid tori in [B]. In [C] we study the moduli of k£ and (n — k)-dimensional slices of euclidean
n-cubes for any 1 < k <n — 1.

1. MODULI OF CONDENSERS

The definition of modulus can be generalized considerably. Given 1 < p < oo and a
family M of Borel measures of X, the p-modulus of M is the number

mod,M := inf/ PP du,
rJx

where the infimum is taken over all positive Borel functions p : X — [0, 00) with

/pdy21
X

for every v € M. Such functions are called admissible for M. If p is admissible for M — N,
where mod,N = 0, we say that p is p-weakly admissible or simply weakly admissible if the
choice of p is clear from the context.

Given any condenser (E, F,G), i.e. a domain G (in X) with disjoint continua £, F C G,
we denote by I'(E, F'; G) the family of all paths in G that connect E to F. Dually, we
denote by I'*(E, F'; G) the collection of compact subsets S of G — (E U F) that separate
E from F. By separation it is meant that F and F' belong to different components of
G — S. When G is open in R™, we equip each such S with the restriction of the Hausdorff
measure H""! to S. The modulus of I'*(E, F'; G) is then defined to be the modulus of the
corresponding collection of Hausdorff measures.

The duality (0.2) was generalized to euclidean spaces of higher dimension by Gehring
and Ziemer:

Theorem 1.1. Let (E, F;G) be a condenser in R™. Then
(mod,I(E, F;G))"/?(mod, T*(E, F; G))"/* = 1

forevery1<p<ooandq:}%.

Our main result in [A] shows that an analogue of this holds in sufficiently regular metric
spaces.
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Theorem 1.2. Suppose X is an Ahlfors QQ-reqular metric space that supports a 1-Poincaré
inequality. Let (E, F;G) be a condenser in X, with E,F C G. Then

% < (mod,I'(E, F; G))/?(mod,I'*(E, F; G))"? < C

for every 1 < p < oo and g = p%l. Here co-0=1=0-00, and C > 1 depends only on the
constants of Ahlfors reqularity and the 1-Poincaré inequality.

Here it is understood that the “surfaces” of I'*(E, F'; G) are equipped with the (Q — 1)-
dimensional Hausdorff measure. Theorem 1.2 leads to a characterization of (geometrically)
quasiconformal maps in terms of moduli of separating sets. It is also possible to equip the
separating surfaces with so-called perimeter measures. For results in this direction, see
[17, 16].

The methods to prove the lower bounds of Theorems 1.1 and 1.2 are essentially the
same. The first step is showing that the path modulus equals a capacity. For condensers
that capacity is

cap,(E, I';G) = inf/ Lip(u)? dpu,
G

where the infimum is taken over all Lipschitz functions u, for which u|g < 0 and u|r > 1.
Now

mod,['(E, F; G) := cap,(E, F'; G), (1.1)
for euclidean condensers by [25] and for metric condensers (with £, F' C G) in the setting

of Theorem 1.2 by [18]. The lower bound is then a combination of (1.1), Holder’s inequality
and a coarea estimate: for every Lipschitz u : G — R and positive Borel function ¢

// gdeQ_ldt§C’/Lip(u)gd,u, (1.2)
R Ju=1(t) G

where C' is a quantitative constant. In R™ the estimate holds with an equality and C' = 1.

The proof of the upper bound of Theorem 1.2 is more involved, and different from the
proof of Theorem 1.1, which exploits the vector space structure of R™. However, the proofs
do have a lot in common. It suffices to show that if p is the minimizing admissible function
of M := mod,["*(E, F;G), then CM~'p?! is admissible for I'(E, F'; G). This is achieved
with the variation inequality:

M§/¢pq1du
G

for every g-integrable ¢ admissible for I'*(E, F'; G). Given a v € ['(E, F'; G), the goal is to
construct a sequence of admissible functions (¢;), so that

M <lim sup/ ip?tdp < C/pq_1 ds.
1—>00 G v

We choose ¢; = ixn, (), where N denotes the e-neighborhood. Proving that ¢; is

indeed admissible (up to a multiplicative constant) for I'*(FE, F'; G) requires the relative

1soperimetric inequality, which is equivalent to the 1-Poincaré inequality in this setting.
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2. MODULI IN SOLID TORI

Another classic instance of duality concerns planar annuli. Given a topological annulus
A C R? bounded by Jordan loops Ay and A;, we have by Theorem 1.1 that

(mod,T'(Ag, Ay; A))YP(mod, ™ (A, Ay; A4 = 1. (2.1)

Theorem 1.1 applies equally well to annuli of higher dimension. What makes the planar
case interesting is that mod,['*(Ay, A1; A) equals the g-modulus of the family of all degree
1 loops of A for every 1 < ¢ < oco. This is because every separating set of I'*( Ay, A1; A) of
finite length contains the image of a degree 1 loop.

It is then natural to ask whether (2.1) admits generalizations to other settings where
degree 1 loops exist. Interestingly enough, it turns out that the answer is no in general.

Freedman and He [8] showed that there exist riemannian solid tori 7' (spaces diffeomor-
phic to S! x D), for which the quantity

(modpF1(T))l/p(moquT(T))l/q (2.2)

is arbitrarily small. Here I'; denotes the family of all degree 1 loops of 7', and I'j denotes
the family of smooth surfaces bounded by meridians of 97T. The surfaces are equipped
with the Hausdorff measure H2. It turns out that (2.2) fails to admit a lower bound, since
(1.1) does not hold in this setting, namely for the modulus of the degree 1 and the degree
1 capacity. This is defined by

cap,T := inf/ |VulP d3?,
T

where the infimum is taken over all Lipschitz maps u : T'— R/Z of degree 1. Here degree
is defined in terms of singular homology, and R/Z is equipped with the metric

la] ~ [y}l = inf |+ 0 — ],
which makes it isometric to the euclidean circle of length 1.
Theorem 2.1 (Theorem 2.5 in [8]). For every riemannian solid torus T

(capsT) "/ (mody oT'5(T))** = 1

The proof given in [8] can be applied for general p as well. In [B] we prove an analogue
of this for metric solid tori.

Theorem 2.2. Suppose T is Ahlfors Q-reqular and supports a 1-Poincaré inequality. If
cap,T" is nonzero, then

1
= < (cap, T) /7 (mod,T(T) 1 < C,

where C depends only on constants of Ahlfors reqularity and the 1-Poincaré inequality.
Moreover, cap,T = 0 if and only if mod,I'}(T) = oco.
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In the metric setting we define I'{(T") to be the collection of level sets of mappings of
degree 1. These level sets are equipped with the (@ — 1)-dimensional Hausdorff measure.

The proof of the lower bound of Theorem 2.2 follows from a coarea estimate similar to
(1.2). The proof of the upper bound follows the same strategy as the proof of Theorem 1.2.
This time we find a minimizer for cap,T’, prove a variation inequality and then construct
suitable Lipschitz maps of degree 1 using the surfaces of I'j(7"). This approach can be seen
as dual to the proof of Theorem 1.2.

3. MODULI OF (CO)HOMOLOGY CLASSES

Since paths are of dimension 1 and separating sets are generally of codimension 1, it is
natural to ask whether a duality result could hold for suitable classes of objects of higher
(co)dimension as well. Moduli of such objects are not very well known, but have been used
to prove highly nontrivial nonparametrization theorems [14, 21].

A refinement of the Bonk-Kleiner theorem [3] by Wildrick [29] states that an Ahlfors 2-
regular, unbounded and complete metric space homeomorphic to R? is quasisymmetrically
equivalent to R? if and only if it is linearly locally contractible. The analogous statement in
higher dimensions is false, although all known counterexamples are quite complicated. One
family of such examples consists of the spaces R*/Wh x R™ where Wh is the Whitehead
continuum. The Whitehead continuum is a compact and connected subset of R? and has
the curious property, that R®/Wh is not homeomorphic to R?, even though its product with
R is homeomorphic to R*. Heinonen and Wu [14] showed that R3/Wh x R" can be equipped
with a metric that makes it Ahlfors (n + 3)-regular and linearly locally contractible, but
not quasisymmetrically equivalent to R"*3. This result was later generalized by Pankka
and Wu [21].

Spheres admit similar topological behaviour. The Poincaré homology sphere is not
homeomorphic to S?, but its double suspension — the Edwards sphere — is homeomorphic
to S°. In fact, double suspensions of all homology spheres are spheres, due to deep results
by Edwards and Cannon [4, 5, 6]. Determining how good parametrizations the Edwards
sphere can admit is a major open question. In particular, it is unknown if the Edwards
sphere is quasisymmetrically equivalent to S, see Questions 12-14 of [13]. Indeed, one of
the main motivations for studying more general moduli is providing tools to approach such
problems.

Homology and cohomology classes offer the most natural way to generalize connecting
paths and separating surfaces to higher (co)dimension. Moduli of general (co)homology
classes were first studied by Freedman and He [8]. These moduli are closely connected to
the ones we have already defined.

Given any pair of compact riemannian manifolds (M, A), with A embedded in M, and
a de Rham cohomology class [w] € Hjp(M, A), we define the p-modulus of [w] by

mod,[w] := inf /]w'[pdfi{”, (3.1)
Q
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where n is the dimension of M. Note that the modulus of a trivial class is zero. As a dual
counterpart to (3.1) Freedman and He considered

mod; [w] := inf/Q |w'|P dFH",

where the infimum is taken over all closed differential forms w’ with

/w/\w'zl.
M

The following is proved in [8] for conformal moduli. However, the same proof goes through
for general p as well.

Theorem 3.1. Suppose M is a compact riemannian n-manifold and A is an embedded
submanifold of OM. Let [w] € Hko (M, A). Then
(mod, [w])"/? (mod;[w])/* =
for every 1 < p < oo andq:ﬁ.
Note that if A is (n — 1)-dimensional, then either M decomposes into two (n — 1)-
submanifolds A and B with common boundary or A = M, in which case we set B = ().
In either case it can be shown that the groups (vector spaces) Hjn(M, A) and the dual
spaces H}»*(Q, B)* are isomorphic via the integral maps

[ inon ) = e on sy, [ @)= [ wnn

This is more or less a relative de Rham version of the Poincaré duality. Let us call a pair
of classes [w] € HE,(M, A), [n] € Hjz"(M, B) Poincaré dual if

/w/\nzl.
M

We can now state a very interesting corollary of (the proof of) Theorem 3.1.

Corollary 3.2. Let M, A and B be as above. If classes [w] € HE (M, A), [n] € H}z"(M, B)
are Poincaré dual, then their moduli are dual:

(mod, ) /7 (mod, )7 = (mod, [w)) /7 (mod;[u) /7 = 1

forevery1<p<ooandq:p%1.

Theorem 2.1 and Corollary 3.2 are closely connected. In fact, it is shown in [8] that for
solid tori T, as in Theorem 3.1, we have

capsT = mods[w] and mods/ '} (1) = mods/2[n],
where [w] and [n] are the elements of His(T) and H2x(T,dT), for which

i)

for every smooth v and S that represent the generators of Hy(7T') and Ho(T,0T).
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This leads us to define moduli for Lipschitz homology classes. Given a relative homology
class [S] we denote S’ € [S] if S’ equals the image of some singular relative cycle that
generates [S]. We then define

mod,[S] := mod, {H* L S| S’ € [S]},

when [S] is generated by relative k-cycles. Moduli of singular classes can be defined with
the same formula, but we prefer to work in the Lipschitz category.

We can use the moduli of homology classes to give yet another formulation of (0.2).
Indeed, the moduli in (0.2) are equal to the moduli of generating classes of HL (D, & U &)
and HY(D, & U¢E,). Note that decomposing D into the sets & U&s and & UE, corresponds
to the decomposition

01 =9(I x I) = (oI x I) U (I x OI)
under some homeomorphism D — I2. More generally, suppose () is a smooth n-submanifold

of R™ (with corners) that is diffeomorphic to the unit cube I™. Denote the diffeomorphism
by h: @ — I™. Define

A= h"H0I" x I"™*) and B := h~1(I* x 9I"7F).

Then A and B are (n — 1)-dimensional submanifolds of 0Q with 0Q = AU B and 0A =
AN B = 0B. The relative de Rham cohomology groups H%,(Q, A) and H}"*(Q, B) are
then isomorphic to R and the Lipschitz homology groups HF(Q, A) and HE ,(Q, B) are
isomorphic to Z.

It is then natural to ask, if the homology counterpart of Corollary 3.2 holds in this
setting.

Question 1. Suppose [S] and [S*] are generators of HX(Q, A) and HL ,(Q, B), respec-
tively. Is it then true that

(mod,[S])"/* (mod, [S*])"/* = 1 (3.2)

forevery1<p<ooandq:pfl?

Note that (3.2) holds when n = 2,k = 1 due to (0.2). Our main result in [C] gives the
upper bound for general n and k.

Theorem 3.3. Suppose [S]| and [S*] are generating classes of HE(Q, A) and HE ,(Q, B).
Then
(mOdp[S])l/p(mOdq[S*])l/q <1
forany 1 <p < oo andq:p%l.
The proof of Theorem 3.3 follows the same general idea as the proof of e.g. the upper
bound of Theorem 1.2. We aim to show that M~'p?! is admissible for [S*], when p is

the unique weakly admissible minimizer of M = mod,[S]. To achieve this, we apply the
variation inequality, which in this case takes the form

M < / ppTt dH" (3.3)
Q
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where ¢ is any other g-integrable function admissible for [S*]. Given any S’ € [S], we apply
(3.3) on the smooth convolutions

¢ (x) = y ez — ) dH"(y),

which have the desired property
/qu’gd%" ii/ g d3*
Q !

for every smooth g.

Here a fundamental problem is showing that each ¢ is admissible for [S*]. Our main
new innovation is showing that this can be overcome by exploiting the topological fact that
the intersection of S’ and the translation S*' + z of any S*' € [S*] is nonempty whenever
|z| is small enough.

4. OPEN QUESTIONS

Let us list here some open questions. First, as mentioned above, the lower bound of
Question 1 is still open. Some discussion on this question can be found in [C].

Question 2. Suppose [S] and [S*] are generators of HE(Q, A) and HE , (Q, B), respec-
tively. Is it then true that

1 < (mod,[5])/7(mod,[5) "/

forevery1<p<ooandq:1%?

It is interesting that none of the proofs of the duality results presented in this thesis
depend on the exponent p. It is fixed in the beginning of each proof, and then left alone.
One might at first expect that the conformal exponents play a special role.

Recall from the beginning of this introduction that the minimizers of the 2-moduli in
(0.2) can be used to construct the components of the unique conformal map that takes D
to a rectangle [0, 1] x [0, M] and the boundary edges &, ..., & to the boundary edges of
[0,1] x [0, M]. With this in mind we ask the following.

Question 3. Assuming the answer to Question 2 is positive, what is the geometric inter-
pretation of the minimizers of the moduli mod=[S] and mod_»_[S*]?

n
n—k

Lastly, singular or Lipschitz homology classes are not the only ones for which moduli
can be defined. An interesting alternative is provided by the theory of Federer-Fleming
currents, see e.g. [7, 26].

Question 4. Do similar duality results hold for homology classes of currents?

Answering this question may lead to interesting results in the metric setting as well,
since the theory of currents has been extended there by Ambrosio and Kirchheim [2] and
Lang [19].
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DUALITY OF MODULI IN REGULAR METRIC
SPACES

ATTE LOHVANSUU AND KAI RAJALA

ABSTRACT. Gehring [3] and Ziemer [17] proved that the p-modulus
of the family of paths connecting two continua is dual to the p*-
modulus of the corresponding family of separating hypersurfaces.
In this paper we show that a similar result holds in complete
Ahlfors-regular metric spaces that support a weak 1-Poincaré in-
equality. As an application we obtain a new characterization for
quasiconformal mappings between such spaces.

1. INTRODUCTION

The modulus of a path family is a widely used tool in geometric
function theory and its generalizations to R™ and furthermore to metric
spaces, see [5], [10] and [12].

Given 1 < p < oo and a family I' of paths in a metric measure space
(X,d, 1), the p-modulus of T" is defined to be

mod,I" := inf/ PP du,
PJX

where the infimum is taken over all admissible functions of I, i.e., Borel
measurable functions p : X — [0, co] that satisfy

/pds}l
2!

for all locally rectifiable v € I'. If no admissible functions exist, the
modulus is defined to be co. The definition of modulus can be gen-
eralized considerably, as was done by Fuglede in his 1957 paper [2].
For example, instead of paths we can consider surfaces by defining the
modulus with exactly the same formula but requiring the admissible

functions to satisfy
/ pdos =1
S
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for all surfaces S in the family. Here og denotes some Borel-measure as-
sociated to .S. In our applications og will be comparable to a Hausdorff
measure restricted to S.

Our main result is concerned with Ahlfors Q)-regular complete metric
spaces that support a weak 1-Poincaré inequality. We also assume () >
1. See Section 2 for all relevant definitions. Fix such a metric measure
space (X, d, ). Given a domain G CC X and disjoint nondegenerate
continua E, FF C G we denote by I'(E, F'; G) the family of rectifiable
paths in G that join £ and F. Similarly, we denote by I'*(E, F'; G)
the family of compact sets S C G that have finite (Q — 1)-dimensional
Hausdorff measure and separate E and F'in G. By separation we mean
that F and F belong to disjoint components of G — S. We equip each
surface S with the restriction of the (¢) — 1)-dimensional Hausdorff
measure on S N G. For 1 < p < oo, denote p* = ]ﬁ.

The main purpose of this paper is to prove the following connection
between the path modulus and the modulus of separating surfaces.

THEOREM 1.1. Let 1 < p < oo. There is a constant C' that depends
only on the data of X such that

1 1 * &
(1) - < mod,['(E, F;G)? - mod,-I'"(E, F; G)» < C,
for any choice of E, F and G. Here it is understood that 0 - oo = 1.

Gehring [3] and Ziemer [17] proved that (1) holds in R™ with C' = 1.

As an application of Theorem 1.1 we find a new characterization
of quasiconformal maps between regular spaces. Let Y be another
complete Ahlfors Q)-regular space that supports a weak 1-Poincaré in-
equality. Recall that a homeomorphism f : X — Y is (geometrically)
K-quasiconformal if there exists a constant K > 1 such that for every
family I' of paths in X

(2) %mon(fF) < modgl’ < Kmodg(fT).

Here fT ={fo~y|~ve€T}.

Corollary 1.2. Let X andY be as above. A homeomorphism f : X —

Y is K-quasiconformal if and only if there is a constant C', such that
1

Emon*F*(E, F;G) < modg-I'"(fE, fF; fG) < Cmodo-I""(E, F; G)

for all E;F and G as above. The constants C and K depend only on
each other and the data of X and Y .

See Section 3 for the proof. We remark that the “only if” part follows
also from the recent work of Jones, Lahti and Shanmugalingam [0].

This paper is organized as follows: In Section 2 we introduce the main
tools for later use. In Section 3 we state our main results, Theorems
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3.1 and 3.2, which are more general versions of the lower and upper
bounds in (1). We also show how these results imply Corollary 1.2.
Theorem 3.1 is proved in Section 4 along the lines of [3] and [17],
applying coarea estimates. The proof of Theorem 3.2, which seems to
be new even in the euclidean setting, is given in Section 5. Section 6
contains an example showing the necessity of the 1-Poincaré inequality
in Theorem 1.1.

Acknowledgement. We are grateful to Panu Lahti and Nageswari
Shanmugalingam for pointing out an error in an earlier version of the
manuscript.

2. PRELIMINARIES

2.1. Doubling measures. A Borel-regular measure p is called dou-
bling with doubling constant C), > 1 if

(3) 0 < u(2B) < Cuu(B) < o0

for all balls B C X. Iterating (3) shows that there are constants C,
and s > 0 that depend only on C, such that for any z,y € X and
0 <r < R < diam (X) with z € B(y, R),

W(B.R) _ , (RY'
@) w(B(x. 1)) <Cﬂ(r) |

In fact, we can choose s > log, C,,.
The space X is said to be Ahlfors Q-regular, or just Q-regular, if
there are constants @ and A > 0 such that

(5) ar® < p(B(x,r)) < Ar9
for every x € X and 0 < r < diam (X). It follows immediately from
the definitions that Q)-regular spaces are doubling.

2.2. Moduli. Let .# be a collection of Borel-regular measures on X
and let 1 < p < oo. We define the p-modulus of .# to be

mod, . # = inf/ PP dpu,
X

where the infimum is taken over all Borel measurable functions p :
X — [0, 00] with

(6) /X,ody>1

for all v € .#. Such functions are called admissible functions of # . If
there are no admissible functions we define the modulus to be infinite.
If p is an admissible function for .#Z — .4 where .4 has zero p-modulus,
we say that p is p-weakly admissible for .4 . As a direct consequence of
the definitions we see that the p-modulus does not change if the infimum
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is taken over all p-weakly admissible functions. If some property holds

for all v € A4 — A we say that it holds for p-almost every v in A .
We can also use paths instead of measures; if I' is a family of locally

rectifiable paths in X we define the path p-modulus of I' as before with

mod,I" = inf/ PP du,
X

/pds>1
0l

for every locally rectifiable v € I". See [10] or [1] for the definition and
properties of path integrals over locally rectifiable paths. Most of the
path families considered in this paper will be of the form

['(E, F; G) := {paths that join E and F in G},

where £/, F' C G are disjoint continua and G is a domain in X. The
modulus of ['(E, F'; G) does not change if we consider only injective
paths, see [, Proposition 15.1]. For injective paths

/pds-/ p dH',
]

as can be seen from the area formula [1, 2.10.13]. This implies that the
modulus of any subfamily A of I'(E, F'; G) is the same as the modulus
of the family

but require that

{H'Ll [y €A},
so in this sense the two definitions of the modulus are equal.
We will need the following basic lemma in multiple occasions. It is a
combination of the lemmas of Fuglede and Mazur, see [5, p. 19, 131].

Lemma 2.1. Let .# be a set of Borel measures on X and 1 < p < oo.
Suppose mod,.# < oo. Then there is a sequence (p;):2, of admissi-
ble functions of A that converges in LP(X) to a p-weakly admissible
function p of M such that for p-almost every v € A

(7) /pidu—>/pdy<oo
X X

(8) mod, #Z = /pr dj.

Remark 2.2. Lemma 2.1 holds for the path modulus of a path family
I with the obvious modification of replacing (7) with

/pids—>/pds<oo
g gl

for almost every v € I'.
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2.3. Upper gradients. A Borel function p : X — [0,00] is an upper
gradient of a function u : X — R, if

) a2 (1) = ur(O)] < [ o ds
v

for all rectifiable paths 7 : [0, 1] — X. If |u(y(0))| or |u(v(1))| equal oo,
we agree that the left side of (9) equals co. If (9) fails only for a family
of paths of zero p-modulus, we say that p is a p-weak upper gradient.
The following lemma will be useful in the sequel, and will be used
without further mention. It allows the use of weak upper gradients in
place of upper gradients in all the relevant results used in this paper.
This is Proposition 6.2.2 of [5].

Lemma 2.3. Ifu: X — R has a p-weak upper gradient p € LP(X) in
X, then there is a decreasing sequence (pi)5>, of upper gradients of u
that converges to p in LP(X).

2.4. Maximal functions. Suppose p is doubling and R > 0. The
restricted Hardy-Littlewood maximal function Mgu of an integrable
function u : X — R is defined as

Mpgu(z) = sup ][ lu| du,
B(z,r)

0<r<R

évdu::ﬁ/]gvdu.

The Hardy-Littlewood maximal function Mu can then be defined as
Mu = sup Mpu.

R>0

where

In doubling spaces Mu is Borel measurable whenever u is, and the
assignment u — Mu defines a bounded operator LP(X) — LP(X) for
any 1 < p < oo, with bound depending only on p and the doubling
constant of X, see [5, Chapter 3.5] for details.

2.5. Codimension 1 spherical Hausdorff measure. Given a Borel-
regular measure p, the codimension 1 spherical Hausdorff d-content of
a set A C X is defined as

Hs(A) = inf Z M(si),

T

where the infimum is taken over countable covers {B;} of A, and B; =
B(x;,r;) for some x; € X and r; < 0. The codimension 1 spherical
Hausdorff measure of A is then defined to be

H(A) = 561>11(£)> Hs(A).
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By the Carathéodory construction H is also a Borel-regular measure.
If X is Q-regular, @ > 1, and p the ()-dimensional Hausdorff measure,
then # is comparable to the (@ — 1)-dimensional Hausdorff measure.

2.6. Poincaré inequalities. The space X is said to support a weak
p-Poincaré inequality with constants C'p and Ap if all balls in X have
positive and finite measure, and
1
][ |u — up| du < Cpdiam (B) ( or du) ’
B
for all functions u € L}, (X) and all upper gradients p of u.

In the sequel we will encounter function-upper gradient pairs (v, p,,)
that are defined only on some open and connected set G C X. For
such pairs the Poincaré inequality can be applied on any ball B with
ApB C G, or B CC G if A\p = 1. To see this, let ¢ > 1 be such that
¢B C G and replace v with v = vy.p and p, with p’ = p,xB+00oXxx_B-
Then p' is an upper gradient of v and v’ is locally integrable on X .

ApB

2.7. Whitney-type coverings. We will need the following modifica-
tion of Lemma 4.1.15 in [5] in multiple occasions. Here we assume
that (X, d, u) is a doubling metric measure space, 2 C X is open and
bounded and X — 2 is nonempty.

Lemma 2.4. Given any subset A C Q and integer n > 2, there exists
a countable collection B = {B(x;,r;)} of balls in Q, such that
(i) z; € A and r; = 5=d(z;, X — Q) for all i
(i) If B;, Bj € B intersect, then
1 <lco
2 T

(iii) For all x € Q
xa(r) > xan(r) < C,

where C' depends only on the doubling constant of .

Proof. Let A C Q and 2 < n € Z. Denote d(x) = d(z, X — Q). For any
k€ Z let

Ap={zc A|2F! <d(z) < 2%}
and

Fr ={B(z,d(x)/10n) | = € Ax}.
Apply the 5r-covering theorem on Fj, to find a countable pairwise dis-
joint collection Gy C Fj, such that

U Bc | 5B

BeF; Begy,
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Denote by B the collection of all balls 5B with B € G, for some k € Z.
Then B is countable and (i) is satisfied. A simple application of the
triangle inequality proves (ii). The lower bound of (iii) follows from
the definition of B. Let z € Q. By (i) and (ii) there is a k € Z such
that balls B € B whose scaled versions 2B contain z must come from
either Gi or Gi_1. Now let 10By,...,10By be balls arising from Gy
that contain x with radii rq,...,ry respectively, so that r; > r; for all
1 =1,...,N. By the definition of G, the balls B; are disjoint, so by
the doubling property and (ii)

N
p(100By) > > pu(B;) = CNu(100By),
i=1

where C' depends only on the doubling constant of y. The same argu-
ment can be applied to Gy_; and (iii) follows. O

3. MAIN RESULTS

Assume for the rest of the text that (X,d, ) is a complete metric
measure space that supports a weak 1-Poincaré inequality with con-
stants Cp and A\p. Assume also that p is Borel-regular and doubling
so that it satisfies (4) with some C}, and s > 1. Note that the doubling
condition implies that X is proper and therefore also separable. By
[13, Part I, I1.3.11] p is in fact a Radon-measure.

Fix a domain G CC X and two disjoint nondegenerate continua
E F C G. Denote G' = G — (EUF). Denote by I' the set of all
injective rectifiable paths v : [0,1] — G with v(0) € E and (1) € F.
For any 1 < p < oo denote

(10) mod,[" := mod,{H'L || | v € '}

Similarly, denote by I'* the set of all compact subsets S C G that
separate E' and F' in G and have finite H-measure in G. Abbreviate

(11) mod, ™ = mod {HLSNG | S €T}

The requirement H(SNG) < oo is redundant since the modulus of the
family of sets with infinite H-measure is zero. Nevertheless we prefer
to work with sets of finite H-measure.

We denote C' = C'(X) if some constant C' > 0 depends only on the
data of X, i.e., the constants s,C),,Cp and Ap. The same symbol C
will be used for various different constants. Denote p* = % for each
1 < p < co. The main results of this paper are the following:

THEOREM 3.1. Let 1 <p < oco. If mod,I' # 0, then
1 1
C < (mod,I')» (mod,-I")#",
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where the constant C' depends only on the data of X. If mod,I’ = 0,
then mod,-I'™* = oo.

THEOREM 3.2. Let 1 < p < oo. If mod,-I'* < oo, then
1 1
(12) (mod,I")? (mod,- ') < C,

where the constant C' depends only on the data of X. If mod,-I™ = oo,
then mod,I"' = 0.

Note that the conclusions in Theorems 3.1 and 3.2 are invariant
under biLipschitz changes of metrics. Also recall that a complete metric
space supporting a Poincaré inequality is C-quasiconvex for some C' =
C(X). Thus we may, and will, assume that X is a geodesic metric
space. Note that in geodesic spaces we can choose \p = 1. For these
facts see Theorem 8.3.2 and Remark 9.1.19 in [5].

Theorem 1.1 follows by combining Theorems 3.1 and 3.2, and recall-
ing that H is comparable to the (@ —1)-dimensional Hausdorff measure
in Ahlfors @-regular spaces. Theorems 3.1 and 3.2 will be proved in
Sections 4 and 5, respectively. We now show how they imply Corollary
1.2.

Proof of Corollary 1.2. The “only if” part follows directly from Theo-
rem 1.1. To prove the “if” part, notice first that Theorem 1.1 shows
that (2) holds for all path families I'(E, F'; G) joining continua £ and
F inside G. Injecting this estimate into the proof of Theorem 4.7 in
[1] shows that f is locally quasisymmetric, with constants depending
only on the given data. On the other hand, Theorem 10.9 of [15] shows
that locally quasisymmetric maps satisfy (2) for all path families. The
required linear local connectedness and Loewner properties of X and
Y are guaranteed by [8, Theorem 3.3] and [1, Theorem 5.7]. The “if”

part follows. O

4. PROOF OF THEOREM 3.1

Let X,G,E,F,T" and I'* be as in Section 3. Fix 1 < p < co. Note
that the constant function 1/dist(E, F') restricted on G is admissible
for I'. Therefore mod,I" is finite.

We need the following result of Kallunki and Shanmugalingam [7]:
The locally Lipschitz p-capacity of I' is defined to be

CapﬁF = ir;f/ PP dpu,
G

where the infimum is taken over every non-negative Borel-measurable
function p that is an upper gradient to some locally Lipschitz function
u: G —[0,1] with u|g =0 and u|r = 1.
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Theorem 1.1 in [7] reads as follows: if 1 < p < oo, then
(13) mod,[" = cap,T’

for any choice of E, F' and G.
The proof of Theorem 3.1 is based on the following coarea estimate.

Proposition 4.1. Let u : G — R be locally Lipschitz and let p be a
p-integrable upper gradient of u in G. Let g : G — [0,00] be a p*-

integrable Borel function. Then

(14) // g dHdt < 0/ gp dp

for some C = C(X

Before proving Proposition 4.1, we show how it together with (13)
yields Theorem 3.1.

Proof of Theorem 5.1. First assume that mod,I' > 0. If mod,-I"* = oo,
there is nothing to prove. Otherwise let g € LP"(G) be admissible for
I'*. Let u: G — [0,1] be locally Lipschitz with u|gp = 0 and u|p = 1.
Let p be an upper gradient of u. We may assume that p is p-integrable.
Note that for every ¢ € (0,1) the set u~'(t) separates £ and F', and
is closed in G. Moreover, by (14) H(u"'(t)) < oo for almost every t.
Proposition 4.1 and Hoélder’s inequality give

1</ / gd’Hdth/gpduéC(/ pdu) (/ppdu)
(0,1) Ju—1(¢t) G

Now take infima over admissible functions g and p and apply (13) to
get the lower bound. The same argument leads to a contradiction if
mod,-I"* is finite and mod,I" = 0. O

We start the proof of Proposition 4.1 with a classical estimate for
Lipschitz functions. See [11, Theorem 7.7] for a euclidean version.

Lemma 4.2. Letu : G — R be L-Lipschitz and let A be a p-measurable
subset of G. Then

(15) /]R:H(ul(t) NA) dt <CO(X)Lu(A).

Proof. Since p is a Radon-measure, we may assume that A is open. Let
0 > 0. Apply the 5r-covering theorem to find a countable collection of
disjoint balls {B;} with B; = B(x;, ;) C A, 5r; < 0 and

Ac| 5B
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Define a Borel function g : R — [0, o] with

1(5B;)
QZZ 51 Xu(5B;)-

Now for every t € R we have Hs(u"!(t)NA) < g(t), so by the doubling
property of u,

/*H(s(u_l(t) NA)dt < / g(t) dt
<> s,

5
< C(X)L Z 1(B;)
< C(X)Lu(A).

Applying the monotone convergence theorem for upper integrals fin-
ishes the proof. O

The Poincaré inequality comes into play with the following lemma.

Lemma 4.3. Let U C G be open and connected and supposev : U — R
is locally integrable and p, : X — [0, 00] is an upper gradient of v in U
that vanishes outside G. Let N C U be the set of Lebesque points of v.
Then

[v(z) —v(y)] < CX)|z = y|(Mioja—ypo(%) + Mioja—y|pu(y))
whenever x,y € BN N for some ball B that satisfies 5B C U.

Proof. The case U = X is classical and proved in, for example, [5,
Theorem 8.1.7]. We follow the same proof for the case of general U.
Let B = B(zo, ) satisfy 5B C U. Let x € B be a Lebesgue point of v.
The first part of the proof of [5, Theorem 8.1.7] shows that

(16) lv(x) — v < CrMy.p,(x)

for some constant C' = C(X). Let y be another Lebesgue point of v in
B. If r g|:v — yl, then applying (16) twice gives the desired result.
Otherwise apply (16) with B(z,2|x — y|) instead. O

Proof of Proposition /.1. By standard real analysis arguments it suf-
fices to show that

*

(17) M (£) N A) dt < C(X) / p dp.
A

(0,1]
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Let us first show that

H(U_l(t) ﬂAﬂB) dt < C(X) M iodiam BP dpt
[071] ANB

for any Borel set A C G and any ball B C 5B C G. Continuity of u
and Lemma 4.3 give

(18)  Ju(x) —u(y)| < C(X)|r — y[(Miodiam BP(2) + Miodiam BL(Y))

for any x,y € B.

Let B, = {z € B | 28 < Mypgiamsp(7) < 2"}, Abuse the notation
and define the sets B_., and B, as the sets of points x € B where,
respectively, Mogiam 5p(2) = 0 or Miggiam p(z) = 00. Recall that we
assume u to be locally Lipschitz. Since B is compactly contained in G,
u|p is Lipschitz. Now Lemma 4.2 applied to any Lipschitz extension of
u|p implies that

H(u ()N AN By) dt =0,
[0,1]

since the integrability of Mp implies that p(Bs) = 0. On the other
hand, if B_, # 0 then p = 0 almost everywhere in 5B. Since we may
assume that X is geodesic, it moreover follows that u is constant in B.
We conclude that H(u"!(t) N AN B_.,) is nonzero for at most one ¢.

It follows from (18) that u|p, is C'(X)2*-Lipschitz. Let uj, : X — R
be any Lipschitz extension of u|p, with the same Lipschitz constant.
Now the previous observations together with the monotone convergence
theorem, Lemma 4.2 and the definition of By give

Hw ' (t)NANB)dt =Y [ Hu' ()N AN By) dt
[0,1] PRA(BY

< C(X) S 2u(AN By)

< O(X) Miodiam BP dpt.
ANB

Applying a Whitney-type covering, see Lemma 2.4, we get

*

H(U_l(t) N A) dt < C(X) / ./\/lloRp du,
A

[0,1]
where R is the supremum of the diameters of the balls used in the
cover. We can make R arbitrarily small, as is implied by Lemma 2.4.

The Lebesgue differentiation theorem and dominated convergence then
yield (17). O
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5. PROOF OF THEOREM 3.2
Consider the sets
* * . 1
(19) [T={Sel™ |dist(S,FUF)>j "}

By applying the proof of Proposition 5.2.11 in [5] and the general Fu-
glede’s lemma, see [2, Theorem 3], it can be shown that

(20) lim mod,-I"; = mod,-I"".

Jj—00

The following result is the key tool in connecting the two moduli.

Lemma 5.1. (Relative isoperimetric inequality)
Let S € I'* and let U be the component of G—.S that contains E. There
are constants C' = C(X) and A = \(X) > 1 such that

C(u(B-U) w(BAD) ,
mm{ W(B)  u(B) } S Oy HOUNAB)

for all balls B CC G.

Proof. Given a ball B CC G there is a larger ball B’ C G with B C
B’ and H(0B') < oo (apply Lemma 4.2 to the distance function).
Applying Theorem 6.2 of [9] shows that B’ N U is a so called set of
finite perimeter. The relative isoperimetric inequality for sets of finite

perimeter follows from the 1-Poincaré inequality by [9, Theorem 1.1].
U

Note that Lemma 5.1 requires the weak 1-Poincaré inequality. See
Section 6 for examples of spaces that support a weak (1 + ¢)-Poincaré
inequality for a given ¢ > 0, but no relative isoperimetric inequality.

Fix v € I'. The idea behind the proof of Theorem 3.2 is to construct
admissible functions ¢} of I'j that are supported close to |v|, and then
apply Lemma 5.2 below.

Let n > 2 be a natural number and let B™ be the collection of
balls obtained by applying Lemma 2.4 with @ = G’ and A = |y| N
G’. Moreover, given k € Z let G = G be the collections of balls
constructed in the proof of 2.4.

Now let S € I'*. Let U be the component of G — S that contains F.
Let

1
————= > — for all B € B" such that () € B} :
n(B) 2
Note that there exists an e > 0, so that N.(F) C U and N.(F) C G-U.
Combining this observation with Lemma 2.4 (i) and continuity of ~
shows that T,, is well defined and that 7, € (0,1). It follows that there

T, = sup {t € (0,1) ' 1(U N B)
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exist balls B; = B(x;,r;) € B” for i = 1,2 such that B; N By # () and
u(ByNU) o 1 o ,u(BgﬂU)'

p(Br) T2 p(B)

Now let x € By N By and let ¢ € {1,2} be the index for which r; =
max{ry,ro}. Let B = B(z,2r;). It follows from Lemma 2.4 (ii) and
Lemma 5.1, that

C(X) < min {“<B —U) B0 U)} <O _91(0U N AB)

u(B) T w(B) 1(AB)
for some C" = C'(X) and A = A(X). Therefore
1
"B > "B.) > -1 ‘
H(SNNB;) =2 HOUNNB;) > C’(X)TZ w(By),

where M = 1 + 2)\. We conclude that the function
=C > rpu(B) X,
BeBn

where rp is the radius of B, is admissible for I'*, but it may not be
p*-integrable. This is why we consider the families I'; instead.
Note that if 5B € B" satisfies B € G", for sufficiently large £ de-
pending on j and n, then given any S € I
u(U N B)
— €{0,1}.
pu(B)

Here U is again the component of G — S that contains E. Together
with the construction of ¢" this implies that there is a k(j,n) € Z such

that
¢y =C Z Z rpp(B) " XnB

k=k(3,n) B: ngk

is admissible for I';. It is p*-integrable, since each Gy’ contains only
finitely many balls and G is bounded.

Now let j be large enough, so that mod,~I'; is nonzero. The existence
of such a j follows by combining Theorem 3.1 with (20). Apply Lemma
2.1 to find a p*-weakly admissible function p; of I'; with the property

mod,-T'; = / pf* dj.
G

Lemma 5.2. Let ¢ be another p*-integrable, p*-weakly admissible func-
tion of I';. Then

mod,«I'; < / gbp?*_l dp.
G

Proof. For any t € [0,1] let wy = t¢+ (1 —t)p,;. Now for any ¢

mod,-I'; </wf*d,u
¢
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with equality at t = 0. It follows that
d
0<

<2 / Wi dys :p*/(¢ —p)et iy,
t=0G G
which finishes the proof. U

Applying Lemma 5.2, the doubling property of u, the definition of
the Hardy-Littlewood maximal operator and (iii) gives

m%ﬁ</ﬁflm
G

<OX) Y raf 2 d
BeBn A'B

<C(X) ) s inf Mexam(d] (@)

BeBn
<OWX) | Meoxemley ) dH'.
vl

Letting n — oo and applying Fuglede’s lemma [5, p. 131] we see that
C(mod,-T'%)~" p‘;*_l is weakly admissible for I'. Therefore

1
(modpF)% < C(mod,-I%) ™" (/G p]; d,u) = C’(modp*l“;)_pi*,
Applying (20) finishes the proof.

6. COUNTER-EXAMPLES

The relative isoperimetric inequality is an instrumental part of the
proof of Theorem 3.2. By [9] it is equivalent to the weak 1-Poincaré
inequality. Let ¢ € (0,1). We now construct a space X that satisfies
the hypotheses of Theorem 1.1 apart from the 1-Poincaré inequality.
Instead, X will support a (1 + ¢)-Poincaré inequality.

Let K C [1/4,3/4] be a self-similar Cantor set with Hausdorff-
dimension 1—¢ and the following property: forallz € K and 0 <r < 1

HI (KN B(x,r)) > Or'e

for some C' > 0 that does not depend on 7. Let Q = [0,1]3 C R3
and let A = [1/4,3/4] x K x {0} C Q. Then for any z € A and
0 < r < diam(Q)

(21) HE (AN B(z,7)) > Or* =

for some (other) C' > 0 that does not depend on r. Let ()7 and @)y be
two copies of the space ). Finally, let X = Q) U4 @2, two cubes glued
together along A. Equip X with the geodesic metric d that restricts to
the metrics of the cubes in either cube, and for x € @)1 and y € )5 set

d(z,y) = inf(|lz —a| + |a - y]).
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Equip X with the measure i that restricts to the 3-dimensional Lebesgue
measure on both cubes. It follows immediately from the definitions that
(X, d, u) is a complete geodesic Ahlfors 3-regular metric space. The va-
lidity of a weak (1 + €)-Poincaré inequality follows from (21) and [/,
Theorem 6.15].

Now let £ C @)1 — A and F' C Q2 — A be nondegenerate continua
and let G = X. Let I" and I'* be as in Theorem 1.1. The modulus
modsI" is non-zero and finite, since X is Loewner, see [1]. On the other
hand mods«[™* = oo, since I'* does not admit any admissible functions.
To see this, note that A separates £ and F' in (G, but has vanishing
2-measure. We conclude that X does not satisfy the upper bound of
Theorem 1.1. Note that this implies that X does not support a weak

1-Poincaré inequality. This can also be deduced from the main result
of [9].
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Abstract. We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality
of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation
of the work of the author and Rajala [12] on the corresponding duality in condensers.

1. Introduction

Given a metric measure space (T, d, i), with p Borel-regular, and a collection T
of paths in T', the p-modulus of I' is the number

mod,I" := inf/ PP du,
rJr

where the infimum is taken over non-negative Borel-functions p that satisfy

(1) /pds}l

for all locally rectifiable v € I'. The path modulus is a widely used tool in geometric
function theory, especially in connection to quasiconformal mappings |7, 14, 15].

In the 1960s, Gehring [6] and Ziemer [16] proved that the moduli of paths con-
necting two compact and connected sets in R™ are dual to the moduli of surfaces
that separate the two sets. The moduli of surface families are defined as above, but
instead of condition (1) we require

/,OdH”‘l > 1,
S

where H"! denotes the (n — 1)-Hausdorff measure. To describe these duality results
in more detail, we need to introduce some notation. Given a connected bounded
open subset G of any metric space, and disjoint connected compact sets E, F' C G,
denote by I'(F, F'; G) the family of paths in G that intersect both F and F, and
by I'*(E, F'; G) the family of compact subsets of G that separate £ and F. We say
that a set S separates F and F' in G if £ and F belong to different components of
G — S. Triples (E, F,G) are called condensers. Let p* = z% be the dual exponent
of 1 < p < co. By Gehring and Ziemer we then have

*|"

(2) (mod,I(E, F;G))¥ (mod,-T*(E, F; G))» = 1
in R® with n > 2.
https: //doi.org/10.5186/aasfm.2021.4610
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It was shown by the author and Rajala that a version of (2) holds in Ahlfors ¢-
regular metric spaces that support a 1-Poincaré inequality. In more detail, a special
case of what is shown in [12] is

(3) % < (mod,I(E, F; G))1(mod-T*(E, F; G))= < C

for some constant C' that depends only on the data of the space, i.e. the constants
that appear in the definitions (see Section 2) of Ahlfors regularity and the Poincaré
inequalities. Here E, F' and G are as in (2), and the sets in I'* are equipped with the
(¢ — 1)-dimensional Hausdorff measure.

It should be noted that the inequalities (2) and (3) are very similar to the recip-
rocality condition found in [13]| and [8]. One could also equip the surfaces with the
so-called perimeter measures instead of the Hausdorff measure. In this direction a
result similar to (3) has recently been proved by Jones and Lahti [9].

In this paper we aim to prove a different kind of duality result. Instead of
condensers we consider spaces 7" homeomorphic to the solid torus S' x D. It is
natural to ask if the duality results above remain valid for the family of paths that
go around the ’hole’ and the family of surfaces which are bounded by meridians on
the boundary torus. It turns out that this is not the case. Freedman and He [4]
studied conformal moduli on riemannian tori in connection with their research on
divergence-free vector fields. They showed that the path-modulus can be arbitrarily
small compared to the corresponding surface modulus, even in the smooth setting.
However, they managed to prove a duality result by replacing the path modulus with
a certain capacity.

Suppose now that 7" is equipped with a metric d and a Borel-regular measure p,
so that (T,d, i) is Ahlfors g-regular. That is, there are constants a, A > 0 such that

ar?! < u(B) < Arf?

for all balls B with radius r < diam(7").
Following Freedman and He [4] we consider the degree 1 capacity instead of the
path modulus. It is defined by

cap,T := inf/ Lip(¢)? du,
¢ Jr
where the infimum is taken over pointwise Lipschitz constants

Lip(6)(x) = limsup sup 12— @l

r—0  yeB(z,r) r

of Lipschitz maps ¢: T' — S! of degree 1. Loosely speaking, a map is said to have
degree 1 if it takes (oriented) loops which generate the corresponding fundamental
group to (oriented) generating loops in S!. We assume S! is equipped with a metric
that makes it isometric to a euclidean circle of length 1 equipped with its geodesic
metric.

The surface modulus mod,T" is defined to be the p-modulus of all level sets of
continuous functions of degree 1, see Section 2, equipped with the (¢ —1)-dimensional
Hausdorff measure. The main results of this paper imply the following.

Theorem 1.1. Let (T,d, i) be a compact Ahlfors g-regular metric measure space
that supports a weak 1-Poincaré inequality. Suppose T' is homeomorphic to the solid
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torus S* x D. Let 1 < p < co. If cap,T is nonzero, then

=
*|"

1
= < (cap,T) <C

C

where C' is a constant that depends only on the data of T'. Moreover cap,T = 0 if
and only if mod,-T" = oo.

(modp* T) p

A similar result, with C' = 1, was proved by Freedman and He [4, Theorem 2.5]
for smooth solid tori equipped with riemannian metrics.

Theorem 1.1 is obtained from slightly more general statements. These are Theo-
rems 2.2 and 2.3, and they correspond to the lower and upper bounds of the inequality
in Theorem 1.1, respectively. The proof of the lower bound is essentially the same as
the proof of the lower bound of (3) found in [12|. The main difficulty of the proof of
Theorem 1.1 is then the upper bound.

In [12] the proof of the upper bound boils down to showing that given any path
7 that connects the two continua E and F, and a neighborhood N, of |v|, there is a
function admissible for the modulus of surfaces separating F and F' that is supported
in IV,. This approach cannot be adopted in our current situation, since the paths
have been replaced with Lipschitz maps. Instead, given any level set S of a map of
degree 1 and a neighborhood Ng of S, we construct a Lipschitz map of degree 1 that
is constant outside Ng. Note that this implies that the pointwise Lipschitz constant
of this map can be assumed to be supported in Ng. This approach seems to be new.
It can be seen as a dual to the one in [12]|, and as such it can in fact be used to
reprove (3).

Section 2 contains some definitions and the main results. Theorems 2.2 and 2.3
are proved in Sections 3 and 4, respectively.

Acknowledgement. The author expresses his thanks to the anonymous referee,
whose comments led to several improvements.

2. Main results and definitions

For the rest of this text we fix a compact metric measure space (T,d, i) that
supports a weak 1-Poincaré inequality. We also assume that p is doubling. In order
to apply the theory of covering spaces later on, we also have to assume that T is
semilocally simply connected (local and global path connectedness follow from the
1-Poincaré inequality |7, 8.3.2]).

We call a measure p doubling if it is Borel-regular and there exists a constant
C), > 1, such that for every ball B = B(z,r) with radius r < diam(7")

0 < pu(2B) < Cuu(B) < oo.

Here 2B = B(z,2r).
Let .# be a set of Borel-regular measures on 7" and let 1 < p < co. We define
the p-modulus of .# to be

mod, . # = inf/ PP du,
T

where the infimum is taken over all Borel measurable functions p: T — [0, oo with

(4) /Tpdy>1
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for all v € .# . Such functions are called admissible functions of .# . 1f there are no
admissible functions we define the modulus to be infinite. If p is an admissible func-
tion for .# — A where 4" has zero p-modulus, we say that p is p-weakly admissible
for 4. As a direct consequence of the definitions we see that the p-modulus does
not change if the infimum is taken over only p-weakly admissible functions. If some
property holds for all v € .# — 4 we say that it holds for p-almost every v in A .

Given a family I' of paths in T, the path p-modulus of T" is denoted and defined
like the modulus of a family of measures, but instead of (4) it is required that

/pds}l
”

for every locally rectifiable path v € T'.
A Borel function p: T — [0, 00| is an upper gradient of a function u: T' — Y,
where (Y, dy) is a metric space, if

o) dy(ulr (@), u(r(1) < [ o
gl

for all rectifiable paths «: [a,0] — T. The target ¥ = [—00, 0] is also allowed,

but with an additional requirement that the right-hand side of (5) has to equal oo

whenever either |u(vy(a))| = oo or |u(y(b))| = co. If the family of paths for which (5)

fails has zero p-modulus, we say that p is a p-weak upper gradient. The inequality

(5) is called the upper gradient inequality for the pair (u, p) on 7.

A p-integrable p-weak upper gradient p of w is minimal if for any other p-
integrable p-weak upper gradient p’ of u we have p < p’ p-almost everywhere. By |7,
Theorem 6.3.20] minimal p-weak upper gradients exist whenever p-integrable upper
gradients do.

The space T is said to support a weak p-Poincaré inequality with constants Cp
and Ap if all balls in 7" have positive and finite measure, and

][ |u —ug|du < Cpdiam (B) ( ppd,u)p
B

ApB

for all locally integrable functions u and all upper gradients p of u. Here

1
ug = ud,u:—/udu.
N ]{3 w(B) Jp

In this paper we consider toroidal spaces, meaning that we assume the fundamen-
tal group of T" to be isomorphic to Z with respect to any basepoint. Fix a generator
[y, ] € T (T, ). We say that a loop v with basepoint = € T is a degree 1 loop if it is
loop-homotopic to a, = Yz, * g * Rmo for some path 7,,, that starts at = and ends
at xo. It can be shown that the equivalence class o] € 71 (T, z) does not depend on
the choice of v,,.

For every continuous map f: 1" — R/Z there is a unique integer deg f, called the
degree of f, so that for every x € T" and every degree 1 loop 7 based at z the push-
forward f.y = f o~ is loop-homotopic to [f(x)] + deg f - 5, where 5: [0,1] — R/Z is
the path 8(t) = [t].

Now let 1 < p < oco. We define the degree 1 p-capacity of T to be the number

cap,T := inf/ P du,
T
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where the infimum is taken over all Lipschitz maps f: T'— R/Z with deg f = 1, and
ps denotes the minimal p-weak upper gradient of f. Note that for Lipschitz maps
the minimal upper gradient agrees almost everywhere with the pointwise Lipschitz
constant Lip(f), see 3] and [7, 13.5.1]. We assume here and hereafter that R/Z is
equipped with the metric

[2] = [y]l = inf [z +a —y],

where the equivalence classes of R/Z are denoted by brackets. Observe that with
this metric R/Z is isometric to a 1-dimensional euclidean sphere of total length 1
equipped with its intrinsic length metric.

Denote by I'* the family of all level sets ¢~![0] with finite codimension 1 spherical
Hausdorff measure, where ¢: T — R/Z is a continuous map of degree 1. The
codimension 1 spherical Hausdorff measure is defined by

H(A) = sup H5<A)7
>0

where

M(Bz‘)

T

Hs(A) := infz

and the infimum is taken over countable covers {B;} of A by balls with radii r; < .
By the Carathéodory construction H is a Borel-regular measure. A simple application
of a coarea estimate, see Proposition 3.1, shows that almost all level sets of Lipschitz
maps have finite H-measure. On the other hand, the relative isoperimetric inequality
(Lemma 4.6) shows that level sets of Lipschitz maps of degree 1 must have nonzero
‘H-measure.

As a dual counterpart to cap,T" we consider the surface modulus of ™. We
abbreviate

(6) mod,-T" = mod,-{HL S | S € I'"}.

The definitions of cap,T" and mod,«T" are rather trivial if Lipschitz maps of degree
1 do not exist. Although path-connected topological spaces with fundamental groups
isomorphic to Z can fail to admit maps of nonzero degree, it seems to be unknown
whether the existence of such a map is implied by the additional structure of (7', d, p).
To make life easier we simply assume that there exists at least one Lipschitz map
f: T — R/Z of degree 1.

Let us gather all of the assumptions into one place for clarity and future reference.

Assumptions 2.1. The metric measure space (T, d, i) is doubling and supports
a weak 1-Poincaré inequality. The space T is compact and semilocally simply con-
nected. The fundamental group of T" with respect to any basepoint is isomorphic to
Z and there exists at least one Lipschitz map ¢: T — R/Z of degree 1.

With these assumptions our main results are the following

Theorem 2.2. Let 1 < p < oo. If cap,T" > 0, then

(mod,-T") »,

A

1
c < (cap,T)

where the constant C' depends only on the data of T'. If cap,T" = 0, then mod,-T" = oo.
Theorem 2.3. Let 1 < p < oo. If mod,-I"* < oo, then

(cappT)%(modp*T)pi* < C,
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where the constant C depends only on the data of T. If mod,-T = oo, then
cap,T" = 0.

We say that a constant C' > 0 depends only on the data of T', denoted C' = C(T),
if it depends only on the constants C),,Cp and Ap appearing in the definitions of
doubling measures and Poincaré inequalities. The same symbol C' will be used for
various different constants.

If we let the metric measure space (7', d, ) be as in Theorem 1.1, it satisfies
Assumptions 2.1. The existence of Lipschitz maps of degree 1 follows from Propo-
sition 4.5. In Ahlfors g-regular spaces the H-measure is comparable to the (¢ — 1)-
dimensional Hausdorff measure, so the surface moduli defined using either measure
are comparable. Therefore Theorem 1.1 is just a combination of Theorems 2.2 and
2.3.

Note that the conclusions in Theorems 2.2 and 2.3 are invariant under biLipschitz
changes of metrics. Also recall that a complete metric space supporting a Poincaré
inequality is C-quasiconvex for some C' = C(T). This means that the change of
metrics (T, d) — (T, d’) is C-biLipschitz, when d’ is the intrinsic length metric induced
by d. It follows that we may assume without any loss of generality that d is the length
metric. It is then implied by compactness that (7', d) is in fact geodesic. Note that
in geodesic spaces we can choose A\p = 1. For these facts see Theorem 8.3.2 and
Remark 9.1.19 in [7].

3. Proof of Theorem 2.2

The proof of Theorem 2.2 is exactly the same as the proof of Theorem 3.1 in [12],
but with a different coarea estimate.

Proposition 3.1. Let uw: T — R/Z be Lipschitz and let p be a p-integrable
upper gradient of u in T'. Let g: T — [0, 00] be a p*-integrable Borel function. Then

(7) / / gdetéC/gpdu
R/Z Ju—1(t) T
for some C' = C(T).

Proposition 3.1 follows by applying [12, Proposition 4.1] in small enough balls.

Proof of Theorem 2.2.  First assume that cap,T" > 0. If mod,-T" = oo, there is
nothing to prove. Otherwise let g € L' (T) be admissible for mod,-T. Let u: T —
R/Z be Lipschitz with degree 1 and note that « must be surjective. Let p be an upper
gradient of u. We may assume that p is p-integrable. Note that by (7) H(u"'(t)) < oo
for almost every ¢. Proposition 3.1 and Hélder’s inequality give

1</ / gd%dté(f/gpdué(}(/gp*duy (/ppdu)P.
R/Z Ju~1(t) T T T

The lower bound follows by taking infima over admissible functions g and p. The same
argument would lead to a contradiction if mod,-T" was finite when cap,T" = 0. U

4. Proof of Theorem 2.3

Theorem 2.3 follows, once we have shown that there is a non-negative Borel
function pg defined on 7', such that

o - [
T
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and that
®) cap,T < C(T) [ Moya(h ) dH
S

for all S € I'* and all large enough n, depending on S. Here M, for r > 0 denotes the
restricted Hardy—Littlewood maximal operator, see [7, Chapter 3.5] for its definition
and basic properties. Indeed, letting n — oo and applying the general Fuglede’s
lemma [5, Theorem 3| we find that

9) cap,T’ < C(T) / phtdH
S
for mod,--almost every S. Now suppose mod,-T" < oo. If cap, T’ = 0, there is nothing
to prove. Otherwise it follows from (9) that the function
c(T)
cap,T’

p—1
Po

is weakly admissible for mod,-7". Thus

(mod,-T)?" < o / pe=l g " C(T)(cap,T) /7
p* X cap, T Tpo H = Pp :
The same calculation shows that mod,~T" must be finite if cap,T" is nonzero. This
proves Theorem 2.3. The rest of this section is focused on finding py and proving (8).

Let us begin by constructing py. We would like to apply the usual method of con-
structing minimizers for capacities or moduli. This method would consist of picking
a minimizing sequence (¢;); of Lipschitz maps of degree 1 and their upper gradients
(pi)i, applying weak compactness properties of LP-spaces and Mazur’s lemma to find
a subsequence of convex combinations of p; that converges strongly to some limit py,
and finally showing that pg is an upper gradient of a Lipschitz map of degree 1. The
obvious flaw with this method is that it is not clear whether the proposed minimizer
po or the convex combinations of the functions p; are upper gradients of Lipschitz
maps of degree 1.

To fix this, we replace the collection of upper gradients of degree 1 Lipschitz maps
by a slightly larger collection F and show in Proposition 4.3 that the capacity does
not change if we take the infimum over functions of F instead. The collection F is
defined using the universal cover (T, 7) of T, and consists of those non-negative Borel
functions p on T' for which the function p o 7 is an upper gradient of a Newtonian
map, which satisfies an analogue of the degree 1 -property. See Subsection 4.2 for the
definition of Newtonian maps. Once we have set the proper definition of F, it is easy
to see that it is convex, and by applying the proofs of existing compactness results
on Newtonian spaces we show in Proposition 4.4 that the limit pg is a member of F
as well.

4.1. Universal cover and lifts. We denote the universal cover of T" by (T, ).
The metric d on T is defined as the path metric induced by pulling back the length
functional of T" with w. This means that given points Z,y € T we define

d(z,§) = inf ((x 0 ),
Y

where the infimum is taken over all paths in 7' that connect # and §, and U(moxy)is
the length of the path 7 o~. With this metric # becomes a local isometry.



10 Atte Lohvansuu

We equip 7 with the Borel-regular measure it that satisfies
()= | N ) du(e)
(A

for all Borel sets A C T. Here N(z,w, A) denotes the cardinality of 7—*(x) N A. The

area formula
[rai=[ 3 rwdnte

yer—1(z)

holds for every integrable Borel-function f.
Denote by 7: T — T the unique deck transform that satisfies

7(3(0)) = A(1),

for all lifts 5: [0, 1] — T of all degree 1 loops y: [0,1] — 7. With the additional metric
and measure theoretic structure the classic lifting theorems imply the following.

Lemma 4.1. Suppose f: T — R/Z is a Lipschitz map of degree 1 and let p be
one of its upper gradients. There exists a function f: T — R, called the lift of f,
that satisfies the following properties.

(1) [f] = f ow. In particular f is locally Lipschitz.

(2) pom Is an upper gradient of f.

(3) for—f=1.
Moreover, if f! is another lift that satisfies the properties above, then thereis ak € Z
such that f' = forh = f + k.

Claim (2) follows from the identity

/pmrds:/ pds,
v oy

which holds for every rectifiable path ~ in 7.
Conversely, we have the following.

Lemma 4.2. For every locally Lipschitz g: T — R with goT — g = 1 there is
a Lipschitz map f: T — R/Z of degree 1, that satisfies [g] = f o w. Moreover, if p¢
is the minimal p-weak upper gradient of f in T', then py o 7 is the minimal p-weak
upper gradient of g in T.

Proof. We define f locally by

f=lgon.

Then f is well defined due to the property g o™ — g = 1. It is certainly locally
Lipschitz, has degree 1, and satisfies [g] = f o 7.

It remains to show the relation between the upper gradients. Given any z € T
there is a ball B’ that contains x and on which 7 is an isometry onto B = n(B’).
Clearly po 7T|§/1 is a p-weak upper gradient of f in B whenever p is a p-weak upper
gradient of g in B’. Thus, if py o 7 is a p-weak upper gradient of ¢ in T, it must be
the minimal one.

Now let v: [0, 1] — B’ be a rectifiable path, so that the upper gradient inequality
holds for the pair (f, ps) on every subpath of 7o~. Almost every path in B’ is such a
path, since p; is a p-weak upper gradient of f, and as an isometry 7|p preserves all
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path moduli. Continuity of g implies that we can decompose v into v = vy * - - - % Y,
so that v, = v ] and

[titit1

(10) 9(vi(ti1)) = g(n(t)] = llg(valtiv)] = [g(vi(t:)]]

forall i =1,...,k. On these subpaths we have

/ pyomds = / prds > |f(x((t1)) = Fr ()
= [lg(ntir)] — [g(t))].

Combining this with triangle inequality and (10) yields

9(1(1)) — g(1(0))] < / py o ds.

o

Given an open set U C T, denote the set of all paths in U on which the upper
gradient inequality fails for the pair (g, pfom) by I';. We need to show that mod,I'; =
0. Cover T by countably many balls B!, on which 7 is an isometry onto 7(B!). Note
that if the upper gradient inequality fails for the pair (g, pf o m) on some path 7, it
must fail on some subpath of 7 that is contained in one of the balls B.. In other
words, for every path in the collection I'; there is a subpath in one of the collections
r B Now

mod,I'; < mod, (U FB£> < ZmodpFBg =0,

since the first part of the proof shows that mod,I's; = 0 for all :. U

4.2. Minimizers. Motivated by Lemmas 4.1 and 4.2 we find an alternative
definition for the capacity.

We say that a function f: 7 — R belongs to the Newtonian space N 17P(T) if
f is p-integrable and admits a p-weak upper gradient that is also p-integrable. See
[7, Chapter 7| or [1, Chapter 5| for further properties of these spaces. We say that
f € NYP(T) if fly € NY(U) for every open U CC T (note that T is proper). The
space NYP(U) is equipped with the seminorm

| fllvir@) = Ifley + ifplf ol e,

where the infimum is taken over all p-weak upper gradients p of f in U.

Let F be the collection of all positive Borel functions p on T', for which po 7 is
a p-weak upper gradient of some f € Nﬁ)’f (T') with for — f =1 almost everywhere.
Define

capr = ggﬁéfdu.

Note that by Lemma 4.1 every upper gradient of a map admissible for cap,T" belongs
to F. Therefore
Capr < cap,T.
The reverse inequality is also valid, but requires a bit more work.
Proposition 4.3.
cap, T’ = caup;E T.
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Proof. We must first show that locally Lipschitz functions of degree 1 are dense
in the space of degree 1 functions of Nﬁ)’f (T"). Here having degree 1 means satisfying
the property f o7 — f = 1 almost everywhere. A result by Bjorn and Bjorn [2,
Theorem 8.4.] shows that locally Lipschitz functions are dense in N2?(T). A simple
modification of the proof of this result shows that the approximating locally Lipschitz
maps can be chosen to be of degree 1 whenever the limit is of degree 1. We provide
the main points of this modification.

Following the proof of Theorem 8.4 of [2], we start by choosing for every z € T
a ball B, centered at x, so that

e the 1-Poincaré inequality and the doubling property hold within B,, in the
sense of [2],
e the covering map 7 is an isometry on B,.

Let U, := m Y(m(3B,)). The space T is compact, so there is a finite subcollection
{U,, Y, that covers T. Write B; = 1B., and U; = U,,. Note that U; can be written
as a disjoint union U; = [y, 7°B;. We denote cU; = |J,. oz 7" (¢B;) for any ¢ > 0.
For each j pick a Lipschitz function ¢} : Bj — R that satisfies x5, < ¢} < X28;-
Extend these to Lipschitz functions ¢;: T' — R first loy defining ;] -+ B,) = Uj or*
in 2U; and then extending as zero to the rest of 7. Next, define Lipschitz maps

;T — R recursively with ¢; = and for j > 1

j—1
;= ;- (1—Z<Pk>-
k=1

Then >; ¢, = 1in U; and ¢; = 0 in U; for all j > i. Therefore {(p;,U;)}; is a
partition of unity.

Now let f € Nllo’f(T) be a degree 1 map, for — f = 1. Let ¢ > 0. By Lemma 8.5
of [2] there are locally Lipschitz functions v;: 2B; — R with

€
1f = vjllvires,) < x5,
where L; is the Lipschitz constant of ¢;. Extend v; to 2U; with
Ujleramy) = k+ vy o7
Then v; o7 —v; = 1, and for all £
€
1f = vjllvieees;y) < 1+,

As in [2| we get
(11) ||90J(f - Uj)HZ])VLP(T’C(QBj)) < 2¢€P.

The function v := 2311 ©;v; is locally Lipschitz, and satisfies the degree 1 property
voT —v=1.
Now (11) gives
v = fllvre@) < CU)e,

for any domain U cC 7. This proves the density of degree 1 locally Lipschitz
functions in the space of N,oP(T)-functions of degree 1.

Now if we let p € F, the function p o 7 is a p-weak upper gradient of some
f € NY2(T), and we find a sequence of locally Lipschitz functions (vj) of degree 1,

loc
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such that
j—0o0

lv; = fllnte@) = 0.
for every U cC T. Let w; be the Lipschitz projections of v;, given by Lemma 4.2.
Then the minimal upper gradients satisty p,, = p,,; o 7. Now

j —00

(12) lpo; = pslliresy) = 0
for all 4. Let A} = 7(B;) and for 1 < j < m — 1 define A, := 7(Bj:1) — U, 4;.
Let m; : B; N7~ '(A;) — A; be the restriction of w and define p; := D XA;proOT; -t
The Borel sets A; are disjoint and cover T, so a quick calculation shows that
(13) 1Py < 12Ny

since by definition of p we have p; < p o 7 almost everywhere. Finally, note that

|pw; — P}Hip(T) = Z |pw; — P}Hip(,qj) < Z [P0, — prIip(Bj)
j=1 J=1

and thus (12) implies
(14) Jlim ||pw]||LP(T ||pf||Lp (T)
since there are only finitely many sets A;. Combining (13) and (14) yields

Ca‘ppT < ||P||I£p(T)
which finishes the proof. U

Proposition 4.4. There is a unique minimizer py € F, i.e.

cap, T = cap /ppd,u

Moreover, for any other p-integrable p € F

(15) cappTé/ﬂg_lpdu'
T

Proof. Note that F is convex. Once we know the existence of a minimizer, the
proof of the variation inequality (15) is standard. See for example [12, Lemma 5.2.|.
Uniqueness of the minimizer follows from the convexity of F and the uniform con-
vexity of LP(T).

We now show the existence of a minimizer. First recall that we have assumed in
Assumptions 2.1 that there exists at least one Lipschitz map of degree 1. It follows
that cap,T is finite. Let (f;); be a sequence of locally Lipschitz maps f;: T"— R/Z
of degree 1, so that for each 7 the function p; is an upper gradient of f;, and

cap, T = lgn Pt dp.
7 o T
We claim that the lifts fz of the maps f; can be chosen so that the sequence (fl) is
LP-bounded in any bounded domain of T'.
To this end, note that the length of any loop-homotopically non-trivial loop ~
must satisfy

(16) l(y) = c
for some ¢ > 0. This is implied by the existence of Lipschitz maps of degree 1.
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Let {2;}L, be a -net in T, where ¢ is the constant from (16). Note that by the
net property of {x;} any two balls B; := B(x;, g) are connected by a chain of balls
of the same form. By a chain we mean a sequence of balls, in which adjacent ones
have nonempty intersection. The same chaining property holds for the balls 25;, but
now additionally we find that the connecting chains (2B;, ), can be chosen so that

for each k there is a ball B; C 2B;, N 2B, , of radius c/8.

Note that by (16) the balls 2B; are evenly covered. In fact, 7 is an isometry
when restricted to any component of 77'(2B;). Fix a component B; of 7~ 1(By).
Set V; = B;. For k > 1 we define domains Vj recursively by adding components of
7 1(B;) for suitable B;. At step k + 1 we choose exactly one component of 7~ (B;),
call it B;, to be added to Vj, if and only if 7~ %(B;) intersects Vj, and there are no
components of 77!(B;) that are contained in V.

After at most N steps no new balls can be added. Let V = V. It follows from
the construction that V' is a bounded domain on which 7 is surjective. It may happen
that the prev1ous construction does not define B; for all B;. If so, just let B; be a
component of 77!(B;) that is contained in V. Thus

N ~
=1
Denote by 2B; the component of 7~*(2B;) that contains B;. )
By adding integers if necessary, we may now fix the lifts f; by requiring
(17) 0< (J;i)mé <L
If j # 1, by construction there is a chain (2B]k)k L with j; =1, 5y =jand I < N,

so that for every 1 < k < [ there is a ball B, C 2B;, N QB]k+1 of radius ¢/8. Let
m = min{u(B;)} > 0. By the Poincaré 1nequahty and the doubling condition

(Fas,, ~ Pl <C 1= (Fag, 17 < Clloiloian,

Jk

.

where C' = C(T, p, m, c), and the same calculation shows

(Fas,, — (gl < Clloliaas,
as well. Thus by the triangle inequality and (17)

|(f)25,] < ONpill7s ) + 1.

Now by the Sobolev—Poincaré inequality, see [7, Thm. 9.1.2|, and the local isometry
of m
1= (B P i < O, )l
2B;

It follows that the sequence (f;); is bounded in LP(2B;).

Since V' is covered by finitely many balls 2B;, we find that both sequences (f;);
and (p; o m); are bounded in LP(V), and also in every LP(W},), where

k
W, = U V.
I=—k

Note that Wy = V. Now by extracting enough subsequences we may assume that
(fi)i and (p; o m); converge weakly to functions f° and p° in LP(W;). By Lemma 3.1
of [10] there exist sequences of convex combinations (ff) and (5}) of the functions f;
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and p; o, respectively, that converge strongly to f° and §°. Moreover ° is a p-weak
upper gradient of fO in W.

This allows us to define sequences (f**!) and (p**!) recursively to be the se-
quences in LP(Wj,1) that are obtained by applying the argument above on Wi,
instead of W, and on sequences (f¥) and (5¥); instead of (f;); and (piom)i. Let fhtt
and p*! be the corresponding limits in LP(Wj.1). It follows that g, = fk and

" g, = pF. Define fand p: T — R by setting f|Wk = f* and plw, = pF. Tt is
immediate that p is a p-weak upper gradient of f.
Consider the diagonal sequences ( f] ); and (p] );- These maps are still convex

combinations of the functions f, and p;om, respectively. It follows that these sequences
converge to f and p in LIOC(T). Moreover f oT — f =1land poT—p =0 almost
everywhere, since these hold everywhere for all maps in the respective sequences.
The latter equality allows us to define py by projecting p. Therefore pg € F and

el - [

since (ﬁj) is still a minimizing sequence, due to convexity of F. 0

4.3. Competing admissible maps. Now that the minimizer py has been
found, the proof of Theorem 2.3 is only missing the proof of (8). Recall that (8) says
that for all S € I'*

cap, T’ //Vlc (b ) dH,

where M denotes the Hardy-Littlewood maximal operator. Given an S € I'* we
construct suitable Lipschitz maps of degree 1 that are constant outside a small neigh-
borhood of S. Then we can apply the variation inequality (15) of Proposition 4.4 on
the upper gradients of these Lipschitz maps to conclude (8).

In this subsection we construct these Lipschitz maps. It turns out that the
same construction can be used to obtain Lipschitz maps of degree 1 out of general
(continuous) maps of any nonzero degree. We only need to consider maps of positive
degree by composing with the antipodal map of R/Z if necessary.

To simplify the notation, we omit some parentheses and write for example ¢~1{0]

and 7¢~1(0) instead of ¢~1([0]) and 7(¢~1(0)) from now on.

Proposition 4.5. Let ¢: T' — R/Z be a continuous map of nonzero positive
degree. There is a number N = N(¢), such that for all n > N there is a finite
pairwise disjoint collection of balls { B;} of radius 1/n in T, such that for all i

H(o~' 0] N By) > C(T)nu(B:)

and such that the Borel function
p=n Z X5B;

is an upper gradient of a Lipschitz map ¢ : T — R/Z of degree 1.

Proof of (8) assuming Proposition 4.5. Let S € T'*. Then S = ¢~![0] for some
degree 1 map ¢. Let {B;} be the collection of balls and let p be the Borel function
that is obtained by applying Proposition 4.5 for some large enough n. Now

H(S N B;) = C(T)nu(B;)
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for all 7. Applying this along with the variation inequality (15) of Corollary 4.4, the
doubling property of i and the definition of the Hardy-Littlewood maximal operator
gives

can,7'< [ oo < OO Y muBof ol
T i 5B;

< C(T) Y H(SN By) inf Megym(eh ()

<C(r) [ Moyl dt,

which is exactly (8). O

The rest of the section is focused on proving Proposition 4.5. Let ¢: T — R/Z
be a continuous map of nonzero positive degree. Let z9 € ¢~'[0], Zo € 7~ '(20) and
let ¢: T'— R be the lift of ¢ that satisfies ¢(Zy) = 0. Compactness of T" implies that

(18) 6 :=min {d (m?‘l (i%) ,7?&‘1(0)) d (7“5_1 (ii) LU (ié))}

is strictly positive. Denote Ut = 7¢~1(0,1/4) and U~ = m¢~*(—1/4,0]. Denote also
S = 7¢~1(0). Observe that S C ¢~![0], and if deg¢ = 1, then S = ¢~1[0].

For our intents and purposes the relative isoperimetric inequality takes the fol-
lowing form.

Lemma 4.6. (Relative isoperimetric inequality) There are constants C' = C(T))
and A = X\(T) > 1 such that

. [ w(BNUT) w(BNU) r
m{ W(B) (B }g Cp) T NAB)

for all balls B = B(x,r) for which A\B C ¢~ (—1/4,1/4).

This formulation is essentially the same as the one used in [12, Lemma 5.1,
which is just an application of Theorems 6.2 and 1.1 of [11]. The same proof is
valid here as well. Note that restricting the balls to ¢~'(—1/4,1/4) ensures that
QUTNAB C SNAB. ) )

Denote by T the set of all paths « that connect m¢~*(—1/8) to m¢~'(1/8) inside

T (—1/4,1/4).

Corollary 4.7. For every n > % and v € I' there is a ball B} that is centered

on v, has radius % and satisfies
H(S N BY) = Cnu(BY)
for some constant C' = C(T).

Proof. The proof is essentially contained in the discussion following Lemma 5.1
in [12]. We sketch the idea here for completeness. Given a path ~: [0,1] — T of
I, we consider the balls B, := B(y(t), ﬁ), where A is as in Lemma 4.6. We may
assume that || is contained in ¢ ~'[—1/8,1/8], and therefore by the definition of
each B, is contained in 7¢~'(—1/4,1/4). Now the function

NB
1(By)
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vanishes when ¢ is near 0 and is equal to 1 when ¢ is near 1. Pick
to := sup{t € (0,1)| &(t) < 1/2}

and choose B := 2AB;,. The lower bound on the measure of the boundary is then
given by the relative isoperimetric inequality. O

Now let F, be the collection of balls B that arise from the paths in I' as in
Corollary 4.7 with n fixed. Apply the 5r covering theorem on F,, to find a pairwise
disjoint subcollection G,, with the property

U Bc | 5B

BeFy, Begn,

Note that G,, must be finite due to the compactness of T. Write G,, = { B;},. Define
a positive Borel function p: T'— R with

N
p=n Z X5B; -
i=1

Let Q2 be the open set that consists of the points that can be connected to 7(5_1(—1/8)
by a rectifiable path inside m¢~'(—1/4,1/4). Define a function ¢: T'— R inside Q
with

Yz

U(x) == inf/ pds,
Y

where the infimum is taken over all rectifiable paths 7, that connect o H(—1/8) to
x inside ¢~ 1(—1/4,1/4). Extend v as zero to the rest of T. Finally, the desired
competing admissible map ¢: T — R/Z is defined by

() = [min{1, 4 (z)}].
Lemma 4.8. The mapping ) is Lipschitz and p is one of its upper gradients.

Proof. 1t is straightforward to prove that p is an upper gradient of both ¥ and
min{1,7} in Q, see e.g. [1, Lemma 5.25]. Let v be a rectifiable path in T that
connects two points z,y € T. The upper gradient inequality for the pair (¢, p) on =
is immediate if z,y € Q and |y| C Q, or if ¥(z) = P(y).

In order to prove the upper gradient inequality in the other possible situations
we need to show that ¢ > 1 on m¢~1(1/8,1/4) N Q. To this end, let  be a rectifiable
path that connects 7¢(—1/8) to a point z € 7~ 1(1/8,1/4) inside 7~ (—1/4,1/4).
Then n has a subpath ' € T". Let B}, € F;, be the ball obtained by applying Corollary
4.7 on . Now

N
/pds > / pdH' =n Y H'(IW|N5B) = nH' (0| N By) > 1,
n 'l i=1
since Bjj is covered by the balls 5B;. This holds for every connecting path 7, which
implies that i (z) > 1. ) ) i
Next assume x,y € Q with ¢ (z),¥(y) € (0,1) and |y| £ . Note that min{1, ¢}

equals 0 in 7¢~'(=1/4,—1/8) N Q, since p vanishes there. This means that there
exist subpaths v1 = 7| and y2 = |1 of v that satisfy |y1| U |y2] C © and
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»(y(t1)) = ¥(v(t2)) = [0]. Therefore
() — (y)] < () —w(v(t)] + [P (v(t) — P (y)|

/pd8+/ pds < /pds.
71 Y2

The same argument can be applied in the case of x € €2, y & 2. We omit the details.
The upper gradient inequality implies that v is Lipschitz, since T is geodesic and
p is bounded. U

4.4. Degree of 1. In this subsection we prove that deg = 1.

Pick a rectifiable degree 1 loop v and a point a € (1/8,1/4). We may now assume
that the endpoints of + are on T~ Y(a). Since T is geodesic and semilocally simply
connected, we may assume that v has finite length. This, and moving the starting
point if necessary, allows us to decompose = into

(19) = (e rm) ® ok (e k),

so that each ~; intersects W@‘l(a) precisely at the endpoints, and none of the paths
n; intersect w1 (—a). )
For the next lemma we denote for brevity ¢ := min{1,¢}.

Lemma 4.9. Let n: [0,1] — Q be a rectifiable path. Suppose that the endpoints
of {,n belong to {0,1}. Then ,n is loop-homotopic to (,n(1) — (n(0) times the
standard generator of m1(R/Z,[0]).

Proof. If the starting point is 0 and the end point is 1, the homotopy is given by
H:[0,1* - R/Z,
H{(s,t) = [sCn(t) + (1 — s)t].

It is straightforward to check all the requirements. The other cases are similar. [J

Corollary 4.10. The paths ¥,n; and ¢.n; are loop-contractible.

Proof. The endpoints of the path 7; must be in the set qufl(a). Since 7 has
finite length, 7; can be decomposed into

=k kT
where the endpoints of each 7/ are in 7¢~'(a), and if |5/| ¢ Q, then there are no
other intersections with 7¢~"(a).
Now if 7] is contained in €2, Lemma 4.9 implies that it is loop-contractible.

Otherwise w*nf is already a constant path. Therefore 1,n; is loop-contractible as
well. The path ¢.n; cannot be surjective, so it is loop-contractible. O

Let a: R/Z — R/Z be the isomorphism «[z] = [z — a]. Note that a.¢,y; and
1,7y are all loops with the same basepoint [0].

Denote the domain of v; by [a;,b;)]. Let ~i: [a;,b;] — R be the unique lift of
a¢.y; for which v{(a;) = 0. Further decompose each ~; into

V=R
where v} and 77 intersect 7ng~5*1(:|:a) exactly at their endpoints.

Lemma 4.11. The lifted path . intersects integer multiples of deg ¢ exactly at
its endpoints. In particular +/(b;) = +deg ¢ or v/(b;) = 0. Moreover, ~; (respectively
v3) is contained in §2 if and only if | is negative in a neighborhood of a; (i < 7' (b;)
in a neighborhood of b; ).
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Proof. Let 7;: [a;, b — T be the lift of v, that satisfies qg*%(ai) = a. Then
due to uniqueness of lifts we have 7, = qg*% — a. Since 95 is a lift of ¢, we have
borF =k degd+ ¢ for any integer k. It follows that vi(t) = k - deg ¢ if and only
if ¢(77%(3;(t))) = a, which can be combined with the lifting property =3 = v; to
conclude that /() equals an integer multiple of deg ¢ if and only if ~;(t) € 7d~(a).
By construction the latter happens if and only if ¢ equals either endpoint of [a;, b;].
This proves the first assertion of the lemma.

The definitions of 7}, 73 and €2 imply that these paths are contained in  if and
only if they are contained in 7¢~![—a, a]. Therefore ~; is contained in Q if and only
if the part of 4; corresponding to ~} is contained in ¢~ (k - deg ¢ + [—a, a]) for some
fixed integer k. This k must be 0, since we chose qg*’yi(ai) =a. Thus v = (5*% —ais
negative in a neighborhood of a; if and only if 4/ is contained in €. The path 47 can
be treated similarly. O

Corollary 4.12. The paths a,¢,7v; and deg ¢ - 1,7y; are loop-homotopic.

Proof. We need to check four different cases, corresponding to ~;} and +; being
or not being contained in 2. The proofs are essentially the same, so we write down
only one of them.

Assume that v} is not contained in © but 43 is. Then ¢,7} is a constant path, and
¥,y? is loop-homotopic to the standard generator by Lemma 4.9. Arguing exactly as
in the proof of Corollary 4.10, we see that 1,2 is loop-contractible. Therefore 1,
is loop-homotopic to the standard generator.

By Lemma 4.11 the lift +} satisfies 7/(a;) = 0 and ~}(b;) = +deg ¢ or ~i(b;) = 0.
We also find that +] is positive in a neighborhood of a@;, and less than +/(b;) in a
neighborhood of b;. Combining these gives 7/(b;) = deg¢, which means precisely
that a,¢.v; is loop-homotopic to deg ¢ times the standard generator. U

Applying Corollaries 4.10 and 4.12 to the decomposition (19) yields

@y = deg @ - 1Py,

Now by applying the identity deg (o ¢) = deg ¢, we see that 1,7 is loop-homotopic
to the standard generator. Therefore deg1) = 1 and the proof of Proposition 4.5 is
finished.
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ON THE DUALITY OF MODULI IN ARBITRARY
CODIMENSION

ATTE LOHVANSUU

ABSTRACT. We study the duality of moduli of k- and (n — k)-
dimensional slices of euclidean n-cubes, and establish the optimal
upper bound 1.

1. INTRODUCTION AND THE MAIN RESULT

Suppose D C R? is a Jordan domain, whose boundary is divided into
four segments (1, ..., (4, in cyclic order. Let I'((y, (3; D) be the family
of all paths of D that connect (; and (3. Then for every 1 < p < oo

1) (1m0d, Gy, G: D)) #(mod, DGz, i D)7 = 1.
Here ¢ = :z% and the p-modulus of a path family I' is defined by

mod,[' = inf/ PP dH?,
P JD

where the infimum is taken over all positive Borel-functions p with

/pd5>1
Y

for every locally rectifiable path v € I". The path modulus is a fun-
damental tool in geometric function theory and nonsmooth analysis
[9, 17, 21].

For conformal moduli, that is p = 2 = ¢, the duality (1) was already
known to Beurling and Ahlfors, see e.g. [I, Lemma 4] and [2, Ch. 14],
although instead of moduli they considered their reciprocals, called
extremal lengths. For general p the identity (1) follows from the results

of [23]. It has found applications in connection with uniformization
theorems [16, 11] and Sobolev extension domains [22].

The duality of moduli phenomenon (1) is also present in euclidean
spaces [5, 7, 23] of higher dimension and sufficiently regular metric
spaces [12, 13, 14]. For example, in [23] it is shown that
(2) (mod,I'(E, F'; G))"/?(mod, ™ (E, F; G))/1 = 1,

where G C R" is open and connected, F and F' are disjoint, compact
and connected subsets of G and I'*(F, F'; G) is the set of all compact

Mathematics Subject Classification 2010: Primary 30L10, Secondary 30C65,
28A75, 51F99.
The author was supported by the Academy of Finland, grant no. 308659, and
also by the Vilho, Yrj6 and Kalle Vaisala foundation.
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sets of GG that separate F from F. The modulus of separating sets
is a natural generalization of the definition of the path modulus. See
Section 2 for definitions of moduli and other concepts appearing in the
introduction.

Separating sets are generally of codimension 1, so (1) and (2) deal
with objects of either dimension or codimension 1. In fact, this is a
common theme in all of the results cited above. However, an observa-
tion by Freedman and He (see the discussion after Theorem 2.5 in [5])
hints that a similar duality result could be true for objects of higher
(co)dimension as well. In this paper we explore this question in the
setting of cubes of R".

Moduli of higher (co)dimensional objects have appeared in [10, 15],
where the nonexistence of quasisymmetric parametrizations of certain
spaces was established. Indeed, one of the main motivations for study-
ing more general moduli is finding tools to approach parametrization
problems in higher dimensions.

Our first problem is defining suitable classes of k- and (n — k)-
dimensional objects, since simple descriptions such as “connecting paths”
or “separating surfaces” do not seem to exist. We follow [5] and define
the objects as representatives of certain relative homology classes. For
example, in the context of (1) we can think of the paths of T'((y, (3; D)
as singular relative cycles, that are representatives of either generator
of Hi(D, (3 U(3) ~ Z. Since we also want to integrate over the chains,
we need to assume some regularity. For this reason we will consider
Lipschitz chains instead of singular chains.

Let @ C R™ be a compact set homeomorphic to the closed unit n-
cube I"™. Fix a homeomorphism h : () — I™ and an integer 0 < k < n
and let

A=h"Y0I" x I"™*) and B = h™'(I* x oI"7%).

Then A and B are (n — 1)-dimensional submanifolds of Q) with 0Q) =
AUB and 0A = AN B = 0B. We assume that A, B and @) are locally
Lipschitz neighborhood retracts. This includes triples (@, A, B) that
are smooth or polygonal, and cubes that are images of the standard
cube under biLipschitz automorphisms of R".

We denote the Lipschitz homology groups by H*. We consider only
groups with integer coefficients. This notation should not be confused
with the Hausdorff measures, which are denoted by H*. Note that

H}?(Q,A) ~ 7~ H?ffk(QaB)a

since the same is true for singular homology, and the two homology
theories are equivalent for pairs of locally Lipschitz retracts (see Lemma
2.1).

Let I'4 (resp. I'g) be the collection of the images of relative Lipschitz
k-cycles of @ — B that generate HF(Q, A) ((n—k)-cycles of Q — A that
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generate HLY , (Q, B)). Define
mod,I'4 := inf/ pldH",
rJQ

where the infimum is taken over positive Borel-functions p, for which

/pd?-[k>1
s

for every S € I'y. The moduli mod,I's are defined analogously. In this
paper we will prove the following upper bound.

THEOREM 1.1. For every 1 < p < 0o
(mod,T"4)"?(mod,'5)"? < 1,

where ¢ = z%'

It is unknown, whether Theorem 1.1 holds with an equality. We will
prove Theorem 1.1 in Section 3. A similar result for de Rham cohomol-
ogy classes, with an equality, is proved in the setting of Riemannian
manifolds in pages 212-213 of [5].

The assumption on ), A and B being locally Lipschitz neighbor-
hood retracts can be relaxed. The proof of Theorem 1.1 only requires
that there exists a pair of Lipschitz chains that generate Hy(Q, A) and
H, (Q, B). The assumption on retracts was chosen for its simplicity
and its use in [1]. It is also likely that such minimal assumptions on the
upper bound of Theorem 1.1 are not sufficient for the corresponding
lower bound. We will discuss the lower bound in Section 4.

In light of the results of [/, Ch. 4], it would be interesting to know
whether analogues of Theorem 1.1 hold for homology classes of integral
currents.

2. DEFINITIONS

2.1. Lipschitz homology. Let us recall the definition and basic prop-
erties of the integral homology groups. See e.g. [3, &] or other texts on
basic algebraic topology for more comprehensive treatment.

For an integer k& > 0 the standard k-simplex A is the convex hull
of the standard unit vectors ey, ..., e; of R¥F!. Given a metric space
(X,d), a singular k-simplex is a continuous map from Ay to X. Finite
formal linear combinations

o = Z ]{?Z'O'Z‘

of singular k-simplices o; with integer coefficients k; are called singular
k-chains. Singular k-chains of X form a free abelian group denoted
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by Ck(X). The boundary 0o of a singular k-simplex o is the singular
(k — 1)-chain
k
Jo = Z(—l)ia o F},
i=0

where F} : Ay_; — Ay is the unique linear map that maps each e;
to e; for j < 4 and to ej41 for j > 4. For singular O-simplices we
set do = 0. The boundary defines a collection of homomorphisms
0 : Cr(X) — Ck_1(X), all denoted by the same symbol 9. Then
00 = 0.

The image of a singular k-simplex o is the compact set |o| = o(Ay).
The image of a k-chain o = ), k;o; is the compact set |o| = |, |oi].

Given a subspace Y C X, we identify each singular simplex o of
Y with the singular simplex iy o o of X, where iy : Y — X is the
inclusion map. We define the groups of relative chains by
_ G(X)

Cu(Y)’
with the convention Cy(X,0) = Cx(X). The boundary map induces
homomorphisms 0 : Cy(X,Y) — Cr_1(X,Y’), which are again denoted
by the same symbol. A chain ¢ € Cy(X) is called a cycle relative
to Y, if do € Cx_1(Y), or simply a relative cycle if the choice of YV
is clear from the context. Similarly, o is called a relative boundary if
o = do’ 4+ 0", where ¢’ € Cy41(X) and 0" € Ci(Y).

The singular relative homology groups of the pair (X,Y) are the
quotient groups

Ck<X, Y) :

ker(9: Ch(X,Y) — Ch_i(X,Y))
(0 : Cpi(X,Y) = Cu(X,Y))

The homology groups of X are the groups Hy(X) := Hg(X,0). The
homology class of a (relative) chain o is denoted by [o]. The homol-
ogy classes of H(X,Y') are represented by relative k-cycles, and two
relative k-cycles define the same class if and only if their difference is
a relative boundary.

If X’ is another metric space with a subset Y, and f: X — X' is a
continuous map with f(Y) C Y’, we denote by f, the induced homo-
morphisms f, : Cx(X,Y) — Cx(X',Y’), and also the homomorphisms
fe it Hi(X,Y) = Hp(X',Y’). These are given by f.oc = f oo for sin-
gular simplices, f. > . kjo; = >, k;f.o; for chains and f,[o] = [f.o] for
homology classes.

Given a continuous homotopy H : X x I — X' with H(Y x I) C Y’,
there exists a sequence of homomorphisms

P Ck<X7 Y) — CkJrl(X/aY/)a

Hy(X,Y) =

such that
(3) H,, — Hy, = PO+ OP.
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Here Hi(x) = H(x,t). Formula (3) is called the homotopy formula.

A continuous f : X — Y is called a retraction if f o iy = idy.
The set Y is then called a retract of X. If YV is a retract of one if its
neighborhoods in X, it is called a neighborhood retract.

The corresponding objects in the Lipschitz category are obtained
by replacing each occurrence of “singular” or “continuous” with “Lip-
schitz”. The homotopies involved in these definitions are then re-
quired to be Lipschitz with respect to the metric d((z,t), (2/,t)) =
d(z,2")+|t—t'|. We denote the groups of Lipschitz chains by CZ(X,Y)
and the Lipschitz homology groups by HX(X,Y"). We define locally Lip-
shitz objects similarly. However, due to compactness there is often no
difference between the corresponding objects of Lipschitz and locally
Lipschitz categories.

Lemma 2.1. Let Y C X C R" be locally Lipschitz neighborhood re-
tracts. Then the inclusions

i CHX,Y) = C.(X,Y)
induce isomorphisms on homology.

Lemma 2.1 follows from a more general result [18, Cor. 11.1.2],
which holds for pairs of locally Lipschitz contractible metric spaces.
It is straightforward to show that the existence of locally Lipschitz
neighborhood retractions implies locally Lipschitz contractibility.

2.2. Modulus. Given a 1 < p < oo and a family M of Borel measures
of R", the p-modulus of M is the number

(4) mod, M :=inf [ p’dH",

P Rn
where the infimum is taken over all Borel functions p : R" — [0, 00)
with

(5) [ piv=

for every v € M. Such functions are called admissible for M. If there
exists a subfamily N/ C M such that mod,N' = 0 and (5) holds for
all v € M — N, we say that p is p-weakly admissible or simply weakly
admissible if the choice of p is clear from the context. It follows that the
infimum in (4) does not change if we take it over p-weakly admissible
functions instead. Let us list some useful properties of the modulus.

Lemma 2.2. Let M be a collection of Borel measures of R". Let
1 <p<oo.

i) If p; are p-integrable Borel functions that converge to a function p
in LP, there exists a subsequence (p;;); for which

/ pi; dv ey pdv

R”
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for almost every v € M. In particular, Borel representatives of
LP-limits of admissible functions are weakly admissible.
i) If mod, M < oo, then

mod, M = PP dH"
Rn
for a weakly admissible minimizer p, unique up to sets of H"-
measure zero. Moreover,

mod, M < [ ¢pPtdH"
R’ﬂ

for any other p-integrable weakly admissible ¢.
i) If M =J;2, M; with M; C My for all i, then
mod, M = lim mod, M,.
1—00

Claim i) is often referred to as Fuglede’s lemma. Proofs for i) and
the first part of i) can be found in [6, Thm. 3]. The second part of i7)
and i) are generalizations of [I1, Lemma 5.2] and [24, Lemma 2.3],
respectively. The same proofs apply.

In this paper we abbreviate

mod, 'y = modp{”;'-[k LS| S el

and
mod,I'p = mod, {H"*L S* | S* € I'z}.

2.3. Rectifiable sets. A subset of R" is k-rectifiable if it is covered by
the image of a subset of R¥ under a Lipschitz map. A subset of R” is
countably k-rectifiable if H*-almost all of it is contained in a countable
union of k-rectifiable sets.

See e.g. [1, 20] for basic theory on rectifiable sets. Note that the
definition of countable rectifiability in [1, 3.2.14] is slightly different
from ours.

Let us record some useful facts on rectifiable sets. The following
Fubini-type lemma is an application of [1, 3.2.23] and [/, 2.6.2].

Lemma 2.3. Suppose S* is a countably k-rectifiable subset of R™ and
S is a countable union of l-rectifiable subsets of R™. Then S* x S is a
countably (k + 1)-rectifiable subset of R™ x R™, and

for any positive Borel function g on R™ x R™.

Lemma 2.3 is not true for general countably k-rectifiable sets S, see
[1, 3.2.24]. The second tool we need is the coarea formula, see e.g. [20,
12.7].
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Lemma 2.4. Suppose m < k. Let S be a countably k-rectifiable subset
of R™ and let u: S — R™ be locally Lipschitz. Then

(6) / / gdH" ™ AH™(2) = / gJ> dH*
m Ju—1(z) S

for every positive Borel function g on S.

Let us define the jacobian J2 appearing in (6). Details can be found
in [20, §12]. Suppose first, that S is an embedded C' k-submanifold
(without boundary) of R™. Then u is differentiable at H*-almost every
x € S. Fix such an z, and let {Fy,..., Ex} be an orthonormal basis
for the tangent space of S at x. Let Du(z) be the jacobian matrix of
u at x with respect to standard bases of R” and R™. We set

J2(x) := \/det(dSu(z)dSu(z)?),
where d°u(z) is the matrix with columns Du(x)E;. It can be shown
that J2(x) does not depend on the choice of the basis {E;}.

More generally, every countably k-rectifiable set S' can be expressed
as a disjoint union S = [J;2, M;, where H*(My) = 0 and each M; for
i > 1 is contained in an embedded C! k-submanifold V; of R™. Given
an x € M; with 1 > 1, we set

T (@) = T, ().
Then J? is well defined H*-almost everywhere on S. It can be shown

that J2 does not depend on the decomposition S = Uiy M;, up to sets
of H*-measure zero.

3. PROOF OF THEOREM 1.1

Given any set S C R™ and a vector y € R" we denote
Sy={z+y|zeSs}
and
N.(S) =A{x | d(x,S) < e}.
Denote by I the collection of (n — k)-rectifiable subsets S* of Q) — A,
such that the homomorphism
i HHQ — 57, 4) = HE(Q, A)

induced by inclusion is trivial. Lemma 3.5 below implies that I'g C I'.
Every set S* € I, intersects with every S € I'4 in a nonempty set.
To see this, note that if |o| N S* is empty for some Lipschitz cycle
o € Cr(Q) relative to A, then [0] = i.[o] = 0 in HF(Q, A) by the
definition of I'.

We abbreviate

mod, [ := mod, {H" "L S* | S* € I'}}}.

Theorem 1.1 is then implied by the following more general result.
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THEOREM 3.1. For every 1 < p < o0

(mod, T 4)"?(mod, ™) < 1,

_p_

where ¢ = T

The rest of this section is focused on the proof of Theorem 3.1.

For each 6 > 0 let I'% be the subcollection of I'4 consisting of those
sets whose distance to B is at least 1005. The subcollections I'* are
defined analogously. In light of 7ii) of Lemma 2.2, it suffices to show
that

(7) (mod, )"/ (mod,I'7)"/* < 1

for all 4. Fix a 0 for the rest of the proof. We may assume without loss
of generality that the moduli in question are nonzero and the collections
% and I'* are nonempty.

The following intersection property of the elements of I'4 and I
forms the topological core of Theorem 3.1.

Proposition 3.2. The intersection S, NS* is nonempty for every S €
rY, S* e I'Y and |z| < 106.

We postpone the proof to Subsection 3.1.
Let S € I'%,. Observe that the map

(8) g / gdH*
s
is a distribution in R”. Thus we have by [1, 4.1.2] that
9) / oSgdH" =5 / gdH*
Q s

for every smooth compactly supported function g, where

65(z) = / b (z — y) dH (y)

is the convolution of the distribution (8) with respect to a smooth kernel
¢. That is, ¢.(x) = e "¢(e'x) and ¢ is a positive smooth function on
R™ that vanishes outside the unit ball B" and satisfies [5, ¢ dH" = 1.
Smoothness is convenient for avoiding tedious technicalities, but to
see the geometry behind the arguments that follow, the reader is en-
couraged to repeat the proof with the nonsmooth kernel ¢ = [B"| ™1 xgn.
Theorem 3.1 follows via (7) from the following proposition.

Proposition 3.3. The convolution ¢+ is admissible for T for all
e <0 and all |z] <.
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Proof. Fix an ¢ < § and a set S* € I'. Let z = 0 for now. By Lemma
2.3

S nk r—y k n—k
[ swarte = [ [ ow—pateare

- / /SONE(S*) =(x — y) dH" (y)dH" " (x)

_ / ool — ) dH (2, y).
(S*xS)N{|z—y|<e}

Now we can apply the coarea formula (Lemma 2.4) on the map u(z,y) =
x — y to obtain

since Jf %5 < 1. To see thls, note for any (n — k)- and k-dimensional

embedded C! submanifolds N* and N of R” the matrix d¥ *Nu consists

of unit column vectors. Thus Jév XN 1. Tt follows that J;?*XS <1
as well, since it can be computed via JIM with 1,7 = 1, where
S* =2y M} and S = |J;2, M; are decompositions of S* and S as in
the discussion following Lemma 2.4. Note that the sets M x S and
S* x My have zero H"-measure by Lemma 2.3.

Finally, we apply Proposition 3.2 on (10) and obtain

. ¢S (2)dH" M) = | pe(w)dH" (w) =1

eB”
The proof in the case of general z reduces to the case z = 0 via

(11) 02" (x) = 92 (z — 2),
since Proposition 3.2 can still be applied. U

Proof of Theorem 5.1. The g-modulus of I'*Y is finite by Proposition
3.3. Let p be the unique weak minimizer of mod, I’ given by ii) of
Lemma 2.2. We may assume that p vanishes in Njps5(A) and is defined
as zero outside (). Let g, be the smooth convolution

0@ = [ o) )
Let S € I and let € < 6. Proposition 3.3 and i) of Lemma 2.2 imply
mod, 'Y < / @2 pTt dH"
Q

for all |2| < § and S € T'%. Note that the product ¢=p?~! vanishes in
N1ps(0Q), so by (11) and a change of variables

mod, I < / o2 (2)p?H (x + 2) dH" (x)
Q
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for all |z| < §. Multiplying both sides by ¢,(z) and integrating over z
yields

mod, I < / ¢2 g, dH"
Q
by Fubini’s theorem. Letting ¢ — 0 and then r — 0 yields

mod, I < /pq1 dH"
s

for mod,-almost every S € T’ by (9) and i) of Lemma 2.2. Thus

1 qul
mod, %

is weakly admissible for ', so
mod, ") < (mod, )7,
which is a rearrangement of (7). 0

3.1. Topological lemmas. In this subsection we complete the proof
of Theorem 1.1 by proving Proposition 3.2 and showing that I'g C I'.
These are implied by the following two lemmas.

Lemma 3.4. Suppose S € T and |y| < 105. Then there exists a
singular relative cycle oy, such that it generates Hy(Q, A) and its image
coincides with S, outside Nigos(A).

Lemma 3.5. Suppose o4 and og are relative singular chains that gen-
erate nontrivial elements of Hp(Q,A) and H,_(Q, B), respectively.
Then |oa| N |og| is nonempty.

Proof of Lemma 5.4. The lemma follows from the homotopy formula
(3). By the definition of I'4 there is a relative cycle o that generates
Hi(Q, A) and has S as its image. By applying barycentric subdivision
multiple times, if necessary, we may assume that o splits into o =
01+ 09, where |o1| C N3ps(A) and |o9| C Q — Nops(0Q). Let Hy be the
homotopy Hi(x) = x + ty. Then by (3) there exist homomorphisms
P:C(U) — Ci11(U,y) for all I and all open sets U C R", such that

Note that P(0o2) and Hj.oo are chains in @ — Nyos(0Q). We let
oy, = 01— P(003) + Hy.09. Then 0, — o0 = 0Po, by (12), so o, belongs
to the same relative homology class as o. To prove the final part of
the lemma, note that |Jos| C N3ps(A), since |dog| = |0o1| N int(Q).
Thus |P(J02)| C Nags(A) and |o,|, |Hi.02| = |02], and S, all coincide

outside Nigos(A). O
Proof of Lemma 5.5. The lemma follows from the theory of intersection
numbers developed in [3]. We may assume that @Q = J", where J =

[—1,1], and respectively A = 9J% x J* % and B = J* x 9J" . Let
o4 and op be representatives of some nontrivial classes of Hy(Q, A)
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and H, ;(Q, B), respectively. Suppose |o4| N |op| = 0. Then we
can deform o4 and op slightly, if necessary, and assume that |o4] N
B =0 = |opg| N A. This allows us to define the intersection number
[04] 0 [op] € H,(R",R™ — {0}) ~ Z of the classes [04] and [0p], as in
[3, VII.4].

The intersection number of the two classes is defined (up to sign) by
pushing the outer product

loa] X [oB] € Hy(Q X Q,AX QUQ X B)

forward with the map u(z,y) = * —y. Notice the analogy with the
proof of Proposition 3.3. We do not describe the definition of the outer
product here, as it is rather complicated and would take us too far
away from the main topic.

Let us compute the intersection number by using two different pairs
of representatives for [04] and [op]. On one hand, since the images of
the representatives o4 and op do not intersect, Propositions 4.5 and
4.6 of [3, VII] imply that [04] o [o5] = 0. On the other hand, [04] and
[op] admit representatives that are integer multiples of triangulations
of the subspaces J* x {0} and {0} x J"* so combining Proposition
4.5 and Example 4.10 of [3, VII] shows that [04]o[op] is nontrivial. [

4. LOWER BOUND AND RELATED OPEN PROBLEMS
Theorems 1.1 and 3.1 raise the question:

Question 4.1. Do the lower bounds

(13) 1 < (mod,T 4)"?(mod,I'z)"/
or
(14) 1 < (mod,T 4)"?(mod, )"

hold whenever (), A and B are as in Theorem 1.17

Since I'p C T, (13) implies (14). All existing proofs, save the one in
[5], of such lower bounds rely on some variation of the coarea formula,
Lemma 2.4.

In [5] a lower bound is proved for de Rham cohomology classes.
Hence it may be possible to answer Question 4.1 by finding a connection
between the moduli of I'y and I'g, which can be seen as moduli of
homology classes, and the moduli of suitable cohomology classes. This
is of course easier said than done. For instance, it is not very clear
what “suitable cohomology” should mean, when () is nonsmooth. It
seems these kinds of questions are still largely unexplored.

Let us sketch a proof of (14) in the special case k = 1. Then A
consists of two opposite faces Ay and A; of () and, recalling the notation
from the introduction,

mOdpFA = mOdpF(A(), A17 Q)
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Moreover, by [19]
(15) mOdpF(A07A1;Q> - CappF(A07A1;Q)7
where the (Lipschitz) capacity is defined by

cap,['(Ao, A1; Q) = inf/ |VulP dH",
“JQ

and the infimum is taken over Lipschitz functions u : ) — I with
u|a, = 0 and u|4, = 1. Then by the coarea formula

1<// de"ldt:/p|Vu|d7-l”
IJu=1(t) Q

for any integrable p admissible for I, since by [1, 3.2.15] almost every
level set u~1(¢) is an element of T'%. Now the lower bound (14) follows
from Holder’s inequality and (15).

Similar ideas can be used to prove that Theorems 1.1 and 3.1 are
sharp for any n and k. Let us show that (13) holds whenever Q) =
Q1 X Q2, where Q; C R¥ and Q, C R * are k- and (n— k)-dimensional
topological cubes as in Theorem 1.1, A = 0Q1 X Q)2 and B = ()1 X 0Q)s.
Then it suffices to show that

HH(Q2) H"(Q1)

Q! HFQa) T

The proofs of the two formulas are identical, so we only consider I' 4.
For every y € (2 and p admissible for I"4

1 < / pdH",
Q1x{y}

so by Holder’s inequality

1/p
1< </ o d%k) HE(Q1)V1,
Q1x{y}

from which we obtain the inequality ”>" by integrating over y and ap-
plying Fubini’s theorem (or the coarea formula applied on the projec-
tion my(z,y) = y). The reverse inequality follows from the observation
that H*(Q1) 'xg is admissible for T'4.

It is also noteworthy that in this case mod,I's = mod,I", and both
are equal to the g-modulus of the slices {z} x Q.

Observe that if we let A\ = H*(Q,)~*/* and use a scaled projection
map A (z,y) = \v instead, we find that H*(A\m(Q; x Q2)) = 1 and
Imy = H’“(Ql)_le. That is, the minimizer of mod,I"4 is the jacobian
of Am;. Moreover, the level sets of Am; are elements of I'p.

Inspired by this example we extend the definition of the capacity to
general () and A by

mod,l'y = and mod,I'p =

cap,l's == inf/ JPdH",
v JQ
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where the infimum is taken over all such Lipschitz maps u : (Q, 4) —
(U,0U), that U is a domain in R* normalized with #*(U) = 1, (U, 9U)
is homeomorphic to (B*, OB*), and the induced homomorphism

(16) uy : Hy(Q, A) — Hy(U,0U) ~ Z

is an isomorphism. We observe that U C wu(S) for any S € I'y, so
almost every level set of u is in I, since Hy(U — {z},0U) is trivial for
all x € U. Moreover, the Cauchy-Binet formula implies that J, > JJ,

SO
/Jud’H’“>/deHk>/ dHF =1
S S U

by Lemma 2.4. Thus J, is admissible for I'4 and
mod, 'y < cap,l'4.

It is unknown whether the reverse inequality is true, but it would imply
(14). To prove the reverse inequality one would have to be able to
construct the required Lipschitz maps u. This seems to be very difficult
when k£ > 1, especially with a given J,. If k£ = 1, the situation is
considerably simpler, since then J, = |Vu| and the unit interval I is
practically the only choice of U.
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