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Abstract: Aim: This systematic review aimed to explore the literature to identify in which types of
chronic diseases exercise with supplemental oxygen has previously been utilized and whether this
type of personalized therapy leads to superior effects in physical fitness and well-being. Methods:
Databases (PubMed/MEDLINE, CINHAL, EMBASE, Web of knowledge and Cochrane Library) were
searched in accordance with PRISMA. Eligibility criteria included adult patients diagnosed with
any type of chronic diseases engaging in supervised exercise training with supplemental oxygen
compared to normoxia. A random-effects model was used to pool effect sizes by standardized mean
differences (SMD). Results: Out of the identified 4038 studies, 12 articles were eligible. Eleven studies
were conducted in chronic obstructive pulmonary disease (COPD), while one study included coronary
artery disease (CAD) patients. No statistical differences were observed for markers of physical fitness
and patient-reported outcomes on well-being between the two training conditions (SMD −0.10; 95%
CI −0.27, 0.08; p = 0.26). Conclusions: We found that chronic exercise with supplemental oxygen has
mainly been utilized for COPD patients. Moreover, no superior long-term adaptations on physical
fitness, functional capacity or patient-reported well-being were found, questioning the role of this
method as a personalized medicine approach. Prospero registration: CRD42018104649.

Keywords: exercise medicine; clinical exercise science; individualized exercise prescription FiO2;
hyperoxia; oxygen therapy

1. Introduction

Therapeutic supplemental oxygen is often administered in patients diagnosed with pulmonary or
cardiovascular diseases as well as in emergency or intensive care settings, in order to counteract resting
systemic and/or local oxygen desaturation [1–3]. Although physical exercise is recommended as a
supportive therapy for the majority of chronic diseases [4], exercise-induced hypoxemia might occur
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faster in patients with reduced oxygen transport capacity or resting oxygen saturation [5], leading
to a limited physical capacity. Patients diagnosed with pulmonary disease are particularly prone to
exercise-induced hypoxemia due to an impaired ventilatory capacity and/or ventilatory-perfusion
mismatch [5]. In addition, cardiovascular impairments [6,7], treatment-induced side effects like
chemotoxicity [8] or disease-induced inflammation [7] might potentiate the risk of exercise-induced
hypoxemia in patients diagnosed with other types of chronic diseases. Exercise hypoxemia, in turn,
may offset improvements in exercise tolerance, thereby attenuating the potential effects of physical
training and further exacerbating deconditioning, eventually increasing morbidity and mortality [9,10].

Increasing the inspired oxygen fraction (FiO2) by providing supplemental oxygen might be
an effective method to increase the compliance and adherence to prescribed exercise programs of
patients suffering from chronic diseases and, thus, may potentially be used within a personalized
exercise medicine approach. It was previously shown that supplemental oxygen administered
during exercise maintained arterial oxygen desaturation, decreased perceived exertion and acutely
increased performance capacity both in healthy [11–14] and diseased populations [14–19]. Despite
the maintained arterial oxygen saturation [11], current evidence suggests that enhanced exercise
performance is likely induced by a maintained muscle [11] and/or cerebral oxygenation [20,21]. This,
in turn, would lead to increased oxygen diffusion, possibly improving neural drive [22]. In addition,
supplemental oxygen may counteract exercise-induced arterial hypoxemia, which is thought to have
detrimental effects on aerobic performance [23,24] and may, therefore, be of special interest for patients
already suffering from decreased ventilatory capacity. Supplemental oxygen also appears to improve
dynamic hyperinflation, breathing pattern and dyspnoea [25], all of which may further enhance
exercise performance [26]. Furthermore, recent evidence suggests that supplemental oxygen may
counterbalance cardiac arrhythmias [3], improve lymphocytic DNA repair [27] and brain function [19],
consequently affecting patient-reported well-being as characterized by improvements in quality of
life [28], perceived exertion [29,30] and fatigue [14,28].

However, despite potential beneficial effects of supplemental oxygen as a personalized therapy,
possible adverse effects need to be considered. Studies have shown that greater FiO2 (i.e., >0.6)
or overexposure (≥24 h) may induce lung intoxications, accompanied by excessive increases in
reactive oxygen species (ROS) [14,31,32]. Large increases in ROS may, in turn, increase cellular
and/or tissue damage and induce apoptosis [1,31], all of which may lead to severe adverse events
in critically ill patients. Moreover, it was previously shown that supplemental oxygen may cause
respiratory depression by inhibiting the respiratory drive, also potentially causing a hypercapnic
acidosis and increasing the risk of pulmonary oedema and fibrogenesis [3,14]. Some studies also
suggest that supplemental oxygen may actually reduce cardiac output and stroke volume by perturbing
hemodynamic functioning and causing cerebral and coronary vasoconstriction, also compromising
organ perfusion [3,14,33]. Thus, care has to be taken also when applying short-term supplemental
oxygen during exercise [14,34].

The acute effects of supplemental oxygen have previously been summarized in a number of
systematic reviews addressing both healthy [11–13,34–36] and diseased individuals, such as patients
diagnosed with chronic obstructive pulmonary disease (COPD) [28,37,38], interstitial lung disease [17]
or cystic fibrosis [15]. However, to the best of our knowledge, only two systematic reviews aimed at
analysing the longitudinal effects of physical training with supplemental oxygen in patients diagnosed
with chronic diseases. These reviews screened only studies that used oxygen therapy in COPD
patients [39,40] and did not restrict the inclusion criteria to supplemental oxygen delivered solely
during exercise [39]. Moreover, based on an initial generic search we identified papers that were not
included in either of the two reviews, questioning the overall integrity of these findings.

Considering the theory that supplemental oxygen may counteract exercise-induced tissue hypoxia
and improve perception and consequently exercise adherence, the primary aim of this systematic
review was to explore the literature in order to assess whether chronic exercise with supplemental
oxygen has been utilized also in diseases other than COPD. Our secondary aim was to assess safety,
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feasibility and efficacy of exercise performed with supplemental oxygen, in terms of physical fitness
(i.e., cardiorespiratory fitness, peak power or muscle strength) and functional capacity (i.e., performance
in shuttle walk test, six min walking test or stair climb test) as well as patient-reported well-being
(i.e., quality of life or dyspnoea). By summarising the recent evidence of exercise performed with
supplemental oxygen, we eventually aimed to extend our current understanding of personalized
exercise medicine and potentially identify important gaps in research.

2. Methods

A systematic literature search was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [41] and was registered with the international
database of prospectively registered systematic reviews in health and social care (PROSPERO:
CRD42018104649). The previous review by Pedersen and Saltin (2015) was used to characterize
chronic diseases [4].

The electronic databases PubMed/MEDLINE, CINHAL, EMBASE, ISI Web of knowledge
and Cochrane Library were systematically searched using the following search string, including
medical subject headings, adapted to the specifications of each database: ((“Humans”[Mesh]) AND
(((“Exercise”[Mesh]) OR “Exercise Tolerance”[Mesh]) OR “Exercise Therapy”[Mesh])) AND (((“Oxygen
Inhalation Therapy”[Mesh]) OR “Hyperoxia”[Mesh]) OR “Oxygen/therapeutic use*”[Mesh]) (Supplements
Table S1). Relevant articles had to be published until 4th of December 2019. English and German
language publications in human populations with no restriction to study design were included.
Two authors (NF; KD) performed the literature search independently and, if needed, a third author
(MS) provided further consultation. The search process entailed saving the online search, removing
duplicates as well as consequently screening titles, abstracts and eligible full texts. Additionally,
Google Scholar was searched for grey-literature and the reference lists of all potentially eligible full
texts were screened.

2.1. Eligibility Criteria

The target population included male and female adults with at least one medical diagnoses of
the following chronic conditions: cardiovascular, pulmonary, psychiatric, neurological, metabolic,
musculo-skeletal or cancer (Figure 1). Supervised physical exercise training was defined as resistance-
or endurance training as well as a combination of both with guidance from an exercise professional.
Eligible studies were required to have reported the frequency, volume, intensity and type of exercise
loading. Only training interventions with supplemental oxygen of at least three consecutive weeks were
included, i.e., no acute bouts of exercise with supplemental oxygen were considered relevant for the
purpose of this study. Supplemental oxygen was defined as inhaled gas with a higher oxygen content
than 21% (normobaric) or increased oxygen partial pressure higher than one absolute atmosphere
(hyperbaric). In fact, gas-mixtures that included a combination of different gases, such as helium and
oxygen, were excluded in order to assess the specific effects of sole supplemental oxygen. Studies
included were required to compare the effects of physical training with supplemental oxygen to that of
a normoxia control group performing the same training intervention in ambient conditions (room air,
medical air, compressed or humidified air), with no restriction to randomization (i.e., both RCT and CT
were deemed eligible). Studies assessing sole hyperoxia/ambulatory oxygen therapy or hyperbaric
oxygen therapy without an exercise component were excluded.
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Outcome, S-Study designs; ATM-Standard atmosphere pressure. 
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training program (general description, supervision, location, intensity, frequency, duration, start of 
intervention, follow-up period, compliance and effects). If data was missing or the data reporting was 
inconclusive, the authors of the included studies were contacted for clarification. Indications of any 
documented clinically diagnosed adverse events or exercise- as well as supplemental oxygen-
induced dropouts were used to assess the safety of exercise training with supplemental oxygen. The 
feasibility was assessed by reported attendance or completion rates throughout the studies. Physical 
fitness was evaluated by identifying reported markers of exercise capacity, such as Wmax, VO2peak, time 
completed in TTE tests and responses in maximal heart rate (HRmax) and blood lactate concentration 
(BLa). Furthermore, strength assessments via conventional dynamic or isokinetic measurements were 
considered relevant and included to assess physical fitness. Measures of functional capacity included 
distance covered in the 6MWT or SWT as well as stair climb tests. The recorded patient-reported well-
being included questionnaire-assessed measures of QoL, anxiety, depression, dyspnoea and ratings 
of perceived exertion (RPE) at rest and during exercise as well as fatigue. 
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Figure 1. Inclusion criteria defined as PICOS; P-Population, I-Intervention, C-Comparison, O–Outcome,
S-Study designs; ATM-Standard atmosphere pressure.

Primary endpoints of interest were the type of chronic disease in which exercise with supplemental
oxygen was performed. Secondary outcomes of interest included reported safety (rated by clinically
diagnosed adverse events and exercise- or supplemental oxygen-related dropouts) and feasibility
(rated by adherence and compliance rates). Further secondary outcomes included markers of physical
fitness, such as peak power (Wmax), peak oxygen consumption (VO2peak), time to exhaustion (TTE)
and muscle strength (dynamic or isokinetic) as well as markers of functional capacity (i.e., distance in
six-min walking test [6MWT] or time in shuttle walk test [SWT]) and patient-reported well-being, such
as quality of life (QoL), dyspnoea and fatigue.

2.2. Data Extraction

The following data was extracted from each eligible full text: (a) general study information (first
author’s last name, publication year, study design, study aim and outcome measures); (b) subject
information (sample size, dropout rate, gender, age, type of chronic disease); (c) intervention data
for administered supplemental oxygen and normoxia (i.e., general description, flow rate, device of
delivery, oxygen concentration/partial pressure, compliance and effects) and (d) data on the exercise
training program (general description, supervision, location, intensity, frequency, duration, start of
intervention, follow-up period, compliance and effects). If data was missing or the data reporting was
inconclusive, the authors of the included studies were contacted for clarification. Indications of any
documented clinically diagnosed adverse events or exercise- as well as supplemental oxygen-induced
dropouts were used to assess the safety of exercise training with supplemental oxygen. The feasibility
was assessed by reported attendance or completion rates throughout the studies. Physical fitness
was evaluated by identifying reported markers of exercise capacity, such as Wmax, VO2peak, time
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completed in TTE tests and responses in maximal heart rate (HRmax) and blood lactate concentration
(BLa). Furthermore, strength assessments via conventional dynamic or isokinetic measurements were
considered relevant and included to assess physical fitness. Measures of functional capacity included
distance covered in the 6MWT or SWT as well as stair climb tests. The recorded patient-reported
well-being included questionnaire-assessed measures of QoL, anxiety, depression, dyspnoea and
ratings of perceived exertion (RPE) at rest and during exercise as well as fatigue.

2.3. Data Synthesis and Analysis

In order to generalize the data, the number of parameters considered for pooled analysis had
to be present in at least three studies reporting baseline and post-intervention values. Standardized
mean differences (SMD) were calculated and a random-effects model was used to pool effect sizes
using R (3.6.1) [42], RStudio (1.2.1335) [43] and the metafor package (version 2.2.1) [44]. The amount
of heterogeneity (i.e., τ2), was estimated using the restricted maximum-likelihood estimator [45].
In addition to the estimate of τ2, the Q-test for heterogeneity [46] and the I2 statistic [47] were reported.
In case any amount of heterogeneity was detected (i.e., τ2 > 0, regardless of the results of the Q-test), a
credibility or prediction interval for the true outcomes was provided [48]. Studentized residuals and
Cook’s distances were used to examine whether study results may be outliers and/or influential in the
context of the model [49]. Studies with a studentized residual larger than the 100 × (1−0.05/(2 × k))th

percentile of a standard normal distribution were considered potential outliers (i.e., using a Bonferroni
correction with two-sided α = 0.05 for k studies included in the meta-analysis). Studies with a Cook’s
distance larger than the median plus six times the interquartile range of the Cook’s distances were
considered to be influential. A trim-and-fill-contour funnel plot was provided to estimate the number
of studies potentially missing from the meta-analysis [50–52]. The rank correlation test [53] and the
regression test [52], using the standard error of the observed outcomes as predictor, were used to
check for funnel plot asymmetry. To avoid a potential impact of baseline differences on the outcomes,
the same procedure was applied for mean differences of the change from baseline to post-intervention
measurements instead of solely post-exercise mean differences. Studies presenting median, range and
the sample size were converted into estimated means and variance [54].

2.4. Assessment of Methodological Quality

The Cochrane Collaborations’ risk of bias assessment tool was used to evaluate the internal
validity of the included randomized controlled trials (RCTs) [55]. Independently, two authors (NF;
KD) examined the studies of interest for the following sources of bias: selection (sequence generation
and allocation concealment), performance (blinding of patients/study-personal), detection (blinding
outcome assessors), attrition (incomplete outcome data), reporting (selective reporting), and other
potential bias (e.g., recall bias). Furthermore, the PEDro (Physiotherapy Evidence Database) scale
was used to additionally assess the methodological quality of all included studies [56]. The PEDro
scale contains eleven yes or no items. Criterion 2 to 9 are assessing the internal validity as well as the
randomization. Criteria 10 and 11 evaluate if the study contains sufficient statistical information for
interpretable and replicable results. Criteria 1 assesses the external validity and was added to ensure
the completeness of the original Delphi list [57] but is not used to calculate the total PEDro score. Two
reviewers (NF; DN) independently rated the included studies with agreement on every single item.
Disagreement in ratings were discussed and if necessary, a third author (MS) was involved for decision.
The PEDro score had to be ≥6 on the scale from 0 to 10 to be rated as a high-quality trial and a score of
4 to 5 to be considered of fair quality. Studies rated with ≤3 were considered of poor quality. Both
rating tools were used to obtain a more comprehensive view of the included trials [58].

3. Results

A total of 4124 trials were identified. Removing duplicates and ineligible records led to 33 full
texts for further assessment. Overall, 21 studies were excluded for methodological reasons (Figure 2),
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while one potentially eligible study [59] was excluded because it used the same study sample as
another included study [60] and two other potentially eligible studies were excluded because the
exercise intervention was not described in detail [61] or because non-invasive ventilation was used as
control [62]. Finally, a total of 12 [60,63–73] articles were deemed eligible and analysed. Comprehensive
information of individual study characteristics and study conclusions across the included studies are
presented in Table 1 and in the Supplementary Tables S2 and S3.
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Table 1. Characteristics of included studies (chronological order of publication date). Values presented as mean ± SD or median (range) as indicated.

Study Entity Design & Blinding Final Sample &
Dropout Rate

Technical
Realization

Training
Duration &
Frequency

Intervention Characteristics Outcomes of Interest Conclusion

Rooyackers et al.
1997

Netherlands
COPD

RCT
(parallel)

Blinding: not
reported

SO n = 2 women
and 10 men;

Age: 63 ± 5 yrs.
Normoxia: n = 2

women and 10 men;
Age: 59 ± 13 yrs.

Dropouts: not
reported

SO: 4 L min−1

via dual prong
nasal cannula

Normoxia:
ambient air

10 weeks
5 x week

Supervised interval training:
5 times of 2 min active
cycling and 2 min rest;

rowing for 5 min; dynamic
resistance exercise for arms,
shoulders, back and legs for
10 min; isometric resistance

exercise for 3 min; functional
tests/training i.e., stair

climbing, chair rise, slalom
walk, carrying light weight
(1–2 kg) above and below
shoulder level for 13 min

(workload was increased as
tolerated and not to fall
below an SaO2 of 90%;

warm-up and cool down not
specified).

Total training time: 51 min

Wmax
VO2peak
HRpeak
6MWT

TTE
Dyspnoea
Stair climb

Weight lifted
CRDQ

Supplemental oxygen did not
show an advantage compared

to normoxia for chronic
improvements in QoL, 6MWT,

stair-climbing and
weight-carrying test.

The normoxia condition but
not supplemental oxygen led

to a statistically significant
increase in Wmax without a

group difference.

Fichter et al.
1999

Germany
COPD

RCT
(parallel)
Blinding:

participants

SO: n = 5 men;
Age: 58 ± 11 yrs.
Normoxia: n = 5

men;
Age: 59 ± 7 yrs.
Dropouts: not

reported

SO: humidified
35% O2 via

mixed chamber
Normoxia:
humidified

decompressed
air 21% O2

4 weeks
5 x week

Supervised constant cycling
with 80% of Wmax for 45 min
(warm-up and cool down not

specified).
Total training time: 45 min

Wmax
VO2peak
HRpeak

BLa

Only the normoxia condition
led to a statistically significant

higher maximum power
output, accompanied by

statistically significant lower
blood lactate concentrations

after the intervention. No
statistically significant changes
occurred in the supplemental

oxygen group.

Garrod et al.
2000

England
COPD

RCT (parallel)
Blinding:

Participants

SO: n = 13;
Age: 64.3 (54–77)

yrs.
Normoxia: n = 12;
Age: 71.6 (52–81)

yrs.
Gender ratio not

reported
Dropouts:

SO = 2
Normoxia = 1

SO: 4 L min−1

via nasal
cannula and
conserving

device
Normoxia: 4

L·min−1

compressed air

6 weeks
3 x week

Supervised dynamic
resistance exercise with

external loads for arms and
without external loading for

lower limbs; fast walking
over 10 m at 80% of VO2peak

determined by baseline
shuttle walk test; unloaded

cycling until intolerance
(warm-up and cool down

not specified).
Total training time: 60 min

ISWT
Dyspnoea

CRDQ
HADS

LCADL

Supplemental oxygen led to a
statistically significant greater

reduction in dyspnoea
compared to the normoxia

condition. Covered distance of
the shuttle walk test and

patient-reported outcomes
(i.e., hospital anxiety and
depression scale, chronic

respiratory disease
questionnaire and London

chest activity of daily living
scale) improved during a

rehabilitation program of 6
weeks without any statistical

differences between the
two conditions.
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Table 1. Cont.

Study Entity Design & Blinding Final Sample &
Dropout Rate

Technical
Realization

Training
Duration &
Frequency

Intervention Characteristics Outcomes of Interest Conclusion

Wadell et al.
2001

Sweden
COPD

RCT
(parallel)
Blinding:

participants

SO: n = 6 women
and 5 men;

Age: 65 (52–73) yrs.
Normoxia: n = 6

women and 5 men;
Age: 69 (60–72) yrs.

Dropouts:
SO = 1

Normoxia = 1

SO: 5 L min−1

via dual prong
nasal cannula
Normoxia: 5
L min−1 via
dual prong

nasal cannula of
compressed air

8 weeks
3 x week

Supervised interval training
on a motorized treadmill:
5 min warm-up, 2–3 min

higher speed separated by
2–3 min lower speed,

2–5 min cool-down; intensity
was set to achieve target
dyspnoea 7 out of 10 or

subjective exertion of 17 on
the 6–20 BORG scale; training
was paused if SaO2 fall below

90% or values of dyspnoea
and exhaustion exceeded

target range.
Total training time: 30 min

HRpeak
BLa

6MWT
RPE

Dyspnoea

Distance covered in the 6MWT
improved statistically

significant in both groups with
a greater increase in the

normoxia condition.
Furthermore, only the

normoxia group statistically
decreased rating for perceived

exertion in the 6MWT.

Emtner et al.
2003

United States of
America

COPD

RCT
(parallel)
Blinding:

Participant, exercise
supervisors and

analyzing
investigators

SO: n = 6 women
and 8 men;

Age: 66 ± 7 yrs.
Normoxia: n = 5

women and 10 men;
Age: 67 ± 10 yrs.

Dropouts:
SO = 1

SO: 3 L min−1

via nasal
cannula

Normoxia: 3
L min−1 via

nasal cannula of
compressed air

7 weeks
3 x week

Supervised ergometer
cycling: 5 min warm-up,
35 min of high-intensity,

5 min cool-down.
Exercise intensity during the

first week was low and
increased to 75% of Wmax
(determined by baseline

incremental test) in second
week. Further adjustments

were made according to
dyspnoea and fatigue

sensation.
Total training time: 45 min

Wmax
VO2peak
HRpeak

BLa
TTE

Dyspnoea
Leg fatigue

CRDQ
SF-36

Both groups statistically
improved exercise tolerance

with a higher increase in total
work rate in the supplemental
oxygen group compared to the

normoxia condition.
Supplemental oxygen caused a

greater tolerance to
high-intensity exercise

compared to high-intensity
loading in ambient condition.

Karlsen et al.
2008

Norway
CAD

RCT
(parallel)

Blinding: not
reported

SO: n = 2 women
and 6 men;

Age: 61.1 ± 7.1 yrs.
Normoxia: n = 3

women and 7 men;
Age: 63.6 ± 6.5 yrs.

Dropouts:
SO = 2

Normoxia = 1

SO: 100% O2
enriched air via

Douglas bag
connected to a
tank via a face
mask and three

valve system
Normoxia:
ambient air

10 weeks
3 x week

Supervised treadmill
walking: 5 min warm-up,

high-intensity training of 4 ×
4 min at 85–95% HRpeak

separated by 3 min active rest
at 60–70% HRpeak. Treadmill
speed and inclination where

increased throughout the
study period (cool-down not

reported).
Total training time: 31 min

Wmax
VO2peak
HRpeak

BLa
RPE

SF-36
Macnew

Exercise performance, VO2peak,
maximal ventilation and

cardiac output as well as stroke
volume increased statistically

significant in both groups
without a between-group effect.

Patient-reported outcomes
improved similarly.

Supplemental oxygen did not
show any additional training

effects.
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Table 1. Cont.

Study Entity Design & Blinding Final Sample &
Dropout Rate

Technical
Realization

Training
Duration &
Frequency

Intervention Characteristics Outcomes of Interest Conclusion

Bjørgen et al.
2009

Norway
COPD

RCT
(parallel)

Blinding: not
reported

SO: n = 5 women
and 2 men;

Age: 61 ± 12 yrs.
Normoxia: n = 2

women and 3 men;
Age: 61 ± 8 yrs.

Dropouts:
SO = 1

Normoxia = 2

SO: 100% O2 via
mask connected

to a plastic
balloon which
was constantly

refilled
Normoxia:
ambient air

8 weeks
3 x week

Supervised one-legged
interval cycling: 10 min

warm-up (both legs);
high-intensity training of 8 ×
4 min at 85–95% HRpeak (legs
alternating); the resting leg

was placed on the bike
between the pedals

(cool-down not reported).
Total training time: 42 min

Wmax
VO2peak
HRpeak

BLa
RPE

Exercise performance
improved statistically

significant in both conditions
without a between-group
difference. Supplemental
oxygen did not show any
additional training effects
compared to ambient air.

Scorsone et al.
2010
Italy

COPD

RCT
(parallel)
Blinding:

participants and
exercise supervisors

SO: n = 3 women
and 7 men;

Age: 67 ± 9 yrs.
Normoxia: n = 3

women and 7 men;
Age: 68 ± 7 yrs.
Dropouts:none

SO: 40% O2
through

mouthpiece
connected to a
Douglas bag
Normoxia:
humidified

room air
through

mouthpiece
connected to a
Douglas bag

8 weeks
3 x week

Supervised ergometer
cycling: 5 min warm-up,

30 min high-intensity
exercise, 5 min cool-down.

Exercise intensity during the
first week was 40% of Wmax

and increased to 80% of
Wmax (determined by

baseline incremental test) in
second/third week.

Adjustments were made
according to dyspnoea and

fatigue sensation.
Total training time: 40 min

Wmax
VO2peak
HRpeak

TTE
Dyspnoea

Leg fatigue

High-intensity training led to
statistically significant

improvements of VO2peak,
Wmax and time to exhaustion

without a between-group
difference. Supplemental
oxygen did not show any
additional training effects
compared to humidified

normoxic air.

Ringbaek et al.
2013

Denmark
COPD

RCT
(parallel)

Blinding: no

SO: n = 11 women
and 11 men;

Age: 69.4 ± 9.8 yrs.
Normoxia: n = 10

women and 13 men;
Age: 68.6 ± 7.8 yrs.

Dropouts:
Week 0–7

SO = 6
Normoxia = 1

Week 7–20
SO = 1

Normoxia = 1

SO: 2 L min−1

through a 2.3 kg
portable oxygen

concentrator
including a
conserving

deviceNormoxia:
ambient air

7 weeks
2 x week

Followed by
13 weeks
1 x week

Supervised walking and
cycling: 30 min including
warm-up and cool-down.

Exercise intensity was set to
reach 85% of VO2peak

(determined by baseline
incremental shuttle walk test).

Total training time: 30 min

ESWT
SGRQ

Both groups improved
statistically significant

endurance performance
assessed via endurance shuttle

walk test at 85% VO2peak
(predicted through incremental

shuttle walk test) and
patient-reported outcomes (St.

George’s Respiratory
Questionnaire) without a

between-group effect.
Supplemental oxygen showed

no additional benefits
compared to ambient air.
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Table 1. Cont.

Study Entity Design & Blinding Final Sample &
Dropout Rate

Technical
Realization

Training
Duration &
Frequency

Intervention Characteristics Outcomes of Interest Conclusion

Spielmanns et al.
2015

Germany
COPD

RCT
(parallel)
Blinding:

participants and
investigator

SO: n = 9 women
and 10 men;

Age: 65 ± 8.7 yrs.
Normoxia: n = 8

women and 9 men;
Age: 64 ± 8.4 yrs.

Dropouts:
SO = 23

Normoxia = 26

SO: 4 L min−1

O2 via nasal
cannula leading

to an FiO2 of
approximately

0.35
Normoxia:

compressed air
at 4 L min−1 via
nasal cannula

24 weeks
3 x week

Supervised ergometer
cycling: First 12 weeks

included an interval training
and the second 12-week

period included a continuous
loading.

Exercise intensity for interval
training: weeks 1–3 with 6 ×

1 min at 110% Wmax and
4 min at 60% Wmax as active

rest; weeks 4–6 with 6 ×
1 min at 115% Wmax and

4 min at 65% Wmax; weeks
7–9 with 6 × 1 min at 120%

Wmax and 4 min at 70%
Wmax; weeks 10–12 with 6 ×

1 min at 125% Wmax and
4 min at 75% Wmax.
Continuous loading

increased every 3 weeks by
5% starting from 70% Wmax

to 85% Wmax.
Total training time: 30 min

Wmax
VO2peak

BLa
6MWT
SF-36

Both groups showed
statistically significant

improvements in QoL, exercise
tolerance, VO2peak and

distance covered in the 6MWT.
Apart from further increase in

exercise tolerance, these
improvements occurred within

the first 12 weeks and were
maintained in week 24.

Supplemental oxygen did not
show any further enhancing
effects on outcome values.

Neunhäuserer
et al. 2016

Austria
COPD

RCT
(parallel and cross

over †)
Blinding:

participants and
investigator

SO: n = 1 women
and 14 men;

Age: 63.1 ± 5.4 yrs.
Normoxia: n = 7

women and 7 men;
Age: 64.1 ± 6.1 yrs.

Dropouts before
crossover (total):

SO = 6 (7)
Normoxia = 7 (8)

SO: 10 L min−1

O2 via nasal
cannula leading

to an FiO2 of
approximately

0.6
Normoxia:

compressed air
at 10 L min−1

via nasal
cannula

6 weeks ‡

3 x week

Supervised ergometer
interval cycling and

resistance training: 5-min
warm-up; 7 × 1 min at

70–80% Wmax and 2 min at
50% Wmax as active rest;

5 min cool-down. Resistance
training included 8

high-intensity exercises
performed on machines with
1 set of 8–15 reps to failure:

latissimus pull-down,
shoulder press, back

extension, abdominal crunch,
butterfly, reverse butterfly,

leg extension and leg flexion.
Progression was made if
more than 15 reps were

performed.
Total training time: 31 min

without time of
resistance training

Wmax
VO2peak
HRpeak

BLa
10-RM §

HADS §

Supplemental oxygen showed
statistically significant

improvements in relative Wmax
compared to normoxia.

Strength gains increased in
both groups without a

significant between-group
effect.

Supplemental oxygen added
superior effects on top of the

endurance-induced
improvements without an
effect on muscle strength.
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Table 1. Cont.

Study Entity Design & Blinding Final Sample &
Dropout Rate

Technical
Realization

Training
Duration &
Frequency

Intervention Characteristics Outcomes of Interest Conclusion

Alison et al.
2019

Australia
COPD

RCT
(parallel)
Blinding:

participants,
therapists and
investigators

SO: n = 28 women
and 30 men;

Age: 69 ± 7 yrs.
Normoxia: n = 22

women and 31 men;
Age: 69 ± 8 yrs.

Dropouts:
SO = 6

Normoxia = 8

SO: 5 L min−1

via dual prong
nasal cannula

delivered via an
oxygen

concentrator
producing 90 ±

3 % oxygen
Normoxia: 5
L min−1 via
dual prong

nasal cannula of
medical air

8 weeks
3 x week

Supervised treadmill
walking: 20 min at 80%

average speed assessed by
6MWT and 10 min cycling at

60% Wmax estimated from
6MWT with progression to
20 min cycling by week 3
leading to a total training

time of 40 min. Intensity was
modified to keep dyspnoea

and RPE between 3 and 4 on
the modified BORG scale

(0–10).
Total training time:

30–40 min

ESWT
ISWT
CRDQ

Dyspnoea-12

Supplemental oxygen and
normoxia statistically

improved statistically exercise
capacity assessed by ESWT

and ISWT as well as quality of
life in COPD patients who

demonstrated oxygen
desaturation during exercise.
No statistical between-group
difference were observed for

dyspnoea, although dyspnoea
statistically improved only in

the supplemental
oxygen group.

6MWT 6-min walking test; 10-RM ten repetition maximum; BLa blood lactate concentration; CAD coronary artery disease; cm centimetre; COPD chronic obstructive pulmonary disease;
CRDQ Chronic Respiratory Disease Questionnaire; Dyspnoea-12 Dyspnoea-12 questionnaire; ESWT endurance shuttle walk test; FiO2 inspired oxygen fraction; FU1 first follow-up; FU2 s
follow-up; h hours; HADS Hospital Anxiety and Depression Scale; HRpeak peak heart rate; ISWT incremental shuttle walk test; kg kilogram; L liters; LCADL London Chest Activity of Daily
Living Scale; LoE level of evidence; Macnew Heart Disease Health-related Quality of Life Questionnaire; O2 oxygen; QoL quality of life; RCT randomized controlled trial; RPE rating of
perceived exertion; SaO2 oxygen saturation; SF-36 36-Item Short Form Health Survey; SGRQ St. George’s Respiratory Questionnaire; SO supplemental oxygen; TTE time to exhaustion;
VO2peak peak oxygen consumption; Wmax maximal watt; yrs. Years. NOTE: † only the midpoint comparison before crossover was used for evaluation and, thus, the crossover comparison of
Neunhäuserer et al. was excluded, ‡ study period was actually 22 weeks including a 6-week training free initial period and 1-week training free period used for assessments between the
crossover, § no data provided before crossover.
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3.1. Study and Intervention Characteristics

All included studies were conducted as RCTs, with a total of 452 patients (mean age 64.6 ± 2.2 yrs.).
The majority of studies included patients diagnosed with chronic obstructive pulmonary disease
(COPD) [60,63–66,68–73] (94.9% of patients), while one study was conducted in patients with coronary
artery disease (CAD) [67]. Therefore, no studies assessed the effects of exercise with supplemental
oxygen in patients diagnosed with neither psychiatric, neurological, metabolic, musculo-skeletal nor
oncological disease. An overall mean dropout rate of 21.9% (ranging from zero to 57.6%) led to a total
of n = 353 analysed patients who were exercising with supplemental oxygen (n = 178; mean age 64.3
± 3.2 yrs.; 32.0% women) and normoxia (n = 175; mean age 65.0 ± 3.6 yrs.; 30.4% women). Blinding
was incorporated in eight studies using either a single blind approach [60,64,65] or double-blind
design [66,69,71–73]. All studies were performed as parallel group comparisons except for one study,
which used a crossover approach after six weeks of training [72]. However, to exclude potential carry
over effects only the data assessed before the crossover was considered for the pooled analysis.

Supplemental oxygen was supplied with a mean flow rate of 4.6 ± 2.2 L per min, ranging
from 2 to 10 L per min via compressed/gaseous oxygen. All included studies used normobaric
supplemental oxygen. The reported FiO2 ranged from 0.35 [64,71] to 0.4 [69] and up to 0.6 [72], with
some studies reporting an oxygen supply of 100%, without assessing the exact FiO2 [60,63,66–68].
In the majority of studies, oxygen was delivered through nasal cannulas connected either to an oxygen
cylinder [63,65,66,71,72] or compressor [60,70,73], while four studies used a mask or mouthpiece
connected to a Douglas bag [67–69] or a mixed chamber [64]. Normoxic control conditions included
ambient air [63,67,68,70], ambient air delivered by a compressor [60,65,66,71,72] or humidified [69]
decompressed ambient air [64] as well as medical air [73].

The duration of the exercise training interventions ranged from a minimum of four to a maximum
of 24 weeks (mean duration 9.9 ± 5.7 weeks). The number of weekly training sessions ranged from
one to five sessions per week (mean frequency 3.2 ± 0.9 sessions per week). The majority of studies
utilized endurance training, either through a continuous loading [64–66,69,70,73] or intermittent
exercise [60,63,67,68,72], with one study combining both types of training [71]. A total of nine studies
solely incorporated endurance training [60,64,66–71,73], while two studies combined endurance
training with functional tasks including resistance exercises and stair climbing [63,65]. Only one
study conducted a concurrent training approach with endurance interval training and machine based
resistance exercises [72]. The training intensity ranged from somewhat moderate (i.e., 80% 6MWT; 80%
VO2peak; 75% Wmax) [65,71–73] to high (i.e., 80% Wmax; 95% HRmax, 85% VO2peak; RPE 17) [60,64,66–72]
and supramaximal [71] (i.e., 110–120% of Wmax), with one study not reporting the training intensity [63]
(Table 1). The intensity of the resistance training ranged from lifting and carrying lightweight [63,65]
to three minutes of isometric exercises [63] without further specification. One study used intensive
machine-based resistance training with one set of 8 to 15 repetitions to failure [72]. The duration of the
training sessions was 39.6 ± 9.7 min ranging from 30 [60,67,70,71] up to 60 [63,65] min with incomplete
reporting of times for warm-up and cool-down (Table 1).

3.2. Risk of Bias Assessment and PEDro Scale Ratings

The methodological quality assessments of all included studies are summarized in Figure 3.
An appropriate procedure for a randomly generated sequence was fully described in five
studies [60,70–73] and information about allocation concealment was given in five studies [65,70–73].
Performance bias was unclear in four studies [63,67,68,70], while detection bias was found in
three studies [60,64,65]. Attrition bias was present in two trials [67,70] and potentially influential
in another five trials [63,64,71–73]. A possible reporting bias due to high dropout rates and
incomplete data reporting was present in three studies [67,70,71], with unclear risk presented in
seven studies [60,63–66,68,69]. The mean score on the PEDro scale across all studies was rated with
seven. Therefore, the overall quality of the included studies was high, even though three studies were
of fair quality [63,67,70] and one study of poor quality [68].



J. Pers. Med. 2020, 10, 135 13 of 25
J. Pers. Med. 2020, 10, x FOR PEER REVIEW 16 of 27 

 

 
Figure 3. The Cochrane Collaboration’s tool for assessing risk of bias and PEDro scale from the 
Physiotherapy Evidence Database to determine quality of clinical trials. The total PEDro score is the 
sum of all criteria except eligibility criteria specified. 

3.3. Feasibility and Safety 
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Figure 3. The Cochrane Collaboration’s tool for assessing risk of bias and PEDro scale from the
Physiotherapy Evidence Database to determine quality of clinical trials. The total PEDro score is the
sum of all criteria except eligibility criteria specified.

3.3. Feasibility and Safety

The results for safety and feasibility are limited to pulmonary and cardiovascular diseases,
especially in COPD and CAD patients. Despite three studies not reporting dropouts [63,64,69],
the remaining studies reported a total of 50 patient dropouts in the supplemental oxygen groups and 49
patient dropouts in the normoxia groups, respectively. These were related to exacerbations [65,70,72],
hospitalizations [68], airway infections and illness [60,66,67], bone fracture [72], co-morbidities [71,72],
withdrawal [71–73] and intervention-unrelated death [70,73], while in three studies no reason was
specified [67,70,71]. In addition, there was no trend towards a higher rate of airway infections in either
condition. Only two studies reported possible exercise-induced adverse events, i.e., exacerbations with
supplemental oxygen and normoxia as well as atrial fibrillation [73], elevated ST exercise segment [67]
with supplemental oxygen and mild stroke [73] in the normoxia group. Training adherence was only
reported in three studies [66,67,70] and ranged from 89% to 100% with supplemental oxygen and 87%
to 100% in normoxia.
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3.4. Intervention Effects and Pooled Analysis

3.4.1. Physical Fitness and Functional Capacity

An overview of the individual effects reported in the included studies comparing exercise
with supplemental oxygen and exercise in normoxia is provided in the supplements (Supplements
Table S3). Physical fitness included the following parameters: Wmax [63,64,66–69,71,72],
VO2peak [63,64,66–69,71,72], HRpeak [60,63,64,66–69,72], BLa [60,64,66–68,71,72], and TTE [63,66,69].
Reported parameters of functional capacity included distance covered in the 6MWT [60,63,71],
the ISWT [65,73] and distance or time achieved in the ESWT [70,73], as well as the number of light
weight (1–2 kg) lifts and stair climb tests [63] (Supplements Table S3). Due to insufficient reporting of
results or low number of studies assessing the required parameters, only Wmax, VO2peak and 6MWT
were included in the meta-analysis. The observed effects of post-intervention comparisons for Wmax

(SMD −0.30; 95% CI −0.60, 0.00; p = 0.05) pointed towards a statistical difference between conditions in
favour of normoxia, while no statistical difference was observed for VO2peak (SMD −0.11; 95% CI −0.40,
0.19; p = 0.49) and 6MWD (SMD −0.05; 95% CI −0.72, 0.62; p = 0.88) (Figure 4). When considering pre
to post changes (∆), no between-condition effects were observed for either of the variables assessed
(∆Wmax: SMD −0.03; 95% CI −0.33, 0.26; p = 0.83, ∆VO2peak: SMD 0.02; 95% CI −0.27, 0.32; p = 0.88
and ∆6MWD: SMD −0.05; 95% CI −0.49, 0.39; p = 0.82) (Figure 5). Based on individual studies, none
of the physical fitness parameters showed a statistically significant difference between exercise with
supplemental oxygen and exercise in normoxia except for one study, which found superior effects of
increased FiO2 of 0.6 with a high flow rate of 10 L per min compared to the normoxia group in relative
Wmax [72] (Supplements Table S3).
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Figure 4. Physical fitness and patient-reported well-being comparing supplemental oxygen and
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(Cochran’s Q) describe heterogeneity, RE random effects model.
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normoxic exercise training interventions using the change from pre to post intervention. CI confidence
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3.4.2. Patient-Reported Well-Being

Inconsistent data reporting coupled with the fact that only a few studies have used similar tools
to assess patient-reported well-being made it difficult to draw comparisons between the included
studies. Patient-reported outcomes included RPE during rest and maximal exertion, ratings of
dyspnoea and (leg) fatigue using either the Borg scale (6–20) [74] or the modified Borg scale (0–10) [75].
Furthermore, the following questionnaires were used: Chronic Respiratory Disease Questionnaire
(CRDQ) [63,65,66,73]; Hospital Anxiety and Depression Scale (HADS) [65,72]; London Chest Activity
of Daily Living Scale (LCADL) [65]; 36-Item Short Form Healthy Survey (SF-36) [66,67,71]; Macnew
Heart Disease Health-related Quality of Life Questionnaire (Macnew) [67]; St. George’s Respiratory
Questionnaire (SGRQ) [70]; Dyspnoea-12 questionnaire [73]. The meta-analysis of post-intervention
comparisons for Dyspnoea (SMD 0.25; 95% CI −0.18, 0.67; p = 0.26) revealed no statistical difference
between exercise with supplemental oxygen and exercise in normoxia (Figure 4). The pooled effects for
∆Dyspnoea (SMD 0.07; 95% CI −0.33, 0.48; p = 0.72) confirmed these results and no statistical difference
was observed between the two conditions (Figure 5). On an individual study level, between-group
differences were detected for dyspnoea [65], and the Mastery subscale [66] (CRDQ) as well as the
General Health scale in the SF-36 [66], with significant improvements for exercise in the supplemental
oxygen group compared to the normoxia group (Supplements Table S3).

3.4.3. Publication Bias

The funnel plot did not show a clear funnel-shape across all assessed and pooled effects
sizes (Figure 6). However, neither the rank correlation nor the regression test indicated any
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funnel plot asymmetry (p = 0.140 and p = 0.186, respectively). The visual observation provided
by the trim-and-fill-function confirmed study heterogeneity, while potential publication bias and
methodological heterogeneity remains possible, as indicated by a large cluster in the centre of the plot
with no values in the top or bottom right and left corner, respectively.
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4. Discussion

In times of an improved understanding of exercise as medicine, there is an increasing precision
of therapeutic measures and the number of innovative therapy approaches is growing. Although in
previous reviews the beneficial effects of exercise with supplemental oxygen in COPD patients has
been questioned [39,40], supplemental oxygen has indeed been shown to induce beneficial effects
in healthy populations [11] and, thus, it remains unknown whether this method may be a mean
of personalized therapy for patients diagnosed with other types of chronic diseases. Our findings
clearly expand on previous reviews [39,40] by including twelve studies that have utilized exercise with
supplemental oxygen. However, while it was somewhat expected that the majority of studies identified
were conducted in COPD patients [60,62–66,68–73], it was surprising that only one study included
patients other than a chronic lung pathology [67]. Thus, despite numerous medical hypotheses and the
previous findings obtained from healthy populations, we currently have no evidence for the application
of training with supplemental oxygen in psychiatric, neurological, metabolic, musculoskeletal or
oncological disease. Moreover, even though a large number of studies was included in this review, no
statistical advantage for improvements in physical fitness, functional capacity and patient-reported
well-being was found.

The pathogenesis of chronic diseases is generally characterized by proinflammatory processes,
associated with a reduced exercise tolerance [76]. Typically, the disease-induced inflammation leads to
hypoxic microenvironments, affecting not only oxygen transport and diffusion but also energy flux
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and immunoregulatory mechanisms [76,77]. Resulting chronic tissue hypoxia may further increase
inflammation and deteriorate physical deconditioning and, thereby, contribute to the vicious cycle of
chronic disease progression and exercise intolerance [77].Tissue hypoxia and inflammation, in turn,
may be counteracted by regular physical exercise but training adherence is often compromised by
adverse symptoms, such as dyspnoea and fatigue. This is why previous studies have aimed to assess
the effects of exercise with supplemental oxygen in an attempt to reduce subjective exertion and
breathlessness [29,78–81], while concomitantly enhancing tissue re-oxygenation [14,76,82]. Because
patients suffering from pulmonary diseases may be more prone to ventilatory limitations both at rest
and during exercise, it was not surprising that the majority of studies identified in this systematic
review was performed in COPD. However, considering that fatigue and breathlessness are also severe
symptoms in other chronic conditions, such as cancer or cardiovascular diseases, it was somewhat
unexpected that only one study was conducted in patients suffering from a chronic heart condition [67],
while no studies were performed with patients of other entities. Especially in light of the growing
interest for more personalized therapeutic approaches for chronic diseases, we hypothesized that
training with supplemental oxygen could be an effective way to overcome limitations and barriers to
physical training and, thus, increase adherence and therapeutic success.

However, a main reason for a lack of studies applying supplemental oxygen during exercise
training in other chronic diseases may be related to safety concerns. Previous studies have shown that
chronic supplementation of oxygen administered for days or even weeks is associated with severe
side effects, such as oxygen toxicity and pulmonary tissue damage [3,14]. Furthermore, cerebral,
cardiovascular and pulmonary vasoconstriction as well as an increased cardiac resistance and lowered
coronary blood flow were previously observed [14,15]. However, there are also studies indicating
pulmonary vasodilatation and increased cardiac output, ultimately leading to an improved exercise
capacity with supplemental oxygen [25,83,84]. Therefore, the heterogeneity of reported physiological
findings might contribute to a rather conservative application of training with supplemental oxygen, as
indicated by the overall low number of studies identified in our review. Unfortunately, hemodynamic
parameters were assessed only in one study investigating the effects of supplemental oxygen during
exercise on peak cardiac output and stroke volume [67]. In this study, it was shown that cardiac
output and stroke volume increased to a similar extent both after supplemental oxygen and normoxic
training [67], indicating that a short-term increase (i.e., only during exercise sessions) in FiO2 may not
induce cardiovascular complications. However, because mechanistic markers were not assessed in
either of the included studies, a thorough risk evaluation may not be performed at this stage.

Interestingly, the patient dropout rates were low to moderate throughout all included studies
(i.e., 21.9% with supplemental oxygen and 21.8% in normoxia). Moreover, even in those studies with the
highest dropout rates [70–73], no associations between the FiO2 (0.35 to 1.0) or flow rate (2 to 10 L min−1)
and the number of dropouts were observed. In addition, the reported training adherence ranged from
89 to 100% for both conditions. However, even though the majority of studies was rated of high quality
based on the PEDro scale, the overall reporting of adverse events as well as the rates for attendance
and compliance of participants was not adequate across most of the included studies. Authors of
future studies are directed to the common terminology criteria for adverse events (CTCAE) [85]. Thus,
concluding remarks on the safety and feasibility have to be interpreted with caution.

Previous cross-sectional studies in COPD [37,86–88], cystic fibrosis [15,89] and interstitial lung
disease [17] have well indicated that acute exercise with supplemental oxygen leads to transient
increases in exercise capacity mainly through an increased oxygen partial pressure and saturation,
improved breathing pattern and reduced dynamic hyperinflation [3,10,14]. Furthermore, studies
assessing the effects of acute bouts of exercise with supplemental oxygen in patients with chronic
heart failure [18,30] or diabetes mellitus type 2 [90,91] showed beneficial physiological effects such
as increased exercise performance, reduced fatigue and breathlessness. Despite improved muscle
oxygenation, acute supplemental oxygen may also cause an inhibition of carotid body stimulation
as well as a reduced respiratory drive and pulmonary vasodilatation and, thus, may counterbalance
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exercise-induced hypoxemia and enhance exercise performance [25,83,84]. However, based on the
results of our meta-analysis, the previously reported acute benefits of supplemental oxygen do not
seem to translate into long-term adaptations. In fact, out of the included studies, only two studies
reported improvements in markers of physical fitness, such as time to exhaustion or peak power [66,72],
while two other studies showed greater reductions on exercise-induced dyspnoea [65,73]. As such,
even when including a larger number of studies as compared to previous reviews with patients [39,40],
presently there is no clear evidence for exercise being performed with supplemental oxygen to induce
clinically meaningful adaptations in either biological or performance markers but these findings are
limited to COPD and CAD patients.

A number of methodological aspects may explain the heterogeneous study findings. First, an
important consideration for exercise training with supplemental oxygen is the potentially lowered
perceived exertion, along with an increased exercise capacity [16,30,92]. Consequently, supplemental
oxygen may allow to sustain a given power output for longer durations or to perform at higher
training intensities. Therefore, it might be necessary to adjust the training intensity for this acute
enhancement of exercise capacity to avoid an actual lower exercise load [93]. Interestingly, in the
majority of included studies an adjustment for this phenomenon was not considered. In fact, only
one study clearly controlled for the exercise intensity but this work was among the few studies that
have actually shown superior effects on physical fitness [72]. It is, thus, likely that the lack of beneficial
effects in the supplemental oxygen groups in most of the remaining studies was also due to a relatively
lower training intensity for supplemental oxygen conditions, emphasizing the need for personalized
exercise prescription.

In addition, also technical aspects of oxygen administration need to be considered. For example,
supplemental oxygen may be provided humidified or dry, liquid or gaseous and supplied in normobaric
or hyperbaric conditions [93–97]. Furthermore, oxygen concentrations typically range from 30 to 100%,
with flow rates of 2 to 20 L per min [11,12,93]. It is obvious, that the variety of devices and methods
used for oxygen delivery bears difficulties for comparison and generalizability of findings described
in individual studies included in this review. In fact, it was shown in earlier cross-sectional studies
including COPD patients that a high-flow rate between 3 to 8 L per min increased distance covered
in walking tests around 2.4 times, compared to a much lower flow of only 0.5 to 4 L per min [98].
Furthermore, it was previously reported in patients with severe airflow obstruction that cycling
time may be increased by 51%, 88% and 80% with concomitant flow rates of 2, 4 or 6 L per min,
respectively [99], supporting the need to adjust exercise intensities/durations during exercise training
with supplemental oxygen. A similar dose-response relationship also seems to exist for the FiO2 and
time to exhaustion, which progressively increased with higher FiO2 up to 0.5 [11,25]. However, because
of the heterogeneity in the methods used to deliver oxygen in the included studies, similar associations
were not observed in the present review.

Nonetheless, both the flow-rate and FiO2 are dependent on whether compressors or gas cylinders
are used and whether the oxygen is supplied through nasal cannulas, rebreather masks or oxygen on
demand systems [3,100], further complicating comparisons of different studies. Patients might prefer
the widely used nasal cannulas for oxygen delivery instead of facemasks due to a higher comfort and
lower facial constriction. Interestingly, it was previously shown that reported FiO2 values using nasal
cannulas to deliver oxygen can be misleading due to an actual high variability in delivery rate [101,102].
This might become even more relevant while patients are exercising, due to changing breathing
and ventilatory patterns with increasing exercise loads. For example, patients typically switch from
nose breathing to oronasal or mouth breathing with increasing exercise intensity [103], even during
submaximal exercise [103]. Thus, it is questionable how much oxygen is actually inhaled by the patients
using nasal cannulas. This is an important consideration because the majority of studies identified
in our systematic review indeed used nasal cannulas for oxygen delivery [60,63,65,66,71,73,104],
while only few of the remaining studies administered oxygen either through a mask [64,67,68] or
mouthpiece [69] or did not specify the delivery system [70]. However, despite the limitations of nasal
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cannulas, we were not able to identify differences in terms of training efficacy based on the system used
and, thus, the significance of these technical aspects requires further assessment. However, contrary to
these apparent limitations, these considerations also bear the potential to further personalize the use of
exercise training with supplemental oxygen based on the individual needs. This also includes other
promising approaches to counteract local and/or systemic hypoxia, such as the injection of oxygen
nanobubbles [105–107].

Finally, the observed variations in the outcomes might be partially explained by the heterogeneous
study populations and disease stages within the individual trials (i.e., hypoxemic, normoxemic, GOLD
1–4 COPD). Interestingly, the only two studies showing beneficial effects of supplemental oxygen on
physical fitness involved nonhypoxaemic COPD patients [66,72]. The remaining studies included
either exercise-hypoxaemic [60,63,65], nonhypoxaemic [70,71,73] or CAD patients [67]. Considering
the differences in symptom-severity, stage and pathophysiological impact of disease, aim of the exercise
intervention, and rehabilitation setting, the question arises whether the one-size fits all approach in
oxygen supplementation during training is reasonable. Future studies should, therefore, focus on
a precise dose, timing and purpose of supplemental oxygen during exercise training rather than on
the sole question of whether supplemental oxygen needs to be provided. Another important aspect
might be that the reported exercise-related parameters in available studies might not necessarily be
of clinically significance. Although strong correlations do exist between cardiorespiratory fitness
and mortality [108], it cannot be ruled out that the chosen parameters in the included studies were
insufficient to detect clinically meaningful changes induced by exercise training with supplemental
oxygen, considering also rather short intervention periods of only 9.9 ± 5.7 weeks. Consequently, it is
recommended to include assessments of underlying biological mechanisms into future investigations,
as well as to further extent the duration of study protocols.

5. Conclusions

Exercise medicine as a part of personalized therapy provides a huge potential for diseased
populations and, thus, innovative methods for various chronic conditions are warranted. The use of
supplemental oxygen during exercise might at least theoretically bear the potential for an effective
therapeutic approach to counteract chronic disease-induced inflammation and tissue hypoxia for
literally all chronic diseases, while concomitantly increasing patient adherence and therapy compliance.
However, as shown by this systematic review, so far the majority of studies assessing the effects of
chronic exercise with supplemental oxygen were carried out in COPD patients, while we found only
one study that was performed with CAD patients and currently no evidence exists for other chronic
diseases. Our findings also indicate very scarce data concerning safety and feasibility of exercise with
supplemental oxygen and this data is limited to COPD and CAD. Moreover, the interpretation of that
data is somewhat hindered by incomprehensive reporting. Interestingly, even though it appears that
supplemental oxygen is a common therapeutic method to support exercise interventions in COPD
patients, our findings support previous reviews by clearly indicating that there is currently no evidence
superior effects in terms of physical fitness, functional capacity or patient-reported well-being. While it
is likely that this may be related to heterogeneous study designs and/or technical aspects of oxygen
delivery (i.e., low flow rates and oxygen delivered through nasal cannula), there seems to be a gap
between findings obtained from acute study designs and long-term interventions. Thus, future studies
should aim at identifying dose-response relationships of supplemental oxygen delivered and further
assess whether this type of training may be a beneficial part of a personalized medicine approach for
other types of chronic diseases.
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