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Background: An electron localization function was originally introduced to visualize in positional space bond
structures in molecules. It became a useful tool to describe electron configurations in atoms, molecules, and
solids. In nuclear physics, a nucleon localization function (NLF) has been used to characterize cluster structures
in light nuclei, formation of fragments in fission, and pasta phases appearing in the inner crust of neutron stars.
Purpose: We use the NLF to study the nuclear response to fast rotation.
Methods: We generalize the NLF to the case of nuclear rotation. The extended expressions involve both time-
even and time-odd local particle and spin densities and currents. Since the current density and density gradient
contribute to the NLF primarily at the surface, we propose a simpler spatial measure given by the kinetic-energy
density. Illustrative calculations for the superdeformed yrast band of 152Dy were carried out by using the cranked
Skyrme-Hartree-Fock method. We also employed the cranked harmonic-oscillator model to gain insights into
spatial patterns revealed by the NLF at high angular momentum.
Results: In the case of a deformed rotating nucleus, several NLFs can be introduced, depending on the definition
of the spin-quantization axis, direction of the total angular momentum, and self-consistent symmetries of the
system. Contributions to the NLF from the current density, spin-current tensor density, and density gradient terms
are negligible in the nuclear interior. The oscillating pattern of the simplified NLF can be explained in terms of
a constructive interference between kinetic-energy and particle densities. The characteristic nodal pattern seen
in the NLF in the direction of major axis of a rotating nucleus comes from single-particle orbits carrying large
aligned angular momentum. The variation of the NLF along the minor axis of the nucleus can be traced back to
deformation-aligned orbits.
Conclusions: The NLF allows a simple interpretation of the shell structure evolution in the rotating nucleus in
terms of the angular-momentum alignment of individual nucleons. We expect that the NLF will be very useful
for the characterization and visualization of other collective modes in nuclei and time-dependent processes.

DOI: 10.1103/PhysRevC.102.044305

I. INTRODUCTION

Nuclear collective motion, such as rotations and vibrations,
provides rich information about nuclear structure and nuclear
response to external fields. When discussing nuclear collective
motion, one is often making analogies to molecules and their
collective modes. One has to bear in mind, however, that the
A-body nuclear wave function cannot, in general, be expressed
in terms of slow and fast components because the time sep-
aration between single-particle (s.p.) and collective nuclear
motion is poor. Consequently, deviations from the perfect ro-
tational and vibrational patterns are abundant. Such deviations
indicate that the nuclear collective modes result from coherent
superpositions of individual nucleonic excitations.

The observation of rotational bands in atomic nuclei has
provided us with many insights into nuclear deformations and
the underlying shell structure [1–4]. Theoretically, high-spin
states can be described in a fully self-consistent way by the

nuclear energy density functional (EDF) method [5], which
is closely related to density-functional theory [6,7]. Although
rotation is essentially a time-dependent problem, the intro-
duction of a rotating intrinsic frame through the cranking
approximation transforms the time-dependent problem into
a time-independent one [8]. The cranking term added to the
nuclear Hamiltonian can be interpreted as a constraint on the
angular momentum, with the rotational frequency playing the
role of the Lagrange multiplier.

The spatial electron localization function (ELF) was orig-
inally introduced in the context of electronic Hartree-Fock
(HF) studies to characterize shell structure in atoms and chem-
ical bonds in molecules [9–14]. In nuclear structure research,
the nucleon localization function (NLF) turned out to be a
useful tool for the identification of clusters in light nuclei
[15–17] and nuclear reactions [18]; formation of fragments
in fission [19–23]; and nuclear pasta phases in the inner crust
of neutron stars [16]. Compared with nucleonic distributions
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that are fairly constant in the nuclear interior, the NLF more
effectively quantifies nuclear configurations through its char-
acteristic oscillating pattern due to shell effects. Consequently,
it is expected to be a good indicator of the competition be-
tween s.p. motion and collective nuclear modes.

In this work, we use the NLF to study the nuclear response
to rotation. We consider the case of superdeformed (SD)
152Dy, a quintessential nuclear rotor that has been investigated
in a number of self-consistent works [24–26].

This paper is organized as follows: Our theoretical frame-
work is described in Sec. II, which contains a comprehensive
discussion of the NFL and its extension to the case of rota-
tion. Section III contains the results of HF calculations for
152Dy that are supplemented by cranked harmonic-oscillator
model results that illuminate essential points. Finally, Sec. IV
presents conclusions and perspectives for future studies.

II. THEORETICAL FRAMEWORK

A. Density matrices

The starting point in the derivation of the spatial local-
ization function is the one-body HF density matrix in the
coordinate representation:

ρ(rsq, r′s′q′) ≡ 〈�|a†
r′s′q′arsq|�〉, (1)

where a†
rsq and arsq create and annihilate, respectively, a nu-

cleon q (=n or p) at point r with spin s = ± 1
2 , and |�〉 is the

HF independent-particle state. In what follows, we consider
pure proton and neutron HF states, i.e., q′ = q, and we define
ρq(rs, r′s′) = ρ(rsq, r′s′q).

Expressed in terms of spin components, the nonlocal HF
density matrices can be written as [5,27,28]

ρq(rs, r′s′) = 1
2 [ρq(r, r′)δss′ + (s|σ|s′)sq(r, r′)], (2)

where

ρq(r, r′) =
∑

s

ρq(rs, r′s), (3a)

sq(r, r′) =
∑
ss′

ρq(rs, r′s′)〈s′|σ|s〉. (3b)

In the EDF method with the zero-range Skyrme interaction,
the energy functional depends only on local densities and cur-
rents. Following the standard definitions [5,27], in the present
study we employ the following densities:

ρq(r) = ρq(r, r), (4a)

sq(r) = sq(r, r), (4b)

τq(r) = [∇ · ∇′ρq(r, r′)]r=r′ , (4c)

jq(r) = 1

2i
[(∇ − ∇′)ρq(r, r′)]r=r′ , (4d)

Jq(r) = 1

2i
[(∇ − ∇′) ⊗ sq(r, r′)]r=r′ , (4e)

T q(r) = [(∇ · ∇′)sq(r, r′)]r=r′ , (4f)

where ⊗ stands for the tensor product of vectors in the physi-
cal space.

B. Nucleon localization function

Let us first consider the probability of finding two nucleons
of a given isospin q and spin s at spatial locations r and r′:

Pqs(r, r′) = 〈�|a†
rsqa†

r′sqar′sqarsq|�〉. (5)

For the HF product state |�〉 this probability can be written as

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2. (6)

Because of the Pauli exclusion principle, Pqs(r, r) = 0. If a
nucleon with spin s and isospin q is located with certainty
at position r, the conditional probability of finding a second
nucleon with the same spin and isospin at position r′ is

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

To study the local (short-range) behavior of Rqs, one as-
sumes that the second nucleon is located within a shell of
small radius δ around r. The corresponding conditional prob-
ability (7) can be written as

Rqs(r, r + δ) = eδ·∇′
Rqs(r, r′)|r=r′ . (8)

After performing an angular averaging over the δ shell and
carrying out a Taylor expansion in δ, one obtains

〈eδ·∇′ 〉 = 1

4π

∫
eδ·∇′

d�

= 1 + 1

3!
δ2∇′2 + 1

5!
δ4∇′4 + · · · . (9)

The resulting local probability becomes

Rqs(r, δ) = 1
6δ2∇′2Rqs(r, r′)|r=r′ + O(δ4). (10)

By introducing a localization measure Dqs(r) through the re-
lationship

Rqs(r, δ) = 1
3 Dqs(r)δ2 + O(δ4), (11)

one can capture the short-range limit of the conditional like-
spin pair probability.

For a rotationally invariant and spin-unpolarized system,
Dqs(r) is independent of the choice of the spin-quantization
axis. However, for the deformed and rotating nuclei consid-
ered in this study, one has to consider three different measures
Dqsμ

(r) with μ = x, y, z.
If one chooses μ-axis as the spin-quantization axis, one can

define three spin-dependent local densities:

ρqsμ
(r) = 1

2ρq(r) + 1
2σμsqμ(r), (12a)

τqsμ
(r) = 1

2τq(r) + 1
2σμTqμ(r), (12b)

jqsμ
(r) = 1

2 jq(r) + 1
2σμJq(r) · eμ, (12c)

where σμ = 2sμ = ±1 and eμ is the unit vector in the
direction of the μ axis. After straightforward algebraic ma-
nipulations based on the density-matrix expansion technique
[29,30], the measure Dqsμ

(r) can be expressed through the
local densities (12)

Dqsμ
= τqsμ

− 1

4

∣∣∇ρqsμ

∣∣2

ρqsμ

−
∣∣ jqsμ

∣∣2

ρqsμ

. (13)
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Following Ref. [9], a dimensionless and normalized NLF can
now be defined as

Cqsμ
(r) =

[
1 +

(
Dqsμ

(r)

τTF
qsμ

(r)

)2]−1

, (14)

where the normalization τTF
qsμ

(r) = 3
5 (6π2)2/3ρ5/3

qsμ
(r) is the

Thomas-Fermi kinetic-energy density.
It should be noted that the densities (12) constituting the

NLF contain both time-even and time-odd components. In-
deed, the particle density ρq(r), kinetic-energy density τq(r),
and spin-current tensor density Jq(r) are all time-even, while
the spin vector density sqμ(r), spin-kinetic vector density
Tqμ(r), and current vector density jq(r) are time-odd. If
time-reversal symmetry is conserved, sqμ(r) = 0, Tqμ(r) = 0,
and jq(r) = 0. Consequently, for a system that conserves
time-reversal symmetry and is governed by spin-independent
interactions, one obtains

D
q±1

2
= Dq = 1

2
τq − 1

8

|∇ρq|2
ρq

, (15)

which is the familiar atomic physics expression [9].
In general, the tensor density Jq(r) does not vanish even

if the time-reversal symmetry is conserved [31]. It can be
decomposed into trace, antisymmetric, and symmetric parts
[28]. In many practical applications, the spin-current tensor
is approximated by its antisymmetric (spin-orbit current) part
[32]. However, all components of Jq are important to charac-
terize nuclear spin-orbit and tensor interactions [33–36] and
the resulting spin polarization, which is sensitive to spin sat-
uration of nucleonic shells. Consequently, the current jqsμ

(r)
does not vanish even in ground-state configurations of even-
even nuclei. While its contribution to the NLF was ignored in
several previous calculations [15,18,19], the current-density
contribution to the NLF practically vanishes in the nuclear
interior, see discussion in Sec. III A. Consequently, one can
safely neglect this term when the goal is to use the NLF as a
configuration-characterization tool.

The choice of the normalization function in Eq. (14)
is somehow arbitrary. In atomic physics applications and
for time-reversal-invariant nuclear configurations, the density
ρqsμ

does not depend on spin. In the general case, however,
nucleonic densities depend on the spin polarization. In this
work, in order to emphasize the rotation-induced effects, we
decided to stick to the normalization function τTF

qsμ
, which is

different for spin-up and spin-down subsystems.
As discussed in Refs. [10,13], the localization function can

also be interpreted in terms of the Pauli exclusion principle.
Let us consider a situation in which an isolated fermion of
given spin s and isospin q, is located in some region of space.
The wave function of this particle can be written as

ψqs(r) = √
ρqse

iχ (r), (16)

where χ (r) is a position-dependent phase factor related to the
current density via

jqs = ρqs∇χ. (17)

The corresponding s.p. kinetic-energy density is the sum of
last two terms in Dqs (13):

τ s.p.
qs = |∇ψqs|2 = 1

4

|∇ρqs|2
ρqs

+ | jqs|2
ρqs

, (18)

where the first term is the von Weizsacker kinetic-energy
density [37]. Therefore, Dqs can be interpreted as a measure of
the excess of kinetic-energy density due to the Pauli exclusion
principle:

Dqs = τqs − τ s.p.
qs . (19)

This interpretation of the NLF is more flexible as it does not
involve the notion of the conditional probability (7), which is
not straightforwardly generalized to the case of point-group
symmetries of the nuclear mean field.

C. Cranked Hartree-Fock calculations

Superdeformed nuclei around 152Dy can be viewed
as unique laboratories of extreme single-particle behavior
[25,38]. The nucleus 152Dy plays a role of superdeformed
double-magic core due to large shell closures at Z = 66 and
N = 86. Because of this, 152Dy has been a subject of many
studies of self-consistent nuclear response to collective rota-
tion; see, e.g., Refs. [24,26,39,40]. Because of large deformed
gaps and rapid rotation, pairing correlations are weak in SD
152Dy [41,42]. Indeed, with a reasonable pairing strength,
adjusted to experimental odd-even mass difference in 120Sn
as done in Ref. [43], the static pairing vanishes in the SD
yrast band of 152Dy in Hartree-Fock-Bogoliubov (HFB) cal-
culations.

The intrinsic configurations of SD bands in the A = 150
mass region are well characterized by nucleons in the in-
truder orbitals carrying large principal harmonic-oscillator
(HO) numbers N , namely, the proton N = 6 and neutron
N = 7 states [44,45]. Because of their large intrinsic angular
momenta, these orbitals strongly respond to nuclear rotation;
hence, their occupations and alignment patterns well charac-
terize SD bands.

To study the impact of rotation on shell structure through
the nucleon localizations, we carry out unpaired cranked HF
(CHF) calculations for superdeformed 152Dy using the HF
solver HFODD [46]. Following Ref. [24], s.p. wave functions
have been expanded in a stretched deformed HO basis with
frequencies h̄ωz = 6.246 MeV and h̄ω⊥ = 11.200 MeV along
the directions parallel and perpendicular to the symmetry axis,
respectively. The total number of basis states is 1013 with HO
quanta not exceeding 15 in each direction. We employed the
Skyrme energy density functional parametrization SkM∗ [47],
with its generic time-odd terms [24,48].

The angular momentum has been generated by means of
a cranking term −ωĴy, where Ĵy is the y component of the
total angular-momentum operator and ω represents the an-
gular velocity of rotation. In the presence of the cranking
term, parity P̂, y signature R̂y = exp(−iπ Ĵy), and y simplex
R̂y = P̂R̂y symmetries are preserved while time-reversal and
axial symmetries are broken; see Refs. [49–51] for more dis-
cussion. Since the time-reversal operator commutes with the
signature and simplex operators, the time-reversed s.p. CHF

044305-3
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FIG. 1. Single-particle (a) neutron and (b) proton Routhians as
functions of ω, obtained in the CHF + SkM∗ calculations for the
SD yrast band of 152Dy. The (πry) combinations are indicated by
solid lines (+,+i), dotted lines (+, −i), dot-dashed lines (−, +i),
and dashed lines (−, −i). The Routhians originating from the lowest
neutron N = 7 and proton N = 6 and [541]1/2 levels are marked
by thicker lines.

states (Routhians) belong to opposite signature and simplex
eigenvalues.

Every CHF configuration can be labeled by using
the standard notation in terms of parity-signature blocks
[N+,+i, N+,−i, N−,+i, N−,−i], where Nπry are the numbers of
occupied s.p. orbitals having parity π and y signature ry. As
discussed in Ref. [24], the yrast configuration of SD 152Dy is
[22, 22, 21, 21]n ⊗ [16, 16, 17, 17]p. The relative variation of
the quadrupole moment Q20 within this state is much less than
1% in the frequency range h̄ω = 0.2 ≈ 0.5 MeV [25], so we
constrain it at the value Q20 = 42 b to eliminate its possible
impact on the computed localizations.

Single-particle Routhians obtained in the CHF + SkM∗

calculations for the SD yrast band of 152Dy are shown in
Fig. 1. The large deformed shell closures at Z = 66 and N =
86 are clearly seen. The lowest N = 7 neutron and N = 6
proton Routhians indicated in the figure are rotation aligned,
i.e., they are strongly impacted by the Coriolis coupling and

their s.p. aligned angular momenta are large at high rotational
frequencies. Many other states around the Fermi level are
weakly impacted by rotation. Such states are usually referred
to as deformation-aligned (strongly coupled) [1,52,53].

D. Cranked harmonic-oscillator calculations

In the previous study of the NLF, the harmonic-oscillator
model was used to provide an illustrative guidance [16]. In this
work, we study the NLF patterns of the SD cranked harmonic-
oscillator (CHO) model with frequencies ω⊥ = ωx = ωy =
2ωz. Since the HO potential is spin-independent, every s.p.
HO level is doubly degenerate. As in the CHF calculations,
we assume that the rotation takes place around the y axis.
The s.p. Routhians and wave functions of the CHO can be
obtained analytically [2,54,55]. We wish to emphasize that our
CHO results were obtained without imposing the consistency
relation between mean-field ellipsoidal deformation and the
average density distribution [1,55].

To relate the CHO analysis to the CHF results for SD
152Dy, we study a SD HO potential filled with 60 particles,
which corresponds to a closed SD supershell Nshell ≡ 2(n1 +
n2) + n3 = 6 [1,53,56,57]. The corresponding s.p. Routhians
are shown in Fig. 2 as functions of ω. A supershell of a SD
HO consists of degenerate positive- and negative-parity states.
This degeneracy is lifted by rotation: the orbits with no CHO
quanta along the rotation axis (n2 = 0) and the largest possible
value of the difference (n3 − n1) carry the largest s.p. angular
momentum. In Fig. 2 those are the [0,0,7] (N = 7) and [0,0,6]
(N = 6) Routhians.

E. Nucleon localization function at high spins

Since parity, y signature ry, and y simplex ry are self-
consistent symmetries in our cranking calculations, in order
to see the angular-momentum alignment effects caused by
different orbits, it is convenient to study the NLFs of a given
ry or ry. This can be done by expressing local densities and
currents in terms of their symmetry-conserving components.
In practice, this can be done by summing up the contributions
from HF s.p. wave functions belonging to a given symmetry
block [49–51]. For instance, if the y simplex is conserved,

ρq(r) = ρqσ̆y=+1(r) + ρqσ̆y=−1(r), (20)

where σ̆y ≡ ry/i = ±1. A similar decomposition holds for
τq(r) and jq(r).

By decomposing these densities into time-even and time-
odd parts, they can be expressed in a form similar to Eq. (12):

ρqσ̆y (r) = 1
2ρq(r) + 1

2 σ̆ys′
q(r), (21a)

τqσ̆y (r) = 1
2τq(r) + 1

2 σ̆yT ′
q (r), (21b)

jqσ̆y
(r) = 1

2 jq(r) + 1
2 σ̆yJ′

q(r), (21c)

where

s′
q(r) = ρqσ̆y=+1(r) − ρqσ̆y=−1(r), (22a)

T ′
q (r) = τqσ̆y=+1(r) − τqσ̆y=−1(r), (22b)

J′
q(r) = jqσ̆y=+1(r) − jqσ̆y=−1(r). (22c)

The fields s′ and T ′ are time-odd and J′ is time-even.
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FIG. 2. Single-particle Routhians of the SD CHO model belong-
ing to the supershells Nshell = 6 and 7. The CHO quantum numbers
[n1, n2, n3] are given in brackets. Positive-parity and negative-parity
states are indicated by solid and dashed lines, respectively. The rota-
tional frequency ω is expressed in units of ω0 = (ωzω

2
⊥)1/3 while the

Routhians E is in units of h̄ωz. Each level is doubly degenerate due to
the two possible spin orientations. The crossing between the lowest
N = 7 Routhian [0,0,7] and the [3,0,0] Routhian at ω/ω0 ≈ 0.2 is
marked by the arrow.

III. RESULTS AND DISCUSSION

A. General considerations

In a rotating system, the current density j characterizes
the collective rotational behavior [26,58–65]. Figure 3 shows
how the current density builds up in the CHO model. As
rotational frequency increases, a pattern of the vector field
j resembling a rigid-body rotation gradually develops. At
ω = 0.2ω0, the lowest N = 7 Routhian [0,0,7] becomes oc-
cupied and the [3,0,0] level becomes empty, see Fig. 2. As
the orbital [0,0,7] is strongly prolate-driving and carries large
s.p. angular momentum, and the Routhian [3,0,0] has large
negative quadrupole moment (oblate), the associated configu-
ration change (band crossing) results in a large increase in the
angular-momentum alignment and intrinsic deformation, see
Fig. 3. This effect is also present in CHO calculations which
consider the potential-density consistency relation [57].

FIG. 3. Current density j in the x-z (y = 0) plane, calculated in
the CHO model with 60 particles in a SD HO well for four values of
rotational frequency ω (in units of ω0). The magnitude | j| (in fm−4)
is shown by color and line thickness.

When it comes to the realistic description, Fig. 4 shows
the neutron and proton current densities of 152Dy calculated
in the CHF method at four rotational frequencies up to h̄ω =
0.8 MeV (angular momentum Iy ≈ 90h̄). The leftmost column
in Fig. 4 shows the result of the benchmark quasiparticle
random-phase approximation calculation using the finite am-
plitude method (FAM-QRPA) [66], which corresponds to the
ω → 0 limit. Both FAM-QRPA and full cranking calculations
produce flow patterns close to the rigid-body rotation. As
irrotational flow originates from pairing correlations [61,66]
the result shown in Fig. 4 is consistent with our assumption of
no static paring in the SD yrast band of 152Dy.

In addition to the current j, two other time-odd vector
densities enter the expression for the NLF: spin density s and
spin-kinetic density T . They are displayed in Fig. 5 for several
values of ω. Both spin fields are polarized along the direction
of the total angular momentum (here, y axis). It is interesting
to see that the distribution themselves hardly change with
rotational frequency; what is changing is the magnitudes |s|
and |T | that gradually increase with rotation. This is also seen
in the FAM-QRPA calculation that produces flow patterns
close to those obtained in the CHF calculations.

FIG. 4. Current density j in the x-z (y = 0) plane for neutrons
(top) and protons (bottom) in the SD yrast band of 152Dy obtained in
the CHF calculations, as a function of ω (in units of MeV/h̄). The
magnitude | j| (in fm−4) is shown by color and line thickness. The
FAM-QRPA result is presented in the first column with a different
color range.
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FIG. 5. Spin density s (top) and spin-kinetic density T (bottom)
in the x-y (z = 0) plane for neutrons in the SD yrast band of 152Dy
obtained in the CHF calculations, as functions of ω (in units of
MeV/h̄). The magnitudes, |s| (in fm−3) and |T | (in fm−5), are shown
by color and line thickness. The FAM-QRPA results are presented in
the first column with a different color range.

To complete the discussion of spin fields, the spin-current
tensor density J · ey is shown in Fig. 6. As compared with the
current density j shown in Fig. 4, J · ey changes very weakly
with ω. This field has a surface character, i.e., it practically
vanishes within the nuclear volume. Since Jq · ey is time-even,
its contribution to Cqsμ

does not vanish at ω = 0.

B. Simplified nucleon localization function

An important consequence of the rigid-body flow is that the
current density only contributes significantly to the NLF at the
surface. This observation should be valid in most cases even if
an irrotational flow exists (see examples in Refs. [61,66]). The
same argument is also valid for the contribution to the NLF
from the density-gradient term |∇ρqs|2, which has a surface
character. Consequently, we define a simplified localization
measure as

Cτ
qsμ

(r) =
[

1 +
(

τqsμ
(r)

τTF
qsμ

(r)

)2]−1

, (23)

which does not include contributions from the current density
and density gradient. Figure 7 shows C, Cτ , and their dif-
ference obtained in the CHO model; we indeed see that Cτ

exhibits the same pattern as C inside the nuclear volume. A
similar behavior is present in the CHF calculation for the SD
yrast band of 152Dy. Figure 8 shows C and Cτ for neutrons
with σ̆y = −1 (y simplex ry = −i) at h̄ω = 0.9 MeV: the two

FIG. 6. Spin-current tensor density J · ey in the x-z (y = 0) plane
for neutrons in the SD yrast band of 152Dy, as a function of ω (in
units of MeV/h̄). Its magnitude (in fm−4) is shown by color and line
thickness.

FIG. 7. C (top), Cτ (middle), and their difference (bottom) in the
x-z (y = 0) plane, calculated in the CHO model with 60 particles
in a SD HO well for five values of rotational frequency ω (in units
of ω0).

localization functions differ only in the surface region. At
lower frequencies, this difference is even less pronounced.

In previous work [19] the NLF was normalized as Cqσ →
Cqσ ρqσ /[max ρqσ ] (with σ being either spin, signature, or
simplex) to avoid large values in the regions of small parti-
cle density. However, as shown in Figs. 7 and 8, replacing
C with Cτ mitigates this unwanted behavior and leaves the
internal pattern unaffected, thus eliminating the need for this
additional normalization. Coming back to the interpretation
of Dqs as a measure of the Pauli repulsion, it is not surprising
to see that |∇ρqs|2 and | jqs|2 are significant only at the sur-
face where only a limited number of s.p. orbits are available
and thus become “localized.” Therefore, the simplified local-
ization function Cτ is a useful tool to characterize intrinsic
configurations in most cases, except perhaps for dynamic pro-

FIG. 8. C (left), Cτ (middle), and their difference (right) in the
x-z (y = 0) plane for neutrons with σ̆y = −1 (y simplex ry = −1),
obtained in the CHF calculations for the SD yrast configuration of
152Dy at h̄ω = 0.9 MeV.
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FIG. 9. Nucleon localizations functions Cqsμ (14) and Cτ
qsμ

(23)
in the x-z (y = 0) plane for three spin-quantization directions μ =
x, y, z, obtained in the CHF calculation for the SD yrast configuration
of 152Dy at h̄ω = 0.5 MeV.

cesses and high-energy modes where the current density and
density gradient can become appreciable inside the nucleus.

C. Dependence of nucleon localizations on the choice of
spin-quantization axis

As discussed in Sec. II B, in the general case of deformed
nuclei, nucleon localization functions Cqsμ

(14) and Cτ
qsμ

(23)
depend on the choice of the spin-quantization direction μ.
This directional dependence is illustrated in Figs. 9 and 10
for the SD 152Dy at h̄ω = 0.5 MeV. It is seen that the NLF

FIG. 10. Similar to Fig. 9 but shown in the y-z (x = 0) plane.

FIG. 11. Cτ (top), τ (in fm−5, middle) and τTF (in fm−5, bottom)
in the x-z (y = 0) plane, calculated in the CHO model with 60
particles in a SD HO well. The first column shows the reference plots
at ω = 0 while the other columns show the rotational dependence
relative to the ω = 0 reference as a function of ω (in units of ω0).

slightly depends on the choice of μ, especially in the case
of the y-z cross section. More importantly, Cτ

qsμ
≈ Cqsμ

in the
nuclear interior, independently of μ.

D. Angular-momentum alignment: Cranked
harmonic-oscillator analysis

In this section, we use the CHO model to illustrate some
general features of NLFs and densities, which will help us
understand the CHF results. First, to show the usefulness
of Cτ when it comes to the visualization of nucleonic shell
structure and angular-momentum alignment, we come back to
Fig. 7. A characteristic regular pattern seen at ω = 0 gradually
gets blurred with ω. At ω = 0.2ω0, where the band crossing
occurs, Cτ rapidly changes. Namely, the number of maxima
along the z axis increases as the [0,0,7] orbit becomes occu-
pies, and the number of maxima along the x axis decreases as
the [3,0,0] state gets emptied.

To clearly see the evolution of Cτ with ω, we consider the
indicator

�Cτ (r; ω) ≡ Cτ (r; ω) − Cτ (r; ω = 0). (24)

This quantity is shown in Fig. 11 together with the corre-
sponding variations �τ and �τTF relative to the nonrotating
case.

One can notice that there is a clear correspondence between
the peaks of �Cτ and valleys (peaks) of �τ (�τTF), which is
consistent with Eq. (23). This observation suggests that �τ

and �τTF are in antiphase, which results in a constructive
interference when considering their ratio.

To analyze this pattern in more detail, Fig. 12(a) displays
τ , τTF, and Cτ for 60 particles in the nonrotating SD HO along
the z axis (x = y = 0), together with the density profile of the
[0,0,6] state. One can see that valleys (peaks) of τ , τTF, and
Cτ roughly coincide with maxima of the [0,0,6] density, while
other states contribute to a smooth background.
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FIG. 12. Cτ (thick solid line), τ (solid line), and τTF (dashed
line) for the nonrotating HO model plotted along z axis (x = y = 0).
(a) Three-dimensional SD HO case with 60 particles. The density
profile of the [0,0,6] orbit is marked by a dotted line. (b) One-
dimensional case. HO orbits with principal quantum number N � 6
are occupied. The density profile of the N = 6 orbit is marked by
a dotted line; here τTF = π 2ρ3/3. Some quantities are scaled for a
better visualization.

This effect is even more pronounced in the one-
dimensional HO model, as shown in Fig. 12(b) where HO
orbits with quantum number N � 6 are occupied. The an-
tiphase relationship between τ and τTF is expected since τ

is related to the gradients of s.p. wave functions while τTF

depends on s.p. wave functions alone. The advantage of Cτ is
that it amplifies the characteristic nodal structure of aligned
high-N s.p. orbitals thanks to the constructive interference
between τ and τTF.

As discussed above, the kinetic-energy density τ is sen-
sitive to the nodal structure of s.p. wave functions. This
sensitivity can thus be utilized for the visualization of the

alignment process seen in the pattern of �τ in Fig. 11. (For
discussion of quasimolecular states in light nuclei based on
the nodal structure of the s.p. densities and currents, see
Ref. [65].) The cranking operator ωL̂y induces the particle-
hole (p-h) excitations across the Fermi level. The low-energy
excitations correspond to �N = 0 (�n1 = ±1, �n2 = 0,
�n3 = ∓1) transitions.

Figure 13 shows the variation of τ at ω = 0 induced by six
such p-h excitations across the N = 60 gap from the occupied
supershell Nshell = 6 to the empty supershell Nshell = 7, see
Fig. 2. The [0, 0, 6] → [1, 0, 5] excitation can be associated
with that between the [660]1/2 (61,2) and [651]3/2 (63,4) Nils-
son levels. Both are rotation-aligned, prolate-driving orbits,
and the corresponding �τ plot exhibits a nodal pattern along
the symmetry axis. On the other extreme, the [2, 0, 2] →
[3, 0, 1] excitation corresponds to a [420]1/2([422]3/2) →
[411]3/2 ([413]5/2) transition, which involves deformation-
aligned orbits. The related �τ plot exhibits a nodal pattern
along the minor axis. By summing up all six contributions,
one arrives at a pattern in the last panel of Fig. 13, which is
indicative of a change in τ due to rotation. Interestingly, this
pattern is quite similar to that of Fig. 11 at ω = 0.15ω0. We
can thus conclude that, for a system that is strongly elongated
along z axis, rotation-aligned s.p. states with large n3 leave a
strong imprint on �τ and �Cτ .

E. Angular-momentum alignment: Cranked
Hartree-Fock analysis

In this section, we study the localization patterns obtained
in the CHF calculations for the SD yrast band in 152Dy.
Figure 14 shows the simplified NLF Cτ

qσ̆y
in the y = 0 plane

for different values of ω. The first column corresponds to the
nonrotating case, where we see NLF patterns characteristic
of a deformed nucleus, similar to those for 100Zr, 232Th, and
240Pu discussed in Ref. [19]. As ω increases, new patterns
gradually emerge inside the nucleus, with Cτ

q↑ �= Cτ
q↓ due to

the time-reversal symmetry-breaking terms in Eq. (21).
For a better visualization of rotational dependence, we will

be using relative indicators, cf. Eq. (24). Figure 15 presents
the relative indicator �Cτ

qσ̆y
in the y = 0 plane. As the local

densities and currents can be decomposed into time-even and
time-odd parts, see Eqs. (12) and (21), their relative indicators

FIG. 13. Changes in the kinetic-energy density τ due to p-h excitations (at ω = 0) from the SD shell Nshell = 6 to the next supershell
Nshell = 7 in Fig. 2. These excitations are induced in the CHO description of a 60-particle system by the cranking term. The rightmost panel
shows the uniform average of individual p-h contributions.
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FIG. 14. Cτ
qσ̆y

in the x-z (y = 0) plane as a function of ω (in units
of MeV/h̄), obtained in the CHF calculation for the SD yrast band of
152Dy. The symbols ↑ and ↓ represent σ̆y = +1 and −1 (y simplex
ry = +i and −i), respectively.

FIG. 15. Similar as in Fig. 14 but for �Cτ
qσ̆y

. The reference value
of Cτ at ω = 0 is shown in the first column of Fig. 14.

FIG. 16. Similar to Fig. 15 but for �Cτ
qσ̆y

in the y-z (x = 0) plane.

can also be decomposed into time-even and time-odd compo-
nents. For instance,

�τqσ̆y (r; ω) = 1
2�τq(r; ω) + 1

2 σ̆yT ′
q (r; ω), (25)

where the quantity

�τq(r; ω) = τq(r; ω) − τq(r; ω = 0) (26)

does not depend on simplex and provides a background that
is an even function of ω. The simplex-dependent term in
Eq. (25) is ω-odd; together with the time-odd component of
ρqσ̆y (r; ω) is responsible for the difference between the values
of Cτ

qσ̆y
of different simplex (the same argument also holds for

signature). This difference is clearly shown in Fig. 15.
Also, to illustrate the directional dependence of �Cτ

qσ̆y
, we

show it in the x = 0 plane in Fig. 16. A different pattern along
the y direction results from the breaking of axial symmetry by
the cranking term.

Figures 17 and 18 show the variations of �τ and �τTF

with ω. Similar to the CHO case discussed in Sec. III D, �τ

and �τTF are in antiphase that results in a constructive inter-
ference when it comes to �Cτ . Furthermore, �τ , �τTF, and
�Cqσ̆y of opposite values of σ̆y change in the opposite direction
with ω. That is, a ridge in �Cq↑ corresponds to a valley in
�Cq↓. According to Eqs. (21), this is due to the contributions
from time-odd densities which change sign between different
values of σ̆y.

By investigating the behavior of the NLF from the perspec-
tive of individual s.p. orbits, we can gain useful insights on the
s.p. motion in the rotating nucleus. Following the CHO dis-
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FIG. 17. Similar to Fig. 15, but for �τqσ̆y (in fm−5). The refer-
ence value of τqσ̆y at ω = 0 is shown in the first column.

cussion in Sec. III D, we focus on �τ . In particular, we shall
study the rotational dependence of kinetic-energy densities of
s.p. orbits near the Fermi level as these orbits are expected to
primarily affect the nuclear response to rotation.

In the example discussed below, for the sake of simplicity
we consider small rotational frequency h̄ω = 0.1 MeV, at
which individual levels shown in Fig. 1 can easily be identified
structurally. At higher rotational frequencies, this discussion
can be repeated by following the diabatic Routhians within
each parity-signature block.

FIG. 18. Similar to Fig. 17, but for �τTF
qσ̆y

(in fm−5).

FIG. 19. Neutron (top) and proton (bottom) contributions to �τ

(in fm−5) in the x-z (y = 0) plane for different parity-signature blocks
(π, ry) in 152Dy at h̄ω = 0.1 MeV.

Figure 19 shows �τ at h̄ω = 0.1 MeV for different parity-
signature blocks. The patterns of �τ can be understood by
inspecting the contributions from several individual s.p. or-
bits close to the Fermi energy shown in Fig. 20. The main
contribution to �τn in the negative-parity blocks comes from
the high-N orbits 71 and 72. For the π = + neutrons, four
close-lying deformation-aligned states [651]1/2, [642]5/2,
[413]5/2, and [411]1/2, are most important. For the protons,
the main contributions to �τ come from the N = 6 states 61,
62, 63, and 64 (for π = +) and [541]1/2 (for π = −). It is
seen that the s.p. contributions shown in Figs. 20(a)–20(h)
explain the behavior of �τ in Fig. 19. As discussed earlier
in Sec. III D, characteristic nodal structures of �τ along the
z-axis primarily come from the evolution of rotation-aligned

FIG. 20. Contributions to �τ (in fm−5) in the x-z (y = 0) plane
for different parity-signature blocks from individual s.p. Routhians
in 152Dy at h̄ω = 0.1 MeV: the four π = +, r = +i neutron levels
[651]1/2, [642]5/2, [413]5/2, and [411]1/2 with (a) r = +i and
(b) −i that appear below the N = 86 shell gap in Fig. 1 (see Fig. 1 of
Ref. [45] for the asymptotic (Nilsson) quantum numbers [Nnz
]�
of s.p. levels in SD 152Dy). The N = 7 neutron intruder states (c)
71 and (d) 72; the N = 6 proton intruder states (e) 62 + 64 and (f)
61 + 63; and the (g) [541]1/22 and (h) [541]1/21 proton states.
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s.p. orbits with large N and nz, below the Fermi energy. The
features in the direction of the minor axis can be attributed to
deformation-aligned s.p. states.

IV. CONCLUSIONS

In this study, we extended the concept of the fermion
localization function to anisotropic, spin-unsaturated, and
spin-polarized systems. In particular, we considered the case
of broken time-reversal symmetry. We demonstrated that, in
the general case of rotating deformed systems, three localiza-
tion measures Cqsμ

(r), with μ = x, y, z, which depend on the
anisotropy of the spin distribution, can be defined.

We used the NLF to interpret the results of cranked
Skyrme-HF calculations for rotating nuclei, especially to
study the interplay between collective and s.p. motion. While
the standard probabilistic interpretation of the NLF cannot
be easily extended to the case of self-consistent symmetries
associated with point groups, such as signature or simplex,
there are no conceptual problems when viewing the NLF as
a measure of the excess of kinetic-energy density due to the
Pauli principle.

The localization function involves various local densities,
among which the current density j, density gradient ∇ρ, and
spin-current tensor density J are appreciable only in the sur-
face region. If one neglects these surface terms, one can define
a simplified localization measure Cτ , which involves only
the kinetic-energy density τ and the Thomas-Fermi kinetic-
energy density τTF. We argue that Cτ is amplified by the
out-of-phase spatial oscillation of τ and τTF attributed to the
specific nodal structure of high-N s.p. states.

To show the usefulness of the extended NLF, we carried
out the Skyrme-CHF analysis of the superdeformed yrast band
of 152Dy. As the rotational frequency increases, rotationally
aligned s.p. states with high-N and high-nz produce a charac-
teristic oscillating pattern in the NLF along the major axis of

the nucleus, while the pattern variations along the minor axis
come from deformation-aligned s.p. states close to the Fermi
energy.

Our CHF and CHO results demonstrate that Cτ is an
excellent indicator of the nuclear response to collective ro-
tation. Many applications of the NLF to the visualization of
nuclear rotational and vibrational modes and time-dependent
processes [18,36,66–71] are envisioned, especially after in-
corporating pairing correlations via the HFB extension of the
formalism. One can also consider applying the concept of
the NLF beyond the mean-field approach. In particular, since
the kinetic-energy density can be computed within realistic
A-body frameworks [72], studies of many-body correlations
with the help of Cτ could offer new perspectives.

Finally, let us note that, while in the usual atomic applica-
tions the current term in Eq. (13) is ignored, the contribution
to ELF from the spin-current tensor density J is expected to
be nonzero in relativistic superheavy atoms. For instance, the
spin-orbit splitting for the valence 7p orbital of the element Og
(Z = 118) is predicted to be very large, around 10 eV [14,73].
While Og is believed to be a spin-saturated system (the whole
7p shell is filled), this is not the case for, e.g., Fl (Z = 114,
7p3/2 shell empty) for which J and the resulting spin-orbit
current should be consider when analyzing the corresponding
ELF.
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