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Abstract
In this paper, we study function spaces defined via dyadic energies on the boundaries of
regular trees. We show that correct choices of dyadic energies result in Besov-type spaces
that are trace spaces of (weighted) first order Sobolev spaces.
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1 Introduction

Over the past two decades, analysis on general metric measure spaces has attracted a lot of
attention, e.g., [2, 4, 12, 13, 15–17]. Especially, the case of a regular tree and its Cantor-type
boundary has been studied in [3]. Furthermore, Sobolev spaces, Besov spaces and Triebel-
Lizorkin spaces on metric measure spaces have been studied in [5, 25, 26] via hyperbolic
fillings. A related approach was used in [23], where the trace results of Sobolev spaces and
of related fractional smoothness function spaces were recovered by using a dyadic norm
and the Whitney extension operator.

Dyadic energy has also been used to study the regularity and modulus of continuity of
space-filling curves. One of the motivations for this paper is the approach in [20]. Given a
continuous g : S1 → R

n, consider the dyadic energy

E(g; p, λ) :=
+∞∑

i=1

iλ
2i∑

j=1

|gIi,j
− gÎi,j

|p . (1.1)

� Zhuang Wang
zhuang.z.wang@jyu.fi

Pekka Koskela
pekka.j.koskela@jyu.fi

1 Department of Mathematics and Statistics, University of Jyväskylä, PO Box 35, FI-40014
Jyväskylä, Finland

Published online: 16 November 2019

Potential Analysis (2020) 53:1317–1346

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-019-09808-5&domain=pdf
http://orcid.org/0000-0002-1988-6927
mailto: zhuang.z.wang@jyu.fi
mailto: pekka.j.koskela@jyu.fi


Here, {Ii,j : i ∈ N, j = 1, · · · , 2i} is a dyadic decomposition of S1 such that for every
fixed i ∈ N, {Ii,j : j = 1, · · · , 2i} is a family of arcs of length 2π/2i with

⋃
j Ii,j = S1.

The next generation is constructed in such a way that for each j ∈ {1, · · · , 2i+1}, there
exists a unique number k ∈ {1, · · · , 2i}, satisfying Ii+1,j ⊂ Ii,k . We denote this parent of
Ii+1,j by Îi+1,j and set Î1,j = S1 for j = 1, 2. By gA, A ⊂ S1, we denote the mean value
gA = −

∫
A

g dH1 = 1
H1(A)

∫
A

g dH1. One could expect to be able to use the energy Eq. 1.1
to characterize the trace spaces of some Sobolev spaces (with suitable weights) on the unit
disk. On the contrary, the results in [23] suggest that the trace spaces of Sobolev spaces
(with suitable weights) on the unit disk should be characterized by the energy

E(g;p, λ) :=
+∞∑

i=1

iλ
2i∑

j=1

|gIi,j
− gIi,j−1 |p, (1.2)

where Ii,0 = Ii,2i , and the example g(x) = χI1,1 shows that E(g; p, λ) is not comparable to
E(g; p, λ).

Notice that the energies (1.1) and (1.2) can be viewed as dyadic energies on the boundary
of a binary tree (2-regular tree). More precisely, for a 2-regular tree X in Section 2.1 with
ε = log 2 in the metric (2.1), the measure ν on the boundary ∂X is the Hausdorff 1-measure
by Proposition 2.10. Furthermore, there is a one-to-one map h from the dyadic decomposi-
tion of S1 to the dyadic decomposition of ∂X defined in Section 2.4, which preserves the
parent relation, i.e., h(Î ) = ĥ(I ) for all dyadic intervals I of S1. Since every point in S1 is
the limit of a sequence of dyadic intervals, we can define a map h̃ from S1 to ∂X by map-
ping any point x = ⋂

k∈N Ik in S1 to the limit of {h(Ik)}k∈N (if the limit is not unique for
different choices of sequence {Ik} for x, then just pick one of them). It follows from the
definition of ∂X that the map h̃ is an injective map. Since the measure ν is the Hausdorff 1-
measure and ∂X \ h̃(S1) is a set of countably many points, it follows from the definition of
Hausdorff measure that ν(∂X \ h̃(S1)) = 0. Since diam(I ) ≈ diam(h(I )) for any dyadic
interval I of S1 and we can use dyadic intervals to cover a given set in the definition of a
Hausdorff measure, there is a constant C ≥ 1 such that

1

C
H1(A) ≤ ν(h̃(A)) ≤ CH1(A)

for any measurable set A ⊂ S1. Then one could expect to be able to use an energy similar
to Eq. 1.2, the Ḃ

1/p,λ
p -energy given by

‖g‖p

Ḃ
1/p,λ
p

:=
∞∑

i=1

iλ
2i∑

j=1

∣∣gh(Ij,i ) − gh(Ij,i−1)

∣∣p , (1.3)

to characterize the trace spaces of suitable Sobolev spaces of the 2-regular tree. This turns
out to hold in the sense that any function in Lp(∂X) with finite Ḃ

1/p,λ
p -energy can be

extended to a function in a certain Sobolev class.
However, there exists a Sobolev function whose trace function has infinite Ḃ1/p,λ

p -energy.
More precisely, let 0 be the root of the tree X and let x1, x2 be the two children of 0. We
define a function u on X by setting u(x) = 0 if the geodesic from 0 to x passes through
x1, u(x) = 1 if the geodesic from 0 to x passes through x2 and define u to be linear on
the geodesic [x1, x2] = [0, x1] ∪ [0, x2]. Then u is a Sobolev function on X with the trace
function g = χh(I1,1) whose Ḃ

1/p,λ
p -energy is not finite for any λ ≥ −1, since the energy

(1.2) of the function χI1,1 is not finite for any λ ≥ −1. But the energy (1.1) of the function
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χI1,1 is finite. Hence, rather than studying the energy (1.3), we shall work with an energy

similar to Eq. 1.1. We define the dyadic Ḃ1/p,λ
p energy by setting

‖g‖p

Ḃ1/p,λ
p

:=
∞∑

i=1

iλ
2i∑

j=1

∣∣∣gh(Ii,j ) − gh(Îi,j )

∣∣∣
p =

∞∑

i=1

iλ
∑

I∈Qi

∣∣gI − gÎ

∣∣p ,

where Q = ∪j∈NQj is a dyadic decomposition on the boundary of the 2-regular tree in
Section 2.4.

Instead of only considering the above dyadic energy on the boundary of a 2-regular tree,
we introduce a general dyadic energy Ḃθ,λ

p in Definition 2.12, defined on the boundary
of any regular tree and for any 0 ≤ θ < 1. It is natural to ask whether the Besov-type
space Bθ,λ

p (∂X) in Definition 2.12 defined via the Ḃθ,λ
p -energy is a trace space of a suitable

Sobolev space defined on the regular tree. We refer to [1, 9, 10, 14, 18, 19, 23, 24, 27–30]
for trace results on Euclidean spaces and to [3, 21, 25] for trace results on metric measure
spaces.

In [3], the trace spaces of the Newtonian spaces N1,p(X) on regular trees were shown to
be Besov spaces defined via double integrals. Our first result is the following generalization
of this theorem.

Theorem 1.1 LetX be aK-ary tree withK ≥ 2. Fix β > log K , ε > 0 and λ ∈ R. Suppose
that p ≥ 1 and p > (β − log K)/ε. Then the Besov-type space Bθ,λ

p (∂X) is the trace space
of N1,p(X,μλ) whenever θ = 1 − (β − log K)/εp.

The measure μλ above is defined in Eq. 2.2 by

dμλ(x) = e−β|x|(|x| + C)λ d|x|,

and the space N1,p(X,μλ) is a Newtonian space defined in Section 2.3. If λ = 0, then
N1,p(X,μλ) = N1,p(X) and Theorem 1.1 recovers the trace results from [3] for the New-
tonian spaces N1,p(X). Here and throughout this paper, for given Banach spaces X(∂X)

and Y(X), we say that the space X(∂X) is a trace space of Y(X) if and only if there is a
bounded linear operator T : Y(X) → X(∂X) and there exists a bounded linear extension
operator E : X(∂X) → Y(X) that acts as a right inverse of T , i.e., T ◦ E = Id on the space
X(∂X).

We required in Theorem 1.1 that p > (β − log K)/ε > 0. The assumption that β −
log K > 0 is necessary in the sense that we need to make sure that the measure μλ on X is
doubling; see Section 2.2. The requirement that p > (β − log K)/ε will ensure that θ > 0.
So it is natural to consider the case p = (β − log K)/ε ≥ 1.

Theorem 1.2 Let X be a K-ary tree with K ≥ 2. Fix β > log K , ε > 0 and λ ∈ R.
Suppose that p = (β − log K)/ε ≥ 1 and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then
there is a bounded linear trace operator T : N1,p(X,μλ) → Lp(∂X), defined via limits
along geodesic rays. Here, λ > p − 1 is sharp in the sense that for any p > 1, δ > 0 and
λ = p − 1 − δ, there exists a function u ∈ N1,p(X,μλ) so that T u(ξ) = ∞ for every
ξ ∈ ∂X.

Moreover, for any p = (β − log K)/ε ≥ 1, there exists a bounded nonlinear extension
operator E : Lp(∂X) → N1,p(X) so that the trace operator T̂ defined via limits of E(f )

along geodesic rays for f ∈ Lp(∂X) satisfies T̂ ◦ E = Id on Lp(∂X).
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A result similar to Theorem 1.2 for the weighted Newtonian space N1,p(�, ω dμ) with
a suitable weight ω has been established in [21] provided that � is a bounded domain
that admits a p-Poincaré inequality and whose boundary ∂� is endowed with a p-co-
dimensional Ahlfors regular measure. In Theorem 1.2, for the case p = (β − log K)/ε > 1,
we require that λ > p − 1 to ensure the existence of limits along geodesic rays. In the case
p = (β − log K)/ε = 1, these limits exist even for λ = 0, and there is a nonlinear exten-
sion operator that acts as a right inverse of the trace operator, similarly to the case of W 1,1

in Euclidean setting; see [10, 24].
However, except for the case p = 1 and λ = 0, Theorem 1.2 does not even tell whether

the trace operator T is surjective or not: N1,p(X,μλ) is a strict subset of N1,p(X) when
λ > 0. In the case p = (β−log K)/ε = 1 and λ > 0, the trace operator T is actually not sur-
jective, and we can find a Besov-type space Bα

1 (∂X) (see Definition 2.14) which is the trace

space of the Newtonian space N1,1(X,μλ). We stress that Bα
1 (∂X) and B0,λ

1 (∂X) are dif-

ferent spaces. More precisely, B0,λ
1 (∂X) is a strict subspace of Bα

1 (∂X), see Proposition 3.8
and Example 3.9.

Theorem 1.3 Let X be a K-ary tree with K ≥ 2. Fix β > log K , ε > 0 and λ > 0. Suppose
that p = 1 = (β − log K)/ε. Then the trace space of N1,1(X,μλ) is the Besov-type space
Bα

1 (∂X).

Trace results similar to Theorem 1.3 in the Euclidean setting can be found in [11, 30]. The
second part of Theorem 1.2 asserts the existence of a bounded nonlinear extension operator
from Lp(∂X) to N1,p(X) whenever p = (β − log K)/ε ≥ 1. Nonlinearity is natural here
since results due to Peetre [24] (also see [8]) indicate that, for p = 1 and λ = 0, one can
not find a bounded linear extension operator that acts as a right inverse of the trace operator
in Theorem 1.2. On the other hand, the recent work [22] gives the existence of a bounded
linear extension operator E from a certain Besov-type space to BV or to N1,1 such that
T ◦E is the identity operator on this Besov-type space, under the assumption that the domain
satisfies the co-dimension 1 Ahlfors-regularity. The extension operator in [22] is a version
of the Whitney extension operator. This motivates us to further analyze the operator E from
Theorem 1.1: it is also of Whitney type. The co-dimension 1 Ahlfors-regularity does not
hold for our regular tree (X,μλ), but we are still able to establish the following result for
N1,p(X,μλ) with p ≥ 1 for our fixed extension operator E.

Theorem 1.4 LetX be aK-ary tree withK ≥ 2. Fix β > log K , ε > 0 and λ ∈ R. Suppose
that p = (β − log K)/ε ≥ 1 and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then the operator
E from Theorem 1.1 is a bounded linear extension operator from B0,λ

p (∂X) to N1,p(X,μλ)

and acts as a right inverse of T , i.e., T ◦ E is the identity operator on B0,λ
p (∂X), where T is

the trace operator in Theorem 1.2.
Moreover, the space B0,λ

p (∂X) is the optimal space for which E is both bounded and
linear, i.e., if X ⊂ L1

loc(∂X) is a Banach space so that the extension operator E : X →
N1,p(X,μλ) is bounded and linear and so that T ◦ E is the identity operator on X, then X

is a subspace of B0,λ
p (∂X).

The optimality of the space B0,λ
p (∂X) is for the explicit extension operator E in Theo-

rem 1.4. The spaceB0,λ
p (∂X) may not be the optimal space unless we consider this particular

extension operator. For example, for p = 1 and λ > 0, the optimal space is Bα
1 (∂X) rather
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than B0,λ
1 by Theorem 1.3. This splitting happens since the two extension operators from

Theorems 1.3 and 1.4 are very different: the latter one is of Whitney type in the sense that
the extension to an edge is based on the average of the boundary function over the dyadic
“shadow” of size comparable to that of the edge, while the former one uses the average over
a dyadic boundary element for the definition of the extension to several edges of different
sizes.

The paper is organized as follows. In Section 2, we give all the preliminaries for the
proofs. More precisely, we introduce regular trees in Section 2.1 and we consider the dou-
bling condition on a regular tree X and the Hausdorff dimension of its boundary ∂X. We
introduce the Newtonian spaces on X and the Besov-type spaces on ∂X in Sections 2.3
and 2.4, respectively. In Section 3, we give the proofs of all the above mentioned theorems,
one by one.

In what follows, the letter C denotes a constant that may change at different occurrences.
The notation A ≈ B means that there is a constant C such that 1/C · A ≤ B ≤ C · A. The
notation A � B (A � B) means that there is a constant C such that A ≤ C ·B (A ≥ C ·B).

2 Preliminaries

2.1 Regular Trees and Their Boundaries

A graph G is a pair (V ,E), where V is a set of vertices and E is a set of edges. We call
a pair of vertices x, y ∈ V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree is a connected graph without cycles. A graph (or tree) is made into a metric
graph by considering each edge as a geodesic of length one.

We call a tree X a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x ∈ X are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

A K-ary tree is a rooted tree such that each vertex has exactly K children. Then all
vertices except the root of a K-ary tree have degree K + 1, and the root has degree K . In
this paper we say that a tree is regular if it is a K-ary tree for some K ≥ 1.

For x ∈ X, let |x| be the distance from the root 0 to x, that is, the length of the geodesic
from 0 to x, where the length of every edge is 1 and we consider each edge to be an isometric
copy of the unit interval. The geodesic connecting two vertices x, y ∈ V is denoted by
[x, y], and its length is denoted |x − y|. If |x| < |y| and x lies on the geodesic connecting 0
to y, we write x < y and call the vertex y a descendant of the vertex x. More generally, we
write x ≤ y if the geodesic from 0 to y passes through x, and in this case |x−y| = |y|−|x|.

Let ε > 0 be fixed. We introduce a uniformizing metric (in the sense of Bonk-Heinonen-
Koskela [6], see also [3]) on X by setting

dX(x, y) =
∫

[x,y]
e−ε|z| d |z|. (2.1)

Here d |z| is the measure which gives each edge Lebesgue measure 1, as we consider each
edge to be an isometric copy of the unit interval and the vertices are the end points of this
interval. In this metric, diamX = 2/ε if X is a K-ary tree with K ≥ 2.

Next we construct the boundary of the regular K-ary tree by following the arguments
in [3, Section 5]. We define the boundary of a tree X, denoted ∂X, by completing X with
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respect to the metric dX . An equivalent construction of ∂X is as follows. An element ξ in
∂X is identified with an infinite geodesic in X starting at the root 0. Then we may denote
ξ = 0x1x2 · · · , where xi is a vertex in X with |xi | = i, and xi+1 is a child of xi . Given
two points ξ, ζ ∈ ∂X, there is an infinite geodesic [ξ, ζ ] connecting ξ and ζ . Then the
distance of ξ and ζ is the length (with respect to the metric dX) of the infinite geodesic
[ξ, ζ ]. More precisely, if ξ = 0x1x2 · · · and ζ = 0y1y2 · · · , let k be an integer with xk = yk

and xk+1 �= yk+1. Then by Eq. 2.1

dX(ξ, ζ ) = 2
∫ +∞

k

e−εt dt = 2

ε
e−εk .

The restriction of dX to ∂X is called the visual metric on ∂X in Bridson-Haefliger [7].
The metric dX is thus defined on X̄. To avoid confusion, points in X are denoted by Latin

letters such as x, y and z, while for points in ∂X we use Greek letters such as ξ, ζ and ω.
Moreover, balls in X will be denoted B(x, r), while B(ξ, r) stands for a ball in ∂X.

Throughout the paper we assume that 1 ≤ p < +∞ and that X is a K-ary tree with
K ≥ 2 and metric dX defined as in Eq. 2.1.

2.2 Doubling Condition on X and Hausdorff Dimension of ∂X

The first aim of this section is to show that the weighted measure

dμλ(x) = e−β|x|(|x| + C)λ d|x| (2.2)

is doubling on X, where β > log K , λ ∈ R and C ≥ max{2|λ|/(β − log K), 2(log 4)/ε} are
fixed from now on. Here the lower bound of the constant C will make the estimates below
simpler. If λ = 0, then

dμ0(x) = e−β|x| d|x| = dμ(x),

which coincides with the measure used in [3]. If β ≤ log K , then μλ(X) = ∞ for the
regular K-ary tree X by Eq. 2.4 below. Hence X would not be doubling as X is bounded.

Next we estimate the measures of balls in X and show that our measure is doubling. Let

B(x, r) = {y ∈ X : dX(x, y) < r}
denote an open ball in X with respect to the metric dX . Also let

F(x, r) = {y ∈ X : y ≥ x and dX(x, y) < r}
denote the downward directed “half ball”.

The following algebraic lemma and the relation between a ball and a “half ball” come
from [3, Lemma 3.1 and 3.2].

Lemma 2.1 Let σ > 0 and t ∈ [0, 1]. Then
min{1, σ }t ≤ 1 − (1 − t)σ ≤ max{1, σ }t .

Lemma 2.2 For every x ∈ X and r > 0 we have

F(x, r) ⊂ B(x, r) ⊂ F(z, 2r),

where z ≤ x and

|z| = max

{
|x| − 1

ε
log(1 + εreε|x|), 0

}
. (2.3)

In the above lemma, z is the largest (in the ≤ relationship) common ancestor of B(x, r),
i.e., we have z ≤ y for any y ∈ B(x, r).
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We begin to estimate the measure of the ball B(x, r) and of the half ball F(z, r).

Lemma 2.3 If 0 < r ≤ e−ε|z|/ε, then
μλ(F (z, r)) ≈ e(ε−β)|z|r(|z| + C)λ.

Proof Let ρ > 0 be such that
∫ |z|+ρ

|z|
e−εt dt = 1

ε
e−ε|z|(1 − e−ερ) = r .

Note that for each |z| ≤ t ≤ |z| + ρ, the number of points y ∈ F(z, r) with |y| = t is
approximately Kt−|z|. Hence

μλ(F (z, r)) ≈
∫ |z|+ρ

|z|
Kt−|z|e−βt (t+C)λ dt = K−|z|

∫ |z|+ρ

|z|
e(log K−β)t (t+C)λ dt . (2.4)

Since
(

1

log K − β
e(log K−β)t (t + C)λ

)′
= e(log K−β)t (t + C)λ

(
1 + λ

(t + C)(log K − β)

)
,

then for C ≥ 2|λ|/(β − log K), we have
∣∣∣∣

λ

(t + C)(log K − β)

∣∣∣∣ ≤ 1

2
∀ t > 0.

Hence we obtain that

μλ(F (z, r)) ≈ K−|z|

β − log K
e(log K−β)|z|(|z| + C)λ

(
1 − e(log K−β)ρ

( |z| + ρ + C

|z| + C

)λ
)

. (2.5)

It is easy to check that for any ρ > 0 and z ∈ X, we have that

1 ≤ |z| + ρ + C

|z| + C
≤ ρ + C

C
≤ eρ/C .

Therefore,

e− |λ|
C

ρ ≤
( |z| + ρ + C

|z| + C

)λ

≤ e
|λ|
C

ρ ∀ z ∈ X, ρ > 0.

Since C ≥ 2|λ|/(β − log K), we obtain that

e
1
2 (log K−β)ρ ≤

( |z| + ρ + C

|z| + C

)λ

≤ e− 1
2 (log K−β)ρ ∀ z ∈ X, ρ > 0. (2.6)

Then for any z ∈ X and ρ > 0,

e(log K−β)ρ

( |z| + ρ + C

|z| + C

)λ

≈ ec(log K−β)ρ, for some
1

2
≤ c ≤ 3

2
.

Hence we obtain that

μλ(F (z, r)) ≈ K−|z|
β−log K

e(log K−β)|z|(|z| + C)λ
(
1 − ec(log K−β)ρ

)

= e−β|z|
β−log K

(|z| + C)λ
(
1 − (1 − εreε|z|)c(β−log K)/ε

)

for some c ∈ [1/2, 3/2]. Lemma 2.1 with t = εreε|z| implies that

μλ(F (z, r)) ≈ e−β|z|(|z| + C)λεreε|z| ≈ e(ε−β)|z|r(|z| + C)λ.
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Corollary 2.4 If 0 < r ≤ e−ε|x|/ε, then
μλ(B(x, r)) ≈ e(ε−β)|x|r(|x| + C)λ ≈ e(ε−β)|x|r(|z| + C)λ.

Proof For any x ∈ X and 0 < r ≤ e−ε|x|/ε, let z be as in Lemma 2.2. If z = 0, then
B(x, r) ⊂ F(0, r + ρ), where

ρ = dX(0, x) = 1

ε
(1 − e−ε|x|) ≤ r

and r + ρ ≤ 1/ε = e−ε|z|/ε. For z > 0 we have

2r ≤ e−ε|x|(1 + εreε|x|)
ε

= e−ε|z|

ε
.

Moreover, in both cases, since r < e−ε|x|/ε, by Lemma 2.2, we have

|z| ≤ |x| ≤ |z| + 1

ε
log(1 + εreε|x|) ≤ |z| + 1

ε
log 2,

which implies ( |x| + C

|z| + C

)λ

≈ 1. (2.7)

Combing Eq. 2.7 with the fact that in both cases 1 ≤ e|x|−|z| ≤ (1 + εreε|x|)1/ε ≈ 1,
the result follows by applying Lemma 2.3 to F(x, r) and F(z, 2r) (or F(0, r + ρ) for
z = 0).

Lemma 2.5 Let z ∈ X and x ∈ X with z ≤ x. Then

μλ([z, x]) ≈ μλ(F (z, dX(z, x))).

where [z, x] denotes the geodesic in the tree X joining x and z.

Proof Since [z, x] is a subset of F(z, dX(z, x)) by definition, we have μλ([z, x]) ≤
μλ(F (z, dX(z, x))). Hence it remains to show that

μλ([z, x]) � μλ(F (z, dX(z, x))).

For any z ∈ X and x ∈ X with z ≤ x, we have that

μλ([z, x]) =
∫ |x|

|z|
e−βt (t + C)λ dt,

where |x| = ∞ if x ∈ ∂X. Then by using an argument similar to the estimate in Lemma 2.3,
since C ≥ 2|λ|/(β − log K) ≥ 2|λ|/β, we have that

∣∣∣∣
λ

(t + C)β

∣∣∣∣ ≤ 1

2
∀ t ≥ 0,

which implies that for any t ≥ 0,
(

− 1

β
e−βt (t + C)λ

)′
= e−βt (t + C)λ

(
1 − λ

β(t + C)

)
≈ e−βt (t + C)λ.

Hence we obtain that
∫ |x|

|z|
e−βt (t + C)λ dt ≈ e−β|z|

β
(|z| + C)λ

(
1 − e−β(|x|−|z|)

( |x| + C

|z| + C

)λ
)

. (2.8)
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Comparing the estimate (2.8) with the estimate (2.5), since ρ = |x| − |z|, eρ log K ≥ 1 and
K−|z|e(log K−β)|z| = e−β|z|, we have that

∫ |x|

|z|
e−βt (t + C)λ dt � μλ(F (z, r)) with r = dX(z, x),

which induces that

μλ([z, x]) � μλ(F (z, r)) = μλ(F (z, dX(z, x))).

Corollary 2.6 Let x ∈ X and z be as in Lemma 2.2. Then if

e−ε|x|

ε
≤ r ≤ 1

ε
(1 − e−ε|x|), (2.9)

we obtain
μλ(B(x, r)) ≈ e−β|z|(|z| + C)λ ≈ rβ/ε(|z| + C)λ.

Proof Since r ≥ e−ε|x|/ε, by Lemma 2.2, we have

B(x, r) ⊂ F(z, ∞) = F

(
z,

e−ε|z|

ε

)
.

Then Lemma 2.3 implies

μλ(B(x, r)) ≤ μλ(F (z,∞)) � e(ε−β)|z|e−ε|z|(|z| + C)λ ≈ e−β|z|(|z| + C)λ (2.10)

Towards the another direction, by Eq. 2.3 and Lemma 2.5, we have that

μλ(B(x, r)) ≥ μλ([x, z]) � μ(F(z, r)) = e(ε−β)|z|r(|z| + C)λ = e−β|z|(|z| + C)λeε|z|r .

Moreover, we have

eε|z|r = eε|x|r · e−ε(|x|−|z|) = eε|x|r(1 + εreε|x|)−1 = t

ε(1 + t)
≥ 1

2ε
,

where t = εreε|x|. Here in the last inequality we used the fact that εreε|x| ≥ 1. Hence we
obtain that

μλ(B(x, r)) � e−β|z|(|z| + C)λ.
Combing the above inequality with Eq. 2.10, we finish the proof of

μλ(B(x, r)) ≈ e−β|z|(|z| + C)λ.

Since εreε|x| ≥ 1, we know that

εreε|x| ≤ 1 + εreε|x| ≤ 2εreε|x|.
It then follows from Eq. 2.3 that

e−β|z| = e−β|x|(1 + εreε|x|)β/ε ≈ rβ/ε .

Hence we obtain that
e−β|z|(|z| + C)λ ≈ rβ/ε(|z| + C)λ,

which finishes the proof.

Lemma 2.7 Let x ∈ X and (1 − e−ε|x|)/ε ≤ r ≤ 2 diamX. Then

μλ(B(x, r)) ≈ r .

In particular, if x = 0, then this estimate holds for all r ≥ 0.

1325Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees



Proof We have 0 ∈ B(x, r) by assumption, and hence

B(x, r) ⊂ F(0, 2r).

From Lemma 2.3, we have that

μλ(B(x, r)) ≤ μλ(F (0, 2r)) � r .

As for the lower bound, if r < 1/ε, since 0 ∈ B(x, r), letting

ρ = − log(1 − εr)

ε

and x ≤ x′ with |x′| = ρ, then the estimate (2.5) and Lemma 2.3 imply

μλ(B(x, r)) ≥ μλ([0, x′]) � μλ(F (0, r)) ≈ r .

If 1/ε ≤ r ≤ 2 diamX = 4/ε, then by Lemma 2.5, we have that

μλ(B(x, r)) ≥ μλ(F (0, 1/ε)) ≈ 1

ε
≈ r .

Proposition 2.8 Let x ∈ X, 0 < r ≤ 2 diamX, R0 = e−ε|x|/ε and z be as in Lemma 2.2. If
|x| ≤ (log 2)/ε, then

μλ(B(x, r)) ≈ r .

If |x| ≥ (log 2)/ε, then

μλ(B(x, r)) ≈
{

e(ε−β)|x|(|x| + C)λ, r ≤ R0;
rβ/ε(|z| + C)λ, r ≥ R0.

Proof If |x| ≤ (log 2)/ε, then e(ε−β)|x| ≈ 1, (|x| + C)λ ≈ 1 and the result follows from
directly from Corollary 2.4 and Lemma 2.7.

If |x| ≥ (log 2)/ε and r ≤ (1 − e−ε|x|)/ε, then the estimate follows directly from Corol-
laries 2.4 and 2.6. For r ≥ (1 − e−ε|x|)/ε ≥ 1/2ε, since |z| = 0, we have by Lemma 2.7
that

μλ(B(x, r)) ≈ r ≈ 1 ≈ rβ/ε(|z| + C)λ.

Corollary 2.9 The measure μλ is doubling, i.e., μλ(B(x, 2r)) � μλ(B(x, r)).

Proof In the case |x| ≤ (log 2)/ε and the case |x| ≥ (log 2)/ε with 2r ≤ R0, the result
follows directly from Proposition 2.8.

In the case |x| ≥ (log 2)/ε with 2r ≥ R0, if r ≥ R0, then

rβ/ε ≈ (2r)β/ε;
if r ≤ R0, then

e(ε−β)|x|r
(2r)β/ε

≈
(

R0

r

)β/ε−1

≈ 1.
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Let zr and z2r be defined as in Lemma 2.2 with respect to r and 2r . From Corollary 2.4 and
the above estimates, the doubling condition of μλ follows once we prove that

|zr | + C

|z2r | + C
≈ 1. (2.11)

If r ≥ (1 − e−ε|x|)/ε, then |zr | = |z2r | = 0 give Eq. 2.11. If 2r ≥ (1 − e−ε|x|)/ε ≥ r , then
r ≥ (1 − e−ε|x|)/2ε implies that

|zr | + C = |x| − 1

ε
log(1 + εreε|x|) + C ≤ |x| − 1

ε
log

(1

2
(1 + eε|x|)

) + C

= |x| + C + log 2

ε
− 1

ε
log(1 + eε|x|) ≤ C + log 2

ε
≈ C = |z2r | + C,

which gives Eq. 2.11. If 2r ≤ (1 − e−ε|x|)/ε, for C ≥ 2(log 2)/ε, we obtain that

2(|z2r | + C) − (|zr | + C) = |x| + C + 1

ε
log(1 + εreε|x|) − 2

ε
log(1 + 2εreε|x|)

≥ |x| + C + 1

ε
log(1 + εreε|x|) − 2

ε
log(2(1 + εreε|x|))

= |x| + C − 2 log 2

ε
− 1

ε
log(1 + εreε|x|)

= |zr | + C − 2 log 2

ε
≥ 0,

which gives that |zr |+C ≤ 2(|z2r |+C). Combining with the fact that |z2r | ≤ |zr |, Eq. 2.11
is obtained. Therefore we finish the proof of this corollary.

The following result is given by [3, Lemma 5.2].

Proposition 2.10 The boundary ∂X is an Ahlfors Q-regular space with Hausdorff dimen-
sion

Q = log K

ε
.

Hence we have an Ahlfors Q-regular measure ν on ∂X with

ν(B(ξ, r)) ≈ rQ = r log K/ε,

for any ξ ∈ ∂X and 0 < r ≤ diam∂X.

2.3 Newtonian Spaces on X

Let u ∈ L1
loc(X,μλ). We say that a Borel function g : X → [0, ∞] is an upper gradient of

u if

|u(z) − u(y)| ≤
∫

γ

g dsX (2.12)

whenever z, y ∈ X and γ is the geodesic from z to y, where dsX denotes the arc length
measure with respect to the metric dX . In the setting of a tree any rectifiable curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient
defined above is equivalent to the definition which requires that inequality (2.12) holds for
all rectifiable curves with end points z and y.
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The notion of upper gradients is due to Heinonen and Koskela [16]; we refer interested
readers to [12, 17] for a more detailed discussion on upper gradients.

The Newtonian space N1,p(X,μλ), 1 ≤ p < ∞, is defined as the collection of all the
functions for which

‖u‖N1,p(X,μλ) :=
(∫

X

|u|p dμλ + inf
g

∫

X

gp dμλ

)1/p

< ∞,

where the infimum is taken over all upper gradients of u.
Throughout the paper, we use N1,p(X) to denote N1,p(X,μλ) if λ = 0.

2.4 Besov-Type Spaces on ∂X via Dyadic Norms

We first recall the Besov space Bθ
p,p(∂X) defined in [3].

Definition 2.11 For 0 < θ < 1 and p ≥ 1, The Besov space Bθ
p,p(∂X) consists of all

functions f ∈ Lp(∂X) for which the seminorm ‖f ‖Ḃθ
p(∂X) defined as

‖f ‖p

Ḃθ
p(∂X)

:=
∫

∂X

∫

∂X

|f (ζ )| − f (ξ)|p
dX(ζ, ξ)θpν(B(ζ, dX(ζ, ξ)))

dν(ξ) dν(ζ )

is finite. The corresponding norm for Bθ
p,p(∂X) is

‖f ‖Bθ
p,p(∂X) := ‖f ‖Lp(∂X) + ‖f ‖Ḃθ

p(∂X).

Next, we give a dyadic decomposition on the boundary ∂X of the K-ary tree X: Let
Vn = {xn

j : j = 1, 2, · · · , Kn} be the set of all n-level vertices of the tree X for any n ∈ N,
where a vertex x is n-level if |x| = n. Then we have that

V =
⋃

n∈N
Vn

is the set containing all the vertices of the tree X. For any vertex x ∈ V , denote by Ix the set

{ξ ∈ ∂X : the geodesic [0, ξ) passes through x}.
We denote by Q the set {Ix : x ∈ V } and Qn the set {Ix : x ∈ Vn} for any n ∈ N. Then
Q0 = {∂X} and we have

Q =
⋃

n∈N
Qn.

Then the set Q is a dyadic decomposition of ∂X. Moreover, for any n ∈ N and I ∈ Qn,
there is a unique element Î in Qn−1 such that I is a subset of it. It is easy to see that if
I = Ix for some x ∈ Vn, then Î = Iy with y the unique parent of x in the tree X. Hence the
structure of the tree X gives a corresponding structure of the dyadic decomposition of ∂X

which we defined above.
Since we want to characterize the trace spaces of the Newtonian spaces with respect to

our measure μλ, we introduce the following Besov-type spaces Bθ,λ
p (∂X).

Definition 2.12 For 0 ≤ θ < 1 and p ≥ 1, the Besov-type space Bθ,λ
p (∂X) consists of all

functions f ∈ Lp(∂X) for which the dyadic Ḃθ,λ
p -energy of f defined as

‖f ‖p

Ḃθ,λ
p (∂X)

:=
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I )
∣∣fI − fÎ

∣∣p
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is finite. The norm on Bθ,λ
p (∂X) is

‖f ‖Bθ,λ
p (∂X)

:= ‖f ‖Lp(∂X) + ‖f ‖Ḃθ,λ
p (∂X)

.

Here and throughout this paper, the measure ν on the boundary ∂X is the Ahlfors regular
measure in Proposition 2.10 and fI is the mean value −

∫
I
f dν = 1

ν(I )

∫
I
f dν.

The following proposition states that the Besov space Bθ,λ
p (∂X) coincides with the Besov

space Bθ
p,p(∂X) whenever 0 < θ < 1 and λ = 0. The proof of this proposition follows by

using [3, Lemma 5.4] and a modification of the proof of [23, Proposition A.1]. We omit the
details.

Proposition 2.13 Let 0 < θ < 1 and p ≥ 1. For any f ∈ L1
loc(∂X), we have

‖f ‖Bθ
p,p(∂X) ≈ ‖f ‖Bθ,0

p (∂X)
.

For λ > 0, we next define special Besov-type spaces with θ = 0 and p = 1. Before the
definition, we first fix a sequence {α(n) : n ∈ N} such that there exist constants c1 ≥ c0 > 1
satisfying

c0 ≤ α(n + 1)

α(n)
≤ c1, ∀ n ∈ N. (2.13)

A simple example of such a sequence is obtained by letting α(n) = 2n.

Definition 2.14 For λ > 0, the Besov-type space Bα
1 (∂X) consists of all functions f ∈

L1(∂X) for which the Ḃα
1 -dyadic energy of f defined as

‖f ‖Ḃα
1 (∂X) =

∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

is finite. Here for any I = Ix ∈ Qα(n) with x ∈ Vα(n) and n ≥ 1, we denote Ĩ = Iy where
y ∈ Vα(n−1) is the ancestor of x in X. The norm on Bα

1 (∂X) is

‖f ‖Bα
1 (∂X) := ‖f ‖L1(∂X) + ‖f ‖Ḃα

1 (∂X).

Remark 2.15 Actually, the choice of the sequence {α(n)}n∈N will not affect the definition
of Bα

1 (∂X): by Theorem 1.3 we obtain that any two choices of the sequences {α(n)}n∈N
lead to comparable norms, for more details see Corollary 3.7.

It is easy to check that Bα
1 (∂X) = B0,λ

1 (∂X) if we let α(n) = n. But the sequence {α(n)}
with α(n) = n does not satisfy Eq. 2.13. Actually, we show in Proposition 3.8 and Example
3.9 that B0,λ

1 (∂X) is a strict subset of Bα
1 (∂X) whenever Eq. 2.13 holds.

3 Proofs

3.1 Proof of Theorem 1.1

Proof Trace Part: Let f ∈ N1,p(X,μλ). We first define the trace operator as

Tr f (ξ) := f̃ (ξ) = lim[0,ξ)�x→ξ
f (x), ξ ∈ ∂X, (3.1)
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where the limit is taken along the geodesic ray [0, ξ). Then our task is to show that the
above limit exists for ν-a.e. ξ ∈ ∂X and that the trace Tr f satisfies the norm estimates.

Let ξ ∈ ∂X be arbitrary and let xj = xj (ξ) be the ancestor of ξ with |xj | = j . To show
that the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X, it suffices to show that the function

f̃ ∗(ξ) = |f (0)| +
∫

[0,ξ)

gf ds (3.2)

is in Lp(∂X), where [0, ξ) is the geodesic ray from 0 to ξ and gf is an upper gradient of f .
To be more precise, if f̃ ∗ ∈ Lp(∂X), we have |f̃ ∗| < ∞ for ν-a.e. ξ ∈ ∂X, and hence the
limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X.

Set rj = 2e−jε/ε. Then on the edge [xj , xj+1] we have the relations

ds ≈ e(β−ε)j j−λ dμλ ≈ r
1−β/ε
j j−λ dμ and μλ([xj , xj+1]) ≈ r

β/ε
j jλ, (3.3)

where the comparison constants depend on ε, β. Then we obtain the estimate

f̃ ∗(ξ) = |f (0)| +
∫

[0,ξ)

gf ds = |f (0)| +
+∞∑

j=0

∫

[xj ,xj+1]
gf ds

� |f (0)| +
+∞∑

j=0

r
1−β/ε
j j−λ

∫

[xj ,xj+1]
gf dμλ ≈ |f (0)| +

+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dμλ.

(3.4)

Since θ = 1 − (β − log K)/(pε) > 0, we may choose 0 < κ < θ . Then for p > 1, by
the Hölder inequality and Eq. 3.3, we have that

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p(1−κ)
j −

∫

[xj ,xj+1]
gf

p dμλ

≈ |f (0)|p +
+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj ,xj+1]
gf

p dμλ.

For p = 1, the above estimates are also true without using the Hölder inequality. It follows
that for p ≥ 1,

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj ,xj+1]
gf

p dμλ.

Integrating over all ξ ∈ ∂X, since ν(∂X) ≈ 1, we obtain by means of Fubini’s theorem that
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

∂X

+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= |f (0)|p +
∫

X

gf (x)p
∫

∂X

+∞∑

j=0

r
p(1−κ)−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).

Notice that χ[xj (ξ),xj+1(ξ)](x) is nonzero only if j ≤ |x| ≤ j + 1 and x < ξ . Thus the last
estimate can be rewritten as∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

X

gf (x)pr
p(1−κ)−β/ε

j (x) j (x)−λν(E(x)) dμλ(x),

where E(x) = {ξ ∈ ∂X : x < ξ} and j (x) is the largest integer such that j (x) ≤ |x|.
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It follows from [3, Lemma 5.1] that E(x) = B(ξ, r) for any ξ ∈ E(x) and r ≈ e−εj (x).
Hence we obtain from Proposition 2.10 that ν(E(x)) ≈ r

Q
j(x). Since p(1 − κ) > β/ε −

log K/ε = β/ε − Q, then for any j (x) ∈ N, we have that

r
p(1−κ)−β/ε+Q

j(x) j (x)−λ � 1,

which induces the estimate
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

X

gf (x)p dμλ(x).

Hence we obtain that f̃ ∗ is in Lp(∂X), which gives the existence of the limit in Eq. 3.1 for
ν-a.e. ξ ∈ ∂X. In particular, since |f̃ | ≤ f̃ ∗, we have the estimate

∫

∂X

|f̃ |p dν �
∫

X

|f |p dμλ +
∫

X

gf
p dμλ,

and hence the norm estimate

‖f̃ ‖Lp(∂X) �
(∫

X

|f |p dμλ +
∫

X

gf
p dμλ

)1/p

= ‖f ‖N1,p(X,μλ). (3.5)

To estimate the dyadic energy ‖f̃ ‖p

Ḃθ,λ
p (∂X)

, for any I ∈ Qn, ξ ∈ I and ζ ∈ Î , we have

that

|f̃ (ξ) − f̃ (ζ )| ≤
+∞∑

j=n−1

|f (xj ) − f (xj+1)| +
+∞∑

j=n−1

|f (yj ) − f (yj+1)|,

where xj = xj (ξ) and yj = yj (ζ ) are the ancestors of ξ and ζ with |xj | = |yj | = j ,
respectively. In the above inequality, we used the fact that xn−1(ξ) = yn−1(η). By using
Eq. 3.3 and an argument similar to Eq. 3.4, we obtain that

|f̃ (ξ) − f̃ (ζ )| �
+∞∑

j=n−1

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ +

+∞∑

j=n−1

rj−
∫

[yj (ζ ),yj+1(ζ )]
gf dμλ.

Choose 0 < κ < θ and insert rκ
j r−κ

j into the above sum. If p > 1, then the Hölder inequality
and Eq. 3.3 imply that

|f̃ (ξ) − f̃ (ζ )|p � r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)
j −

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ+r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)
j −

∫

[yj (ζ ),yj+1(ζ )]
gf

p dμλ

≈ r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λ

(∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ+
∫

[yj (ζ ),yj+1(ζ )]
gf

p dμλ

)
.

For p = 1 the estimates above is also true without using the Hölder inequality. It follows
from Fubini’s theorem and from ν(I ) ≈ ν(Î ) that
∑

I∈Qn

ν(I )|f̃I −f̃Î |p ≤
∑

I∈Qn

ν(I )−
∫

I

−
∫

Î

|f̃ (ξ) − f̃ (ζ )|p dν(ξ) dν(ζ )

�
∫

∂X

r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λ

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p

∫

∂X

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).
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Using the notation E(x) and j (x) defined before, the above estimate can be rewritten as

∑

I∈Qn

ν(I )|f̃I − f̃Î | � r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε

j (x) j (x)−λν(E(x)) dμλ

� r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε+Q

j(x) j (x)−λ dμλ.

Since e−εn ≈ rn−1 and p − β/ε + Q = θp, we obtain the estimate

‖f̃ ‖p

Ḃθ,λ
p (∂X)

�
+∞∑

n=1

r
κp−θp

n−1 nλ

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε+Q

j(x) j (x)−λ dμλ

=
+∞∑

n=0

r
κp−θp
n (n + 1)λ

+∞∑

j=n

∫

X∩{j+1>|x|≥j}
gf

p r
(θ−κ)p
j j−λ dμλ

=
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf

p r
(θ−κ)p
j j−λ dμλ

⎛

⎝
j∑

n=0

r
κp−θp
n (n + 1)λ

⎞

⎠

�
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf

p dμλ =
∫

X

gf
p dμλ.

Here the last inequality employed the estimate

j∑

n=0

r
κp−θp
n (n + 1)λ � r

κp−θp
j (j + 1)λ ≈ r

(κ−θ)p
j jλ,

which comes from the facts rn = 2e−εn/ε and κp − θp < 0. Thus, we obtain the estimate

‖f̃ ‖Ḃθ,λ
p (∂X)

� ‖gf ‖Lp(X,μλ) ≤ ‖f ‖N1,p(X,μλ),

which together with Eq. 3.5 finishes the proof of Trace Part.
Extension Part: Let u ∈ Bθ,λ

p (∂X). For x ∈ X with |x| = n ∈ N, let

ũ(x) = −
∫

Ix

u dν, (3.6)

where Ix ∈ Qn is the set of all the points ξ ∈ ∂X such that the geodesic [0, ξ) passes
through x, that is, Ix consists of all the points in ∂X that have x as an ancestor. By Eqs. 3.1
and 3.6 we notice that Tr ũ(ξ) = u(ξ) whenever ξ ∈ ∂X is a Lebesgue point of u.

If y is a child of x, then |y| = n + 1 and Ix is the parent of Iy . We extend ũ to the edge
[x, y] as follows: For each t ∈ [x, y], set

gũ(t) = ũ(y) − ũ(x)

dX(x, y)
= ε(uIy − uIx )

(1 − e−ε)e−εn
=

ε(uIy − uÎy
)

(1 − e−ε)e−εn
(3.7)

and

ũ(t) = ũ(x) + gũ(t)dX(x, t). (3.8)

Then we define the extension of u to be ũ.
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Since gũ is a constant and ũ is linear with respect to the metric dX on the edge [x, y], it
follows that |gũ| is an upper gradient of ũ on the edge [x, y]. We have that

∫

[x,y]
|gũ|p dμλ ≈

∫ n+1

n

|uIy − uÎy
|pe−βτ+εnp(τ + C)λ dτ

≈ e(−β+εp)(n+1)(n + 1)λ|uIy − uÎy
|p. (3.9)

Now sum up the above integrals over all the edges on X to obtain that

∫

X

|gũ|p dμλ ≈
+∞∑

n=1

∑

I∈Qn

e(−β+εp)nnλ|uI − uÎ |p .

For I ∈ Qn, the estimate

eεnθpν(I ) ≈ eεn(p−(β−log K)/ε)−εnQ ≈ en(εp−β)

implies that

∫

X

|gũ|p dμλ ≈
+∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I )|uI − uÎ |p = ‖u‖p

Ḃθ,λ
p (∂X)

. (3.10)

To estimate the Lp-norm of ũ, we first observe that

|ũ(t)| ≤ |ũ(x)| + |gũ|dX(x, y) = |ũ(x)| + |ũ(y) − ũ(x)| � |uIx | + |uIy | (3.11)

for any t ∈ [x, y]. Then we obtain the estimate
∫

[x,y]
|ũ(t)|p dμλ � μλ([x, y]) (|uIx |p + |uIy |p

)
� e−βn+εnQnλ

∫

Ix

|u|p dν. (3.12)

Here the last inequality used the facts ν(Ix) ≈ ν(Iy) ≈ eεnQ and μλ([x, y]) ≈ e−βnnλ.
Now sum up the above integrals over all the edges on X to obtain that

∫

X

|ũ(t)|p dμλ �
+∞∑

n=0

∑

I∈Qn

e−βn+εnQnλ

∫

I

|u|p dν =
+∞∑

n=0

e−βn+εnQnλ

∫

∂X

|u|p dν.

Since β − εQ = β − log K > 0, the sum of e−βn+εnQnλ converges. Hence we obtain
the Lp-estimate ∫

X

|ũ|p dμλ �
∫

∂X

|u|p dν. (3.13)

Combing Eq. 3.10 with Eq. 3.13, we obtain the norm estimate

‖ũ‖N1,p(X,μλ) � ‖u‖Bθ,λ
p (∂X)

.

3.2 Proof of Theorem 1.2

Proposition 3.1 Let p = (β − log K)/ε and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then
the trace operator Tr defined in Eq. 3.1 is a bounded linear operator from N1,p(X,μλ) to
Lp(∂X).
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Proof Let f ∈ N1,p(X,μλ). We first show that the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X.
It suffices to show that the function f̃ ∗ defined by Eq. 3.2 is in Lp(∂X). By estimates (3.3)
and (3.4), we obtain that

f̃ ∗(ξ) � |f (0)| +
+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dμλ.

Insert j−λ/p jλ/p into the above sum. If p > 1, the Hölder inequality gives us that

|f̃ ∗(ξ)|p � |f (0)|p +
⎛

⎝
+∞∑

j=0

j
−λ
p

· p
p−1

⎞

⎠
p−1 ⎛

⎝
+∞∑

j=0

r
p
j jλ−

∫

[xj ,xj+1]
gf

p dμλ

⎞

⎠

� |f (0)|p +
+∞∑

j=0

r
p−β/ε
j

∫

[xj ,xj+1]
gf

p dμλ,

since μ([xj , xj+1]) ≈ r
β/ε
j jλ and for λ > p − 1, the sum j−λ/(p−1) converges. If p = 1,

then the Hölder inequality is not needed and the estimate is simpler. It follows that

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p−β/ε
j

∫

[xj ,xj+1]
gf

p dμλ

for any λ > p − 1 if p = 1 or for λ ≥ 0 if p = 1. Integrating over all ξ ∈ ∂X we obtain by
means of Fubini’s theorem that
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

∂X

+∞∑

j=0

r
p−β/ε
j

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= |f (0)|p +
∫

X

gf (x)p
∫

∂X

+∞∑

j=0

r
p−β/ε
j χ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x)

� |f (0)|p +
∫

X

gf (x)pr
p−β/ε

j (x) ν(E(x)) dμλ(x)

� |f (0)|p +
∫

X

gf (x)pr
p−β/ε+Q

j(x) dμλ(x) = |f (0)|p +
∫

X

gf (x)p dμλ(x).

Here in the above estimates, the notations E(x) and j (x) are the same ones as those we
used in the proof of Theorem 1.1. It follows that f̃ ∗ is in Lp(∂X) with the estimate

∫

∂X

|f̃ |p dν �
∫

X

|f |p dμλ +
∫

X

gf
p dμλ.

Hence the limit in the definition of our trace operator exists, i.e., the trace operator is well-
defined, and we also have the estimate

‖f̃ ‖Lp(∂X) �
(∫

X

|f |p dμλ +
∫

X

gf
p dμλ

)1/p

= ‖f ‖N1,p(X,μλ),

which finishes the proof.

Example 3.2 Let f be the continuous function on X given by f (x) = log(|x| + 1). Then
the function gf (x) = eε|x|/(|x| + 1) is an upper gradient of f on X with respect to the
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metric dX . For p = (β − log K)/ε > 1 and λ = p − 1 − δ with δ > 0 arbitrary, we have
the estimates

∫

X

gf
p dμλ ≈

+∞∑

n=0

epεn

(n + 1)p
Kne−βnnλ ≈

+∞∑

n=0

e(pε−β+log K)n

(n + 1)1+δ
=

+∞∑

n=1

1

n1+δ
< ∞

and
∫

X

|f |p dμλ ≈
+∞∑

n=0

logp(n + 1)Kne−βnnλ ≈
+∞∑

n=0

e(−β+log K)nnλ logp(n + 1) < ∞.

Hence we have f ∈ N1,p(X,μλ). On the other hand, f (x) → ∞ as x → ∂X.

Lemma 3.3 Let u ∈ L1(∂X) and ũ be defined by Eqs. 3.6, 3.7 and 3.8. Then
∫

X∩{|x|≥n}
|ũ|p dμ � r

(β−log K)/ε
n

∫

∂X

|u|p dν,

where n ∈ N, p ≥ 1 and rn = 2−nε/ε.

Proof By using the estimate (3.11), for x, y ∈ X with y a child of x and |x| = j , we obtain
that ∫

[x,y]
|ũ(t)|p dμ � μ([x, y])(|uIx |p + |uIx |p) � e−βj+εjQ

∫

Ix

|u|p dν.

Summing up the integrals over all edges of X ∩ {|x| ≥ n}, we obtain that

∫

X∩{|x|≥n}
|ũ|p dμ �

+∞∑

j=n

∑

I∈Qj

e−βj+εjQ

∫

I

|u|p dν =
+∞∑

j=n

e−βj+εjQ

∫

∂X

|u|p dν

≈ e−(β−log K)n

∫

∂X

|u|p dν ≈ r
(β−log K)/ε
n

∫

∂X

|u|p dν.

Lemma 3.4 Let u be Lipschitz continuous on ∂X and ũ be defined by Eqs. 3.6, 3.7 and 3.8.
Then ∫

X∩{|x|≥n}
|gũ|p dμ � r

(β−log K)/ε
n LIP (u, ∂X)p,

where rn = 2e−nε/ε, p ≥ 1 and

LIP (u, ∂X) = sup
ξ,ζ∈∂X:ξ �=ζ

|u(ξ) − u(ζ )|
dX(ξ, ζ )

.

Proof For x, y ∈ X with y a child of x and |x| = j , since gũ is a constant on the edge
[x, y], we obtain the estimate

∫

[x,y]
|gũ|p dμ ≈

∫ j+1

j

|uIy − uÎy
|p

e−εjp
e−βτ dτ ≈ e−βj+εjp|uIy − uÎy

|p .

1335Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees



Summing up the above integrals over all edges of X ∩ {|x| ≥ n}, we obtain that

∫

X∩{|x|≥n}
|gũ|p dμ ≈

+∞∑

j=n+1

∑

I∈Qj

e(−β+εp)j |uI − uÎ |p .

Since u is Lipschitz on ∂X, then for any ξ, ζ ∈ ∂X,

|f (ξ) − f (ζ )| ≤ LIP (u, ∂X)dX(ξ, ζ ).

Hence, for any I ∈ Qj , we have that

|uI − uÎ |p � −
∫

I

−
∫

Î

|f (ξ) − f (ζ )|p dν(ξ) dν(ζ ) ≤ −
∫

I

−
∫

Î

LIP (u, ∂X)pdX(ξ, ζ )p dν(ξ) dν(ζ )

≤ LIP (u, ∂X)p diam
(
Î
)p ≈ e−jεpLIP (u, ∂X)p .

It follows that
∫

X∩{|x|≥n}
|gũ|p dμ �

+∞∑

j=n+1

Kje(−β+εp)j e−jεpLIP (u, ∂X)p

=
+∞∑

j=n+1

e−(β−log K)j LIP (u, ∂X)p

≈ e−(β−log K)nLIP (u, ∂X)p ≈ r
(β−log K)/ε
n LIP (u, ∂X)p.

Proposition 3.5 Let p = (β − log K)/ε ≥ 1. Then there exists a bounded non-linear
extension operator Ex from Lp(∂X) to N1,p(X) that acts as a right inverse of the trace
operator Tr in Eq. 3.1, i.e., Tr ◦ Ex = Id on Lp(∂X).

The construction of the extension operator is given by gluing the N1,p extensions in
Lemma 3.4 of Lipschitz approximations of the boundary data with respect to a sequence
of layers on the tree X. The main idea of the construction is inspired by [21, Section 7]
and [22, Section 4] whose core ideas can be traced back to Gagliardo [10] who discussed
extending functions in L1(Rn) to W 1,1(Rn+1+ ).

Proof of Proposition 3.5 Let f ∈ Lp(∂X). We approximate f in Lp(∂X) by a sequence of
Lipschitz functions {fk}+∞

k=1 such that ‖fk+1 − fk‖Lp(∂X) ≤ 22−k‖f ‖Lp(∂X). Note that this
requirement of rate of convergence of fk to f ensures that fk → f pointwise ν-a.e. in ∂X.
For technical reasons, we choose f1 ≡ 0.

Then we choose a decreasing sequence of real numbers {ρk}+∞
k=1 such that

• ρk ∈ {e−εn/ε : n ∈ N};
• 0 < ρk+1 ≤ ρk/2;
• ∑

k ρkLIP (fk, ∂X) ≤ C‖f ‖Lp(∂X).

These will now be used to define layers in X. Let

ψk(x) = max

{
0, min

{
1,

ρk − dist(x, ∂X)

ρk − ρk+1

}}
, x ∈ X.
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We denote − log(ερk)/ε by [ρk]. This is a integer satisfying e−ε[ρk]/ε = ρk . Then we obtain
0 ≤ ψk ≤ 1 and that

ψk(x) =
{

0, |x| ≤ [ρk];
1, |x| ≥ [ρk+1]. (3.14)

For any Lipschitz function fk , we can define the extension f̃k of fk by using Eqs. 3.6, 3.7
and 3.8. Then we define the extension of f as

f̃ (x) :=
+∞∑

k=2

(ψk−1(x) − ψk(x))f̃k(x) =
+∞∑

k=1

ψk(x)(f̃k+1(x) − f̃k(x)). (3.15)

It follows from Eq. 3.14 that for any x ∈ X with |x| = [ρk], we have f̃ (x) = f̃k−1(x).
Since for the trace operator Tr defined in Eq. 3.1, Tr f̃k = fk for ν-a.e. in ∂X, the pointwise
convergence fk → f ν-a.e. in ∂X implies that Tr f̃ = f for ν-a.e. in ∂X, since {[ρk]}+∞

k=1
is a subsequence of N. Hence the extension operator defined by Eq. 3.15 is a right inverse
of the trace operator Tr in Eq. 3.1.

It remains to show that f̃ ∈ N1,p(X) with norm estimates. Lemma 3.3 allows us to obtain
the Lp-estimate for f̃ . Since the extension operator that we apply for each fk is linear, we

have that f̃k+1 − f̃k = ˜fk+1 − fk . Therefore, it follows from (β − log K)/ε = p that

‖f̃ ‖Lp(X) ≤
+∞∑

k=1

‖ψk(f̃k+1 − f̃k)‖Lp(X) ≤
+∞∑

k=1

‖f̃k+1 − f̃k‖Lp(X∩{|x|≥[ρk ]})

�
+∞∑

k=1

r[ρk]‖fk+1 − fk‖Lp(∂X) ≈
+∞∑

k=1

ρk‖fk+1 − fk‖Lp(∂X)

�
+∞∑

k=1

‖fk+1 − fk‖Lp(∂X) � ‖f ‖Lp(∂X).

In order to obtain the Lp-estimate of an upper gradient of f̃ , it suffices to consider the
Lp-estimate of Lip f̃ , where for any function u, Lip u(x) is defined as

Lip u(x) = lim sup
y→x

|u(y) − u(x)|
dX(x, y)

.

We first apply the product rule for locally Lipschitz function, which yields that

Lip f̃ =
+∞∑

k=1

(
| ˜fk+1 − fk|Lip ψk + ψkLip ( ˜fk+1 − fk)

)

≤
+∞∑

k=1

(
| ˜fk+1 − fk|χ{|x|≥[ρk ]}

ρk − ρk+1
+ χ{|x|≥[ρk ]}Lip ( ˜fk+1 − fk)

)
.

Thus,

‖Lip f̃ ‖Lp(∂X) ≤
+∞∑

k=1

⎛

⎝
∥∥∥∥∥

| ˜fk+1 − fk |
ρk − ρk+1

∥∥∥∥∥
Lp(X∩{|x|≥[ρk ]})

+ ‖Lip ( ˜fk+1 − fk)‖Lp(X∩{|x|≥[ρk ]})

⎞

⎠ .
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It follows from Lemma 3.3 that
+∞∑

k=1

∥∥∥∥∥
| ˜fk+1 − fk|
ρk − ρk+1

∥∥∥∥∥
Lp(X∩{|x|≥[ρk ]})

�
+∞∑

k=1

ρk

ρk − ρk+1
‖fk+1 − fk‖Lp(∂X)

≈
+∞∑

k=1

‖fk+1 − fk‖Lp(∂X) � ‖f ‖Lp(∂X).

Recall that ũ is affine one any edge of X, with “slope” gũ, for the extension ũ given via
Eqs. 3.6, 3.7 and 3.8, for any function u. Hence Lip ũ = gũ. Therefore, it follows from
Lemma 3.4 that

+∞∑

k=1

‖Lip ( ˜fk+1 − fk)‖Lp(X∩{|x|≥[ρk ]}) �
+∞∑

k=1

ρkLIP (fk+1 − fk, ∂X)

≤
+∞∑

k=1

ρk (LIP (fk+1, ∂X) + LIP (fk, ∂X))

� ‖f ‖Lp(∂X).

Here in the last inequality, we used the defining properties of {ρk}+∞
k=1. Thus, we have shown

that
‖Lip f̃ ‖Lp(∂X) � ‖f ‖Lp(∂X).

Altogether, we obtain that

‖f̃ ‖N1,p(X) ≤ ‖f̃ ‖Lp(∂X) + ‖Lip f̃ ‖Lp(∂X) � ‖f ‖Lp(∂X).

Proof of Theorem 1.2 The boundedness and linearity of the trace operator follows from
Proposition 3.1 and the sharpness of λ > p − 1 follows from Example 3.2. The extension
operator is given in Proposition 3.5.

Remark 3.6 For p = (β− log K)/ε > 1 and λ > p−1, Theorem 1.2 only tells us that there
exists a bounded linear trace operator (3.1) from N1,p(X,μλ) to Lp(∂X). It is unknown
whether this trace operator is surjective or not. All we know is that there exists a nonlinear
bounded extension operator from Lp(∂X) to N1,p(X) that acts as a right inverse of the
trace operator (3.1). Since λ > p − 1 > 0 implies N1,p(X,μλ) � N1,p(X), we have an
open question: Which space does the bounded linear trace operator (3.1) map N1,p(X,μλ)

surjectively onto?

3.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Trace Part: Let f ∈ N1,1(X,μλ) with λ > 0 and let gf be an upper
gradient of f . By Proposition 3.1, we know that the trace operator Tr f = f̃ defined in
Eq. 3.1 is well-defined and that f̃ satisfies the norm estimate

‖f̃ ‖L1(∂X) � ‖f ‖N1,1(X,μλ).
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Then the remaining task is to establish the estimate on the dyadic energy ‖f̃ ‖Ḃα
1 (∂X). For

any I ∈ Qα(n), ξ ∈ I and ζ ∈ Ĩ ∈ Qα(n−1), we obtain that

|f̃ (ξ) − f̃ (ζ )| ≤
+∞∑

j=α(n−1)

|f (xj ) − f (xj+1)| +
+∞∑

j=α(n−1)

|f (yj ) − f (yj+1)|

�
+∞∑

j=α(n−1)

rj−
∫

[xj ,xj+1]
gf dμλ +

+∞∑

j=α(n−1)

rj−
∫

[yj ,yj+1]
gf dμλ,

where xj = xj (ξ) and yj = yj (ζ ) are the ancestors of ξ and ζ with |xj | = |yj | = j ,
respectively. For any I ∈ Qα(n) and any function h ∈ L1(∂X), we have

ν(I )

ν(Ĩ )
≈

(
rα(n)

rα(n−1)

)Q

≈ e(α(n−1)−α(n)) log K ≈ Kα(n−1)−α(n)

and

∑

I∈Qα(n)

∫

Ĩ

h(ζ ) dν(ζ ) = Kα(n)−α(n−1)

∫

∂X

h(ζ ) dν(ζ ). (3.16)

Hence it follows from the fact that μλ([xj , xj+1]) ≈ r
β/ε
j jλ and Fubini’s theorem that

∑

I∈Qα(n)

ν(I )|f̃I − f̃Ĩ | ≤
∑

I∈Qα(n)

ν(I )−
∫

I

−
∫

Ĩ

|f̃ (ξ) − f̃ (ζ )| dν(ξ) dν(ζ )

�
∑

I∈Qα(n)

∫

I

+∞∑

j=α(n−1)

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ dν(ξ)

+
∑

I∈Qα(n)

Kα(n−1)−α(n)

∫

Ĩ

+∞∑

j=α(n−1)

rj−
∫

[yj (ζ ),yj+1(ζ )]
gf dμλ dν(ζ )

≈
∫

∂X

+∞∑

j=α(n−1)

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ dν(ξ)

≈
∫

X∩{|x|≥α(n−1)}
gf

∫

∂X

+∞∑

j=α(n−1)

r
1−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).

Using the notation E(x) and j (x) defined in the proof of Theorem 1.1, the above estimate
can be rewritten as

∑

I∈Qα(n)

ν(I )|f̃I − f̃Ĩ | �
∫

X∩{|x|≥α(n−1)}
gf r

1−β/ε

j (x) j (x)−λν(E(x)) dμλ

�
∫

X∩{|x|≥α(n−1)}
gf r

1−β/ε+Q

j(x) j (x)−λ dμλ

=
∫

X∩{|x|≥α(n−1)}
gf j (x)−λ dμλ.
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It follows that
∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ | �
∞∑

n=1

α(n)

+∞∑

j=α(n−1)

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

=
∞∑

n=0

α(n + 1)

+∞∑

j=α(n)

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

≤
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

⎛

⎝
α−1(j)∑

n=0

α(n + 1)λ

⎞

⎠ ,

where α−1(j) is the largest integer m such that α(m) ≤ j . Since λ > 0 and

1 < c0 ≤ α(n + 1)

α(n)
≤ c1,

we obtain the estimate

α−1(j)∑

n=0

α(n + 1)λ ≈
α−1(j)∑

n=0

α(n)λ ≤
+∞∑

k=0

jλc−λk
0 � jλ.

Hence we obtain the estimate

‖f̃ ‖Ḃα
1 (∂X) =

∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ | �
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf dμλ

=
∫

X

gf dμλ = ‖gf ‖L1(X,μλ).

Thus, we obtain the norm estimate

‖f ‖Bα
1 (∂X) = ‖f ‖L1(∂X) + ‖f ‖Ḃα

1 (∂X) � ‖f ‖N1,1(X,μλ),

which finishes the proof of the Trace Part.
Extension Part: Let u ∈ Bα

1 (∂X). Since α(0) is not necessarily zero, we let α(−1) = 0.
For any x ∈ X with |x| = α(n) and −1 ≤ n ∈ Z, let

ũ(x) = −
∫

Ix

u dν,

where Ix ∈ Q is the set of all the points ξ ∈ ∂X such that the geodesic [0, ξ) passes through
x, that is, Ix consists of all the points in ∂X that have x as an ancestor.

If y is a descendant of x with |y| = α(n+ 1), then there exists ỹ ∈ X which is the parent
of y. We extend ũ to the edge [x, y] as follows: For each t ∈ [x, ỹ], set ũ(t) = ũ(x) and
gũ(t) = 0; for each t ∈ [ỹ, y], set

gũ(t) = ũ(y) − ũ(x)

dX(ỹ, y)
= ε(uIy − uIx )

(eε − 1)e−εα(n+1)
=

ε(uIy − uĨy
)

(eε − 1)e−εα(n+1)

and
ũ(t) = ũ(x) + gũ(t)dX(ỹ, t).

Then we define ũ to be the extension of u. Notice that Tr ũ(ξ) = u(ξ) whenever ξ is a
Lebesgue point of u.

Now on the geodesic [x, ỹ], gũ is zero and ũ is a constant; on the edge [ỹ, y], gũ is a
constant and ũ is linear with respect to the metric on the edge [ỹ, x]. It follows that |gũ| is
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an upper gradient of ũ on the geodesic [x, y]. Then for x ∈ X with |x| = α(n), n ≥ 0, we
obtain the estimate

∫

[x,y]
|gũ| dμλ =

∫

[ỹ,y]
|gũ| dμλ ≈

∫ α(n+1)

α(n+1)−1

|uIy − uĨy
|

e−εα(n+1)
e−βτ (t + C)λ dτ

≈ e(ε−β)α(n+1)α(n + 1)λ|uIy − uĨy
|. (3.17)

For x = 0 and |y| = α(0), since ν(I0) ≈ ν(Iy) ≈ 1, we have the estimate
∫

[0,y]
|gũ| dμλ =

∫

[ỹ,y]
|gũ| dμλ ≈ |uI0 − uIy | ≤ |uI0 | + |uIy | �

∫

∂X

|u| dν. (3.18)

Now sum up the estimates (3.17) and (3.18) over all edges of X to obtain that
∫

X

|gũ| dμλ =
∫

X∩{|x|≤α(0)}
|gũ| dμλ +

∫

X∩{|x|≥α(0)}
|gũ| dμλ

�
∑

y∈Vα(0)

∫

[0,y]
|gũ| dμλ +

+∞∑

n=1

∑

y∈Vα(n)

∫

[x,y]
|gũ| dμλ

� Kα(0)

∫

∂X

|u| dν +
+∞∑

n=1

∑

I∈Qα(n)

e(ε−β)α(n)α(n)λ|uI − uĨ |.

Since for any I ∈ Qα(n), we have that

ν(I ) ≈ r
Q
α(n) ≈ e−εα(n) log K/ε = e−α(n) log K = e(ε−β)α(n).

Hence we obtain the estimate
∫

X

|gũ| dμλ �
∫

∂X

|u| dν +
∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

= ‖u‖L1(∂X) + ‖u‖Ḃα
1 (∂X) = ‖u‖Bα

1 (∂X). (3.19)

Towards the L1-estimate for ũ, by the construction, we know that |ũ(t)| = |ũ(x)| on the
geodesic [x, ỹ] and that |ũ(t)| � |ũ(x)| + |ũ(y)| on the edge [ỹ, y]. Then for n ≥ −1, we
have the estimate

∫

X∩{α(n)≤|x|≤α(n+1)}
|ũ| dμλ =

∫

X∩{α(n)≤|x|≤α(n+1)−1}
|ũ| dμλ

+
∫

X∩{α(n+1)−1≤|x|≤α(n+1)}
|ũ| dμλ

≤
∑

x∈Vα(n)

|u(x)|μλ(F (x, dX(x, ∂X)))

+
∑

y∈Vα(n+1)

(|ũ(x)| + |ũ(y)|)μλ([ỹ, y]) =: Hn
1 + Hn

2 .

By Lemma 2.3, we obtain the estimate

Hn
1 �

∑

x∈Vα(n)

e(−β+log K)α(n)α(n)λ
∫

Ix

|u| dν = e(−β+log K)α(n)α(n)λ
∫

∂X

|u| dν.
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For Hn
2 , by Eq. 3.16 and relation Eq. 3.3, we have that

Hn
2 �

∑

y∈Vα(n+1)

e(−β+log K)α(n+1)α(n + 1)λ

(∫

Iy

|u| dν + Kα(n)−α(n+1)

∫

Ĩy

|u| dν

)

� e(−β+log K)α(n+1)α(n + 1)λ
∫

∂X

|u| dν.

Sum up the above estimate with respect to n to obtain via ε = β − log K that
∫

X

|ũ| dμλ =
+∞∑

n=−1

∫

X∩{α(n)≤|x|≤α(n+1)}
|ũ| dμλ =

+∞∑

n=−1

Hn
1 + Hn

2

�
+∞∑

n=−1

e(−β+log K)α(n)α(n)λ
∫

∂X

|u| dν

=
+∞∑

n=−1

e−εα(n)α(n)λ
∫

∂X

|u| dν �
∫

∂X

|u| dν = ‖u‖L1(∂X). (3.20)

By the estimates (3.19) and (3.20), we obtain the norm estimate

‖ũ‖N1,1(X,μλ) � ‖u‖Bα
1 (∂X).

Corollary 3.7 For given sequences {α1(n)}n∈N and {α1(n)}n∈N satisfying the relation
(2.13) with respect to different pairs of (c0, c1), the Banach spaces Bα1

1 (∂X) and Bα2
1 (∂X)

coincide.

Proof For any function u ∈ Bα1
1 (∂X), by the Extension part in the proof of Theorem 1.3,

there is an extension Eu = ũ such that

‖ũ‖N1,1(X,μλ) � ‖u‖Bα1
1 (∂X)

.

Since u = T ◦ Eu = T (ũ), it follows from the trace part in the proof of Theorem 1.3 that
we have the estimate

‖u‖Bα2
1 (∂X)

� ‖ũ‖N1,1(X,μλ).

Thus, we obtain
‖u‖Bα2

1 (∂X)
� ‖u‖Bα1

1 (∂X)
.

The opposite inequality follows analogously and the claim follows.

Next, we compare the function spaces Bα
1 (∂X) and B0,λ

1 (∂X).

Proposition 3.8 Let λ > 0. The space B0,λ
1 (∂X) is a subset of Bα

1 (∂X), i.e., for any f ∈
L1(∂X), we have

‖f ‖Ḃα
1 (∂X) � ‖f ‖Ḃ0,λ

1 (∂X)
.

Proof Let f ∈ L1(∂X). For any I ∈ Qα(n) with n ∈ R, define the set

JI := {I ′ ∈ Q : I ⊂ I ′
� Ĩ }.
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Then it follows from the triangle inequality that

|fI − fĨ | ≤
∑

I ′∈JI

|fI ′ − fÎ ′ |.

Hence, by using Fubini’s theorem, we have that
∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤
∑

I∈Qα(n)

ν(I )
∑

I ′∈JI

|fI ′ − fÎ ′ |

=
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

|fI ′ − fÎ ′ |
⎛

⎝
∑

I∈Qα(n)

∑

I ′∈JI

ν(I )

⎞

⎠ .

Notice that for any I ∈ Qα(n), we have ν(I ) ≈ e−εα(n)Q = K−α(n) and that for any
I ′ ∈ Qm, the number of the dyadic elements I ∈ Qα(n) with I ′ ∈ JI is Kα(n)−m. Therefore,

∑

I∈Qα(n)

∑

I ′∈JI

ν(I ) ≈ Kα(n)−m−α(n) = K−m = e−εα(n)Q ≈ ν(I ′).

Hence, we have the estimate

∑

I∈Qα(n)

ν(I )|fI − fĨ | �
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ |,

and therefore the estimate

‖f ‖Ḃα
1 (∂X) =

+∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

�
+∞∑

n=1

α(n)λ
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ |

�
+∞∑

m=1

mλ
∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ | = ‖f ‖Ḃ0,λ
1 (∂X)

.

Here in the last inequality, we used the fact that mλ > α(n − 1)λ ≥ α(n)λ/cλ
1 whenever

m > α(n − 1), where the constant c1 is from the condition (2.13).

Example 3.9 Let X be a 2-regular tree. We may identify each vertex of X with a finite
sequence formed by 0 and 1. For example, the children of the root can be denoted by 00 and
01. The children of the vertex x = 0τ1 · · · τk is 0τ1 · · · τk0 and 0τ1 · · · τk1, where τi ∈ {0, 1}.
Moreover, each element ξ of the boundary ∂X can be identified with an infinite sequence
formed by 0 and 1. We denote ξ = 0τ1τ2 · · · with τi ∈ {0, 1} when the geodesic from 0 to ξ

passes through all the vertices xk = 0τ1 · · · τk , k ∈ R.
We define a function f on ∂X as follows: for ξ = 0τ1τ2 · · · ∈ ∂X where τi ∈ {0, 1}, we

define

f (ξ) =
+∞∑

i=1

(−1)τi

iλ+1
.
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Since the sum of 1/iλ+1 converges for λ > 0, f is well defined for all ξ ∈ ∂X and is
bounded. Moreover, for any vertex x = 0τ1 · · · τk , it follows from the definition of f that

fIx = −
∫

Ix

f (ζ ) dν(ζ ) =
k∑

i=1

(−1)τi

iλ+1
. (3.21)

Therefore, for the vertex x above, we have

|fIx − fÎx
| = 1

kλ+1
.

Hence the Ḃ0,λ
1 -energy of f is

‖f ‖Ḃ0,λ
1 (∂X)

=
+∞∑

n=1

nλ
∑

I∈Qn

ν(I )|fI − fÎ |

=
+∞∑

n=1

nλ
∑

I∈Qn

ν(I )
1

nλ+1
=

+∞∑

n=1

1

n
= +∞.

On the other hand, for any I ∈ Qα(n), we have

|fI − fĨ | =
∣∣∣∣∣∣

α(n)∑

i=α(n−1)+1

(−1)τi

iλ+1

∣∣∣∣∣∣
, (3.22)

where τi ∈ {0, 1} depends on I . We define a random series Xα(n) by setting

Xα(n) =
α(n)∑

i=α(n−1)+1

σi

iλ+1
,

where (σi)i are independent random variables with common distribution P(σi = 1) =
P(σi = −1) = 1/2. Since the measure ν is a probability measure which is uniformly
distributed on ∂X, it follows from Eq. 3.22 that

∑

I∈Qα(n)

ν(I )|fI − fĨ | = E(|Xα(n)|).

Here E(|Xα(n)|) is the expected value of |Xα(n)|. By the Cauchy-Schwarz inequality,
E(|Xα(n)|) ≤ (E(X 2

α(n)))
1/2, we have that

∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤ (E(X 2
α(n)))

1/2 =
⎛

⎝
α(n)∑

i,j=α(n−1)+1

E(σiσj )

iλ+1jλ+1

⎞

⎠
1/2

=
⎛

⎝
α(n)∑

i=α(n−1)+1

E(σi
2)

i2λ+2

⎞

⎠
1/2

=
⎛

⎝
α(n)∑

i=α(n−1)+1

1

i2λ+2

⎞

⎠
1/2

.

Here the second to last equality holds since σi and σj are independent for i �= j and
E(σiσj ) = E(σi)E(σj ) = 0 for i �= j . Define α(n) = 2n. Then we obtain that

∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤
⎛

⎝
2n∑

i=2n−1+1

1

i2λ+2

⎞

⎠
1/2

≤
⎛

⎝
2n∑

i=2n−1+1

1

2(n−1)(2λ+2)

⎞

⎠
1/2

= 1

2(n−1)(λ+1/2)
.
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Therefore the Ḃα
1 (∂X)-energy of f is estimated by

‖f ‖Ḃα
1 (∂X) =

+∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

≤
+∞∑

n=1

2nλ 1

2(n−1)(λ+1/2)
=

+∞∑

n=0

2λ

2n/2
< +∞.

Hence f ∈ Bα
1 (∂X) while f /∈ B0,λ

1 (∂X), and it follows that B0,λ
1 (∂X) is a strict subset

of Bα
1 (∂X).

3.4 Proof of Theorem 1.4

Proof Let p = (β − log K)/ε and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. From
Proposition 3.1, the trace operator T : N1,p(X,μλ) → Lp(∂X) in Theorem 1.2 is bounded
and linear. Now we define an extension operator E by using Eqs. 3.6, 3.7 and 3.8. It is easy
to see that the extension Eu is well defined for any function u ∈ L1

loc(∂X) and that T ◦ E

is the identity operator on L1
loc(∂X).

Repeating the estimates in Extension Part of the proof of Theorem 1.1, for θ = 1 − (β −
log K)/(pε) = 0, we also have the following estimates:

∫

X

|gũ|p dμλ ≈ ‖u‖p

Ḃ0,λ
p (∂X)

(3.23)

and ∫

X

|ũ|p dμ �
∫

∂X

|u|p dν. (3.24)

Hence the extension operator E is bounded and linear from B0,λ
p (∂X) to N1,p(X,μλ).

Moreover, since u is the trace of ũ, by Theorem 1.2 and Proposition 3.1, we have

‖u‖Lp(∂X) � ‖ũ‖N1,p(X,μλ).

Combining the above inequality with Eqs. 3.23 and 3.24, we obtain the estimate

‖u‖B0,λ
p (∂X)

≈ ‖ũ‖N1,p(X,μλ). (3.25)

Hence the B0,λ
p (∂X)-norm of u is comparable to the N1,p(X,μλ)-norm of ũ = Eu. Thus

B0,λ
p (∂X) is the optimal space for which E is both bounded and linear.
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29. Tyulenev, A.I.: Description of traces of functions in the Sobolev space with a Muckenhoupt weight.

Proc. Steklov Inst. Math. 284(1), 280–295 (2014)
30. Tyulenev, A.I.: Traces of weighted Sobolev spaces with Muckenhoupt weight. The case p = 1.

Nonlinear Anal. 128, 248–272 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1346 P. Koskela, Z. Wang

http://arxiv.org/abs/1704.06344
http://arxiv.org/abs/1606.08082

	Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
	Abstract
	Introduction
	Preliminaries
	Regular Trees and Their Boundaries
	Doubling Condition on X and Hausdorff Dimension of X
	Newtonian Spaces on X
	Besov-Type Spaces on X via Dyadic Norms

	Proofs
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Proof of Theorem 1.4

	References


