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Abstract

In this paper, we study function spaces defined via dyadic energies on the boundaries of
regular trees. We show that correct choices of dyadic energies result in Besov-type spaces
that are trace spaces of (weighted) first order Sobolev spaces.
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1 Introduction

Over the past two decades, analysis on general metric measure spaces has attracted a lot of
attention, e.g., [2, 4, 12, 13, 15-17]. Especially, the case of a regular tree and its Cantor-type
boundary has been studied in [3]. Furthermore, Sobolev spaces, Besov spaces and Triebel-
Lizorkin spaces on metric measure spaces have been studied in [5, 25, 26] via hyperbolic
fillings. A related approach was used in [23], where the trace results of Sobolev spaces and
of related fractional smoothness function spaces were recovered by using a dyadic norm
and the Whitney extension operator.

Dyadic energy has also been used to study the regularity and modulus of continuity of
space-filling curves. One of the motivations for this paper is the approach in [20]. Given a
continuous g : S' — R”, consider the dyadic energy
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1318 P. Koskela, Z. Wang

Here, {l;; :i e N, j=1,---, 21} is a dyadic decomposition of S! such that for every
fixedi € N, {£; j : j = 1,---,2'} is a family of arcs of length 277/2" with (J; I; j = S".
The next generation is constructed in such a way that for each j € {1,---,2/*1}, there
exists a umque number k efl,---,2%, satisfying I;11,; C I; x. We denote this parent of

Iiyy,j by I,+1 j and set I, = S1 forj =1,2.Byga, A C S1 we denote the mean value
ga =148 dH' = ?—L'(A) fa8 dH'. One could expect to be able to use the energy Eq. 1.1
to characterize the trace spaces of some Sobolev spaces (with suitable weights) on the unit
disk. On the contrary, the results in [23] suggest that the trace spaces of Sobolev spaces
(with suitable weights) on the unit disk should be characterized by the energy

+00
E(g; p, &)=Y i* Y lgn,; —gn;4 17 (12)

i=1 j=I

where 1; 0 = I; 5i, and the example g(x) = x;, , shows that E(g; p, A) is not comparable to
E(g; p, M).

Notice that the energies (1.1) and (1.2) can be viewed as dyadic energies on the boundary
of a binary tree (2-regular tree). More precisely, for a 2-regular tree X in Section 2.1 with
€ = log 2 in the metric (2.1), the measure v on the boundary 9 X is the Hausdorff 1-measure
by Proposition 2.10. Furthermore, there is a one-to-one map /4 from the dyadic decomposi-
tion of S! to the dyadic decomposition of dX defined in Section 2.4, which preserves the
parent relation, i.e., h(I ) = h(] ) for all dyadic intervals I of S". 1 Since every point in § Lis
the limit of a sequence of dyadic intervals, we can define a map h from S' to X by map-
ping any point x = ﬂkeN I in S! to the limit of {h(I})}ren (if the limit is not unique for
different choices of sequence {/i} for x, then just pick one of them). It follows from the
definition of X that the map 7 is an injective map. Since the measure v is the Hausdorff 1-
measure and 0.X \ h(S") is a set of countably many points, it follows from the definition of
Hausdorff measure that v(3X \ h(SY)) = 0. Since diam(/) ~ diam(/(I)) for any dyadic
interval I of S and we can use dyadic intervals to cover a given set in the definition of a
Hausdorff measure, there is a constant C > 1 such that

éHRMSv@m»sCH%m

for any measurable set A C S'. Then one could expect to be able to use an energy similar
to Eq. 1.2, the IB;/ P*_energy given by

00 21
||g||g1/p,x =YY enayn — gnagn |’ (1.3)
r i=1  j=1

to characterize the trace spaces of suitable Sobolev spaces of the 2-regular tree. This turns
out to hold in the sense that any function in L?(dX) with finite E},/ b ’)‘—energy can be
extended to a function in a certain Sobolev class.

However, there exists a Sobolev function whose trace function has infinite II'B;,/ ? ”\-energy.
More precisely, let O be the root of the tree X and let x, xo be the two children of 0. We
define a function # on X by setting u(x) = 0 if the geodesic from O to x passes through
x1, u(x) = 1 if the geodesic from 0 to x passes through x, and define u to be linear on
the geodesic [x1, x2] = [0, x1] U [0, x2]. Then u is a Sobolev function on X with the trace
function g = xp(s, ;) Whose IBS},/ P ’)‘—energy is not finite for any A > —1, since the energy
(1.2) of the function yj, , is not finite for any A > —1. But the energy (1.1) of the function
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Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees 1319

X1, is finite. Hence, rather than studying the energy (1.3), we shall work with an energy

similar to Eq. 1.1. We define the dyadic B,l,/ P energy by setting

00 21 o0
. p .
||g||g;/p,)» = Zlk Z ‘gh(li,j) “ 8| T Zlk Z |g1 - g7|p )

=1 j=1 i=1 Ie2;

where 2 = UjenZ2; is a dyadic decomposition on the boundary of the 2-regular tree in
Section 2.4.

Instead of only considering the above gieyadic energy on the boundary of a 2-regular tree,
we introduce a general dyadic energy B3 p’)‘ in Definition 2.12, defined on the boundary
of any regular tree and for any 0 < 6 < 1. It is natural to ask whether the Besov-type
space Bf,’ (0X) in Definition 2.12 defined via the B%l-energy is a trace space of a suitable
Sobolev space defined on the regular tree. We refer to [1, 9, 10, 14, 18, 19, 23, 24, 27-30]
for trace results on Euclidean spaces and to [3, 21, 25] for trace results on metric measure
spaces.

In [3], the trace spaces of the Newtonian spaces N L.P(X) on regular trees were shown to
be Besov spaces defined via double integrals. Our first result is the following generalization

of this theorem.

Theorem 1.1 Let X be a K-ary tree with K > 2. Fix 8 > log K, € > 0and ) € R. Suppose
that p > 1 and p > (B —log K) /€. Then the Besov-type space Bf,"\(aX) is the trace space
of NV"P(X, ;) whenever 0 =1 — (B — log K)/ep.

The measure ) above is defined in Eq. 2.2 by
dps(x) = e PHI(x] + ©)* dal,

and the space NUP(X, ;) is a Newtonian space defined in Section 2.3. If A = 0, then
NLP(X, uy) = NM?(X) and Theorem 1.1 recovers the trace results from [3] for the New-
tonian spaces N-?(X). Here and throughout this paper, for given Banach spaces X(3X)
and Y(X), we say that the space X(dX) is a trace space of Y(X) if and only if there is a
bounded linear operator 7 : Y(X) — X(0X) and there exists a bounded linear extension
operator E : X(0X) — Y(X) that acts as a right inverse of T, i.e., T o E = Id on the space
X(0X).

We required in Theorem 1.1 that p > (8 — log K)/e > 0. The assumption that 8 —
log K > 0 is necessary in the sense that we need to make sure that the measure u) on X is
doubling; see Section 2.2. The requirement that p > (8 — log K) /e will ensure that 6 > 0.
So it is natural to consider the case p = (8 —log K)/e > 1.

Theorem 1.2 Let X be a K-ary tree with K > 2. Fix B > logK, € > Oand A € R.
Suppose that p = (B —logK)/e > land A > p—1ifp > 1loriA >0if p = 1. Then
there is a bounded linear trace operator T : NP (X, wy) — LP(3X), defined via limits
along geodesic rays. Here, A > p — 1 is sharp in the sense that forany p > 1, § > 0 and
L = p—1—38, there exists a function u € NP (X, ) so that Tu(§) = oo for every
& edX.

Moreover, for any p = (B —log K)/e > 1, there exists a b/gunded nonlinear extension
operator E : LP(3X) — NV“P(X) so that the trace operator T defined via limits of E(f)
along geodesic rays for f € LP(0X) satisfies ToE =1d on LP(3X).

@ Springer



1320 P. Koskela, Z. Wang

A result similar to Theorem 1.2 for the weighted Newtonian space N7 (2, w d ) with
a suitable weight w has been established in [21] provided that 2 is a bounded domain
that admits a p-Poincaré inequality and whose boundary 92 is endowed with a p-co-
dimensional Ahlfors regular measure. In Theorem 1.2, for the case p = (8 —log K)/e > 1,
we require that A > p — 1 to ensure the existence of limits along geodesic rays. In the case
p = (B —logK)/e = 1, these limits exist even for A = 0, and there is a nonlinear exten-
sion operator that acts as a right inverse of the trace operator, similarly to the case of W1
in Euclidean setting; see [10, 24].

However, except for the case p = 1 and A = 0, Theorem 1.2 does not even tell whether
the trace operator 7 is surjective or not: NUP(X, ;) is a strict subset of N7 (X) when
A > 0.Inthecase p = (B—log K)/e = 1 and A > 0, the trace operator T is actually not sur-
jective, and we can find a Besov-type space Bf (3X) (see Definition 2.14) which is the trace
space of the Newtonian space NLI(x, ). We stress that B‘f’ (0X) and B?’A(BX) are dif-

ferent spaces. More precisely, B?’A (3X) is a strict subspace of B{ (3 X), see Proposition 3.8
and Example 3.9.

Theorem 1.3 Let X be a K-ary tree with K > 2. Fix 8 > log K, € > 0 and A > 0. Suppose
that p =1 = (B — log K) /€. Then the trace space of NV (X, 11, is the Besov-type space
B (3X).

Trace results similar to Theorem 1.3 in the Euclidean setting can be found in [11, 30]. The
second part of Theorem 1.2 asserts the existence of a bounded nonlinear extension operator
from LP(3X) to N':P(X) whenever p = (B —logK)/e > 1. Nonlinearity is natural here
since results due to Peetre [24] (also see [8]) indicate that, for p = 1 and A = 0, one can
not find a bounded linear extension operator that acts as a right inverse of the trace operator
in Theorem 1.2. On the other hand, the recent work [22] gives the existence of a bounded
linear extension operator E from a certain Besov-type space to BV or to N-! such that
T o E is the identity operator on this Besov-type space, under the assumption that the domain
satisfies the co-dimension 1 Ahlfors-regularity. The extension operator in [22] is a version
of the Whitney extension operator. This motivates us to further analyze the operator E from
Theorem 1.1: it is also of Whitney type. The co-dimension 1 Ahlfors-regularity does not
hold for our regular tree (X, ), but we are still able to establish the following result for
NLP(X, ;) with p > 1 for our fixed extension operator E.

Theorem 1.4 Let X be a K-ary tree with K > 2. Fix 8 > log K, € > 0and ) € R. Suppose
that p = (B —logK)/e > land A > p—1if p > 1orx > 0if p = 1. Then the operator
E from Theorem 1.1 is a bounded linear extension operator from Bg"\(BX) to NYP(X, ;)
and acts as a right inverse of T, i.e., T o E is the identity operator on Bg"\(aX), where T is
the trace operator in Theorem 1.2.

Moreover, the space B(,),’}‘ (0X) is the optimal space for which E is both bounded and
linear, i.e., if X C L}OC(BX) is a Banach space so that the extension operator E : X —
NYP(X, uy) is bounded and linear and so that T o E is the identity operator on X, then X
is a subspace of B?,‘)‘ (8X).

The optimality of the space B(,),’)‘ (0X) is for the explicit extension operator E in Theo-

rem 1.4. The space B?;A (0X) may not be the optimal space unless we consider this particular
extension operator. For example, for p = 1 and A > 0, the optimal space is B} (9 X) rather
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Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees 1321

than B?’)‘ by Theorem 1.3. This splitting happens since the two extension operators from
Theorems 1.3 and 1.4 are very different: the latter one is of Whitney type in the sense that
the extension to an edge is based on the average of the boundary function over the dyadic
“shadow” of size comparable to that of the edge, while the former one uses the average over
a dyadic boundary element for the definition of the extension to several edges of different
sizes.

The paper is organized as follows. In Section 2, we give all the preliminaries for the
proofs. More precisely, we introduce regular trees in Section 2.1 and we consider the dou-
bling condition on a regular tree X and the Hausdorff dimension of its boundary dX. We
introduce the Newtonian spaces on X and the Besov-type spaces on dX in Sections 2.3
and 2.4, respectively. In Section 3, we give the proofs of all the above mentioned theorems,
one by one.

In what follows, the letter C denotes a constant that may change at different occurrences.
The notation A ~ B means that there is a constant C such that 1/C - A < B < C - A. The
notation A < B (A 2 B) means that there is a constant C suchthat A < C-B (A > C - B).

2 Preliminaries
2.1 Regular Trees and Their Boundaries

A graph G is a pair (V, E), where V is a set of vertices and FE is a set of edges. We call
a pair of vertices x, y € V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree is a connected graph without cycles. A graph (or tree) is made into a metric
graph by considering each edge as a geodesic of length one.

We call a tree X a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x € X are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

A K-ary tree is a rooted tree such that each vertex has exactly K children. Then all
vertices except the root of a K-ary tree have degree K + 1, and the root has degree K. In
this paper we say that a tree is regular if it is a K -ary tree for some K > 1.

For x € X, let | x| be the distance from the root O to x, that is, the length of the geodesic
from O to x, where the length of every edge is 1 and we consider each edge to be an isometric
copy of the unit interval. The geodesic connecting two vertices x, y € V is denoted by
[x, y], and its length is denoted |x — y|. If |[x| < |y| and x lies on the geodesic connecting 0
to y, we write x < y and call the vertex y a descendant of the vertex x. More generally, we
write x < y if the geodesic from O to y passes through x, and in this case |x —y| = |y|—|x].

Let € > 0 be fixed. We introduce a uniformizing metric (in the sense of Bonk-Heinonen-
Koskela [6], see also [3]) on X by setting

dx(x, y) =/ ez, @1
[x,y]

Here d |z| is the measure which gives each edge Lebesgue measure 1, as we consider each
edge to be an isometric copy of the unit interval and the vertices are the end points of this
interval. In this metric, diamX = 2/¢ if X is a K-ary tree with K > 2.

Next we construct the boundary of the regular K-ary tree by following the arguments
in [3, Section 5]. We define the boundary of a tree X, denoted d X, by completing X with
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1322 P. Koskela, Z. Wang

respect to the metric dy. An equivalent construction of dX is as follows. An element £ in
dX is identified with an infinite geodesic in X starting at the root 0. Then we may denote
& = Oxyx - -+, where x; is a vertex in X with |x;| = i, and x;4; is a child of x;. Given
two points &€, ¢ € 90X, there is an infinite geodesic [£, ¢] connecting & and ¢. Then the
distance of £ and ¢ is the length (with respect to the metric dx) of the infinite geodesic
[€, ¢]. More precisely, if € = Oxjx2--- and ¢ = Oy;yz - - -, let k be an integer with x; = yx
and xx41 # Yk+1- Then by Eq. 2.1

+o0 2
dx(£.0) =2 / € dr = 2ok,
k €

The restriction of dy to X is called the visual metric on d X in Bridson-Haefliger [7].

The metric dy is thus defined on X. To avoid confusion, points in X are denoted by Latin
letters such as x, y and z, while for points in X we use Greek letters such as &, ¢ and w.
Moreover, balls in X will be denoted B(x, r), while B(£, r) stands for a ball in 0 X.

Throughout the paper we assume that 1 < p < 400 and that X is a K-ary tree with
K > 2 and metric dy defined as in Eq. 2.1.

2.2 Doubling Condition on X and Hausdorff Dimension of 4 X

The first aim of this section is to show that the weighted measure
dps(x) = e PHI(1x] + )t dlx| 22)

is doubling on X, where § > log K, A € Rand C > max{2|A|/(B —log K), 2(log4)/€} are
fixed from now on. Here the lower bound of the constant C will make the estimates below
simpler. If A = 0, then
dpo(x) = e Pl d|x] = du(v),
which coincides with the measure used in [3]. If 8 < log K, then ) (X) = oo for the
regular K -ary tree X by Eq. 2.4 below. Hence X would not be doubling as X is bounded.
Next we estimate the measures of balls in X and show that our measure is doubling. Let

Bx,r)={ye X :dx(x,y) <r}
denote an open ball in X with respect to the metric dx. Also let
Fx,r)={yeX:y>xand dx(x,y) <r}

denote the downward directed “half ball”.
The following algebraic lemma and the relation between a ball and a “half ball” come
from [3, Lemma 3.1 and 3.2].

Lemma 2.1 Leto > Qandt € [0, 1]. Then

min{l,o}r <1— (1 -1 < max{l,oc}r.

Lemma 2.2 For every x € X andr > 0 we have
F(x,r) C B(x,r) C F(z,2r),
where 7 < x and

1 €lx|
|z] = max {|x| — glog(l +eret™), 0% . 2.3)

In the above lemma, z is the largest (in the < relationship) common ancestor of B(x, r),
i.e., we have z < y forany y € B(x, r).

@ Springer



Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees 1323

We begin to estimate the measure of the ball B(x, r) and of the half ball F(z, r).

Lemma 23 I[f0<r < e‘f‘z‘/e, then

1 (F (z, 1)) & PRz + O)*

Proof Let p > 0 be such that

|z]+p 1
/ e dt = —e (1 — 7Py = 1.
Izl €

Note that for each |z| < ¢t < |z| + p, the number of points y € F(z,r) with |y| = ¢ is
approximately K'~1*|. Hence

+p lz|+p
K" Fle=P (1 4-0)* dr = K7 / et K=Pl (s Y dr. (2.4)

Izl

|z]
W (Fza ) ~ /

Iz

Since
( 1 elogK=p)r ;4 C)*>/ — (UoeK=P) (; L C)* (1 I A >
logk — (t+C)logK — ) )’
then for C > 2|1|/(B — log K), we have
A ’ 1
<= Vr>0.
@+ C)logK — B) 2

Hence we obtain that

C A
. (F(z,1) ~ 1ot K=Pll (7 + o)t (1e<l°g’(—ﬂ>ﬁ <7|Z|+p+ ) ) 2.5)

B —logK lz| +C
It is easy to check that for any p > 0 and z € X, we have that

_ld+p+C SP‘FC < eP/C,
lz| + C C

Therefore,
oo - (Izl +p+C
- lz| +C
Since C > 2|1|/(B — log K), we obtain that

A
ohlogK—p)p _ (M)
- |z]| +C

A
1Al
) <ec” YzeX,p>0.

< e 2002K=Br v e X p>0. (2.6)

Then forany z € X and p > 0,

c\* .
ooz K—p)p (M) ~ UoeK=P)r  for some -~ < ¢ <

lz| +C

| =
N W

Hence we obtain that

1. (F(z, 1) ~ 4ﬁ§l;lee(logK_ﬂ)lz‘(|z| + O (1 — ecoeK=Por)
= s Izl + O (1 = (1 — erecklyP—logK)/e)

for some ¢ € [1/2, 3/2]. Lemma 2.1 with ¢ = ere€?l implies that
i (F(z,r) &~ e PRI(2] + O rere! a2 e PRIr (2] + ).
O
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1324 P. Koskela, Z. Wang

Corollary 2.4 If0 < r < eVl /¢, then
1 (Bx, 1) ~ e P (x| + OF ~ P (2] + O)*

Proof Forany x € X and 0 < r < e‘e‘”/e, let z be as in Lemma 2.2. If z = 0, then
B(x,r) C F(0,r + p), where
1
p=dx(0,x)=-(1—e M) <r
€

andr + p < 1/e = eIl /e. For z > 0 we have
e Il ereflly  emelal

€ €

2r <
Moreover, in both cases, since r < e~ ¢/ /€, by Lemma 2.2, we have

1 el 1
Izl = Ixl < |zl + —log(1 + ere™) < |z] + —log2,

C A
(|x|+ ) ~1. 2.7
lz| + C

Combing Eq. 2.7 with the fact that in both cases 1 < elI=lzl < 1+ eree"“)l/E ~ 1,
the result follows by applying Lemma 2.3 to F(x,r) and F(z,2r) (or F(0,r + p) for
z=0). O

which implies

Lemma 2.5 Let z € X and x € X with z < x. Then
wi [z, x]) = usn(F(z, dx(z, x))).

where [z, x] denotes the geodesic in the tree X joining x and z.

Proof Since [z, x] is a subset of F(z,dx(z,x)) by definition, we have u,([z,x]) <
uxn(F(z,dx(z,x))). Hence it remains to show that

(2, x]) 2 1 (F (2, dx (2, x))).
Forany z € X and x € X with z < x, we have that

x|
wi(lz, x]) =/ e Pt + C) dr,

|z
where |x| = coif x € dX. Then by using an argument similar to the estimate in Lemma 2.3,
since C > 2|A|/(B — log K) > 2|1|/B, we have that

Vt=>0,

A ‘ 1
P
t+C)B|~ 2

which implies that for any ¢ > 0,
1 ’
<—Be_ﬁ’(t + C)A> =e Pt 4+ O <1 -

Hence we obtain that

N —Blz| X
—pt W € A —B(xI—Izl) M)
e P+ O dt ~ Izl + 0" [1—e ( .28
/zl B ( lz] + C

- %_ﬁt A
ﬁ(t—I—C)) e Pt 4+ O).
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Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees 1325

Comparing the estimate (2.8) with the estimate (2.5), since p = |x| — |z, e” logK > 1 and
K~ lelelog K=Plzl — o=Blzl \e have that

x|
/ e Pt + O dt 2 (F(z, 1) with r = dx(z, x),
|

z|

which induces that

ur(z, x1) 2 ma(F(z, 1)) = un(F(z, dx (z, x))).

Corollary 2.6 Let x € X and z be as in Lemma 2.2. Then if

el

1
<r<—(1—e*kh, (2.9)
€

we obtain
pa(B(x, 1)) ~ e PRI(1z] + O ~ rPle(1z] + C)*.

Proof Since r > e‘fm/e, by Lemma 2.2, we have

e—€lzl
B(x,r) C F(z,oo):F(z, c )

Then Lemma 2.3 implies
. (B(x, 1) < o (F(z,00)) S e PRkl (17 + O} ~ e PEl(z] + 0)F (2.10)
Towards the another direction, by Eq. 2.3 and Lemma 2.5, we have that
1 (B(x, 1) > pa([x, 2) 2 w(F(z. 1) = e“"PRr(jz] + O = e PEl(1z] + C)Feelr.

Moreover, we have

il — €l gmeUal—lz) el 4 gpeelily-1 = L 5 L
e(l14+1) ~ 2¢

where t = ere€¥!. Here in the last inequality we used the fact that ere€*! > 1. Hence we
obtain that

wi(B(x,r) 2 e PRIz + O
Combing the above inequality with Eq. 2.10, we finish the proof of

i (B(x, ) ~ e PEl(jz| + O)*.

Since eref*! > 1, we know that

ere¥l < 14 eref™! < 2ereil.

It then follows from Eq. 2.3 that
e Pl = B (] 4 cpeflxlyBle n pBle

Hence we obtain that
e PRIz + OF ~ rPle(z] + O,
which finishes the proof. O
Lemma 2.7 Letx € X and (1 — e~y /e < r < 2diamX. Then
wi(B(x,r)) ~r.

In particular, if x = O, then this estimate holds for all r > 0.
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1326 P. Koskela, Z. Wang

Proof We have 0 € B(x, r) by assumption, and hence
B(x,r) C F(0,2r).
From Lemma 2.3, we have that
wa(B(x, 1)) < pa(F(0,2r) Sr.

As for the lower bound, if r < 1/¢, since 0 € B(x, r), letting

log(1 —e€r)

€

and x < x’ with |x’| = p, then the estimate (2.5) and Lemma 2.3 imply
wr(B(x,r)) = 3 ([0, x"1) 2 wa(F(0, 1) = r.
If 1/e <r <2diamX = 4/¢, then by Lemma 2.5, we have that

M| =

wi(B(x, r)) = px(F(0, 1/€)) ~

AT
O

Proposition 2.8 Lerx € X, 0 < r < 2diamX, Ry = ¢~ ™! /e and z be as in Lemma 2.2. If
|x| < (log2)/e, then

wy(B(x,r)) ~r.
If|x| > (log2)/e, then

e PI(x| + C)*, r < Rp;

ur(B(x,r)) =~ {rﬁ/6(|z|+c)*, r > Ro.

Proof If |x| < (log2)/e, then =P ~ 1, (x| + C)* ~ 1 and the result follows from
directly from Corollary 2.4 and Lemma 2.7.

If |x| > (log2)/e and r < (1 — e~¢1¥l) /¢, then the estimate follows directly from Corol-
laries 2.4 and 2.6. For r > (1 — e’é‘”)/e > 1/2¢, since |z| = 0, we have by Lemma 2.7
that

1 (B(x, ) ~r~ 1~ rPle(z] + ).

Corollary 2.9 The measure u; is doubling, i.e., ) (B(x, 2r)) < u, (B(x,r)).

Proof In the case |x| < (log2)/e and the case x| > (log2)/e with 2r < Ry, the result
follows directly from Proposition 2.8.
In the case |x| > (log2)/e with 2r > Ry, if r > Ry, then

rBle ~ (2r)Ple,

if r < Ry, then

deBltly 7 Ro\Ble
(2r)Ble r
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Let z, and zo, be defined as in Lemma 2.2 with respect to r and 2r. From Corollary 2.4 and
the above estimates, the doubling condition of p, follows once we prove that
|Zr| +C ~ 1
|22r| +C
Ifr > (1 — e~ /e, then |z,| = |z2,| = 0 give Eq. 2.11. If 2r > (1 — e~€*1) /e > r, then
r > (1 — e <ly/2¢ implies that

@2.11)

1 11
2|+ C = |x| — ~log(1 + ere™) + € < |x| — log (51 +eMh) +C
€

log?2 lo 2
=+ 0+ 22 Diog 4 et =+ B nC gyl 4,
which gives Eq. 2.11. If 2r < (1 — e~<Il) /¢, for C > 2(log 2)/6, we obtain that

1 ey 2 €lx|
2(lz27 | + C) = (lz| + C) = x|+ C + glog(l +ere) — glog(l + 2eret™)

v

1 2
x| + C + —log(1 + ere¥y — Zlog(2(1 + ereHly)
€ €

2log2 1

= |x|+C— —C log(1 + ere)

2log2
= |Zr|+c_TZO,

which gives that |z,| + C < 2(|z2-|+ C). Combining with the fact that |z2,| < |z,|, Eq. 2.11
is obtained. Therefore we finish the proof of this corollary. O

The following result is given by [3, Lemma 5.2].

Proposition 2.10 The boundary X is an Ahlfors Q-regular space with Hausdorff dimen-
sion
_logK

€

Hence we have an Ahlfors Q-regular measure v on d X with
V(BE, 1)~ rf = rloeke,
forany £ € 90X and 0 < r < diamd X.

2.3 Newtonian Spaces on X

Letu € LllOC (X, pny). We say that a Borel function g : X — [0, oo] is an upper gradient of
u if

lu(z) —u(y)| = / gdsx (2.12)

Y

whenever z, y € X and y is the geodesic from z to y, where dsx denotes the arc length
measure with respect to the metric dx. In the setting of a tree any rectifiable curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient
defined above is equivalent to the definition which requires that inequality (2.12) holds for
all rectifiable curves with end points z and y.
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The notion of upper gradients is due to Heinonen and Koskela [16]; we refer interested
readers to [12, 17] for a more detailed discussion on upper gradients.

The Newtonian space N 1’P(X , Ux), 1 < p < o0, is defined as the collection of all the
functions for which

1/p
Nl i cx ) o= (/ |u|? d s, +inf/ g’ d/J,)L> < 00,
X 8 Jx

where the infimum is taken over all upper gradients of u.
Throughout the paper, we use NLP(X) to denote NP (X, uy) if A = 0.

2.4 Besov-Type Spaces on d X via Dyadic Norms

We first recall the Besov space Bf,’ p(a X) defined in [3].

Definition 2.11 For 0 < 6 < 1 and p > 1, The Besov space Bﬁ’p(aX) consists of all
functions f € L?(3dX) for which the seminorm I/ 1 g6 ax) defined as
P

FOI— @
113 0x) = ,/ Ade@'amwax;dxa-a»d”@)dwg)

is finite. The corresponding norm for Bp’p(BX) is

I 1lBs ,ox) = IfllLrax) + 1F g ox)-

Next, we give a dyadic decomposition on the boundary 0 X of the K-ary tree X: Let
V., = {x;.‘ :j=1,2,---, K"} be the set of all n-level vertices of the tree X for any n € N,
where a vertex x is n-level if |x| = n. Then we have that

v={JW
neN
is the set containing all the vertices of the tree X. For any vertex x € V, denote by I the set

{§ € 90X : the geodesic [0, &) passes through x}.

We denote by 2 the set {I, : x € V} and 2, the set {I, : x € V,,} for any n € N. Then
= {0X} and we have
2=_J2.

neN

Then the set 2 is a dyadic decomposition of 3 X. Moreover, for any n € Nand I € 2,
there is a unique element Tin/\ 2,_1 such that I is a subset of it. It is easy to see that if
I = I, for some x € V,,, then I = I, with y the unique parent of x in the tree X. Hence the
structure of the tree X gives a corresponding structure of the dyadic decomposition of 9 X
which we defined above.

Since we want to characterize the trace spaces of the Newtonian spaces with respect to
our measure i, we introduce the following Besov-type spaces Bi’k(a X).

Definition 2.12 For 0 < 6 < 1 and p > 1, the Besov-type space Bf,”\(aX) consists of all
functions f € L?(dX) for which the dyadic Bf,’)‘—energy of f defined as

o Z "t Y v 1= 17l

n=1 1e2,

A1 50
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is finite. The norm on Bf,’x(aX) is

1 0oy = 1 o + 1150 -

Here and throughout this paper, the measure v on the boundary 9 X is the Ahlfors regular
measure in Proposition 2.10 and f; is the mean value fl fdv= ﬁ f] fdv.

The following proposition states that the Besov space Bf,‘x (0X) coincides with the Besov
space ng »(0X) whenever 0 < 6 < 1 and 2 = 0. The proof of this proposition follows by
using [3, Lemma 5.4] and a modification of the proof of [23, Proposition A.1]. We omit the
details.

Proposition 2.13 Ler0 <0 < land p > 1. Forany f € L} (3X), we have

loc

1A 8g ,@ax) ~ I F 1l g0 o) -

For & > 0, we next define special Besov-type spaces with & = 0 and p = 1. Before the
definition, we first fix a sequence {«(n) : n € N} such that there exist constants ¢; > cg > 1
satisfying

<a(n+l) -

co < ct, VneNlN. (2.13)

a(n)

A simple example of such a sequence is obtained by letting or(n) = 2".

Definition 2.14 For 1 > 0, the Besov-type space B{(3X) consists of all functions f €
L' (8X) for which the B{ -dyadic energy of f defined as

1l ox) = Y_am* Y v(DIfi = fl
n=1 IGQDL(,,)

is finite. Here for any I = I, € D) with x € V() and n > 1, we denote 7= I, where
¥ € V(-1 is the ancestor of x in X. The norm on B‘l" (0X)is

I sz x) = 1A ex) + 1 o)

Remark 2.15 Actually, the choice of the sequence {o(n)},en Will not affect the definition
of B{(3X): by Theorem 1.3 we obtain that any two choices of the sequences {c(1)},eN
lead to comparable norms, for more details see Corollary 3.7.

It is easy to check that B‘l" (0X) = B?’}‘((‘)X) if we let (n) = n. But the sequence {«(n)}
with «(n) = n does not satisfy Eq. 2.13. Actually, we show in Proposition 3.8 and Example
3.9 that B?’A(E)X) is a strict subset of 3} (8 X) whenever Eq. 2.13 holds.

3 Proofs
3.1 Proof of Theorem 1.1

Proof Trace Part: Let f ¢ N Lp (X, ;). We first define the trace operator as

Trf(§) = f() = [Oggl)iaril% fx), §e€dX, (3.1
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where the limit is taken along the geodesic ray [0, £). Then our task is to show that the
above limit exists for v-a.e. £ € 0X and that the trace Tr f satisfies the norm estimates.

Let & € 90X be arbitrary and let x; = x;(§) be the ancestor of & with |x;| = j. To show
that the limit in Eq. 3.1 exists for v-a.e. £ € X, it suffices to show that the function

7€) = 1£0) +/ grds (32)

[0,
isin L?(3.X), where [0, §) is the geodesic ray from O to & and g is an upper gradient of f.
To be more precise, if f* € LP(3X), we have |f*| < oo for v-a.e. £ € 90X, and hence the
limit in Eq. 3.1 exists for v-a.e. £ € 9X.
Set r; = 2¢~/€/e. Then on the edge [x;, x;+1] we have the relations

—€)i .— 1— o .
ds ~ &P~V j ™ dpy ~ e P R and (g, xjal) ~ e, (3.3)

where the comparison constants depend on €, 8. Then we obtain the estimate

+00
oI+ [ gds=iroi+ Y [ g
[0.8) i—0 Y Lxj.x 1]

)

A

Xj,Xj+1]

+00 too
1— .
FO+Y r 7P */ gfduw|f(0>|+2rj][ gy du.
=0 [xj.xj41] j=0 ¥

3.4)

Since =1 — (B —logK)/(pe) > 0, we may choose 0 < k < 6. Then for p > 1, by
the Holder inequality and Eq. 3.3, we have that

+o0
Fer iror+ LI g
i=0 [xj.xj41]

—+00
1—k)— .
SO+ YOG [ grap,
=0 [xjxj+1]

For p = 1, the above estimates are also true without using the Holder inequality. It follows
that for p > 1,

+00
@I SIFO)F 4y P = f g7 dps.

j=0 lxj.xj41]

Integrating over all £ € 9X, since v(dX) ~ 1, we obtain by means of Fubini’s theorem that

+00
/ I EI1Pdv < |f(0)|”+/ Za’-’“_”‘ﬁ/er*/ g7 dpy dv (&)
X X =0 [x; (&), xj+1(6)]

+00
FOI + [ gr? | 3 rPUOG T ) 1) dV(E) d i (x).
X ax i’

Notice that x[x;).x;,)1(x) is nonzero only if j < |x| < j + 1 and x < &. Thus the last
estimate can be rewritten as

/8 NF©raysironr+ /X g7 )Prie T ) VB W) dp (x),

where E(x) = {£ € 0X : x < &} and j(x) is the largest integer such that j(x) < |x|.
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It follows from [3, Lemma 5.1] that E(x) = B(&, r) forany £ € E(x) and r &~ ¢~€/ ™,
Hence we obtain from Proposition 2.10 that v(E(x)) ~ er(x)' Since p(1 — k) > B/e —
log K /e = B/e — Q, then for any j(x) € N, we have that -

1 + -
Jp((x) Kk)—pB/e Q/(x) )\517

which induces the estimate
/ PP dv < |f(0)|”+/ g7 () du (x).
0X X

Hence we obtain that f* is in LP(8X), which gives the existence of the limit in Eq. 3.1 for
v-a.e. & € 9X. In particular, since | f| < f*, we have the estimate

[ iravs [irvam + [ o .
0X X X

and hence the norm estimate

. 1/p
||f||u<ax>5( /X 1P dus + /X gfpdm) oy G5

To estimate the dyadic energy || f I B0 ,forany I € Z,,§ eI and ¢ € T, we have

0x)’
that
B . +00 +00
IFE& = FOI< D 1f&) = Faanl+ Y 1fo) = FO0l,
j=n—1 j=n—1
where x; = x;(§) and y; = y;(¢) are the ancestors of & and ¢ with |x;| = |y;| = j,

respectively. In the above inequality, we used the fact that x,_1(§) = y,—1(n). By using
Eq. 3.3 and an argument similar to Eq. 3.4, we obtain that

+00

FO-FOI< Y r]][ grdm+ Y rf g1 di
Yi(€),yj+1(5)]

j=n—1 i (E).xj+1(8)] j=n—1

K—K

Choose 0 < ¥ < 0 and insert rir;

and Eq. 3.3 imply that

into the above sum. If p > 1, then the Holder inequality

+00

400
= 1— 1—
1F@& = FOP st 3l “J[ gl dustry’ Y b ”][ g’ dus
[xj(€).xj1(5)]

Pl i [ ©).yj1)]

1— ,,
Z rp( TR=BlE / gf’]d/u+/ gfPdus |-
j=n—1 [xj (&), xj+1(8)] [yj (). yj+1(D]

For p = 1 the estimates above is also true without using the Holder inequality. It follows
from Fubini’s theorem and from v(/) =~ v([) that

doviDIfi—fr< Y v(l)ff\f@) F@OPdvE) dv)
€2,

Ie2, I

f Z rP(' K)—B/€ '*A/ grPduy dv(§)

j=n—1 [xj&),xj+1(6)]

1— .y
:rﬁl/ f / Z Vp( R Xixj ), xj 4110 dv(E) d pua (x).
Xﬁ{mzn—l} x5
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Using the notation E(x) and j (x) defined before, the above estimate can be rewritten as

. | )
Y vDlfi = il S nT / s i T ) T (E () dys
[, XN{|x|=n—1}

A

1 + -
r;,q_;I/ fprjp((x) D=hle QJ(X) Ad/wb)w
XN{|x|=n—1}

Since ™" ~ r,_1 and p — B/€ + Q = Op, we obtain the estimate

917 A p(l1—k)—B/e+Q . —A
Tk - / gt J00 s
6”‘(3}() Z XO(lx|2n—1) i

+0o

—0 60— .—
:ZKP P(n+1) Z/ gf rj( K)Pj )\d“’k

n=0 XN{j+1>x|=j}

+00 0 J 9
-/ & P s [ YA
=0 Y XNU+1>1x[= ) n=0

+0o
S Z/ grldu 2/ grldus.
= Ixnt41>1x02)) X

Here the last inequality employed the estimate
J
Z kp— 9p(n+ 1 <er GP(]+1)A (fc 9)pjx

n=0

which comes from the facts r, = 2¢™¢" /e and kp — 6p < 0. Thus, we obtain the estimate
1P gy S 181Gy < NF N1 O 13-

which together with Eq. 3.5 finishes the proof of Trace Part.
Extension Part: Let u € B?,’A(BX). For x € X with |x| =n € N, let

u(x) =][ udv, 3.6)
Iy

where I, € 2, is the set of all the points § € dX such that the geodesic [0, &) passes
through x, that is, I, consists of all the points in d X that have x as an ancestor. By Egs. 3.1
and 3.6 we notice that Tri(§) = u(&) whenever & € 0X is a Lebesgue point of u.

If y is a child of x, then |y| = n + 1 and I, is the parent of /,. We extend i to the edge
[x, y] as follows: For each ¢ € [x, y], set

i) —iax) el —ug) €l —ug)
&) = dx(x,y) - (1 —e€)e—en - (1—e)e—<n 3.7

and
u(t) = u(x) + gz (Hdx (x, 1). (3.8)

Then we define the extension of u to be u.
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Since g;; is a constant and # is linear with respect to the metric dx on the edge [x, y], it
follows that |g;| is an upper gradient of & on the edge [x, y]. We have that

n+1
| et di [, g e s ot de
[x.y] n ' !
A APt ) 4 1)}~|,,”~v — ”7,|p' 3.9
Now sum up the above integrals over all the edges on X to obtain that

+o00
/Xlgglp duy ~ Z Z TPy My — ug|P.

n=11€2,
For I € 2,, the estimate
Py (1) v (= (Blog K)/e)—enQ 1 n(ep=p)
implies that

+00
P ~ €enop 1 P = P
/Xlgul du 26 n [XQZ VDl =gl = Nl - (3.10)
n= €2,

To estimate the L?-norm of iz, we first observe that
()] < la(x)| + 1galdx (x, y) = la(x)| + |u(y) —u(x)| < lur |+ lug,| 3.1

for any ¢ € [x, y]. Then we obtain the estimate

/ @1 dps S o (0x, YD) (lur,1? + lug |P) S e Pl | uiPdv.  (3.12)
[x,y] Iy

Here the last inequality used the facts v(I;) ~ v(l,) ~ "2 and p; ([x, y]) ~ e Prph,
Now sum up the above integrals over all the edges on X to obtain that

+00 +00
/ laO” dps S Z Z eiﬁ”“”QnA/IuI”d\) = Ze*ﬂ”“”QnA/ lul? dv.
X i 39X

n=01€2, n=0

Since B —€Q = B —log K > 0, the sum of e~ #"T€"2p* converges. Hence we obtain

the L?-estimate
/lﬁl"duxﬁf ul? dv. (3.13)
X X

Combing Eq. 3.10 with Eq. 3.13, we obtain the norm estimate

”’ZHNLI’(X,//,,\) S ||14||3%k(ax)-

3.2 Proof of Theorem 1.2
Proposition 3.1 Let p = (B —logK)/eand X > p—1ifp>1lorrA>0if p = 1. Then

the trace operator Tr defined in Eq. 3.1 is a bounded linear operator from NV“P(X, ;) to
LP(3X).
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Proof Let f € NV"P(X, uy). We first show that the limit in Eq. 3.1 exists for v-a.e. § € 9X.
It suffices to show that the function f* defined by Eq. 3.2 is in L? (3 X). By estimates (3.3)
and (3.4), we obtain that

—+00
F® S 1FO)+ er][ or duus.
=0 [xj,xj41]

Insert j~*/P j*/P into the above sum. If p > 1, the Holder inequality gives us that

p—1
S ) = =, )
IF @ SO+ Y77 dorti grP dus
=0 j=0 Lxjoxj 1]

~+00
SIFO + Zr;"ﬁ/f/ gr? dus,
=0 [xj.xj41]

since p([x;, xj41]) ~ r}g/ej)\ and for A > p — 1, the sum j /(=D converges. If p = 1,
then the Holder inequality is not needed and the estimate is simpler. It follows that

+o00
IF* @I S1FO)7 + Zr,’-’*’“‘/ff gs” dws
=0 [xj.xj41]

foranyA > p—1lif p=1orforx > 0if p = 1. Integrating over all £ € X we obtain by
means of Fubini’s theorem that

+o00
[ irera siror+ [ S | 87 dyis dv(®)
ax x5 [ 6,351 6)]

+00
O + /X gr ()7 /B o @610 dvE) s o)
=0

SO+ [ 2 JovEw) i o)
S If(O)I”+Lgf(x>”’f<}f/E+Qdm(x) = |f<0>w’+/ng<x>f’dm<x).

Here in the above estimates, the notations E (x)~and j(x) are the same ones as those we
used in the proof of Theorem 1.1. It follows that f* is in L?(dX) with the estimate

[ aivavs [ s dus [ o du.
X X X

Hence the limit in the definition of our trace operator exists, i.e., the trace operator is well-
defined, and we also have the estimate

. 1/p
| Pl < ( / F17 dpss + [ gfpd,u/\) T
X X

which finishes the proof. O

Example 3.2 Let f be the continuous function on X given by f(x) = log(]x| + 1). Then
the function g (x) = €™ /(|x| + 1) is an upper gradient of f on X with respect to the
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metric dx. For p = (B —logK)/e > 1 and A = p — 1 — § with § > 0 arbitrary, we have
the estimates

+00 +00 _ +00
ePen e(pe B+log K)n 1
Pdpy, ~ Yy ————K"e Pt~ = < o0

/ng H Z(n—i—l)l’ e X_: (nt DI L plHs

n=0 n=0 n=1
and
+o00 “+o00
/ LFIP dps ~ Zlogp(n + I)K"e_ﬂ"n)” ~ Ze(—ﬂﬂogK)nnA log?(n + 1) < oo.
X n=0 n=0

Hence we have f € NLP(X, W5.). On the other hand, f(x) - ocoasx — 9X.

Lemma 3.3 Letu € L' (0X) and ii be defined by Eqgs. 3.6, 3.7 and 3.8. Then

/ jl? dp < ré’“’gm/g/ lul? dv,
XN{|x|>n} X

wheren € N, p > landr, =27"¢/e.

Proof By using the estimate (3.11), for x, y € X with y a child of x and |x| = j, we obtain
that

/ GOV du < YD (e, 1?4+ g, 17) se*ﬂ-”gf'Qf ul? dv.
[x,y] Iy

Summing up the integrals over all edges of X N {|x| > n}, we obtain that

+00 oo
f P du <)Y e—ﬂf+fo/|u|Pdv = Ze—ﬂJ“JQ/ jul? dv
XNflx|zn} ¢

j=nle2, 1 j=n ax

~ e—(ﬁ—logK)n/ |u|pdv%r’(lﬁ—logK)/e/ u|? dv.
X X

O

Lemma 3.4 Let u be Lipschitz continuous on d X and it be defined by Eqs. 3.6, 3.7 and 3.8.
Then

f lgal? dp < rP TR LIP (u, 0 x)P,
XN{|x|=n}

where r, =2e7 "¢ /e, p > 1 and

LIP (u, 8X) = () —u@l
gceoxeAr  dx(&.¢)
Proof For x,y € X with y a child of x and |x| = j, since g; is a constant on the edge

[x, y], we obtain the estimate
J*1 luy, — ug|? o
/ lgal? du =~ / Y Pt a e—ﬂ/+€lp|u1y — ”IA).|p'
[x,y] J

e—€ip
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Summing up the above integrals over all edges of X N {|x| > n}, we obtain that

400
[IRERTED S S e
X0{lx|=n}

j=n+11€2;
Since u is Lipschitz on 9 X, then for any &, ¢ € 0X,
[f(&) — f(Q)] = LIP(u, dX)dx (&, ¢).

Hence, for any I € 2 j» we have that
lur —ugl? S ]éjélf(f) — f@OIPdv(€)dv(?) E][I]éLIP(M, 0X)Pdx (§,2)P dv(§)dv(¢)
< LIP (u, 3X)” diam(7)” ~ e /P LIP (u, 3X)".
It follows that

—+00
/ lgal” du
XN{lx|=n}

Z K/ Bter)ig=iePLIP (u, §X)P
j=n+1

+00 )
= Y e PeKILIP (u, 9 x)P
j=n+1

e~ B=logKon 1p (g x)P ~ p PRV P (4 3 X)P.

N

A

O

Proposition 3.5 Let p = (B — log K)/e > 1. Then there exists a bounded non-linear
extension operator Ex from LP(3X) to N“P(X) that acts as a right inverse of the trace
operator Tr in Eq. 3.1, i.e., Tr o Ex = Id on L? (3 X).

The construction of the extension operator is given by gluing the N7 extensions in
Lemma 3.4 of Lipschitz approximations of the boundary data with respect to a sequence
of layers on the tree X. The main idea of the construction is inspired by [21, Section 7]
and [22, Section 4] whose core ideas can be traced back to Gagliardo [10] who discussed
extending functions in L' (R") to Wl*l(R'j_ﬂ).

Proof of Proposition 3.5 Let f € L?(0X). We approximate f in L”(9X) by a sequence of
Lipschitz functions {fk},jj such that || fiy1 — fellLrox) < 22—k | fllLrax). Note that this
requirement of rate of convergence of fi to f ensures that fy — f pointwise v-a.e. in 0X.
For technical reasons, we choose f1 = 0.

Then we choose a decreasing sequence of real numbers { pk},fi‘f such that

or €le /e :n e N};
* 0<pr+1 =p1/2
o > oLIP(fi,0X) < CllfllLrox)-

These will now be used to define layers in X. Let

— dist(x, 0X
w” rex

Y (x) = max {O, min {1,
Pk — Pk+1
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We denote — log(epy) /€ by [px]. This is a integer satisfying e “€1°] /¢ = p;. Then we obtain
0 < ¥ <1 and that

0, Ixl = [ol;
= 3.14
Vi) { L Ix| = [pk+1] (.19
For any Lipschitz function fi, we can define the extension f; of f; by using Egs. 3.6, 3.7
and 3.8. Then we define the extension of f as

+00 I
FE) =) W1 () = a0 i) = D ¥k (fiea1 (6) = fiex)). (3.15)

k=2 k=1

It follows from Eq. 3.14 that for any x € X with |x| = [px], we have f(x) = fk,l(x).
Since for the trace operator Tr defined in Eq. 3.1, Tr f; = fi for v-a.e. in 8 X, the pointwise
convergence fy — f v-a.e.in X implies that Tr f = f for v-a.e. in dX, since {[pk]},::‘f
is a subsequence of N. Hence the extension operator defined by Eq. 3.15 is a right inverse
of the trace operator Tr in Eq. 3.1.

It remains to show that f € NP (X) with norm estimates. Lemma 3.3 allows us to obtain
the L”-estimate for f . Since the extension operator that we apply for each fj is linear, we

have that fk+ 1 — fk = fk;\_—/ Jx- Therefore, it follows from (8 — log K)/e = p that

+o00 +o00
1 lzrcy < D IWkCert = fillray < D I it = FellLoxniixi=iaan

k=1 k=1
+00 too

S rpall fern = fillrox) = Y ol firr — fillLrox)
k=1 k=1

+o00
S M firr = fllraxy S0 F lLe@x)-

In order to obtain the LP-estimate of an upper gradient of £, it suffices to consider the
LP-estimate of Lip f, where for any function u, Lip u(x) is defined as

Lipu(x) = lim sup %

We first apply the product rule for locally Lipschitz function, which yields that

+o0

Lip f = Z(|fk+1 SelLip e+ viLip (firt — f0))

+ Xtx 1zt Lip (fir1 — fk))

“+o00
- <|fk+l — Skl Xtix=1001)
=1 Pk — Pk+1
Thus,
—+00
.= | fie+1 — Jil . _—
ILip fllLrox) < Z ( P + ILip (fe+1 — fOllLrxniixi=to1) | -
=1 kT P Lo (el 12T
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It follows from Lemma 3.3 that

Z |fk+1 Sl

= Pk — Pk+1

< Z I it = fellrox

LP(X0{lx1=[ox1})

~ Z I ferr = fillrx) S I flrx)-
k=1
Recall that # is affine one any edge of X, with “slope” g;, for the extension u given via
Egs. 3.6, 3.7 and 3.8, for any function u. Hence Lipu = g;. Therefore, it follows from
Lemma 3.4 that

10 —~ i
Z ILip (fi+1 — fOllLrxngixi=loh S Z,OkLIP(ka — fi, 0X)
k=1 k=1
+o00
< > ok (LIP (fip1. 0X) + LIP (fi, 9X))
k=1
S I fllizrex)-

Here in the last inequality, we used the defining properties of {0}, O? Thus, we have shown
that
ILip Fllzr@x) S 17 r@x)-
Altogether, we obtain that

I f ey < I lr@x) + ILip Fllzr@x) S IFLr@x)-

Proof of Theorem 1.2 The boundedness and linearity of the trace operator follows from
Proposition 3.1 and the sharpness of . > p — 1 follows from Example 3.2. The extension
operator is given in Proposition 3.5. O

Remark 3.6 For p = (B—logK)/e > 1 and . > p—1, Theorem 1.2 only tells us that there
exists a bounded linear trace operator (3.1) from N Lr(x, W) to LP(8X). It is unknown
whether this trace operator is surjective or not. All we know is that there exists a nonlinear
bounded extension operator from L”(3X) to N L.r(X) that acts as a right inverse of the
trace operator (3.1). Since A > p — 1 > 0 implies NUVP(X, ) C NL-P(X), we have an
open question: Which space does the bounded linear trace operator (3.1) map N7 (X, uy)
surjectively onto?

3.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Trace Part: Let f € N'(X, uy) with & > 0 and let g be an upper
gradient of f. By Proposition 3.1, we know that the trace operator Tr f = f defined in
Eq. 3.1 is well-defined and that f satisfies the norm estimate

I oxy S WL )
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Then the remaining task is to establish the estimate on the dyadic energy || f I B (0X)" For
any I € Qym),E €land¢ € Te 2y m—1), we obtain that

+00 +00
& —-FOl < > 1fa) = faal+ Y. 1fO) = FO]
j=am—1) Jj=a(n—1)
400 oo
S ) grdu+ Y 1 grdus,
j=am—1) XXl j=a-1) ‘il
where x; = x;(§) and y; = y;(¢) are the ancestors of & and ¢ with |x;| = |y;| = J,

respectively. For any I € 2,y and any function & € L1(3X), we have

V(L) ~ < Ta(n) )Q ~ p@i=D—am)logK  pamn——a(m)
v(l) Fa(n—1)

and

> [rrave = koo [ e ave. (3.16)
1 0X

IEQD((,,)

B/

Hence it follows from the fact that 14, ([x;, xj41]) ~ r; € j* and Fubini’s theorem that

> wlii—fil = Y vof fife - foime ae

1€ 24(n) 1€ 2qym)
+00
Y / > r_/][ grdu, dv(E)
1€2guw V! j=a—1) Y HiE)1j+1E)]
400
+ K“("_l)_a(")/N rj][ grduw.dv(¢)
1€24() 1 j=a(—1) [y (©),yj+1(D]
+o00

%

/ r_,-][ grdpsdv(€)
X g1y X E) X))

+00
l_ —
%/ gf/ Z r; ﬂ/ef )LX[x/(é),xjH(E)I(x)dv(é)d‘u)‘(x)’
XN{lx|>a(m—1)} X j=an—1)

Using the notation E(x) and j(x) defined in the proof of Theorem 1.1, the above estimate
can be rewritten as

fr — f 1=l ., -
2 vIfi =i 5 / gfrj(x’)g/ef(x) MV(E(x)) dp
1€20tn) X0{|x|=a(n—1)}

1— . _
< f grrioh i) dw,
XN{lx[>a(n—1)}

= / g du;.
XN{|x|za(n—1)}
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It follows that

Sam* Y vIfi - il < Za(n) 3 / ¢ri ™ du
n=1

XN{j+1>|x=j}

1€ 2 j=an—1)
0 “+o00
=Yew+n Y | g s
n=0 j=a(n) XO{j+1>|x|=/}
400 a”'(j)
< f gritdw [ Y e+ D],
j=0 XN{j+1>Ix[=j} n=0

where a1 (j) is the largest integer m such that «(m) < j. Since A > 0 and

a(n+1)
I<c=< <ci,
a(n)
we obtain the estimate
a”'()) ™)) +00
dYam+ra Y e <) et S
n=0 n=0 k=0
Hence we obtain the estimate
[ee] +00
I F g axy = D D vDIfi = fil S Z/ grdus
n=1 IGQQ(”) j=0 XN{j+1>|x|>j}

= /ng ds = l1gfllLrx, u)-
Thus, we obtain the norm estimate

£ IBzax) = 1 Liexy + 1 g ox) S 1IN 0)-

which finishes the proof of the Trace Part.
Extension Part: Let u € B‘l" (0X). Since «(0) is not necessarily zero, we let «(—1) = 0.
For any x € X with |[x| = a(n) and —1 <n € Z, let

ux) :][ udv,
Iy

where I, € 2 is the set of all the points & € X such that the geodesic [0, §) passes through
x, that is, I, consists of all the points in d X that have x as an ancestor.

If y is a descendant of x with |y| = a(n + 1), then there exists y € X which is the parent
of y. We extend u to the edge [x, y] as follows: For each ¢ € [x, ¥], set u(t) = u(x) and
gi(t) =0; foreacht € [y, y], set

u(y) —u(x) €(ur, —ur,) _ e(u, —ui)
dx(5,y) (e — De—€atrtD) T (g€ — ])e—ca(ni+1)

gi(t) =

and
u(r) = u(x) + gz ()dx (3, 1).
Then we define & to be the extension of u. Notice that Tri(§) = u(§) whenever & is a
Lebesgue point of u.
Now on the geodesic [x, y], g; is zero and u is a constant; on the edge [y, y], g; is a
constant and # is linear with respect to the metric on the edge [y, x]. It follows that |g;]| is
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an upper gradient of & on the geodesic [x, y]. Then for x € X with |x| = a(n),n > 0, we
obtain the estimate

f Iggldm:/ \galdyes
[x,y] [¥.y]

%

an+l) uyp, —uy|
/ ji(lly)e_ﬂr(t +O)dr
a(n+1)—1 e st

~ TP Dy (0 ) ug —ug . 3.17)
For x = 0 and |y| = «(0), since v(ly) ~ v(Iy) ~ 1, we have the estimate
| tsalam = [ teatdin ~ oy <) < g+l S [ wldv. Gas)
[0,y] [y.y] D¢

Now sum up the estimates (3.17) and (3.18) over all edges of X to obtain that

/Igaldm =/ Igaldm+/ \galdus
X XN{lx|<a(0)} XN{lx|=a(0)}

~+00
Z/ lgaldus+ ) Z/ \gal dis
[0,y] [x,y]

YEVa(0) n=1yeVym)

+00
K"‘(O)f |u|dv+2 Z TP o () uy — ujl.
ax

n=1 16‘,@0,(,,)

A

A

Since for any I € Zy(n), we have that
U(]) ~ raQ(n) ~ efeot(n)log K/e — efot(n)logK — e(efﬂ)oz(n).

Hence we obtain the estimate

fx|gt~,|dm 5fax wldv+ Y ey Y wDIfi - fil

n=1 IEQDL(,,)
= ||u||L1(ax) + ||”||3111(3X) = ||u||B§‘(<‘)X)- (3.19)
Towards the L!-estimate for i, by the construction, we know that |i(¢)| = |#(x)| on the

geodesic [x, y] and that |u(¢)| < |u(x)| + |d(y)| on the edge [y, y]. Then forn > —1, we
have the estimate

lalduy = il d s

/Xﬁ{ot(n)SIX\Sa(nJrl)} a /;m{a(n)SIXISOt(nJrl)*l}

+f @l dps
XN{a(n+1)—1<|x|<a(n+1)}
< Y u@)lpaF(x, dx (x, 9X)))

X€Va(n)

+ Y (@) + @) Dua ., y) = Hf + Hj.
YEVa(n+1)

A

By Lemma 2.3, we obtain the estimate

H!'< Z e(—ﬂ+1og1<)a(n)a(n)A/ |u|dv:e(—ﬁ+10gk)a(n)a(n)A/ lue| dv.
Iy axX

X€Va(n)
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For H3, by Eq. 3.16 and relation Eq. 3.3, we have that

Hé’l S, Z e(*ﬁ‘FlOgK)Ot(n‘Fl)a(n + l)l < |u|dv + KO((}’!)*O!(H+1)/; |u|dv>
YeVam+n) by Iy

< e(7ﬂ+logK)a("+1)a(n+l))“/ luldv.
9X

Sum up the above estimate with respect to n to obtain via € = f — log K that

/ il ds
X

+00

~+00
> jildws. = ) H{ + Hj

n=_1 Y XNfa(m)<|x|<a(+1)} n——1

+00
Z e(—5+10g1<)0!(n)a(n))~/ u| dv
X

n=-—1

400
> e’“‘(")a(n)'\/ u| dv 5/ luldv = lullL1x)-  (3.20)
X X

n=—1

A

By the estimates (3.19) and (3.20), we obtain the norm estimate

Nl prrx ) < lullseox)-
O

Corollary 3.7 For given sequences {a1(n)},en and {a1(n)},en satisfying the relation
(2.13) with respect to different pairs of (co, c1), the Banach spaces B?l (0X) and 8?2 (0X)
coincide.

Proof For any function u € B‘f' (0X), by the Extension part in the proof of Theorem 1.3,
there is an extension Eu = i such that
ll ”NI«'(X,;L,\) 5 llu ”B‘l’(l BX)"

Since u = T o Eu = T (i), it follows from the trace part in the proof of Theorem 1.3 that
we have the estimate

”u”B?Z(BX) < ||ﬁ||N‘v1(X,uA)'
Thus, we obtain
@ S A a g -
”u”Blz(dX) ~ ”M”B] Loax)
The opposite inequality follows analogously and the claim follows. O

Next, we compare the function spaces B} (3X) and B?’)‘(BX ).

Proposition 3.8 Ler . > 0. The space B(])’A(aX) is a subset of B{ (X)), i.e., for any f €
LY(8X), we have
Il geox) S ”f”B‘l“(aX)'

Proof Let f € L'(8X). For any I € Dy with n € R, define the set
J={'e2:1cI' CI).
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Then it follows from the triangle inequality that

lfr =11 < > e = fal.
I'eJ;

Hence, by using Fubini’s theorem, we have that

SovDIfi— = Y v Y Ifr = fol

[EQO((H) 16320((,,) I'eJ;
a(n)
= 2 X Mr=all X X!
m=a(n—1)+11'e2, 1€24m) I'eTr

Notice that for any I € Zg(,), we have v(I) ~ e~€mQ — g—a@ and that for any
I' € 2,,, the number of the dyadic elements I € Dy, with I’ € Jy is K%~ Therefore,

Z Z v([) ~ Koz(n)—m—a(n) — K" = e—ea(n)Q ~ U(I/).
124 I'eTr

Hence, we have the estimate

a(n)

dYoovDlfi—ms Y. Y, vl = f7l

1€ 20 m=a(n—D)+11'€2,,

and therefore the estimate

+oo
1 lgeox) = Y_am* Y vDIfi = f7l
n=l1

I€2qn)
+00 a(n)
Sy et Y wU)Ifr - f7l
n=1 m=a(n—1)+11'e2,,
+00
< lm* D VIS = Sl = 1 g0 -

m= I'e2,

Here in the last inequality, we used the fact that m* > a(n — 1)* > a(n)*/c} whenever
m > o(n — 1), where the constant c; is from the condition (2.13). O

Example 3.9 Let X be a 2-regular tree. We may identify each vertex of X with a finite
sequence formed by 0 and 1. For example, the children of the root can be denoted by 00 and
01. The children of the vertex x = Oty - - - 7 is Oty - - - 70 and Oty - - - 7¢ 1, where 7; € {0, 1}.
Moreover, each element £ of the boundary d X can be identified with an infinite sequence
formed by 0 and 1. We denote § = Oty1, - - - with 7; € {0, 1} when the geodesic from O to &
passes through all the vertices x; = 07y --- ¢, k € R.

We define a function f on dX as follows: for § = Oty7p--- € X where 7; € {0, 1}, we
define

(=D

&=

i=1
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Since the sum of 1/i**! converges for . > 0, f is well defined for all £ € 3X and is
bounded. Moreover, for any vertex x = Oty - - - T, it follows from the definition of f that

1"
][ f@©dv(g) = Z% (3.21)

i=1

Therefore, for the vertex x above, we have
1
1= f7.) = G

Hence the B?’A -energy of f is

+o00
111502y = D" D vDIf = £l

n=1 1e2,
+o00 +o00 1
_ A L
=D nt Y viD—y —Zn +00.
n=1 Ie2, n=1
On the other hand, for any / € Qa(,,), we have
a(n) )
(=1)"
=fi= X | (3.22)
i=a(n—1)+1

where 7; € {0, 1} depends on /. We define a random series Xy, by setting

a(n) o
1
ey = D o
i=a(n—1)+1
where (o;); are independent random variables with common distribution P(o; = 1) =
P(o; = —1) = 1/2. Since the measure v is a probability measure which is uniformly

distributed on 90X, it follows from Eq. 3.22 that
> vDIfr = fil = E(Xaw)D-
Ie2q4m)

Here E(|Xym|) is the expected value of |Xy()|. By the Cauchy-Schwarz inequality,
E(Xam)) < (IE(X2 )))1/2 we have that

a(n) E 1/2
o 2 W2 _ (0ioj)
Z v(D)| fi _f1| = (E(X (n))) / Z W

1€24m) i,j=a(n—1)+1
) L, 0\ 12 ) 172
E(o;%) 1

= Z 242 = Z [2h 42

i=a(n—1)+1 i=a(n—1)+1

Here the second to last equality holds since o; and o; are independent for i # j and
E(oioj) = E(0;)E(c;) = 0 fori # j. Define a(n) = 2". Then we obtain that

. 1/2 . 1/2
= 1 z 1 1
Z v(DIfr = fil = Z 1242 = Z 2(1—D(23+2) = S—D0+1/2)"

1€ 24 i=2n-141 i=2n—141
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Therefore the B‘l" (0X)-energy of f is estimated by

+00
1 Flgeox) = e Y vDIfi = fl
n=1 Ie2q4m)
+00 N 1 +00 2)\
n —
= le 2—D0OF1/2) Zo np = T
n= n=»

Hence f € Bf(0X) while f ¢ B?’)‘(BX), and it follows that B?’)‘(E)X) is a strict subset
of B (8X).

3.4 Proof of Theorem 1.4

Proof Let p = (B —logK)/eand A > p—1iftp > lorA > 0if p = 1. From
Proposition 3.1, the trace operator T : NUP(X, ;) — LP(3X) in Theorem 1.2 is bounded
and linear. Now we define an extension operator E by using Eqgs. 3.6, 3.7 and 3.8. It is easy
to see that the extension Eu is well defined for any function u € L}OC(a X)andthat T o E
is the identity operator on LIIOC(BX ).

Repeating the estimates in Extension Part of the proof of Theorem 1.1, for0 =1 — (8 —

log K)/(pe) = 0, we also have the following estimates:

_p ~ P
/Xlgul duy, IIMIIB%A(BX) (3.23)
and
/|12|Pdug/- lu|? dv. (3.24)
X ax

Hence the extension operator E is bounded and linear from B?;*(a X) to NV"P(X, uy).
Moreover, since u is the trace of iz, by Theorem 1.2 and Proposition 3.1, we have

lullr@ox)y S NiEllyrrx -
Combining the above inequality with Eqgs. 3.23 and 3.24, we obtain the estimate
”””B(I);A(BX) ~ ”ﬁ”vaP(X,ux)' (325)
Hence the B?,"\(BX)-norm of u is comparable to the NLP(X, u;.)-norm of i = Eu. Thus

Bg’)\ (0X) is the optimal space for which E is both bounded and linear. O
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