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Highlights

• A mathematical model of hydropower plant is suggested.

• The accident happened on the Sayano-Shushenskaya hydropower plant
in 2009 year is explained.
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Abstract

This work is devoted to the analysis of a mathematical model of hydropower
unit, consisting of synchronous generator, hydraulic turbine, and speed gover-
nor. It is motivated by the accident happened on the Sayano-Shushenskaya
hydropower plant in 2009 year. In the analysis we follow the line of clas-
sical control theory approach developed in the works of famous scientists
J.C. Maxwell, I.A. Vishnegradsky, A.A. Andronov, and F. Tricomi for the
study of centrifugal turbine governor and electrical machines limit-load prob-
lem. It is shown that the occurrence of vibrations in the Sayano-Shushenskaya
hydropower plant can be caused by nonlinear dynamics of the closed-form
model.

Keywords: Sayano-Shushenskaya hydropower plant, hydropower unit,
synchronous generator, hydraulic turbine, speed governor, simulation,
oscillations

1. Introduction

Nowadays one of the most important source of electricity is the electric
energy produced by hydroelectric facilities. According to [1], Norway gets
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99% of its electric power from water, Brazil 84%, Austria 59%, Canada 58%
and Russia 18%. Failures of hydropower plants cause loss of lives, major
damage in the surrounding area, and serious economic consequences. In
recent years, the accidents at the hydropower plants have become frequent
(see, e.g., Bieudron Hydroelectric Power Station (Switzerland, 2000), Taum
Sauk Hydroelectric Power Station (Missouri, USA, 2005), Sayano-Shushens-
kaya Dam (Russia, 2009), Itaipu Dam (Brazil, 2009), Srisailam Dam (India,
2013), Dhauliganga hydro electric station (India, 2013)). In order to prevent
such accidents, it is necessary to investigate their causes.

This work is motivated by the accident happened on the Sayano-Shu-
shenskaya hydropower plant in 2009. According to the act of a special com-
mission of the Russian Federal Environmental, Industrial and Nuclear Su-
pervision Service, immediately before the accident the power of the second
hydropower unit was 475 MW at a head of 212 meters [2], i.e., it worked in
the not recommended zone II (Fig. 1). Zone II is characterized by strong
hydraulic turbine blows in flowing part and vibrations. For a normal opera-
tion it is recommended a power range, corresponding to the zone III in which
the efficiency of turbines has a maximum value. Also operation is allowed
in the zone I in which the dynamics is allowed, but the level of efficiency of
the turbines are low. The operation in zone IV is not allowed. These work
zones of hydropower unit of the Sayano-Shushenskaya hydropower plant were
obtained by the full-scale test of hydropower units in the late 80s of 20th cen-
tury and were published in the technical report “Full-scale testing of turbines
of Sayano-Shushenskaya hydropower plant with standard runner” No. 1008
[3].

As a rule, for the analysis of vibrations in complex electromechanical sys-
tems often one of the following approaches is used: (1) For each components
of the HPP a fairly complete mathematical model is derived. This model
is described by partial differential equations and takes into account physical
processes. The vibrations in such models are analysed numerically (physical
engineering approach, see, e.g. [4]); (2) A mathematical model described
by non-autonomous linear differential equations of the entire HPP, which
allows to take into account external vibrations in individual components of
the HPP, is derived. The response of the HPP to the vibrations is stud-
ied numerically or analyticalally (mechanical engineering approach, see, e.g.
[5]); (3) A closed-form mathematical model of the entire HPP described by
autonomous nonlinear differential equations is derived. Then, the birth of
vibrations caused by the nonlinearity of the model is studied analytically or
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numerically (control systems engineering approach). Here we follow the latter
approach, which is based on classical works by J.C. Maxwell [6], I.A. Vishne-
gradsky [7], A.A. Andronov [8], and F. Tricomi [9] on the centrifugal turbine
governor and limit-load problem of electrical machines (see also [10]).
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Figure 1: Operational zones of hydropower unit of the Sayano-Shushenskaya hydropower
plant [3].

This paper is organized in the following way. In sections 2–6 a complete
mathematical model of hydraulic power plant is considered. This model
joins together differential equations of turbine, differential equations of syn-
chronous generator (d-q model) [11, 12], and differential equations of speed
governor [13]. The parameters of the model are taken from [14]. In section 8
the stability of steady state is analysed. In section 9 the transients are
studied numerically1.

Remark that more simple models of hydropower unit (based on more
simple models of turbines (see [13]), synchronous generators (the Tricomi
equation [9, 15], the equations of synchronous generator with parallel con-
nection in feed system [15]) were also considered. However, for such models
the above effects have not been found.

1The Matlab code is uploaded to GitHub in the “hydro-ssh-cnscs” repository:
https://github.com/mir/hydro-ssh-cnscs
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2. Components of hydropower unit

Following [16], consider the main elements of hydro power plant unit
in Fig. 2. The hydropower unit of Sayano-Shushenskaya HPP consists of
synchronous generator and Francis hydraulic turbine. The rotor of generator
and the runner are connected together by a rigid shaft.
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73
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9

Figure 2: Scheme of the Sayano-Shushenskaya hydropower plant: 1 – upper reservoir, 2
– lower reservoir, 3 – dam, 4 – penstock, 5 – blade wheel, 6 – guide vanes, 7 – rotor of
synchronous generator, 8 – shaft, 9 – control gate

The dam creates a difference in water level between the upper reservoir
and lower reservoir. The flow of water is delivered from upper reservoir to
turbine by penstock through the spiral casing. Water jets impact on the
blades of the turbine producing torque applied to the rotating shaft. Since
the turbine shaft is rigidly connected with the generator rotor, the rotor
starts to rotate and to produce electricity, which is transferred to the grid.
The water flow is controlled by means of guide vanes.

For the safety of the power network, the frequency should remain almost
constant. This is reached by keeping the same speed of the synchronous
generator. The rotational speed is controlled by the speed governor.

The main structural elements of hydropower unit are presented in Fig. 3.
Introduce the following notations: s is a signal of angular (rotational) speed
deviation, µ is a position of guide vanes, MT is a turbine torque, MG is a
generator torque, U is a voltage required by the power network. The power
network represents a set of energy suppliers and consumers.
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Figure 3: The main structural elements of hydropower unit

Thus, the hydropower unit represents a system consisting of hydraulic
turbine, which produces a mechanical torque, generator, which converts me-
chanical energy into electrical energy, and automatic speed governor, which
regulates the rotation speed of hydraulic turbine.

In order to develop a mathematical model of hydropower unit it is nec-
essary to describe each structural element of hydropower unit, presented in
Fig. 3. Let us consider each equations for each element.

3. Mathematical model of synchronous generator

Using Park’s transformation, the three-phase windings of stator can be
substituted by two equivalent short-circuited windings, and the rotor can be
described as two equivalent short-circuited damper windings and one field
winding. Thus, synchronous generator can be described by the Park-Gorev
equations in per unit values [11, pp.132-149], [12, pp.5.15- 5.17]:

Ψ̇d = −ω0(1 + s)Ψq − ω0 r id − ω0 ud,

Ψ̇q = ω0(1 + s)Ψd − ω0 r iq − ω0 uq,

Ψ̇r =
1

Tr
(Er − Eq),

Ψ̇rd = − 1

Trd
Erq,

Ψ̇rq =
1

Trq
Erd,

(1)
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where flux linkages are determined as follows

Ψd = xd id + Eq + Erq,

Ψq = xq iq − Erd,

Ψr =
x2
ad

xr
id + Eq +

xad
xr
Erq,

Ψrd =
x2
ad

xrd
id + Erq +

xad
xrd

Eq,

Ψrq =
x2
aq

xrq
iq − Erd.

(2)

Here the following variables and coefficients are relative to the corre-
sponding base values (voltage, current, flux linkage, impedance, inductance,
power): r is a stator resistance, id, iq are currents in stator windings, ud,
uq are stator voltages, Ψd, Ψq, Ψr, Ψrd, Ψrq are flux linkages, Er is a field
voltage, Eq, Erd, Erq are electromotive forces, induced in the stator by the
magnetic field of rotor winding currents for synchronous rotor speed, xd, xq
are synchronous inductances (reactances) along the axes d and q, xr, xrd,
xrq are impedances of field winding, damper windings along the axes d and
q, xad, xaq are impedances of stator winding along the axes d and q. The
following coefficients are time constants: Tr is a field-winding time constant
with open stator and damper windings [s], Trd, Trq are damper winding time
constants with open stator and field windings [s], ω0 is a rated angular speed
(synchronous speed) [rad/s].

The stator voltages ud and uq along the d- and q- axes in per unit values
are determined according to the laws

ud = −U sin(θ0 + θ∆), uq = U cos(θ0 + θ∆),

where U = Û
Ub

is a voltage relative to the base voltage [p.u.], Û is a voltage

in power network [V], Ub is the base voltage [V].
The motion of synchronous generator rotor about shaft is described by

the torque equation in physical values [11, pp.132-149], [12, pp.5.15-5.17]:

θ̇∆ = ω,

J ω̇ = MT −
(

Ψ̂d îq − Ψ̂q îd

)
.

(3)

Here J is a moment of inertia of rotor (is a moment of inertia of hydropower

unit) [kg ·m2], Ψ̂d, Ψ̂q are flux linkages in physical unit values [Wb = kg·m2

s2A
],
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îd, îq are currents in stator windings in physical unit values [A], MT is the

rotation torque [kg·m2

s2
]. Since the shaft of turbine is rigidly connected with

the rotor of generator, a moment of inertia of rotor coincides with a moment
of inertia of hydropower unit and an angular rotor speed coincides with an
angular turbine speed. In our case the rotation torque MT is a turbine torque,
which is created by the pressure of water on the runner.

Rewrite system of equations (3) in terms of base variables. For this
purpose the second equation is divided twice by the base voltage:

Ub = ω0Ψb = ZbIb,

where Ψb is the base flux linkage [Wb = kg·m2

s2A
], Zb is the base impedance

(valid also for resistances and reactances)[Ohms], Ib is the base current [A].
Then

J

ΨbZbIb

(
ω̇

ω0

)
=

MT

ω0ΨbZbIb

− 1

ω0Zb

(
Ψ̂d

Ψb

îq
Ib

− Ψ̂q

Ψb

îd
Ib

)
,

Jω2
0

UbIb

ṡ =
MT

ΨbIb

− (Ψd iq −Ψq id) .

Thus, as a result of given transformation one obtains system of equa-
tions (3) in per unit values:

θ̇∆ = ω0s,

ṡ =
1

TJ

(
M̂T

Ψb Ib

− (Ψd iq −Ψq id)

)
,

(4)

where TJ = J
ω2
0

Sb
is inertial constant of hydropower unit [s], Sb = UbIb is the

base power [W = kg·m2

s3
].

4. Mathematical model of hydraulic turbine

Hydraulic turbines can be classified by their type of construction, the most
important ones being the Francis, Pelton and Kaplan or Propeller turbines
[1]. They are distinguished by construction of runner and control methods
of the rotation speed of the turbine. The dynamics of hydraulic turbine can
be described by equations

Q̇ =
S

lρ

(
pu − pl −

Q2

C2(µ0 + µ∆)2

)
, MT =

k̃

C2(µ0 + µ∆)2

Q3

ω
,
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where S is a sectional area of penstock [m2], lp is a length of penstock [m], ρ is
a density of water [ kg

m3 ], pu is a constant pressure on the upper end of penstock
[Pa], pl is a constant pressure on the lower end of penstock (after turbine)
[Pa], µ0 is a given position of guide vanes [p.u.], µ∆ is the deviation of given
position of guide vanes [p.u.], C = S/

√
ρ is a constant depending on the

construction of penstock [m3√m√
kg

], S is a sectional area of water conduit [m2],

ρ is the density of water [ kg
m3 ], k̃ is a constant depending on the construction

of turbine [p.u.], Q is the water flow through the turbine [m3

s
], and MT is a

turbine torque in the physical values.
Since for the description of dynamics of synchronous generator there are

used equations in per unit values, we write the motion equation of turbine
also in per unit values:

ṡ =
1

TJ

(
k

C2(µ0 + µ∆)2

Q3

ω2
0(1 + s)

− M̃G

)
,

where

k =
k̃

Ψb Ib

.

Note that the obtained system contains one control signal µ∆, which
corresponds to automatic speed governor of turbine.

5. Mathematical model of speed governor

Let us consider the simplified scheme of automatic speed governor of
turbine [13, pp.153-157], presented in Fig. 4. In this work parameters of
hydropower unit are chosen so that the speed governor does not get to sat-
uration. To simulate the case of saturation it is necessary to consider more
complex models of speed governors (see, e.g., [17–21]).

The governor has the deadband z, which is specified by the technical
conditions. The deadband of the hydraulic turbine is 30 mHz [13]. The
deadband in the per unit values is z = 0, 002.

The input signal is a relative deviation of rated angular speed s. After the
input signal passes through the deadband, one obtains the signal ηs, which
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Figure 4: Scheme of automatic speed governor of hydraulic turbine

corresponds to a signal of measuring device:

ηs = σχs(s) =





σ(s− z/2), s ≥ z/2,
σ(s+ z/2), s ≤ −z/2,
0, |s| < z/2,

where σ is a transmission coefficient of open-cycle control system.
The control signal η is formed by the formula

η = −ηs − µ̃∆,

where µ̃∆ is a signal of rigid negative feedback.
Then the control signal is cut off because of restriction on the velocity of

change of guide vanes position:

ρ = χρ(η) =





η, ρo ≤ η ≤ ρc,
ρo, η < ρo,
ρc, ρc < η,

where ρo, ρc are the maximum velocities of opening and closing the vanes.
A servomotor is presented by the integrator with time constant Tc [s].

The output value of servomotor is the relative displacement of guide vanes
µ̃∆. The stroke of servomotor has limit stops µmin, µmax, which correspond to
the minimum and maximum power of the turbine [13]. If guide vanes reach
limit stops, at which further displacement of vanes in the same direction is
not possible, then displacement of vanes is stopped. In some research works
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[20–23] it is recommended to model such saturation through direct feedback,
presented in Fig. 4 by the dashed line.

Consequently, the control signal takes the following form

ξ = ρ− ξρ(µ∆, µ0),

where

ξρ(µ∆, µ0) =





ρ, µ∆ + µ0 < µmin and ρ < 0,
ρ, µ∆ + µ0 > µmax and ρ > 0,
0, otherwise.

The equation of servomotor motion is as follows

˙̃µ∆ =
ρ− ξρ(µ∆, µ0)

Tc
, (5)

where

µ̃∆ = χµ(µ∆, µ0) =





µ∆, µmin − µ0 ≤ µ∆ ≤ µmax − µ0,
µmin − µ0, µ0 + µ∆ < µmin,
µmax − µ0, µ0 + µ∆ < µ.

In other words, the signal µ̃∆ is the signal µ∆, passed through the satu-
ration. Consequently, equation (5) can be rewritten in the form

µ̇∆ =
ρ− ξρ(µ∆, µ0)

Tc
,

µmin − µ0 ≤ µ∆ ≤ µmax − µ0.

Thus, the automatic speed governor of the turbine can be described by
the following differential equation

µ̇∆ =
χρ (−σχs(s)− χµ(µ∆, µ0)− ξρ(µ∆, µ0))

Tc
.

6. Complete mathematical model.

Using equations of each structural element of hydropower unit, one writes
the equations of hydropower unit with automatic speed governor in per unit

11

                  



values:

θ̇∆ = ω0 s,

ṡ =
1

TJ

( k

C2(µ0 + µ∆)2

Q3

ω2
0(1 + s)

−Ψdiq + Ψqid

)
,

Q̇ =
S

lρ

(
pu − pl −

Q2

C2(µ0 + µ∆)2

)
,

Ψ̇d = −ω0(1 + s)Ψq − ω0 r id + ω0 U sin(θ0 + θ∆),

Ψ̇q = ω0(1 + s)Ψd − ω0 r iq − ω0 U cos(θ0 + θ∆),

Tr Ψ̇r = Er − Eq,
Trd Ψ̇rd = −Erq,
Trq Ψ̇rq = Erd,

µ̇∆ =
χρ (−σχs(s)− χµ(µ∆, µ0)− ξρ(µ∆, µ0))

Tc
,

Ψd = xd id + Eq + Erq,

Ψq = xq iq − Erd,

Ψr =
x2
ad

xr
id + Eq +

xad
xr
Erq,

Ψrd =
x2
ad

xrd
id + Erq +

xad
xrd

Eq,

Ψrq =
x2
aq

xrq
iq − Erd.

(6)

In the case of the steady-state stability of hydropower unit the turbine
rotates with a constant angular speed (s = 0) and the generator produces
the constant power. Such an operation mode of hydropower unit corresponds
to a steady-state (operating) mode of power network.2 Note that for com-
putations the hydropower unit are often presented as a source of current or
electromotive force, the power of which corresponds to a power of generator.

Dynamical stability of hydropower units is considered in terms of main-
taining a given mode. This means that if sudden, significant changes of
network mode arises, then after the transient processes the output power of
hydropower unit must correspond to the required power. For example, after

2Some other load models are considered in [24, 25]
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short circuits in one or more power lines, blackouts, changes of the external
load, etc. Note that the hydropower unit in the considered processes can not
be represented as a source of current or electromotive force since dynamical
processes in this case have a significant effect both on a hydropower unit,
and on the network mode.

An operating mode of hydropower unit corresponds to the asymptoti-
cally stable equilibrium point of system (6). The equilibrium points are the
following

sst = 0 (i.e. ωst
∆ = 0), µst

∆ = 0,

θst
∆ = const, Qst = Cµ0

√
pu − pl,

Est
q = Er, Est

rq = 0, Est
rd = 0,

istd = − xq
r2 + xdxq

(− r

xq
U sin θ − U cos θ + Er),

istq = − r

r2 + xdxq
(−xd

r
U sin θ − U cos θ − Er),

Ψst
d = xdid + Er, Ψst

q = xqiq, Ψst
r =

x2
ad

xr
id + Er,

Ψst
rd =

x2
ad

xrd
id +

xad
xrd

Er, Ψst
rq =

x2
aq

xrd
iq.

The position of guide vanes µ0 is defined from the following equation, which
will be called the balance equation between the turbine and the generator
torques:

MT (µ0, ω0) = MG(U, θ0), (7)

where

MT (µ0, ω0) =
kC(pu − pl)

3
2

ω2
0

µ0,

MG(U, θ) =
r(xd − xq)
r2 + xdxq)2

(−U2xd sin2 θ + U2xq cos2 θ−

−r
2 − xdxq

r
U2 sin θ cos θ − Er

xdxq − r2

r
U sin θ+

+2xqErU cos θ)− Er
r2 + xdxq

(−xdU sin θ + rU cos θ)+

+
rxqEr(xd − xq)

(r2 + xdxq)2
− rE2

r

(r2 + xqxd)
.
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Graphical solutions of the balance equation depending on voltage change
in the power network are presented in Fig. 5. The parameter corresponding
to the voltage is represented as U = γUnom, where γ > 0.

1 1.5 2 2.5 3 3.5 4

4

2

0

2

6

x 10
7

q0
0 q

MT(m0)

MG(U, q)

1

2 3
4

4'

3'

2'

1'

Figure 5: Graphical solution of the balance equation depending on U . Lines 1, 1’ for
γ = 1, lines 2, 2’ for γ = 0.9, lines 3, 3’ for γ = 0.8, lines 4, 4’ for γ = 0.1

Equation (7) contains the input parameter U and the variable µ0. The
equality of turbine and generator torques is attained due to the variable µ0.
Recall that ω0 = 14, 954 rad/s, θ0 = arccos(0.9). Then µ0, depending on the
voltage U , is found from the balance equation (7) of torques of turbine and
generator. A plot of µ0 against U is presented in Fig. 6.

For sufficiently large and small values of U , the parameter µ0 falls on the
saturation that corresponds to the limit position of guide vanes. In particular
this mode corresponds to the start of hydropower unit. Then it is necessary
to consider a more complex balance equation

MT (µ0(U), ω0) = MG(U, θ0 + θ∆),

and the balance will be achieved with help of θ∆, i.e. θst∆ may not be equal
to zero. In Fig. 7 a plot of θ = θ0 + θ∆ against voltage U is shown.

If µ0 does not fall on the saturation, then θst
∆ = 2πk. Otherwise, θst

∆ =
C + 2πk, where C = const.

Since for µ0 = µmax (µ0 = µmin) there are restrictions on θ, one can get
again the saturation. In this case the balance will be achieved with the help
of ω∆.
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Figure 7: Plot of θ against U

However for the considered allowed voltage U the value µ0(U) does not
fall on the saturation, thus we do not consider the cases of achieving the
balance with the help of θ∆ and ω∆.

The instantaneous power is determined by the formula

P (U, θ(t)) = −3

2
(id(t)U sin(θ(t)) + iq(t)U cos(θ(t))) .
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Represent the instantaneous power in the following form

P (U, θ(t)) = P0 + P∆(U, θ(t)),

where P0 is the required (nominal) power, which is determined by the formula
P0 = P (U, θ0), P∆ is a deviation of the required power.

The change of U leads to the change of power. A plot of P against U is
shown in Fig. 6.
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Figure 8: A plot of P (U, θ0)

7. Calculation of generator and turbine parameters for the Sayano-
Shushenskaya hydropower plant

The radial-axial vertical hydraulic turbines RO-230/833-B-677, connected
with synchronous generator on the umbrella type SVF-1285/275-42 UHL4,
are installed at the Sayano-Shushenskaya hydropower plant.

The rest of the system parameters are determined as follows:

• Impedances of stator winding along the axis d: xad = xd − xs = 1.396,

• Impedances of stator winding along the axis q: xaq = xq − xs = 0.786,

• Impedances of field winding: xr =
x2ad

xd−x′d
= 1.6946,
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Table 1: Parameters of synchronous generators (SVF-1285/275-42 UHL4) [14]

Parameter Value
Rated angular 142.8 [rad/s]
speed, ω0

Stator resistance, r 0.0034 [p.u.]
Leakage inductive reactance 0.184 [[p.u.]
of stator winding, xs
Synchronous inductance 1.58 [p.u.]
along the axis d, xd
Synchronous inductance 0.97 [p.u.]
along the axis q, xq
Transient resistance, x′d 0.43 [p.u.]
Sub-transient reactance 0.3 [p.u.]
along the axis d, x′′d
Sub-transient reactance 0.31 [p.u.]
along the axis q, x′′q
Time constant 8.21 [s]
of field winding, Tr
Sub-transient time 0.143 [s]
of field winding, T ′′d
Moment of inertia, J 25.5 · 106 [kg ·m2]
Field voltage, Er 530 [V]
Stator voltage, U 15.75 [kV]

• Impedances of damper winding along the axis d: xrd = xad+
(

1
x′′d−xs

− 1
xad
− 1

xsr

)−1

=

1.6155,

• Impedances of damper winding along the axis q: xrq = xaq+
(

1
x′′q−xs −

1
xaq

)−1

=

0.9361,

• Resistance of field winding: xsr = xr − xad = 0.2986,

• Resistance of damper winding along the axis d: rrd =
(xrdxd−x2ad)xrd

ω0xdx
′
dT

′′
d

=

0.1246,

• Resistance of damper winding along the axis q: rrq =
xrqxq−x2aq
ω0xqT ′′

q
=

0.0823,
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• Time constant of damper winding along the axis d: Trd = xrd
ω0rrd

=
0.8666,

• Time constant of damper winding along the axis q: Trq = xrq
ω0rrq

=
0.7604.

Table 2: Parameters of turbine (RO-230/833-B-677)

Parameter Value
Length of penstock, l 212 [m]
Cross sectional diameter of penstock, D 7.5 [m]
Available water flow through turbine, Qnom 358 [m3/s]

Thus, for modeling the parameters of hydropower unit of the Sayano-
Shushenskaya hydropower plant were used ([14]): ω0 = 2π142.8/60 [rad/s],
r = 0.0034 [p.u.], xd = 1.58 [p.u.], xq = 0.97 [p.u.], Tr = 8.21 [s], J =
25.5 · 106 [kg · m2], Er = 530 [p.u.], C = 0.27 [m3

√
m/
√

kg], xad = 1.396
[p.u.], xaq = 0.786 [p.u.], xr = 1.6946 [p.u.], xrd = 1.6155 [p.u.], xrq = 0.9361
[p.u.], Trd = 0.8666 [s], Trq = 0.7604 [s], S = π/4 · 7.52 [m2], l = 192 [m],
ρ = 0.98·103[kg/m3], pu = 2.7·106 [Pa], pl = 0.35·106 [Pa], k = 40 [kg·m2/s2],
Qmax = 358 [m3/s].

8. Local analysis

Let us study the local stability of equilibrium points of system (6). It is
enough to carry out the analysis of stability on the interval [0, 2π) since the
solutions of the system are 2π-periodic. The equilibrium points with respect
to θ are defined from balance equation (7). System (6) may have 0, 1, 2, 3
or 4 equilibrium points on the interval [0, 2π).

Let us find the Jacobian matrix of the right-hand side of system (6). For
this purpose algebraic system of equations (2) is solved for id, iq, Eq, Erd,
Erq:

id = XdΨd −XrΨr +XrdΨrd, iq = YqΨq − YrqΨrq,

Eq = ZdΨd + ZrΨr − Zrd,Ψrd, Erd = PqΨq − PrqΨrq,

Erq = −QdΨd +QrΨr +QrdΨrd,

where

Xd =
a4 a6 − 1

b1

, Xr =
a6 − 1

b1

, Xrd =
1− a4

b1

,
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Yq =
1

a2 − a7

, Yrq =
1

a2 − a7

,

Zd =
(b1 − (a1 − a5) (a4 a6 − 1))

b1 (1− a6)
, Zr =

a5 − a1

b1

,

Zrd =
b1 + (a1 − a5) (1− a4)

b1 (1− a6)
,

Pq =
a7

a2 − a7

, Prq =
a2

a2 − a7

,

Qd =
(a1 − a3) (a4 a6 − 1)− b1

(b1 (1− a4)
,

Qr =
(a1 − a3) (a6 − 1)− b1

b1 (1− a4)
, Qrd =

a3 − a1

b1

,

a1 = xd, a2 = xq, a3 =
x2
ad

xr
, a4 =

xad
xr
,

a5 =
x2
ad

xrd
, a6 =

xad
xrd

, a7 =
x2
aq

xrq
,

b1 = (a1 − a5) (a4 − 1)− (a1 a4 − a3) (1− a6).

Then nonzero elements of the Jacobi matrix

J = {ji,k}i=1...9
k=1...9

of the right-hand side of system (6) in stationary point are defined by the
formulas:

j1,2 = ω0, j2,2 =
−k (Qst)3

TJ C2 ω2
0 µ

2
0

, j2,3 =
3 k (Qst)2

TJ C2 ω2
0 µ

2
0

,

j2,4 =
(Xd − Yq) Ψq + Yrq Ψrq

TJ
,

j2,5 =
−Yq Ψd +Xd Ψd −Xr Ψr +Xrd Ψrd

TJ
,

j2,6 =
−Xr Ψq

TJ
, j2,7 =

Xrd Ψq

TJ
, j2,8 =

Yrq Ψd

TJ
,

j2,9 =
2 k (Qst)3

TJ C2 µ3
0 ω

2
0

, j3,3 = − 2S Qst

l ρ C2 µ2
0

,
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j3,9 = −2S (Qst)2

l ρ C2 µ3
0

, j4,1 = ω0 U cos(θ0 + θst∆),

j4,2 = −ω0 Ψq, j4,4 = −ω0 r Xd, j4,5 = −ω0

j4,6 = ω0 r Xr, j4,7 = −ω0 r Xrd,

j5,1 = ω0 U sin(θ0 + θst∆), j5,2 = ω0 Ψd,

j5,4 = ω0, j5,5 = −ω0 r Yq, j5,8 = ω0 r Yrq,

j6,4 = −Zd
Tr
, j6,6 = −Zr

Tr
, j6,7 =

Zrd
Tr

,

j7,4 =
Qd

Trd
, j7,6 = −Qr

Trd
, j7,7 = −Qrd

Trd
,

j8,5 =
Pq
Trq

, j8,8 = −Prq
Trq

, j9,2 =
1

Tc
, j9,9 = − 1

Tc
.

In order to study the local stability of the equilibrium states of system
(6) relative to the voltage, the standard function lsqnonlin of the applica-
tion package MatLab was used3 This function is based on the least-squares
method, i.e. on an iterative approximation to equilibrium state, that allows
one to reduce the computational error and to define more exactly the inter-
val of instability of the system. The initial data for this method is putative
equilibrium state. Using this method the Jacobi matrix calculated at an equi-
librium is found, and then the Routh–Hurwitz stability criterion is applied.
Results are presented in Fig. 9: the equilibrium state θ = θ0 is unstable for
γ ∈ [γ1 ≈ 0.86; γ2 ≈ 0.9] and stable for other γ, the rest three equilibria
states are always unstable.

3First, the study of local stability of equilibria was carried out via eigenvalues of the
Jacobian matrix and the standard function eig from MatLab. It turned out that all
equilibrium states are unstable for all γ. Further, the stability criterion of Routh–Hurwitz
for the Jacobian matrix was applied. It showed that the equilibrium state θ = θ0 is
unstable for γ ∈ [γ1 ≈ 0.84; γ2 ≈ 1.17] and stable for other γ. The obtained results
of these methods can be explained by the fact that all calculations are made with some
numerical error and because of the substantial difference in magnitude.
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Figure 9: Stability of equilibrium states of system (6), defined by the least-squares method:
blue pluses are stable equilibrium states, red crosses are unstable equilibrium states

9. Analysis of transient processes

During the operation of hydropower unit the transient processes related
to sudden changes of the work parameters of the hydraulic unit often occur.
As a result, the following problem arises: to find parameters, under which the
hydropower unit pulls in the new operating mode after transient processes.
This problem is closely related to the limit (ultimate) load problem, which
arises in practice of operation of electrical motors after sudden change of
load torque on the shaft [26–31]. For its solution the equal-area method is
widely used in engineering practice. This method was used for some models
in the works of A.A. Yanko-Trinitskii [27]. In our work modern methods of
numerical integration of the system (Runge–Kutta method) are combined
with the analysis in the spirit of the classical ideas of Yanko–Trinitskii.

First the numerical analysis of transient processes was carried out with
the initial data taken from a small neighborhood of the equilibrium state.
It is verified whether the trajectory goes out from this neighborhood after a
long integration time (1000 s) or not. As a result of the study it was obtained
that the equilibrium state θ = θ0, corresponding to the operating mode, is
unstable for γ ∈ [γ1 ≈ 0.85; γ2 ≈ 0.91]. The received interval of instability is
consistent with the local analysis and corresponds to the interval [S1, S2] in

21

                  



Fig. 1. It can be defined more exactly due to coefficient k, corresponding
the turbine used at the Sayano-Shushenskaya hydropower plant.

Further, the numerical analysis of transient processes was carried out with
various initial data. For values γ, corresponding the local stability, hidden
oscillations4 are not found numerically and all simulated trajectories attract
to the equilibrium states. For values γ, corresponding to the local instability,
simulated trajectories attract to self-excited periodic solutions. The local
bifurcation, in which an equilibrium loses stability and a small stable limit
cycle is born, occurs in considered multidimensional system.

According to [2], immediately before the accident the power of the second
hydropower unit was 475 MW at a head of 212 meters (i.e., it worked in the
not recommended zone II (Fig. 1). On the day of the accident the power of
the second hydropower unit was reduced in accordance with the commands
of the group controller of active and reactive power.

Below three cases are modeled:

1. operation of hydropower unit at the rated voltage (Fig. 1, point A)
with initial data
(θ∆, s, Q,Ψd,Ψq,Ψr,Ψrd,Ψrq, µ∆) = (0, 1, 0, 0, 0, 0, 0, 0, 0),

2. reducing the power of hydropower unit, that corresponds to reducing
voltage to 0.89 of the rated voltage (Fig. 1, point B),

4An oscillation can generally be easily numerically localized if the initial data from
its open neighborhood in the phase space lead to a long-term behavior that approaches
the oscillation. Therefore, from a computational perspective, it is natural to suggest the
following classification of attractors [10, 32, 33], which is based on the simplicity of finding
their basins of attraction in the phase space: An attractor is called a self-excited attractor
if its basin of attraction intersects with any open neighborhood of an equilibrium, other-
wise it is called a hidden attractor. For a self-excited attractor its basin of attraction
is connected with an unstable equilibrium and, therefore, (standard computational proce-
dure) self-excited attractors can be localized numerically by the standard computational
procedure: by constructing a solution using initial data from an unstable manifold in a
neighborhood of an unstable equilibrium, and observing how it is attracted, and visualizing
the oscillation. In contrast, the basin of attraction for a hidden attractor is not connected
with any equilibrium. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of the multistability: coexis-
tence of attractors in multistable systems). Well known examples of the hidden oscillations
are nested limit cycles in 16th Hilbert problem (see, e.g., [32, 34, 35]) and counterexam-
ples to the Aizerman and Kalman conjectures on the absolute stability of nonlinear control
systems [32, 36–38]. Hidden oscillations in the models of electrical machines are discussed,
e.g., in [32, 39–42]
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3. reducing power of hydropower unit, that corresponds to reducing volt-
age to 0.7 of the rated voltage (Fig. 1, point C).

The results of modeling have shown that at the rated voltage the trajec-
tory of the system after transient processes is attracted to the equilibrium
state, which corresponds to operating mode of hydropower unit (Figs. 10,
11). Further at some instant the voltage is reduced to 0.89 of the rated
voltage. In this case the trajectory of the system after transient processes is
attracted to the stable limit cycle (Figs. 12, 13), i.e., vibrations are arisen
in the hydropower units. Then the voltage is reduced to 0.7 of the rated
voltage. The trajectory of the system after transient processes is attracted
to equilibrium state (Figs. 14, 15).
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Figure 10: Stable equilibrium in the mathematical model of hydropower unit, U = 15.75 ·
103 [V]

23

                  



−1

−0.5

0

0.5

1

1.5

−4

−3

−2

−1

0

1

2

3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

θ∆ − deviation of 

s − relative frequency deviation

operating angle

m
D
 −

 d
e
v
ia

ti
o
n
 o

f 
g
iv

e
n
 v

a
n
e
s
 p

o
s
it

io
n

qD= 0

s= 1
mD= 0

stable equilibrium state

Figure 11: Stable equilibrium in the mathematical model of hydropower unit – projection
onto (θ∆, µ∆, s), U = 15.75 · 103 [V]
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Figure 13: Limit cycle in the mathematical model of hydropower unit – projection onto
(θ∆, µ∆, s), U = 0.89 · 15.75 · 103 [V]
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25

                  



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5
−1

−0.5
0

0.5
1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

s − relative

θ
∆
− deviation of operating angle

frequency 
deviation

m
D
 −

 d
e
v
ia

ti
o
n
 o

f 
g
iv

e
n
 v

a
n
e
s
 p

o
s
it

io
n stable equilibrium state

qD=-0.1727

s=-0.1652
mD=-0.0149

Figure 15: Stable equilibrium in the mathematical model of hydropower unit – projection
onto (θ∆, µ∆, s), U = 0.7 · 15.75 · 103 [V]

From Fig. 9, it is clear that the maximum value of the oscillation ampli-
tude is reached at U = 0.89Unom.
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Figure 16: Amplitude of oscillations for different voltages U = βUnom (β - percent of
capacity)

Thus, the results of modeling are sufficiently consistent with the full-
scale tests carried out for hydropower units of the Sayano-Shushenskaya hy-
dropower plant.
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10. Conclusions

In this work we study the stability and demonstrate the birth of os-
cillations for a closed-form nonlinear mathematical model of the Sayano-
Shushenskaya hydropower plant. The study follows the line of the classical
control theory approach for analysis of such systems developed by famous
academicians J.C. Maxwell, I.A. Vishnegradsky, A.A. Andronov, and F. Tri-
comi.

This work was motivated by the accident happened on the Sayano-Shu-
shenskaya hydropower plant in 2009 year. The need for analysis of the occur-
rence of vibrations, caused by nonlinearity of the HPP model, and problems
in the control system was discussed at a conference organized by the RusHy-
dro company, which is the operator of the Sayano-Shushenskaya HPP [43].
The occurrence of vibrations due to the nonlinearity of the entire model,
shown in this paper, complements other reasons of vibrations at the Sayano-
Shushenskaya HPP discussed at the meeting of the Department of Energy,
Engineering, Mechanics and Control Processes of the Russian Academy of
Sciences [44]. Demonstrated examples of the occurrence of vibrations have
to be taken into account for fuhrer development of the Sayano-Shushenskaya
hydropower plant control systems.
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