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1 Introduction
The class of p-admissible weights for Sobolev spaces and di�erential equations onRn was introduced in [12].
The de�nition was initially based on four conditions, but Theorem 2 in [10] and Theorem 5.2 in [13] reduce
them to the following two conditions, see also [12, 2nd ed., Section 20].

De�nition 1.1. Ameasure µ onRn is p-admissible, 1 ≤ p < ∞, if it is doubling and supports a (1, p)-Poincaré
inequality. If dµ = w dx, we also say that the weight w is p-admissible.

Here µ supports a (q, p)-Poincaré inequality, 1 ≤ q < ∞, 1 ≤ p < ∞, if there is a constant C > 0 such that ∫
–

B(x,r)

|u − uB(x,r)|
q dµ


1/q

≤ Cr

 ∫
–

B(x,r)

|∇u|p dµ


1/p

for every u ∈ C1(Rn), every x ∈ Rn and all r > 0.
In [12, Section 15], it was shown that Muckenhoupt Ap-weights are p-admissible, but the converse is not

true in Rn, n ≥ 2, see also [6]. Surprisingly, on the real line R, any p-admissible measure is actually given
by an Ap-weight, see [7]. Very recently, it was also shown in [5] that a measure on R is locally p-admissible
if and only if it is given by a local Ap-weight. Moreover, on Rn , p-admissible measures can be characterized
by a stronger version of the Poincaré inequality, the (q, p)-Poincaré inequality with q > p. Under doubling,
the (1, p)-Poincaré inequality improves to a (q, p)-Poincaré inequality with q > p by [10] and any measure
satisfying (q, p)-Poincaré inequality with q > p is a doubling measure, see [1] and [17].

In the recent years, analysis on regular trees has been under development, see [3, 18–21]. Given a K-
regular tree X (a rooted K-ary tree), K ≥ 1, we introduce a metric structure on X by considering each edge of
X to be an isometric copy of the unit interval. Then the distance between two vertices is the number of edges
needed to connect them and there is a unique geodesic that minimizes this number. Let us denote the root
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by 0. If x is a vertex, we de�ne |x| to be the distance between 0 and x. Since each edge is an isometric copy of
the unit interval, we may extend this distance naturally to any x belonging to an edge.

Write d|x| for the length element on X and let µ : [0,∞) → (0,∞) be a locally integrable function. We
abuse notation and refer also to the measure generated via dµ(x) = µ(|x|)d|x| by µ. Further, let λ : [0,∞) →
(0,∞) be locally integrable and de�ne a distance via ds(x) = λ(|x|)d|x| by setting d(z, y) =

∫
[z,y] ds(x) when-

ever z, y ∈ X and [z, y] is the unique geodesic between z and y. We abuse the notation and let µ(x) and λ(x)
denote µ(|x|) and λ(|x|), respectively, for any x ∈ X, if there is no danger of confusion. Throughout this paper,
we assume additionally that the diameter of X is in�nity.

Our space (X, d, µ) is a metric measure space and hence one may de�ne a Newtonian Sobolev space
N1,p(X) := N1,p(X, d, µ) based on upper gradients [14] and [22]. It is then natural to ask if we can characterize
the p-admissibility of a given µ, see Section 2.2 for the de�nitions. To do so, we introduce the following Ap-
conditions on regular trees.

Before continuing, we �rst introduce some notations. For any x ∈ X and r > 0, we denote by x̄r the point
in [0, x] with d(x̄r , x) = min{r, d(0, x)} and denote by xr a point in X such that x ∈ [0, xr] with d(xr , x) = r.
Hence x̄r is an ancestor of x and xr is a descendant of x, see Section 2.1 for more relations between points on
regular trees. Also let

F(x, r) = {y ∈ X : x ∈ [0, y], d(x, y) < r}

be the downward directed “half ball". It is perhapsworth tomention that the notations x̄r and F(x, r) coincide
with the notation “z" and F(x, r) in [3, Lemma 3.2], respectively.

Given 1 < p < ∞, we set

Ap(x, r) = µ(F(x̄r , 2r))
2r ·

1
r

∫
[x,xr ]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1

(1.1)

and we de�ne
A1(x, r) = µ(F(x̄r , 2r))

2r · ess supw∈[x,xr ]
λ(w)

K j(w)−j(x)µ(w)
(1.2)

where j(w) and j(x) are the smallest integers such that j(w) ≥ |w| and j(x) ≥ |x|, respectively. Notice that
Ap(x, r) is independent of the choice of xr among the points y with x ∈ [0, y] and d(y, x) = r.

De�nition 1.2. Let 1 ≤ p < ∞ and X be a K-regular tree with distance d and metric µ. We say that µ satis�es
the Ap-condition if

sup
{
Ap(x, r) : x ∈ X, r > 0

}
< ∞. (1.3)

We say that µ satis�es the Ap-condition far from 0 if

sup
{
Ap(x, r) : x ∈ X, 0 < r ≤ 8 d(0, x)

}
< ∞. (1.4)

If K = 1 and λ ≡ 1, then the 1-regular tree (X, d, µ) is isometric to the half line (R+, dx, µ dx) and our Ap-
condition (1.3) is equivalent to µ being a Muckenhoupt Ap-weight, see [5–7, 12] for more information about
Muckenhoupt Ap-weights. Above, we call (1.4) “Ap-condition far from 0” since 0 < r ≤ 8 d(0, x) is equivalent
to d(0, x) ≥ r/8 > 0, which means that x has to be “far” away from the root 0 in terms of r.

The main result of this paper is the following characterization of p-admissibility on regular trees.

Theorem 1.3. Let 1 ≤ p < ∞ and X be a K-regular tree with distance d and measure µ. Then we have:

1. For K = 1, µ is p-admissible if and only if µ satis�es the Ap-condition far from 0.
2. For K ≥ 2, µ is p-admissible if and only if µ satis�es the Ap-condition.

The characterizations for K = 1 and K ≥ 2 are di�erent. For K ≥ 2, a K-regular tree has a kind of symmetry
property with respect to the root 0, since the root hasmore than one branch. But for K = 1, the root 0 behaves
like an end point.
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Readers who are familiar with the results on the real lineRmay regard our K-regular tree with K ≥ 2 as a
generalized model of the real line R. As a byproduct, a slightly modi�ed proof of Theorem 1.3 for K ≥ 2 gives
a new proof of [7, Theorem 2]. On the other hand, for K = 1, one may connect the result on 1-regular trees
with the result on bounded intervals (see [5, Theorem 4.6] for bounded intervals). Hence Theorem 1.3 is new
and interesting even when K = 1 and λ ≡ 1, since it gives a full characterization of p-admissibility on the
half line R+.

In [5, Example 4.7], one can �nd a weight ω on the interval [0, 1] which is 1-admissible but not a Muck-
enhoupt A1-weight on (0, 1). By a suitable constant extension of ω on (1,∞), we obtain a weight ω′ which is
1-admissible but not a Muckenhoupt A1-weight on R+. As evidence towards Theorem 1.3 for K = 1, it is easy
to check that the extended weight ω′ on R+ satis�es the A1-condition far from 0, i.e., condition (1.4) holds.
We refer to [5] and [8] for more details.

Let us close this introduction by pointing out that the constant “8” in Ap-condition far from 0 (1.4) is not
necessary. Actually replacing 8 by any constant∞ > c > 1, Theorem 1.3 for K = 1 holds. Here the requirement
of c > 1 is sharp in the sense that there exists an example (R+, dx, µ dx) such that (1.4) holds for any positive
constant c′ < 1 replacing 8, but µ is not even doubling, see Remark 4.5 and Example 4.6.

The paper is organized as follows. In section 2, we introduce regular trees, p-admissibility andNewtonian
spaces on our tree. We give the proof of Theorem 1.3 for K ≥ 2 in Section 3 and the proof of Theorem 1.3 for
K = 1 is given in Section 4.

2 Preliminaries
Throughout this paper, the letter C (sometimes with a subscript) will denote positive constants; if C depends
on a, b, . . ., we write C = C(a, b, . . .).

2.1 Regular trees and their boundaries

A graph G is a pair (V , E), where V is a set of vertices and E is a set of edges. We call a pair of vertices x, y ∈ V
neighbors if x is connected to y by an edge. The degree of a vertex is the number of its neighbors. The graph
structure gives rise to a natural connectivity structure. A tree is a connected graph without cycles. A graph
(or tree) is made into a metric graph by considering each edge as a geodesic of length one.

We call a tree X a rooted tree if it has a distinguished vertex called the root, which we will denote by 0.
The neighbors of a vertex x ∈ X are of two types: the neighbors that are closer to the root are called parents of
x and all other neighbors are called children of x. Each vertex has a unique parent, except for the root itself
that has none.

A K-ary tree is a rooted tree such that each vertex has exactly K children. Then all vertices except the root
of a K-ary tree have degree K + 1, and the root has degree K. In this paper we say that a tree is regular if it is a
K-ary tree for some K ≥ 1.

For x ∈ X, let |x| be the distance from the root 0 to x, that is, the length of the geodesic from 0 to x,
where the length of every edge is 1 and we consider each edge to be an isometric copy of the unit interval.
The geodesic connecting two points x, y ∈ V is denoted by [x, y], and its length is denoted |x − y|. If |x| < |y|
and x lies on the geodesic connecting 0 to y, we write x < y and call y a descendant of the point x. More
generally, we write x ≤ y if the geodesic from 0 to y passes through x, and in this case |x − y| = |y| − |x|.

On our K-regular tree X, we de�ne the metric ds and measure dµ by setting

dµ = µ(|x|) d|x|, ds(x) = λ(|x|) d|x|,

where λ, µ : [0,∞) → (0,∞) with λ, µ ∈ L1
loc([0,∞)). Here d |x| is the measure which gives each edge

Lebesgue measure 1, as we consider each edge to be an isometric copy of the unit interval and the vertices



Khanh Ngoc Nguyen and Zhuang Wang, Admissibility versus Ap-Conditions on Regular Trees | 95

are the end points of this interval. Hence for any two points z, y ∈ X, the distance between them is

d(z, y) =
∫

[z,y]

ds(x) =
∫

[z,y]

λ(|x|) d|x|,

where [z, y] is the unique geodesic from z to y in X.
We abuse the notation and let µ(x) and λ(x) denote µ(|x|) and λ(|x|), respectively, for any x ∈ X, if there

is no danger of confusion.
Throughout the paper, we let

B(x, r) = {y ∈ X : d(x, y) < r}

denote the (open) ball in X with center x and radius r, and let σB(x, r) = B(x, σr). Also

F(x, r) = {y ∈ X : x ∈ [0, y], d(x, y) < r}

is the downward directed half ball. For any x ∈ X and r > 0, we denote by x̄r the point in [0, x] with d(x̄r , x) =
min{r, d(0, x)} and denote by xr a point in X such that x ∈ [0, xr] with d(xr , x) = r. Hence x̄r is the ancestor
of any point y ∈ B(x, r). Usually, the choice of xr is not unique, but we will not specify it since the results and
proofs in this paper are independent of the choice of xr.

2.2 Admissibility

Let u ∈ L1
loc(X). We say that a Borel function g : X → [0,∞] is an upper gradient of u if

|u(z) − u(y)| ≤
∫
γ

g ds (2.1)

whenever z, y ∈ X and γ is the geodesic from z to y. In the setting of a tree any recti�able curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient de�ned above is
equivalent to the de�nition which requires that inequality (2.1) holds for all recti�able curves with end points
z and y. In [9, 15], the notion of a p-weak upper gradient is given. A Borel function g : X → [0,∞] is called a
p-weak upper gradient of u if (2.1) holds on p-a.e. curve. Here we say that a property holds for p-a.e. curve if it
fails only for a recti�able curve family Γ with zero p-modulus, i.e., there is Borel function 0 ≤ ρ ∈ Lp(X) such
that

∫
γ
ρ ds = ∞ for every curve γ ∈ Γ. We refer to [9, 15] for more information about p-weak upper gradients.

The notion of upper gradients is due to Heinonen and Koskela [14]; we refer interested readers to [2, 9,
15, 22] for a more detailed discussion on upper gradients.

The Newtonian space N1,p(X), for 1 ≤ p < ∞, is de�ned as the collection of the functions for which the
given norm

‖u‖N1,p(X) :=

∫
X

|u|pdµ + inf
g

∫
X

|g|pdµ

1/p

is �nite, where the in�mum is taken over all p-weak upper gradients g of u.
Ameasure µ is doubling if there exists a positive constant Cd such that for all balls B(x, r) with x ∈ X and

r > 0,
µ(B(x, 2r)) ≤ Cdµ(B(x, r)), (2.2)

where the constant Cd is called the doubling constant.
(X, d, µ) supports a (1, p)-Poincaré inequality if there exist positive constants CP > 0 and σ ≥ 1 such that

for all balls B(x, r) with x ∈ X and r > 0, every integrable function u on σB(x, r) and all upper gradients g,

∫
–

B(x,r)

|u − uB(x,r)| dµ ≤ CPr

 ∫
–

σB(x,r)

gp dµ


1/p

(2.3)
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where uB :=
∫
−Bu dµ = 1

µ(B)
∫
B u dµ. We say that µ is p-admissible if µ is a doubling measure and (X, d, µ)

supports a (1, p)-Poincaré inequality.
The doubling property (2.2) and (1, p)-Poincaré inequality (2.3) can be de�ned on generalmetricmeasure

spaces. In particular, on Rn, in view of [16, Theorem 2] or [15, Theorem 8.4.2], the (1, p)-Poincaré inequality
(2.3) is equivalent to the (1, p)-Poincaré inequality given in the Introduction. It perhaps worth to point out
that, since our K-regular trees are geodesic spaces, if µ is p-admissible, the dilation constant σ in (2.3) can be
taken to 1, see [10] and [11].

3 Proof of Theorem 1.3 for K ≥ 2

In this section, we give the proof of Theorem 1.3 for K ≥ 2. To do so, we establish the following lemmas.

Lemma 3.1. Let 1 ≤ p < ∞ and X be a K-regular tree with distance d and measure µ where K ≥ 1. Assume that
µ satis�es the Ap-condition. Then µ is p-admissible.

Proof. For 1 ≤ p < ∞, let
CA := sup

{
Ap(x, r) : x ∈ X, r > 0

}
.

Since µ satis�es the Ap-condition, 0 < CA < ∞.
Case p = 1: We �rst show that µ is a doubling measure. Let x ∈ X and r > 0 be arbitrary. Notice that

A1(x, 2r) ≤ CA. Then it follows from (1.2) that

ess supw∈[x, x2r ]
λ(w)

K j(w)−j(x) µ(w)
≤ 4rCA
µ(F(x̄2r , 4r)) .

Hence

r =
∫

[x,xr ]

ds =
∫

[x,xr ]

(
K j(w)−j(x)µ(w)

λ(w)

)(
λ(w)

K j(w)−j(x)µ(w)

)
ds(w)

≤

 ∫
[x,xr ]

K j(w)−j(x)µ(w)
λ(w) ds(w)

( 4rCA
µ(F(x̄2r , 4r))

)
. (3.1)

Notice that ∫
[x,xr ]

K j(w)−j(x)µ(w)
λ(w) ds(w) = µ(F(x, r)) ≤ µ(B(x, r))

and that
µ(F(x̄2r , 4r)) ≥ µ(B(x, 2r)).

It follows from estimate (3.1) that
r ≤ 4CAr

µ(B(x, r))
µ(B(x, 2r)) ,

which proves that µ is a doubling measure with doubling constant 4CA since r > 0 and the pair (x, r) is
arbitrary.

Next we prove that (X, d, µ) supports a (1, 1)-Poincaré inequality. Consider an arbitrary ball B(x, r) with
x ∈ X and r > 0. By the triangle inequality, we obtain that∫

–
B(x,r)

|u − uB(x,r)|dµ ≤ 2
∫
–

B(x,r)

|u(y) − u(x̄r)|dµ(y) (3.2)
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for the left-hand side of our Poincaré inequality. By the de�nition of upper gradients and the Fubini theorem,
for any upper gradient gu of u, the right-hand side of (3.2) rewrites as

2
∫
–

B(x,r)

|u(y) − u(x̄r)|dµ(y) ≤ 2
∫
–

B(x,r)

∫
[x̄r ,y]

gu(w)ds(w)dµ(y)

= 2
∫
–

B(x,r)

gu(w) λ(w)
µ(w)

 ∫
B(x,r)

χ[x̄r ,y](w) dµ(y)

 dµ(w)

= 2
∫
–

B(x,r)

gu(w) λ(w)
µ(w)µ({y ∈ B(x, r) : w ∈ [0, y]})dµ(w). (3.3)

Here the last equality holds since χ[x̄r ,y](w) is not zero only if w ∈ [0, y].
Since the measure µ satis�es the A1-condition, A1(x̄r , 2r) < CA. It follows from (1.2) that

µ(F(x̄3r , 4r))
4r · ess supw∈[x̄r ,xr ]

λ(w)
K j(w)−j(x̄r)µ(w)

≤ CA .

Combining with the fact that K j(x̄
3r) ≤ K j(x̄

r), we obtain that

λ(w)
µ(w)µ({y ∈ B(x, r) : w ∈ [0, y]}) = λ(w)

µ(w)

∫
{y∈[w,wr ]∩B(x,r)}

K j(y)−j(w)µ(y)
λ(y) ds(y)

≤ λ(w)K j(x̄
3r)

µ(w)K j(w)

∫
[x̄3r ,xr ]

K j(y)−j(x̄3r)µ(y)
λ(y) ds(y)

≤ λ(w)
µ(w)K j(w)−j(x̄r) µ(F(x̄3r , 4r)) ≤ 4CAr (3.4)

for any w ∈ B(x, r). Combining (3.2)-(3.4), yields∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ 8CAr
∫
–

B(x,r)

gu dµ

for all balls B(x, r).
Case p > 1: Let us �rst prove that µ is a doubling measure. Let B(x, r) be an arbitrary ball in X. Since µ

satis�es the Ap-condition, we have Ap(x, 2r) ≤ CA, and hence

µ(F(x̄2r , 4r))
4r ·

 1
2r

∫
[x,x2r ]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1

≤ CA . (3.5)

A simple calculation using the Hölder inequality shows that

r =
∫

[x,xr ]

(
K j(w)−j(x)µ(w)

λ(w)

)1/p(
K j(w)−j(x)µ(w)

λ(w)

)−1/p

ds(w)

≤

 ∫
[x,xr ]

K j(w)−j(x)µ(w)
λ(w) ds(w)


1/p  ∫

[x,xr ]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1
p

≤ µ(F(x, r))1/p(2r)
p−1
p

 1
2r

∫
[x,x2r ]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1
p

.



98 | Khanh Ngoc Nguyen and Zhuang Wang, Admissibility versus Ap-Conditions on Regular Trees

Inserting (3.5) into the above estimate yields

r ≤ (2r)
p−1
p µ(F(x, r))1/p

[
µ(F(x̄2r , 4r))

4rCA

] −1
p

= CA1/p2
p+1
p r
(

µ(F(x, r))
µ(F(x̄2r , 4r))

)1/p
. (3.6)

Note that µ(F(x, r)) ≤ µ(B(x, r)) and µ(F(x̄2r , 4r)) ≥ µ(B(x, 2r)). Then the estimate (3.6) implies that

r ≤ CA1/p2
p+1
p r
(
µ(B(x, r))
µ(B(x, 2r))

)1/p
,

which gives that µ is a doubling measure with doubling constant CA2p+1, since r > 0 and B(x, r) is arbitrary.
Next we show that (X, d, µ) supports a (1, p)-Poincaré inequality. Suppose B(x, r) is an arbitrary ball with

center x ∈ X and radius r > 0. Since the measure µ satis�es the Ap-condition, then Ap(x̄r , 2r) < CA. It follows
from (1.1) that

µ(F(x̄3r , 4r))
4r ·

 1
2r

∫
[x̄r ,xr ]

(
K j(w)−j(x̄r)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1

≤ CA . (3.7)

Recall that the left-hand side of our Poincaré inequality can be estimated by (3.3). A simple calculation
shows that

λ(w)
µ(w)µ({y ∈ B(x, r) : w ∈ [0, y]}) = λ(w)

µ(w)

∫
{y∈[w,wr ]∩B(x,r)}

K j(y)−j(w)µ(y)
λ(y) ds(y)

≤ λ(w)
µ(w)K j(w)−j(x̄r)

∫
[x̄r ,xr ]

K j(y)−j(x̄r)µ(y)
λ(y) ds(y)

= λ(w)
µ(w)K j(w)−j(x̄r) µ(F(x̄r , 2r)) (3.8)

for any point w ∈ B(x, r). Inserting the estimate (3.8) into (3.3) yields that

∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ 2

 ∫
–

B(x,r)

gu(w) λ(w)
µ(w)K j(w)−j(x̄r) dµ(w)

 µ(F(x̄r , 2r)).

Applying the Hölder inequality for the right-hand side of the above inequality, it follows that

∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ 2

 ∫
–

B(x,r)

gupdµ


1/p  ∫

–
B(x,r)

(
λ(w)

K j(w)−j(x̄r)µ(w)

) p
p−1

dµ(w)


p−1
p

µ(F(x̄r , 2r)). (3.9)

By using the estimate (3.7), we obtain that ∫
–

B(x,r)

(
λ(w)

K j(w)−j(x̄r)µ(w)

) p
p−1

dµ(w)


p−1
p

µ(F(x̄r , 2r)) ≤ µ(F(x̄r , 2r))
µ(B(x, r))

p−1
p

 ∫
F(x̄r ,2r)

(
λ(w)

K j(w)−j(x̄r)µ(w)

) p
p−1

dµ(w)


p−1
p

≤ µ(F(x̄r , 2r))
µ(B(x, r))

p−1
p

(2r)
p−1
p

 1
2r

∫
[x̄r ,xr ]

(
K j(w)−j(x̄r)µ(w)

λ(w)

) 1
1−p

ds(w)


p−1
p

≤ µ(F(x̄r , 2r))
µ(B(x, r))

p−1
p

(2r)
p−1
p

[
µ(F(x̄3r , 4r))

4rCA

] −1
p

=CA1/p2
p+1
p r µ(F(x̄r , 2r))
µ(B(x, r))

p−1
p µ(F(x̄3r , 4r))1/p

. (3.10)
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Note that F(x̄r , 2r)) ⊂ B(x, 4r) and that B(x, r) ⊂ F(x̄3r , 4r). Since µ is a doubling measure with doubling
constant CA2p+1, we have that

µ(F(x̄r , 2r))
µ(B(x, r))

p−1
p µ(F(x̄3r , 4r))1/p

≤ µ(B(x, 4r))
µ(B(x, r)) ≤ (CA2p+1)2.

Inserting the above estimate into the estimate (3.10), we have ∫
–

B(x,r)

(
λ(w)

K j(w)−j(x̄r)µ(w)

) p
p−1

dµ(w)


p−1
p

µ(F(x̄r , 2r)) ≤ CA2+ 1
p 2

p+1
p +2(p+1)r. (3.11)

Thanks to the estimates (3.9) and (3.11), we obtain

∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ CA
2+ 1

p 2
1
p +2p+4r

 ∫
–

B(x,r)

gup dµ


1
p

for all balls B(x, r).

Lemma 3.2. Let 1 ≤ p < ∞ and X be a K-regular tree with distance d and measure µ where K ≥ 2. Suppose
that µ is p-admissible. Then µ satis�es the Ap-condition.

Proof. Let x ∈ X and r > 0 be arbitrary. Let ε be an arbitrary positive number. Let x1 ∈ X be a closest vertex
of x with |x1| > |x|. Then we de�ne

Tx1 := {y ∈ X : x1 ∈ [0, y]} and T1 := [x, x1] ∪ Tx1

Since µ is p-admissible, we may assume that µ satis�es the doubling condition (2.2) and the (1, p)-Poincaré
inequality (2.3).

Case p = 1: Let

m = ess infw∈[x,x r
2

]
K j(w)−j(x)µ(w)

λ(w) .

In order to test the (1, 1)-Poincaré inequality (2.3), we de�ne

u(y) =


0 if y ∈ X \ T1,∫

[x,y] χEε (w)ds(w) if y ∈ F(x, r/2) ∩ T1,
a otherwise

where Eε :=
{
w ∈ F(x, r2 ) : K j(w)−j(x)µ(w)

λ(w) < m + ε
}
and a =

∫
[x,x r

2
] χEε (w) ds(w). Note that Eε is a non-empty set

by the de�nition of m and that
r > a =

∫
[x,x r

2
]

χEε (w)ds(w) > 0.

By the de�nition of u, we obtain that gu := χEε is an upper gradient of u. Hence the right-hand side of the
(1, 1)-Poincaré inequality (2.3) is

CPr
∫
–

σB(x,r)

gu dµ = CPr
∫
–

σB(x,r)

χEε (w)dµ(w)

= CPr
µ(σB(x, r))

∫
F(x,r/2)

χEε (w)dµ(w)

= CPr
µ(σB(x, r))

∫
[x,x r

2
]

χEε (w)K
j(w)−j(x)µ(w)
λ(w) ds(w).
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Here the second equality holds since χEε (w) is non-zero only if w ∈ F(x, r/2). Note that µ(σB(x, r)) ≥
µ(B(x, r)). Then it follows from the de�nition of Eε that

CPr
∫
–

σB(x,r)

gu dµ ≤
CPr

µ(B(x, r)) (m + ε)a. (3.12)

Let
E1 := B(x, r) \ T1 and E2 := T1 ∩ F(x, r) \ F(x, r/2). (3.13)

Note that u ≡ 0 on E1 and u ≡ a on E2. Hence, at least one of the following holds:

|u − uB(x,r)| ≥
a
2 on E1 or |u − uB(x,r)| ≥

a
2 on E2. (3.14)

Since K ≥ 2, then E1 and E2 are not empty. Notice that Kµ(E2) ≥ µ(F(x, r) \ F(x, r/2)). Furthermore, the
doubling property of µ gives

Kµ(E2) ≥ µ(F(x, r) \ F(x, r/2)) ≥ µ(B(x 3r
4
, r/4)) ≥ Cd−4µ(B(x 3r

4
, 4r)) ≥ Cd−4µ(B(x, r))

and
µ(E1) ≥ µ(B(z, r/2)) ≥ Cd−3µ(B(z, 4r)) ≥ Cd−3µ(B(x, r)),

for some z ∈ ̸ T1 with d(x, z) = r/2. Consequently,

min{µ(E1), µ(E2)} ≥ Cd−4K−1µ(B(x, r)). (3.15)

Then it follows from (3.14) and (3.15) that the left-hand side of the (1, 1)-Poincaré inequality (2.3) is

∫
–

B(x,r)

|u − uB(x,r)|dµ ≥
1

µ(B(x, r)) max


∫
E1

|u − uB(x,r)|dµ,
∫
E2

|u − uB(x,r)|dµ


≥ a

2Cd4K
. (3.16)

Combining the estimates (3.12) and (3.16), we obtain that

a
2Cd4K

≤ CPr
µ(B(x, r)) (m + ε)a.

Since a > 0 and µ(F(x̄ r
2 , r)) ≤ µ(B(x, 2r)) ≤ Cdµ(B(x, r)), it follows that

0 < µ(F(x̄ r
2 , r))
r ≤ 2Cd5CPK · (m + ε).

Since ε and the pair (x, r) are arbitrary, letting ε → 0, the A1-condition holds.
Case p > 1:We de�ne

u(y) =


0 if y ∈ X \ T1,∫

[x,y]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p ds(w) if y ∈ F(x, r/2) ∩ T1,

b ortherwise

where

b =
∫

[x,x r
2

]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w).

By the de�nition of u, we obtain that

gu(y) :=
(
K j(y)−j(x)µ(y)

λ(y)

) 1
1−p

χF(x,r/2)(y) (3.17)
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is an upper gradient of u. Note that u ≡ 0 on E1 and u ≡ b on E2 where E1 and E2 are de�ned as for p = 1.
Therefore, by an argument similar to the one in p = 1 case, the left-hand side of the (1, p)-Poincaré inequality
(2.3) can be estimated as ∫

–
B(x,r)

|u − uB(x,r)|dµ ≥
b

2Cd4K
. (3.18)

For the right-hand side, we have that

CPr

 ∫
–

σB(x,r)

gup dµ


1/p

= CPr
µ(σB(x, r))1/p

 ∫
F(x,r/2)

(
K j(y)−j(x)µ(y)

λ(y)

) p
1−p

dµ(y)


1/p

= CPr
µ(σB(x, r))1/p

 ∫
[x,x r

2
]

(
K j(y)−j(x)µ(y)

λ(y)

) 1
1−p

ds(y)


1/p

= CPr
µ(σB(x, r))1/p b

1/p .

Since µ(σB(x, r)) ≥ µ(B(x, r)), it follows that

CPr

 ∫
–

σB(x,r)

gup dµ


1/p

≤ CPr
µ(B(x, r))1/p b

1/p . (3.19)

Combining (3.18) and (3.19), we obtain that

b
2Cd4K

≤ CPr
µ(B(x, r))1/p b

1/p .

Notice that µ(F(x̄ r
2 , r)) ≤ µ(B(x, 2r)) ≤ Cdµ(B(x, r)). Hence we have

0 < µ(F(x̄ r
2 , r))1/p

r ≤ 2Cd4+ 1
p CpKb

1−p
p .

Recalling the de�nition of b, the above estimate can be rewritten as

0 < µ(F(x̄ r
2 , r))
r ≤ 2pCd4p+1CPpKp

1
r

∫
[x,x r

2
]

(
K j(w)−j(x)µ(w)

λ(w)

) 1
1−p

ds(w)


1−p

.

Since the pair (x, r) is arbitrary, the above estimate implies that µ satis�es the Ap-condition.

Proof of Theorem 1.3 for K ≥ 2. The proof follows from Lemma 3.1 and Lemma 3.2.

4 Proof of Theorem 1.3 for K = 1

Lemma 4.1. Let 1 ≤ p < ∞ and X be a 1-regular tree with distance d and measure µ. Suppose that µ is p-
admissible. Then µ satis�es the Ap-condition far from 0, i.e.,

sup
{
Ap(x, r) : x ∈ X, 0 < r ≤ 8d(0, x)

}
< ∞.

Proof. Let (x, r) be an arbitrary pair with d(0, x) ≥ r/16 > 0. Since K = 1, we may let T1 := F(x,∞) = {y ∈
X : |y| ≥ |x|} and repeat the proof of Lemma 3.2. The only danger is whether (3.15) holds, since, for K = 1,
E1 could be empty. But here we required that d(0, x) ≥ r/16 > 0, which gives a version of (3.15). Then the
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proof of Lemma 3.2 gives that Ap(x, r2 ) ≤ C(p, K, Cd , CP), where C(p, K, Cd , CP) is a constant only depending
on p, K, Cd and CP. Since the pair (x, r) is arbitrary with d(0, x) ≥ r/16 > 0, we obtain that

sup
{
Ap
(
x, r2

)
: x ∈ X, 0 < r2 ≤ 8d(0, x)

}
< ∞,

which gives the result.

Lemma 4.2. Let 1 ≤ p < ∞ and X be a 1-regular tree with distance d and measure µ. Assume that µ satis�es
the Ap-condition far from 0. Then we have:

1. The measure µ is doubling.
2. There exists a positive constant Cp > 0 such that for all balls B(x, r) with x ∈ X and 0 < r ≤ 4

5d(0, x), every
integrable function u on B(x, r) and all upper gradients g of u,

∫
–

B(x,r)

|u − uB(x,r)| dµ ≤ Cpr

 ∫
–

B(x,r)

gp dµ


1/p

. (4.1)

Proof. Claim 1: Recall the proof of Lemma 3.1. It actually shows that for any pair (x, r) with Ap(x, 2r) ≤ CA,
we have

µ(B(x, 2r)) ≤ C(CA)µ(B(x, r)),

where C(CA) is a constant only depending on CA. In this lemma, since µ only satis�es the Ap-condition far
from 0, i.e.,

MA := sup
{
Ap(x, r) : x ∈ X, 0 < r ≤ 8 d(0, x)

}
< ∞,

we obtain that there is a positive constant C := C(MA) only depending on MA such that

µ(B(x, r)) ≤ Cµ(B(x, r/2)) (4.2)

for all balls B(x, r) with d(0, x) ≥ r/8 > 0.
To get that µ is a doubling measure, it is su�cient to show that (4.2) holds for all balls B(x, r) with

d(0, x) < r/8. Note that d(0, 0 r
2

) = r
2 ≥ max{4r/8, 2r/8, r/8}. Applying (4.2) for B(0 r

2
, 4r), B(0 r

2
, 2r) and

B(0 r
2
, r) in turns, we obtain that

µ(B(0 r
2
, 4r)) ≤ Cµ(B(0 r

2
, 2r)) ≤ C2µ(B(0 r

2
, r)) ≤ C3µ(B(0 r

2
, r/2)).

Hence
µ(B(0 r

2
, 4r)) ≤ C3µ(B(0 r

2
, r/2)). (4.3)

From B(0 r
2
, r/2) ⊂ B(0, r) and B(0, 2r) ⊂ B(0 r

2
, 4r), we have

µ(B(0, 2r)) ≤ µ(B(0 r
2
, 4r)), µ(B(0 r

2
, r/2)) ≤ µ(B(0, r))

for all r > 0. Combining with (4.3), we get that

µ(B(0, 2r)) ≤ C3µ(B(0, r))

for all r > 0. In particular,
µ(B(0, 2r)) ≤ C9µ(B(0, r/4)) (4.4)

for all r > 0. Let B(x, r) be an arbitrary ball with d(0, x) < r/8. By B(x, r) ⊂ B(0, 2r) and B(0, r/4) ⊂ B(x, r/2),
it follows from (4.4) that

µ(B(x, r)) ≤ µ(B(0, 2r)) ≤ C9µ(B(0, r/4)) ≤ C9µ(B(x, r/2))

for all balls B(x, r) with d(0, x) < r/8. Combining with (4.2), we conclude that µ is a doubling measure.



Khanh Ngoc Nguyen and Zhuang Wang, Admissibility versus Ap-Conditions on Regular Trees | 103

Claim 2: Recall the proof of Lemma 3.1. It actually shows that for any pair (x, r) with Ap(x̄r , 2r) ≤ CA,
there exists a constant Cp(CA) such that for every integrable function u on B(x, r) and all upper gradients g
of u, the (1, p)-Poincaré inequality (4.1) holds for B(x, r), where Cp(CA) is a constant only depending on CA.
In this lemma, µ only satis�es the Ap-condition far from 0, i.e.,

MA := sup
{
Ap(x, r) : x ∈ X, 0 < r ≤ 8 d(0, x)

}
< ∞.

Since
0 < 2r ≤ 8 d(0, x̄r) ⇐⇒ d(0, x̄r) ≥ r/4 > 0 ⇐⇒ d(0, x) ≥ 5r/4 > 0,

weobtain that there is a positive constant Cp := C(MA)only depending onMA such that the Claim2holds.

We say (X, d, µ) supports a (1, p)-Poincaré inequality at 0, 1 ≤ p < ∞, if there are positive constants C0, σ0 ≥ 1
such that for any r > 0, every integrable function u on σ0B(0, r) and all upper gradients g of u,

∫
–

B(0,r)

|u − uB(0,r)| dµ ≤ C0r

 ∫
–

σ0B(0,r)

gp dµ


1/p

. (4.5)

Proposition 4.3. Let 1 ≤ p < ∞ and (X, d, µ) be as in Lemma 4.2. Assume additionally that (X, d, µ) supports
a (1, p)-Poincaré inequality at 0. Then µ is p-admissible.

Proof. It follows from Claim 2 of Lemma 4.2 that it su�ces to check the (1, p)-Poincaré inequality (2.3) for
balls B(x, r) with d(0, x) < 5r/4.

Fix an arbitrary ball B(x, r) with d(0, x) < 5r/4. By the triangle inequality, the left-hand side of a (1, p)-
Poincaré inequality (2.3) can be estimated as∫

–
B(x,r)

|u − uB(x,r)|dµ ≤ 2
∫
–

B(x,r)

|u − uB(0,4r)|dµ. (4.6)

It follows from Claim 1 of Lemma 4.2 that µ is a doublingmeasure.Without loss of generality, wemay assume
that the doubling constant is Cd. Since d(0, x) < 5r/4, then B(0, 4r) ⊂ B(x, 8r). Hence by doubling property,

µ(B(x, r)) ≥ Cd−3µ(B(x, 8r)) ≥ Cd−3µ(B(0, 4r)).

Combining with (4.5), the estimate (4.6) can be rewritten as∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ 2Cd3
∫
–

B(0,4r)

|u − uB(0,4r)|dµ

≤ 8Cd3C0r

 ∫
–

σ0B(0,4r)

gp dµ


1/p

. (4.7)

An easy veri�cation shows that ∫
–

σ0B(0,4r)

gp dµ ≤ Cd2
∫
–

σ0B(x,8r)

gp dµ, (4.8)

since σ0B(0, 4r) ⊂ σ0B(x, 8r) and µ(σ0B(x, 8r)) ≤ Cd2µ(σ0B(x, 2r)) ≤ Cd2µ(σ0B(0, 4r)) by doubling. Com-
bining (4.7) and (4.8), we deduce that

∫
–

B(x,r)

|u − uB(x,r)|dµ ≤ 8Cd3+2/pC0r

 ∫
–

8σ0B(x,r)

gp dµ


1/p

. (4.9)

Since B(x, r) is an arbitrary ball with d(0, x) < 5r/4, combining (4.9) with Claim 1 and 2 of Lemma 4.2, it
shows that µ is p-admissible.
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The following lemma shows that the assumption in Lemma 4.2 is su�cient to obtain a (1, p)-Poincaré in-
equality at 0, which means that the additional assumption in Proposition 4.3 is redundant. The core idea of
the proof comes from the proof of [10, Theorem 1].

Lemma 4.4. Let 1 ≤ p < ∞ and (X, d, µ) be as in Lemma 4.2. Then (X, d, µ) supports a (1, p)-Poincaré in-
equality at 0.

Proof. It follows fromLemma 4.2 that µ is doubling and (X, d, µ) supports the (1, p)-Poincaré inequality (4.1).
For any R > 0, since X is a 1-regular tree, we have B(0, R) = [0, xR), where xR ∈ X with |xR| = R. By using
the geometry of the 1-regular tree, we are able to modify the proof of [10, Theorem 1] by using a better chain
condition {B(xi , ri)}i∈N which requires additionally that ri < 4

5d(xi , 0) (since (4.1) only works for balls B(x, r)
with r < 4

5d(x, 0)). Hence it follows from the proof of [10, Theorem 1] that there is a constant C independent
of R such that ∫

–
B(0,R)

|u − uB(0,R)| dµ ≤ CR

 ∫
–

B(0,R)

gp dµ


for all integrable functions u and all upper gradients g of u.

Proof of Theorem 1.3 for K = 1. The claim follows from Lemma 4.2, Proposition 4.3 and Lemma 4.4.

Remark 4.5. Fix any∞ > c > 1, if we change the Ap-condition far from 0, i.e., the condition (1.4) to

sup
{
Ap(x, r) : x ∈ X, 0 < r ≤ c d(0, x)

}
< ∞, (4.10)

repeating the proof Theorem 1.3 and related lemmas, it follows that the condition (4.10) is also equivalent to
µ being p-admissible.

Example 4.6. The following example from [1, Example 4] or [4, Example 6.2] gives a1-regular treewith anon-
doubling measure which satis�es (4.10) for any 0 < c < 1. Let X = (R+, dx, µ dµ) with µ(x) = min{1, x−1}.
Then it follows from [4] and [1] that µ is not a doublingmeasure, hence µ is not p-admissible for any1 ≤ p < ∞.
It remains to show that (4.10) holds for any 0 < c < 1 and 1 ≤ p < ∞.

Fix 0 < c < 1. Let R = 1
1−c . To show (4.10) holds, it su�ces to show that

sup
{
Ap(t, βt) : 0 < β ≤ c, t ∈ (R,∞)

}
< ∞, (4.11)

since
sup

{
Ap(t, βt) : 0 < β ≤ c, t ∈ [0, R]

}
< ∞

is given by the fact that (R+ cR)−1 ≤ µ(x) ≤ 1 for any x ∈ F(t̄βt , 2βt) with t ≤ R and 0 < β ≤ c. For any 0 < β ≤ c,
since F(t̄βt , 2βt) = [t − βt, t + βt] and t − βt > 1 for any t > R, we have that

µ(F(t̄βt , 2βt)) ≤
(1+β)t∫

(1−β)t

x−1 dx = log
(

1 + β
1 − β

)
≤ log

(
1 + c
1 − c

)
.

On the other hand, we have that for p > 1, 1
βt

t+βt∫
t

x
1
p−1 dx


p−1

= t
(

(1 + β)p/(p−1) − 1
β

)p−1

≤ C(c, p)t,

where C(c, p) is a constant only depending on c and p, and that

ess supx∈[t,t+βt]x = (1 + β)t ≤ (1 + c)t.

Hence condition (4.11) holds.
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