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Abstract: In this study, conversion of xylose to furfural was studied using lignin-based activated
carbon-supported iron catalysts. First, three activated carbon supports were prepared from hydrolysis
lignin with different activation methods. The supports were modified with different metal precursors
and metal concentrations into five iron catalysts. The prepared catalysts were studied in furfural
production from xylose using different reaction temperatures and times. The best results were
achieved with a 4 wt% iron-containing catalyst, 5Fe-ACs, which produced a 57% furfural yield, 92%
xylose conversion and 65% reaction selectivity at 170 ◦C in 3 h. The amount of Fe in 5Fe-ACs was only
3.6 µmol and using this amount of homogeneous FeCl3 as a catalyst, reduced the furfural yield, xylose
conversion and selectivity. Good catalytic activity of 5Fe-ACs could be associated with iron oxide and
hydroxyl groups on the catalyst surface. Based on the recycling experiments, the prepared catalyst
needs some improvements to increase its stability but it is a feasible alternative to homogeneous
FeCl3.

Keywords: furfural; carbon-supported catalyst; xylose conversion; iron; heterogeneous catalysts

1. Introduction

Furfural is an important biomass-based high-value chemical with numerous applications [1].
While it is widely used directly as a solvent and a fungicide, it is most commonly converted
into pharmaceuticals, chemicals and biopolymers, many of which are used as substitutes for
petrochemical-derived analogs [2,3].

Approximately 300,000 tons of furfural are produced annually and the biggest manufacturer is
China [4]. It is formed by the dehydration of pentoses, mainly xylose, which can be obtained through
the hydrolysis of different agricultural residues (corn stover, wheat straw, sugarcane bagasse, rice
husk, oat hull) or forest industry wastes (birch or poplar sawdust). Current industrial processes use
mineral acids, such as sulfuric, phosphoric or hydrochloric acid, as catalysts, with an approximate
furfural yield of 50% [5,6]. The relatively low yield, high energy consumption (caused by the high,
150–240 ◦C, reaction temperature) and environmental concerns related to acidic process wastes are
driving scientists to develop catalysts with high selectivity for furfural formation. A number of studies
have used inexpensive water-soluble inorganic salts (mainly chlorides) as catalysts instead of mineral
acids for xylose conversion to furfural [7–10]. Many of those studies show that FeCl3 results in the
highest furfural yields compared to other metal chlorides [7,10].
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Compared to water-soluble salts, solid catalytic systems have fewer environmental impacts than
liquid ones, reduce operational costs and are technically feasible alternatives for industry [11]. A broad
range of different heterogeneous catalysts have been studied for xylose conversion to furfural, the most
common of which are acidic zeolites and mesoporous silicas, such as SBA-15 and MCM-41 [11,12].
Additionally, sulfonated metal oxides (especially TiO2, ZrO2) have been used, either as such or
combined with mesoporous supports [13–16]. Many studies have shown that some Brønsted acidity
is needed, either from metal oxide or support, in addition to metal oxides with a Lewis character, to
achieve good furfural yields [17,18]. The need for Brønsted acidity is associated with the furfural
production mechanism; while Lewis acid can isomerize xylose to xylulose, Brønsted acid is needed for
the dehydration step (Scheme 1) [19].
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Carbon-based catalysts are attractive since the carbon supports are low-cost materials with high
surface area and good thermal stability and they are easily modified with functional groups [20].
Carbon surface groups containing heteroatoms, such as oxygen, can act as anchoring sites for metal
particles and generate high metal dispersion [21]. The diverse surface also enables Brønsted acidity
in addition to metal’s Lewis acidity, which can further promote xylose conversion to furfural. To the
best of our knowledge, few papers have been published on carbon-supported metal oxide catalysts.
Mazzotta et al. used a sulfonated carbonaceous material with TiO2 sites, while Russo et al. used
TiO2/carbon black in the conversion of xylose to furfural [22,23]. Barroso-Bogeat et al. prepared a
class of different activated carbon-metal oxide catalysts (Fe, Al, Zn, Sn, Ti and W) but did not use
them in any reaction [24–26]. Therefore, cheap metal oxides, such as iron oxide, have not been utilized
in xylose conversion to furfural, even though iron is common in homogeneous catalysts. The aim
of this study was to create iron oxide sites on a carbon-supported catalyst and apply the catalyst in
the conversion of xylose to furfural. Activated carbon support was derived from hydrolysis lignin,
which is a side stream of cellulosic ethanol production. Reactions were performed in biphasic media to
increase reaction selectivity.

2. Results and Discussion

2.1. Preliminary Studies

The purpose of the preliminary studies was to optimize the reaction media and select the best
catalytic metal for heterogeneous catalysts.

2.1.1. Furfural Partitioning in Biphasic Reaction System

The reaction system was optimized in terms of the appropriate organic solvent and solvent:water
ratio. Experiments were carried out using a 4.7 wt% furfural solution in water as feed and toluene
or methyl isobutyl ketone (MIBK) as an organic solvent. The purpose was to compare furfural
partitioning from water into these two solvents. Solvent ratios of 1:1, 1:2 and 1:3 were used based on
the literature [17,27,28]. The results of partitioning experiments are shown in Figure 1, and, as expected,
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the more organic solvent was added, the better furfural was extracted to the organic phase (Figure 1a).
MIBK showed a better ability to extract furfural than toluene, as the furfural content in water was
relatively higher in the toluene experiments than in the MIBK experiments. In the best case, when 1:3
water:MIBK was used as a solvent, 96% of furfural was extracted to the MIBK phase. Similarly, MIBK
was reported to extract furfural better than toluene in the literature [27,29]. MIBK has a polar carbonyl
group structure that may interact better with furfural, which is an aldehyde, compared to nonpolar
toluene. The partitioning coefficient of MIBK has been reported to be 7 [29], while in our study it was 8
using a similar solvent ratio (1:1) and 8.5 when the solvent ratio was 1:3 (Figure 1b). For toluene, the
partitioning coefficient has been reported to be 3 [29] but in our study it was significantly higher (6)
with a 1:1 solvent ratio. Differences in reported and measured partitioning coefficients are likely due to
different experimental setups. In the cited study, the partitioning coefficients were determined without
any heating, using only shaking as an extraction technique. In our study, 5 min microwave heating
(at 160 ◦C) was used, as the higher temperature corresponds to the reaction conditions in conversion.
Based on the partitioning results, MIBK was considered most suitable for the furfural removal from
water and it was used as an organic solvent in further experiments.
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2.1.2. Furfural Production Using Homogeneous Catalysts

After choosing the reaction media, homogeneous metal salts (ZnCl2, AlCl3·6H2O, CrCl3·6H2O,
SnCl2·2H2O and FeCl3·6H2O) were used as catalysts to determine the best metal for furfural production.
Different metal salts have been studied in the literature but it was important to perform tests in our
reaction system, using microwave heating and water/MIBK media. Reactions were performed at a
temperature of 160 ◦C, a reaction time of 1.5 h and a catalyst amount of 0.05 mmol, based on the
literature [10]. Almost full xylose conversion (98%–99%) was achieved using all catalysts other than
zinc chloride, which yielded only 91% conversion (Figure 2, asterisks). In the furfural yields, there was
variation between catalysts and the yields varied between 33% and 68% (Figure 2, bars). Chromium
chloride and aluminum chloride produced the lowest furfural yields, although the xylose conversion
was almost complete. Therefore, their selectivities (34% and 38%, respectively) were poorest among
all catalysts (Figure 2, squares). Tin chloride and zinc chloride produced slightly higher furfural
yields compared to chromium or aluminum and their selectivities were also higher (46% and 48%,
respectively). However, the significantly highest furfural yield (68%) and selectivity (70%) were



Catalysts 2020, 10, 821 4 of 20

achieved using iron chloride as a catalyst. Our result agrees with the literature, as many studies
have shown that FeCl3 produces the highest furfural yield in water media compared to other metal
halides [7,10]. The 68% furfural yield achieved in our study with FeCl3 catalyst is also comparable
to that found in other studies. For example, Ershova et al. achieved a 60.3% furfural yield in water
at 180 ◦C, while Zhang et al. reported a 77% furfural yield in gamma-valerolactone at 160 ◦C [10,30].
However, in most studies NaCl has been used as a phase modifier, and, because Cl− has been shown to
catalyze furfural formation, it is difficult to compare those results to our study without NaCl [31–34].
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2.2. Preparation and Characterization of Heterogeneous Catalysts

After the appropriate reaction media and catalytic metal were chosen, three different catalyst
supports (ACz, ACzN, ACs) and five different catalysts (5FeNO3-ACz, 5Fe-ACz, 5Fe-ACzN, 5Fe-ACs and
10Fe-Acs) were prepared (Table 1). In the preparations, different activation methods, metal precursors,
metal concentrations and additional treatments were used. ACz support was prepared applying
common ZnCl2 chemical activation [35]. ACz-based catalysts 5FeNO3-ACz and 5Fe-ACz were prepared
using 5 wt% of either FeNO3 or FeCl3 as an iron precursor, respectively. ACzN support was prepared
using HNO3 treatment after ZnCl2 chemical activation and ACzN-based catalyst 5Fe-ACzN by further
impregnation with FeCl3. The third support type, ACs, was prepared using the physical activation
method. Compared to chemical activation, physical activation is performed at a higher temperature
but only using water steam as an activation agent [21,36]. ACs-based catalysts 5Fe-ACs and 10Fe-ACs
were prepared using FeCl3 as a metal precursor and 5 or 10 wt% as the metal concentration.

Table 1. Key factors in the preparation of various supports and catalysts and the metal contents (wt%)
of the prepared catalysts measured by inductively coupled plasma optical emission spectrometry
(ICP-OES).

Sample Activation
Method

Other
Treatment

Metal
Precursor

Initial Fe
(wt%)

Measured Metal (wt%)

Zn Fe

ACs Steam (H2O) - - - 0.01 0.06
5Fe-ACs Steam (H2O) - FeCl3 5 - 4.0

10Fe-ACs Steam (H2O) - FeCl3 10 - 9.2
ACz ZnCl2 - - - 8.2 0.08

5FeNO3-ACz ZnCl2 - FeNO3 5 4.6 5.0
5Fe-ACz ZnCl2 - FeCl3 5 3.8 4.5

ACzN ZnCl2 HNO3 - - 0.07 0.06
5Fe-ACzN ZnCl2 HNO3 FeCl3 5 0.08 5.5
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The metal contents (according to inductively coupled plasma optical emission spectrometry
(ICP-OES)) of all supports and catalysts are listed in Table 1. ACs support was analyzed most
comprehensively since it was the least treated and therefore provided some indication about the
metal content of the biomass-based lignin. According to the results, ACs contained minor amounts
of metals, such as Ca (0.47 wt%) and Na (0.57 wt%) but its Fe content was very low (0.06 wt%)
(Table S1). ACs-based iron-impregnated catalysts 5Fe-ACs and 10Fe-ACs contained 4.0 and 9.2 wt%
iron, respectively. Based on these values, iron impregnation was considered successful, as the target
amounts were 5 and 10 wt%. The other support, ACz, contained a significant amount of zinc (8.2
wt%), which originated from the chemical activation step in the preparation process. Zinc was also
naturally present in ACz-supported 5Fe-ACz and 5FeNO3-ACz (3.8 and 4.6 wt%, respectively) but the
amount decreased during the impregnation step. The iron contents for 5Fe-ACz and 5FeNO3-ACz
were 4.5 and 5.0 wt%, respectively. Because of the remaining zinc, a third catalyst support ACzN was
prepared similarly to ACz but afterwards it was treated with HNO3 in order to remove remaining zinc.
According to the ICP-OES results, this treatment did remove zinc because the remaining amount was
only 0.07 wt%. Meanwhile, the iron content of 5Fe-ACzN was 5.5 wt%.

Additionally, the surface area (SA) according to Brunauer–Emmett–Teller (BET) theory, average
pore diameter and pore volume distributions according to density functional theory (DFT) were
determined for all supports and catalysts using N2-physisorption analysis (Table 2). As can be seen
from the results, the surface area and pore volume of the chemically activated ACz and ACzN supports
were higher (1470/1091 m2g−1 and 0.72/0.49 cm3g−1) than for the ACs support prepared with steam
activation (760 m2g−1 and 0.47 cm3g−1) (entries 1, 4 and 7). Further, the total pore volume and the
relative amount of micropores were higher in ACz and ACzN than in ACs. Treatment with HNO3 after
chemical activation decreased the support surface area, average pore diameter and total pore volume
but the quantities were still greater than with steam activated ACs.

Table 2. N2-physisorption analysis from different activated carbon (AC) supports and catalysts.

Entry Sample BET DFT

BET
SA (m2/g)

Avg. Pore
Diam. (nm)

Total Pore
Volume
(cm3/g)

Mesopores
(cm3/g)

Micropores
(cm3/g)

1 ACs 760 2.90 0.47 0.26 0.21
2 5Fe-ACs 455 3.44 0.34 0.23 0.11
3 10Fe-ACs 380 3.15 0.26 0.16 0.10
4 ACz 1470 2.29 0.72 0.31 0.41
5 5Fe-ACz 1000 2.28 0.48 0.19 0.29
6 5FeNO3-ACz 948 2.16 0.45 * 0.15 0.29
7 ACzN 1091 2.15 0.49 0.16 0.33
8 5Fe-ACzN 790 2.07 0.35 0.10 0.25

* also contained macro-pores 0.01 cm3/g (3%).

The surface area and total pore volume of all catalysts decreased while the iron was impregnated
on the carbon surface. This is reasonable, as metal is deposited on the surface and goes into the pores
(Table 2). For ACs-based catalysts, the surface area decreased from 860 to 455 or 380 m2/g and total
pore volume from 0.47 to 0.34 or 0.26 cm3/g, depending on how much metal was impregnated on the
catalyst surface (entries 1–3). For ACz-based catalysts, the surface area decreased from 1470 to 1000 or
948 m2/g and the total pore volume from 0.72 to 0.48 or 0.45 cm3/g, depending on which iron precursor
was used (entries 4–6). For ACzN-based catalysts, the surface area decreased from 1091 to 790 m2/g
and the total pore volume decreased from 0.49 to 0.35 (entries 7–8).

Absolute volumes of the meso- and micropores decreased with all catalysts when iron was
impregnated but there were differences in the final pore volume distributions between meso- and
micropores, partly because of different initial pore volume distributions of the different supports.
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For steam-activated ACs, the micropore volume decreased in 5Fe-ACs and 10Fe-ACs catalysts by
48%–52% compared to ACs. With mesopores, the decrease was smaller, only 12%–38%, meaning
that the micropores were primarily filled in ACs when iron was impregnated. Because micropores
were more filled with iron than mesopores, the average pore diameter also increased with ACs-based
catalysts when compared to plain ACs. Comparing 5Fe-ACs and 10Fe-ACs, the difference in mesopore
volume was notable, which meant that 5% iron addition did not affect the mesopores significantly
while 10% iron addition filled the mesopores considerably. For chemically activated ACz and ACzN,
the micropore volume decreased only 29% or 24%, respectively, while the volume of the mesopores
was decreased 39%–52% for ACz and 38% for ACzN. Different precursors did not have a significant
effect on surface area or pore volumes. Because the volume of the micropores decreased less than the
volume of the mesopores, the relative amount of micropores was increased in chemically activated
iron catalysts. In addition, the average pore diameter decreased compared to the supports.

Other surface properties, such as functional groups, acidity and detailed metal composition,
were studied using X-ray photoelectron spectroscopy (XPS), the Boehm titration method and X-ray
diffraction (XRD). These analyses were only conducted for ACs, 5Fe-ACs and 10Fe-ACs, which were
determined to be the most promising ones in the conversion of xylose to furfural (see Section 2.3).
XPS results show that plain ACs support already contains some oxygen functionalities (hydroxyl and
carboxyl groups) on the surface but iron addition increases the oxygen–carbon ratio of the catalysts
compared to ACs support (Table 3, Table S2). The increase is also dependent on how much iron is
added, as the percentage of carbon atoms decreases from 96.8 to 93.6 or 86.3% and that of oxygen
atoms increases from 2.9 to 4.1 or 9.5% when the amount of iron increased from 0.06 to 4.0 or to 9.2
wt%, respectively. In addition to C, O and Fe, Cl was detected from iron-impregnated catalysts. An
increase of oxygen functionalities was detected from an O1s scan at 531.0eV and at 532.5eV (Table
S2). The former can originate from carbonyl groups or metal oxides and the latter, for example,
from hydroxyl groups or O-Fe bonds [37,38]. From the XPS Fe2p spectra, a peak at 711.3 eV was
detected from both 5Fe-ACs and 10Fe-ACs catalysts, indicating the presence of oxidized iron, Fe2O3 or
FeOOH [37,39]. According to XRD, the iron was mostly present as oxides (Fe3O4 and Fe2O3, Figure S1),
so it is proposed that oxygen content was increased together with iron content as iron oxide. According
to XRD, 10Fe-ACs contained mostly Fe2O3 (hematite, 01-080-5405) and only small amounts of Fe3O4

(magnetite, 04-015-9120). Conversely, 5Fe-ACs contained clearly more Fe3O4 than Fe2O3. However, no
iron chlorides were detected with XRD measurements.

Table 3. Surface analysis of prepared carbon support and catalysts according to X-ray photoelectron
spectroscopy (XPS) and Boehm titration.

Sample XPS a

Total C-%
from C1s

Total O-%
from O1s

Total Fe-%
from Fe2p

Total Cl-%
from Cl2p

Total Acidic
Groups

(mmol/g) b

ACs 96.8 3.0 nd nd 0.07
5Fe-ACs 93.7 4.1 0.6 1.5 1.77

10Fe-ACs 86.2 9.6 2.4 1.6 1.95
a as atom-%, b by Boehm titration, nd = not detected.

According to Boehm titration, plain ACs contained a small amount of acidic oxygen functionalities
(0.07 mmol/g, Table 3, Figure S2.). The amount of acidic oxygen groups increased when the metal was
added to 1.77 or 1.95, depending on the metal amount. Acidic oxygen functionalities are probably
formed during iron impregnation as a consequence of HCl formation from FeCl3 hydration in water
solution. Barroso-Bogeat et al. showed that metal ions markedly influence the pH of the impregnation
solution and thereby the oxidizing power of this solution toward the activated carbon support [40].
Since XPS revealed the potential for the presence of iron hydroxides, it is possible that Brønsted acidity
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of 5Fe-ACs and 10Fe-ACs is induced by iron hydroxides (e.g., FeOOH) [25,41]. Regardless of the
specific nature of the acidic oxygen groups, they favor metal adsorption [42].

The morphology of the physically activated support (ACs) and catalysts (5Fe-ACs and 10Fe-ACs)
was observed using a scanning electron microscope (SEM) and a scanning transmission electron
microscope (STEM). SEM images clearly revealed particles on the carbon surface for 5Fe-ACs and
10Fe-ACs, while plain ACs did not contain any visible particles (Figure 3). The support and both
catalysts showed a very porous structure in SEM as well as in STEM. Figure 4 (and Figure S3) shows
chemical mapping of the elements C, O, Fe and Cl using energy-dispersive x-ray spectroscopy in
scanning transmission electron microscopy (STEM-EDS). Comparing the distribution of Fe and O, it
is clear that both elements appear at the same location, which indicates the presence of iron oxide.
Therefore, the results obtained from XPS and XRD showing that the iron particles were oxides were
confirmed. Mapping also showed that significant amount of residual chlorine was evenly distributed
on the surface. Notable chlorine remains have been also detected in the literature when FeCl3 has been
used as a metal precursor [43].Catalysts 2020, 10, x FOR PEER REVIEW 8 of 21 
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2.3. Furfural Production Using Heterogeneous Catalysts

Conversion studies were started with the control experiment without any support or catalyst
(Table 4). This so-called autocatalysis was able to produce a 12% furfural yield and 18% xylose
conversion at 160 ◦C in 1.5 h. Autocatalysis is based on high temperature and pressure, where the
dissociation constant of water is increased [44]. In addition, formation of organic acids (e.g., formic and
lactic acid) during the reaction might occur, which then further catalyzes the hydrolysis reaction [45].
However, a 160 ◦C reaction temperature and 1.5-h reaction time represent rather mild conditions
and therefore only low conversion and yield were achieved. All supports and catalysts were able to
produce higher furfural yields and conversions than the control experiment. First, chemically activated
(ZnCl2) carbon support (ACz) was tested and it resulted in good conversion (82%, Table 4, entry 2). The
furfural yield was also considerably high (28%). The high conversion is most likely connected to the
high zinc content of ACz (Table 1), which originated from chemical activation. Iron was impregnated
to the support using an FeNO3 precursor and FeCl3 precursor (Table 4, entries 3¨C4, respectively).
NO3-based salts are commonly favored as precursors since they leave no residue on the catalyst [46,47].
With a nitrate precursor, conversion increased further (from 82 to 91%) compared to ACz support but
the yield decreased from 28 to 23% (Table 4, entries 2–3). Therefore, the reaction selectivity toward
furfural also decreased (from 36 to 27%). With a chloride precursor, the yield increased (from 28
to 32%) compared to the ACz support and the reaction selectivity also increased (from 36 to 51%,
Table 4, entries 2 and 4). Based on the higher furfural yield and reaction selectivity, the FeCl3 precursor
was determined to be more suitable than FeNO3 and was used in further catalysts. Similar results
were obtained by Chareonlimkun et al., who discovered that chloride-based precursors resulted in
higher reactivity compared to nitrate-based precursors in ZrO and TiO catalysts [14]. As mentioned in
Section 2.1.2, chloride ions have been shown to enhance furfural formation from xylose by favoring
the 1,2-enediol formation before dehydration [34]. This is most probably reason why chlorine-based
precursors increase furfural yield and reaction selectivity compared to nitrate-based precursors.
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Table 4. Furfural yield, xylose conversion and reaction selectivity using various chemically activated
catalysts at 160 ◦C with a 1.5-h reaction time.

Entry Catalyst Yield (%) Conversion (%) Selectivity (%)

1 - 12 18 12
2 ACz 28 82 36
3 5FeNO3-ACz 23 91 27
4 5Fe-ACz 32 66 51

Based on the results so far (Table 4), the 5Fe-ACz catalyst appeared to be the most promising
catalyst. Therefore, it was used in conversion at different temperatures using various reaction times
(Table 5, graphical presentation Figure S4). Temperature and reaction time are highly dependent on
each other, so the time was increased at each temperature until the conversion reached 98%. At 160
◦C, a 5 h reaction time was needed to achieve full xylose conversion (98%). In these conditions, the
furfural yield was 48%. However, with a shorter 3-h reaction time, a similar furfural yield of 47%
was achieved with lower conversion (89%). At a higher reaction temperature of 170 ◦C, the same 98%
conversion was achieved in 2.5 h. However, the furfural yield was lower at this temperature with
a 2.5 h reaction time (44%) compared to the yield at 160 ◦C but the highest 50% furfural yield was
achieved with a shorter 2 h reaction time at 170 ◦C. At 180 ◦C, 99% conversion was obtained in 1.5 h
but the furfural yield was low (39%). The highest reaction selectivities (55–56%) were achieved at 160
◦C with 4 and 3 h reaction times and at 170 ◦C with a 2 h reaction time. At 180 ◦C, reaction selectivity
was lowest because of the increasing amount of side reactions. Side reaction products were visible in
chromatograms produced by high performance liquid chromatography (HPLC) (Figure S5).

Table 5. Effect of reaction temperature and time on furfural yield, xylose conversion and reaction
selectivity using 5Fe-ACz as the catalyst. Y = furfural yield, C = xylose conversion, S = reaction selectivity.

Time
160 ◦C 170 ◦C 180 ◦C

Y (%) C (%) S (%) Y (%) C (%) S (%) Y (%) C (%) S (%)

1 25 50 54 36 82 46 38 97 41
1.5 32 66 51 44 93 49 39 99 41
2 38 79 51 50 96 55 - - -

2.5 38 85 48 44 98 48 - - -
3 47 89 55 - - - - - -
4 47 95 56 - - - - - -
5 48 98 54 - - - - - -

Even though good furfural yields and reaction selectivities were achieved with 5Fe-ACz catalyst,
there was some problems related to its stability. That is, all zinc already leached out of the catalyst at
160 ◦C in 3 h. In addition, a significant amount of iron (68–78% from initial, depending on reaction
conditions) leached out of the catalyst. Therefore, more catalyst supports and catalysts were prepared
and tested (Table 6). ACzN was chemically activated similarly to ACz but it was treated with HNO3

after activation in order to remove remaining zinc. It produced a 14% furfural yield and 21% xylose
conversion in 1.5 h at 160 ◦C (Table 6, entry 1), which is significantly less compared to ACz. However,
the support was now zinc free (Table 1). When iron was impregnated on ACzN, the furfural yield
increased from 14 to 22% and the conversion increased from 21 to 47% (Table 6, entries 1–2). The
selectivity of 5Fe-ACzN was similar to that of 5Fe-ACz but the furfural yield and conversion were
lower (Table 6, entry 2 and Table 4, entry 4). The third AC support, ACs, was physically steam activated
with H2O instead of chemical activation. Its surface area was lower than that of ACz or ACzN because
of the activation method but the conversion and furfural yields were comparable to ACzN (Table 6,
entries 1 and 3). After iron impregnation to ACs, the furfural yield increased from 14 to 25% and the
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conversion increased from 19 to 36%. The reaction selectivity with 5Fe-ACs was significantly higher
than with any other iron catalyst: 72% compared to 27/50/51% (Tables 4 and 6).

Table 6. Furfural yield, xylose conversion and reaction selectivity using various catalysts at 160 ◦C
with a 1.5-h reaction time.

Entry Catalyst Yield (%) Conversion (%) Selectivity (%)

1 ACzN 14 21 71
2 5Fe-ACzN 22 47 50
3 ACs 14 19 81
4 5Fe-ACs 25 36 72

To summarize the experiments so far, the chemical activation method with the AC support
produced the best furfural yields before and after iron impregnation (Tables 4 and 6). However, catalyst
characterization revealed that zinc chloride activation left some zinc remains in the catalyst support,
which further affected its catalytic activity. Furthermore, all the zinc leached out of the catalyst during
the first use and therefore the catalyst was suitable for a single use only. HNO3-treated chemically
activated catalyst did not contain zinc remains but its catalytic activity in furfural production was
comparable to that of physically activated ACs and its selectivity was lower than that of ACs. In
addition, the chemical activation of ACzN demands significant amounts of ZnCl2, which is toxic to the
environment. Therefore, the most reasonable carbon support for iron impregnation would be ACs,
which does not require any chemicals other than water for preparation. As a precursor, FeCl3 was
more selective than FeNO3. The reaction temperature of 170 ◦C led to the highest furfural yield and
thus it was chosen for further experiments.

Conversion studies were continued with ACs-based catalysts—5Fe-ACs and 10Fe-ACs. In
addition, control experiments with plain ACs, without any catalyst and with a similar amount of
homogeneous iron (as in 5Fe-ACs) were carried out. Reactions without any catalyst were able to
produce at most a 37% furfural yield at 170 ◦C in 3.5 h (Figure 5, black squares). Conversion increased
with time and reached 88% at highest. Conversion was notably higher at 170 ◦C than at the lower
160 ◦C reaction temperature and with a shorter 1.5-h reaction time (Table 4). The pH of the water
phase also clearly changed to acidic during the reaction. In autocatalyzed reactions, furfural yields are
strongly dependent on temperature and time but the highest furfural yields have been found around
50% [6]. Our 37% yield at 170 ◦C in 3.5 h is in good agreement with the study of Ershova et al., who
achieved a 42% furfural yield at 180 ◦C in 3.75 h [10].

A plain activated carbon support (ACs) produced a similar furfural yield as water with all reaction
times (Figure 5, red circles). Conversion was slightly higher, probably due to oxygen functionalities
on the carbon surface (Table 3), until after 3 h reaction time it decreased slightly. Additionally, the
selectivity was higher with ACs than with plain water. A 40% furfural yield and 77% conversion
were the highest achieved with ACs in 3.5 h. When the activated carbon support was impregnated
with iron, the furfural yield clearly increased. As expected, iron promoted furfural formation. Yields
with both iron catalysts (5Fe-ACs and 10Fe-ACs) were similar with time (Figure 5, blue triangles up
and green triangles down, respectively). The yields increased until a 3 h reaction time, after which
they leveled off to 55–57% depending on the catalyst. The only exception was the 2.5 h reaction with
10Fe-ACs, in which the furfural yield did not increase when compared to the 2 h reaction. Conversion
was similar with both the 5Fe-ACs and 10Fe-ACs catalysts and it increased with time from 59 to
96%. Conversion was clearly higher than with ACs or without a catalyst, which indicated that iron
impregnation increased the catalysts’ activities. Because the furfural yields and xylose conversions
with 10Fe-ACs and 5Fe-ACs were so similar, it was concluded that 4 wt% iron was already enough to
increase activated carbon catalyst activity and no benefit was obtained with a higher metal content. In
fact, the reaction selectivity was lower with 10Fe-ACs than with 5Fe-ACs. The best reaction selectivity



Catalysts 2020, 10, 821 11 of 20

(67%) was achieved with the 5Fe-ACs catalyst in 2 h but it did not decrease notably when the reaction
time was increased to 3 h, which resulted in the highest furfural yield.
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Based on the previous results, 5Fe-ACs was the most promising catalyst studied. Therefore, it was
compared to homogeneous FeCl3·6H2O in similar conditions and using similar amounts of catalytic
iron (Figure 5, brown rhombuses). A total of 0.0036 mmol of homogeneous FeCl3·6H2O was able to
produce a 27–58% furfural yield in 1–3.5 h. The yield was lower than with 5Fe-ACs until the reaction
time reached 3.5 h. Even then, the increase in furfural yield was marginal compared to that with
5Fe-ACs, only one percentage unit. Conversion increased with time from 44 to 85% but was always
clearly lower than with 5Fe-ACs. Reaction selectivity also increased with time from 28 to 61% but
again it was always lower than with 5Fe-ACs. Better results with carbon-supported 5Fe-ACs than
with homogeneous FeCl3·6H2O demonstrated that activated carbon support is a promising option for
furfural production. Based on catalyst characterization, iron was oxidized in a heterogeneous catalyst,
which may have affected its catalytic activity positively compared to FeCl3. Moreover, hydroxyl groups
were detected on the surface of 5Fe-ACs, which increases the catalyst’s Brønsted acid sites and therefore
can increase furfural production.

The results with 5Fe-ACs (57% yield at 170 ◦C in 3 h) are comparable with studies using
carbon-supported titanium catalysts—Mazzotta et al. reported a 51% furfural yield (180 ◦C, 30 min) in
a biphasic MeTHF/water system, while Russo et al. achieved a 69% furfural yield (170 ◦C, 3.5 h) in
toluene/water [22,23]. The results were higher than with sulfonated SBA- and MCM-supported metal
oxide catalysts (SBA-15/ZrO2-Al2O3/SO4

2 and MCM-41/ZrO2/SO4
2), which resulted in 53 and 50%

furfural yields, respectively, at 160 ◦C with a 4-h reaction time [15,16].
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2.4. Recycling Experiments

Catalyst recycling experiments were performed with 5Fe-ACs catalyst at 170 ◦C with a 3 h reaction
time. After the reaction, the catalyst was filtered, washed with methanol and water, dried and then
used again in the same conditions for three cycles. As a result, the furfural yield decreased from 48%
to 30% after the first run and then remained constant (Figure 6). Conversion and reaction selectivity
behaved similarly; conversion decreased from 76% to 53% and reaction selectivity from 66% to 59%
after the first run and then they remained constant (Figure 6). The decrease in furfural yield, conversion
and selectivity may be explained by iron leaching. Leaching was observed by measuring the iron
content of the water phase after every reaction. After the first run, 66% of the initial iron amount
was leached out but after second and third runs leaching was only 3% and 1%, respectively. It has
been reported that hot acidic water promotes the solubility of some metal oxides and in particular
the solubility of iron oxides is strongly influenced by the solution pH [48,49]. In our experiments, the
pH changed from 6 to 2 during the reaction with 5Fe-ACs, so the reaction media was clearly acidic.
Chang et al. were able to decrease iron leaching by post-treating the catalyst after impregnation, first
with NaOH and then with HCl [43]. Post treatment was designated to convert iron to ferric hydroxide,
which is poorly soluble in water. This treatment also decreased iron leaching at a low pH (pH = 2) to
21%, while the loss of iron during the post-treatment process was very minor (from 5.2 to 4.5 wt%). In
future work, this must be taken into consideration.Catalysts 2020, 10, x FOR PEER REVIEW 13 of 21 
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Figure 6. Furfural yield, xylose conversion and reaction selectivity in catalyst recycling experiments
after 1–3 cycles.

The stability of the catalyst was also observed by monitoring changes at the catalyst surface with
SEM and STEM. The images revealed that the iron content was decreased and leaching was more
connected to larger iron particles (approx. 15–40 nm) than to small ones (approx. 5 nm) (see Figure S6).
Small iron particles were present throughout the recycled catalysts, while large ones occurred only
randomly. However, some large particles were also left on the catalyst surface after the third cycle,
indicating that they were not all leached out. Leaching of large particles (or agglomerates of small
particles) is reasonable since they are more vulnerable to leaching because they have poorer interaction
with the support surface than smaller particles. In future work, it would be important to optimize the
catalyst preparation to obtain less-agglomerated metal particles.

Based on catalyst weighing, the mass of the catalyst was increased from 5 to 6.7 mg in each
cycle. This indicates that the catalyst was adsorbing some reaction products, such as humins. Humins
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are black carbonaceous side-products generated either by the cross-polymerization of furfural by
itself, between the just-formed furfural and free xylose present in solution or between furfural and
intermediate products [50–52]. Solid humins can plug the pores of the catalyst surface, block the access
of xylose to metal surface sites or totally encapsulate a metal particle [53]. It is also possible that this
blocking of the catalytic sites on the porous structure of the catalyst caused the decrease in furfural
yields. Indeed, pore blocking caused by carbon deposition is a common problem in heterogeneous
porous catalysts; for example, with MCM-41-SO3H, the surface area and pore volume decreased by
50%–60% after the first run and the furfural yield decreased from 54% to 37% [54]. BET analysis of the
used catalysts could not be performed because a very small amount of the catalysts was used in the
reactions. In the SEM and STEM images, there was not any clear coating visible on the surface of the
carbon, as in Reference [55] but some slight changes were observed in the SEM images (Figure S7).
However, based on the figures, no differences were found between catalysts that were used one, two or
three times.

3. Materials and Methods

3.1. Materials

For catalyst preparation, hydrolysis lignin was obtained through a biomass hydrolysis process from
Sekab Oy, Sweden. Other chemicals used in catalyst preparation, conversion reactions, partitioning
experiments and analyses were used as received, without any purification. For high pressure liquid
chromatography (HPLC) sample preparation, regenerated cellulose (RC) syringe filters (0.45 µm, 25
mm, Phenomenex) were used for the organic samples and polytetrafluoroethylene (PTFE) syringe
filters (0.45 µm, 4 mm, Phenomenex) were used for the water samples.

3.2. Furfural Partitioning in Biphasic Reactor System

Furfural partitioning experiments were carried out using a 4.7 wt% furfural solution in water
as feed and toluene or MIBK as an organic solvent. The furfural solution and organic solvent were
measured with alternative ratios (1:1, 1:2 and 1:3) into a microwave reactor tube with a magnetic
stirring bar. The tube was closed, heated five minutes at 160 ◦C and cooled to room temperature.
Samples from both layers were analyzed by HPLC to calculate the partitioning for furfural in different
solvent systems.

3.3. Catalyst Preparation and Characterization

Activated carbon (AC) supports were prepared from hydrolysis lignin, dried in oven at 105 ◦C
and crushed to a particle size of <425 µm. Activation was performed using either a chemical or
physical activation method. Chemical activation was done by impregnation of zinc chloride into the
dried lignin using a 2:1 mass ratio of ZnCl2:biomass. ZnCl2 dissolved into H2O was mixed with the
biomass for 3 h at 85 ◦C and then dried in the oven at 105 ◦C until achieving a constant weight. The
carbonization and activation of the dried ZnCl2-impregnated lignin was done in a stainless-steel tube
in a tube furnace (Nabertherm RT200/13) (Nabertherm GmbH, Lilienthal, Germany) at 600 ◦C for 2
h using a heating ramp of 10 ◦C/min. During the thermal heating process, the reactor was flushed
continuously with N2 (flow 10 mL/min). Alternatively, carbonization followed by physical activation
was performed in in one-step process in a stainless-steel tube in a tube furnace using a heating ramp of
10 ◦C/min to 800 ◦C. At the target temperature, steam was added by feeding water at 0.5 mL/min into
the reactor for 2 h. During the thermal heating process, the reactor was flushed continuously with N2

(flow 10 mL/min). Both resulting activated carbons were washed with hot water, dried overnight at
105 ◦C, crushed and sieved to a fraction size of <100 µm. The supports were named ACz (AC zinc
chloride-activated and water washed) and ACS (AC steam-activated and water washed). In addition,
a support with chemical activation and HNO3 treatment was prepared (ACzN). This was performed in
a round bottom flask with a 10:1 mass ratio of 3 M HNO3 per support and heated for 4 h at 85 ◦C. After



Catalysts 2020, 10, 821 14 of 20

the acid treatment, the support was filtrated and washed with hot distilled water until neutral pH was
obtained and finally it was dried in the oven at 105 ◦C.

In order to modify the carbon supports with iron, metal salts (FeCl3·6H2O or Fe(NO3)3·9H2O)
were added by incipient wetness impregnation on the support, aiming that the targeted concentration
of iron in the catalyst was 5 or 10 wt% of the total catalyst mass. The metal salts were dissolved in
distilled water equal to the pore volume of the support and mixed with the support, matured for 5 h at
room temperature and finally dried in an oven at 105 ◦C for 16 h. Finally, the catalysts were calcined
at 400 ◦C for 2 h with a continuous flush of N2 (flow 10 mL/min). The iron-impregnated catalysts
were named 5Fe-ACs, 10Fe-ACs, 5FeNO3-ACz, 5Fe-ACz and 5Fe-ACzN according to the targeted iron
concentration, type of support and type of iron precursor (FeNO3 if mentioned, otherwise FeCl3).

Specific SAs and pore size distributions were determined from the physisorption adsorption
isotherms using nitrogen as the adsorbate. Determinations were performed with a Micromeritics ASAP
2020 instrument (Micromeritics Instrument, Norcross, GA, USA). Portions of each sample (100–200
mg) were degassed at low pressure (0.27 kPa) at a temperature of 140 ◦C for 3 h in order to remove
adsorbed gas. Adsorption isotherms were obtained by immersing sample tubes in liquid nitrogen
(-196 ◦C) to achieve constant temperature conditions. Gaseous nitrogen was added to the samples in
small doses and the resulting isotherms were obtained. SAs were calculated from adsorption isotherms
according to the BET (Brunauer–Emmett–Teller) method [56]. The percentual distribution of pore
volumes (vol%) was calculated from the individual volumes of the micropores (pore diameter <2
nm), mesopores (pore diameter 2–50 nm) and macro-pores (diameter >50 nm) using the DFT (Density
Functional Theory) model [57]. The instrumental setup enabled the measurement of micropores down
to 1.5 nm in diameter, even if there might have been some contribution from smaller pores. The SAs
were measured with a precision of ~5%.

The metal contents of the catalysts and supports were measured by ICP-OES using the 5110 VDV
instrument (Agilent Technologies, Santa Clara, CA, USA). Zn, Fe, Ca, K, Mn, S, Na and Mg were
measured from the ACs support; Zn and Fe contents were measured from ACz, 5FeNO3-ACz, 5Fe-ACz,
ACzN and 5Fe-ACzN; while only the Fe content was determined from 5Fe-ACs and 10Fe-ACs. For
determination, samples of 0.1–0.2 g were first digested in a microwave oven (MARS, CEM Corporation)
using the EPA 3051A method with 9 mL of HNO3 and 3 mL of HCl [58]. Subsequently, the solution
was diluted to 50 mL with water and the former elements were analyzed with the ICP-OES.

XPS analyses were performed using the ESCALAB 250Xi XPS System (Thermo Fisher Scientific,
Waltham, MA, USA). With a pass energy of 20 eV and a spot size of 900 µm, the accuracy of the reported
binding energies (BEs) was ±0.3 eV. Fe, C, O and Cl were measured for all samples. The measurement
data were analyzed using Avantage software. The monochromatic AlKα radiation (1486.6 eV) was
operated at 20 mA and 15 kV. Charge compensation of the BEs was performed by applying the C1s
line at 284.8 eV as a reference.

XRD was used to study the phases of 5Fe-ACs and 10Fe-ACs utilizing PANalytical X’Pert Pro X-ray
diffraction equipment (Malvern Panalytical, Almelo, Netherlands). The diffractograms were collected
in the 2θ range of 5–90◦, with a step size of 0.017◦ and a scan speed of 1.06◦/min using monochromatic
CuKα1 radiation (λ = 1.5406 Å) at 45 kV and 40 mA. The crystalline phases and structures were
analyzed with HighScore Plus software and the peaks were identified using International Centre for
Diffraction Data ICDD (PDF-4 + 2020).

The morphology of the catalyst particles was studied using SEM and STEM. A JEOL JEM-2200FS
energy-filtered transmission electron microscope equipped with a scan generator (EFTEM/STEM) (JEOL
Ltd., Tokyo, Japan) was used for STEM analysis. The catalyst samples were dispersed in pure ethanol
and pretreated in an ultrasonic bath for several minutes to create a microemulsion. A small drop of
the microemulsion was deposited on a copper grid pre-coated with carbon (Lacey/Carbon 200 Mesh
Copper) and evaporated in air at room temperature. The accelerating voltage in the measurements was
200 kV, while the resolution of the STEM image was 0.2 nm. The metal particle sizes were estimated
visually from the STEM high-angle annular dark field (HAADF) images. The SEM was performed
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with a Zeiss Sigma Field emission scanning electron microscope (FESEM). In the sample preparation, a
powder sample was placed on a conductive glue tape. The SEM images were taken at a voltage of 5 kV
and a working distance around 5 mm.

Catalyst surface acidity was characterized by applying the Boehm titration method [59–63]. A
total of 100 mg of catalyst was weighed and mixed with 50 mL 0.01 M NaOH. Samples were shaken
(300 rpm) in sealed tubes for 72 h at room temperature and then filtered using a syringe and syringe
filter (0.45 µm, regenerated cellulose). Titration was carried out using a back-titration method by
taking 10 mL of filtrate, mixing it with 20 mL of 0.01 M HCl and finally back-titrating with 0.01 M
NaOH. Acidic groups were calculated using Equation (2), based on the theory that NaOH neutralizes
all acidic oxygen groups (including phenols, lactonic groups and carboxylic acids) present on carbon.
Nonconsumed base content was neutralized with acid and then nonconsumed acid was quantified
through simple acid-base titration.

3.4. Furfural Production from Xylose

In a conversion reaction, 0.25 mmol (37.6 mg) of xylose and 0.0036/0.050 mmol of homogeneous
metal salt (AlCl3·6H2O, ZnCl2, CrCl3·6H2O, SnCl2·2H2O or FeCl3·6H2O) or 5 mg heterogeneous
carbon-based catalyst were placed into a 5 mL reaction tube. A magnetic stirring bar, water (1 mL) and
MIBK (3 mL) were added and the tube was sealed. The reaction was carried out in a Biotage Initiator
microwave reactor (Biotage, Uppsala, Sweden) at 160/170/180 ◦C for 30 min to 3.5 h. After the reaction,
approximate 1 mL samples from both layers were filtered with a syringe filter (an RC filter for the
organic layer and a PTFE filter for the water layer) and then analyzed with HPLC.

3.5. Catalyst Recycling

Catalyst recycling experiments were carried out with 5Fe-ACs catalyst with a 3 h reaction time and
a reaction temperature of 170 ◦C. After the reaction, liquid samples were taken normally for furfural
and xylose analyses. In addition, metal leaching (Fe and Zn) was monitored by measuring the metal
content of the water phase by AAS (see Section 3.6) and the catalyst was collected using a PALL Easy
Pressure Syringe Filter Holder and hydrophilic polypropylene membrane (GHP). The catalyst was first
washed with methanol (4 + 10 mL) and water (3*10 mL) and then dried and weighed. Used catalysts
were analyzed with SEM and TEM (see Section 3.3).

3.6. Analytical Methods for Conversion Studies

Two different HPLC analyses were used to detect furfural and xylose in the samples. In the
analyses, calibrations were performed with commercial furfural or xylose. HPLC analysis for furfural
was carried out using a Waters 2695 separation module fitted with an Atlantis T3 (3 µm, 4.6 × 150
mm) column and a Waters 996 photodiode array (PDA) detector (Waters Corp., Milford, MA, USA).
A mixture of water (0.1% TFA) and methanol (0.1% TFA) (90:10) was used as the mobile phase, with
a flow rate of 1 mL/min. The column temperature was kept constant at 30 ◦C and the UV detection
for furfural was performed at 277 nm. HPLC analysis for xylose was carried out using a Shimadzu
LC-20AT liquid chromatograph instrument fitted with an SIL-20A TH autosampler, RID-20A refractive
index detector, SUGAR SH-G pre-column and Shodex SUGAR SH1821 column (8.0 × 300 mm). Sulfuric
acid (5 mM) was used as a mobile phase with a flow rate of 0.8 mL/min and the column temperature
was kept constant at 60 ◦C.

Atomic absorption spectroscopy (AAS) was used to determine iron and zinc leaching from
5Fe-ACs and 5Fe-ACz catalysts. First, water phase samples of the reactions were diluted with water to
a minimum 10 mL. Then, determinations were made using Varian AA240FS equipment (Varian Inc.,
Palo Alto, CA, USA), air-acetylene fuel, a Varian SpectrAA lamp (Cu/Mn/Zn/Fe) and flame emission
wavelengths of 372.0 nm for Fe and 213.9 nm for Zn.
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3.7. Equations

The partitioning coefficient (P) was calculated using the following formula:

P = [furfural]org/[furfural]aq, (1)

where [furfural]org is the concentration (g/l) of furfural in the organic layer and [furfural]aq is the
concentration of furfural in the water layer.

The total amount of acid sites according to Boehm titration was calculated as follows:

n total acids = [(CNaOH*VNaOH added - (CHCl*VHCl added - CNaOH*VNaOH titration)/ 1
5 ) - n total acids in reference]/m, (2)

where c (NaOH and HCl) are concentrations in mol/L, V (NaOH and HCl) are added volumes in mL, V
(NaOH titration) is the volume of NaOH in ml needed to achieve equilibrium in titration, m is the
mass of carbon weighed and n (total acids in reference) represents a blank solution without carbon.
The factor 1

5 is due to the measurement of the 10 mL aliquots representing 1
5 of the reaction base.

The yield of furfural was calculated as follows:

Yfurfural (%) = [c furf meas org/c furf max] × 100%, (3)

where c furf. meas. org is the measured furfural concentration in the organic phase of the sample and c

furf max is the theoretical maximum concentration of furfural in the sample.
The conversion of xylose was calculated as follows:

Cxylose (%) = [n xyl initial/n xyl final] × 100%, (4)

where n xyl initial is the initial amount of xylose (in moles) fed to the reaction and n xyl final is the amount
of xylose left in the reaction mixture after the reaction.

The selectivity of the xylose to furfural conversion was calculated as follows:

S (%) = [(c furf meas total/c furf max)/conversion] × 100%, (5)

where c furf. meas total. is the measured total furfural concentration in the organic and aqueous phases of
the sample and c furf max is the theoretical maximum concentration of furfural in the sample.

4. Conclusions

In this study, the conversion of xylose to furfural was studied using lignin-based activated
carbon-supported iron oxide catalysts. Three different activated carbon supports and five different
catalysts were prepared and studied in furfural production. Different activation methods, metal
precursors and metal concentrations were used for the catalysts and different temperatures and reaction
times were studied in the conversion reactions. Chemical activation resulted in a higher surface area
and pore volume than physical activation but in conversion reactions, physically activated catalysts
produced better reaction selectivity. FeNO3 precursor yielded higher xylose conversion than FeCl3
precursor but the furfural yield and selectivity were higher with FeCl3 precursor. The best results
for xylose conversion to furfural were achieved with a 4 wt% iron-containing catalyst (5Fe-ACs),
which produced a 57% yield, 92% conversion and 65% selectivity at 170 ◦C in 3 h. The results with a
catalyst containing more iron (9.2 wt%) were lower (54% yield, 93% conversion and 60% selectivity) in
similar conditions. The catalytic amount of Fe in 5Fe-ACs was only 3.6 µmol and using this amount of
homogeneous FeCl3 as a catalyst, reduced the furfural yield, xylose conversion and selectivity. Based
on catalyst characterization, iron was in the form of iron oxide on the surface of the heterogeneous
catalyst, which may have affected to its catalytic activity positively compared to FeCl3. Moreover,
hydroxyl groups were detected on the surface of 5Fe-ACs, which increases catalyst Brønsted acid
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sites and therefore can increase furfural production. The recycling experiments revealed that part
of the iron is easily leached out of the catalyst at a high temperature and in acidic conditions and
the catalyst adsorbed some reactions products. These factors decreased the furfural yield and xylose
conversion after the first round of recycling but then they remained constant. Although the activated
carbon-supported iron oxide catalyst needs some improvements for better stability, it is a feasible
alternative to homogeneous FeCl3.
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XRD results of 5Fe-ACs and 10Fe-ACs, Figure S2: Boehm titration curves, Figure S3: EDS spectra of area shown in
Figure 4, Figure S4: Graphical presentation of the results presented in Table 5, Figure S5: HPLC chromatogram of
water (a) and organic (b) phase of reaction solution using 5Fe-ACz catalyst. Grams show increasing side product
peak at 3.1 min and furfural shoulder at 8.5 min, when 180 ◦C was used as reaction temperature, Figure S6: STEM
HAADF image of three times used 5Fe-ACs, which shows large agglomerated iron particles (diameter approx.
15¨C40 nm) as well as small single particles (diameter approx. 5 nm), Figure S7: SEM images of unused 5Fe-ACs
(a,c) and used 5Fe-ACs (b,d) catalysts.
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