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INTRODUCTION

The characterization of the trace spaces (on the boundary of a domain) of Sobolev spaces
and other function spaces has a long history. It can be traced back to [17] by Gagliardo
in 1957, which gave a characterization of the trace space of the first order Sobolev space
W 1,p(Rn+1

+ ), 1 < p < ∞, Rn+1
+ := {(x, r) : x ∈ Rn, r > 0}, in terms of the convergence

of a suitable double integral of the boundary values. More precisely, for any function
u ∈ W 1,p(Rn+1

+ ), define the trace operator T by setting

Tu(x) = lim
r→0+

u(x, r)

for those x ∈ Rn, for which this limit exists. Then the trace operator T : W 1,p(Rn+1
+ ) →

B
1−1/p
p,p (Rn) is linear and bounded for 1 < p < ∞ and there exists a bounded linear

extension operator that acts as a right inverse of T . Here the space B
1−1/p
p,p (Rn), consisting

of all measurable functions f on Rn with

‖f‖pLp(Rn) +

∫

Rn

∫

Rn

|f(x)− f(y)|p
|x− y|n+(1−1/p)p

dx dy <∞,

is nowadays commonly called a Besov space or a fractional Sobolev space. Actually,
Gagliardo also proved in [17] that the trace operator T : W 1,1(Rn+1

+ ) → L1(Rn) is a
bounded linear surjective operator with a non-linear right inverse. Peetre showed in [41]
that one can not find a bounded linear extension operator that acts as a right inverse of
T : W 1,1(Rn+1

+ )→ L1(Rn).
It is natural to seek for the trace spaces of Sobolev spaces associated with weights

or the trace spaces for other function spaces, like Orlicz-Sobolev spaces. Early results
considering the trace spaces of Sobolev spaces with weights of the form x → dist(x,Rn)α

were given by Nikolskii, Lizorkin and Vašarin, see [31, 37, 56]. More recently, Tyulenev
studied in [52, 53, 54, 55] the trace spaces of Sobolev spaces associated with more general
Muckenhoupt Ap-weights. We also refer to [4, 27, 35, 41, 47, 49, 50] for more information on
the traces of (weighted) Sobolev spaces. For the traces of Orlicz-Sobolev spaces (associated
with weights), we refer to [12, 13, 16, 28, 39, 11, 29, 40].

Over the past two decades, analysis in general metric measure spaces has attracted a lot
of attention as exhibited by [5, 7, 21, 22, 23, 24, 25]. The trace theory in the metric setting
has been under development. Malý proved in [32] that the trace space of the Newtonian

space N1,p(Ω) is the Besov space B
1−θ/p
p,p (∂Ω) provided that Ω is a John domain for p > 1

(uniform domain for p ≥ 1) that admits a p-Poincaré inequality and whose boundary ∂Ω
is endowed with a codimensional-θ Ahlfors regular measure with θ < p. We also refer
to the paper [44] for studies on the traces of Haj lasz-Sobolev functions to porous Ahlfors
regular closed subsets via a method based on hyperbolic fillings of a metric space, also see
[9, 48]. It was shown in [30, 33] that the trace space of BV(Ω) (functions of bounded
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6 INTRODUCTION

variation) is L1(∂X) whenever Ω is a bounded domain supporting 1-Poincaré inequality
and the boundary ∂Ω is endowed with a codimensional-1 Ahlfors regular measure.

In this thesis, we study the traces of function spaces on metric measure spaces. In
the paper [A], we revisit the Euclidean setting, viewing the upper half space Rn+1

+ as a
particularly nice metric space endowed with a weighted measure, and give characterizations
of trace spaces of first order Sobolev spaces, Besov spaces and Triebel-Lizorkin spaces
via dyadic norms. We then study the trace problem in papers [B] and [D] on regular
trees, dealing with first order Sobolev spaces and those Orlicz-Sobolev spaces whose Young
function is of the form tp logλ(e + t). In the paper [C], we work on the relations of the
traces among Newton-Sobolev, Haj lasz-Sobolev and bounded variation functions on metric
measure spaces, and show that the trace spaces of those function classes coincide under
suitable assumptions on the domain in question.

1. Revisiting the Euclidean setting

In this section, we deal with the upper half space Rn+1
+ associated with the measure µα

(where α > −1) defined by

µα(E) =

∫

E

wα dmn+1,

where wα : Rn+1
+ → (0,∞) is the weight (x1, x2, · · · , xn+1) 7→ min(1, |xn+1|)α and mn+1 is

the standard Lebesgue measure on Rn+1
+ . Then a straightforward calculation shows that

µα
(
B(x, r)

)
≈ rn+1+α

for all x ∈ Rn × {0} and 0 < r ≤ 1.
First, we give the definitions of the relevant function spaces.

Definition 1.1. Suppose that µ is a Borel-regular measure on Rn such that every Euclidean
ball has positive and finite µ-measure.

Let p ∈ [1,∞). Then W 1,p(Rn, µ) is defined as the normed space of all the measurable
functions f ∈ L1

loc(Rn) such that the first-order distributional derivatives of f coincide with
functions in L1

loc(Rn) and

‖f‖W 1,p(Rn,µ) := ‖f‖Lp(Rn,µ) + ‖∇f‖Lp(Rn,µ) (1.1)

is finite.
The space W 1,p(Rn+1

+ , µα) is defined similarly, by replacing Rn and µ in (1.1) with Rn+1
+

and µα, respectively.

In order to introduce the dyadic norms for the relevant fractional smoothness spaces, we
recall the standard dyadic decompositions of Rn and Rn+1

+ . Denote by Qn the collection of
dyadic semi-open cubes in Rn, of the form Q := 2−k

(
(0, 1]n+m

)
, where k ∈ Z and m ∈ Zn,

and by Q+
n for the cubes in Qn which are contained in the upper half-space Rd−1× (0,∞).

Write `(Q) for the edge length of Q ∈ Qn, i.e. 2−k in the preceding representation, and
Qn,k for the cubes Q ∈ Qn such that `(Q) = 2−k. If x ∈ Rn (resp. x ∈ Rn+1

+ ) and k ∈ Z,
we write write Qx

k for the unique cube in Qn (resp. Q+
n+1) such that x ∈ Q and `(Q) = 2−k.
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We say that Q and Q′ in Qn are neighbors and write Q ∼ Q′ if 1
2
≤ `(Q)/`(Q′) ≤ 2 and

Q ∩Q′ 6= ∅. Note that every Q has a uniformly bounded number of neighbors.

Definition 1.2. Suppose that µ is a Borel-regular measure on Rn such that every Euclidean
ball has positive and finite µ-measure.

Let s ∈ (0, 1), p ∈ [1,∞] and q ∈ (0,∞]. Then the Besov space Bs
p,q(Rn, µ) is defined

as the normed (or quasi-normed when q < 1) space of all the functions f ∈ L1
loc(Rn) such

that

‖f‖Bsp,q(Rn,µ) := ‖f‖Lp(Rn,µ) +

( ∞∑

k=0

2ksq
( ∑

Q∈Qn,k

µ(Q)
∑

Q′∼Q

∣∣fQ,µ − fQ′,µ

∣∣p
)q/p)1/q

(1.2)

(standard modification for p =∞ and/or q =∞) is finite.

Here and in the following, we use the notation

fQ,µ := −
∫

Q

f dµ =
1

µ(Q)

∫

Q

f dµ.

We omit µ from the notation and write fQ when µ is the standard Lebesgue measure.

Definition 1.3. Suppose that µ is a Borel-regular measure on Rn such that every Euclidean
ball has positive and finite µ-measure.

Let s ∈ (0, 1), p ∈ [1,∞) and q ∈ (0,∞]. Then the Triebel-Lizorkin space Fsp,q(Rn, µ) is

defined as the normed (or quasi-normed when q < 1) space of all the functions f ∈ L1
loc(Rn)

such that

‖f‖Fsp,q(Rn,µ) := ‖f‖Lp(Rn,µ) +

(∫

Rn

( ∞∑

k=0

2ksq
∑

Q′∼Qxk

∣∣fQxk ,µ − fQ′,µ

∣∣q
)p/q

dµ(x)

)1/p

(1.3)

(standard modification for q =∞) is finite.

The spaces Bs
p,q(Rn+1

+ , µα) and Fsp,q(Rn+1
+ , µα) are defined similarly, by replacing Rn and

µ with Rn+1
+ := Rn× (0,∞) and µα in (1.2) and (1.3), respectively, and omitting the terms

corresponding to the cubes Q ∈ Qn+1 \Q+
n+1 and Q′ ∈ Qn+1 \Q+

n+1.
In case µ is the standard Lebesgue measure on Rn, we omit µ from the notation of

these three function spaces above and simply write W 1,p(Rn), Bs
p,q(Rn) and Fsp,q(Rn). The

spaces Bs
p,q(Rn) and Fsp,q(Rn) coincide with the standard Besov space Bs

p,q(Rn) and the
standard Triebel-Lizorkin space F s

p,q(Rn), see [A, Section 7.2]. We also refer to the seminal
monographs [42] by Peetre and [49] by Triebel for spaces Bs

p,q(Rn) and F s
p,q(Rn).

Next, we introduce the Whitney extension which plays a central role in the paper [A].
Given Q ∈ Qn,k, k ∈ Z, let W (Q) := Q × (2−k, 2−k+1] ∈ Q+

n+1,k. Then it is easy to check

that {W (Q) : Q ∈ Qn} is a Whitney decomposition of Rn+1
+ = Rn × (0,∞) with respect

to the boundary Rn × {0}. Here we refer to [45, 25] for more information about Whitney
decompositions. Further, let Q0

n := ∪k≥0Qd,k.
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For each Q ∈ Q0
n, pick a smooth function ψQ : Rn+1

+ → [0, 1] such that LipψQ . 1/`(Q),

infx∈W (Q) ψQ(x) > 0 uniformly in Q ∈ Q0
n, suppψQ is contained in an `(Q)

4
-neighborhood

of W (Q) and
∑

Q∈Q0
n

ψQ ≡ 1 in
⋃

Q∈Q0
n

W (Q).

Let us point out that the sum above is locally finite – more precisely, it follows from the
definition that

suppψQ ∩ suppψQ′ 6= ∅ if and only if Q ∼ Q′.

Definition 1.4. (i) Let f ∈ L1
loc(Rn). Then the Whitney extension Ef : Rn+1

+ → R is
defined by setting

Ef(x) =
∑

Q∈Q0
n

(
−
∫

Q

f dmn

)
ψQ(x).

This definition gives rise in the obvious way to a linear operator E : L1
loc(Rd)→ C∞(Rd+1

+ ).
(ii) Let X ⊂ L1

loc(Rn) be a quasinormed function space on Rn, and let Y be a quasinormed
function space on the weighted half-space (Rn+1

+ , µ). We say that (X,Y) is a Whitney trace-
extension pair if E maps X continuously into Y, if the trace function Rf defined by

Rf(x) = lim
r→0
−
∫

B((x,0),r)∩Rn+1
+

f(y) dµ(y),

is for all f ∈ Y well defined almost everywhere and belongs to L1
loc(Rn), if R maps Y

continuously into X and if additionally

R(Ef) = f

pointwise almost everywhere for all f ∈ X.

In the paper [A], we gave the following trace results for the Sobolev spacesW 1,p(Rn+1
+ , µα),

Besov spaces Bs
p,q(Rn+1

+ , µα) and Triebel-Lizorkin spaces Fsp,q(Rn+1
+ , µα).

Theorem 1.5. (i) Let 1 ≤ p <∞ and −1 < α < p−1. Then
(
B

1−(α+1)/p
p,p (Rn),W 1,p(Rn+1

+ , µα)
)

is a Whitney trace-extension pair.
(ii) Let 0 < s < 1, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and −1 < α < sp − 1. Then(

B
s−(α+1)/p
p,q (Rn),Bs

p,q(Rn+1
+ , µα)

)
is a Whitney trace-extension pair.

(iii) Let 0 < s < 1, 1 ≤ p < ∞, 0 < q ≤ ∞ and −1 < α < sp − 1. Then(
B
s−(α+1)/p
p,p (Rn),Fsp,q(Rn+1

+ , µα)
)

is a Whitney trace-extension pair.

The above result deals with the traces of functions defined on Rn+1
+ to Rn. It can be

generalized to the case of Rn+m and Rn, where m ∈ N, m ≥ 1. We refer to [A, Section 7.4]
for more details.



INTRODUCTION 9

2. Trace results on regular trees

In this section, we study the trace problem on regular trees. First, we introduce regular
trees and their boundaries.

A graph G is a pair (V,E), where V is a set of vertices and E is a set of edges. Given
vertices x, y ∈ V are neighbors if x is connected to y by an edge. The number of the
neighbors of a vertex x is referred to as the degree of x. A tree G is a connected graph
without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x ∈ G are of two types: the neighbors that
are closer to the root are called parents of x and all other neighbors are called children of
x. Each vertex has a unique parent, except for the root itself that has none. A K-regular
tree is a rooted tree such that each vertex has exactly K children.

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K ≥ 1.
For simplicity of notation, we let X = V ∪ E and call it a K-regular tree. We consider
each edge as a geodesic of length one. For x ∈ X, let |x| be the length of the geodesic
from 0 to x, where we consider each edge to be an isometric copy of the unit interval. The
geodesic connecting x, y ∈ V is unique. We refer to it by [x, y], and to its length by |x−y|.
We write x ≤ y if x ∈ [0, y]. Then |x − y| = |y| − |x|. We say that a vertex y 6= x is a
descendant of the vertex x if x ≤ y.

Towards defining the metric of X, let ε > 0, and set

dX(x, y) =

∫

[x,y]

e−ε|z| d |z|.

Here d |z| is the natural measure that gives each edge Lebesgue measure 1; recall that each
edge is an isometric copy of the unit interval. Notice that diamX = 2/ε if X is a K-ary
tree with K ≥ 2.

The boundary ∂X of a tree X is obtained by completing X with respect to the metric
dX . An element ξ ∈ ∂X can be identified with an infinite geodesic starting at the root 0.
Equivalently we employ the labeling ξ = 0x1x2 · · · , where xi is a vertex in X with |xi| = i,
and xi+1 is a child of xi. The extension of the metric to ∂X can be realized in the following
manner. Given ξ, ζ ∈ ∂X, pick an infinite geodesic [ξ, ζ] connecting ξ and ζ. Then dX(ξ, ζ)
is the length of the geodesic [ξ, ζ]. Indeed, if ξ = 0x1x2 · · · and ζ = 0y1y2 · · · , let k be the
integer with xk = yk and xk+1 6= yk+1. Then

dX(ξ, ζ) = 2

∫ +∞

k

e−εt dt =
2

ε
e−εk.

For more details, see [6, 8, 10]. For clarity, we use ξ, ζ, ω to denote points in ∂X and x, y, z
points in X.

We define a weighted measure µλ on the K-regular tree X by setting

dµλ(x) = e−β|x|(|x|+ C)λ d|x| (2.1)

where β > logK, λ ∈ R and C ≥ max{2|λ|/(β−logK), 2(log 4)/ε}. We refer to [B, Section
2.2] for detailed discussions about the measure µλ. Then in [B] and [D], the trace spaces
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of the Newtonian space N1,p(X,µλ), 1 ≤ p <∞ and the Orlicz-Sobolev space N1,Φ(X,µλ)

with Young function Φ(t) = tp logλ
′
(e + t), 1 ≤ p,∞, λ′ ∈ R have been characterized.

Before going into details, let us give some necessary definitions, including the definitions
of N1,p(X,µλ) and N1,Φ(X,µλ).

Let u ∈ L1
loc(X,µλ). We say that a Borel function g : X → [0,∞] is an upper gradient

of u if

|u(z)− u(y)| ≤
∫

γ

g dsX (2.2)

whenever z, y ∈ X and γ is the geodesic from z to y, where dsX denotes the arc length
measure with respect to the metric dX . In the setting of a tree any rectifiable curve with
end points z and y contains the geodesic connecting z and y, and therefore the upper
gradient defined above is equivalent to the definition which requires that inequality (2.2)
holds for all rectifiable curves with end points z and y. We refer interested readers to
[21, 24, 25, 46] for a more detailed discussion on upper gradients.

Definition 2.1. (i) The Newtonian space N1,p(X,µλ), 1 ≤ p < ∞, is defined as the
collection of all the functions for which

‖u‖N1,p(X,µλ) :=

(∫

X

|u|p dµλ + inf
g

∫

X

gp dµλ

)1/p

<∞,

where the infimum is taken over all upper gradients of u.
(ii) Let Φ be a Young function. Then the Orlicz space LΦ(X) is defined by setting

LΦ(X,µλ) =

{
u : X → R : u measurable,

∫

X

Φ(α|u|) dµλ < +∞ for some α > 0

}
.

The Orlicz space LΦ(X,µλ) is a Banach space equipped with the Luxemburg norm

‖u‖LΦ(X,µλ) = inf

{
k > 0 :

∫

X

Φ(|u|/k) dµλ ≤ 1

}
.

(iii) For any Young function Φ, the Orlicz-Sobolev space N1,Φ(X,µλ) is defined as the
collection of all the functions u for which the norm of u defined as

‖u‖N1,Φ(X,µλ) = ‖u‖LΦ(X,µλ) + inf
g
‖g‖LΦ(X,µλ)

is finite, where the infimum is taken over all upper gradients of u.

We refer to [51, section 2.2] and [38, 43] for more details about Young functions.
We equip ∂X with the natural probability measure ν by distributing the unit mass

uniformly on ∂X. Then the boundary (∂X, ν) is an Ahlfors Q-regular space with Hausdorff
dimension Q = logK

ε
. Hence

ν(B∂X(ξ, r)) ≈ rQ = rlogK/ε,

for any ξ ∈ ∂X and 0 < r ≤ diam(∂X). For more details about the measure ν, we refer
to [6, Lemma 5.2].
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Inspired by the Euclidean setting, we try to characterize the trace spaces of N1,p(X,µλ)
and N1,Φ(X,µλ) by using dyadic-type norms. Towards this, we give a dyadic decomposition
on the boundary ∂X of the K-ary tree X: Let Vn = {xnj : j = 1, 2, · · · , Kn} be the set of
all n-level vertices of the tree X for any n ∈ N, where a vertex x is of n-level if |x| = n.
Then we have that

V =
⋃

n∈N
Vn

is the set containing all the vertices of the tree X. For any vertex x ∈ V , denote by Ix the
set

{ξ ∈ ∂X : the geodesic [0, ξ) passes through x}.
Let Q = {Ix : x ∈ V } and Qn = {Ix : x ∈ Vn} for any n ∈ N. Then Q0 = {∂X} and we
have

Q =
⋃

n∈N
Qn.

The set Q is called a dyadic decomposition of ∂X. Clearly, for any n ∈ N and I ∈ Qn,

there is a unique element Î in Qn−1 such that I is a subset of it. It is easy to see that if

I = Ix for some x ∈ Vn, then Î = Iy with y the unique parent of x in the tree X. Hence
the structure of the tree X gives the structure of our dyadic decomposition of ∂X.

In [B] and [D], we introduced the following Besov-type spaces.

Definition 2.2. (i) For 0 ≤ θ < 1, p ≥ 1 and λ ∈ R, the Besov-type space Bθ,λ
p (∂X)

consists of all the functions f ∈ Lp(∂X) for which the Ḃθ,λ
p -dyadic energy of f defined as

‖f‖p
Ḃ
θ,λ
p (∂X)

:=
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)
∣∣fI − fÎ

∣∣p

is finite. The norm on Bθ,λ
p (∂X) is

‖f‖
B
θ,λ
p (∂X) := ‖f‖Lp(∂X) + ‖f‖

Ḃ
θ,λ
p (∂X).

(ii) Let Φ be the Young function Φ(t) = tp logλ1(e+t) with p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0.

Then the Orlicz-Besov space B
θ,λ2

Φ (∂X) consists of all the functions f ∈ LΦ(∂X) whose
norm defined as

‖f‖
B
θ,λ2
Φ (∂X)

:= ‖f‖LΦ(∂X) + inf
{
k > 0 : |f/k|

Ḃ
θ,λ2
Φ (∂X)

≤ 1
}

is finite, where for any g ∈ L1
loc(∂X), the Ḃ

θ,λ2

Φ -dyadic energy is defined as

|g|
Ḃ
θ,λ2
Φ (∂X)

:=
∞∑

n=1

eεn(θ−1)pnλ2

∑

I∈Qn

ν(I)Φ

(∣∣gI − gÎ
∣∣

e−εn

)
.

The study of traces on regular trees was initiated in [6], which dealt with the measure
µλ in (2.1) when λ = 0. It was shown that the trace space of N1,p(X,µ0) is the Besov
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space Bθ
p,p(∂X), where the smoothness exponent of the Besov space is

θ = 1− β/ε−Q
p

, 0 < θ < 1.

Here the space Bθ
p,p(∂X) consists of all the functions f ∈ Lp(∂X) for which the seminorm

‖f‖Ḃθp(∂X) defined as

‖f‖p
Ḃθp,p

:=

∫

∂X

∫

∂X

|f(ζ)| − f(ξ)|p
dX(ζ, ξ)θpν(B(ζ, dX(ζ, ξ)))

dν(ξ) dν(ζ)

is finite.
Here and in the rest of this section, for given Banach spaces X(∂X) and Y(X), we

say that the space X(∂X) is a trace space of Y(X) if and only if there is a bounded
linear operator T : Y(X) → X(∂X) and there exists a bounded linear extension operator
E : X(∂X)→ Y(X) that acts as a right inverse of T , i.e., T ◦E = Id on the space X(∂X).

It was observed in [B, Proposition 2.13] that Bθ
p,p(∂X) = Bθ,0

p (∂X). Our first result from
[B] generalized the above trace result.

Theorem 2.3. Let X be a K-ary tree with K ≥ 2. Fix β > logK, ε > 0 and λ ∈ R.
Suppose that p ≥ 1 and p > (β − logK)/ε. Then the Besov-type space Bθ,λ

p (∂X) is the

trace space of N1,p(X,µλ) whenever θ = 1− (β − logK)/εp.

Another motivation for the above theorem was to study the dyadic energy defined by
[26], introduced for the regularity of space-filling curves. This dyadic energy turns out to

be equivalent to a Ḃθ,λ
p (∂X)-energy. We refer the interested reader to the introduction of

the paper [B] for more details.
In [D], we further generalized the above result to the Orlicz case where the Young

function is of the form Φ(t) = tp logλ(e+ t).

Theorem 2.4. Let X be a K-ary tree with K ≥ 2 and let Φ(t) = tp logλ1(e + t) with
p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0. Fix λ2 ∈ R and assume that p > (β − logK)/ε > 0. Then

the trace space of N1,Φ(X,µλ2) is the space B
θ,λ2

Φ (∂X) where θ = 1− (β − logK)/εp.

The next result from [D] identifies the Orlicz-Besov space B
θ,λ2

Φ (∂X) as the Besov space
Bθ,λ
p (∂X).

Proposition 2.5. Let λ, λ1, λ2 ∈ R. Let Φ(t) = tp logλ1(e + t) with p > 1, λ1 ∈ R or

p = 1, λ1 ≥ 0. Assume that λ1 +λ2 = λ. Then the Banach spaces Bθ,λ
p (∂X) and B

θ,λ2

Φ (∂X)

coincide, i.e., Bθ,λ
p (∂X) = B

θ,λ2

Φ (∂X).

By combining Theorem 2.4 and Proposition 2.5, we obtain the following result.

Corollary 2.6. Let X be a K-ary tree with K ≥ 2. Let λ, λ1, λ2 ∈ R. Assume that
p > (β − logK)/ε > 0 and let θ = 1 − (β − logK)/εp. Let Φ(t) = tp logλ1(e + t) with
p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0. Then the Besov-type space Bθ,λ

p (∂X) is the trace space of

N1,Φ(X,µλ2) whenever λ1 + λ2 = λ.
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Let us go back to the trace result for the Newtonian space N1,p(X,µ). Recall that
we required in Theorem 2.3 (actually also in Theorem 2.4 and Corollary 2.6) that p >
(β − logK)/ε > 0. The assumption that β − logK > 0 is necessary in the sense that
we need to make sure that the measure µλ on X is doubling; see [B, Section 2.2]. The
requirement that p > (β − logK)/ε will ensure that θ > 0. So it is natural to consider the
case p = (β − logK)/ε ≥ 1. We obtained the following result in [B].

Theorem 2.7. Let X be a K-ary tree with K ≥ 2. Fix β > logK, ε > 0 and λ ∈ R.
Suppose that p = (β−logK)/ε ≥ 1 and λ > p−1 if p > 1 or λ ≥ 0 if p = 1. Then there is a
bounded linear trace operator T : N1,p(X,µλ)→ Lp(∂X), defined via limits along geodesic
rays. Here, λ > p − 1 is sharp in the sense that for any p > 1, δ > 0 and λ = p − 1 − δ,
there exists a function u ∈ N1,p(X,µλ) so that Tu(ξ) =∞ for every ξ ∈ ∂X.

Moreover, for any p = (β − logK)/ε ≥ 1, there exists a bounded nonlinear extension

operator E : Lp(∂X) → N1,p(X) so that the trace operator T̂ defined via limits of E(f)

along geodesic rays for f ∈ Lp(∂X) satisfies T̂ ◦ E = Id on Lp(∂X).

A result similar to Theorem 2.7 for the weighted Newtonian space N1,p(Ω, ω dµ) with a
suitable weight ω was also established in [32] under the assumption that Ω is a bounded
domain that admits a p-Poincaré inequality and whose boundary ∂Ω is endowed with a p-
co-dimensional Ahlfors regular measure. In Theorem 2.7, for the case p = (β−logK)/ε > 1,
we required that λ > p−1 to ensure the existence of limits along geodesic rays. In the case
p = (β− logK)/ε = 1, these limits exist even for λ = 0, and there is a nonlinear extension
operator that acts as a right inverse of the trace operator, similarly to the case of W 1,1 in
Euclidean setting; see [17, 41].

Notice that N1,p(X,µλ) is a strict subset of N1,p(X) when λ > 0. Hence except for
the case p = 1 and λ = 0, Theorem 2.7 does not even tell whether the trace operator T
is surjective or not. The following result shows that the trace operator T is actually not
surjective when p = (β − logK)/ε = 1 and λ > 0, and gives a full characterization of
the trace spaces of the Newtonian space N1,1(X,µλ). Towards stating the result, we first
define a Besov-type space.

Definition 2.8. For λ > 0, the Besov-type space Bα
1 (∂X) consists of all the functions

f ∈ L1(∂X) for which the Ḃ0,λ-dyadic energy of f defined as

‖f‖Ḃα1 (∂X) =
∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I)|fI − fĨ |

is finite. Here α(n) = 2n and for any I = Ix ∈ Qα(n) with x ∈ Vα(n) and n ≥ 1, we denote

Ĩ = Iy where y ∈ Vα(n−1) is the ancestor of x in X. The norm on Bα
1 (∂X) is

‖f‖Bα1 (∂X) := ‖f‖L1(∂X) + ‖f‖Ḃα1 (∂X).

We obtained the following characterization in [B].

Theorem 2.9. Let X be a K-ary tree with K ≥ 2. Fix β > logK, ε > 0 and λ > 0.
Suppose that p = 1 = (β − logK)/ε. Then the trace space of N1,1(X,µλ) is the Besov-type
space Bα

1 (∂X).
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We stress that Bα
1 (∂X) and B

0,λ
1 (∂X) are different spaces. More precisely, B0,λ

1 (∂X) is
a strict subspace of Bα

1 (∂X), see Proposition 3.8 and Example 3.9 of [B]. Trace results
similar to Theorem 2.9 in the Euclidean setting can be found in [18, 54].

3. Traces of N1,1, M1,1 and BV

Let us first recall some existing trace results. In [30], the authors studied the boundary
traces, or traces for short, of BV functions in suitably regular domains. Typically, the
boundary trace Tu of a function u in a domain Ω is defined by the condition

lim
r→0+

−
∫

B(x,r)∩Ω

|u− Tu(x)| dµ = 0

for a.e. x ∈ ∂Ω with respect to the codimension-1 Hausdorff measure H. In [33] the
authors considered the corresponding extension problem, that is, the problem of finding
a function whose trace is a prescribed L1-function on the boundary. They showed that
in sufficiently regular domains, the trace operator for BV functions is surjective, and that
in fact the extension can always be taken to be a Newton-Sobolev function. This implies
that the trace space of both BV(Ω) and N1,1(Ω) is L1(∂X). In the Euclidean setting, it
is know by [3] and [17] that the trace spaces of W 1,1(Rn+1

+ ) and BV(Rn+1
+ ) coincide with

each other, namely with the space L1(Rn).
We would like to consider boundary traces from a different viewpoint. Unlike in the

usual literature, we assume very little regularity of the domain, meaning that traces need
not always exist. We are nonetheless able to show in various cases that for a given function,
it is possible to find a more regular function that “achieves the same boundary values”. In
particular, if the original function has a boundary trace, then the more regular function
has the same trace. This sheds further light on the extension problem. Not only consid-
ering BV- and N1,1-functions, we include M1,1-functions into discussion. We begin with
necessary definitions.

In this section, we assume that (X, d, µ) is a complete metric space equipped with a
doubling measure µ and supporting a (1, 1)-Poincaré inquality. Here we call µ a doubling
measure if there exists a constant Cd ≥ 1 such that

0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r)) <∞
for every ball B(x, r) := {y ∈ X : d(y, x) < r}. By iterating the doubling condition, for
every 0 < r ≤ R and y ∈ B(x,R), we have

µ(B(y, r))

µ(B(x,R))
≥ 4−s

( r
R

)s
, (3.1)

for any s ≥ log2Cd. See [21, Lemma 4.7] or [5] for a proof of this. We fix such an s > 1 and
call it the homogeneous dimension. We say that X supports a (1, 1)-Poincaré inequality,
meaning that there exist constants CP > 0 and λ ≥ 1 such that for every ball B(x, r),
every u ∈ L1

loc(X), and every upper gradient g of u, we have

−
∫

B(x,r)

|u− uB(x,r)| dµ ≤ CP r−
∫

B(x,λr)

g dµ,
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where

uB(x,r) := −
∫

B(x,r)

u dµ :=
1

µ(B(x, r))

∫

B(x,r)

u dµ.

Let Ω ⊂ X be a nonempty open set. We can regard it as a metric space in its own right,
equipped with the metric induced by X and the measure µ|Ω which is the restriction of µ
to subsets of Ω. This restricted measure µ|Ω is a Radon measure, see [25, Lemma 3.3.11].

Definition 3.1. (i) We say that an open set Ω satisfies a measure density condition if there
is a constant cm > 0 such that

µ(B(x, r) ∩ Ω) ≥ cmµ(B(x, r)) (3.2)

for every x ∈ Ω and every r ∈ (0, diam(Ω)).
(ii) We say that Ω satisfies a measure doubling condition if the measure µ|Ω is a doubling

measure, i.e., there is a constant cd > 0 such that

0 < µ(B(x, 2r) ∩ Ω) ≤ cdµ(B(x, r) ∩ Ω) <∞ (3.3)

for every x ∈ Ω and every r > 0.

Notice that if Ω satisfies the measure density condition, then it satisfies the measure
doubling condition.

The Newtonian space N1,1(Ω) is defined analogously as in Definition 2.1. So we only
present the definitions of BV(Ω) and M1,1(Ω).

Given a function u ∈ L1
loc(Ω), we define the total variation of u in Ω by

‖Du‖(Ω) := inf

{
lim inf
i→∞

∫

Ω

gui dµ : ui ∈ N1,1
loc (Ω), ui → u in L1

loc(Ω)

}
,

where each gui is the minimal 1-weak upper gradient of ui in Ω. We say that a function
u ∈ L1(Ω) is of bounded variation, and denote u ∈ BV(Ω), if ‖Du‖(Ω) < ∞. The BV
norm is defined by

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖(Ω).

We refer to [1, 2, 14, 15, 19, 34, 57] for more information about bounded variation functions.
Towards the Haj lasz-Sobolev space, we define M1,1(Ω) to be the set of all the functions

u ∈ L1(Ω) for which there exists 0 ≤ g ∈ L1(Ω) and a set K ⊂ Ω of measure zero such
that for all x, y ∈ Ω \K we have the estimate

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)). (3.4)

The corresponding norm is obtained by setting

‖u‖M1,1(Ω) = ‖u‖L1(Ω) + inf ‖g‖L1(Ω),

where the infimum is taken over all admissible functions g in (3.4). We refer to [20, 21]
for more properties of the Haj lasz-Sobolev space M1,1(Ω). The space M1,1

cH
(Ω) is defined

exactly in the same manner as the space M1,1(Ω) except for one difference: in the definition
of M1,1

cH
(Ω), the condition (3.4) is assumed to hold only for points x, y ∈ Ω \K that satisfy

the condition
d(x, y) ≤ cH ·min{d(x,X \ Ω), d(y,X \ Ω)}, (3.5)
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where 0 < cH < 1 is a constant.
We define the codimension-1 Hausdorff measure H of A ⊂ X as

H(A) := lim
R→0+

HR(A),

where

HR(A) := inf

{∑

j∈I

µ(B(xj, rj))

rj
: A ⊂

⋃

j∈I
B(xj, rj), rj ≤ R, I ⊂ N

}
.

We give the following definitions for the boundary trace, or trace for short, of a function
defined on an open set Ω.

Definition 3.2. Let Ω ⊂ X be an open set and let u be a µ-measurable function on Ω.
(i) A number Tu(x) is the trace of u at x ∈ ∂X if we have

lim
r→0+

−
∫

B(x,r)∩Ω

|u− Tu(x)| dµ = 0.

We say that u has a trace Tu in ∂Ω if Tu(x) exists for H-almost every x ∈ ∂X.

(ii) Let X(Ω) be a function function space on Ω. A function space Y(∂X,H) on ∂X is
the trace space of X(Ω) if the trace operator u 7→ Tu defined in (i) is a bounded linear
surjective operator from X(Ω) to Y(∂X,H).

(iii) Let H̃ be a measure on ∂X. Let X(Ω) be a Banach function space on Ω. A Banach

space Y(∂X, H̃) on ∂X is the trace space of X(Ω) with respect to H̃, if the trace operator

u 7→ Tu defined in (i) by replacing H by H̃ is a bounded linear surjective operator from

X(Ω) to Y(∂X, H̃).
For BV functions we proved the following results in [C].

Theorem 3.3. Let u ∈ BV(Ω) and let s be the homogeneous dimension in (3.1).
(i) There exists v ∈ N1,1(Ω) ∩ Liploc(Ω) such that

−
∫

B(x,r)∩Ω

|v − u|s/(s−1) dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.
(ii) Let 1 ≤ q <∞. Then there exists v ∈ N1,1(Ω) such that

−
∫

B(x,r)∩Ω

|v − u|q dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

Whenever there exists a BV extension of a given function defined on the boundary, it
is possible to also find a Newtonian-Sobolev extension. We obtained in [C] the following
corollary from above theorem.

Corollary 3.4. The trace spaces of BV(Ω) and N1,1(Ω) are the same.
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Here and in the rest of this section, for two Banach function spaces X(Ω) and Y(Ω), that
the trace spaces of X(Ω) and Y(Ω) are the same means that if the Banach function space
Z(∂X) is the trace space of X(Ω), then it is also the trace space of Y(Ω), and vice versa.

Corollary 3.4 is stronger than we expected; it says that we can obtain the existence of
the trace and the trace space of BV(Ω) by only knowing the existence of the trace and the
trace space of N1,1(Ω), which is nontrivial, since N1,1(Ω) is a strict subset of BV(Ω).

For the spaces N1,1(Ω) and M1,1(Ω), we obtain the following result in in [C].

Theorem 3.5. Suppose Ω satisfies the measure density condition (3.2). Then there exists
0 < cH < 1 such that for any u ∈ N1,1(Ω), there is v ∈ M1,1

cH
(Ω) ∩ Lip loc(Ω) satisfying

‖v‖M1,1
cH

(Ω) . ‖u‖N1,1(Ω) and

lim
r→0+

−
∫

B(x,r)∩Ω

|v − u| dµ = 0

for H-a.e. x ∈ ∂Ω, where H is the codimension-1 Hausdorff measure.
If additionally Ω is a uniform domain, then v can be chosen in M1,1(Ω) ∩ Lip loc(Ω).

Here a domain Ω ⊂ X is called uniform if there is a constant cU ∈ (0, 1] such that every
pair of distinct points x, y ∈ Ω can be connected by a curve γ : [0, `γ] → Ω parametrized
by arc-length such that γ(0) = x, γ(`γ) = y, `γ ≤ c−1

U d(x, y), and

dist(γ(t), X \ Ω) ≥ cU min{t, `γ − t} for all t ∈ [0, `γ].

More generally, instead of only studying the codimension-1 Hausdorff measure, we may

study any arbitrary boundary measure H̃ on ∂X. Then we prove the following result.

Theorem 3.6. Suppose Ω satisfies the measure doubling condition (3.3). Let H̃ be any
Radon measure on ∂Ω. Suppose that, for a given u ∈ N1,1(Ω), there exists a function Tu
such that

lim
r→0+

−
∫

B(x,r)∩Ω

|u− Tu(x)| dµ = 0

for H̃-a.e. x ∈ ∂Ω. Then there exist 0 < cH < 1 and v ∈ M1,1
cH

(Ω) ∩ Lip loc(Ω) such that
‖v‖M1,1

cH
(Ω) . ‖u‖N1,1(Ω) and

lim
r→0+

−
∫

B(x,r)∩Ω

|v − Tu(x)| dµ = 0

for H̃-a.e. x ∈ ∂Ω.
If additionally Ω is a uniform domain, then v can be chosen in M1,1(Ω) ∩ Lip loc(Ω).

Similarly to Corollary 3.4, from Theorem 3.5 and Theorem 3.6 we obtain the following
corollary.

Corollary 3.7. Let Ω ⊂ X be a uniform domain and suppose that Ω satisfies the measure

doubling condition (3.3). Then, for any given boundary measure H̃, the trace spaces of

N1,1(Ω) and M1,1(Ω) with respect to any boundary measure H̃ on ∂X are the same.
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A direct consequence of Corollary 3.4 and Corollary 3.7 is that under a proper setting,
the trace spaces of BV, Newton-Sobolev space N1,1, and Haj lasz-Sobolev space M1,1 are
the same. Hence we can obtain many trace results directly from the trace results for the
Newton-Sobolev spaces in the literature.

Since (Rn+1
+ , µα) and the weighted regular tree (X,µλ) are uniform and support an (1, 1)-

Poincaré inequality (see Example 5.7 and Example 5.10 of [C]) and the trace operator we
used here is equivalent to the one in [B] on regular trees (see [36]), the trace results
obtained for Sobolev spaces W 1,1(Rn+1, µα) in [A] and for Newtonian spaces N1,1(X,µλ) in
[B] can be applied directly to BV(Rn+1, µα), M1,1(Rn+1, µα) and BV(X,µλ), M

1,1(X,µλ),
respectively. We refer to [C, Section 5] for more applications of Corollary 3.4 and Corollary
3.7.
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TRACES OF WEIGHTED FUNCTION SPACES: DYADIC NORMS

AND WHITNEY EXTENSIONS

PEKKA KOSKELA, TOMÁS SOTO, AND ZHUANG WANG

Abstract. The trace spaces of Sobolev spaces and related fractional smoothness
spaces have been an active area of research since the work of Nikolskii, Aronszajn,
Slobodetskii, Babich and Gagliardo among others in the 1950’s. In this paper we
review the literature concerning such results for a variety of weighted smoothness
spaces. For this purpose, we present a characterization of the trace spaces (of frac-
tional order of smoothness), based on integral averages on dyadic cubes, which is well
adapted to extending functions using the Whitney extension operator.

1. Introduction

In 1957, Gagliardo [13] gave a characterization of the trace space of the first order
Sobolev space W 1,p(Ω), 1 < p < ∞, on a given Lipschitz domain Ω ⊂ R

d in terms of the
convergence of a suitable double integral of the boundary values. This work extended
the earlier results by Aronszajn [1] and Slobodetskii and Babich [45] concerning the

case p = 2. The trace space B
1−1/p
p (∂Ω), consisting of all (d− 1)-Hausdorff measurable

functions u on ∂Ω with

‖u‖pLp(∂Ω,Hd−1)
+

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|p
|x− y|(d−1)+(1−1/p)p

dHd−1(x)dHd−1(y) < ∞, (1)

is nowadays commonly called a fractional Sobolev space, a Slobodetskii space or a Besov
space. Actually, Gagliardo also verified that the trace space of W 1,1(Ω) is L1(∂Ω) (see
also [32] for a different proof of this fact). The norm estimates for the trace functions
were obtained via Hardy inequalities, while the extension from the boundary was based
on a Poisson-type convolution procedure. We refer to the seminal monographs by
Peetre [40] and Triebel [49] for extensive treatments of the Besov spaces and related
smoothness spaces.

A natural variant of this problem asks for the trace spaces associated to weights.
Already in 1953, Nikolskii [38] had considered the trace problem for Sobolev spaces
(for p = 2) with weights of the form x �→ dist (x, ∂Ω)α, where −1 < α < 1. Other
early related results were given by Lizorkin [29] and Vašarin [56]; see [37] and [33] for
further references. More recently, Tyulenev [51, 52, 53, 54] has identified the traces of
Sobolev and Besov spaces associated to more general Muckenhoupt Ap-weights. For
related results concerning the traces of weighted Orlicz-Sobolev spaces, we refer to
[11, 27, 39, 7, 8] and the references therein.

2010 Mathematics Subject Classification. Primary: 46E35, 42B35.
Key words and phrases. Trace theorems, weighted Sobolev spaces, Besov spaces, Triebel-Lizorkin

spaces.
The authors were supported by the Academy of Finland via the Centre of Excellence in Analysis

and Dynamics Research (project No. 307333).
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2 KOSKELA, SOTO, AND WANG

On the other hand, a notable amount of recent research has focused on extending
the theory of Sobolev spaces and related fractional smoothness spaces to the setting of
metric measure spaces (including fractal subsets of Euclidean spaces); see e.g. [22] and
the references therein as well as [18]. Works focusing on trace theorems for fractals
and related subsets of a Euclidean space include [25, 41, 42, 50, 44, 23, 24, 5, 17]
(we also refer to [55] for a recent result concerning traces on non-regular subsets of
Rd), while trace theorems in more general metric settings have been considered e.g. in
[14, 43, 28, 31, 30]. In fact, the characterizations of fractional smoothness spaces as
retracts of certain sequence spaces in [12], [18, Section 7] and [4, Proposition 6.3] can
also be seen as abstract trace theorems.

Motivated by these works, we revisit the Euclidean setting, viewing the upper half-
space Rd+1

+ := Rd× (0,∞) as a particularly nice metric space endowed with a weighted
measure. We shall introduce equivalent norms for the Besov spaces based integral
averages on dyadic cubes. These norms are well adapted for studying the extension of
functions defined on Rd to R

d+1
+ via the natural Whitney extension. In contrast, the

extension operator e.g. in [33] is based on the Poisson kernel.
Let us begin with a concrete example. We consider functions defined on the real

line, but as we will later see, the discussion below generalizes to the setting of higher
dimensions as well.

Given u ∈ L1
loc(R) and an interval I ⊂ R, set

u(I) :=
1

|I|
∫
I

u(x)dx,

where |I| is the length of the interval I. For each k ∈ N0, fix a dyadic decomposition
of R into closed intervals {Ik,i}i∈Z so that each Ik,i has length 2−k and Ik,i ∩ Ik,j 	= ∅
exactly when |i− j| ≤ 1. Consider the condition

‖u‖2L2(R) +
∑
k∈N0

∑
i∈Z

|u(Ik,i)− u(Ik,i+1)|2 < ∞. (2)

Now write Qk,i := Ik,i × [2−k, 2−k+1] for all admissible k and i. Then these squares
give us a Whitney decomposition of the upper half-plane R2

+. Pick a partition of unity
in

⋃
k,iQk,i consisting of functions ϕk,i ∈ C∞(R2

+) such that |∇ϕk,i| ≤ 5 · 2k and the

support of ϕk,i is contained in a 2−k−2-neighborhood of Qk,i. For u ∈ L1
loc(R), define

Eu :=
∑

k∈N0, i∈Z

u(Ik,i)ϕk,i. (3)

Given f ∈ W 1,2(R2
+), the trace function u := Rf : R2 → C, defined by

Rf(x) = lim
r→0

1

m2

(
B
(
(x, 0), r

) ∩ R2
+

)
∫
B((x,0),r)∩R2

+

f(y)dm2(y),

where m2 stands for the 2-dimensional Lebesgue measure, is well-defined pointwise
almost everywhere and satisfies the condition (2). Conversely, if u ∈ L1

loc(R) satisfies
(2), we have Eu ∈ W 1,2(R2

+) with the expected norm bound and R(Eu) = u pointwise
almost everywhere.

We conclude that u ∈ L1
loc(R) belongs to the trace space of W 1,2(R2

+) if and only

if (2) holds. Hence the condition (2) should characterize the space B
1/2
2 (R). This is

indeed the case; a direct proof is given in Subsection 7.2 of the Appendix.
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Let us next consider the following generalized form of the condition (2):

‖u‖pLp(R) +
∑
k∈N0

2spk2−k
∑
i∈Z

|u(Ik,i)− u(Ik,i+1)|p < ∞, (4)

where 1 < p < ∞ and 0 < s < 1. Above we saw that the choice p = 2 and s = 1/2 yields
the trace space of W 1,2(R2

+). Similarly, it turns out that the condition (4) characterizes
the trace space of W 1,p(R2

+) when s = 1− 1/p. Where does this value of s come from?
The so-called differential dimension of the space Bs

p over an n-dimensional Euclidean

space is s−n/p, and the same holds for the space W 1,p with 1 in place of s; see e.g. [49,
Section 3.4.1]. Hence the order of smoothness s of the trace space should satisfy

s− 1

p
= 1− 2

p
,

which rewrites as s = 1− 1/p.
Let us now try to extend a function u ∈ L1

loc(R) to a weighted Sobolev space, by
requiring that∫

R2
+

|Eu(x)|pdist (x,R× {0})αdx+

∫
R2
+

|∇(Eu)(x)|pdist (x,R× {0})αdx < ∞, (5)

where α > −1 and Eu is as defined as above. It turns out that when α ∈ (−1, p− 1),
the condition (5) is satisfied when u satisfies (4) with s = 1− (α+ 1)/p. On the other
hand, since

μα

(
B
(
(x, 0), r

) ∩ R
2
+

) ≈ r2+α

for all x ∈ R and r > 0, where μα is the measure associated to the weight x �→
dist (x,R)α, we also see that α + 1 = (2 + α)− 1 appears as a local codimension of R
with respect to the metric measure space (R2

+, μα). Hence the drop in the order of the
derivative from one to the fractional order s is determined by p and this codimension.

Would the condition (2) allow us also to extend functions from R to a higher-
dimensional weighted Euclidean space, e.g. (R3, μα)? If so, then the correct condition
for the parameter α would be α > −2 and the role of 2 + α above should be taken
by 3 + α. We recover s = 1/2 when (α + 2)/p = 1/2, which for p = 2 gives α = −1.
This indeed works: (2) holds exactly when u is in the trace of W 1,2(R3, μ−1), where
the measure μ−1 is associated to the weight x �→ dist (x,R× {0})−1 in R3, and in this
case u can be extended as a function in W 1,2(R3, μ−1) with a suitable modification of
the Whitney extension operator (3).

Can we find yet further function spaces whose traces are characterized by the condi-
tion (2) or the condition (4)? Towards this, let us mention that the space characterized
by (4) coincides with the diagonal Triebel-Lizorkin space F s

p,p(R). The scale of Triebel-

Lizorkin spaces F s
p,q(R

d) on the d-dimensional Euclidean space, where 1 ≤ p < ∞,
0 < q ≤ ∞ and 0 < s < 1, is another widely-studied family of fractional smoothness
spaces that arise e.g. as the complex interpolation spaces between Lp(Rd) andW 1,p(Rd).
The discussion above concerning the traces of weighted Sobolev spaces, with suitable
modifications for the parameter ranges, turns out to hold for the traces of these function
spaces as well. In particular, when s ∈ (0, 1) and α ∈ (−1, sp − 1), the condition (4)
with s− (α+1)/p in place of s characterizes the traces of the functions in F s

p,q(R
2
+, μα)

for any admissible q. A similar trace theorem for the scale of Besov spaces Bs
p,q(R

2
+, μα)
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is formulated as Theorem 1.2 below. The precise definitions of these spaces are given
in the next section.

Let us summarize the above discussion. The Whitney extension operator E extends
a Besov space Bs

p(R) := Bs
p,p(R) with given smoothness s ∈ (0, 1) linearly and con-

tinuously to a number of different (weighted) smoothness spaces defined on R2
+, the

trace of all of whose equals Bs
p,p(R). Moreover, given n ∈ N, a suitable variant of the

Whitney extension operator E gives us a similar extension from Bs
p,p(R) to a variety

of (weighted) function spaces defined on R1+n; this is discussed in detail in Subsection
7.4.

To finish discussion, let us state our main results more precisely. Given a pair of
function spaces (X, Y ), we say that they are a Whitney trace-extension pair if X is the
trace space of Y in the usual sense and the extension from X to Y is obtained using the
natural Whitney extension – this notion is also defined more precisely in Definition

2.6 below. The measure μα (where α > −1) below stands for the measure on R
d+1
+

defined by

μα(E) =

∫
E

wα dmd+1, (6)

where wα : R
d+1
+ → (0,∞) is the weight (x1, x2, · · · , xd+1) �→ min(1, |xd+1|)α and md+1

is the standard Lebesgue measure on R
d+1
+ . Finally, the definitions of the relevant

function spaces are given in Section 2 below.
First off, we have the following trace theorem for the first-order Sobolev spaces.

Theorem 1.1. Let 1 ≤ p < ∞ and−1 < α < p−1. Then
(B1−(α+1)/p

p,p (Rd),W 1,p(Rd+1
+ , μα)

)
is a Whitney trace-extension pair.

The analogous trace theorem for the Besov scale reads as follows.

Theorem 1.2. Let 0 < s < 1, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and −1 < α < sp − 1. Then(Bs−(α+1)/p
p,q (Rd),Bs

p,q(R
d+1
+ , μα)

)
is a Whitney trace-extension pair.

Finally, the trace theorem for the Triebel-Lizorkin spaces reads as follows.

Theorem 1.3. Let 0 < s < 1, 1 ≤ p < ∞, 0 < q ≤ ∞ and −1 < α < sp − 1. Then(Bs−(α+1)/p
p,p (Rd),F s

p,q(R
d+1
+ , μα)

)
is a Whitney trace-extension pair.

We present a refinement of the case p = 1 of Theorem 1.1, where the Sobolev
space W 1,1(Rd+1

+ , μα) is replaced by a Hardy-Sobolev space h1,1(Rd+1
+ , μα), in Section

6. The variants of the results above with higher Euclidean codimension are given in
Subsection 7.4 of the Appendix.

The paper is organized as follows. In Section 2 we give the definitions relevant to our
main results and recall some basic properties of the spaces and measures in question.
Sections 3 through 6 contain the proofs of the aforementioned trace theorems. The
Appendix (Section 7) deals with various technicalities that we saw fit to postpone from
the other sections.

2. Definitions and preliminaries

In this section we present the definitions of the relevant function spaces and the
Whithey extension operator. Before this, let us introduce some notation that will be
used throughout the paper.
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Notation. (i) The majority of this paper will deal with extensions of functions defined
on the Euclidean space Rd to the half-space R

d+1
+ := Rd × (0,∞). The dimension

d ∈ N := {1, 2, 3, · · · } will be fixed throughout the paper. The d-dimensional Lebesgue
measure will be denoted by md. When talking about measures μ defined on R

d+1
+ , we

may abuse notation by writing μ(B(x, r)) for μ(B(x, r)∩R
d+1
+ ) when e.g. x ∈ Rd×{0}.

(ii) If (X, μ) is a measure space and A is a μ-measurable subset of X with 0 <
μ(A) < ∞, we shall write

fA,μ := −
∫
A

fdμ :=
1

μ(A)

∫
A

fdμ

whenever the latter quantity is well-defined, i.e. when f ∈ L1(A, μ) or f(x) ≥ 0 for
μ-almost every x ∈ A. We may omit μ from the notation and simply write fA when μ
is the Lebesgue measure on an Euclidean space and there is no risk of confusion.

(iii) While L1
loc(R

d) stands for the space of (complex-valued) locally integrable func-
tions on R

d in the usual sense, we use the notation L1
loc(R

d+1
+ ) with a slightly different

meaning: it refers to the space functions that are integrable on bounded subsets of
R

d+1
+ .

(iv) If f and g are two non-negative functions on the same domain, we may use the
notation f � g with the meaning that f ≤ Cg in the domain, where the constant
C > 0 is usually independent of some parameters obvious from the context. The
notation f ≈ g means that f � g and g � f .

Definition 2.1. Suppose that μ is a Borel regular measure on R
d such that every

Euclidean ball has positive and finite μ-measure.
Let p ∈ [1,∞). Then W 1,p(Rd, μ) is defined as the normed space of measurable

functions f ∈ L1
loc(R

d) such that the first-order distributional derivatives of f coincide
with functions in L1

loc(R
d) and

‖f‖W 1,p(Rd,μ) := ‖f‖Lp(Rd,μ) + ‖∇f‖Lp(Rd,μ) (7)

is finite.
The space W 1,p(Rd+1, μ) is defined similarly, by replacing Rd with R

d+1
+ in (7).

In order to formulate the dyadic norms of the relevant fractional smoothness spaces,
we recall the standard dyadic decompositions of R

d and R
d+1
+ . Denote by Qd the

collection of dyadic semi-open cubes in Rd, i.e. the cubes of the form Q := 2−k
(
(0, 1]d+

m
)
, where k ∈ Z and m ∈ Zd, and Q

+
d for the cubes in Qd which are contained in the

upper half-space Rd−1 × (0,∞). Write �(Q) for the edge length of Q ∈ Qd, i.e. 2
−k in

the preceding representation, and Qd,k for the cubes Q ∈ Qd such that �(Q) = 2−k. If
x ∈ Rd (resp. x ∈ R

d+1
+ ) and k ∈ Z, we may write write Qx

k for the unique cube in Qd

(resp. Q
+
d+1) such that x ∈ Q and �(Q) = 2−k.

We say that Q and Q′ in Qd are neighbors and write Q ∼ Q′ if 1
2
≤ �(Q)/�(Q′) ≤ 2

and Q ∩Q′ 	= ∅. Note that every Q has a uniformly finite number of neighbors.

Definition 2.2. Suppose that μ is a Borel regular measure on Rd such that every
Euclidean ball has positive and finite μ-measure.
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Let s ∈ (0, 1), p ∈ [1,∞] and q ∈ (0,∞]. Then the Besov space Bs
p,q(R

d, μ) is defined

as the normed (or quasi-normed when q < 1) space of functions f ∈ L1
loc(R

d) such that

‖f‖Bs
p,q(R

d,μ) := ‖f‖Lp(Rd,μ) +

( ∞∑
k=0

2ksq
( ∑

Q∈Qd,k

μ(Q)
∑
Q′∼Q

∣∣fQ,μ − fQ′,μ

∣∣p)q/p
)1/q

(8)

(standard modification for p = ∞ and/or q = ∞) is finite.

Definition 2.3. Suppose that μ is a Borel regular measure on Rd such that every
Euclidean ball has positive and finite μ-measure.

Let s ∈ (0, 1), p ∈ [1,∞) and q ∈ (0,∞]. Then the Triebel-Lizorkin space F s
p,q(R

d, μ)

is defined as the normed (or quasi-normed when q < 1) space of functions f ∈ L1
loc(R

d)
such that

‖f‖Fs
p,q(R

d,μ) := ‖f‖Lp(Rd,μ) +

(∫
Rd

( ∞∑
k=0

2ksq
∑

Q′∼Qx
k

∣∣fQx
k ,μ

− fQ′,μ

∣∣q)p/q

dμ(x)

)1/p

(9)

(standard modification for q = ∞) is finite.

The spaces Bs
p,q(R

d+1
+ , μ) and F s

p,q(R
d+1
+ , μ) are defined similarly, by replacing Rd with

R
d+1
+ := Rd × (0,∞) in (8) and (9) respectively, and omitting the terms corresponding

to the cubes Q ∈ Qd+1 \ Q
+
d+1 and Q′ ∈ Qd+1 \ Q

+
d+1.

Remark 2.4. One routinely checks that Bs
p,q(R

d, μ) and F s
p,q(R

d, μ) are quasi-Banach
spaces (Banach spaces for q ≥ 1). Fubini’s theorem implies that

F s
p,p(R

d, μ) = Bs
p,p(R

d, μ)

with equivalent norms for p ∈ [1,∞), and the monotonicity of the �q-norms shows that

Bs
p,q(R

d, μ) ⊂ Bs
p,q′(R

d, μ) and F s
p,q(R

d, μ) ⊂ F s
p,q′(R

d, μ)

with continuous embeddings when q′ > q. All this of course holds with R
d+1
+ in place

of Rd.

In case μ is the standard Lebesgue measure on Rd, we shall omit μ from the notation
of the three function spaces above and simply write W 1,p(Rd), Bs

p,q(R
d) and F s

p,q(R
d)

where appropriate.

Remark 2.5. (i) A Besov quasinorm that is perhaps more standard in the literature
is given by

f �→ ‖f‖Lp(Rd,μ) +

(∫ ∞

0

t−sq
(∫

Rd

−
∫
B(x,t)

|f(x)− f(y)|pdμ(y)dμ(x)
)q/pdt

t

)1/q

. (10)

A straightforward calculation using Fubini’s theorem shows that if q = p and μ = md,
then then the pth power of this this quasinorm is comparable to

‖f‖p
Lp(Rd)

+

∫
Rd

∫
Rd

|f(x)− f(y)|p
|x− y|d+sp

dxdy,

which is of the same form as the quantity (1) in the introduction.
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(ii) To justify the Definitions 2.2 and 2.3 above, let us point out that if the measure
μ is doubling with respect to the Euclidean metric, i.e. if there exists a constant c ≥ 1
such that

μ
(
B(x, 2r)

) ≤ cμ
(
B(x, r)

)
for all x ∈ R

d and r > 0,

then the quasi-norm (8) is comparable to the quasi-norm (10) above. We refer to
Subsection 7.2 of the Appendix for details.

(iii) Quasinorms similar to (8) and (9) in the setting of metric measure spaces were
also considered in [43, Definition 5.1] in terms of a hyperbolic filling of Rd. Another
similar variant in the weighted Euclidean setting has been considered in [54].

We now give the definitions corresponding to the Whitney extensions discussed in
the introduction. To this end, we have to define a partition of unity corresponding to
the standard Whitney decomposition of the half-space R

d+1
+ . For Q ∈ Qd,k, k ∈ Z,

write W (Q) := Q × (2−k, 2−k+1] ∈ Q
+
d+1,k. To simplify the notation in the sequel, we

further define Q0
d := ∪k≥0Qd,k.

It is then easy to see that {W (Q) : Q ∈ Qd} is a Whitney decomposition of
Rd × (0,∞) with respect to the boundary Rd × {0}. For all Q ∈ Q0

d, define a smooth
function ψQ : Rd+1

+ → [0, 1] such that LipψQ � 1/�(Q), infx∈W (Q) ψQ(x) > 0 uniformly

in Q ∈ Q0
d, suppψQ is contained in an �(Q)

4
-neighborhood of W (Q) and∑

Q∈Q0
d

ψQ ≡ 1 in
⋃

Q∈Q0
d

W (Q).

Let us point out that the sum above is locally finite – more precisely, it follows from
the definition that

suppψQ ∩ suppψQ′ 	= ∅ if and only if Q ∼ Q′. (11)

Definition 2.6. (i) Let f ∈ L1
loc(R

d). Then the Whitney extension Ef : Rd+1
+ → C is

defined by

Ef(x) =
∑
Q∈Q0

d

(
−
∫
Q

fdmd

)
ψQ(x).

This definition gives rise in the obvious way to the linear operator E : L1
loc(R

d) →
C∞(Rd+1

+ ).
(ii) Let X ⊂ L1

loc(R
d) be a quasinormed function space on Rd, and let Y be a

quasinormed function space on the weighted half-space (Rd+1
+ , μ). We say that (X, Y )

is a Whitney trace-extension pair if E maps X continuously into Y , if the trace function
Rf defined by

Rf(x) = lim
r→0

−
∫
B((x,0),r)∩Rd+1

+

f(y)dμ(y), (12)

is for all f ∈ Y well-defined almost everywhere and belongs to L1
loc(R

d), if R maps Y
continuously into X and if

R(Ef) = f

pointwise almost everywhere for all f ∈ X.
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For the proofs of our main results, let us recall some basic facts about the weights
wα and measures μα defined in (6). First, it is well-known that for α > −1, the weight
wα belongs to the Muckenhoupt class Ar for all r > max(α+ 1, 1), which implies that
the measure μα satisfies the doubling property with respect to the standard Euclidean
metric (see e.g. [21, Chapter 15] or [9]). This in particular means that

μα

(
Q
) ≈ μα

(
Q′

)
if Q ∼ Q′.

A straightforward calculation also shows that

μα

(
B(x, r)

) ≈ rd+1+α (13)

for all x ∈ Rd × {0} and 0 < r ≤ 1.
Finally, let us recall the standard (1, 1)-Poincaré inequality satisfied by the functions

that are locally W 1,1-regular in the upper half-space. If Q is a cube in R
d+1
+ such that

dist (Q,Rd × {0}) > 0 and f ∈ W 1,1(Q), we have

−
∫
Q

|f − fQ| dmd+1 ≤ C�(Q)−
∫
Q

|∇f |dmd+1 (14)

for some constant C independent of Q and f .

3. Proof of Theorem 1.1

Proof. (i) Let us first prove the desired norm inequality for the Whitney extension

Ef of f ∈ B1−(α+1)/p
p,p (Rd). We begin by noting that if Q ∈ Q0

d, it follows directly
from the definitions that wα ≈ �(Q)α in W (Q), and hence we have μα(W (Q)) ≈
�(Q)αmd+1(W (Q)) ≈ �(Q)d+1+α. Since the supports of the functions ψQ have bounded
overlap, the Lp(Rd+1

+ , μα)-norm of Ef is thus easy to estimate:∫
R
d+1
+

|Ef |pdμα �
∑
Q∈Q0

d

μα

(
W (Q)

)−
∫
Q

|f |pdmd ≈
∑
Q∈Q0

d

�(Q)α+1

∫
Q

|f |pdmd

=
∑
k≥0

2−k(α+1)
∑

Q∈Qd,k

∫
Q

|f |pdmd =
∑
k≥0

2−k(α+1)

∫
Rd

|f |p dmd

=
∑
k≥0

2−k(α+1)‖f‖p
Lp(Rd)

≈ ‖f‖p
Lp(Rd)

. (15)

In order to estimate the Lp(Rd+1
+ , μα)-norm of |∇(Ef)|, we divide the half-space Rd+1

+

into two parts: X1 :=
⋃

P∈Q0
d
W (P ) andX2 := R

d+1
+ \X1. Now if x ∈ X1, i.e. x ∈ W (P )

for some P ∈ Q0
d, we have that

∑
Q∈Q0

d
ψQ(x) = 1, and as noted in (11), the terms in

this sum are nonzero at most for the cubes Q such that Q ∼ P . Hence

Ef(x)−−
∫
P

f dmd =
∑
Q∈Q0

d

(
−
∫
Q

f dmd

)
ψQ(x)−−

∫
P

f dmd

=
∑
Q∼P

(
−
∫
Q

f dmd −−
∫
P

f dmd

)
ψQ(x) =

∑
Q∼P

(
fQ − fP

)
ψQ(x),
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and the Lipschitz continuity of the functions ψQ yields

|∇(Ef)(x)| ≤ |Lip (Ef)(x)| =
∣∣∣Lip(Ef(·)−−

∫
P

f dmd

)
(x)

∣∣∣
≤

∑
Q∼P

|fQ − fP ||Lip (ψQ)(x)| �
∑
Q∼P

1

�(Q)
|fQ − fP |. (16)

This means that∫
X1

|∇(Ef)|pdμα =
∑
P∈Q0

d

∫
W (P )

|∇(Ef)|pdμα �
∑
P∈Q0

d

μα

(
W (P )

) ∑
Q∼P

1

�(Q)p
|fQ − fP |p

≈
∑
P∈Q0

d

�(P )d+1+α
∑
Q∼P

1

�(Q)p
|fQ − fP |p

≈
∑
P∈Q0

d

�(P )−(1−α+1
p

)pmd(P )
∑
Q∼P

|fQ − fP |p

� ‖f‖p
B
1−(α+1)/p
p,p (Rd)

. (17)

If on the other hand x ∈ X2, we can have ψQ(x) 	= 0 only for Q ∈ Qd,0. Thus,

Ef(x) =
∑

Q∈Qd,0

(
−
∫
Q

fdmd

)
ψQ(x) =

∑
Q∈Qd,0

suppψQ	x

fQψQ(x),

and using the Lipschitz continuity of the functions ψQ as above, we get

|∇(Ef)(x)| ≤ |Lip (Ef)(x)| ≤
∑

Q∈Qd,0

suppψQ	x

|fQ||Lip (ψQ)(x)| �
∑

Q∈Qd,0

|fQ|χsuppψQ
(x).

Since μα(suppψQ) ≈ μα(W (Q)) ≈ 1 for all Q ∈ Qd,0, the estimate above yields∫
X2

|∇(Ef)|pdμα �
∑

Q∈Qd,0

|fQ|p ≤
∑

Q∈Qd,0

∫
Q

|f |pdmd = ‖f‖p
Lp(Rd)

. (18)

Combining (15), (17) and (18), we arrive at

‖Ef‖Lp(Rd+1+ ,μα)
+ ‖∇(Ef)‖Lp(Rd+1+ ,μα)

� ‖f‖
B
1−(α+1)/p
p,p (Rd)

,

which is the desired norm inequality.

(ii) Let us now consider the existence and norm of the trace function Rf of a function
f ∈ W 1,p(Rd+1

+ , μα). For k ∈ N0, define the function Tkf : R
d → C by

Tkf :=
∑

Q∈Qd,k

(
−
∫

N (Q)

fdmd+1

)
χQ,

where N (Q) := 5
4
W (Q) := {y ∈ R

d+1
+ : dist (y,W (Q)) < 1

4
�(Q)} – note that the

functions Tkf are well-defined, since f ∈ L1(N (Q), μα) implies f ∈ L1(N (Q), md+1)
for all Q ∈ Q0

d. We first show that the limit limk→∞ Tkf exists pointwise md-almost
everywhere in Rd (and, in fact, in Lp(Rd)). The limit function will be called Rf for
now even though it is not of the same form as in Definition 2.6 – we shall return to
this point in part (iii) below.



10 KOSKELA, SOTO, AND WANG

To verify the existence of the limit in question, it suffices to show that the function

f ∗ :=
∑
k≥0

∣∣Tk+1f − Tkf
∣∣+ ∣∣T0f

∣∣

belongs to Lp(Rd).
Let P ∈ Qd,0. Because md+1(N (P )) ≈ 1 and μα ≈ 1 in N (P ), we get

∫
P

|f ∗|pdmd �

∫
P

∣∣∣∑
k≥0

(
Tk+1f(x)− Tkf(x)

)∣∣∣pdmd(x) +

∫
N (P )

|f |pdmd+1

≈
∫
P

∣∣∣∑
k≥0

(
Tk+1f(x)− Tkf(x)

)∣∣∣pdmd(x) +

∫
N (P )

|f |pdμα

=

∫
P

(∑
k≥0

2−kε/p
∣∣2kε/p(Tk+1f(x)− Tkf(x)

)∣∣)p

dmd(x) +

∫
N (P )

|f |pdμα

�
∑
k≥0

2kε
∫
P

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x) +

∫
N (P )

|f |pdμα, (19)

where ε := p− (α + 1) > 0 and the last estimate uses Hölder’s inequality.
In order to estimate the kth integral above, recall that for x ∈ Rd, Qx

k stands for
unique cube in Qd,k that contains x. By the definition of the N (Q)’s, the intersection

of N (Qx
k) and N (Qx

k+1) contains a cube Q̃ with edge length comparable to 2−k. We
thus have the estimate

|Tkf(x)− Tk+1f(x)| =
∣∣∣∣−
∫

N (Qx
k)

f dmd+1 −−
∫

N (Qx
k+1)

f dmd+1

∣∣∣∣
≤

∣∣∣∣−
∫

N (Qx
k)

f dmd+1 −−
∫
Q̃

f dmd+1

∣∣∣∣
+

∣∣∣∣−
∫
Q̃

f dmd+1 −−
∫

N (Qx
k+1)

f dmd+1

∣∣∣∣
� −
∫

N (Qx
k)

|f − fN (Qx
k)
| dmd+1 +−

∫
N (Qx

k+1)

|f − fN (Qx
k+1)

| dmd+1.

We have wα(y) ≈ 2−kα for all y ∈ N (Qx
k), and hence also μα(N (Qx

k)) ≈ 2−kαmd+1(N (Qx
k))

as in part (i) above. We may therefore use the Poincaré inequality (14) in conjunction
with Hölder’s inequality to estimate the first integral from above by

2−k−
∫

N (Qx
k)

|∇f | dmd+1 ≈ 2−k−
∫

N (Qx
k)

|∇f | dμα ≤ 2−k

(
−
∫

N (Qx
k)

|∇f |pdμα

)1/p

.

A similar estimate obviously holds for the second integral. We thus get

|Tkf(x)−Tk+1f(x)| � 2−k

(
−
∫

N (Qx
k)

|∇f |pdμα

)1/p

+2−k

(
−
∫

N (Qx
k+1)

|∇f |pdμα

)1/p

, (20)
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and hence∫
P

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x) =

∑
Q∈Qd,k

Q⊂P

∫
Q

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x)

�
∑

Q∈Qd,k

Q⊂P

md(Q)
∑

Q′∈Qd,k+1

Q′⊂Q

(
�(Q)p−

∫
N (Q)

|∇f |p dμα + �(Q′)p−
∫

N (Q′)

|∇f |p dμα

)

� 2−k(d+p)
∑

Q∈Qd,k∪Qd,k+1

Q⊂P

−
∫

N (Q)

|∇f |p dμα = 2−kε
∑

Q∈Qd,k∪Qd,k+1

Q⊂P

∫
N (Q)

|∇f |p dμα.

Plugging this into (19) and summing over P ∈ Qd,0, we arrive at

‖f ∗‖p
Lp(Rd,md)

�
∑

P∈Qd,0

∑
k≥0

∑
Q∈Qd,k∪Qd,k+1

Q⊂P

∫
N (Q)

|∇f |p dμα +
∑

P∈Qd,0

∫
N (P )

|f |pdμα

≈
∑
Q∈Q0

d

∫
N (Q)

|∇f |p dμα +
∑

P∈Qd,0

∫
N (P )

|f |pdμα

� ‖f‖p
W 1,p(Rd+1,μα)

.

Here the last inequality follows from the fact that
∑

Q∈Q0
d
χN (Q) ≤ 2.

Hence f ∗(x) < ∞ for md-almost every x ∈ Rd, so the limit Rf(x) := limk→∞ Tkf(x)
exists at these points. In the remainder of this proof, we shall abuse notation by
writing simply f for Rf . Since |f | ≤ |f ∗| almost everywhere in Rd, the estimate above
immediately gives

‖f‖Lp(Rd) � ‖f‖W 1,p(Rd+1,μα).

Now to estimate the B1−(1+α)/p
p,p -energy of f , let Q ∈ Qd,k with k ≥ 0 and write

Q∗ := Q ∪⋃
Q′∼QQ′. We get

∑
Q′∼Q

∣∣fQ − fQ′

∣∣p � ∑
Q′∼Q

(∣∣fQ − fN (Q)

∣∣p + ∣∣fQ′ − fN (Q′)

∣∣p + ∣∣fN (Q) − fN (Q′)

∣∣p)

� −
∫
Q∗

∣∣f(x)− Tkf(x)
∣∣pdmd(x) +

∑
Q′∼Q

∣∣fN (Q) − fN (Q′)

∣∣p.
Note that md(Q

∗) ≈ md(Q), that the collection of cubes {Q∗ : Q ∈ Qd,k} has bounded
overlap (uniformly in k) and that md(Q)/μα(N (Q)) ≈ 2k(α+1). Using these facts
together with an estimate similar to (20), we get∑

Q∈Qd,k

md(Q)
∑
Q′∼Q

∣∣fQ − fQ′

∣∣p

�

∫
Rd

∣∣f(x)− Tkf(x)
∣∣pdmd(x)

+ 2k(α+1)
∑

Q∈Qd,k

μα

(
N (Q)

) ∑
Q′∼Q

∣∣fN (Q) − fN (Q′)

∣∣p (21)
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�

∫
Rd

∣∣f(x)− Tkf(x)
∣∣pdmd(x) + 2k(α+1−p)

∫
∪
2−k−1≤�(Q′)≤2−k+1N (Q′)

|∇f |pdμα

=: Ik + 2k(α+1−p)I ′k,

so that∑
k≥0

2k(1−
α+1
p

)p
∑

Q∈Qd,k

md(Q)
∑
Q′∼Q

∣∣fQ − fQ′

∣∣p � ∑
k≥0

2k(1−
α+1
p

)pIk +
∑
k≥0

I ′k. (22)

We have ∑
k≥0

I ′k � ‖f‖p
W 1,p(Rd+1

+ ,μα)
(23)

because the domains of integration in the definition of the I ′k’s have bounded overlap.
To estimate the terms Ik, we may take ε ∈ (0, p−α−1) and proceed as in the estimates
following (19):

Ik �
∑
n≥k

2(n−k)ε

∫
Rd

∣∣Tn+1f(x)− Tnf(x)
∣∣pdmd(x)

�
∑
n≥k

2(n−k)ε2−n(d+p)
∑

Q∈Qd,n∪Qd,n+1

−
∫

N (Q)

|∇f |p dμα

≈
∑
n≥k

2(n−k)ε2−n(p−α−1)
∑

Q∈Qd,n∪Qd,n+1

∫
N (Q)

|∇f |p dμα

=:
∑
n≥k

2(n−k)ε2−n(p−α−1)O′
n,

so that ∑
k≥0

2k(1−
α+1
p

)pIk �
∑
n≥0

2n(α+1−p+ε)O′
n

∑
0≤k≤n

2k(p−α−1−ε) ≈
∑
n≥0

O′
n

� ‖f‖W 1,p(Rd+1
+ ,μα)

where the last estimate follows from the definition of the norm. Plugging this and (23)
into (22), we get the desired energy estimate for Rf .

(iii) Let R be as in part (ii) above. Since md-almost all points of Rd are Lebesgue

points of a function f ∈ B1−(1+α)/p
p,p , it is evident from the definition ofR thatR(Ef) = f

pointwise md-almost everywhere.
We are now done with the proof of the Theorem, with the exception that the trace

operator R considered in part (ii) is not of the form required by Definition 2.6. This is
in fact a cosmetic difference – by a well-known argument, if f ∈ W 1,p(Rd+1

+ , μα), then
the point (x, 0) is for md-almost all x ∈ Rd in a sense a μα-Lebesgue point of f . We
refer to Subsection 7.1 for details. Keeping this fact in mind, it is easily seen that the
function Rf considered in part (ii) coincides almost everywhere with the function in
(12) (with μ = μα). �
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4. Proof of Theorem 1.2

Proof. For simplicity, we only consider the case q = p < ∞. The cases where q ∈ (0,∞]
and/or p = ∞ can be proven by simple modifications of the arguments below.

(i) We first establish the desired norm inequality for the function Ef for f ∈
Bs−(α+1)/p
p,p (Rd). To begin with, since the parameters p, s and α are also admissible

for Theorem 1.1, the estimate (15) therein tells us that

‖Ef‖Lp(Rd+1
+ ,μα)

� ‖f‖Lp(Rd). (24)

Now to estimate the Bs
p,p(R

d+1
+ , μα)-energy of Ef , we divide the dyadic cubes in R

d+1
+

into three classes that will be considered separately. For k ≥ 0, write Q1
k for the

collection of dyadic cubes Q in Q
+
d+1 with edge length 2−k such that dist (Q,Rd×{0}) ≥

2, Q2
k for the collection of dyadic cubes Q in Q

+
d+1 with edge length 2−k such that

2−k ≤ dist (Q,Rd × {0}) < 2 and Q3
k for the collection of dyadic cubes in Q

+
d+1 with

edge length 2−k whose closures intersect Rd × {0}. Also write Q
2,∗
k for the collection

of cubes in ∪k+1
i=max(k−1,0)Q

2
i that are contained in ∪Q∈Q2

k
Q.

We thus want to estimate

∑
Q∈Q1

k

μα(Q)
∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p + ∑
Q∈Q2

k

μα(Q)
∑
Q′∼Q

Q′∈Q
2,∗
k

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p

+
∑
Q∈Q3

k

μα(Q)
∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p =: O
(1)
k +O

(2)
k +O

(3)
k (25)

at each level k ≥ 0 – the reason why we can omit the terms corresponding to Q′ /∈ Q
2,∗
k

in the middle sum is that a comparable term is contained in O
(1)
k , O

(3)
k , O

(2)
k+1 or O

(1)
k−1.

We first note that O
(1)
k can for k ∈ {0, 1} be simply estimated by

‖Ef‖p
Lp(Rd+1

+ ,μα)
� ‖f‖p

Lp(Rd)
.

Now suppose that Q ∈ Q1
k with k ≥ 2 and Q′ ∼ Q. Using the Lipschitz continuity of

the bump functions ψP and noting that we can only have suppψP ∩ (Q ∪ Q′) 	= ∅ if
P ∈ Qd,0, we get

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � −
∫
Q

−
∫
Q′

|Ef(x)− Ef(y)|pdμα(x)dμα(y)

�
(
2−k

∑
P∈Qd,0

suppψP∩(Q∪Q′)�=∅

−
∫
P

|f |dmd

)p

� 2−kp
∑

P∈Qd,0

suppψP∩(Q∪Q′)�=∅

∫
P

|f |pdmd.
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Since the admissible cubes Q above are relatively far away from Rd, we have μα(Q) ≈
2−k(d+1), so

O
(1)
k � 2−k(d+1+p)

∑
Q∈Q1

k

∑
Q′∼Q

∑
P∈Qd,0

suppψP∩(Q∪Q′)�=∅

∫
P

|f |pdmd,

and since each P ∈ Qd,0 appears at most some constant times 2(d+1)k times in the
above triple sum, we get

O
(1)
k � 2−kp

∑
P∈Qd,0

∫
P

|f |pdmd = 2−kp‖f‖p
Lp(Rd,md)

.

Thus, ∑
k≥0

2kspO
(1)
k �

∑
k≥0

2k(s−1)p‖f‖p
Lp(Rd,md)

≈ ‖f‖p
Lp(Rd,md)

. (26)

Now suppose that Q ∈ Q2
k, Q

′ ∈ Q
2,∗
k and Q ∼ Q′. Let P and P ′ be the (unique)

cubes in Q0
d such that Q ⊂ W (P ) and Q′ ⊂ W (P ′). We evidently have �(W (P )) ≥ 2−k

and �(W (P ′)) ≈ �(W (P )). Using the Lipschitz continuity of the bump functions in the
definition of Ef in conjunction with the fact that the bump functions form a partition
of unity in Q ∪Q′, we get

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � −
∫
Q

−
∫
Q′

|E(f − fP
)
(x)− E(f − fP

)
(y)

∣∣pdμα(x)dμα(y)

�
2−kp

�(P )p

∑
R∈Q0

d

W (R)∩(W (P )∪W (P ′))�=∅

∣∣fP − fR
∣∣p (27)

�
2−kp

�(P )p

( ∑
R∈Q0

d

W (R)∩W (P )�=∅

∣∣fP − fR
∣∣p + ∑

R∈Q0
d

W (R)∩W (P ′)�=∅

∣∣fP ′ − fR
∣∣p).

Since wα ≈ �(P )α in W (P ), we have μα(Q) ≈ 2−k(d+1)�(P )α, so

μα(Q)
∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � 2−k(d+1+p)
(
�(P )α−p

∑
R∈Q0

d

W (R)∩W (P )�=∅

∣∣fP − fR
∣∣p

+ �(P ′)α−p
∑
R∈Q0

d

W (R)∩W (P ′) �=∅

∣∣fP ′ − fR
∣∣p).

Now summing over admissible Q and Q′, geometric considerations imply that the terms
P ∈ Q0

d and P ′ ∈ Q0
d (with �(P ) ≥ 2−k and �(P ′) ≥ 2−k) will appear at most a constant

times (2k�(P ))d+1 times in the resulting triple sum, so∑
Q∈Q2

k

μα(Q)
∑
Q′∼Q

Q′∈Q
2,∗
k

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p
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� 2−kp
∑
P∈Q0

d

�(P )≥2−k

�(P )d+1+α−p
∑
R∈Q0

d

W (R)∩W (P )�=∅

∣∣fP − fR
∣∣p

� 2−kp
∑

0≤n≤k

2−n(d+1+α−p)
∑

P∈Qd,n

∑
R∈Q0

d

W (R)∩W (P ) �=∅

∣∣fP − fR
∣∣p

= 2−kp
∑

0≤n≤k

2−n(1+α−p)
∑

P∈Qd,n

md(P )
∑
R∈Q0

d

W (R)∩W (P )�=∅

∣∣fP − fR
∣∣p

=: 2−kp
∑

0≤n≤k

2−n(1+α−p)O′
n.

Multiplying this by 2ksp and summing over k ≥ 0, we get∑
k≥0

2kspO
(2)
k �

∑
n≥0

2−n(1+α−p)O′
n

∑
k≥n

2k(s−1)p ≈
∑
n≥0

2n(s−
α+1
p

)pO′
n � ‖f‖p

B
s−(α+1)/p
p,p (Rd)

,(28)

where the last estimate follows from the definition of the norm.
Finally, let us consider the terms in the sum O

(3)
k . Let Q ∈ Q3

k and Q′ ∼ Q. Define
P := PQ ∈ Qd,k as the projection of Q on Rd, and let P ′ be a neighbor of P in Qd –
we will specify the choice of P ′ later. We have

μα(Q)
∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p
�

∫
Q

∣∣Ef − fP
∣∣pdμα +

∫
Q′

∣∣Ef − fP ′

∣∣pdμα + μα(Q)
∣∣fP − fP ′

∣∣p. (29)

To estimate the first integral above, note that∫
Q

∣∣Ef − fP
∣∣pdμα =

∑
R∈Qd
R⊂P

∫
W (R)

∣∣Ef − fP
∣∣pdμα

=
∑
n≥k

∑
R∈Qd,n

R⊂P

∫
W (R)

∣∣Ef − fP
∣∣pdμα.

For R ∈ Qd,n as in the sum above, denote by R(j), k ≤ j ≤ n, the (unique) cube in
Qd,j that contains R. Taking ε ∈ (0, 1 + α), we get

∣∣Ef(x)− fP
∣∣p � ∣∣Ef(x)− fR

∣∣p + ( n∑
j=k+1

∣∣fRj − fRj−1

∣∣)p

�

n∑
j=k

2(n−j)ε
∑

R′∈Qd,j

R′⊃R

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p

≈
n∑

j=k

2(n−j)ε2jd
∑

R′∈Qd,j

R′⊃R

md(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p
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= �(R)−ε
∑

R′∈Qd
R⊂R′⊂P

�(R′)−d+εmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p

and since μα(W (R)) ≈ �(R)d+1+α, we arrive at∫
Q

∣∣Ef − fP
∣∣pdμα �

∑
R∈Qd
R⊂P

�(R)d+1+α−ε
∑

R′∈Qd
R⊂R′⊂P

�(R′)−d+εmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p

=
∑

R′∈Qd
R′⊂P

(
�(R′)−d+εmd(R

′)
∑

R′′∼R′

∣∣fR′ − fR′′

∣∣p) ∑
R∈Qd
R⊂R′

�(R)d+1+α−ε.

Geometric considerations again imply that every �(R) ∈ {�(R′), �(R′)/2, �(R′)/4, · · · }
in the innermost appears (�(R′)/�(R))d times, and since 1 + α − ε > 0, the sum in
question is comparable to �(R′)d+1+α−ε. Thus,∫

Q

∣∣Ef − fP
∣∣pdμα �

∑
R′∈Qd
R′⊂P

�(R′)1+αmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p. (30)

Now to estimate the second term in (29), we have to specify the choice of P ′. If
Q′ ∩ Rd × {0} 	= ∅, we define P analogously to P ′, and the integral in question can
be estimated by the right-hand side of (30), with Q replaced Q′ and P replaced by
P ′. If on the other hand Q′ ∩ Rd × {0} = ∅, we can take P ′ ∈ Qd,k ∪ Qd,k+1 so that
Q′ = W (P ′), which yields∫

Q′

∣∣Ef − fP ′

∣∣pdμα � μα(Q
′)

∑
P ′′∼P ′

∣∣fP ′ − fP ′′

∣∣p ≈ �(P ′)1+αmd(P
′)

∑
P ′′∼P ′

∣∣fP ′ − fP ′′

∣∣p.
Finally, the estimate for the third term in (29) is obvious:

μα(Q)
∣∣fP − fP ′

∣∣p ≈ �(P )1+αmd(P )
∣∣fP − fP ′

∣∣p. (31)

Putting together (30), (31) and a suitable estimate for the second term in (29), we get

μα(Q)
∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � ∑
R′∈Qd
R′⊂P ∗

Q

�(R′)1+αmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p,

where P ∗
Q := P ∪ ⋃

P ′∼P P ′. Since each R′ ∈ Qd (with �(R′) ≤ min(2−k+1, 1)) is
contained in a finite number of admissible cubes P ∗

Q, we thus have

O
(3)
k �

∑
n≥(k−1)+

2−n(1+α)
∑

R′∈Qd,n

md(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p =:
∑

n≥(k−1)+

2−n(1+α)O′′
n,

and so∑
k≥0

2kspO
(3)
k �

∑
n≥0

2−n(1+α)O′′
n

∑
0≤k≤n+1

2ksp ≈
∑
n≥0

2n(s−
1+α
p

)pO′′
n ≈ ‖f‖p

B
s−(α+1)/p
p,p (Rd)

. (32)

Combining the estimates (24), (26), (28) and (32), we finally get

‖Ef‖p
Bs
p,p(R

d+1
+ ,μα)

� ‖Ef‖p
Lp(Rd+1

+ ,μα)
+
∑
k≥0

2ksp
(
O

(1)
k +O

(2)
k +O

(3)
k

)
� ‖f‖p

B
s−(α+1)/p
p,p (Rd)

.
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(ii) Now let f ∈ Bs
p,p(R

d+1
+ , μα), and for k ∈ N0 write

Tkf :=
∑

Q∈Qd,k

(
−
∫
N(Q)

fdμα

)
χQ,

where N(Q) = Q × (0, �(Q)] ∈ Qd+1,k for all Q ∈ Q0
d. The operators Tk will play a

role similar to that of the operators Tk in the proof of Theorem 1.1.
We first show that the limit limk→∞ Tkf exists pointwise md-almost everywhere in

Rd by estimating the Lp(Rd)-norm of the function

f ∗ :=
∑
k≥0

∣∣Tk+1f − Tkf
∣∣+ ∣∣T0f

∣∣.
Now if P ∈ Qd,0, the definition of T0 shows that∫

P

|f ∗(x)|pdmd ≤
∫
P

(∑
k≥0

∣∣∣Tk+1f(x)− Tkf(x)
∣∣∣)p

dmd(x) +

∫
N(P )

|f |pdμα

�
∑
k≥0

2kε
∫
P

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x) +

∫
N(P )

|f |pdμα, (33)

where ε := sp− α− 1 > 0. To estimate the k-th integral above, note that∫
P

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x) =

∑
Q∈Qd,k

Q⊂P

∫
Q

∣∣Tk+1f(x)− Tkf(x)
∣∣pdmd(x)

�
∑

Q∈Qd,k

Q⊂P

md(Q)
∑

Q′∈Q
+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p

= 2−kd
∑

Q∈Qd,k

Q⊂P

∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p.

By this and (33), we can estimate ‖f ∗‖p
Lp(Rd)

by

∑
k≥0

2k(ε−d)
∑

Q∈Qd,k

∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p + ‖f‖p
Lp(Rd+1

+ ,μα)

≈
∑
k≥0

2k(α+1+ε)
∑

Q∈Qd,k

μα

(
N(Q)

) ∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p + ‖f‖p
Lp(Rd+1

+ ,μα)

=
∑
k≥0

2ksp
∑

Q∈Qd,k

μα

(
N(Q)

) ∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p + ‖f‖p
Lp(Rd+1

+ ,μα)
(34)

�‖f‖p
Bs
p,p(R

d+1
+ ,μα)

.

This shows that f ∗ < ∞ pointwise md-almost everywhere, so that the limit Rf :=
limk→∞ Tkf exists at these points. We may abuse notation by writing f for Rf in the
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remainder of this proof. Since |f | ≤ f ∗ pointwise md-almost everywhere, the estimate
above plainly implies

‖f‖Lp(Rd) � ‖f‖Bs
p,p(R

d+1
+ ,μα)

.

Now to estimate the Bs−(α+1)/p
p,p (Rd)-energy of f , let k ∈ N0 and recall that, by a

calculation similar to (13), md(Q)/μα(N(Q)) ≈ 2k(α+1) for all Q ∈ Qd,k. The estimate
(21) in the proof of Theorem 1.1 (with T and N in place of T and N respectively)
yields∑

Q∈Qd,k

md(Q)
∑
Q′∼Q

∣∣fQ − fQ′

∣∣p

�

∫
Rd

∣∣f(x)− Tkf(x)
∣∣pdmd(x) + 2k(α+1)

∑
Q∈Qd,k

μα

(
N(Q)

) ∑
Q′∼Q

∣∣fN(Q),μα − fN(Q′),μα

∣∣p

=: Ik + 2k(α+1)Ok,

so that∑
k≥0

2k(s−
α+1
p

)p
∑

Q∈Qd,k

md(Q)
∑
Q′∼Q

∣∣fQ − fQ′

∣∣p � ∑
k≥0

2k(s−
α+1
p

)pIk +
∑
k≥0

2kspOk. (35)

We have ∑
k≥0

2kspOk � ‖f‖p
Bs
p,p(R

d+1
+ ,μα)

(36)

by definition. To estimate the terms Ik, take ε ∈ (0, sp− α− 1) and proceed as in the
estimates following (33) to obtain

Ik �
∑
n≥k

2(n−k)ε

∫
Rd

∣∣Tn+1f(x)− Tnf(x)
∣∣pdmd(x)

�
∑
n≥k

2(n−k)ε2−nd
∑

Q∈Qd,n

∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p

≈
∑
n≥k

2(n−k)ε2n(α+1)
∑

Q∈Qd,n

μα

(
N(Q)

) ∑
Q′∈Q

+
d+1

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p

=:
∑
n≥k

2(n−k)ε2n(α+1)O′
n,

so that ∑
k≥0

2k(s−
α+1
p

)pIk �
∑
n≥0

2n(α+1+ε)O′
n

∑
0≤k≤n

2k(sp−α−1−ε) ≈
∑
n≥0

2nspO′
n

� ‖f‖p
Bs
p,p(R

d+1
+ ,μα)

, (37)

where the last estimate again follows from the definition of the norm. Plugging (36)
and (37) into (35) leads to the desired energy estimate.

(iii) We plainly have R(Ef) = f for all f ∈ Bs−(α+1)/p
p,p (Rd).
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As in the proof of Theorem 1.1, the remaining question is whether the trace operator
R constructed above is of the correct form. We again refer to Subsection 7.1 in the
Appendix for details on this. �

5. Proof of Theorem 1.3

Let us recall that in the proof of Theorem 1.2, N(Q) for Q ∈ Q0
d was defined as

Q × (0, �(Q)] ∈ Q0
d+1. Before giving the proof of Theorem 1.3, let us introduce the

auxiliary seminorm [f ]s,p,q,α, defined by

[f ]ps,p,q,α =

∫
R
d+1
+

( ∞∑
k=0

2ksq
∑

P∈Qd,k

∑
Q′∈Q0

d+1

Q′∼N(P )

∣∣fN(P ),μα − fQ′,μα

∣∣qχN(P )(x)
)p/q

dμα(x),

where f ∈ L1
loc(R

d+1, μα) and the parameters p, q, s and α as in the statement of
Theorem 1.3. We obviously have [f ]s,p,q,α ≤ ‖f‖Fs

p,q(R
d+1,μα) and

[f ]ps,p,p,α =
∞∑
k=0

2ksp
∑

P∈Qd,k

μα

(
N(P )

) ∑
Q′∈Q0

d+1

Q′∼N(P )

∣∣fN(P ),μα − fQ′,μα

∣∣p

for all admissible values of the parameters. We shall omit α from the notation and
write [f ]s,p,q if there is no risk of confusion.

For the proof of Theorem 1.3, we shall need the following lemma concerning the
seminorms [f ]s,p,q.

Lemma 5.1. Suppose that 0 < s < 1, 1 ≤ p < ∞, 0 < q, q′ ≤ ∞ and α > −1. Then
for any f ∈ L1

loc(R
d+1
+ , μα), we have

[f ]s,p,q,α ≈ [f ]s,p,q′,α

with the implied constants independent of f .

Proof. It suffices to consider the case q′ = p. First, in order to estimate [f ]s,p,q from
above, write

D(P ) := D(f, P ) :=
∑

Q′∼N(P )

∣∣fN(P ),μα − fQ′,μα

∣∣
for P ∈ Q0

d, so that

[f ]ps,p,q ≈
∫
R
d+1
+

( ∞∑
k=0

2ksq
∑

P∈Qd,k

D(P )qχN(P )(x)
)p/q

dμα(x)

(because the sum defining D(P ) is uniformly finite).
Note that

⋃
P∈Q0

d
N(P ) = Rd × (0, 1] =

⋃
j≥1

⋃
P∈Qd,j

W (P ). Moreover, from the

definitions it is easily seen that for R, P ∈ Q0
d, we have N(P ) ∩ W (R) 	= ∅ if and

only if R is a proper subset of P , and in this case also W (R) ⊂ N(P ). Thus, taking
ε ∈ (0, 1 + α) and using Hölder’s inequality (or the subadditivity of t �→ tp/q if p ≤ q)
leads to

[f ]ps,p,q =
∑
j≥1

∑
R∈Qd,j

∫
W (R)

( j−1∑
k=0

2ksq
∑

P∈Qd,k

P⊃R

D(P )qχN(P )(x)
)p/q

dμα(x)
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=
∑
j≥1

∑
R∈Qd,j

μα

(
W (R)

)( j−1∑
k=0

2ksq
∑

P∈Qd,k

P⊃R

D(P )q
)p/q

�
∑
j≥1

∑
R∈Qd,j

μα

(
W (R)

) j−1∑
k=0

2(j−k)ε2ksp
∑

P∈Qd,k

P⊃R

D(P )p

=
∑
k≥0

2k(sp−ε)
( ∑

P∈Qd,k

D(P )p
∑
j>k

2jε
∑

R∈Qd,j

R⊂P

μα

(
W (R)

))
.

As in the previous proofs, each term μα(W (R)) in the innermost sum above is compa-
rable to 2−j(d+1+α), and the sum has 2(j−k)d such terms. This together with the choice
of ε yields

[f ]ps,p,q �
∑
k≥0

2k(sp−d−ε)
( ∑

P∈Qd,k

D(P )p
∑
j>k

2j(ε−α−1)
)

≈
∑
k≥0

2k(sp−d−α−1)
∑

P∈Qd,k

D(P )p

≈
∑
k≥0

2ksp
∑

P∈Qd,k

μα

(
N(P )

)
D(P )p

≈ [f ]ps,p,p.

For the other direction, write W (P ) := P × (1
2
�(P ), �(P )] for all P ∈ Q0

d. Note that
W (P ) ⊂ N(P ) and μα(W (P )) ≈ μα(N(P )) for all P , and that the cubes W (P ) are
pairwise disjoint. We get

[f ]ps,p,p ≈
∑
k≥0

2ksp
∑

P∈Qd,k

μα

(
W (P )

)
D(P )p

=
∑
k≥0

∑
P∈Qd,k

∫
W (P )

(
2ksqD(P )q

)p/q

dμα

≤
∑
k≥0

∑
P∈Qd,k

∫
W (P )

(∑
j≥0

2jsq
∑

Q∈Qd,j

D(Q)qχN(Q)(x)
)p/q

dμα(x)

≤
∫
R
d+1
+

(∑
j≥0

2jsq
∑

Q∈Qd,j

D(Q)qχN(Q)(x)
)p/q

dμα(x)

= [f ]ps,p,q. �

Proof of Theorem 1.3. (i) Let us first establish the relevant norm inequality for the

Whitney extension of a function f ∈ Bs−(α+1)/p
p,p (Rd). By Theorem 1.2 and Remark 2.4,

it suffices to consider the case q < p. As in (24), we again have

‖Ef‖Lp(Rd+1
+ ,μα)

� ‖f‖Lp(Rd).
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Now for the F s
p,q(R

d+1
+ , μα)-energy of Ef , it suffices to estimate

∫
Rd

( ∞∑
k=k0

2ksq
∑

Q′∼Qx
k

∣∣(Ef)Qx
k,μα − (Ef)Q′,μα

∣∣q)p/q

dμα(x), (38)

where k0 ≥ 4 is a fixed integer (we will specify the choice of k0 later), since the

corresponding integral with
∑∞

k=k0
replaced by

∑k0−1
k=0 is easily estimated by

‖Ef‖p
Lp(Rd+1

+ ,μα)
� ‖f‖p

Lp(Rd)
.

To this end, we divide the cubes in Q
+
d+1 into several classes as in the proof of

Theorem 1.2, but this time we need to consider four different cases. More precisely,
for k ≥ k0 write Q1

k for the dyadic cubes Q in Q
+
d+1 with edge length 2−k such that

dist (Q,Rd × {0}) > 2 − 2−k+2, Q2
k for the cubes Q with edge length 2−k such that

2−k+1 < dist (Q,Rd × {0}) ≤ 2 − 2−k+2, Q3
k for the cubes with edge length 2−k such

that 2−k ≤ dist (Q,Rd×{0}) ≤ 2−k+1 and Q4
k for the cubes with edge length 2−k whose

closures intersect Rd × {0}. With these choices, the quantity (38) is comparable to

4∑
j=1

∫
R
d+1
+

( ∞∑
k=k0

2ksq
∑
Q∈Q

j
k

∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣qχQ(x)
)p/q

dμα(x) =:
4∑

j=1

Oj.

The necessary estimates for the term O4 are already contained in Lemma 5.1 and
Theorem 1.2:

O4 = [Ef ]ps,p,q ≈ [Ef ]ps,p,p � ‖Ef‖p
Bs
p,p(R

d+1
+ ,μα)

� ‖f‖p
B
s−(α+1)/p
p,p (Rd)

.

The term O3 can be estimated in a similar manner as O4, since the quantity O3 is
also essentially independent of the parameter q. This is because the cubes in

⋃
k≥k0

Q2
k

have bounded overlap.
In order to estimate O1, let us specify k0: it can be taken such that whenever Q ∈ Q1

k

with k ≥ k0 and Q′ ∼ Q, suppψP ∩ (Q ∪ Q′) 	= ∅ can only hold for P ∈ Qd,0. Using
this property together with the Lipschitz continuity of the bump functions ψP , we get

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣q ≤ (
−
∫
Q

−
∫
Q′

|Ef(x)− Ef(y)|dμα(x)dμα(y)
)q

�
(
2−k

∑
P∈Qd,0

suppψP∩(Q∪Q′)�=∅

−
∫

|f |dmd

)q

� 2−kq
( ∑

P∈Qd,0

suppψP∩(Q∪Q′)�=∅

∫
P

|f |dmd

)q

=: 2−kqJq
Q,Q′.

Take ε ∈ (0, 1 − s) and q∗ > 1 so that 1/q∗ + q/p = 1. Using the estimate above
together with Hölder’s inequality yields

( ∑
k≥k0

2ksq
∑
Q∈Q1

k

∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣qχQ(x)
)p/q
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�
( ∑

k≥k0

2k(s−1+ε)p
∑
Q∈Q1

k

∑
Q′∼Q

Jp
Q,Q′χQ(x)

)( ∑
k≥k0

2−kεqq∗
)p/(qq∗)

≈
∑
k≥k0

2k(s−1+ε)
∑
Q∈Q1

k

∑
Q′∼Q

Jp
Q,Q′χQ(x).

Hence we have

O1 �
∑
k≥k0

2k(s−1+ε)p
∑
Q∈Q1

k

μα(Q)
∑
Q′∼Q

Jp
Q,Q′

�
∑
k≥k0

2k(s−1−ε)p−k(d+1)
∑
Q∈Q1

k

∑
Q′∼Q

∑
P∈Qd,0

suppψP∩(Q∪Q′)�=∅

∫
P

|f |pdmd,

and since each P ∈ Qd,0 appears at most some constant times 2(d+1)k times in the
above triple sum, we arrive at

O1 �
∑
k≥k0

2k(s−1+ε)
∑

P∈Qd,0

∫
P

|f |pdmd ≈
∑
k≥k0

2k(s−1+ε)‖f‖p
Lp(Rd,md)

≈ ‖f‖p
Lp(Rd,md)

.

Finally let us estimate O2. Suppose that Q ∈ Q2
k and Q ∼ Q′. Since dist (Q,Rd ×

{0}) > 2−k+1, �(Q′) ≤ 2�(Q) = 2−k+1 and Q′ ∩Q 	= ∅, we have Q′ ∩ Rd × {0} = ∅. As
in the proof of Theorem 1.2, we can therefore take P := PQ and P ′ to be the cubes
in Q0

d such that Q ⊂ W (P ) and Q′ ⊂ W (P ′). Moreover, the definition of Q2
k implies

that Q ∪ Q′ ⊂ ⋃
R∈Q0

d
W (R), and the bump functions ψP form a partition of unity of

the latter set. As in (27), we thus get

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣q � 2−kq

�(P )q

∑
R∈Q0

d

W (R)∩(W (P )∪W (P ′))�=∅

∣∣fP − fR
∣∣q,

and hence

∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣q � 2−kq

�(PQ)q

( ∑
R∈Q0

d
R∼∼PQ

∣∣fPQ
− fR

∣∣)q

,

where the notation R ∼∼ PQ means that there exists R′ ∈ Q0
d such that R ∼ R′ and

R′ ∼ PQ. The latter sum obviously has a uniformly finite number of terms |fPQ
− fR|.

In order to apply this estimate to O2, note that by the definition of the Q2
k’s, we

have ⋃
k≥k0

Q
2
k ⊂

⋃
P∈Q0

d

W (P ),

and that if a point x belongs to one of the W (P )’s above, we can have χQ(x) 	= 0 for
some Q ∈ ⋃

k≥k0
Q2

k only if Q ⊂ W (P ), and in this case also �(Q) ≤ �(P ). Using these

facts and Hölder’s inequality (with ε ∈ (0, 1− s) as in the estimate for O1 above), we
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get

O2 ≤
∑
j≥0

∑
P∈Qd,j

∫
W (P )

(∑
k≥j

2ksq
∑

Q∈Qd+1,k

Q⊂W (P )

∑
Q′∈Q2

Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣qχQ(x)
)p/q

dμα(x)

�
∑
j≥0

∑
P∈Qd,j

∫
W (P )

(∑
k≥j

2k(s−1)q
∑

Q∈Qd+1,k

Q⊂W (P )

1

�(P )q

( ∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣)q

χQ(x)
)p/q

dμα(x)

=
∑
j≥0

2jp
∑

P∈Qd,j

∫
W (P )

(∑
k≥j

2k(s−1)q
∑

Q∈Qd+1,k

Q⊂W (P )

( ∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣)q

χQ(x)
)p/q

dμα(x)

�
∑
j≥0

2j(1−ε)p
∑

P∈Qd,j

∑
k≥j

2k(s−1+ε)p
∑

Q∈Qd+1,k

Q⊂W (P )

μα(Q)
∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣p

=
∑
j≥0

2j(1−ε)p
∑

P∈Qd,j

μα

(
W (P )

)( ∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣p)∑

k≥j

2k(s−1+ε)p

≈
∑
j≥0

2jsp
∑

P∈Qd,j

μα

(
W (P )

) ∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣p

≈
∑
j≥0

2j(s−
α+1
p

)p
∑

P∈Qd,j

md(P )
∑
R∈Q0

d
R∼∼P

∣∣fP − fR
∣∣p.

Finally, since for each P above we have R ∼∼ P for a (uniformly) finite number of
cubes R, the above quantity is easily estimated by ‖f‖p

B
s−(α+1)/p
p,p (Rd)

.

Combining the estimates for O1, O2, O3 and O4 with the Lp-estimate for Ef , we
conclude that

‖Ef‖Fs
p,q(R

d+1
+ ,μα)

� ‖f‖
B
s−(α+1)/p
p,p (Rd)

(ii) In order to establish the existence of the trace of a function f ∈ F s
p,q(R

d+1
+ , μα),

we proceed as in the proof of Theorem 1.2 (ii). Let f ∈ F s
p,q(R

d+1
+ , μα), define Tkf for

k ∈ N0 as in that proof and put

f ∗ :=
∑
k≥0

∣∣Tk+1f − Tkf
∣∣+ ∣∣T0f

∣∣.
By the estimate (34) and Lemma 5.1, we have

‖f ∗‖Lp(Rd) � ‖f‖Lp(Rd+1
+ ,μα)

+ [f ]s,p,p ≈ ‖f‖Lp(Rd+1
+ ,μα)

+ [f ]s,p,q ≤ ‖f‖Fs
p,q(R

d+1
+ ,μα)

< ∞,

so the trace Rf := limk→∞ Tkf is well-defined md-almost everywhere in Rd. The
estimates (34), (35) and (37) then imply

‖Rf‖
B
s−(α+1)/p
p,p (Rd)

� ‖f‖Lp(Rd+1
+ ,μα)

+ [f ]s,p,p ≈ ‖f‖Lp(Rd+1
+ ,μα)

+ [f ]s,p,q � ‖f‖Fs
p,q(R

d+1
+ ,μα)

which is the desired norm estimate.
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(iii) That R(Ef) = f for all f ∈ Bs−(α+1)/p
p,p (Rd) again follows plainly from the defi-

nition of R. Concerning the fact that R is actually of the form required by Definition
2.6, we again refer to Subsection 7.1 of the Appendix. �

6. The trace of a weighted Hardy-Sobolev space

In this section we present a refinement of the case p = 1 of Theorem 1.1, where
W 1,1(Rd+1

+ , μα) is replaced by a weighted Hardy-Sobolev space on R
d+1
+ .

The real-variable Hardy spaces Hp(Rd), 0 < p ≤ 1, were defined for a general
dimension d and exponent p in the seminal paper by Fefferman and Stein [10]. They
have since been studied extensively, as many results of harmonic analysis that fail for
p ≤ 1 work for these spaces. We refer to [47] for an extensive treatment of these spaces.

A localized version of the space Hp, better suited e.g. for studying functions on
domains, was introduced by Goldberg [16]. A variety of similar spaces, including
spaces on domains, weighted spaces on domains and Sobolev-type spaces based on the
Hp norm, have since been studied e.g. in [34, 48, 35, 36, 57, 6, 26].

Let us now define the Hardy-Sobolev space relevant to us. Fix a function Φ ∈
C∞(Rd+1) such that suppΦ ⊂ B(0, 1) and

∫
Φdmd+1 = 1. Following Miyachi [34, 35],

for f ∈ L1
loc(R

d+1
+ , md+1), define the radial maximal function f+ : Rd+1

+ → [0,∞] by

f+(x) = sup
0<t<min(xd+1,1)

∣∣(f ∗ Φt)(x)
∣∣,

where xd+1 is the (d + 1)-th coordinate of x and Φt := t−(d+1)Φ(·/t). If μ is a Borel
regular and absolutely continuous measure on R

d+1
+ , define the localized Hardy space

h1(Rd+1
+ , μ) as the space of locally md+1-integrable functions f on R

d+1
+ such that

‖f‖h1(Rd+1
+ ,μ) := ‖f+‖L1(Rd+1

+ ,μ)

is finite. We clearly have |f(x)| ≤ |f+(x)| for almost all x, so h1(Rd+1
+ , μ) ⊂ L1(Rd+1

+ , μ)
with a continuous embedding.

It follows from Miyachi’s results (see also (41) below) that for the measures μ relevant
to us, the space defined above is independent of Φ in the sense that two admissible
choices yield the same space with equivalent norms. In fact, it will be convenient for
us to choose Φ so that suppΦ ⊂ B(0, 1/8).

Now the Hardy-Sobolev space h1,1(Rd+1
+ , μ) is defined as the space of functions f ∈

L1
loc(R

d+1
+ , md+1) such that the first-order distributional derivatives ∂jf , 1 ≤ j ≤ d+1,

also belong to L1
loc(R

d+1
+ , md+1) and

‖f‖h1,1(Rd+1
+ ,μ) := ‖f‖L1(Rd+1

+ ,μ) +

d+1∑
j=1

‖∂jf‖h1(Rd+1
+ ,μ)

is finite.
The trace theorem for these spaces then reads as follows.

Theorem 6.1. Let α ∈ (−1, 0) Then
(B−α

1,1 (R
d), h1,1(Rd+1

+ , μα)
)
is a Whitney trace-

extension pair.

Before proving this Theorem, let us formulate a sampling lemma which is essentially
folklore. For the convenience of the reader, a proof is presented in Subsection 7.3 of
the Appendix.
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Lemma 6.2. Suppose that Ω is an open subset of Rd, that μ is a doubling measure
on Ω such that every Euclidean ball (restricted to Ω) has positive and finite μ-measure
and that 0 < λ < 1. Then there is a constant C depending only on the dimension d,
the doubling constant of μ and λ such that the following statement holds.

For every cube Q ⊂ Ω and f ∈ L1(Q), there exists a cube Q̃ ⊂ Q with �(Q̃) = λ�(Q)
such that

−
∫
Q

∣∣f − fQ,μ

∣∣dμ ≤ C−
∫
Q̃

∣∣f − fQ̃,μ

∣∣dμ.
Proof of Theorem 6.1. (i) In order to estimate the h1,1(Rd+1

+ , μα)-norm of the Whitney
extension of a function f ∈ B−α

1,1 (R
d), we proceed as in the proof of Theorem 1.1. First,

the L1-norm of Ef can be estimated as in (15). In order to estimate the h1(Rd+1
+ , μα)-

norm of a partial derivative ∂jf , write X1 := ∪Q∈Q0
d
W (Q) and X2 := R

d+1
+ \X1.

Suppose first that x ∈ X1, i.e. x ∈ W (P ) for some Q, and 0 < t < min(xd+1, 1). We
plainly have (

∂j(Ef)
) ∗ Φt(x) =

(
∂j
(Ef − fP

)) ∗ Φt(x).

Now since xd+1 < 2�(Q) and we assumed the support of Φ to be contained in B(0, 1/8),
we see that

suppΦt(x− ·) ⊂ 5

4
W (Q),

and hence suppψQ∩ suppΦt(x−·) 	= ∅ can only hold if Q ∼ P . Since also the L1-norm
of Φt(x− ·) does not depend on t, we get

(
∂j(Ef)

)+
(x) ≤ sup

0<t<min(xd+1,1)

∫
5
4
W (Q)

∑
Q∼P

|fQ − fP ||∂j(ψQ)(y)||Φt(x− y)|dmd+1(y)

�
∑
Q∼P

1

�(Q)
|fQ − fP |.

This is estimate corresponds to (16) in the proof of Theorem 1.1, so ‖(∂j(Ef))+‖L1(X1,μα)

can be estimated in the same way as in that proof.
Now if x ∈ X2 and 0 < t < min(xd+1, 1), we can only have suppψQ∩suppΦt(x−·) 	=

∅ if Q ∈ Q0,d. Thus,

∣∣(∂j(Ef)) ∗ Φt(x)
∣∣ ≤

∫
R
d+1
+

∑
Q∈Qd,0

|fQ||∂j(ψQ)(y)||Φt(x− y)|dymd+1

�
∑

Q∈Qd,0

suppψQ∩suppΦt(x−·)�=∅

|fQ| ≤
∑

Q∈Qd,0

suppψQ∩B(x,1/8)�=∅

|fQ|

Since the μα-measures of the 1
8
-neighborhoods of the supports of ψQ above are compa-

rable to 1, we get

‖(∂j(Ef))+‖L1(X2,μα) �
∑

Q∈Qd,0

|fQ| ≤ ‖f‖L1(Rd).

That R(Ef) = f is then checked as in the previous proofs. This finishes the proof of
part (ii).
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(ii) Let us recall some notation from the proof of Theorem 1.1. For Q ∈ Q0
d, write

W (Q) := Q× [�(Q), 2�(Q)) ∈ Q0
d+1 and N (Q) := 5

4
W (Q).

Now in order to verify the existence of the trace of a Hardy-Sobolev function and
estimate its norm, the argument in part (ii) of the proof of Theorem 1.1 applies here as
well, as long as we can verify that every f ∈ h1,1(Rd+1

+ , μα) satisfies a suitable Poincaré-
type inequality on cubes that are relatively far away from the boundary Rd. More
precisely, it suffices to show that there exists a measurable function g : Rd+1

+ → [0,∞]
such that

−
∫

N (Q)

∣∣f − fN (Q)

∣∣dmd+1 � �(Q)−
∫

N (Q)

gdmd+1 (39)

for all Q ∈ Q0
d (with the implied constant independent of f) and

‖g‖L1(Rd+1
+ ),μ � ‖f‖h1,1(Rd+1

+ ,μα)
. (40)

To this end, let us recall the definition of the grand maximal function related to the
space h1. For h ∈ L1

loc(R
d+1
+ ) and N ∈ N, define the function M∗

Nh : R
d+1
+ → [0,∞] by

M∗
Nh(x) = sup

ψ∈FN (x)

∣∣∣
∫
R
d+1
+

h(y)ψ(y)dmd+1(y)
∣∣∣,

where

FN(x) =
{
ψ ∈ C∞(Rd+1

+ ) : there exist y ∈ R
d+1
+ and r ∈ (0, 1) such that

x ∈ B(y, r) ⊂ R
d+1
+ , suppψ ⊂ B(y, r) and |∂βψ| ≤ r−(d+1)−|β|

for all multi-indices β such that |β| ≤ N
}
.

We claim that

g :=

d+1∑
j=1

M∗
1(∂jf)

satisfies (39) and (40).
Now by [26, Theorem 7], there exists a constant c depending only on the dimension

d such that

|f(x)− f(y)| ≤ c|x− y|(g(x) + g(y)
)

for all x, y ∈ R
d+1
+ such that |x− y| < min(xd+1, yd+1, 1). We can apply this estimate

in a cube N (Q) as follows. Since dist (N (Q),Rd) ≈ �(N (Q)), we can use Lemma 6.2
to find a cube Q̃ ⊂ N (Q) such that �(Q̃) ≈ �(N (Q)),

−
∫

N (Q)

∣∣f − fN (Q)

∣∣dmd+1 � −
∫
Q̃

∣∣f − fQ̃
∣∣dmd+1

and |x− y| < min(xd+1, yd+1, 1) for all x, y ∈ Q̃. Thus,

−
∫

N (Q)

∣∣f − fN (Q)

∣∣dmd+1 � −
∫
Q̃

−
∫
Q̃

|x− y|(g(x) + g(y)
)
dydx � �(Q)−

∫
N (Q)

gdmd+1,

which is (39).
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As for (40), we denote by g̃j, 1 ≤ j ≤ d + 1, the function on Rd+1 that is obtained
by extending (∂jf)

+ as zero on Rd+1 \Rd+1
+ . Then by [34, Corollary 2], there exists an

exponent q ∈ (0, 1) and a constant C independent of f ∈ h1,1(Rd+1
+ , μα) such that

M∗
1(∂jf)(x) ≤ C

(
M(g̃qj )(x)

)1/q

(41)

for all x ∈ R
d+1
+ , where M stands for the standard Hardy-Littlewood maximal operator

on Rd+1. Because α ∈ (−1, 0), wα can be extended in a natural way as an A1/q-weight

on Rd+1, which in particular means that M is bounded on L1/q(Rd+1, μα). Thus,

‖M∗
1(∂jf)‖L1(Rd+1

+ ,μα)
� ‖g̃j‖L1(Rd+1,μα) ≈ ‖∂jf‖h1(Rd+1

+ ,μα)
,

and summing up over j yields (40).

(iii) As in the previous proofs, we have R(Ef) = f for all f ∈ B−α
1,1 (R

d). The discus-
sion concerning the form of the trace operator R is again postponed until Subsection
7.1 of the Appendix. �

7. Appendix

In this section we present some details which were, for the sake of presentation,
omitted in the previous sections.

7.1. Coincidence of trace operators. Recall that it was not a priori obvious that
the trace operators constructed in the proofs of Theorems 1.1, 1.2, 1.3 and 6.1 are of
the form required by Definition 2.6. In this subsection we explain why this is the case.

Suppose that f ∈ Bs
p,q(R

d+1
+ , μα) or f ∈ F s

p,q(R
d+1
+ , μα) with the parameters p, q and

α admissible for the trace theorems concerning these spaces. Then, because of (13)
and the fact that the measure μα is doubling on R

d+1
+ , we have that for md-almost all

x ∈ Rd, there exists a number c ∈ C such that

lim
r→0

−
∫
B((x,0),r)

|f(y)− c|dμα = 0. (42)

In fact, the set of points x for which this does not hold has Hausdorff dimension at
most max(d + 1 + α − sp, 0) < d. This follows from a well-known covering argument
and a Poincaré-type inequality for the function spaces in question; we refer to e.g. [43,
Lemma 3.1 and Remark 3.2] for details. By the same argument and the Poincaré
inequality established e.g. in [2, Theorem 4], the same holds if f ∈ W 1,p(Rd+1

+ , μα) and
s above is replaced by 1. Finally, the aforementioned argument in [43, Lemma 3.1 and
Remark 3.2] also applies for functions f ∈ h1,1(Rd+1

+ , μα), since by a modification of the

proof of [26, Theorem 16], f has a local Haj�lasz gradient in L1(Rd+1
+ , μα), which yields

a suitable (1, 1)-Poincaré inequality for f .
From (42), it is then easy to see that the limits defining each trace operator in the

above-mentioned proofs can be rewritten in the form (12).

7.2. Equivalence of norms. Here we present a direct proof of the equivalence of the
(quasi-)norm (8) with the standard Besov quasi-norm (10).
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Proposition 7.1. Let μ be a Borel regular measure on Rd such that every Euclidean
ball has positive and finite measure, and such that μ is doubling with respect to the
Euclidean metric. If 0 < s < 1, 1 ≤ p < ∞ and 0 < q ≤ ∞, then

‖f‖Bs
p,q(R

d,μ) ≈ ‖f‖Lp(Rd,μ) +

(∫ ∞

0

t−sq
(∫

Rd

−
∫
B(x,r)

|f(x)− f(y)|pdμ(y)dμ(x)
)q/pdt

t

)1/q

for all f ∈ L1
loc(R

d, μ), where the implied constants are independent of f .

Proof. Let us denote the standard Besov quasi-norm (10) by ‖f‖Bs
p,q(R

d,μ). We first

prove that ‖f‖Bs
p,q(R

d,μ) � ‖f‖Bs
p,q(R

d,μ). To simplify the notation, write dx for dμ(x) for
the rest of this proof.

The doubling property of μ implies that μ(Q) ≈ μ(Q′) if Q and Q′ are cubes in Qd

with Q ∼ Q′. Thus,

∑
Q∈Qd,k

μ(Q)
∑
Q′∼Q

∣∣fQ,μ − fQ′,μ

∣∣p ≤ ∑
Q∈Qd,k

μ(Q)
∑
Q′∼Q

−
∫
Q

−
∫
Q′

|f(x)− f(y)|pdydx

�
∑

Q∈Qd,k

∑
Q′∼Q

1

μ(Q)

∫
Q

∫
Q′

|f(x)− f(y)|pdydx

≤
∑

Q∈Qd,k

∑
Q′∼Q

1

μ(Q)

∫
Q

∫
B(x,C·2−k)

|f(x)− f(y)|pdydx

�
∑

Q∈Qd,k

∫
Q

−
∫
B(x,C·2−k)

|f(x)− f(y)|pdydx

=

∫
Rd

−
∫
B(x,C·2−k)

|f(x)− f(y)|pdydx,

where C = 4
√
d and the doubling property of μ was again used in the second-to-last

line. This leads to∑
k≥0

2ksq
( ∑

Q∈Qd,k

μ(Q)
∑
Q′∼Q

∣∣fQ,μ − fQ′,μ

∣∣p)q

�

∞∑
k=0

2ksq
(∫

Rd

−
∫
B(x,C·2−k)

|f(x)− f(y)|pdydx
)q/p

�

∞∑
k=0

∫ C·2−k+1

C·2−k

(∫
Rd

−
∫
B(x,t)

|f(x)− f(y)|pdydx
)q/p

dt

t1+sq

≤
∫ ∞

0

(∫
Rd

−
∫
B(x,t)

|f(x)− f(y)|pdydx
)q/p

dt

t1+sq
,

which implies that ‖f‖Bs
p,q(R

d,μ) � ‖f‖Bs
p,q(R

d,μ).

In order to prove that ‖f‖Bs
p,q(R

d,μ) � ‖f‖Bs
p,q(R

d,μ), we first note that a straightforward
application of Fubini’s theorem in conjunction with the doubling property of μ yields∫ ∞

1

(∫
Rd

−
∫
B(x,t)

|f(x)− f(y)|pdydx
)q/p dt

t1+sq
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�

∫ ∞

1

( ∫
Rd

|f(x)|pdx+

∫
Rd

|f(y)|p
(
−
∫
B(y,t)

dx

μ(B(x, t))

)
dy

)q/p dt

t1+sq

≈ ‖f‖Lp(Rd,μ).

To estimate the corresponding integral from 0 to 1, use the doubling property of μ to
get

∫ 1

0

(∫
Rd

−
∫
B(x,t)

|f(x)− f(y)|pdydx
)q/p dt

t1+sq

�
∑
k≥0

∫ 2−k

2−k−1

(∫
Rd

−
∫
B(x,2−k)

|f(x)− f(y)|p dy dx
)q/p dt

t1+sq

�
∑
k≥0

2ksq
(∫

Rd

−
∫
B(x,2−k)

|f(x)− f(y)|p dy dx
)q/p

=
∑
k≥0

2ksq
( ∑

Q∈Qd,k

∫
Q

−
∫
B(x,2−k)

|f(x)− f(y)|p dy dx
)q/p

.

Let Q ∈ Qd,k for some k ≥ 0. For x ∈ Q we obviously have B(x, 2−k) ⊂ ⋃
Q′∼QQ′ and

μ(B(x, 2−k)) ≈ μ(Q). Thus,∫
Q

−
∫
B(x,2−k)

|f(x)− f(y)|p dy dx

�
∑
Q′∼Q

1

μ(Q)

∫
Q

∫
Q′

|f(x)− f(y)|p dydx.

�
∑
Q′∼Q

1

μ(Q)

∫
Q

∫
Q′

|f(x)− fQ,μ|p dydx+
∑
Q′∼Q

1

μ(Q)

∫
Q

∫
Q′

|fQ,μ − fQ′,μ|p dydx

+
∑
Q′∼Q

1

μ(Q)

∫
Q

∫
Q′

|fQ′,μ − f(y)|p dydx

=:O1
Q +O2

Q +O3
Q,

so that

‖f‖Bs
p,q(R

d,μ) � ‖f‖Lp(Rd,μ) +

(∑
k≥0

2ksq
( ∑

Q∈Qd,k

(O1
Q +O2

Q +O3
Q)
)q/p

)1/q

� ‖f‖Lp(Rd,μ) +
∑

j=1,2,3

(∑
k≥0

2ksq
( ∑

Q∈Qd,k

Oj
Q

)q/p)1/q

=: ‖f‖Lp(Rd,μ) +H1 +H2 +H3. (43)

We first estimate the quantity H2. For each Q ∈ Qd,k the doubling property yields

O2
Q =

∑
Q′∼Q

μ(Q′)|fQ,μ − fQ′,μ|p ≈ μ(Q)
∑
Q′∼Q

|fQ,μ − fQ′,μ|p,
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and hence

H2 �

(∑
k≥0

2ksq
( ∑

Q∈Qd,k

μ(Q)
∑
Q′∼Q

|fQ,μ − fQ′,μ|p
)q/p

)1/q

� ‖f‖Bs
p,q(R

d,μ). (44)

Next we estimate H1. For any x ∈ Rd and n ∈ N0, define Qx
n as the (unique) cube in

Qd,n that contains x. By the Lebesgue differentiation theorem for doubling measures
[20, Theorem 1.8], we have limn→ fQx

n,μ = f(x) for μ-almost every x ∈ Rd. Hence, if
Q ∈ Qd,k and x ∈ Q, we have

|f(x)− fQ,μ|p ≤
( ∞∑

n=k

∣∣fQx
n,μ − fQx

n+1,μ

∣∣)p

� 2−kε
∞∑
n=k

2nε
∣∣fQx

n,μ − fQx
n+1,μ

∣∣p,

where ε > 0 is chosen so that ε < sp/2. Applying this estimate to O1
Q and using the

fact that every cube has a (uniformly) finite number of neighbors, we get

O1
Q �

∑
Q′∼Q

μ(Q′)

μ(Q)
2−kε

∞∑
n=k

2nε
∫
Q

∣∣fQx
n,μ − fQx

n+1,μ

∣∣p dx

� 2−kε

∞∑
n=k

2nε
∑

Q′′∈Qd,n

Q′′⊂Q

∫
Q′′

∣∣fQx
n,μ − fQx

n+1,μ

∣∣p dx

�

∞∑
n=k

2ε(n−k)
∑

Q′′∈Qd,n

Q′′⊂Q

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p.

In order to use this to estimate H1, we consider two possible cases for the parameter
q. First, if 0 < q ≤ p, the subadditivity of the function t �→ tq/p and the fact that
s− ε/p > 0 yield

Hq
1 �

∑
k≥0

2ksq
∞∑
n=k

2ε(n−k)q/p

( ∑
Q∈Qd,k

∑
Q′′∈Qd,n

Q′′⊂Q

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p)q/p

≤
∞∑
n=0

2εnq/p
( n∑

k=0

2kq(s−ε/p)
)( ∑

Q′′∈Qd,n

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p)q/p

≈
∞∑
n=0

2nsq
( ∑

Q∈Qd,n

∑
Q′∼Q

μ(Q)|fQ,μ − fQ′,μ|p
)q/p

≤ ‖f‖q
Bs
p,q(R

d,μ)
.

If on the other hand p < q ≤ ∞, we may use Hölder’s inequality and the fact that
s− 2ε/p > 0, to obtain

Hq
1 �

∑
k≥0

2ksq
( ∞∑

n=k

2−ε(n−k)q/p22ε(n−k)
∑

Q∈Qd,k

∑
Q′′∈Qd,n

Q′′⊂Q

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p)q/p
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≤
∑
k≥0

2ksq
∞∑
n=k

22ε(n−k)q/p

( ∑
Q∈Qd,k

∑
Q′′∈Qd,n

Q′′⊂Q

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p)q/p

≤
∞∑
n=0

22εnq/p
( n∑

k=0

2kq(s−2ε/p)
)( ∑

Q′′∈Qd,n

μ(Q′′)
∑

Q′′′∼Q′′

∣∣fQ′′,μ − fQ′′′,μ

∣∣p)q/p

≈
∑
n≥0

2nsq
( ∑

Q∈Qd,n

∑
Q′∼Q

μ(Q)|fQ,μ − fQ′,μ|p
)q/p

≤ ‖f‖q
Bs
p,q(R

d,μ)
,

which is the desired estimate for H1. Finally, the terms O3
Q are essentially symmetric to

with the terms O1
Q, so H3 can be estimated using the same argument as H1. Combining

these estimates with (44) and applying them to (43), we arrive at

‖f‖Bs
p,q(R

d,μ) � ‖f‖Bs
p,q(R

d,μ). �

7.3. Proof of Lemma 6.2. Here we present the proof of the sampling lemma that
was used in the proof of Theorem 6.1.

Proof. Let Q and f be as in the statement. Let us first consider the case λ = 3/4.
Let Qi ⊂ Q, 1 ≤ i ≤ 2d, be the cubes with edge length 3

4
�(Q) that are situated at the

corners of Q. Then Q∗ :=
⋂

1≤i≤2d Qi is a cube with edge length 1
2
�(Q). By doubling,

we get

−
∫
Q

∣∣f − fQ,μ

∣∣dμ � −
∫
Q

∣∣f − fQ∗,μ

∣∣dμ ≈ max
1≤i≤2d

−
∫
Qi

∣∣f − fQ∗,μ

∣∣dμ
≤ max

1≤i≤2d

(
−
∫
Qi

∣∣f − fQi,μ

∣∣dμ+
∣∣fQi,μ − fQ∗,μ

∣∣),
and again using the doubling property of μ to estimate the latter term in the paren-
theses, we arrive at

−
∫
Q

∣∣f − fQ,μ

∣∣dμ ≤ c max
1≤i≤2d

−
∫
Qi

∣∣f − fQi,μ

∣∣dμ,
where the constant c depends only on d and the doubling constant of μ.

Now suppose that λ ∈ (0, 1) as in the statement of the Lemma. Write kλ for the
positive integer such that (3/4)kλ ≤ λ < (3/4)kλ−1. Iterating the argument above kλ
times yields a cube Qkλ ⊂ Q such that �(Qkλ) = (3/4)kλ�(Q) and

−
∫
Q

∣∣f − fQ,μ

∣∣dμ ≤ ckλ−
∫
Qkλ

∣∣f − fQkλ ,μ

∣∣dμ.
Now one can simply take a cube Q̃ ⊂ Q that contains Qkλ and has edge length λ�(Q).
By doubling, the integral on the right-hand side above can then be estimated by a
constant times

−
∫
Q̃

∣∣f − fQ̃,μ

∣∣dμ. �
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7.4. Extending functions from Rd to Rd+n. Here we present the generalizations of
Theorems 1.1 through 1.3 for Euclidean codimensions higher than 1. The dimensions
d ∈ N and d + n, n ∈ N, will be fixed in the sequel. For convenience we also write Rd

for Rd × {0}n ⊂ Rd+n when there is no risk of confusion.
The spaces W 1,p(Rd+n, μ), Bs

p,q(R
d+n, μ) and F s

p,q(R
d+n, μ) are as in the Defintions

2.1 through 2.3. In what follows, we consider the measures μα, α > −n, on Rd+n,
defined by

μα(E) =

∫
E

wαdmd+n,

where wα ∈ L1
loc(R

d+n) stands for the weight x �→ min(1, dist (x,Rd))α.
In order to define the Whitney extension of a function on Rd to Rd+n, we introduce

some additional notation. For Q ∈ Qd,k, k ∈ Z, define

AQ :=
{
P ∈ Qd+n,k : P ⊂ (

Q× [−2−k+1, 2−k+1]n
) \ (Q× (−2−k, 2−k)n

)}

It is then evident that #AQ = 4n − 2n ≈ 1, and that⋃
Q∈Qd

AQ

is a Whitney decomposition of the the space Rd+n \ Rd with respect to the boundary
Rd. We define the bump functions ψP : R

d+n → [0, 1] for all P ∈ ⋃
Q∈Q0

d
AQ so that

LipψP � 1/�(P ), infx∈P ψP (x) > 0 uniformly in P , suppψP is contained in an �(P )/4-
neighborhood of P and ∑

Q∈Q0
d

∑
P∈AQ

ψP ≡ 1 in
⋃

Q∈Q0
d

⋃
P∈AQ

P.

Definition 7.2. (i) Let f ∈ L1
loc(R

d). Then the Whitney extension Ef : Rd+n → C is
defined by

Ef(x) =
∑
Q∈Q0

d

∑
P∈AQ

(
−
∫
Q

fdmd

)
ψP (x).

This definition gives rise in the obvious way to the linear operator E : L1
loc(R

d) →
C∞(Rd+n).

(ii) Let X ⊂ L1
loc(R

d) be a quasinormed function space on Rd, and let Y be a
quasinormed function space on the weighted space (Rd+n, μ). We say that (X, Y ) is a
Whitney trace-extension pair if they satisfy the conditions in Definition 2.6 with Rd+n

in place of Rd+1
+ and with E as defined above.

We then have the following trace theorems.

Theorem 7.3. Let 1 ≤ p < ∞ and−n < α < p−n. Then
(B1−(α+n)/p

p,p (Rd),W 1,p(Rd+n, μα)
)

is a Whitney trace-extension pair.

Theorem 7.4. Let 0 < s < 1, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and −n < α < sp − n. Then(Bs−(α+n)/p
p,q (Rd),Bs

p,q(R
d+n, μα)

)
is a Whitney trace-extension pair.

Theorem 7.5. Let 0 < s < 1, 1 ≤ p < ∞, 0 < q ≤ ∞ and −n < α < sp− n. Then(Bs−(α+n)/p
p,p (Rd),F s

p,q(R
d+n, μα)

)
is a Whitney trace-extension pair.
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These results can be proven by suitable modifications of the arguments in the proofs
of Theorems 1.1 through 1.3. For the reader’s convenience, we sketch the modified
arguments below.

Proof of Theorem 7.3. (i) Let us estimate the weighted Sobolev norm of the Whitney

extension of a function f ∈ B1−(α+n)/p
p,p (Rd). First, if P ∈ AQ for some Q ∈ Q0

d, it is
easily seen that μα(P ) ≈ �(Q)αmd+n(P ) ≈ �(Q)d+n+α. Since the supports of the bump
functions ψP in the definition of E above have bounded overlap and #AQ ≈ 1 for all
Q ∈ Qd, we get∫
Rd+n

|Ef |pdμα �
∑
Q∈Q0

d

∑
P∈AQ

μα(P )−
∫
Q

|f |pdmd ≈
∑
Q∈Q0

d

�(Q)α+n

∫
Q

|f |pdmd �

∫
Rd

|f |pdmd.

Now to estimate the weighted Lp-norm of |∇(Ef)|, write X1 :=
⋃

Q∈Q0
d
∪P∈A (Q)P

and X2 := Rd+n \ X1. If x ∈ X1, i.e. x ∈ ∪P∈A (Q)P for some Q ∈ Q0
d, we have∑

Q′∈Q0
d

∑
P∈AQ′

ψP (x) = 1, and the inner sum can only be nonzero for Q′ ∼ Q. Thus,

|∇(Ef)(x)| ≤
∑
Q′∼Q

∑
P∈A ′

Q

|fQ − fQ′||Lip (ψP )(x)| �
∑
Q′∼Q

1

�(Q)
|fQ − fQ′|.

Since μα(∪P∈A (Q)) ≈ �(Q)n+αmd(Q), we arrive at∫
X1

|∇(Ef)|pdμα �
∑
Q∈Q0

d

�(Q)n+α−pmd(Q)
∑
Q′∼Q

|fQ − fQ′|p � ‖f‖p
B
1−(α+n)/p
p,p (Rd)

.

If on the other hand x ∈ X2, we can only have ψP (x) 	= 0 if P ∈ AQ for some Q ∈ Qd,0,
so estimating as in the part (i) of the proof of Theorem 1.1, we get∫

X2

|∇(Ef)(x)|dμα �
∑

Q∈Qd,0

∫
Q

|f |pdmd = ‖f‖p
Lp(Rd)

.

Combining these estimates yields the desired norm inequality for the function Ef .
(ii) Let us now show that the trace of a function f ∈ W 1,p(Rd+n, μα) exists and

estimate its Besov norm. To this end, write

W (Q) := Q× (
�(Q), 2�(Q)

]n ∈ AQ and N (Q) :=
5

4
W (Q)

for all Q ∈ Qd, and for k ∈ N0 write

Tkf :=
∑

Q∈Qd,k

(
−
∫

N (Q)

fdmd+n

)
χQ.

To establish the existence of the trace function, we thus want to estimate the Lp-norm
of the function

f ∗ :=
∑
k≥0

∣∣Tkf − Tk+1f
∣∣+ ∣∣T0f

∣∣.
Then, since μα(N (Q)) ≈ �(Q)αmd+n(N (Q)) ≈ �(Q)d+n+α for all Q ∈ Q0

d, an estimate
similar to the one in the part (ii) of the proof of Theorem 1.1 yields

∣∣Tkf(x)− Tk+1f(x)
∣∣ � 2−k

(
−
∫

N (Qx
k)

|∇f |pdμα

)1/p

+ 2−k
(
−
∫

N (Qx
k+1)

|∇f |pdμα

)1/p

,



34 KOSKELA, SOTO, AND WANG

and since p− (n + α) > 0, an estimate similar to the one in the part (ii) of the proof
of Theorem 1.1 again yields∫

Rd

|f ∗|pdmd �
∑
Q∈Q0

d

∫
N (Q)

|∇f |pdμα +
∑

P∈Qd,0

∫
N (P )

|f |pdμα � ‖f‖p
W 1,p(Rd+n,μα)

.

Hence the trace function Rf ∈ Lp(Rd) exists in a suitable sense and has the correct
bound for its Lp norm. In the sequel, we shall simply write f for Rf .

Now to estimate the B1−(α+n)/p
p,p -energy of f , recall thatmd(Q)/μα(N (Q)) ≈ �(Q)−(α+n).

Hence, replacing α + 1 by α+ n in (22), we get

∑
k≥0

2k(1−
α+n
p

)p
∑

Q∈Qd,k

md(Q)
∑
Q′∼Q

∣∣fQ − fQ′

∣∣p

�
∑
k≥0

2k(1−
α+n
p

)p

∫
Rd

∣∣f(x)− Tkf(x)
∣∣pdmd(x) +

∑
k≥0

∫
∪
2−k−1≤�(Q′)≤2−k+1N (Q′)

|∇f |pdμα

�‖f‖p
W 1,p(Rd+n,μα)

,

which is the desired estimate.

(iii) As in the proofs of Theorems 1.1 through 1.3, it remains to verify that the trace
operator Rf above coincides with the one in Definition 7.2. This again follows from
the discussion in Subsection 7.1. �

Proof of Theorem 7.4 (sketch). Again, we only consider the case q = p < ∞. In the
following proof, we shall use the notation

UQ :=
⋃

R∈AQ

R ⊂ R
d+n

for all Q ∈ Qd.

(i) We first establish the desired norm inequality for the extension of a function

f ∈ Bs−(α+n)/p
p,q (Rd). As in the proof of Theorem 7.3 above, we have

‖Ef‖Lp(Rd+n) � ‖f‖Lp(Rd).

To estimate the Bs−(α+n)/p
p,q (Rd)-energy of Ef , we divide the cubes in Qd+n into three

separate classes according to their distances to Rd. For Q ∈ Qd+n, define

dist∗(Q,Rd) := inf
{

max
1≤i≤d+n

|xi − yi| : x ∈ Q, y ∈ R
d × {0}n},

where xi and yi stand for the ith coordinates of x and y respectively. For k ≥ 0, write
Q1

k for the collection of dyadic cubes in Qd+n,k such that dist∗(Q,Rd) ≥ 2, Q2
k for the

collection of dyadic cubes such that 2−k ≤ dist∗(Q,Rd) < 2 and Q3
k for the collection

of dyadic cubes whose closures intersect Rd. Also write Q
2,∗
k for the collectino of cubes

in
⋃k+1

i=max(k−1,0) Q
2
i that are contained in

⋃
Q∈Q2

k
Q. With these definitions, it suffices

to estimate the quantity in (25) at each level k ≥ 0.
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We then have O
(1)
k � ‖f‖p

Lp(Rd)
for k ∈ {0, 1}, and for k ≥ 2 we may estimate O

(1)
k

essentially as in part (i) of the proof of Theorem 1.2. One gets

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � 2−kp
∑

P∈Qd,0

∑
P ′∈AP

suppψP ′∩(Q∪Q′)�=∅

∫
P

|f |pdmd

for all cubes Q ∈ Q1
k and Q′ ∼ Q. Now μα(Q) ≈ 2−k(d+n) and summing the previous

estimate over Q, each term P ′ will appear in the resulting triple sum at most a constant
times 2(d+n)k times, so∑

k≥0

2kspO
(1)
k �

∑
k≥0

2k(s−1)p‖f‖p
Lp(Rd)

≈ ‖f‖p
Lp(Rd)

.

Now to estimate the terms O
(2)
k , suppose that Q ∈ Q2

k and Q′ ∈ Q
2,∗
k for some k ≥ 0

and that Q′ ∼ Q. Denoting by P and P ′ the unique cubes in Q0
d such that Q ∈ UP

and Q′ ∈ UP ′, the argument used in (27) yields.

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � 2−kp

�(P )p

( ∑
R∈Q0

d

UR∩UP �=∅

∣∣fP − fR
∣∣p + ∑

R∈Q0
d

UR∩UP ′ �=∅

∣∣fP ′ − fR
∣∣p)

Now multiplying this estimate by μα(Q) ≈ 2−k(d+n)�(P )α and summing over admissible
Q and Q′, it can be seen that the terms P and P ′ will appear in the resulting sum at

most a constant times (2k�(P ))d+n times. Thus, the estimates for the terms O
(2)
k in the

proof of Theorem 1.2 apply here as well, with α+ 1 replaced by α + n.
Finally, let Q ∈ Q3

k and Q′ ∼ Q. Write P := PQ for the projection of Q on Rd, and
let P ′ be a neighbor of P (to be specified later). We have

μα(Q)
∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p
�

∫
Q

|Ef − fP |pdμα +

∫
Q′

|Ef − fP ′|pdμα + μα(Q)
∣∣fP − fP ′

∣∣p. (45)

The first integral can be written as

∑
n≥k

∑
R∈Qd,n

R⊂P

∑
Q∗∈AR
Q∗⊂Q

∫
Q∗

∣∣Ef − fP
∣∣pdμα,

and this sum can be estimated like the corresponding sum in the proof of Theorem 1.2,
again with 1 + α replaced by n + α, so∫

Q

|Ef − fP |pdμα �
∑

R′∈Qd
R′⊂P

�(R′)n+αmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p.

The second term in (45) can (with an appropriate choice of P ′) be estimated either
like the first term, or by

�(P ′)n+αmd(P
′)

∑
P ′′∼P ′

|fP ′ − fP ′′|p.
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Putting together these estimates and recalling (for the third term in (45)) that μα(Q) ≈
�(P )n+αmd(P ), we get

μα(Q)
∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣p � ∑
R′∈Qd
R′⊂P ∗

Q

�(R′)nαmd(R
′)

∑
R′′∼R′

∣∣fR′ − fR′′

∣∣p,

where P ∗
Q := P ∪⋃

P ′∼P P ′. Part (i) of the proof can then be finished as in the proof
of Theorem 1.2.

(ii) Now for f ∈ Bs
p,p(R

d+n
+ , μα) and k ∈ N0, write

Tk :=
∑

Q∈Qd,k

(
−
∫
N(Q)

fdμα

)
χQ,

where N(Q) := Q× (0, �(Q)]n, and

f ∗ :=
∑
k≥0

∣∣Tk+1f − Tkf
∣∣+ ∣∣T0f

∣∣.
Repeating the corresponding argument in the proof of Theorem 1.2 (with ε = sp−α−n
instead of ε = sp− α− 1), we get

‖f ∗‖p
Lp(Rd)

�
∑
k≥0

2ksp
∑

Q∈Qd,k

μα

(
N(Q)

) ∑
Q′∈Qd+n

Q′∼N(Q)

∣∣fN(Q),μα − fQ′,μα

∣∣p + ‖f‖p
Lp(Rd+n,μα)

(46)

� ‖f‖p
R
d+n
+ ,μα

,

so the trace Rf := limk→∞ Tkf exists in Lp(Rd) and pointwise md-almost every-
where, with the correct bound for its Lp-norm. For the energy estimate, recall that
md(Q)/μα(N(Q)) ≈ �(Q)−(α+n), and proceed as in the proof of Theorem 1.2 (with
1 + α replaced by n+ α).

(iii) To see that the trace operator R constructed above can be written in the form
required by Definition 7.2, we again refer to Subsection 7.1. �

For the proof of Theorem 7.5, let us introduce the sets

NP :=
{
Q ∈ Qd+n,k : Q ∩ P 	= ∅}

for all P ∈ Qd,k, k ∈ N0, and the quantities

〈f〉ps,p,q := 〈f〉ps,p,q,α :=

∫
Rd+n

(∑
k≥0

2ksq
∑

P∈Qd,k

∑
Q∈NP

∑
Q′∼Q

∣∣fQ,μα−fQ′,μα

∣∣qχQ(x)
)p/q

dμα(x)

for all f ∈ L1
loc(R

d+n, μα). We then have 〈f〉s,p,q,α ≤ ‖f‖Fs
p,q(R

d+n),μα
and

〈f〉ps,p,p,α =
∞∑
k=0

∑
P∈Qd,k

∑
Q∈NP

μα(Q)
∑
Q′∼Q

∣∣fQ,μα − fQ′,μα

∣∣p

for all admissible values of the parameters. We also have

〈f〉s,p,q,α ≈ 〈f〉s,p,q′,α (47)
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for all admissible values of the parameters, with the implied constants independent of
f , which can be proven like Lemma 5.1.

Proof of Theorem 7.5 (sketch). (i) In order to estimate the Triebel-Lizorkin norm of

the extension of a function f ∈ Bs−(α+n)/p
p,p (Rd), recall first that

‖Ef‖Lp(Rd+n
+ ,μα)

� ‖f‖Lp(Rd).

For the energy estimate, it suffices to consider the quantity∫
Rd

( ∞∑
k=k0

2ksq
∑

Q∈Qd+n,k

∑
Q′∼Q

∣∣(Ef)Q,μα − (Ef)Q′,μα

∣∣qχQ(x)
)p/q

dμα(x) (48)

with a suitably chosen k0 ∈ N (independent of f). To this end, recall that the distance
dist∗(Q,Rd) for Q ∈ Qd,n was defined in the proof of Theorem 7.4 above. Now for k ≥
k0, write Q1

k for the collection of cubes Q in Qd+n,k such that dist∗(Q,Rd) > 2−2−k+2,
Q2

k for the collection of cubes Q in Qd+n,k with 2−k+1 < dist∗(Q,Rd) ≤ 2−k+2, Q3
k for

the collection of cubes Q in Qd+n,k with 2−k ≤ dist∗(Q,Rd) ≤ 2−k+1 and Q4
k for the

collection of dyadic Q in Qd+n,k such that Q ∩ Rd 	= ∅. Then (48) can be estimated
from above by O1 +O2 +O3 +O4, where each Oj is defined as the quantity (48) with

Q
j
k in place of Qd+n,k in the middle sum. As in the proof of 1.3, it turns out that by

(47), the quantities O4 and O3 are essentially independent of the parameter q, so the
desired norm estimate for them follows from Theorem 7.4. The quantities O1 and O2

can be estimated by a suitable modification of the argument in the proof of Theorem
1.3, the details being omitted.

(ii) To obtain the existence and norm inequality for the trace function of f ∈
F s

p,q(R
d+n, μα), one defines R := limk→∞ Tkf , where Tkf is as in the proof of The-

orem 7.4, and the limit exists in Lp(Rd) with the correct norm bound. From the proof
of Theorem 7.4 and (47), one further deduces that

‖Rf‖
B
s−(α+n)/p
p,p (Rd)

� ‖f‖Lp(Rd+n,μα)+〈f〉s,p,p ≈ ‖f‖Lp(Rd+n,μα)+〈f〉s,p,q � ‖f‖Fs
p,q(R

d+n,μα).

(iii) To see that the trace operator R constructed above can be written in the form
required by Definition 7.2, we again refer to Subsection 7.1. �

References

[1] N. Aronszajn: Boundary value of functions with finite Dirichlet integral, Techn. Report 14,
University of Kansas, 1955.
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Basel, 2001.

[51] A. I. Tyulenev: Description of traces of functions in the Sobolev space with a Muckenhoupt

weight, Proc. Steklov Inst. Math. 284 (2014), no. 1, 280–295.
[52] A. I. Tyulenev: Boundary values of functions in a Sobolev space with weight of Mucken-

houpt class on some non-Lipschitz domains, Mat. Sb. 205 (2014), no. 8, 67–94; translation in
Sb. Math. 205 (2014), no. 7–8, 1133–1159.

[53] A. I. Tyulenev: Traces of weighted Sobolev spaces with Muckenhoupt weight. The case p = 1,
Nonlinear Anal. 128 (2015), 248–272.

[54] A. I. Tyulenev: Some new function spaces of variable smoothness, Mat. Sb. 206 (2015), no. 6,
85–128; translation in Sb. Math. 206 (2015), no. 5-6, 849–891.

[55] A. I. Tyulenev and S. K. Vodop’yanov: On a Whitney-type problem for weighted Sobolev

spaces on d-thick closed sets, arXiv:1606.06749.
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Abstract
In this paper, we study function spaces defined via dyadic energies on the boundaries of
regular trees. We show that correct choices of dyadic energies result in Besov-type spaces
that are trace spaces of (weighted) first order Sobolev spaces.

Keywords Besov-type space · Regular tree · Trace space · Dyadic norm

Mathematics Subject Classification (2010) 46E35 · 30L99

1 Introduction

Over the past two decades, analysis on general metric measure spaces has attracted a lot of
attention, e.g., [2, 4, 12, 13, 15–17]. Especially, the case of a regular tree and its Cantor-type
boundary has been studied in [3]. Furthermore, Sobolev spaces, Besov spaces and Triebel-
Lizorkin spaces on metric measure spaces have been studied in [5, 25, 26] via hyperbolic
fillings. A related approach was used in [23], where the trace results of Sobolev spaces and
of related fractional smoothness function spaces were recovered by using a dyadic norm
and the Whitney extension operator.

Dyadic energy has also been used to study the regularity and modulus of continuity of
space-filling curves. One of the motivations for this paper is the approach in [20]. Given a
continuous g : S1 → R

n, consider the dyadic energy

E(g; p, λ) :=
+∞∑

i=1

iλ
2i∑

j=1

|gIi,j
− gÎi,j

|p . (1.1)

� Zhuang Wang
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Here, {Ii,j : i ∈ N, j = 1, · · · , 2i} is a dyadic decomposition of S1 such that for every
fixed i ∈ N, {Ii,j : j = 1, · · · , 2i} is a family of arcs of length 2π/2i with

⋃
j Ii,j = S1.

The next generation is constructed in such a way that for each j ∈ {1, · · · , 2i+1}, there
exists a unique number k ∈ {1, · · · , 2i}, satisfying Ii+1,j ⊂ Ii,k . We denote this parent of
Ii+1,j by Îi+1,j and set Î1,j = S1 for j = 1, 2. By gA, A ⊂ S1, we denote the mean value
gA = −

∫
A

g dH1 = 1
H1(A)

∫
A

g dH1. One could expect to be able to use the energy Eq. 1.1
to characterize the trace spaces of some Sobolev spaces (with suitable weights) on the unit
disk. On the contrary, the results in [23] suggest that the trace spaces of Sobolev spaces
(with suitable weights) on the unit disk should be characterized by the energy

E(g;p, λ) :=
+∞∑

i=1

iλ
2i∑

j=1

|gIi,j
− gIi,j−1 |p, (1.2)

where Ii,0 = Ii,2i , and the example g(x) = χI1,1 shows that E(g; p, λ) is not comparable to
E(g; p, λ).

Notice that the energies (1.1) and (1.2) can be viewed as dyadic energies on the boundary
of a binary tree (2-regular tree). More precisely, for a 2-regular tree X in Section 2.1 with
ε = log 2 in the metric (2.1), the measure ν on the boundary ∂X is the Hausdorff 1-measure
by Proposition 2.10. Furthermore, there is a one-to-one map h from the dyadic decomposi-
tion of S1 to the dyadic decomposition of ∂X defined in Section 2.4, which preserves the
parent relation, i.e., h(Î ) = ĥ(I ) for all dyadic intervals I of S1. Since every point in S1 is
the limit of a sequence of dyadic intervals, we can define a map h̃ from S1 to ∂X by map-
ping any point x = ⋂

k∈N Ik in S1 to the limit of {h(Ik)}k∈N (if the limit is not unique for
different choices of sequence {Ik} for x, then just pick one of them). It follows from the
definition of ∂X that the map h̃ is an injective map. Since the measure ν is the Hausdorff 1-
measure and ∂X \ h̃(S1) is a set of countably many points, it follows from the definition of
Hausdorff measure that ν(∂X \ h̃(S1)) = 0. Since diam(I ) ≈ diam(h(I )) for any dyadic
interval I of S1 and we can use dyadic intervals to cover a given set in the definition of a
Hausdorff measure, there is a constant C ≥ 1 such that

1

C
H1(A) ≤ ν(h̃(A)) ≤ CH1(A)

for any measurable set A ⊂ S1. Then one could expect to be able to use an energy similar
to Eq. 1.2, the Ḃ

1/p,λ
p -energy given by

‖g‖p

Ḃ
1/p,λ
p

:=
∞∑

i=1

iλ
2i∑

j=1

∣∣gh(Ij,i ) − gh(Ij,i−1)

∣∣p , (1.3)

to characterize the trace spaces of suitable Sobolev spaces of the 2-regular tree. This turns
out to hold in the sense that any function in Lp(∂X) with finite Ḃ

1/p,λ
p -energy can be

extended to a function in a certain Sobolev class.
However, there exists a Sobolev function whose trace function has infinite Ḃ1/p,λ

p -energy.
More precisely, let 0 be the root of the tree X and let x1, x2 be the two children of 0. We
define a function u on X by setting u(x) = 0 if the geodesic from 0 to x passes through
x1, u(x) = 1 if the geodesic from 0 to x passes through x2 and define u to be linear on
the geodesic [x1, x2] = [0, x1] ∪ [0, x2]. Then u is a Sobolev function on X with the trace
function g = χh(I1,1) whose Ḃ

1/p,λ
p -energy is not finite for any λ ≥ −1, since the energy

(1.2) of the function χI1,1 is not finite for any λ ≥ −1. But the energy (1.1) of the function
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χI1,1 is finite. Hence, rather than studying the energy (1.3), we shall work with an energy

similar to Eq. 1.1. We define the dyadic Ḃ1/p,λ
p energy by setting

‖g‖p

Ḃ1/p,λ
p

:=
∞∑

i=1

iλ
2i∑

j=1

∣∣∣gh(Ii,j ) − gh(Îi,j )

∣∣∣
p =

∞∑

i=1

iλ
∑

I∈Qi

∣∣gI − gÎ

∣∣p ,

where Q = ∪j∈NQj is a dyadic decomposition on the boundary of the 2-regular tree in
Section 2.4.

Instead of only considering the above dyadic energy on the boundary of a 2-regular tree,
we introduce a general dyadic energy Ḃθ,λ

p in Definition 2.12, defined on the boundary
of any regular tree and for any 0 ≤ θ < 1. It is natural to ask whether the Besov-type
space Bθ,λ

p (∂X) in Definition 2.12 defined via the Ḃθ,λ
p -energy is a trace space of a suitable

Sobolev space defined on the regular tree. We refer to [1, 9, 10, 14, 18, 19, 23, 24, 27–30]
for trace results on Euclidean spaces and to [3, 21, 25] for trace results on metric measure
spaces.

In [3], the trace spaces of the Newtonian spaces N1,p(X) on regular trees were shown to
be Besov spaces defined via double integrals. Our first result is the following generalization
of this theorem.

Theorem 1.1 LetX be aK-ary tree withK ≥ 2. Fix β > log K , ε > 0 and λ ∈ R. Suppose
that p ≥ 1 and p > (β − log K)/ε. Then the Besov-type space Bθ,λ

p (∂X) is the trace space
of N1,p(X,μλ) whenever θ = 1 − (β − log K)/εp.

The measure μλ above is defined in Eq. 2.2 by

dμλ(x) = e−β|x|(|x| + C)λ d|x|,

and the space N1,p(X,μλ) is a Newtonian space defined in Section 2.3. If λ = 0, then
N1,p(X,μλ) = N1,p(X) and Theorem 1.1 recovers the trace results from [3] for the New-
tonian spaces N1,p(X). Here and throughout this paper, for given Banach spaces X(∂X)

and Y(X), we say that the space X(∂X) is a trace space of Y(X) if and only if there is a
bounded linear operator T : Y(X) → X(∂X) and there exists a bounded linear extension
operator E : X(∂X) → Y(X) that acts as a right inverse of T , i.e., T ◦ E = Id on the space
X(∂X).

We required in Theorem 1.1 that p > (β − log K)/ε > 0. The assumption that β −
log K > 0 is necessary in the sense that we need to make sure that the measure μλ on X is
doubling; see Section 2.2. The requirement that p > (β − log K)/ε will ensure that θ > 0.
So it is natural to consider the case p = (β − log K)/ε ≥ 1.

Theorem 1.2 Let X be a K-ary tree with K ≥ 2. Fix β > log K , ε > 0 and λ ∈ R.
Suppose that p = (β − log K)/ε ≥ 1 and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then
there is a bounded linear trace operator T : N1,p(X,μλ) → Lp(∂X), defined via limits
along geodesic rays. Here, λ > p − 1 is sharp in the sense that for any p > 1, δ > 0 and
λ = p − 1 − δ, there exists a function u ∈ N1,p(X,μλ) so that T u(ξ) = ∞ for every
ξ ∈ ∂X.

Moreover, for any p = (β − log K)/ε ≥ 1, there exists a bounded nonlinear extension
operator E : Lp(∂X) → N1,p(X) so that the trace operator T̂ defined via limits of E(f )

along geodesic rays for f ∈ Lp(∂X) satisfies T̂ ◦ E = Id on Lp(∂X).
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A result similar to Theorem 1.2 for the weighted Newtonian space N1,p(�, ω dμ) with
a suitable weight ω has been established in [21] provided that � is a bounded domain
that admits a p-Poincaré inequality and whose boundary ∂� is endowed with a p-co-
dimensional Ahlfors regular measure. In Theorem 1.2, for the case p = (β − log K)/ε > 1,
we require that λ > p − 1 to ensure the existence of limits along geodesic rays. In the case
p = (β − log K)/ε = 1, these limits exist even for λ = 0, and there is a nonlinear exten-
sion operator that acts as a right inverse of the trace operator, similarly to the case of W 1,1

in Euclidean setting; see [10, 24].
However, except for the case p = 1 and λ = 0, Theorem 1.2 does not even tell whether

the trace operator T is surjective or not: N1,p(X,μλ) is a strict subset of N1,p(X) when
λ > 0. In the case p = (β−log K)/ε = 1 and λ > 0, the trace operator T is actually not sur-
jective, and we can find a Besov-type space Bα

1 (∂X) (see Definition 2.14) which is the trace

space of the Newtonian space N1,1(X,μλ). We stress that Bα
1 (∂X) and B0,λ

1 (∂X) are dif-

ferent spaces. More precisely, B0,λ
1 (∂X) is a strict subspace of Bα

1 (∂X), see Proposition 3.8
and Example 3.9.

Theorem 1.3 Let X be a K-ary tree with K ≥ 2. Fix β > log K , ε > 0 and λ > 0. Suppose
that p = 1 = (β − log K)/ε. Then the trace space of N1,1(X,μλ) is the Besov-type space
Bα

1 (∂X).

Trace results similar to Theorem 1.3 in the Euclidean setting can be found in [11, 30]. The
second part of Theorem 1.2 asserts the existence of a bounded nonlinear extension operator
from Lp(∂X) to N1,p(X) whenever p = (β − log K)/ε ≥ 1. Nonlinearity is natural here
since results due to Peetre [24] (also see [8]) indicate that, for p = 1 and λ = 0, one can
not find a bounded linear extension operator that acts as a right inverse of the trace operator
in Theorem 1.2. On the other hand, the recent work [22] gives the existence of a bounded
linear extension operator E from a certain Besov-type space to BV or to N1,1 such that
T ◦E is the identity operator on this Besov-type space, under the assumption that the domain
satisfies the co-dimension 1 Ahlfors-regularity. The extension operator in [22] is a version
of the Whitney extension operator. This motivates us to further analyze the operator E from
Theorem 1.1: it is also of Whitney type. The co-dimension 1 Ahlfors-regularity does not
hold for our regular tree (X,μλ), but we are still able to establish the following result for
N1,p(X,μλ) with p ≥ 1 for our fixed extension operator E.

Theorem 1.4 LetX be aK-ary tree withK ≥ 2. Fix β > log K , ε > 0 and λ ∈ R. Suppose
that p = (β − log K)/ε ≥ 1 and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then the operator
E from Theorem 1.1 is a bounded linear extension operator from B0,λ

p (∂X) to N1,p(X,μλ)

and acts as a right inverse of T , i.e., T ◦ E is the identity operator on B0,λ
p (∂X), where T is

the trace operator in Theorem 1.2.
Moreover, the space B0,λ

p (∂X) is the optimal space for which E is both bounded and
linear, i.e., if X ⊂ L1

loc(∂X) is a Banach space so that the extension operator E : X →
N1,p(X,μλ) is bounded and linear and so that T ◦ E is the identity operator on X, then X

is a subspace of B0,λ
p (∂X).

The optimality of the space B0,λ
p (∂X) is for the explicit extension operator E in Theo-

rem 1.4. The spaceB0,λ
p (∂X) may not be the optimal space unless we consider this particular

extension operator. For example, for p = 1 and λ > 0, the optimal space is Bα
1 (∂X) rather
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than B0,λ
1 by Theorem 1.3. This splitting happens since the two extension operators from

Theorems 1.3 and 1.4 are very different: the latter one is of Whitney type in the sense that
the extension to an edge is based on the average of the boundary function over the dyadic
“shadow” of size comparable to that of the edge, while the former one uses the average over
a dyadic boundary element for the definition of the extension to several edges of different
sizes.

The paper is organized as follows. In Section 2, we give all the preliminaries for the
proofs. More precisely, we introduce regular trees in Section 2.1 and we consider the dou-
bling condition on a regular tree X and the Hausdorff dimension of its boundary ∂X. We
introduce the Newtonian spaces on X and the Besov-type spaces on ∂X in Sections 2.3
and 2.4, respectively. In Section 3, we give the proofs of all the above mentioned theorems,
one by one.

In what follows, the letter C denotes a constant that may change at different occurrences.
The notation A ≈ B means that there is a constant C such that 1/C · A ≤ B ≤ C · A. The
notation A � B (A � B) means that there is a constant C such that A ≤ C ·B (A ≥ C ·B).

2 Preliminaries

2.1 Regular Trees and Their Boundaries

A graph G is a pair (V ,E), where V is a set of vertices and E is a set of edges. We call
a pair of vertices x, y ∈ V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree is a connected graph without cycles. A graph (or tree) is made into a metric
graph by considering each edge as a geodesic of length one.

We call a tree X a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x ∈ X are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

A K-ary tree is a rooted tree such that each vertex has exactly K children. Then all
vertices except the root of a K-ary tree have degree K + 1, and the root has degree K . In
this paper we say that a tree is regular if it is a K-ary tree for some K ≥ 1.

For x ∈ X, let |x| be the distance from the root 0 to x, that is, the length of the geodesic
from 0 to x, where the length of every edge is 1 and we consider each edge to be an isometric
copy of the unit interval. The geodesic connecting two vertices x, y ∈ V is denoted by
[x, y], and its length is denoted |x − y|. If |x| < |y| and x lies on the geodesic connecting 0
to y, we write x < y and call the vertex y a descendant of the vertex x. More generally, we
write x ≤ y if the geodesic from 0 to y passes through x, and in this case |x−y| = |y|−|x|.

Let ε > 0 be fixed. We introduce a uniformizing metric (in the sense of Bonk-Heinonen-
Koskela [6], see also [3]) on X by setting

dX(x, y) =
∫

[x,y]
e−ε|z| d |z|. (2.1)

Here d |z| is the measure which gives each edge Lebesgue measure 1, as we consider each
edge to be an isometric copy of the unit interval and the vertices are the end points of this
interval. In this metric, diamX = 2/ε if X is a K-ary tree with K ≥ 2.

Next we construct the boundary of the regular K-ary tree by following the arguments
in [3, Section 5]. We define the boundary of a tree X, denoted ∂X, by completing X with
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respect to the metric dX . An equivalent construction of ∂X is as follows. An element ξ in
∂X is identified with an infinite geodesic in X starting at the root 0. Then we may denote
ξ = 0x1x2 · · · , where xi is a vertex in X with |xi | = i, and xi+1 is a child of xi . Given
two points ξ, ζ ∈ ∂X, there is an infinite geodesic [ξ, ζ ] connecting ξ and ζ . Then the
distance of ξ and ζ is the length (with respect to the metric dX) of the infinite geodesic
[ξ, ζ ]. More precisely, if ξ = 0x1x2 · · · and ζ = 0y1y2 · · · , let k be an integer with xk = yk

and xk+1 �= yk+1. Then by Eq. 2.1

dX(ξ, ζ ) = 2
∫ +∞

k

e−εt dt = 2

ε
e−εk .

The restriction of dX to ∂X is called the visual metric on ∂X in Bridson-Haefliger [7].
The metric dX is thus defined on X̄. To avoid confusion, points in X are denoted by Latin

letters such as x, y and z, while for points in ∂X we use Greek letters such as ξ, ζ and ω.
Moreover, balls in X will be denoted B(x, r), while B(ξ, r) stands for a ball in ∂X.

Throughout the paper we assume that 1 ≤ p < +∞ and that X is a K-ary tree with
K ≥ 2 and metric dX defined as in Eq. 2.1.

2.2 Doubling Condition on X and Hausdorff Dimension of ∂X

The first aim of this section is to show that the weighted measure

dμλ(x) = e−β|x|(|x| + C)λ d|x| (2.2)

is doubling on X, where β > log K , λ ∈ R and C ≥ max{2|λ|/(β − log K), 2(log 4)/ε} are
fixed from now on. Here the lower bound of the constant C will make the estimates below
simpler. If λ = 0, then

dμ0(x) = e−β|x| d|x| = dμ(x),

which coincides with the measure used in [3]. If β ≤ log K , then μλ(X) = ∞ for the
regular K-ary tree X by Eq. 2.4 below. Hence X would not be doubling as X is bounded.

Next we estimate the measures of balls in X and show that our measure is doubling. Let

B(x, r) = {y ∈ X : dX(x, y) < r}
denote an open ball in X with respect to the metric dX . Also let

F(x, r) = {y ∈ X : y ≥ x and dX(x, y) < r}
denote the downward directed “half ball”.

The following algebraic lemma and the relation between a ball and a “half ball” come
from [3, Lemma 3.1 and 3.2].

Lemma 2.1 Let σ > 0 and t ∈ [0, 1]. Then
min{1, σ }t ≤ 1 − (1 − t)σ ≤ max{1, σ }t .

Lemma 2.2 For every x ∈ X and r > 0 we have

F(x, r) ⊂ B(x, r) ⊂ F(z, 2r),

where z ≤ x and

|z| = max

{
|x| − 1

ε
log(1 + εreε|x|), 0

}
. (2.3)

In the above lemma, z is the largest (in the ≤ relationship) common ancestor of B(x, r),
i.e., we have z ≤ y for any y ∈ B(x, r).
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We begin to estimate the measure of the ball B(x, r) and of the half ball F(z, r).

Lemma 2.3 If 0 < r ≤ e−ε|z|/ε, then
μλ(F (z, r)) ≈ e(ε−β)|z|r(|z| + C)λ.

Proof Let ρ > 0 be such that
∫ |z|+ρ

|z|
e−εt dt = 1

ε
e−ε|z|(1 − e−ερ) = r .

Note that for each |z| ≤ t ≤ |z| + ρ, the number of points y ∈ F(z, r) with |y| = t is
approximately Kt−|z|. Hence

μλ(F (z, r)) ≈
∫ |z|+ρ

|z|
Kt−|z|e−βt (t+C)λ dt = K−|z|

∫ |z|+ρ

|z|
e(log K−β)t (t+C)λ dt . (2.4)

Since
(

1

log K − β
e(log K−β)t (t + C)λ

)′
= e(log K−β)t (t + C)λ

(
1 + λ

(t + C)(log K − β)

)
,

then for C ≥ 2|λ|/(β − log K), we have
∣∣∣∣

λ

(t + C)(log K − β)

∣∣∣∣ ≤ 1

2
∀ t > 0.

Hence we obtain that

μλ(F (z, r)) ≈ K−|z|

β − log K
e(log K−β)|z|(|z| + C)λ

(
1 − e(log K−β)ρ

( |z| + ρ + C

|z| + C

)λ
)

. (2.5)

It is easy to check that for any ρ > 0 and z ∈ X, we have that

1 ≤ |z| + ρ + C

|z| + C
≤ ρ + C

C
≤ eρ/C .

Therefore,

e− |λ|
C

ρ ≤
( |z| + ρ + C

|z| + C

)λ

≤ e
|λ|
C

ρ ∀ z ∈ X, ρ > 0.

Since C ≥ 2|λ|/(β − log K), we obtain that

e
1
2 (log K−β)ρ ≤

( |z| + ρ + C

|z| + C

)λ

≤ e− 1
2 (log K−β)ρ ∀ z ∈ X, ρ > 0. (2.6)

Then for any z ∈ X and ρ > 0,

e(log K−β)ρ

( |z| + ρ + C

|z| + C

)λ

≈ ec(log K−β)ρ, for some
1

2
≤ c ≤ 3

2
.

Hence we obtain that

μλ(F (z, r)) ≈ K−|z|
β−log K

e(log K−β)|z|(|z| + C)λ
(
1 − ec(log K−β)ρ

)

= e−β|z|
β−log K

(|z| + C)λ
(
1 − (1 − εreε|z|)c(β−log K)/ε

)

for some c ∈ [1/2, 3/2]. Lemma 2.1 with t = εreε|z| implies that

μλ(F (z, r)) ≈ e−β|z|(|z| + C)λεreε|z| ≈ e(ε−β)|z|r(|z| + C)λ.
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Corollary 2.4 If 0 < r ≤ e−ε|x|/ε, then
μλ(B(x, r)) ≈ e(ε−β)|x|r(|x| + C)λ ≈ e(ε−β)|x|r(|z| + C)λ.

Proof For any x ∈ X and 0 < r ≤ e−ε|x|/ε, let z be as in Lemma 2.2. If z = 0, then
B(x, r) ⊂ F(0, r + ρ), where

ρ = dX(0, x) = 1

ε
(1 − e−ε|x|) ≤ r

and r + ρ ≤ 1/ε = e−ε|z|/ε. For z > 0 we have

2r ≤ e−ε|x|(1 + εreε|x|)
ε

= e−ε|z|

ε
.

Moreover, in both cases, since r < e−ε|x|/ε, by Lemma 2.2, we have

|z| ≤ |x| ≤ |z| + 1

ε
log(1 + εreε|x|) ≤ |z| + 1

ε
log 2,

which implies ( |x| + C

|z| + C

)λ

≈ 1. (2.7)

Combing Eq. 2.7 with the fact that in both cases 1 ≤ e|x|−|z| ≤ (1 + εreε|x|)1/ε ≈ 1,
the result follows by applying Lemma 2.3 to F(x, r) and F(z, 2r) (or F(0, r + ρ) for
z = 0).

Lemma 2.5 Let z ∈ X and x ∈ X with z ≤ x. Then

μλ([z, x]) ≈ μλ(F (z, dX(z, x))).

where [z, x] denotes the geodesic in the tree X joining x and z.

Proof Since [z, x] is a subset of F(z, dX(z, x)) by definition, we have μλ([z, x]) ≤
μλ(F (z, dX(z, x))). Hence it remains to show that

μλ([z, x]) � μλ(F (z, dX(z, x))).

For any z ∈ X and x ∈ X with z ≤ x, we have that

μλ([z, x]) =
∫ |x|

|z|
e−βt (t + C)λ dt,

where |x| = ∞ if x ∈ ∂X. Then by using an argument similar to the estimate in Lemma 2.3,
since C ≥ 2|λ|/(β − log K) ≥ 2|λ|/β, we have that

∣∣∣∣
λ

(t + C)β

∣∣∣∣ ≤ 1

2
∀ t ≥ 0,

which implies that for any t ≥ 0,
(

− 1

β
e−βt (t + C)λ

)′
= e−βt (t + C)λ

(
1 − λ

β(t + C)

)
≈ e−βt (t + C)λ.

Hence we obtain that
∫ |x|

|z|
e−βt (t + C)λ dt ≈ e−β|z|

β
(|z| + C)λ

(
1 − e−β(|x|−|z|)

( |x| + C

|z| + C

)λ
)

. (2.8)
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Comparing the estimate (2.8) with the estimate (2.5), since ρ = |x| − |z|, eρ log K ≥ 1 and
K−|z|e(log K−β)|z| = e−β|z|, we have that

∫ |x|

|z|
e−βt (t + C)λ dt � μλ(F (z, r)) with r = dX(z, x),

which induces that

μλ([z, x]) � μλ(F (z, r)) = μλ(F (z, dX(z, x))).

Corollary 2.6 Let x ∈ X and z be as in Lemma 2.2. Then if

e−ε|x|

ε
≤ r ≤ 1

ε
(1 − e−ε|x|), (2.9)

we obtain
μλ(B(x, r)) ≈ e−β|z|(|z| + C)λ ≈ rβ/ε(|z| + C)λ.

Proof Since r ≥ e−ε|x|/ε, by Lemma 2.2, we have

B(x, r) ⊂ F(z, ∞) = F

(
z,

e−ε|z|

ε

)
.

Then Lemma 2.3 implies

μλ(B(x, r)) ≤ μλ(F (z,∞)) � e(ε−β)|z|e−ε|z|(|z| + C)λ ≈ e−β|z|(|z| + C)λ (2.10)

Towards the another direction, by Eq. 2.3 and Lemma 2.5, we have that

μλ(B(x, r)) ≥ μλ([x, z]) � μ(F(z, r)) = e(ε−β)|z|r(|z| + C)λ = e−β|z|(|z| + C)λeε|z|r .

Moreover, we have

eε|z|r = eε|x|r · e−ε(|x|−|z|) = eε|x|r(1 + εreε|x|)−1 = t

ε(1 + t)
≥ 1

2ε
,

where t = εreε|x|. Here in the last inequality we used the fact that εreε|x| ≥ 1. Hence we
obtain that

μλ(B(x, r)) � e−β|z|(|z| + C)λ.
Combing the above inequality with Eq. 2.10, we finish the proof of

μλ(B(x, r)) ≈ e−β|z|(|z| + C)λ.

Since εreε|x| ≥ 1, we know that

εreε|x| ≤ 1 + εreε|x| ≤ 2εreε|x|.
It then follows from Eq. 2.3 that

e−β|z| = e−β|x|(1 + εreε|x|)β/ε ≈ rβ/ε .

Hence we obtain that
e−β|z|(|z| + C)λ ≈ rβ/ε(|z| + C)λ,

which finishes the proof.

Lemma 2.7 Let x ∈ X and (1 − e−ε|x|)/ε ≤ r ≤ 2 diamX. Then

μλ(B(x, r)) ≈ r .

In particular, if x = 0, then this estimate holds for all r ≥ 0.
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Proof We have 0 ∈ B(x, r) by assumption, and hence

B(x, r) ⊂ F(0, 2r).

From Lemma 2.3, we have that

μλ(B(x, r)) ≤ μλ(F (0, 2r)) � r .

As for the lower bound, if r < 1/ε, since 0 ∈ B(x, r), letting

ρ = − log(1 − εr)

ε

and x ≤ x′ with |x′| = ρ, then the estimate (2.5) and Lemma 2.3 imply

μλ(B(x, r)) ≥ μλ([0, x′]) � μλ(F (0, r)) ≈ r .

If 1/ε ≤ r ≤ 2 diamX = 4/ε, then by Lemma 2.5, we have that

μλ(B(x, r)) ≥ μλ(F (0, 1/ε)) ≈ 1

ε
≈ r .

Proposition 2.8 Let x ∈ X, 0 < r ≤ 2 diamX, R0 = e−ε|x|/ε and z be as in Lemma 2.2. If
|x| ≤ (log 2)/ε, then

μλ(B(x, r)) ≈ r .

If |x| ≥ (log 2)/ε, then

μλ(B(x, r)) ≈
{

e(ε−β)|x|(|x| + C)λ, r ≤ R0;
rβ/ε(|z| + C)λ, r ≥ R0.

Proof If |x| ≤ (log 2)/ε, then e(ε−β)|x| ≈ 1, (|x| + C)λ ≈ 1 and the result follows from
directly from Corollary 2.4 and Lemma 2.7.

If |x| ≥ (log 2)/ε and r ≤ (1 − e−ε|x|)/ε, then the estimate follows directly from Corol-
laries 2.4 and 2.6. For r ≥ (1 − e−ε|x|)/ε ≥ 1/2ε, since |z| = 0, we have by Lemma 2.7
that

μλ(B(x, r)) ≈ r ≈ 1 ≈ rβ/ε(|z| + C)λ.

Corollary 2.9 The measure μλ is doubling, i.e., μλ(B(x, 2r)) � μλ(B(x, r)).

Proof In the case |x| ≤ (log 2)/ε and the case |x| ≥ (log 2)/ε with 2r ≤ R0, the result
follows directly from Proposition 2.8.

In the case |x| ≥ (log 2)/ε with 2r ≥ R0, if r ≥ R0, then

rβ/ε ≈ (2r)β/ε;
if r ≤ R0, then

e(ε−β)|x|r
(2r)β/ε

≈
(

R0

r

)β/ε−1

≈ 1.
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Let zr and z2r be defined as in Lemma 2.2 with respect to r and 2r . From Corollary 2.4 and
the above estimates, the doubling condition of μλ follows once we prove that

|zr | + C

|z2r | + C
≈ 1. (2.11)

If r ≥ (1 − e−ε|x|)/ε, then |zr | = |z2r | = 0 give Eq. 2.11. If 2r ≥ (1 − e−ε|x|)/ε ≥ r , then
r ≥ (1 − e−ε|x|)/2ε implies that

|zr | + C = |x| − 1

ε
log(1 + εreε|x|) + C ≤ |x| − 1

ε
log

(1

2
(1 + eε|x|)

) + C

= |x| + C + log 2

ε
− 1

ε
log(1 + eε|x|) ≤ C + log 2

ε
≈ C = |z2r | + C,

which gives Eq. 2.11. If 2r ≤ (1 − e−ε|x|)/ε, for C ≥ 2(log 2)/ε, we obtain that

2(|z2r | + C) − (|zr | + C) = |x| + C + 1

ε
log(1 + εreε|x|) − 2

ε
log(1 + 2εreε|x|)

≥ |x| + C + 1

ε
log(1 + εreε|x|) − 2

ε
log(2(1 + εreε|x|))

= |x| + C − 2 log 2

ε
− 1

ε
log(1 + εreε|x|)

= |zr | + C − 2 log 2

ε
≥ 0,

which gives that |zr |+C ≤ 2(|z2r |+C). Combining with the fact that |z2r | ≤ |zr |, Eq. 2.11
is obtained. Therefore we finish the proof of this corollary.

The following result is given by [3, Lemma 5.2].

Proposition 2.10 The boundary ∂X is an Ahlfors Q-regular space with Hausdorff dimen-
sion

Q = log K

ε
.

Hence we have an Ahlfors Q-regular measure ν on ∂X with

ν(B(ξ, r)) ≈ rQ = r log K/ε,

for any ξ ∈ ∂X and 0 < r ≤ diam∂X.

2.3 Newtonian Spaces on X

Let u ∈ L1
loc(X,μλ). We say that a Borel function g : X → [0, ∞] is an upper gradient of

u if

|u(z) − u(y)| ≤
∫

γ

g dsX (2.12)

whenever z, y ∈ X and γ is the geodesic from z to y, where dsX denotes the arc length
measure with respect to the metric dX . In the setting of a tree any rectifiable curve with end
points z and y contains the geodesic connecting z and y, and therefore the upper gradient
defined above is equivalent to the definition which requires that inequality (2.12) holds for
all rectifiable curves with end points z and y.
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The notion of upper gradients is due to Heinonen and Koskela [16]; we refer interested
readers to [12, 17] for a more detailed discussion on upper gradients.

The Newtonian space N1,p(X,μλ), 1 ≤ p < ∞, is defined as the collection of all the
functions for which

‖u‖N1,p(X,μλ) :=
(∫

X

|u|p dμλ + inf
g

∫

X

gp dμλ

)1/p

< ∞,

where the infimum is taken over all upper gradients of u.
Throughout the paper, we use N1,p(X) to denote N1,p(X,μλ) if λ = 0.

2.4 Besov-Type Spaces on ∂X via Dyadic Norms

We first recall the Besov space Bθ
p,p(∂X) defined in [3].

Definition 2.11 For 0 < θ < 1 and p ≥ 1, The Besov space Bθ
p,p(∂X) consists of all

functions f ∈ Lp(∂X) for which the seminorm ‖f ‖Ḃθ
p(∂X) defined as

‖f ‖p

Ḃθ
p(∂X)

:=
∫

∂X

∫

∂X

|f (ζ )| − f (ξ)|p
dX(ζ, ξ)θpν(B(ζ, dX(ζ, ξ)))

dν(ξ) dν(ζ )

is finite. The corresponding norm for Bθ
p,p(∂X) is

‖f ‖Bθ
p,p(∂X) := ‖f ‖Lp(∂X) + ‖f ‖Ḃθ

p(∂X).

Next, we give a dyadic decomposition on the boundary ∂X of the K-ary tree X: Let
Vn = {xn

j : j = 1, 2, · · · , Kn} be the set of all n-level vertices of the tree X for any n ∈ N,
where a vertex x is n-level if |x| = n. Then we have that

V =
⋃

n∈N
Vn

is the set containing all the vertices of the tree X. For any vertex x ∈ V , denote by Ix the set

{ξ ∈ ∂X : the geodesic [0, ξ) passes through x}.
We denote by Q the set {Ix : x ∈ V } and Qn the set {Ix : x ∈ Vn} for any n ∈ N. Then
Q0 = {∂X} and we have

Q =
⋃

n∈N
Qn.

Then the set Q is a dyadic decomposition of ∂X. Moreover, for any n ∈ N and I ∈ Qn,
there is a unique element Î in Qn−1 such that I is a subset of it. It is easy to see that if
I = Ix for some x ∈ Vn, then Î = Iy with y the unique parent of x in the tree X. Hence the
structure of the tree X gives a corresponding structure of the dyadic decomposition of ∂X

which we defined above.
Since we want to characterize the trace spaces of the Newtonian spaces with respect to

our measure μλ, we introduce the following Besov-type spaces Bθ,λ
p (∂X).

Definition 2.12 For 0 ≤ θ < 1 and p ≥ 1, the Besov-type space Bθ,λ
p (∂X) consists of all

functions f ∈ Lp(∂X) for which the dyadic Ḃθ,λ
p -energy of f defined as

‖f ‖p

Ḃθ,λ
p (∂X)

:=
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I )
∣∣fI − fÎ

∣∣p
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is finite. The norm on Bθ,λ
p (∂X) is

‖f ‖Bθ,λ
p (∂X)

:= ‖f ‖Lp(∂X) + ‖f ‖Ḃθ,λ
p (∂X)

.

Here and throughout this paper, the measure ν on the boundary ∂X is the Ahlfors regular
measure in Proposition 2.10 and fI is the mean value −

∫
I
f dν = 1

ν(I )

∫
I
f dν.

The following proposition states that the Besov space Bθ,λ
p (∂X) coincides with the Besov

space Bθ
p,p(∂X) whenever 0 < θ < 1 and λ = 0. The proof of this proposition follows by

using [3, Lemma 5.4] and a modification of the proof of [23, Proposition A.1]. We omit the
details.

Proposition 2.13 Let 0 < θ < 1 and p ≥ 1. For any f ∈ L1
loc(∂X), we have

‖f ‖Bθ
p,p(∂X) ≈ ‖f ‖Bθ,0

p (∂X)
.

For λ > 0, we next define special Besov-type spaces with θ = 0 and p = 1. Before the
definition, we first fix a sequence {α(n) : n ∈ N} such that there exist constants c1 ≥ c0 > 1
satisfying

c0 ≤ α(n + 1)

α(n)
≤ c1, ∀ n ∈ N. (2.13)

A simple example of such a sequence is obtained by letting α(n) = 2n.

Definition 2.14 For λ > 0, the Besov-type space Bα
1 (∂X) consists of all functions f ∈

L1(∂X) for which the Ḃα
1 -dyadic energy of f defined as

‖f ‖Ḃα
1 (∂X) =

∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

is finite. Here for any I = Ix ∈ Qα(n) with x ∈ Vα(n) and n ≥ 1, we denote Ĩ = Iy where
y ∈ Vα(n−1) is the ancestor of x in X. The norm on Bα

1 (∂X) is

‖f ‖Bα
1 (∂X) := ‖f ‖L1(∂X) + ‖f ‖Ḃα

1 (∂X).

Remark 2.15 Actually, the choice of the sequence {α(n)}n∈N will not affect the definition
of Bα

1 (∂X): by Theorem 1.3 we obtain that any two choices of the sequences {α(n)}n∈N
lead to comparable norms, for more details see Corollary 3.7.

It is easy to check that Bα
1 (∂X) = B0,λ

1 (∂X) if we let α(n) = n. But the sequence {α(n)}
with α(n) = n does not satisfy Eq. 2.13. Actually, we show in Proposition 3.8 and Example
3.9 that B0,λ

1 (∂X) is a strict subset of Bα
1 (∂X) whenever Eq. 2.13 holds.

3 Proofs

3.1 Proof of Theorem 1.1

Proof Trace Part: Let f ∈ N1,p(X,μλ). We first define the trace operator as

Tr f (ξ) := f̃ (ξ) = lim[0,ξ)�x→ξ
f (x), ξ ∈ ∂X, (3.1)
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where the limit is taken along the geodesic ray [0, ξ). Then our task is to show that the
above limit exists for ν-a.e. ξ ∈ ∂X and that the trace Tr f satisfies the norm estimates.

Let ξ ∈ ∂X be arbitrary and let xj = xj (ξ) be the ancestor of ξ with |xj | = j . To show
that the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X, it suffices to show that the function

f̃ ∗(ξ) = |f (0)| +
∫

[0,ξ)

gf ds (3.2)

is in Lp(∂X), where [0, ξ) is the geodesic ray from 0 to ξ and gf is an upper gradient of f .
To be more precise, if f̃ ∗ ∈ Lp(∂X), we have |f̃ ∗| < ∞ for ν-a.e. ξ ∈ ∂X, and hence the
limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X.

Set rj = 2e−jε/ε. Then on the edge [xj , xj+1] we have the relations

ds ≈ e(β−ε)j j−λ dμλ ≈ r
1−β/ε
j j−λ dμ and μλ([xj , xj+1]) ≈ r

β/ε
j jλ, (3.3)

where the comparison constants depend on ε, β. Then we obtain the estimate

f̃ ∗(ξ) = |f (0)| +
∫

[0,ξ)

gf ds = |f (0)| +
+∞∑

j=0

∫

[xj ,xj+1]
gf ds

� |f (0)| +
+∞∑

j=0

r
1−β/ε
j j−λ

∫

[xj ,xj+1]
gf dμλ ≈ |f (0)| +

+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dμλ.

(3.4)

Since θ = 1 − (β − log K)/(pε) > 0, we may choose 0 < κ < θ . Then for p > 1, by
the Hölder inequality and Eq. 3.3, we have that

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p(1−κ)
j −

∫

[xj ,xj+1]
gf

p dμλ

≈ |f (0)|p +
+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj ,xj+1]
gf

p dμλ.

For p = 1, the above estimates are also true without using the Hölder inequality. It follows
that for p ≥ 1,

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj ,xj+1]
gf

p dμλ.

Integrating over all ξ ∈ ∂X, since ν(∂X) ≈ 1, we obtain by means of Fubini’s theorem that
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

∂X

+∞∑

j=0

r
p(1−κ)−β/ε
j j−λ

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= |f (0)|p +
∫

X

gf (x)p
∫

∂X

+∞∑

j=0

r
p(1−κ)−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).

Notice that χ[xj (ξ),xj+1(ξ)](x) is nonzero only if j ≤ |x| ≤ j + 1 and x < ξ . Thus the last
estimate can be rewritten as∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

X

gf (x)pr
p(1−κ)−β/ε

j (x) j (x)−λν(E(x)) dμλ(x),

where E(x) = {ξ ∈ ∂X : x < ξ} and j (x) is the largest integer such that j (x) ≤ |x|.
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It follows from [3, Lemma 5.1] that E(x) = B(ξ, r) for any ξ ∈ E(x) and r ≈ e−εj (x).
Hence we obtain from Proposition 2.10 that ν(E(x)) ≈ r

Q
j(x). Since p(1 − κ) > β/ε −

log K/ε = β/ε − Q, then for any j (x) ∈ N, we have that

r
p(1−κ)−β/ε+Q

j(x) j (x)−λ � 1,

which induces the estimate
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

X

gf (x)p dμλ(x).

Hence we obtain that f̃ ∗ is in Lp(∂X), which gives the existence of the limit in Eq. 3.1 for
ν-a.e. ξ ∈ ∂X. In particular, since |f̃ | ≤ f̃ ∗, we have the estimate

∫

∂X

|f̃ |p dν �
∫

X

|f |p dμλ +
∫

X

gf
p dμλ,

and hence the norm estimate

‖f̃ ‖Lp(∂X) �
(∫

X

|f |p dμλ +
∫

X

gf
p dμλ

)1/p

= ‖f ‖N1,p(X,μλ). (3.5)

To estimate the dyadic energy ‖f̃ ‖p

Ḃθ,λ
p (∂X)

, for any I ∈ Qn, ξ ∈ I and ζ ∈ Î , we have

that

|f̃ (ξ) − f̃ (ζ )| ≤
+∞∑

j=n−1

|f (xj ) − f (xj+1)| +
+∞∑

j=n−1

|f (yj ) − f (yj+1)|,

where xj = xj (ξ) and yj = yj (ζ ) are the ancestors of ξ and ζ with |xj | = |yj | = j ,
respectively. In the above inequality, we used the fact that xn−1(ξ) = yn−1(η). By using
Eq. 3.3 and an argument similar to Eq. 3.4, we obtain that

|f̃ (ξ) − f̃ (ζ )| �
+∞∑

j=n−1

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ +

+∞∑

j=n−1

rj−
∫

[yj (ζ ),yj+1(ζ )]
gf dμλ.

Choose 0 < κ < θ and insert rκ
j r−κ

j into the above sum. If p > 1, then the Hölder inequality
and Eq. 3.3 imply that

|f̃ (ξ) − f̃ (ζ )|p � r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)
j −

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ+r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)
j −

∫

[yj (ζ ),yj+1(ζ )]
gf

p dμλ

≈ r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λ

(∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ+
∫

[yj (ζ ),yj+1(ζ )]
gf

p dμλ

)
.

For p = 1 the estimates above is also true without using the Hölder inequality. It follows
from Fubini’s theorem and from ν(I ) ≈ ν(Î ) that
∑

I∈Qn

ν(I )|f̃I −f̃Î |p ≤
∑

I∈Qn

ν(I )−
∫

I

−
∫

Î

|f̃ (ξ) − f̃ (ζ )|p dν(ξ) dν(ζ )

�
∫

∂X

r
κp

n−1

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λ

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p

∫

∂X

+∞∑

j=n−1

r
p(1−κ)−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).
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Using the notation E(x) and j (x) defined before, the above estimate can be rewritten as

∑

I∈Qn

ν(I )|f̃I − f̃Î | � r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε

j (x) j (x)−λν(E(x)) dμλ

� r
κp

n−1

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε+Q

j(x) j (x)−λ dμλ.

Since e−εn ≈ rn−1 and p − β/ε + Q = θp, we obtain the estimate

‖f̃ ‖p

Ḃθ,λ
p (∂X)

�
+∞∑

n=1

r
κp−θp

n−1 nλ

∫

X∩{|x|≥n−1}
gf

p r
p(1−κ)−β/ε+Q

j(x) j (x)−λ dμλ

=
+∞∑

n=0

r
κp−θp
n (n + 1)λ

+∞∑

j=n

∫

X∩{j+1>|x|≥j}
gf

p r
(θ−κ)p
j j−λ dμλ

=
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf

p r
(θ−κ)p
j j−λ dμλ

⎛

⎝
j∑

n=0

r
κp−θp
n (n + 1)λ

⎞

⎠

�
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf

p dμλ =
∫

X

gf
p dμλ.

Here the last inequality employed the estimate

j∑

n=0

r
κp−θp
n (n + 1)λ � r

κp−θp
j (j + 1)λ ≈ r

(κ−θ)p
j jλ,

which comes from the facts rn = 2e−εn/ε and κp − θp < 0. Thus, we obtain the estimate

‖f̃ ‖Ḃθ,λ
p (∂X)

� ‖gf ‖Lp(X,μλ) ≤ ‖f ‖N1,p(X,μλ),

which together with Eq. 3.5 finishes the proof of Trace Part.
Extension Part: Let u ∈ Bθ,λ

p (∂X). For x ∈ X with |x| = n ∈ N, let

ũ(x) = −
∫

Ix

u dν, (3.6)

where Ix ∈ Qn is the set of all the points ξ ∈ ∂X such that the geodesic [0, ξ) passes
through x, that is, Ix consists of all the points in ∂X that have x as an ancestor. By Eqs. 3.1
and 3.6 we notice that Tr ũ(ξ) = u(ξ) whenever ξ ∈ ∂X is a Lebesgue point of u.

If y is a child of x, then |y| = n + 1 and Ix is the parent of Iy . We extend ũ to the edge
[x, y] as follows: For each t ∈ [x, y], set

gũ(t) = ũ(y) − ũ(x)

dX(x, y)
= ε(uIy − uIx )

(1 − e−ε)e−εn
=

ε(uIy − uÎy
)

(1 − e−ε)e−εn
(3.7)

and

ũ(t) = ũ(x) + gũ(t)dX(x, t). (3.8)

Then we define the extension of u to be ũ.
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Since gũ is a constant and ũ is linear with respect to the metric dX on the edge [x, y], it
follows that |gũ| is an upper gradient of ũ on the edge [x, y]. We have that

∫

[x,y]
|gũ|p dμλ ≈

∫ n+1

n

|uIy − uÎy
|pe−βτ+εnp(τ + C)λ dτ

≈ e(−β+εp)(n+1)(n + 1)λ|uIy − uÎy
|p. (3.9)

Now sum up the above integrals over all the edges on X to obtain that

∫

X

|gũ|p dμλ ≈
+∞∑

n=1

∑

I∈Qn

e(−β+εp)nnλ|uI − uÎ |p .

For I ∈ Qn, the estimate

eεnθpν(I ) ≈ eεn(p−(β−log K)/ε)−εnQ ≈ en(εp−β)

implies that

∫

X

|gũ|p dμλ ≈
+∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I )|uI − uÎ |p = ‖u‖p

Ḃθ,λ
p (∂X)

. (3.10)

To estimate the Lp-norm of ũ, we first observe that

|ũ(t)| ≤ |ũ(x)| + |gũ|dX(x, y) = |ũ(x)| + |ũ(y) − ũ(x)| � |uIx | + |uIy | (3.11)

for any t ∈ [x, y]. Then we obtain the estimate
∫

[x,y]
|ũ(t)|p dμλ � μλ([x, y]) (|uIx |p + |uIy |p

)
� e−βn+εnQnλ

∫

Ix

|u|p dν. (3.12)

Here the last inequality used the facts ν(Ix) ≈ ν(Iy) ≈ eεnQ and μλ([x, y]) ≈ e−βnnλ.
Now sum up the above integrals over all the edges on X to obtain that

∫

X

|ũ(t)|p dμλ �
+∞∑

n=0

∑

I∈Qn

e−βn+εnQnλ

∫

I

|u|p dν =
+∞∑

n=0

e−βn+εnQnλ

∫

∂X

|u|p dν.

Since β − εQ = β − log K > 0, the sum of e−βn+εnQnλ converges. Hence we obtain
the Lp-estimate ∫

X

|ũ|p dμλ �
∫

∂X

|u|p dν. (3.13)

Combing Eq. 3.10 with Eq. 3.13, we obtain the norm estimate

‖ũ‖N1,p(X,μλ) � ‖u‖Bθ,λ
p (∂X)

.

3.2 Proof of Theorem 1.2

Proposition 3.1 Let p = (β − log K)/ε and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. Then
the trace operator Tr defined in Eq. 3.1 is a bounded linear operator from N1,p(X,μλ) to
Lp(∂X).
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Proof Let f ∈ N1,p(X,μλ). We first show that the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X.
It suffices to show that the function f̃ ∗ defined by Eq. 3.2 is in Lp(∂X). By estimates (3.3)
and (3.4), we obtain that

f̃ ∗(ξ) � |f (0)| +
+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dμλ.

Insert j−λ/p jλ/p into the above sum. If p > 1, the Hölder inequality gives us that

|f̃ ∗(ξ)|p � |f (0)|p +
⎛

⎝
+∞∑

j=0

j
−λ
p

· p
p−1

⎞

⎠
p−1 ⎛

⎝
+∞∑

j=0

r
p
j jλ−

∫

[xj ,xj+1]
gf

p dμλ

⎞

⎠

� |f (0)|p +
+∞∑

j=0

r
p−β/ε
j

∫

[xj ,xj+1]
gf

p dμλ,

since μ([xj , xj+1]) ≈ r
β/ε
j jλ and for λ > p − 1, the sum j−λ/(p−1) converges. If p = 1,

then the Hölder inequality is not needed and the estimate is simpler. It follows that

|f̃ ∗(ξ)|p � |f (0)|p +
+∞∑

j=0

r
p−β/ε
j

∫

[xj ,xj+1]
gf

p dμλ

for any λ > p − 1 if p = 1 or for λ ≥ 0 if p = 1. Integrating over all ξ ∈ ∂X we obtain by
means of Fubini’s theorem that
∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p +
∫

∂X

+∞∑

j=0

r
p−β/ε
j

∫

[xj (ξ),xj+1(ξ)]
gf

p dμλ dν(ξ)

= |f (0)|p +
∫

X

gf (x)p
∫

∂X

+∞∑

j=0

r
p−β/ε
j χ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x)

� |f (0)|p +
∫

X

gf (x)pr
p−β/ε

j (x) ν(E(x)) dμλ(x)

� |f (0)|p +
∫

X

gf (x)pr
p−β/ε+Q

j(x) dμλ(x) = |f (0)|p +
∫

X

gf (x)p dμλ(x).

Here in the above estimates, the notations E(x) and j (x) are the same ones as those we
used in the proof of Theorem 1.1. It follows that f̃ ∗ is in Lp(∂X) with the estimate

∫

∂X

|f̃ |p dν �
∫

X

|f |p dμλ +
∫

X

gf
p dμλ.

Hence the limit in the definition of our trace operator exists, i.e., the trace operator is well-
defined, and we also have the estimate

‖f̃ ‖Lp(∂X) �
(∫

X

|f |p dμλ +
∫

X

gf
p dμλ

)1/p

= ‖f ‖N1,p(X,μλ),

which finishes the proof.

Example 3.2 Let f be the continuous function on X given by f (x) = log(|x| + 1). Then
the function gf (x) = eε|x|/(|x| + 1) is an upper gradient of f on X with respect to the
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metric dX . For p = (β − log K)/ε > 1 and λ = p − 1 − δ with δ > 0 arbitrary, we have
the estimates

∫

X

gf
p dμλ ≈

+∞∑

n=0

epεn

(n + 1)p
Kne−βnnλ ≈

+∞∑

n=0

e(pε−β+log K)n

(n + 1)1+δ
=

+∞∑

n=1

1

n1+δ
< ∞

and
∫

X

|f |p dμλ ≈
+∞∑

n=0

logp(n + 1)Kne−βnnλ ≈
+∞∑

n=0

e(−β+log K)nnλ logp(n + 1) < ∞.

Hence we have f ∈ N1,p(X,μλ). On the other hand, f (x) → ∞ as x → ∂X.

Lemma 3.3 Let u ∈ L1(∂X) and ũ be defined by Eqs. 3.6, 3.7 and 3.8. Then
∫

X∩{|x|≥n}
|ũ|p dμ � r

(β−log K)/ε
n

∫

∂X

|u|p dν,

where n ∈ N, p ≥ 1 and rn = 2−nε/ε.

Proof By using the estimate (3.11), for x, y ∈ X with y a child of x and |x| = j , we obtain
that ∫

[x,y]
|ũ(t)|p dμ � μ([x, y])(|uIx |p + |uIx |p) � e−βj+εjQ

∫

Ix

|u|p dν.

Summing up the integrals over all edges of X ∩ {|x| ≥ n}, we obtain that

∫

X∩{|x|≥n}
|ũ|p dμ �

+∞∑

j=n

∑

I∈Qj

e−βj+εjQ

∫

I

|u|p dν =
+∞∑

j=n

e−βj+εjQ

∫

∂X

|u|p dν

≈ e−(β−log K)n

∫

∂X

|u|p dν ≈ r
(β−log K)/ε
n

∫

∂X

|u|p dν.

Lemma 3.4 Let u be Lipschitz continuous on ∂X and ũ be defined by Eqs. 3.6, 3.7 and 3.8.
Then ∫

X∩{|x|≥n}
|gũ|p dμ � r

(β−log K)/ε
n LIP (u, ∂X)p,

where rn = 2e−nε/ε, p ≥ 1 and

LIP (u, ∂X) = sup
ξ,ζ∈∂X:ξ �=ζ

|u(ξ) − u(ζ )|
dX(ξ, ζ )

.

Proof For x, y ∈ X with y a child of x and |x| = j , since gũ is a constant on the edge
[x, y], we obtain the estimate

∫

[x,y]
|gũ|p dμ ≈

∫ j+1

j

|uIy − uÎy
|p

e−εjp
e−βτ dτ ≈ e−βj+εjp|uIy − uÎy

|p .
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Summing up the above integrals over all edges of X ∩ {|x| ≥ n}, we obtain that

∫

X∩{|x|≥n}
|gũ|p dμ ≈

+∞∑

j=n+1

∑

I∈Qj

e(−β+εp)j |uI − uÎ |p .

Since u is Lipschitz on ∂X, then for any ξ, ζ ∈ ∂X,

|f (ξ) − f (ζ )| ≤ LIP (u, ∂X)dX(ξ, ζ ).

Hence, for any I ∈ Qj , we have that

|uI − uÎ |p � −
∫

I

−
∫

Î

|f (ξ) − f (ζ )|p dν(ξ) dν(ζ ) ≤ −
∫

I

−
∫

Î

LIP (u, ∂X)pdX(ξ, ζ )p dν(ξ) dν(ζ )

≤ LIP (u, ∂X)p diam
(
Î
)p ≈ e−jεpLIP (u, ∂X)p .

It follows that
∫

X∩{|x|≥n}
|gũ|p dμ �

+∞∑

j=n+1

Kje(−β+εp)j e−jεpLIP (u, ∂X)p

=
+∞∑

j=n+1

e−(β−log K)j LIP (u, ∂X)p

≈ e−(β−log K)nLIP (u, ∂X)p ≈ r
(β−log K)/ε
n LIP (u, ∂X)p.

Proposition 3.5 Let p = (β − log K)/ε ≥ 1. Then there exists a bounded non-linear
extension operator Ex from Lp(∂X) to N1,p(X) that acts as a right inverse of the trace
operator Tr in Eq. 3.1, i.e., Tr ◦ Ex = Id on Lp(∂X).

The construction of the extension operator is given by gluing the N1,p extensions in
Lemma 3.4 of Lipschitz approximations of the boundary data with respect to a sequence
of layers on the tree X. The main idea of the construction is inspired by [21, Section 7]
and [22, Section 4] whose core ideas can be traced back to Gagliardo [10] who discussed
extending functions in L1(Rn) to W 1,1(Rn+1+ ).

Proof of Proposition 3.5 Let f ∈ Lp(∂X). We approximate f in Lp(∂X) by a sequence of
Lipschitz functions {fk}+∞

k=1 such that ‖fk+1 − fk‖Lp(∂X) ≤ 22−k‖f ‖Lp(∂X). Note that this
requirement of rate of convergence of fk to f ensures that fk → f pointwise ν-a.e. in ∂X.
For technical reasons, we choose f1 ≡ 0.

Then we choose a decreasing sequence of real numbers {ρk}+∞
k=1 such that

• ρk ∈ {e−εn/ε : n ∈ N};
• 0 < ρk+1 ≤ ρk/2;
• ∑

k ρkLIP (fk, ∂X) ≤ C‖f ‖Lp(∂X).

These will now be used to define layers in X. Let

ψk(x) = max

{
0, min

{
1,

ρk − dist(x, ∂X)

ρk − ρk+1

}}
, x ∈ X.
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We denote − log(ερk)/ε by [ρk]. This is a integer satisfying e−ε[ρk]/ε = ρk . Then we obtain
0 ≤ ψk ≤ 1 and that

ψk(x) =
{

0, |x| ≤ [ρk];
1, |x| ≥ [ρk+1]. (3.14)

For any Lipschitz function fk , we can define the extension f̃k of fk by using Eqs. 3.6, 3.7
and 3.8. Then we define the extension of f as

f̃ (x) :=
+∞∑

k=2

(ψk−1(x) − ψk(x))f̃k(x) =
+∞∑

k=1

ψk(x)(f̃k+1(x) − f̃k(x)). (3.15)

It follows from Eq. 3.14 that for any x ∈ X with |x| = [ρk], we have f̃ (x) = f̃k−1(x).
Since for the trace operator Tr defined in Eq. 3.1, Tr f̃k = fk for ν-a.e. in ∂X, the pointwise
convergence fk → f ν-a.e. in ∂X implies that Tr f̃ = f for ν-a.e. in ∂X, since {[ρk]}+∞

k=1
is a subsequence of N. Hence the extension operator defined by Eq. 3.15 is a right inverse
of the trace operator Tr in Eq. 3.1.

It remains to show that f̃ ∈ N1,p(X) with norm estimates. Lemma 3.3 allows us to obtain
the Lp-estimate for f̃ . Since the extension operator that we apply for each fk is linear, we

have that f̃k+1 − f̃k = ˜fk+1 − fk . Therefore, it follows from (β − log K)/ε = p that

‖f̃ ‖Lp(X) ≤
+∞∑

k=1

‖ψk(f̃k+1 − f̃k)‖Lp(X) ≤
+∞∑

k=1

‖f̃k+1 − f̃k‖Lp(X∩{|x|≥[ρk ]})

�
+∞∑

k=1

r[ρk]‖fk+1 − fk‖Lp(∂X) ≈
+∞∑

k=1

ρk‖fk+1 − fk‖Lp(∂X)

�
+∞∑

k=1

‖fk+1 − fk‖Lp(∂X) � ‖f ‖Lp(∂X).

In order to obtain the Lp-estimate of an upper gradient of f̃ , it suffices to consider the
Lp-estimate of Lip f̃ , where for any function u, Lip u(x) is defined as

Lip u(x) = lim sup
y→x

|u(y) − u(x)|
dX(x, y)

.

We first apply the product rule for locally Lipschitz function, which yields that

Lip f̃ =
+∞∑

k=1

(
| ˜fk+1 − fk|Lip ψk + ψkLip ( ˜fk+1 − fk)

)

≤
+∞∑

k=1

(
| ˜fk+1 − fk|χ{|x|≥[ρk ]}

ρk − ρk+1
+ χ{|x|≥[ρk ]}Lip ( ˜fk+1 − fk)

)
.

Thus,

‖Lip f̃ ‖Lp(∂X) ≤
+∞∑

k=1

⎛

⎝
∥∥∥∥∥

| ˜fk+1 − fk |
ρk − ρk+1

∥∥∥∥∥
Lp(X∩{|x|≥[ρk ]})

+ ‖Lip ( ˜fk+1 − fk)‖Lp(X∩{|x|≥[ρk ]})

⎞

⎠ .
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It follows from Lemma 3.3 that
+∞∑

k=1

∥∥∥∥∥
| ˜fk+1 − fk|
ρk − ρk+1

∥∥∥∥∥
Lp(X∩{|x|≥[ρk ]})

�
+∞∑

k=1

ρk

ρk − ρk+1
‖fk+1 − fk‖Lp(∂X)

≈
+∞∑

k=1

‖fk+1 − fk‖Lp(∂X) � ‖f ‖Lp(∂X).

Recall that ũ is affine one any edge of X, with “slope” gũ, for the extension ũ given via
Eqs. 3.6, 3.7 and 3.8, for any function u. Hence Lip ũ = gũ. Therefore, it follows from
Lemma 3.4 that

+∞∑

k=1

‖Lip ( ˜fk+1 − fk)‖Lp(X∩{|x|≥[ρk ]}) �
+∞∑

k=1

ρkLIP (fk+1 − fk, ∂X)

≤
+∞∑

k=1

ρk (LIP (fk+1, ∂X) + LIP (fk, ∂X))

� ‖f ‖Lp(∂X).

Here in the last inequality, we used the defining properties of {ρk}+∞
k=1. Thus, we have shown

that
‖Lip f̃ ‖Lp(∂X) � ‖f ‖Lp(∂X).

Altogether, we obtain that

‖f̃ ‖N1,p(X) ≤ ‖f̃ ‖Lp(∂X) + ‖Lip f̃ ‖Lp(∂X) � ‖f ‖Lp(∂X).

Proof of Theorem 1.2 The boundedness and linearity of the trace operator follows from
Proposition 3.1 and the sharpness of λ > p − 1 follows from Example 3.2. The extension
operator is given in Proposition 3.5.

Remark 3.6 For p = (β− log K)/ε > 1 and λ > p−1, Theorem 1.2 only tells us that there
exists a bounded linear trace operator (3.1) from N1,p(X,μλ) to Lp(∂X). It is unknown
whether this trace operator is surjective or not. All we know is that there exists a nonlinear
bounded extension operator from Lp(∂X) to N1,p(X) that acts as a right inverse of the
trace operator (3.1). Since λ > p − 1 > 0 implies N1,p(X,μλ) � N1,p(X), we have an
open question: Which space does the bounded linear trace operator (3.1) map N1,p(X,μλ)

surjectively onto?

3.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Trace Part: Let f ∈ N1,1(X,μλ) with λ > 0 and let gf be an upper
gradient of f . By Proposition 3.1, we know that the trace operator Tr f = f̃ defined in
Eq. 3.1 is well-defined and that f̃ satisfies the norm estimate

‖f̃ ‖L1(∂X) � ‖f ‖N1,1(X,μλ).
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Then the remaining task is to establish the estimate on the dyadic energy ‖f̃ ‖Ḃα
1 (∂X). For

any I ∈ Qα(n), ξ ∈ I and ζ ∈ Ĩ ∈ Qα(n−1), we obtain that

|f̃ (ξ) − f̃ (ζ )| ≤
+∞∑

j=α(n−1)

|f (xj ) − f (xj+1)| +
+∞∑

j=α(n−1)

|f (yj ) − f (yj+1)|

�
+∞∑

j=α(n−1)

rj−
∫

[xj ,xj+1]
gf dμλ +

+∞∑

j=α(n−1)

rj−
∫

[yj ,yj+1]
gf dμλ,

where xj = xj (ξ) and yj = yj (ζ ) are the ancestors of ξ and ζ with |xj | = |yj | = j ,
respectively. For any I ∈ Qα(n) and any function h ∈ L1(∂X), we have

ν(I )

ν(Ĩ )
≈

(
rα(n)

rα(n−1)

)Q

≈ e(α(n−1)−α(n)) log K ≈ Kα(n−1)−α(n)

and

∑

I∈Qα(n)

∫

Ĩ

h(ζ ) dν(ζ ) = Kα(n)−α(n−1)

∫

∂X

h(ζ ) dν(ζ ). (3.16)

Hence it follows from the fact that μλ([xj , xj+1]) ≈ r
β/ε
j jλ and Fubini’s theorem that

∑

I∈Qα(n)

ν(I )|f̃I − f̃Ĩ | ≤
∑

I∈Qα(n)

ν(I )−
∫

I

−
∫

Ĩ

|f̃ (ξ) − f̃ (ζ )| dν(ξ) dν(ζ )

�
∑

I∈Qα(n)

∫

I

+∞∑

j=α(n−1)

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ dν(ξ)

+
∑

I∈Qα(n)

Kα(n−1)−α(n)

∫

Ĩ

+∞∑

j=α(n−1)

rj−
∫

[yj (ζ ),yj+1(ζ )]
gf dμλ dν(ζ )

≈
∫

∂X

+∞∑

j=α(n−1)

rj−
∫

[xj (ξ),xj+1(ξ)]
gf dμλ dν(ξ)

≈
∫

X∩{|x|≥α(n−1)}
gf

∫

∂X

+∞∑

j=α(n−1)

r
1−β/ε
j j−λχ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμλ(x).

Using the notation E(x) and j (x) defined in the proof of Theorem 1.1, the above estimate
can be rewritten as

∑

I∈Qα(n)

ν(I )|f̃I − f̃Ĩ | �
∫

X∩{|x|≥α(n−1)}
gf r

1−β/ε

j (x) j (x)−λν(E(x)) dμλ

�
∫

X∩{|x|≥α(n−1)}
gf r

1−β/ε+Q

j(x) j (x)−λ dμλ

=
∫

X∩{|x|≥α(n−1)}
gf j (x)−λ dμλ.
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It follows that
∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ | �
∞∑

n=1

α(n)

+∞∑

j=α(n−1)

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

=
∞∑

n=0

α(n + 1)

+∞∑

j=α(n)

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

≤
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf j−λ dμλ

⎛

⎝
α−1(j)∑

n=0

α(n + 1)λ

⎞

⎠ ,

where α−1(j) is the largest integer m such that α(m) ≤ j . Since λ > 0 and

1 < c0 ≤ α(n + 1)

α(n)
≤ c1,

we obtain the estimate

α−1(j)∑

n=0

α(n + 1)λ ≈
α−1(j)∑

n=0

α(n)λ ≤
+∞∑

k=0

jλc−λk
0 � jλ.

Hence we obtain the estimate

‖f̃ ‖Ḃα
1 (∂X) =

∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ | �
+∞∑

j=0

∫

X∩{j+1>|x|≥j}
gf dμλ

=
∫

X

gf dμλ = ‖gf ‖L1(X,μλ).

Thus, we obtain the norm estimate

‖f ‖Bα
1 (∂X) = ‖f ‖L1(∂X) + ‖f ‖Ḃα

1 (∂X) � ‖f ‖N1,1(X,μλ),

which finishes the proof of the Trace Part.
Extension Part: Let u ∈ Bα

1 (∂X). Since α(0) is not necessarily zero, we let α(−1) = 0.
For any x ∈ X with |x| = α(n) and −1 ≤ n ∈ Z, let

ũ(x) = −
∫

Ix

u dν,

where Ix ∈ Q is the set of all the points ξ ∈ ∂X such that the geodesic [0, ξ) passes through
x, that is, Ix consists of all the points in ∂X that have x as an ancestor.

If y is a descendant of x with |y| = α(n+ 1), then there exists ỹ ∈ X which is the parent
of y. We extend ũ to the edge [x, y] as follows: For each t ∈ [x, ỹ], set ũ(t) = ũ(x) and
gũ(t) = 0; for each t ∈ [ỹ, y], set

gũ(t) = ũ(y) − ũ(x)

dX(ỹ, y)
= ε(uIy − uIx )

(eε − 1)e−εα(n+1)
=

ε(uIy − uĨy
)

(eε − 1)e−εα(n+1)

and
ũ(t) = ũ(x) + gũ(t)dX(ỹ, t).

Then we define ũ to be the extension of u. Notice that Tr ũ(ξ) = u(ξ) whenever ξ is a
Lebesgue point of u.

Now on the geodesic [x, ỹ], gũ is zero and ũ is a constant; on the edge [ỹ, y], gũ is a
constant and ũ is linear with respect to the metric on the edge [ỹ, x]. It follows that |gũ| is
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an upper gradient of ũ on the geodesic [x, y]. Then for x ∈ X with |x| = α(n), n ≥ 0, we
obtain the estimate

∫

[x,y]
|gũ| dμλ =

∫

[ỹ,y]
|gũ| dμλ ≈

∫ α(n+1)

α(n+1)−1

|uIy − uĨy
|

e−εα(n+1)
e−βτ (t + C)λ dτ

≈ e(ε−β)α(n+1)α(n + 1)λ|uIy − uĨy
|. (3.17)

For x = 0 and |y| = α(0), since ν(I0) ≈ ν(Iy) ≈ 1, we have the estimate
∫

[0,y]
|gũ| dμλ =

∫

[ỹ,y]
|gũ| dμλ ≈ |uI0 − uIy | ≤ |uI0 | + |uIy | �

∫

∂X

|u| dν. (3.18)

Now sum up the estimates (3.17) and (3.18) over all edges of X to obtain that
∫

X

|gũ| dμλ =
∫

X∩{|x|≤α(0)}
|gũ| dμλ +

∫

X∩{|x|≥α(0)}
|gũ| dμλ

�
∑

y∈Vα(0)

∫

[0,y]
|gũ| dμλ +

+∞∑

n=1

∑

y∈Vα(n)

∫

[x,y]
|gũ| dμλ

� Kα(0)

∫

∂X

|u| dν +
+∞∑

n=1

∑

I∈Qα(n)

e(ε−β)α(n)α(n)λ|uI − uĨ |.

Since for any I ∈ Qα(n), we have that

ν(I ) ≈ r
Q
α(n) ≈ e−εα(n) log K/ε = e−α(n) log K = e(ε−β)α(n).

Hence we obtain the estimate
∫

X

|gũ| dμλ �
∫

∂X

|u| dν +
∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

= ‖u‖L1(∂X) + ‖u‖Ḃα
1 (∂X) = ‖u‖Bα

1 (∂X). (3.19)

Towards the L1-estimate for ũ, by the construction, we know that |ũ(t)| = |ũ(x)| on the
geodesic [x, ỹ] and that |ũ(t)| � |ũ(x)| + |ũ(y)| on the edge [ỹ, y]. Then for n ≥ −1, we
have the estimate

∫

X∩{α(n)≤|x|≤α(n+1)}
|ũ| dμλ =

∫

X∩{α(n)≤|x|≤α(n+1)−1}
|ũ| dμλ

+
∫

X∩{α(n+1)−1≤|x|≤α(n+1)}
|ũ| dμλ

≤
∑

x∈Vα(n)

|u(x)|μλ(F (x, dX(x, ∂X)))

+
∑

y∈Vα(n+1)

(|ũ(x)| + |ũ(y)|)μλ([ỹ, y]) =: Hn
1 + Hn

2 .

By Lemma 2.3, we obtain the estimate

Hn
1 �

∑

x∈Vα(n)

e(−β+log K)α(n)α(n)λ
∫

Ix

|u| dν = e(−β+log K)α(n)α(n)λ
∫

∂X

|u| dν.
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For Hn
2 , by Eq. 3.16 and relation Eq. 3.3, we have that

Hn
2 �

∑

y∈Vα(n+1)

e(−β+log K)α(n+1)α(n + 1)λ

(∫

Iy

|u| dν + Kα(n)−α(n+1)

∫

Ĩy

|u| dν

)

� e(−β+log K)α(n+1)α(n + 1)λ
∫

∂X

|u| dν.

Sum up the above estimate with respect to n to obtain via ε = β − log K that
∫

X

|ũ| dμλ =
+∞∑

n=−1

∫

X∩{α(n)≤|x|≤α(n+1)}
|ũ| dμλ =

+∞∑

n=−1

Hn
1 + Hn

2

�
+∞∑

n=−1

e(−β+log K)α(n)α(n)λ
∫

∂X

|u| dν

=
+∞∑

n=−1

e−εα(n)α(n)λ
∫

∂X

|u| dν �
∫

∂X

|u| dν = ‖u‖L1(∂X). (3.20)

By the estimates (3.19) and (3.20), we obtain the norm estimate

‖ũ‖N1,1(X,μλ) � ‖u‖Bα
1 (∂X).

Corollary 3.7 For given sequences {α1(n)}n∈N and {α1(n)}n∈N satisfying the relation
(2.13) with respect to different pairs of (c0, c1), the Banach spaces Bα1

1 (∂X) and Bα2
1 (∂X)

coincide.

Proof For any function u ∈ Bα1
1 (∂X), by the Extension part in the proof of Theorem 1.3,

there is an extension Eu = ũ such that

‖ũ‖N1,1(X,μλ) � ‖u‖Bα1
1 (∂X)

.

Since u = T ◦ Eu = T (ũ), it follows from the trace part in the proof of Theorem 1.3 that
we have the estimate

‖u‖Bα2
1 (∂X)

� ‖ũ‖N1,1(X,μλ).

Thus, we obtain
‖u‖Bα2

1 (∂X)
� ‖u‖Bα1

1 (∂X)
.

The opposite inequality follows analogously and the claim follows.

Next, we compare the function spaces Bα
1 (∂X) and B0,λ

1 (∂X).

Proposition 3.8 Let λ > 0. The space B0,λ
1 (∂X) is a subset of Bα

1 (∂X), i.e., for any f ∈
L1(∂X), we have

‖f ‖Ḃα
1 (∂X) � ‖f ‖Ḃ0,λ

1 (∂X)
.

Proof Let f ∈ L1(∂X). For any I ∈ Qα(n) with n ∈ R, define the set

JI := {I ′ ∈ Q : I ⊂ I ′
� Ĩ }.
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Then it follows from the triangle inequality that

|fI − fĨ | ≤
∑

I ′∈JI

|fI ′ − fÎ ′ |.

Hence, by using Fubini’s theorem, we have that
∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤
∑

I∈Qα(n)

ν(I )
∑

I ′∈JI

|fI ′ − fÎ ′ |

=
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

|fI ′ − fÎ ′ |
⎛

⎝
∑

I∈Qα(n)

∑

I ′∈JI

ν(I )

⎞

⎠ .

Notice that for any I ∈ Qα(n), we have ν(I ) ≈ e−εα(n)Q = K−α(n) and that for any
I ′ ∈ Qm, the number of the dyadic elements I ∈ Qα(n) with I ′ ∈ JI is Kα(n)−m. Therefore,

∑

I∈Qα(n)

∑

I ′∈JI

ν(I ) ≈ Kα(n)−m−α(n) = K−m = e−εα(n)Q ≈ ν(I ′).

Hence, we have the estimate

∑

I∈Qα(n)

ν(I )|fI − fĨ | �
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ |,

and therefore the estimate

‖f ‖Ḃα
1 (∂X) =

+∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

�
+∞∑

n=1

α(n)λ
α(n)∑

m=α(n−1)+1

∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ |

�
+∞∑

m=1

mλ
∑

I ′∈Qm

ν(I ′)|fI ′ − fÎ ′ | = ‖f ‖Ḃ0,λ
1 (∂X)

.

Here in the last inequality, we used the fact that mλ > α(n − 1)λ ≥ α(n)λ/cλ
1 whenever

m > α(n − 1), where the constant c1 is from the condition (2.13).

Example 3.9 Let X be a 2-regular tree. We may identify each vertex of X with a finite
sequence formed by 0 and 1. For example, the children of the root can be denoted by 00 and
01. The children of the vertex x = 0τ1 · · · τk is 0τ1 · · · τk0 and 0τ1 · · · τk1, where τi ∈ {0, 1}.
Moreover, each element ξ of the boundary ∂X can be identified with an infinite sequence
formed by 0 and 1. We denote ξ = 0τ1τ2 · · · with τi ∈ {0, 1} when the geodesic from 0 to ξ

passes through all the vertices xk = 0τ1 · · · τk , k ∈ R.
We define a function f on ∂X as follows: for ξ = 0τ1τ2 · · · ∈ ∂X where τi ∈ {0, 1}, we

define

f (ξ) =
+∞∑

i=1

(−1)τi

iλ+1
.
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Since the sum of 1/iλ+1 converges for λ > 0, f is well defined for all ξ ∈ ∂X and is
bounded. Moreover, for any vertex x = 0τ1 · · · τk , it follows from the definition of f that

fIx = −
∫

Ix

f (ζ ) dν(ζ ) =
k∑

i=1

(−1)τi

iλ+1
. (3.21)

Therefore, for the vertex x above, we have

|fIx − fÎx
| = 1

kλ+1
.

Hence the Ḃ0,λ
1 -energy of f is

‖f ‖Ḃ0,λ
1 (∂X)

=
+∞∑

n=1

nλ
∑

I∈Qn

ν(I )|fI − fÎ |

=
+∞∑

n=1

nλ
∑

I∈Qn

ν(I )
1

nλ+1
=

+∞∑

n=1

1

n
= +∞.

On the other hand, for any I ∈ Qα(n), we have

|fI − fĨ | =
∣∣∣∣∣∣

α(n)∑

i=α(n−1)+1

(−1)τi

iλ+1

∣∣∣∣∣∣
, (3.22)

where τi ∈ {0, 1} depends on I . We define a random series Xα(n) by setting

Xα(n) =
α(n)∑

i=α(n−1)+1

σi

iλ+1
,

where (σi)i are independent random variables with common distribution P(σi = 1) =
P(σi = −1) = 1/2. Since the measure ν is a probability measure which is uniformly
distributed on ∂X, it follows from Eq. 3.22 that

∑

I∈Qα(n)

ν(I )|fI − fĨ | = E(|Xα(n)|).

Here E(|Xα(n)|) is the expected value of |Xα(n)|. By the Cauchy-Schwarz inequality,
E(|Xα(n)|) ≤ (E(X 2

α(n)))
1/2, we have that

∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤ (E(X 2
α(n)))

1/2 =
⎛

⎝
α(n)∑

i,j=α(n−1)+1

E(σiσj )

iλ+1jλ+1

⎞

⎠
1/2

=
⎛

⎝
α(n)∑

i=α(n−1)+1

E(σi
2)

i2λ+2

⎞

⎠
1/2

=
⎛

⎝
α(n)∑

i=α(n−1)+1

1

i2λ+2

⎞

⎠
1/2

.

Here the second to last equality holds since σi and σj are independent for i �= j and
E(σiσj ) = E(σi)E(σj ) = 0 for i �= j . Define α(n) = 2n. Then we obtain that

∑

I∈Qα(n)

ν(I )|fI − fĨ | ≤
⎛

⎝
2n∑

i=2n−1+1

1

i2λ+2

⎞

⎠
1/2

≤
⎛

⎝
2n∑

i=2n−1+1

1

2(n−1)(2λ+2)

⎞

⎠
1/2

= 1

2(n−1)(λ+1/2)
.
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Therefore the Ḃα
1 (∂X)-energy of f is estimated by

‖f ‖Ḃα
1 (∂X) =

+∞∑

n=1

α(n)λ
∑

I∈Qα(n)

ν(I )|fI − fĨ |

≤
+∞∑

n=1

2nλ 1

2(n−1)(λ+1/2)
=

+∞∑

n=0

2λ

2n/2
< +∞.

Hence f ∈ Bα
1 (∂X) while f /∈ B0,λ

1 (∂X), and it follows that B0,λ
1 (∂X) is a strict subset

of Bα
1 (∂X).

3.4 Proof of Theorem 1.4

Proof Let p = (β − log K)/ε and λ > p − 1 if p > 1 or λ ≥ 0 if p = 1. From
Proposition 3.1, the trace operator T : N1,p(X,μλ) → Lp(∂X) in Theorem 1.2 is bounded
and linear. Now we define an extension operator E by using Eqs. 3.6, 3.7 and 3.8. It is easy
to see that the extension Eu is well defined for any function u ∈ L1

loc(∂X) and that T ◦ E

is the identity operator on L1
loc(∂X).

Repeating the estimates in Extension Part of the proof of Theorem 1.1, for θ = 1 − (β −
log K)/(pε) = 0, we also have the following estimates:

∫

X

|gũ|p dμλ ≈ ‖u‖p

Ḃ0,λ
p (∂X)

(3.23)

and ∫

X

|ũ|p dμ �
∫

∂X

|u|p dν. (3.24)

Hence the extension operator E is bounded and linear from B0,λ
p (∂X) to N1,p(X,μλ).

Moreover, since u is the trace of ũ, by Theorem 1.2 and Proposition 3.1, we have

‖u‖Lp(∂X) � ‖ũ‖N1,p(X,μλ).

Combining the above inequality with Eqs. 3.23 and 3.24, we obtain the estimate

‖u‖B0,λ
p (∂X)

≈ ‖ũ‖N1,p(X,μλ). (3.25)

Hence the B0,λ
p (∂X)-norm of u is comparable to the N1,p(X,μλ)-norm of ũ = Eu. Thus

B0,λ
p (∂X) is the optimal space for which E is both bounded and linear.
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Traces of Newton-Sobolev, Haj lasz-Sobolev,

and BV functions on metric spaces ∗

Panu Lahti, Xining Li, and Zhuang Wang

Abstract

We study the boundary traces of Newton-Sobolev, Haj lasz-Sobolev, and BV (bounded
variation) functions. Assuming less regularity of the domain than is usually done in
the literature, we show that all of these function classes achieve the same “boundary
values”, which in particular implies that the trace spaces coincide provided that they
exist. Many of our results seem to be new even in Euclidean spaces but we work in a
more general complete metric space equipped with a doubling measure and supporting
a Poincaré inequality.

1 Introduction

Boundary traces for various function classes, especially functions of bounded variation
(BV functions), have been studied in recent years in the setting of metric measure spaces
(X, d, µ). In [28], the authors studied the boundary traces, or traces for short, of BV
functions in suitably regular domains. Typically, the boundary trace Tu of a function u in
a domain Ω is defined by the condition

lim
r→0+

∫

B(x,r)∩Ω
|u− Tu(x)| dµ = 0 (1.1)

for a.e. x ∈ ∂Ω with respect to the codimension 1 Hausdorff measure H. In [30] (see
also references therein for previous works in Euclidean spaces) the authors considered the
corresponding extension problem, that is, the problem of finding a function whose trace is a
prescribed L1-function on the boundary. They showed that in sufficiently regular domains,
the trace operator of BV functions is surjective, and that in fact the extension can always
be taken to be a Newton-Sobolev function. This implies that the trace space of both
BV(Ω) and N1,1(Ω) is L1(∂Ω). This trace and extension problem is motivated by Dirichlet
problems for functions of least gradient, in which one minimizes the total variation among
BV functions with prescribed boundary data, see [5, 11, 22, 31, 36].

In the current paper, we consider boundary traces from a different viewpoint. Unlike in
the existing literature, we assume very little regularity of the domain, meaning that traces

∗2010 Mathematics Subject Classification: 46E35, 26B30, 30L99
Keywords: boundary trace, function of bounded variation, Newton-Sobolev function, Hajlasz-Sobolev func-
tion, metric measure space
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need not always exist. We are nonetheless able to show in various cases that for a given
function, it is possible to find a more regular function that “achieves the same boundary
values”. In particular, if the original function has a boundary trace, then the more regular
function has the same trace. This sheds further light on the extension problem. To prove
our results, we apply some existing approximation results for BV and Newton-Sobolev
functions, and develop some new ones.

We will always assume that (X, d, µ) is a complete metric space equipped with a dou-
bling measure µ and supporting a (1, 1)-Poincaré inquality. Let Ω ⊂ X be a nonempty
open set. For BV functions we prove the following three theorems. The exponent s is
sometimes called the homogeneous dimension of the space. N1,1(Ω) is a generalization of
the Sobolev class W 1,1(Ω) to metric spaces; see Section 2 for definitions.

Theorem 1.2. Let u ∈ BV(Ω). Then there exists v ∈ N1,1(Ω) ∩ Liploc(Ω) such that

∫

B(x,r)∩Ω
|v − u|s/(s−1) dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

In particular, whenever there exists a BV extension of a given function defined on
the boundary, it is possible to also find a Newton-Sobolev extension. If we give up the
requirement that v is locally Lipschitz, we can replace s/(s − 1) by an arbitrarily large
exponent.

Theorem 1.3. Let u ∈ BV(Ω) and let 1 ≤ q < ∞. Then there exists v ∈ N1,1(Ω) such
that ∫

B(x,r)∩Ω
|v − u|q dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

If we also allow v to have a small (approximate) jump set Sv, then we can include the
case q = ∞. The class of special functions of bounded variation, denoted by SBV(Ω), is
defined as those BV functions whose variation measure only has an absolutely continuous
part (like Sobolev functions) and a jump part. The class was introduced by De Giorgi and
Ambrosio [2] as a natural class in which to solve various variational problems, e.g. the
minimization of Mumford–Shah functional.

Theorem 1.4. Let u ∈ BV(Ω) and let ε > 0. Denote Ω(r) := {x ∈ Ω : dist(x,X \Ω) > r}
for r > 0. Then there exists v ∈ SBV(Ω) such that H(Sv) < ε and

‖v − u‖L∞(Ω\Ω(r)) → 0 as r → 0+.

Note that v ∈ SBV(Ω) belongs to N1,1(Ω) if and only if H(Sv) = 0 (see [21, Theorem
4.1], (2.13), and [16, Theorem 4.6]). Thus we could equivalently require

• v ∈ SBV(Ω) ∩ Liploc(Ω) (in particular, Sv = ∅) in Theorem 1.2,

• v ∈ SBV(Ω) with H(Sv) = 0 in Theorem 1.3, and
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• v ∈ SBV(Ω) with H(Sv) < ε in Theorem 1.4,

illustrating how we get better boundary approximation by relaxing the regularity require-
ments on v.

From Theorem 1.2 (or Theorem 1.3), we obtain the following corollary.

Corollary 1.5. The trace spaces of BV(Ω) and N1,1(Ω) are the same.

The definitions of trace and trace space are given in Definition 2.16 and Definition 2.18.
Here and throughout this paper, for two function spaces X(Ω) and Y(Ω), that the trace
spaces of X(Ω) and Y(Ω) are the same means that if the function space Z(∂Ω) is the trace
space of X(Ω), then it is also the trace space of Y(Ω), and vice versa.

Corollary 1.5 is stronger than we expected; it says that we can obtain the existence of
the trace and the trace space of BV(Ω) by only knowing the existence of the trace and the
trace space of N1,1(Ω), which is nontrivial, since N1,1(Ω) is a strict subset of BV(Ω).

The so-called Haj lasz-Sobolev space M1,p(Ω), p ≥ 1, introduced in [12], is a subspace
of N1,p(Ω). For p > 1 and Ω supporting a (1, p)-Poincaré inequality and a doubling
measure, we have N1,p(Ω) = M1,p(Ω) with equivalent norms, see [13], and hence the
traces of M1,p(Ω) and N1,p(Ω) will be the same. But for p = 1, even under these strong
assumptions, M1,1(Ω) is only a strict subspace of N1,1(Ω) and it seems that trace results
for M1,1 are lacking in the literature. One can also define a local version M1,1

cH (Ω), see
Section 2 and Remark 4.9 for more information. For these classes, we prove the following
results.

Theorem 1.6. Suppose Ω satisfies the measure density condition (2.4). Then there exists
0 < cH < 1 such that for any u ∈ N1,1(Ω), there is v ∈ M1,1

cH (Ω) ∩ Liploc(Ω) satisfying
‖v‖

M1,1
cH

(Ω) . ‖u‖N1,1(Ω) and

lim
r→0+

∫

B(x,r)∩Ω
|v − u| dµ = 0

for H-a.e. x ∈ ∂Ω, where H is the codimension 1 Hausdorff measure.
If additionally Ω is a uniform domain, then v can be chosen in M1,1(Ω) ∩ Liploc(Ω).

With the exception of this theorem, our results are not written in terms of the codi-
mension 1 Hausdorff measure H (defined in (2.2) and (2.3)) which is used in most existing
literature. In Theorems 1.2–1.4, the results hold for every point on the boundary. On the
other hand, the space or domain may be endowed with a measure µ for which the codimen-
sion 1 Hausdorff measure is not σ-finite on the boundary of the domain (see Example 5.7).
More precisely, in Example 5.7 we define a weighted measure on the Euclidean half-space
R2

+ whose codimension 1 Hausdorff measure is infinity for any open interval of ∂R2
+ = R.

But on R2
+, it is natural to study instead the trace with respect to the 1-dimensional

Lebesgue measure on R, which we do in Example 5.9. Another motivation for us is that
in certain Dirichlet problems one needs to consider the trace with respect to a measure
different from H, see [22, Definition 4.1].

More generally, instead of only studying the codimension 1 Hausdorff measure, we may
study any arbitrary boundary measure H̃ on ∂Ω. In order to study such problems, we first
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replace the codimension 1 Hausdorff measure H with H̃ in the previous definition of trace
to give the definition of trace with respect to H̃, see Definition 2.19. Then we prove the
following result.

Theorem 1.7. Suppose Ω satisfies the measure doubling condition (2.5). Let H̃ be any
Radon measure on ∂Ω. Suppose that for a given u ∈ N1,1(Ω), there exists a function Tu
such that

lim
r→0+

∫

B(x,r)∩Ω
|u− Tu(x)| dµ = 0

for H̃-a.e. x ∈ ∂Ω. Then there exist 0 < cH < 1 and v ∈ M1,1
cH (Ω) ∩ Liploc(Ω) such that

‖v‖
M1,1
cH

(Ω) . ‖u‖N1,1(Ω) and

lim
r→0+

∫

B(x,r)∩Ω
|v − Tu(x)| dµ = 0

for H̃-a.e. x ∈ ∂Ω.
If additionally Ω is a uniform domain, then v can be chosen in M1,1(Ω) ∩ Liploc(Ω).

Similarly to Corollary 1.5, from Theorem 1.6 and Theorem 1.7 we obtain the following
corollary.

Corollary 1.8. Let Ω ⊂ X be a uniform domain and suppose that Ω satisfies the measure
doubling condition (2.5). Then for any given boundary measure H̃, the trace spaces of
N1,1(Ω) and M1,1(Ω) with respect to any boundary measure H̃ on ∂Ω are the same.

The paper is organized as follows. In Section 2, we give the necessary preliminaries.
In Section 3, we study the traces of N1,1 and BV and give the proofs of Theorems 1.2–1.4
and Corollary 1.5. In Section 4, we study the traces of N1,1 and M1,1 and give the proofs
of Theorem 1.6, Theorem 1.7, and Corollary 1.8. Finally, in Section 5, apart from giving
several examples that we refer to in Section 3 and Section 4, we also discuss some trace
results and examples obtained as applications of Corollary 1.5 and Corollary 1.8.
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Shanmugalingam for reading the manuscript and giving comments that helped improve
the paper.

X. L. is supported by NNSF of China (No. 11701582). Z. W. is supported by the
Academy of Finland via Centre of Excellence in Analysis and Dynamics Research (No.
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2 Preliminaries

In this section we introduce the notation, definitions, and assumptions used in the paper.
Throughout this paper, (X, d, µ) is a complete metric space that is equipped with a

metric d and a Borel regular outer measure µ satisfying a doubling property, meaning that
there exists a constant Cd ≥ 1 such that

0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r)) <∞
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for every ball B(x, r) := {y ∈ X : d(y, x) < r}. By iterating the doubling condition, for
every 0 < r ≤ R and y ∈ B(x,R), we have

µ(B(y, r))

µ(B(x,R))
≥ 4−s

( r
R

)s
, (2.1)

for any s ≥ log2Cd. See [13, Lemma 4.7] or [6] for a proof of this. We fix such an s > 1
and call it the homogeneous dimension.

The letters c, C (sometimes with a subscript) will denote positive constants that usually
depend only on the space and may change at different occurrences; if C depends on a, b, . . .,
we write C = C(a, b, . . .). The notation A ≈ B means that there is a constant C such that
1/C ·A ≤ B ≤ C ·A. The notation A . B (A & B) means that there is a constant C such
that A ≤ C ·B (A ≥ C ·B).

All functions defined on X or its subsets will take values in [−∞,∞]. A complete
metric space equipped with a doubling measure is proper, that is, closed and bounded sets
are compact. For an open set Ω ⊂ X, a function is in the class L1

loc(Ω) if and only if it is
in L1(Ω′) for every open Ω′ b Ω. Here Ω′ b Ω means that Ω′ is a compact subset of Ω.
Other local spaces of functions are defined similarly.

For any set A ⊂ X and 0 < R < ∞, the restricted spherical Hausdorff content of
codimension 1 is defined as

HR(A) := inf




∑

j∈I

µ(B(xj , rj))

rj
: A ⊂

⋃

j∈I
B(xj , rj), rj ≤ R, I ⊂ N



 . (2.2)

The codimension 1 Hausdorff measure of A ⊂ X is then defined as

H(A) := lim
R→0+

HR(A). (2.3)

Given an open set Ω ⊂ X, we can regard it as a metric space in its own right, equipped
with the metric induced by X and the measure µ|Ω which is the restriction of µ to subsets
of Ω. This restricted measure µ|Ω is a Radon measure, see [20, Lemma 3.3.11].

We say that an open set Ω satisfies a measure density condition if there is a constant
cm > 0 such that

µ(B(x, r) ∩ Ω) ≥ cmµ(B(x, r)) (2.4)

for every x ∈ Ω and every r ∈ (0,diam(Ω)). We say that Ω satisfies a measure doubling
condition if the measure µ|Ω is a doubling measure, i.e., there is a constant cd > 0 such
that

0 < µ(B(x, 2r) ∩ Ω) ≤ cdµ(B(x, r) ∩ Ω) <∞ (2.5)

for every x ∈ Ω and every r > 0. Notice that if Ω satisfies the measure density condition,
then it satisfies the measure doubling condition.

By a curve we mean a rectifiable continuous mapping from a compact interval of the
real line into X. A nonnegative Borel function g on X is an upper gradient of a function
u on X if for all nonconstant curves γ, we have

|u(x)− u(y)| ≤
∫

γ
g ds, (2.6)
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where x and y are the end points of γ and the curve integral is defined by using an arc-length
parametrization, see [19, Section 2] where upper gradients were originally introduced. We
interpret |u(x)− u(y)| =∞ whenever at least one of |u(x)|, |u(y)| is infinite.

We say that a family of curves Γ is of zero 1-modulus if there is a nonnegative Borel
function ρ ∈ L1(X) such that for all curves γ ∈ Γ, the curve integral

∫
γ ρ ds is infinite. A

property is said to hold for 1-almost every curve if it fails only for a curve family with zero
1-modulus. If g is a nonnegative µ-measurable function on X and (2.6) holds for 1-almost
every curve, we say that g is a 1-weak upper gradient of u. By only considering curves γ
in A ⊂ X, we can talk about a function g being a (1-weak) upper gradient of u in A.

Given a µ-measurable set H ⊂ X, we let

‖u‖N1,1(H) := ‖u‖L1(H) + inf ‖g‖L1(H),

where the infimum is taken over all 1-weak upper gradients g of u in H. The substitute
for the Sobolev space W 1,1 in the metric setting is the Newton-Sobolev space

N1,1(H) := {u : ‖u‖N1,1(H) <∞},

which was first introduced in [35]. It is known that for any u ∈ N1,1
loc (H) there exists a

minimal 1-weak upper gradient of u in H, always denoted by gu, satisfying gu ≤ g µ-a.e.
in H, for any 1-weak upper gradient g ∈ L1

loc(H) of u in H, see [6, Theorem 2.25].
Next we present the basic theory of functions of bounded variation on metric spaces.

This was first developed in [1, 32]; see also the monographs [3, 9, 10, 11, 42] for the classical
theory in Euclidean spaces. We will always denote by Ω an open subset of X. Given a
function u ∈ L1

loc(Ω), we define the total variation of u in Ω by

‖Du‖(Ω) := inf

{
lim inf
i→∞

∫

Ω
gui dµ : ui ∈ N1,1

loc (Ω), ui → uin L1
loc(Ω)

}
, (2.7)

where each gui is the minimal 1-weak upper gradient of ui in Ω. (In [32], local Lipschitz
constants were used in place of upper gradients, but the theory can be developed similarly
with either definition.) We say that a function u ∈ L1(Ω) is of bounded variation, and
denote u ∈ BV(Ω), if ‖Du‖(Ω) <∞. For an arbitrary set A ⊂ X, we define

‖Du‖(A) := inf{‖Du‖(W ) : A ⊂W, W ⊂ Xis open}.

Proposition 2.8 ([32, Theorem 3.4]). If u ∈ L1
loc(Ω), then ‖Du‖(·) is a Borel measure on

Ω.

For any u, v ∈ L1
loc(Ω), it is straightforward to show that

‖D(u+ v)‖(Ω) ≤ ‖Du‖(Ω) + ‖Dv‖(Ω). (2.9)

The BV norm is defined by

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖(Ω).
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We will assume throughout the paper that X supports a (1, 1)-Poincaré inequality,
meaning that there exist constants CP > 0 and λ ≥ 1 such that for every ball B(x, r),
every u ∈ L1

loc(X), and every upper gradient g of u, we have

∫

B(x,r)
|u− uB(x,r)| dµ ≤ CP r

∫

B(x,λr)
g dµ,

where

uB(x,r) :=

∫

B(x,r)
u dµ :=

1

µ(B(x, r))

∫

B(x,r)
u dµ.

Recall the exponent s > 1 from (2.1). The (1, 1)-Poincaré inequality implies the so-called
Sobolev-Poincaré inequality, see e.g. [6, Theorem 4.21], and by applying the latter to
approximating locally Lipschitz functions in the definition of the total variation, we get
the following Sobolev-Poincaré inequality for BV functions. For every ball B(x, r) and
every u ∈ L1

loc(X), we have

(∫

B(x,r)
|u− uB(x,r)|s/(s−1) dµ

)(s−1)/s

≤ CSP r
‖Du‖(B(x, 2λr))

µ(B(x, 2λr))
, (2.10)

where CSP = CSP (Cd, CP , λ) ≥ 1 is a constant.
For an open set Ω ⊂ X and a µ-measurable set E ⊂ X with ‖DχE‖(Ω) <∞, we know

that for any Borel set A ⊂ Ω,

‖DχE‖(A) =

∫

∂∗E∩A
θE dH, (2.11)

where θE : X → [α,Cd] with α = α(Cd, CP , λ) > 0, see [1, Theorem 5.3] and [4, Theorem
4.6]. The following coarea formula is given in [32, Proposition 4.2]: if Ω ⊂ X is an open
set and u ∈ L1

loc(Ω), then

‖Du‖(Ω) =

∫ ∞

−∞
P ({u > t},Ω) dt. (2.12)

The lower and upper approximate limits of a function u on Ω are defined respectively
by

u∧(x) := sup

{
t ∈ R : lim

r→0

µ({u < t} ∩B(x, r))

µ(B(x, r))
= 0

}

and

u∨(x) := inf

{
t ∈ R : lim

r→0

µ({u > t} ∩B(x, r))

µ(B(x, r))
= 0

}
.

Then the jump set Su is defined as the set of points x ∈ Ω for which u∧(x) < u∨(x). It is
straightforward to check that u∧ and u∨ are Borel functions.

By [4, Theorem 5.3], the variation measure of a BV function can be decomposed into
the absolutely continuous and singular part, and the latter into the Cantor and jump part,
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as follows. Given an open set Ω ⊂ X and u ∈ BV(Ω), we have for any Borel set A ⊂ Ω

‖Du‖(A) = ‖Du‖a(A) + ‖Du‖s(A)

= ‖Du‖a(A) + ‖Du‖c(A) + ‖Du‖j(A)

=

∫

A
a dµ+ ‖Du‖c(A) +

∫

A∩Su

∫ u∨(x)

u∧(x)
θ{u>t}(x) dt dH(x),

(2.13)

where a ∈ L1(Ω) is the density of the absolutely continuous part ‖Du‖a(A) of ‖Du‖(A)
and the functions θ{u>t} ∈ [α,Cd] are as in (2.11).

Next, we introduce the Haj lasz-Sobolev space. Let 0 < p <∞. Given a µ-measurable
set K ⊂ X, we define M1,p(K) to be the set of all functions u ∈ Lp(K) for which there
exists 0 ≤ g ∈ Lp(K) and a set A ⊂ K of measure zero such that for all x, y ∈ K \ A we
have the estimate

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)). (2.14)

The corresponding norm (when p ≥ 1) is obtained by setting

‖u‖M1,p(K) = ‖u‖Lp(K) + inf ‖g‖Lp(K),

where the infimum is taken over all admissible functions g in (2.14). We refer to [12, 13] for
more properties of the Haj lasz-Sobolev space M1,p. The space M1,p

cH (K) is defined exactly
in the same manner as the space M1,p(K) except for one difference: in the definition of
M1,p
cH (K), the condition (2.14) is assumed to hold only for points x, y ∈ K \A that satisfy

the condition
d(x, y) ≤ cH ·min{d(x,X \K), d(y,X \K)}, (2.15)

where 0 < cH < 1 is a constant.
We give the following definitions for the boundary trace, or trace for short, of a function

defined on an open set Ω.

Definition 2.16. Let Ω ⊂ X be an open set and let u be a µ-measurable function on Ω.
A number Tu(x) is the trace of u at x ∈ ∂Ω if we have

lim
r→0+

∫

B(x,r)∩Ω
|u− Tu(x)| dµ = 0. (2.17)

We say that u has a trace Tu in ∂Ω if Tu(x) exists for H-almost every x ∈ ∂Ω.

Moreover, we give the following definitions for the trace space of a function space defined
on an open set Ω.

Definition 2.18. Let Ω be an open set and let X(Ω) be a function space on Ω. A function
space Y(∂Ω,H) on ∂Ω is the trace space of X(Ω) if the trace operator u 7→ Tu defined in
Definition 2.16 is a bounded linear surjective operator from X(Ω) to Y(∂Ω,H).

Definition 2.19. Let Ω be an open set and H̃ be a measure on ∂Ω. Let X(Ω) be a function
function space on Ω. A function space Y(∂Ω, H̃) on ∂Ω is the trace space of X(Ω) with
respect to H̃, if the trace operator u 7→ Tu defined in Definition 2.16 by replacing H by H̃
is a bounded linear surjective operator from X(Ω) to Y(∂Ω, H̃).
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3 Traces of N 1,1(Ω) and BV(Ω)

In this section, let Ω ⊂ X be an arbitrary nonempty open set. Recall the definition of the
number s > 1 from (2.1).

Lemma 3.1. Let u ∈ L1
loc(Ω) with ‖Du‖(Ω) < ∞. Then there exists a sequence (ui) ⊂

Liploc(Ω) such that ui → u in L
s/(s−1)
loc (Ω) and

‖Du‖(Ω) = lim
i→∞

∫

Ω
gui dµ.

Proof. By the Sobolev-Poincaré inequality (2.10), we have u ∈ L
s/(s−1)
loc (Ω). Take open

sets Ω1 b Ω2 b . . . b Ω =
⋃∞
j=1 Ωj . Now u ∈ Ls/(s−1)(Ωj) for each j ∈ N. Define the

truncations
uM := min{M,max{−M,u}}, M > 0.

For each j ∈ N we find a number Mj > 0 such that ‖uMj − u‖Ls/(s−1)(Ωj)
< 1/j. From

the definition of the total variation, take a sequence (vi) ⊂ Liploc(Ω) such that vi → u in
L1

loc(Ω) and

‖Du‖(Ω) = lim
i→∞

∫

Ω
gvi dµ.

Then also (vi)Mj → uMj in Ls/(s−1)(Ωj) for all j ∈ N. Thus we can pick indices i(j) ≥ j
such that ‖(vi(j))Mj − uMj‖Ls/(s−1)(Ωj)

< 1/j for each j ∈ N. Defining uj := (vi(j))Mj , we
now have

‖uj − u‖Ls/(s−1)(Ωj)
< 2/j for all j ∈ N

and so uj → u in L
s/(s−1)
loc (Ω). Moreover, since truncation does not increase energy,

lim sup
j→∞

∫

Ω
guj dµ ≤ ‖Du‖(Ω).

But by lower semicontinuity, also ‖Du‖(Ω) ≤ lim infj→∞
∫

Ω guj dµ.

We have the following standard fact; for a proof see e.g. [16, Proposition 3.8].

Lemma 3.2. Let u ∈ L1
loc(Ω) with ‖Du‖(Ω) < ∞ and let (ui) ⊂ N1,1

loc (Ω) with ui → u in
L1

loc(Ω) and

‖Du‖(Ω) = lim
i→∞

∫

Ω
gui dµ.

Then we also have the weak* convergence gui dµ
∗
⇀ d‖Du‖.

Lemma 3.3. Let Ω1 b Ω2 b . . . b
⋃∞
j=1 Ωj = Ω be open sets, let Ω0 := ∅, and let

ηj ∈ Lipc(Ωj) such that 0 ≤ ηj ≤ 1 on X and ηj = 1 in Ωj−1 for each j ∈ N, with η1 ≡ 0.
Let 1 ≤ q < ∞. Moreover, let u ∈ L1

loc(Ω) with ‖Du‖(Ω) < ∞, and for each j ∈ N let
(uj,i) ⊂ N1,1(Ωj) such that uj,i − u→ 0 in Lq(Ωj) and

lim
i→∞

∫

Ωj

guj,i dµ = ‖Du‖(Ωj),
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where each guj,i is the minimal 1-weak upper gradient of uj,i in Ωj. Finally, let δj > 0 for
each j ∈ N, and let ε > 0. Then for each j ∈ N we find an index i(j) such that letting
uj := uj,i(j) and

v :=
∞∑

j=2

(ηj − ηj−1)uj ,

we have
max{‖v − u‖L1(Ωj\Ωj−1), ‖v − u‖Lq(Ωj\Ωj−1)} < δj for all j ∈ N,

and
∫

Ω gv dµ < ‖Du‖(Ω) + ε.

Note that neither u nor the functions uj,i need to be in Lq(Ωj), only in L1(Ωj), but
still we can have uj,i − u→ 0 in Lq(Ωj) for each j ∈ N. We can also see that in Ωj \Ωj−1,
the function v can be written as the finite sum (let η0 ≡ 0)

∞∑

i=2

(ηi − ηi−1)ui = (ηj − ηj−1)uj + (ηj+1 − ηj)uj+1 = ηjuj + (1− ηj)uj+1. (3.4)

Proof. By Lemma 3.2, for each j ∈ N we have guj,i dµ
∗
⇀ d‖Du‖ as i→∞ in Ωj . For each

j ∈ N, let Lj > 0 denote a Lipschitz constant of ηj ; we can take this to be an increasing
sequence. Set δ0 := 1, L0 := 1. Letting uj := uj,i(j) for suitable indices i(j) ∈ N, we get

max{‖uj − u‖L1(Ωj), ‖uj − u‖Lq(Ωj)} < min{δj−1, δj , 2
−j−1ε/Lj}/2 (3.5)

for all j ∈ N, and
∫

Ωj

(ηj − ηj−1)guj dµ <

∫

Ωj

(ηj − ηj−1) d‖Du‖+ 2−jε (3.6)

for all j = 2, 3, . . .. We get for all j ∈ N

‖v − u‖Lq(Ωj\Ωj−1) = ‖
∞∑

i=2

(ηi − ηi−1)ui − u‖Lq(Ωj\Ωj−1)

(3.4)
= ‖ηjuj + (1− ηj)uj+1 − u‖Lq(Ωj\Ωj−1)

= ‖ηjuj + (1− ηj)uj+1 − ηju− (1− ηj)u‖Lq(Ωj\Ωj−1)

≤ ‖uj − u‖Lq(Ωj\Ωj−1) + ‖uj+1 − u‖Lq(Ωj\Ωj−1)

< δj

by (3.5) as desired, and similarly for the L1-norm. Let v2 := u2 in Ω2, and recursively
vi+1 := ηivi + (1 − ηi)ui+1 in Ωi+1. We see that v = limi→∞ vi (at every point in Ω). By
the proof of the Leibniz rule in [6, Lemma 2.18], the minimal 1-weak upper gradient of v3

in Ω3 satisfies
gv3 ≤ gη2 |u2 − u3|+ η2gu2 + (1− η2)gu3 .

Inductively, we get for i = 3, 4, . . .

gvi ≤
i−1∑

j=2

gηj |uj − uj+1|+
i−1∑

j=2

(ηj − ηj−1)guj + (1− ηi−1)gui in Ωi;
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to prove this, assume that it holds for the index i. Then we have by applying a Leibniz
rule as above, and noting that gηi can be nonzero only in Ωi \Ωi−1 (see [6, Corollary 2.21]),
where vi = ui,

gvi+1 ≤ gηi |vi − ui+1|+ ηigvi + (1− ηi)gui+1

= gηi |ui − ui+1|+ ηigvi + (1− ηi)gui+1

Induction

≤ gηi |ui − ui+1|+
i−1∑

j=2

gηj |uj − uj+1|

+
i−1∑

j=2

(ηj − ηj−1)guj + (ηi − ηi−1)gui + (1− ηi)gui+1

=
i∑

j=2

gηj |uj − uj+1|+
i∑

j=2

(ηj − ηj−1)guj + (1− ηi)gui+1 in Ωi+1.

This completes the induction. In each Ωj \ Ωj−1, by (3.4) we have

v = ηjuj + (1− ηj)uj+1 = ηjvj + (1− ηj)uj+1 = vj+1,

and so in fact v = vj+1 in Ωj , for each j ∈ N. Thus the minimal 1-weak upper gradient of
v in Ωi satisfies

gv = gvi+1 ≤
∞∑

j=2

gηj |uj − uj+1|+
∞∑

j=2

(ηj − ηj−1)guj .

Thus

∫

Ωi

gv dµ ≤
∞∑

j=2

∫

Ωj

gηj |uj − uj+1| dµ+

∞∑

j=2

∫

Ωj

(ηj − ηj−1)guj dµ

≤
∞∑

j=2

Lj‖uj − uj+1‖L1(Ωj\Ωj−1) +

∞∑

j=2

(∫

Ωj

(ηj − ηj−1) d‖Du‖+ 2−jε

)
by (3.6)

≤ ε/2 + ‖Du‖(Ω) + ε/2 by (3.5), (3.6)

= ‖Du‖(Ω) + ε.

Note that gv does not depend on i, see [6, Lemma 2.23], and so it is well defined on Ω. Since
gv is the minimal 1-weak upper gradient of v in each Ωi, it is clearly also (the minimal)
1-weak upper gradient of v in Ω. Then by Lebesgue’s monotone convergence theorem,

∫

Ω
gv dµ ≤ ‖Du‖(Ω) + ε.

Theorem 1.2 of the introduction follows from the following theorem.
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Theorem 3.7. Let u ∈ L1
loc(Ω) with ‖Du‖(Ω) < ∞ and let ε > 0. Then there exists

v ∈ N1,1
loc (Ω) ∩ Liploc(Ω) such that ‖v − u‖L1(Ω) < ε, ‖v − u‖Ls/(s−1)(Ω) < ε,

∫
Ω gv dµ <

‖Du‖(Ω) + ε, and ∫

B(x,r)∩Ω
|v − u|s/(s−1) dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

Note that if u ∈ BV(Ω) as in the formulation of Theorem 1.2, then v ∈ L1(Ω) and so
v ∈ N1,1(Ω).

Proof. Fix x0 ∈ X. Define Ω0 := ∅ and pick numbers dj ∈ (2−j , 2−j+1), j ∈ N, such that
the sets

Ωj := {x ∈ Ω : d(x,X \ Ω) > dj} ∩B(x0, d
−1
j )

satisfy ‖Du‖(∂Ωj) = 0. For each j ∈ N, take ηj ∈ Lipc(Ωj) such that 0 ≤ ηj ≤ 1 on X and
ηj = 1 in Ωj−1, and η1 ≡ 0. Note that for a fixed r > 0, the function

x 7→ µ(B(x, r) ∩ Ω), x ∈ ∂Ω,

is lower semicontinuous and strictly positive. Since ∂Ω ∩ B(x0, d
−1
j ) is compact for every

j ∈ N, the numbers

βj := inf{µ(B(x, 2−j) ∩ Ω) : x ∈ ∂Ω ∩B(x0, d
−1
j+2)}, j ∈ N,

are strictly positive. Set

δj := 2−j min
{
ε, β

s/(s−1)
j

}
.

By Lemma 3.1 we find functions (ui) ⊂ Liploc(Ω) such that ui → u in L
s/(s−1)
loc (Ω) and

lim
i→∞

∫

Ω
gui dµ = ‖Du‖(Ω).

Then also ui → u in Ls/(s−1)(Ωj) for every j ∈ N, and by Lemma 3.2 and the fact that
‖Du‖(∂Ωj) = 0 we get

lim
i→∞

∫

Ωj

gui dµ = ‖Du‖(Ωj).

Then apply Lemma 3.3 to obtain a function v ∈ Liploc(Ω). By the lemma, we have∫
Ω gv dµ < ‖Du‖(Ω) + ε as desired, and from the condition

max{‖v − u‖L1(Ωj\Ωj−1), ‖v − u‖Ls/(s−1)(Ωj\Ωj−1)} < δj ≤ 2−jε for all j ∈ N

we easily get ‖v − u‖L1(Ω) < ε and ‖v − u‖Ls/(s−1)(Ω) < ε. In particular, v ∈ N1,1
loc (Ω) as

desired.
Fix x ∈ ∂Ω. Choose the smallest l ∈ N such that x ∈ B(x0, d

−1
l+2). Note that then

B(x, 1) ∩B(x0, d
−1
l−1) = ∅ (if l ≥ 2) and so for any k ∈ N,

B(x, 2−k+1) ∩ Ω = B(x, 2−k+1) ∩
( ∞⋃

j=max{k,l}
(Ωj \ Ωj−1)

)
.
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Now

1

µ(B(x, 2−k) ∩ Ω)

∫

B(x,2−k+1)∩Ω
|v − u|s/(s−1) dµ

=
1

µ(B(x, 2−k) ∩ Ω)

∞∑

j=max{k,l}

∫

B(x,2−k+1)∩Ωj\Ωj−1

|v − u|s/(s−1) dµ

≤ 1

µ(B(x, 2−k) ∩ Ω)

∞∑

j=max{k,l}

∫

Ωj\Ωj−1

|v − u|s/(s−1) dµ

≤ 1

µ(B(x, 2−k) ∩ Ω)

∞∑

j=max{k,l}
δ

(s−1)/s
j

≤
∞∑

j=max{k,l}

2−jβj
µ(B(x, 2−j) ∩ Ω)

≤
∞∑

j=max{k,l}
2−j ≤ 2−k+1.

Now it clearly follows that
∫

B(x,r)∩Ω
|v − u|s/(s−1) dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

We have the following approximation result for BV functions in the Lq-norm.

Theorem 3.8. Let u ∈ L1
loc(Ω) with ‖Du‖(Ω) <∞ and let 1 ≤ q <∞. Then there exists

a sequence (ui) ⊂ N1,1
loc (Ω) such that ui − u→ 0 in L1(Ω) ∩ Lq(Ω) and

∫

Ω
gui dµ→ ‖Du‖(Ω).

Proof. For each k = 0, 1, . . . define the truncation of u at levels k and k + 1

uk := min{1, (u− k)+}.

Then uk ∈ L1
loc(Ω) ∩ L∞(Ω) for each k = 0, 1, . . . and u+ =

∑∞
k=0 uk. Also note that by

the coarea formula (2.12),

‖Duk‖(Ω) =

∫ ∞

−∞
P ({uk > t},Ω) dt =

∫ k+1

k
P ({u > t},Ω) dt.

For each k = 0, 1, . . ., from the definition of the total variation we get a sequence (vk,i) ⊂
N1,1

loc (Ω) with vk,i → uk in L1
loc(Ω) and

∫

Ω
gvk,i dµ→ ‖Duk‖(Ω) as i→∞.
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In the proof of Theorem 3.7 we saw that in fact we can get vk,i − uk → 0 in L1(Ω). Since
0 ≤ uk ≤ 1, by truncation we can assume that also 0 ≤ vk,i ≤ 1. Then also vk,i − uk → 0
in Lq(Ω). Let ε > 0. For a suitable choice of indices i = i(k), for vk := vk,i(k) we have

‖vk − uk‖L1(Ω) < 2−k−2ε, ‖vk − uk‖Lq(Ω) < 2−k−2ε, and

∫

Ω
gvk dµ < ‖Duk‖(Ω) + 2−k−1ε =

∫ k+1

k
P ({u > t},Ω) dt+ 2−k−1ε.

Then for v :=
∑∞

k=0 vk we have ‖v − u+‖L1(Ω) < ε/2 and ‖v − u+‖Lq(Ω) < ε/2. Moreover,
using e.g. [6, Lemma 1.52] we get gv ≤

∑∞
k=0 gvk and then

∫

Ω
gv dµ ≤

∞∑

k=0

∫

Ω
gvk dµ ≤

∞∑

k=0

(∫ k+1

k
P ({u > t},Ω) dt+ 2−k−1ε

)

=

∫ ∞

0
P ({u > t},Ω) dt+ ε/2

= ‖Du+‖(Ω) + ε/2

again by the coarea formula. Similarly we find a function w ∈ N1,1
loc (Ω) with ‖w−u−‖L1(Ω) <

ε/2, ‖w − u−‖Lq(Ω) < ε/2, and
∫

Ω gw dµ < ‖Du−‖(Ω) + ε/2. Then for h := v − w we have
‖h− u‖L1(Ω) < ε, ‖h− u‖Lq(Ω) < ε, and

∫

Ω
gh dµ < ‖Du+‖(Ω) + ε/2 + ‖Du−‖(Ω) + ε/2 = ‖Du‖(Ω) + ε

using the coarea formula once more. In this way we get the desired sequence.

Theorem 1.3 of the introduction follows from the following theorem. In Example 5.1
we will show that here we cannot take u to be continuous or even locally bounded in Ω.

Theorem 3.9. Let u ∈ L1
loc(Ω) with ‖Du‖(Ω) < ∞, let 1 ≤ q < ∞, and let ε > 0.

Then there exists v ∈ N1,1
loc (Ω) such that ‖v − u‖L1(Ω) < ε, ‖v − u‖Lq(Ω) < ε,

∫
Ω gv dµ <

‖Du‖(Ω) + ε, and ∫

B(x,r)∩Ω
|v − u|q dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω.

Proof. The proof is essentially the same as for Theorem 3.7; the difference is that here we
apply Theorem 3.8 to find sequences (uj,i)i ⊂ N1,1(Ωj), j ∈ N, such that ‖uj,i−u‖Lq(Ωj) →
0 and limi→∞

∫
Ωj
guj,i dµ = ‖Du‖(Ωj) as i→∞.

We say that w ∈ SBV(Ω) if w ∈ BV(Ω) and ‖Dw‖c(Ω) = 0 (recall the decomposition
(2.13)). Recall also that the jump set Su is the set of points x ∈ Ω for which u∧(x) < u∨(x).
Denote Ω(r) := {x ∈ Ω : dist(x,X \ Ω) > r}. We have the following approximation result
for BV functions by SBV functions.

Theorem 3.10. Let u ∈ BV(Ω) and let ε > 0. Then there exists w ∈ SBV(Ω) such that
‖w − u‖L1(Ω) < ε, ‖w − u‖L∞(Ω) < ε, ‖Dw‖(Ω) < ‖Du‖(Ω) + ε, H(Sw \ Su) = 0, and

lim
r→0+

‖w − u‖L∞(Ω\Ω(r)) = 0.

14



Proof. This is given in [26, Corollary 5.15]; for the above limit see [26, Eq. (3.7), (3.10)].

The following approximation result for BV functions by means of functions with a jump
set of finite Hausdorff measure is given as part of [27, Theorem 5.3].

Theorem 3.11. Let u ∈ BV(Ω) and let ε, δ > 0. Then we find w ∈ BV(Ω) such that
‖w − u‖L1(Ω) < ε,

‖D(w − u)‖(Ω) ≤ 2‖Du‖({0 < u∨ − u∧ < δ}) + ε,

‖w − u‖L∞(Ω) ≤ 10δ, and H(Sw \ {u∨ − u∧ ≥ δ}) = 0.

We apply this theorem first to obtain the following proposition.

Proposition 3.12. Let u ∈ BV(Ω) and let ε > 0. Then we find v ∈ BV(Ω) such that
‖v − u‖BV(Ω) < ε, ‖v − u‖L∞(Ω) < ε, H(Sv) <∞, and

lim
r→0+

‖v − u‖L∞(Ω\Ω(r)) = 0.

Proof. Take numbers δj ↘ 0, 0 < δj < ε/20, such that

∞∑

j=2

‖Du‖({0 < u∨ − u∧ < δj}) <
ε

4
. (3.13)

Note that by the decomposition (2.13), H({u∨ − u∧ > t}) < ∞ for all t > 0. Thus we
can take a strictly decreasing sequence of rj ↘ 0 so that the sets Ωj := Ω(rj) satisfy (let
Ω0 := ∅)

H((Ωj \ Ωj−2) ∩ {u∨ − u∧ ≥ δj}) ≤ H((Ω \ Ωj−2) ∩ {u∨ − u∧ ≥ δj}) < 2−jε

for all j = 3, 4, . . .. Then

∞∑

j=2

H((Ωj \ Ωj−2) ∩ {u∨ − u∧ ≥ δj}) < H({u∨ − u∧ ≥ δ2}) + ε. (3.14)

Also choose functions ηj ∈ Lip(X) supported in Ωj , j ∈ N, such that 0 ≤ ηj ≤ 1 on X
and ηj = 1 in Ωj−1, with η1 ≡ 0. For each j ∈ N, apply Theorem 3.11 to find a function
vj ∈ BV(Ω) satisfying

max{‖gηj + gηj−1‖L∞(Ω), 1} · ‖vj − u‖L1(Ω) < 2−j−1ε (3.15)

as well as
‖D(vj − u)‖(Ω) ≤ 2‖Du‖({0 < u∨ − u∧ < δj}) + 2−j−1ε, (3.16)

‖vj − u‖L∞(Ω) ≤ 10δj , and H(Svj \ {u∨ − u∧ ≥ δj}) = 0. Let

v :=

∞∑

j=2

(ηj − ηj−1)vj . (3.17)
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Then

‖v − u‖L1(Ω) = ‖
∞∑

j=2

(ηj − ηj−1)(vj − u)‖L1(Ω) ≤
∞∑

j=2

‖vj − u‖L1(Ω) ≤
∞∑

j=2

2−j−1ε = ε/4.

Since ‖vj − u‖L∞(Ω) ≤ 10δj < ε/2, also ‖v − u‖L∞(Ω) < ε. It is also easy to check that
limr→0+ ‖v − u‖L∞(Ω\Ω(r)) = 0.

Clearly
∑k

j=2(ηj − ηj−1)(vj − u) → v − u in L1
loc(Ω) as k → ∞. Thus by lower

semicontinuity and a Leibniz rule (see [17, Lemma 3.2]),

‖D(v − u)‖(Ω) ≤ lim inf
k→∞

∥∥∥∥D
k∑

j=2

(ηj − ηj−1)(vj − u)

∥∥∥∥(Ω)

≤
∞∑

j=2

‖D((ηj − ηj−1)(vj − u))‖(Ω) by (2.9)

≤
∞∑

j=2

(
‖D(vj − u)‖(Ω) +

∫

Ω
(gηj + gηj−1)|vj − u| dµ

)

<
∞∑

j=2

(
2‖Du‖({0 < u∨ − u∧ < δj}) + 2−j−1ε

)
+
∞∑

j=2

2−j−1ε by (3.16), (3.15)

< ε/2 + ε/4 + ε/4 by (3.13)

= ε.

Finally we want to show that H(Sv) < ∞. Note that (3.17) is a locally finite sum. If
x ∈ S(ηj−ηj−1)vj , then we get x ∈ Svj , and so Sv ⊂

⋃∞
j=2

(
Svj ∩ (Ωj \ Ωj−2)

)
. By the fact

that H(Svj \ {u∨ − u∧ ≥ δj}) = 0 for all j ∈ N and by (3.14), we find that

H(Sv) ≤
∞∑

j=2

H(Svj ∩ (Ωj \ Ωj−2)) ≤
∞∑

j=2

H({u∨ − u∧ ≥ δj} ∩ (Ωj \ Ωj−2))

< H({u∨ − u∧ ≥ δ2}) + ε <∞,

as desired.

Now we can prove Theorem 1.4 of the introduction. In Example 5.2 we will show that
here we cannot have H(Sv) = 0.

Proof of Theorem 1.4. First apply Proposition 3.12 to find ŵ ∈ BV(Ω) such that ‖ŵ −
u‖BV(Ω) < ε/4, H(Sŵ) <∞, and

lim
r→0+

‖ŵ − u‖L∞(Ω\Ω(r)) = 0.

Then apply Theorem 3.10 to find w ∈ SBV(Ω) such that ‖w− ŵ‖L1(Ω) < ε/4, ‖Dw‖(Ω) <
‖Dŵ‖(Ω) + ε/4, H(Sw \ Sŵ) = 0, and

lim
r→0+

‖w − ŵ‖L∞(Ω\Ω(r)) = 0.
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In total, we have w ∈ SBV(Ω) such that ‖w − u‖L1(Ω) < ε/2, ‖Dw‖(Ω) < ‖Du‖(Ω) + ε/2,
H(Sw) <∞, and

lim
r→0+

‖w − u‖L∞(Ω\Ω(r)) = 0.

Take Ω′ b Ω such that ‖Dw‖(Ω \ Ω′) < ε/2 and H(Sw \ Ω′) < ε, and take a function
η ∈ Lipc(Ω) with 0 ≤ η ≤ 1 on X and η = 1 in Ω′. From the definition of the total variation,
take a sequence (wi) ⊂ Liploc(Ω) such that wi → w in L1

loc(Ω) and limi→∞ ‖Dwi‖(Ω) =
‖Dw‖(Ω). Define for each i ∈ N

vi := ηwi + (1− η)w.

Then clearly limi→∞ ‖vi − w‖L1(Ω) = 0 and by a Leibniz rule (see [17, Lemma 3.2]) and
since gη is bounded,

‖Dvi‖(Ω) ≤
∫

Ω
|wi − w|gη dµ+ ‖Dwi‖(Ω) + ‖Dw‖(Ω \ Ω′)

→ ‖Dw‖(Ω) + ‖Dw‖(Ω \ Ω′) < ‖Du‖(Ω) + ε.

Thus if we choose v := vi for suitably large i ∈ N, we have ‖v−u‖L1(Ω) < ε and ‖Dv‖(Ω) <
‖Du‖(Ω) + ε, and so in particular v ∈ BV(Ω). It is then easy to check that in fact
v ∈ SBV(Ω). Since Swi = ∅ for all i ∈ N, we have Svi ⊂ Sw \ Ω′ for all i ∈ N, and since
H(Sw \ Ω′) < ε, in fact H(Sv) < ε. Finally,

lim
r→0+

‖v − u‖L∞(Ω\Ω(r)) = lim
r→0+

‖w − u‖L∞(Ω\Ω(r)) = 0

as required.

To complete this section, we give the proof of Corollary 1.5 by using Theorem 3.7 (or
Theorem 3.9).

Proof of Corollary 1.5. Assume that Z(∂Ω,H) is the trace space of BV(Ω), i.e., the trace
operator u 7→ Tu in Definition 2.16 is a bounded linear surjective operator from BV(Ω) to
Z(∂Ω,H). From the definition of the total variation (2.7) we immediately get N1,1(Ω) ⊂
BV(Ω) with ‖ · ‖BV(Ω) ≤ ‖ · ‖N1,1(Ω). Thus the trace operator u 7→ Tu is still a bounded
linear operator from N1,1(Ω) to Z(∂Ω,H). Hence it remains to show the surjectivity. For
any f ∈ Z(∂Ω,H), we know that there is a function u ∈ BV(Ω) such that Tu = f . It
follows from Theorem 3.7 (or Theorem 3.9) that there is a function v ∈ N1,1(Ω) such that
Tv = Tu = f , since

lim
r→0+

∫

B(x,r)∩Ω
|v − f(x)| dµ ≤ lim

r→0+

∫

B(x,r)∩Ω
|u− v|+ |u− f(x)| dµ

≤ lim
r→0+

(∫

B(x,r)∩Ω
|u− v|s/s−1 dµ

)(s−1)/s

+ lim
r→0+

∫

B(x,r)∩Ω
|u− f(x)| dµ

= 0, for H-a.e. x ∈ ∂Ω. (3.18)

This gives the surjectivity as desired.
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Conversely, assume that Z(∂Ω,H) is the trace space of N1,1(Ω), i.e., the trace operator
u 7→ Tu in Definition 2.16 is a bounded linear surjective operator fromN1,1(Ω) to Z(∂Ω,H).
Then for any h ∈ BV(Ω), without loss of generality, we may assume that ‖h‖BV(Ω) > 0. By
Theorem 3.7, choosing ε = ‖h‖BV(Ω)/2, there is a function v ∈ N1,1(Ω) with ‖v‖N1,1(Ω) ≤
2‖h‖BV(Ω) and ∫

B(x,r)∩Ω
|v − h|s/(s−1) dµ→ 0 as r → 0+

uniformly for all x ∈ ∂Ω. Then we have that Th = Tv by a similar argument to (3.18),
and that

‖Th‖Z(∂Ω,H) = ‖Tv‖Z(∂Ω,H) . ‖v‖N1,1(Ω) ≤ 2‖h‖BV(Ω).

Hence the trace Th exists for any h ∈ BV(Ω) and the trace operator h→ Th is linear and
bounded from BV(Ω) to Z(∂Ω,H). Moreover, the surjectivity of the trace operator follows
immediately from N1,1(Ω) ⊂ BV(Ω). Thus Z(∂Ω,H) is also the trace space of BV(Ω).

Remark 3.19. The trace spaces of BV(Ω) and N1,1(Ω) are also the same with respect to
any given boundary measure H̃ under Definition 2.19.

4 Traces of N 1,1(Ω) and M 1,1(Ω)

In this section, let Ω ⊂ X be an arbitrary nonempty open set with nonempty complement.
We will work with Whitney coverings of open sets. For a ball B = B(x, r) and a

number a > 0, we use the notation aB := B(x, ar). We can choose a Whitney covering
{Bj = B(xj , rj)}∞j=1 of Ω such that:

1. for each j ∈ N,
rj = dist(xj , X \ Ω)/100λ,

2. for each k ∈ N, the ball 20λBk meets at most C0 = C0(Cd) balls 20λBj (that is, a
bounded overlap property holds),

3. if 20λBk meets 20λBj , then rj ≤ 2rk;

see e.g. [20, Proposition 4.1.15] and its proof. Given such a covering of Ω, we find a
partition of unity {φj}∞j=1 subordinate to the covering, that is, for each j ∈ N the function
φj is c/rj-Lipschitz, c = c(Cd), with spt(φj) ⊂ 2Bj and 0 ≤ φj ≤ 1, such that

∑
j φj = 1

on Ω; see e.g. [20, p. 103]. We define a discrete convolution uW of u ∈ L1
loc(Ω) with respect

to the Whitney covering by

uW :=
∞∑

j=1

uBjφj .

In general, uW ∈ Liploc(Ω) ⊂ L1
loc(Ω).

Theorem 4.1. For any function u ∈ N1,1(Ω), there exists a constant 0 < cH = cH(λ) < 1
such that the discrete convolution uW of u with respect to the Whitney covering {Bj =

B(xj , rj)}∞j=1 is in M1,1
cH (Ω) with the norm estimate

‖uW ‖M1,1
cH

(Ω)
. ‖u‖N1,1(Ω).
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Proof. First we consider the L1-norm of wW . By the bounded overlap property of the
Whitney covering {Bj = B(xj , rj)}∞j=1, it follows from the facts spt(φj) ⊂ 2Bj and 0 ≤
φj ≤ 1 that

‖uW ‖L1(Ω) ≤
∞∑

j=1

µ(2Bj)

∫

Bj

|u| dµ ≤ Cd
∞∑

j=1

∫

Bj

|u| dµ . ‖u‖L1(Ω).

Next, for the minimal 1-weak upper gradient gu of u, we will give an admissible function
g that satisfies (2.14) when the pair of points x, y satisfy (2.15) with cH = 1/50λ. We claim
that the admissible function g can be defined as follows: for any point x ∈ Ω, we define

g(x) := C

∞∑

j=1

χBj (x)

∫

60λBj

gu dµ (4.2)

with C = C(Cd, CP , λ). Indeed, for any pair of points x, y ∈ Ω satisfying (2.15), without
loss of generality, we may assume that dist(x,X \ Ω) ≤ dist(y,X \ Ω) and x ∈ Bj , y ∈ Bi
for some i, j ∈ N. Recalling the properties of the Whitney covering, we have that

dist(x,X \ Ω) ≤ dist(xj , X \ Ω) + rj = (100λ+ 1)rj .

Hence we have

d(y, xj) ≤ d(x, y) + rj ≤
1

50λ
dist(x,X \ Ω) + rj < 4rj ,

which means y ∈ 4Bj . Hence 20λBi ∩ 20λBj 6= ∅, and so ri ≤ 2rj . Hence Bi ⊂ 10Bj .
Moreover, if 2Bk∩Bi 6= ∅, then rk ≤ 2ri and so Bk ⊂ 6Bi ⊂ 20Bj . Recall that the function
φk is c/rk-Lipschitz for any k ∈ N and that

∑
k φk = 1 on Ω. Then by the bounded overlap

property of the Whitney covering and the Poincaré inequality for u and gu, we have that

|uW (x)− uW (y)| =
∣∣∣∣∣
∞∑

k=1

uBkφk(x)−
∞∑

k=1

uBkφk(y)

∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=1

(uBk − uBj )φk(x)−
∞∑

k=1

(uBk − uBj )φk(y)

∣∣∣∣∣

≤
∞∑

k=1

|uBk − uBj ||φk(x)− φk(y)|

≤ d(x, y)
∑

{k: 2Bk∩(Bj∪Bi)6=∅}

c

rk
|uBk − uBj |

. d(x, y)
c

rj

∫

20Bj

|u− u20Bj | dµ (4.3)

≤ Cd(x, y)

∫

20λBj

gu dµ,

where C is a constant depending on λ, c, Cd, CP and C0 only, and thus in fact only on
Cd, CP , λ. Thus, the function g defined in (4.2) is an admissible function for uW .
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At last, we show the L1-norm estimate for g. It follows from the bounded overlap
property of the Whitney covering that

∫

Ω
g(x) dµ(x) ≤

∞∑

j=1

∫

Bj

g(x) dµ(x) .
∞∑

j=1

µ(Bj)

∫

20λBj

gu dµ

.
∞∑

j=1

∫

20λBj

gu(x) dµ(x) .
∫

Ω
gu(x) dµ(x) = ‖gu‖L1(Ω).

Recall the homogeneous dimension s > 1 from (2.1).

Theorem 4.4 ([13, Theorem 9.2]). Let σ > 1 and let B = B(x, r) be a ball in X. If
u ∈M1,p(σB, d, µ) and g is an admissible function in (2.14), where p ≥ s/(s+ 1), then

∫

B
|u− uB| dµ ≤ Cr

(∫

σB
gp dµ

)1/p

, (4.5)

with C depending on Cd, p, and σ only.

Next we will consider the relationship between M1,1
cH (Ω) and M1,1(Ω). The next theorem

shows that when Ω ⊂ X is a uniform domain, M1,1
cH (Ω) and M1,1(Ω) are the same. The

case X = Rn, i.e. the Euclidean case was proved in [23, Theorem 19]. Before stating the
theorem, we first give the definition of uniform domain.

Definition 4.6. A domain Ω ⊂ X is called uniform if there is a constant cU ∈ (0, 1] such
that every pair of distinct points x, y ∈ Ω can be connected by a curve γ : [0, `γ ] → Ω
parametrized by arc-length such that γ(0) = x, γ(`γ) = y, `γ ≤ c−1

U d(x, y), and

dist(γ(t), X \ Ω) ≥ cU min{t, `γ − t} for all t ∈ [0, `γ ]. (4.7)

Theorem 4.8. Assume Ω ⊂ X is a uniform domain. Then for any 0 < cH < 1, we have
M1,1
cH (Ω) = M1,1(Ω) with equivalent norms.

Proof. Choose arbitrary x, y ∈ Ω. By modifying the standard covering argument in uniform
domains (see [14, 15, 23] for details), from the uniformity condition we deduce easily that
there is a chain of balls Bk resembling a cigar that joins the points x and y. More precisely,
there are balls Bk := B(zk, rk) with k ∈ Z and zk ∈ Ω such that for each k one has for
some c′ = c′(λ, cH , cU )

15λ/cHBk ⊂ Ω and rk ≥
1

c′
min{d(zk, x), d(zk, y)},

with also Bk ∩ Bk+1 6= ∅, and rk/2 ≤ rk+1 ≤ 2rk. In addition, limk→+∞ d(x,Bk) = 0 =
limk→−∞ d(y,Bk). Finally, we may assume that

∑
k∈Z rk ≤ C ′d(x, y).

Let u ∈M1,1
cH (Ω) with admissible function g ∈ L1(Ω). We can zero extend g outside Ω.

Since 15λ/cHBk ⊂ Ω and cH < 1, then for any x0, y0 ∈ 5λBk, we have

d(x0, y0) ≤ 10λrk ≤ cH(15λ/cH − 5λ)rk ≤ cH min{dist(x0, X \ Ω), dist(y0, X \ Ω)}.
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Hence, for any x0, y0 ∈ 5λBk, the condition (2.15) is satisfied. Thus, u ∈ M1,1(5λBk) for
any k ∈ Z. It follows from the Poincaré inequality in Theorem 4.4 on the ball 5Bk with
σ = λ that

|uBk − uBk+1
| .
∫

5Bk

|u− u5Bk | . rk

(∫

5λBk

gs/(s+1) dµ

)(s+1)/s

. rk

(∫

(5λ+2c′)Bk
gs/(s+1) dµ

)(s+1)/s

. rk

((
Mgs/(s+1)(x)

)(s+1)/s
+
(
Mgs/(s+1)(y)

)(s+1)/s
)
,

where s is the associated homogeneous dimension. Here the last inequality follows from
the fact that either x or y is contained in 2c′Bk ⊂ (5λ+ 2c′)Bk.

If x, y are Lebesgue points of u, we have |u(x) − u(y)| ≤ ∑
k∈Z |uBk − uBk+1

|. By
summing over k, it follows that

|u(x)− u(y)| ≤ d(x, y)(g̃(x) + g̃(y)),

where g̃(x) = 2C
(
Mgs/(s+1)(x)

)(s+1)/s
. The conclusion follows from the Hardy-Littlewood

maximal inequality.

Remark 4.9. From the proof of Theorem 4.8, we know that ifX is a geodesic space, i.e., for
any x, y ∈ X, there exists a curve γ in X such that `γ = d(x, y), then M1,1

c1 (Ω) = M1,1
c2 (Ω)

with equivalent norms for any two constants 0 < c1, c2 < 1. This fact coincides with the
case Ω ⊂ Rn, where Rn is a geodesic space. When Ω ⊂ Rn, for any 0 < cH < 1, we obtain
M1,1
cH (Ω) = M1,1

ball(Ω). Here we refer to [23, 41] for more details about the space M1,1
ball(Ω).

To “achieve” the boundary values, we need the following proposition.

Proposition 4.10 ([28, Proposition 6.5]). Let u ∈ BV(Ω). Then the discrete convolution
uW of u satisfies

lim
r→0+

1

µ(B(x, r))

∫

B(x,r)∩Ω
|uW − u| dµ = 0

for H-a.e. x ∈ ∂Ω.

The above proposition considers the measure H on ∂Ω, that is, the codimension 1
Hausdorff measure. But this may not be the measure we really want to study. For ex-
ample, a classical problem is to study the trace spaces of weighted Sobolev spaces on
Euclidean spaces. For the half plane Ω = R2

+ := {x = (x1, x2) ∈ R2 : x2 > 0} and
the measure dµ(x) = wλ(x) dm2(x) with m2 the 2-dimensional Lebesgue measure and
wλ(x) := logλ (max{e, e/|x2|}), λ > 0, the codimension 1 Hausdorff measure on ∂R2

+ = R
is not even σ-finite and hence is not the 1-dimensional Lebesgue measure that we usually
study, see Example 5.7. Thus, it is reasonable to consider the equivalence of the traces of
N1,1(Ω) and M1,1(Ω) under any general boundary measure H̃ on ∂Ω. Thus, we introduce
the following lemma.
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Lemma 4.11. Assume Ω satisfies a measure doubling condition (2.5), i.e., µ|Ω is doubling.
Let u ∈ L1

loc(Ω) and z ∈ ∂Ω. Assume that there is a ∈ R such that

lim
r→0+

∫

B(z,r)∩Ω
|u− a| dµ = 0.

Then the discrete convolution uW of u satisfies

lim
r→0+

∫

B(z,r)∩Ω
|uW − a| dµ = 0.

Proof. In the Whitney covering {Bk}∞k=1, recall that for any Bk = B(xk, rk) we have
rk = dist(xk, X \ Ω)/100λ. If 2Bk ∩B(z, r) 6= ∅, then

2rk + r ≥ d(xk, z) ≥ dist(xk, X \ Ω) = 100λrk,

which implies ⋃

{k∈N: 2Bk∩B(z,r)6=∅}
Bk ⊂ B(z, 2r).

Then we have
∫

B(z,r)∩Ω
|uW − a| dµ =

∫

B(z,r)∩Ω

∣∣∣∣∣
∞∑

k=1

(φkuBk − φka)

∣∣∣∣∣ dµ

≤
∫

B(z,r)∩Ω

∞∑

k=1

|φk||uBk − a| dµ

≤
∫

B(z,r)∩Ω

∞∑

k=1

χ2Bk |uBk − a| dµ

≤
∫

B(z,r)∩Ω

∞∑

k=1

χ2Bk

∫

Bk

|u− a| dµ dµ

≤ Cd
∑

{k∈N: 2Bk∩B(z,r)6=∅}

∫

Bk

|u− a| dµ

.
∫

B(z,2r)∩Ω
|u− a| dµ

by the bounded overlap property. Thus, the doubling property of µ|Ω gives the estimate
∫

B(z,r)∩Ω
|uW − a| dµ .

∫

B(z,2r)∩Ω
|u− a| dµ.

The result follows by passing to the limit.

Proof of Theorem 1.6, Theorem 1.7, and Corollary 1.8. Theorem 1.6 follows immediately
by combining Theorem 4.1, Theorem 4.8 and Proposition 4.10, while Theorem 1.7 follows
immediately by combining Theorem 4.1, Theorem 4.8 and Lemma 4.11.

For Corollary 1.8, by adapting the proof of Corollary 1.5, we obtain the result using
Theorem 1.7. Note that M1,1(Ω) ⊂ N1,1(Ω) with ‖·‖N1,1(Ω) . ‖·‖M1,1(Ω), see [13, Theorem
8.6].
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5 Examples and applications

The following example shows that in Theorem 1.3 we cannot take a function v ∈ Liploc(Ω),
or even v ∈ L∞loc(Ω).

Example 5.1. Let X = R2 (unweighted) and let Ω := B(0, 1). We find a sequence {xk}
that is dense in B(0, 1). Take

uk(x) := |x− xk|−1+1/k, k ∈ N.

Then ‖uk‖L1(Ω) <∞ and the minimal 1-weak upper gradient satisfies (see [6, Proposition
A.3])

guk(x) = |∇uk(x)| = (−1 + 1/k)|x− xk|−2+1/k

and so
∫

B(0,1)
guk dx .

∫

B(0,1)
|x− xk|−2+1/k dx ≤

∫

B(0,2)
|x|−2+1/k dx <∞.

Let
u(x) :=

∑

k

2−k
uk

‖uk‖N1,1(B(0,1))
.

Then using e.g. [6, Lemma 1.52] we see that u has a 1-weak upper gradient

∑

k

2−k
guk

‖uk‖N1,1(B(0,1))
,

which implies u ∈ N1,1(B(0, 1)). We know that the homogeneous dimension s of R2 is 2,
and then s

s−1 = 2. On the other hand, we can see that for any q > 2, we have for all
sufficiently large k ∈ N

∫

B(xk,r)∩B(0,1)
|uk|q dx =∞ for all r > 0,

and then for all ballsB∩B(0, 1) 6= ∅ we have
∫
B∩B(0,1) |u|q dx =∞. Given v ∈ Liploc(B(0, 1)),

we know that v ∈ Lqloc(B(0, 1)). Therefore we have ‖v − u‖Lq(B∩B(0,1)) = ∞ for all balls
B ∩B(0, 1) 6= ∅, which contradicts the desired conclusion in Theorem 1.3.

The following example shows that in Theorem 1.4 we cannot take a function v with
H(Sv) = 0.

Example 5.2. Let X = R2 (unweighted) and let Ω := (−1, 1)× (0, 1). Define u ∈ BV(Ω)
by

u(x1, x2) :=

{
0 when x1 < 0

1 when x1 ≥ 0.

Let v ∈ BV(Ω) with H(Sv) = 0. Since H({0} × (0, 1)) > 0, it is now easy to check that
‖v − u‖L∞(Ω\Ω(r)) ≥ 1/2 for all r > 0.
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A direct consequence of Corollary 1.5 and Corollary 1.8 is that under a proper setting,
the trace spaces of the BV space, Newton-Sobolev space, and Haj lasz-Sobolev space are
the same. Hence we can obtain many trace results for the BV and Haj lasz-Sobolev space
directly from trace results for the Newton-Sobolev space obtained in the literature. In
particular, from [29, Theorem 1.1] we are able to obtain the following result.

Theorem 5.3. Let Ω ⊂ X be a bounded uniform domain satisfying the measure doubling
condition (2.5). Assume also that (Ω, d, µ|Ω) admits a (1, 1)-Poincaré inequality. Let ∂Ω
be endowed with an Ahlfors codimension θ-regular measure ν for some 0 < θ < 1. Then
the trace spaces of N1,1(Ω, µ), BV(Ω, µ) and M1,1(Ω, µ) are the same, namely the Besov
space B1−θ

1,1 (∂Ω, ν).

We say that ∂Ω is endowed with an Ahlfors codimension θ-regular measure ν if there
is a σ-finite Borel measure ν on ∂Ω and a constant cθ > 0 such that

cθ
−1µ(B(x, r) ∩ Ω)

rθ
≤ ν(B(x, r) ∩ ∂Ω) ≤ cθ

µ(B(x, r) ∩ Ω)

rθ
(5.4)

for all x ∈ ∂Ω and 0 < r < 2 diam Ω. The Besov space B1−θ
1,1 (∂Ω, ν) consists of L1-functions

of finite Besov norm that is given by

‖u‖B1−θ
1,1 (∂Ω,ν) = ‖u‖L1(∂Ω,ν) +

∫ ∞

0

∫

∂Ω

∫

B(y,t)

|u(x)− u(y)|
t1−θ

dν(x) dν(y)
dt

t
.

The above theorem seems to be new even for BV and M1,1 functions in the (weighted)
Euclidean setting. As an illustration, we give an example in weighted Euclidean spaces.

Example 5.5. Let Ω = D ⊂ R2 be the unit disk with ∂Ω = S1 the unit circle. Take the
measure dµ(x) = dist(x,S1)−α dm2(x) with 0 < α < 1 and m2 two-dimensional Lebesgue
measure. Then by a direct computation, dist(x,S1)−α with 0 < α < 1 is an A1-weight and
hence µ supports a (1, 1)-Poincaré inequality, see [18, Chapter 15]. Moreover, it is easy
to check that the 1-dimensional Hausdorff measure H1 on S1 is an Ahlfors codimension
(1−α)-regular measure, i.e., H1 on S1 satisfies (5.4) with θ = 1−α. Hence we obtain from
Theorem 5.3 that the trace spaces of N1,1(D, µ), BV(D, µ), and M1,1(D, µ) are Bα

1,1(S1,H1).
It is also known from the classical trace results of weighted Sobolev spaces that the trace
space of N1,1(D, µ) is the classical Besov space Bα

1,1(S1,H1). Here we refer to [33, 38, 39] for
the trace results for weighted Sobolev spaces on Euclidean spaces and refer to the seminal
monographs by Triebel [37] for more information on Besov spaces.

On the other hand, using our theory it is also possible to obtain new trace results
for Haj lasz-Sobolev or Newton-Sobolev functions from the known trace results for BV
functions. In particular, from [30, Corollary 1.4] we are able to obtain the following trace
results.

Theorem 5.6. Let Ω ⊂ X be a bounded uniform domain that satisfies the measure density
condition (2.4) and admits a (1, 1)-Poincaré inequality. Assume also that the codimension
1 Hausdorff measure H is Ahlfors codimension 1-regular. Then we have that the trace
spaces of BV(Ω, µ), N1,1(Ω, µ) and M1,1(Ω, µ) are the same, namely the space L1(∂Ω,H).
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When Ω = D, ∂Ω = S1, µ = m2 the 2-dimension Lebesgue measure and H ≈ H1 the
1-dimension Hausdorff measure, the above theorem coincides with the classical results that
the trace spaces of BV(D) and N1,1(D) are both L1(S1). Moreover, the above theorem
gives that L1(S1) is also the trace space of M1,1(D), which seems to be new even in this
case.

The above Theorem 5.3 and Theorem 5.6 both require that the boundaries are endowed
with some codimension Ahlfors regular measure. In the following, we will give an example
where the measure on the boundary do not satisfy any codimension Ahlfors regularity.

Example 5.7. Let Ω = R2
+ := {x = (x1, x2) ∈ R2 : x2 > 0} and take the mea-

sure dµ(x) = wλ(x) dm2(x) with m2 the 2-dimensional Lebesgue measure and wλ(x) =
logλ (max{e, e/|x2|}), λ > 0. For any x ∈ R = ∂Ω and 0 < r < e−2λ, let Q(x, r) denote
the cube parallel to the coordinate axes with center x and sidelength r. Then we have the
estimate

µ(Q(x, r)) = 2

∫ r

0

∫ r/2

0
logλ(e/|x2|) dx2 dx1 = 2r

∫ r/2

0
logλ(e/t) dt ≈ r2 logλ(e/r). (5.8)

Here the last equality holds since we have

(
t logλ(e/t)

)′
= logλ(e/t)

(
1− λ

log(e/t)

)
≈ logλ(e/t), for 0 < t ≤ r < e−2λ.

By using the estimate (5.8), it follows from the definition of the codimension 1 Hausdorff
measure (2.3) that for any nonempty interval [a, b] in R = ∂R2

+, we have that

H([a, b]) = lim
R→0+

HR([a, b]) ≈ lim
R→0+

|a− b| logλ(e/R) =∞.

Hence the codimension 1 Hausdorff measure H on R is not even σ-finite and is not the
1-dimensional Lebesgue measure that we usually study.

Moreover, the weight wλ defined above is a Muckenhoupt A1-weight, since it is easy to
check from estimate (5.8) that

µ(B(z, r))

r2
. inf

x∈B(z,r)
wλ(x), for any z ∈ R2

+ and r > 0.

We refer to [8] and [18, Chapter 15] for definitions, properties and examples of Muckenhoupt
class weights.

Example 5.9. Let Ω, µ be as in the above example. Then it is easy to check from estimate
(5.8) that the 1-dimensional Lebesgue measure on R does not satisfy the condition (5.4) for
any θ. We denote by Q the collection of dyadic semi-open intervals in R, i.e. the intervals
of the form I := 2−k

(
(0, 1] +m

)
, where k ∈ N and m ∈ Z. Write `(I) for the edge length

of I ∈ Q, i.e. 2−k in the preceding representation, and Qk for the cubes Q ∈ Q such that
`(Q) = 2−k. For any I ∈ Q2j , denote by Ĩ the interval in Q2j−1 containing the interval
I. By applying the methods used in [39] and [25, Theorem 1.3], we are able to use the
dyadic norm similar with the ones used in [24] and [25] to characterize the trace space of
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N1,1(R2
+, µ), which is the Besov-type space Bλ1 (R). The Besov-type space Bλ1 (R) consists

of functions in L1(R) of finite dyadic norm that is given by

‖u‖Bλ1 (R) = ‖u‖L1(R) +
+∞∑

j=1

2−λj
∑

I∈Q
2j

2−2j |uI − uĨ |.

We omit the detailed proof here. Since R2
+ is uniform domain and satisfies the measure

doubling condition (2.5), hence we obtain that the trace spaces of BV(R2
+, µ), N1,1(R2

+, µ)
and M1,1(R2

+, µ) are the same, the Besov-type space Bλ1 (R).

Example 5.10. The recent papers [7, 25, 40] studied trace results on regular trees. We
refer to [7, Section 2] or [25, Section 2.1] for the definition of regular trees. It is easy
to check that a regular tree is uniform and that it supports (1, 1)-Poincaré inequality by
modifying the proof in [7, Theorem 4.2] under the setting in [7, 25]. Even the definition
of trace in [7, 25, 40] looks different from the one we used here, but [34] shows that they
are equivalent. Hence the trace results of N1,1 in [7, 25] can be immediately applied to BV
and M1,1. We omit the detail here and leave it to the interested reader.
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Characterization of trace spaces on regular trees
via dyadic norms

Zhuang Wang

Abstract

In this paper, we study the traces of Orlicz-Sobolev spaces on a regular rooted tree.
After giving a dyadic decomposition of the boundary of the regular tree, we present a
characterization on the trace spaces of those first order Orlicz-Sobolev spaces whose
Young function is of the form tp logλ(e + t), based on integral averages on dyadic
elements of the dyadic decomposition.

1 Introduction

The problem of the characterization of the trace spaces (on the boundary of a domain)
of Sobolev spaces has a long history. It was first studied in the Euclidean setting by

Gagliardo [13], who proved that the trace operator T : W 1,p(Rn+1
+ )→ B

1−1/p
p,p (Rn), where

B
1−1/p
p,p (Rn) stands for the classical Besov space, is linear and bounded for every p > 1

and that there exists a bounded linear extension operator that acts as a right inverse of T .
Moreover, he proved that the trace operator T : W 1,1(Rn+1

+ )→ L1(Rn) is a bounded linear
surjective operator with a non-linear right inverse. Peetre [40] showed that one can not
find a bounded linear extension operator that acts as a right inverse of T : W 1,1(Rn+1

+ )→
L1(Rn). We refer to the seminal monographs by Peetre [41] and Triebel [47,48] for extensive
treatments of the Besov spaces and related smoothness spaces. In potential theory, certain
types of Dirichlet problem are guaranteed to have solutions when the boundary data
belongs to a trace space corresponding to the Sobolev class on the domain. In the Euclidean
setting, we refer to [1, 33, 36, 45, 50, 51] for more information on the traces of (weighted)
Sobolev spaces and [8–10,12,29,30,38,39] for results on traces of (weighted) Orlicz-Sobolev
spaces.

Analysis on metric measure spaces has recently been under active study, e.g., [2, 4,
16–20]. Especially the trace theory in the metric setting has been under development.
Malý [34] proved that the trace space of the Newtonian space N1,p(Ω) is the Besov space

B
1−θ/p
p,p (∂Ω) provided that Ω is a John domain for p > 1 (uniform domain for p ≥ 1) that

admits a p-Poincaré inequality and whose boundary ∂Ω is endowed with a codimensional-θ
Ahlfors regular measure with θ < p. We also refer to the paper [43] for studies on the traces
of Haj lasz-Sobolev functions to porous Ahlfors regular closed subsets via a method based

2010 Mathematics Subject classfication: 46E35, 30L05
Key words and phases: regular tree, trace space, dyadic norm, Orlicz-Sobolev space
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on hyperbolic fillings of a metric space, see [6, 46]. For the trace result of BV (bounded
variation) functions, we refer to [31,32,35].

The recent paper [3] dealt with geometric analysis on Cantor-type sets which are uni-
formly perfect totally disconnected metric measure spaces, including various types of Can-
tor sets. Cantor sets embedded in Euclidean spaces support a fractional Sobolev space
theory based on Besov spaces. Indeed, suitable Besov functions on such a set are traces of
the classical Sobolev functions on the ambient Euclidean spaces, see Jonsson-Wallin [21,22].
The paper [3, 25] established similar trace and extension theorems for Sobolev and Besov
spaces on regular trees and their Cantor-type boundaries. Indeed, for a K-regular tree X
with K ≥ 2 and its Cantor-type boundary ∂X (see Section 2.1 for the definitions), if we
give the uniformizing metric (see (2.1))

dX(x, y) =

∫

[x,y]
e−ε|z| d |z|

and the weighted measure (see (2.2) )

(1.1) dµλ(x) = e−β|x|(|x|+ C)λ d |x|

on X, then the Besov space Bθ,λp (∂X) in Definition 2.4 below is exactly the trace of the
Newton-Sobolev space N1,p(X,µλ) defined in Section 2.3, see [25, Theorem 1.1] and [3,
Theorem 6.5]. Here the smoothness exponent of the Besov space is

θ = 1− β/ε−Q
p

, 0 < θ < 1,

where Q = logK/ε is the Hausdorff dimension of the Cantor-type boundary and β/ε−Q
is a “codimension” determined by the uniformizing metric dX and the measure µ on the
tree.

In Euclidean spaces, the classical Besov norm is equivalent to a dyadic norm, and the
trace spaces of the Sobolev spaces can be characterized by the Besov spaces defined via
dyadic norms, see e.g. [24, Theorem 1.1]. Inspired by this, we give a dyadic decomposition
of the boundary ∂X and define a Besov space Bθp(∂X) on the boundary ∂X by using a
dyadic norm, see Section 2.4 and Definition 2.5. We show in Proposition 2.7 that the
dyadic Besov spaces Bθp(∂X) coincide with the Besov space Bθ

p,p(∂X) and the Haj lasz-

Besov space N θ
p,p(∂X), see Definition 2.3 and Definition 2.6 for definitions of Bθ

p,p(∂X)

and N θ
p,p(∂X). We refer to [3, 14, 15, 23, 26, 27] for more information about Besov spaces

Bθ
p,p(·) and Haj lasz-Besov spaces N θ

p,p(·) on metric measure spaces.

By relying on dyadic norms, we define the Orlicz-Besov space Bθ,λ2

Φ (∂X), λ2 ∈ R for
the Young function Φ(t) = tp logλ1(e+t) with p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0, see Definition

2.8. Our first result shows that the Orlicz-Besov space Bθ,λ2

Φ (∂X) is the trace space of the
Orlicz-Sobolev space N1,Φ(X,µλ2) defined in Section 2.3.

Theorem 1.1. Let X be a K-regular tree with K ≥ 2 and let Φ(t) = tp logλ1(e + t) with
p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0. Fix λ2 ∈ R and let µλ2 be the weighted measure given by
(1.1). Assume that p > (β − logK)/ε > 0. Then the trace space of N1,Φ(X,µλ2) is the

space Bθ,λ2

Φ (∂X) where θ = 1− (β − logK)/εp.
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In this paper, for given function spaces X(∂X) and Y(X), we call the space X(∂X) a
trace space of Y(X) if and only if there exist a bounded linear operator T : Y(X)→ X(∂X)
and a bounded linear extension operator E : X(∂X)→ Y(X) such that T ◦E = Id on the
space X(∂X).

Our next result identifies the Orlicz-Besov space Bθ,λ2

Φ (∂X) as the Besov space Bθ,λp (∂X).

Proposition 1.2. Let λ, λ1, λ2 ∈ R. Let Φ(t) = tp logλ1(e + t) with p > 1, λ1 ∈ R
or p = 1, λ1 ≥ 0. Assume that λ1 + λ2 = λ. Then the Banach spaces Bθ,λp (∂X) and

Bθ,λ2

Φ (∂X) coincide, i.e., Bθ,λp (∂X) = Bθ,λ2

Φ (∂X).

By combining Theorem 1.1 and Proposition 1.2, we obtain the following result.

Corollary 1.3. Let X be a K-regular tree with K ≥ 2. Let λ, λ1, λ2 ∈ R. Assume that
p > (β − logK)/ε > 0 and let θ = 1 − (β − logK)/εp. Let Φ(t) = tp logλ1(e + t) with

p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0. Then the Besov-type space Bθ,λp (∂X) is the trace space of
N1,Φ(X,µλ2) whenever λ1 + λ2 = λ.

When λ1 = 0 and λ2 = λ, the above result coincides with [25, Theorem 1.1], which

states that the Besov-type space Bθ,λp (∂X) is the trace space of N1,p(X,µλ) for a suitable

θ. The above result shows that the Besov-type space Bθ,λp (∂X) is not only the trace space
of N1,p(X,µλ) but actually the trace space of all these Orlicz-Sobolev spaces N1,Φ(X,µλ2)
(including N1,p(X,µλ)) for suitable θ, λ2 and Φ. It may be worth to point out here that
these Orlicz-Sobolev spaces N1,Φ(X,µλ2) are different from each other.

The paper is organized as follows. In Section 2, we give all the necessary preliminaries.
More precisely, we introduce regular trees in Section 2.1 and we consider a doubling prop-
erty of the measure µ on a regular tree X and the Ahlfors regularity of its boundary ∂X.
The definition of Young functions is given in Section 2.2. We introduce the Newtonian and
Orlicz-Sobolev spaces on X and the Besov-type spaces on ∂X in Section 2.3 and Section
2.4, respectively. In Section 3, we give the proofs of Theorem 1.1 and Proposition 1.2.

2 Preliminaries

Throughout this paper, the letter C denotes a constant that may change at different
occurrences. The notation A ≈ B means that there is a constant C such that 1/C · A ≤
B ≤ C · A. The notation A . B (A & B) means that there is a constant C such that
A ≤ C ·B (A ≥ C ·B).

2.1 Regular trees and their boundaries

A graph G is a pair (V,E), where V is a set of vertices and E is a set of edges. Given
vertices x, y ∈ V are neighbors if x is connected to y by an edge. The number of the
neighbors of a vertex x is referred to as the degree of x. A tree G is a connected graph
without cycles.

Let us fix a vertex that we refer to by 0. The neighbors of 0 will be called children of
0 and 0 is called their mother. If x is one of the children of 0, then the neighbors of x
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different from 0 are called children of x and we say that x is their mother. We continue
in the obvious manner to define the children and the mother for all y 6= 0. We then call
G a rooted tree with root 0 and say that G is K-regular if additionally each vertex has
precisely K children.

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K ≥ 1.
For simplicity of notation, we let X = V ∪E and call it a K-regular tree. We consider each
edge as a geodesic of length one and further consider each edge to be an isometric copy of
the unit interval. More precisely, for any edge E ∈ E and a homeomorphism φ : E → [0, 1],
the distance of two point x, y ∈ E is the Euclidean distance of φ(x) and φ(y). For any
x ∈ X, let |x| be the length of the geodesic from 0 to x. The geodesic connecting x, y ∈ V
is unique. We refer to it by [x, y], and to its length by |x− y|. We write x < y if x ∈ [0, y].
Then |x − y| = |y| − |x|. We say that a vertex y 6= x is a descendant of the vertex x if
x < y.

Towards defining the metric of X, let ε > 0, and set

(2.1) dX(x, y) =

∫

[x,y]
e−ε|z| d |z|.

Here d |z| is the natural measure that gives each edge Lebesgue measure 1; recall that
each edge is an isometric copy of the unit interval. Notice that diamX = 2/ε if X is a
K-regular tree with K ≥ 2.

The boundary ∂X of a tree X is obtained by completing X with respect to the metric
dX . An element ξ ∈ ∂X is identified with an infinite geodesic starting at the root 0.
Equivalently we employ the labeling ξ = 0x1x2 · · · , where xi is a vertex in X with |xi| = i,
and xi+1 is a child of xi. The extension of the metric to ∂X can be realized in the following
manner. Given ξ, ζ ∈ ∂X, if ξ = 0x1x2 · · · and ζ = 0y1y2 · · · , let k be the integer with
xk = yk and xk+1 6= yk+1. Then

dX(ξ, ζ) = 2

∫ +∞

k
e−εt dt =

2

ε
e−εk.

For any ξ ∈ ∂X, if ξ = 0x1x2 · · · , let

[0, ξ) =

∞⋃

i=1

[0, xi],

where [0, xi] is the geodesic connecting 0 and xi. We call [0, ξ) the geodesic ray from 0 to
ξ. We write x < ξ if x ∈ [0, ξ). For more details, see [3, 5, 7]. For clarity, we use ξ, ζ, ω to
denote points in ∂X and x, y, z points in X.

On the K-regular tree X, we use the weighted measure µλ introduced in [25, Section
2.2], defined by

(2.2) dµλ(x) = e−β|x|(|x|+ C)λ d |x|,

where β > logK, λ ∈ R and C ≥ max{2|λ|/(β − logK), 2(log 4)/ε}. For λ = 0, this is the
measure used in [3].

It is proven in proposition below that µλ is doubling, see [25, Corollary 2.9].
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Proposition 2.1. For any λ ∈ R, the measure µλ is doubling, i.e., µλ(B(x, 2r)) .
µλ(B(x, r)).

A metric space X̃ is called Ahlfors Q-regular for some Q > 0 if it admits an Ahlfors
Q-regular measure µ̃, i.e., there is a constant C > 0 such that

C−1RQ ≤ µ̃(BR) ≤ CRQ

for all closed balls BR of radius 0 < R < diam(X̃). If a metric space X̃ is Ahlfors Q-
regular, then X̃ has Hausdorff dimension precisely Q. We refer to [18, Section 8.3] for more
information about Hausdorff dimension and Ahlfors regularities of measures and metric
spaces.

The result in [3, Lemma 5.2] shows that the boundary ∂X of the K-regular tree X
is Ahlfors regular with the regularity exponent depending only on K and on the metric
density exponent ε of the tree.

Proposition 2.2. The boundary ∂X is an Ahlfors Q-regular space with Hausdorff dimen-
sion

Q =
logK

ε
.

Hence ∂X is equipped with an Ahlfors Q-regular measure ν:

ν(B∂X(ξ, r)) ≈ rQ = rlogK/ε,

for any ξ ∈ ∂X and 0 < r ≤ diam∂X.
Throughout the paper we assume that 1 ≤ p < +∞ and that X is a K-regular tree

with K ≥ 2.

2.2 Young functions and Orlicz spaces

In the standard definition of an Orlicz space, the function tp of an Lp-space is replaced
with a more general convex function, a Young function. We recall the definition of a Young
function. We refer to [49, section 2.2] and [42] for more details about Young functions and
we also warn the reader of slight differences between the definitions in various references.

A function Φ : [0,∞)→ [0,∞) is a Young function if it is a continuous, increasing and
convex function satisfying Φ(0) = 0,

lim
t→0+

Φ(t)

t
= 0 and lim

t→+∞
Φ(t)

t
= +∞.

A Young function Φ can be expressed as

Φ(t) =

∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞) is an increasing, right-continuous function with φ(0) = 0 and
lim

t→+∞
φ(t) = +∞.
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A Young function Φ is said to satisfy the ∆2-condition if there is a constant CΦ > 0,
called a doubling constant of Φ, such that

Φ(2t) ≤ CΦΦ(t), ∀ t ≥ 0.

If Young function Φ satisfies the ∆2-condition, then for any constant c > 0, there exist
c1, c2 > 0 such that

c1Φ(t) ≤ Φ(ct) ≤ c2Φ(t) for all t ≥ 0,

where c1 and c2 depend only on c and the doubling constant CΦ. Therefore, we obtain
that if A ≈ B, then Φ(A) ≈ Φ(B). This property will be used frequently in the rest of
this paper.

Let Φ1,Φ2 be two Young functions. If there exist two constants k > 0 and C ≥ 0 such
that

Φ1(t) ≤ Φ2(kt) for t ≥ C,
we write

Φ1 ≺ Φ2.

The function Φ(t) = tp logλ(e+ t) with p > 1, λ ∈ R or p = 1, λ ≥ 0 is a Young function
and it satisfies the ∆2-condition. Moreover, it also satisfies that

(2.3) tmax{p−δ,1} ≺ Φ(t) ≺ tp+δ

for any δ > 0.
Let Φ be a Young function. Then the Orlicz space LΦ(X) is defined by setting

LΦ(X,µλ) =

{
u : X → R : u measurable,

∫

X
Φ(α|u|) dµλ < +∞ for some α > 0

}
.

As in the theory of Lp-spaces, the elements in LΦ(X,µλ) are actually equivalence classes
consisting of functions that differ only on a set of measure zero. The Orlicz space LΦ(X,µλ)
is a vector space and, equipped with the Luxemburg norm

‖u‖LΦ(X,µλ) = inf

{
k > 0 :

∫

X
Φ(|u|/k) dµλ ≤ 1

}
,

a Banach space, see [42, Theorem 3.3.10]. If Φ(t) = tp with p ≥ 1, then LΦ(X,µλ) =
Lp(X,µλ). We refer to [37, 42, 49] for more detailed discussions and properties of Orlicz
spaces.

2.3 Newtonian spaces and Orlicz-Sobolev spaces on X

We call a Borel function g : X → [0,∞] an upper gradient of u ∈ L1
loc(X,µλ) if

(2.4) |u(z)− u(y)| ≤
∫

γ
g dsX

whenever z, y ∈ X and γ is the geodesic from z to y, where dsX denotes the arc length
measure with respect to the metric dX . Since any rectifiable curve with end points z and
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y in our tree contains the corresponding geodesic, the above definition is equivalent to the
usual definition which requires that inequality (2.4) holds for all rectifiable curves with
end points z and y. See [2,16,19,20,44] for a more detailed discussion on upper gradients.

The Newtonian space N1,p(X,µλ), 1 ≤ p < ∞, is the collection of all functions u for
which the norm of u defined as

‖u‖N1,p(X,µλ) :=

(∫

X
|u|p dµλ + inf

g

∫

X
gp dµλ

)1/p

is finite. Here the infimum is taken over all upper gradients of u.
For any Young function Φ, the Orlicz-Sobolev space N1,Φ(X,µλ) is defined as the

collection of all functions u for which the norm of u defined as

‖u‖N1,Φ(X,µλ) = ‖u‖LΦ(X,µλ) + inf
g
‖g‖LΦ(X,µλ)

is finite, where the infimum is taken over all upper gradients of u.
For the Young function Φ(t) = tp, 1 ≤ p < ∞, the Orlicz-Sobolev space N1,Φ(X,µλ)

is exactly the Newtonian space N1,p(X,µλ). We refer to [49] for further results on Orlicz-
Sobolev spaces on metric measure spaces. If u ∈ N1,p(X,µλ) (u ∈ N1,Φ(X,µλ) with Φ
doubling), then it has a minimal p-weak upper gradient (Φ-weak upper gradient) gu, which
in our case is an upper gradient. The minimal upper gradient is minimal in the sense that
if g ∈ Lp(X,µλ) (g ∈ LΦ(X,µλ)) is any upper gradient of u, then gu ≤ g a.e. We refer
the interested reader to [16, Theorem 7.16] (p ≥ 1) and [49, Corollary 6.9](Φ doubling) for
proofs of the existence of such a minimal upper gradient.

2.4 Besov-type spaces on ∂X

Towards the definition of our Besov-type spaces, we recall a definition from [3].

Definition 2.3. For 0 < θ < 1 and p ≥ 1, The Besov space Bθ
p,p(∂X) consists of all

functions f ∈ Lp(∂X) for which the seminorm ‖f‖Ḃθp(∂X) defined as

‖f‖p
Ḃθp(∂X)

:=

∫

∂X

∫

∂X

|f(ζ)| − f(ξ)|p
dX(ζ, ξ)θpν(B(ζ, dX(ζ, ξ)))

dν(ξ) dν(ζ)

is finite. The corresponding norm for Bθ
p,p(∂X) is

‖f‖Bθp,p(∂X) := ‖f‖Lp(∂X) + ‖f‖Ḃθp(∂X).

We base our definition on a dyadic decomposition on the boundary ∂X of the K-regular
tree X, see also [25, Section 2.4]. Let Vn = {xnj : j = 1, 2, · · · ,Kn} be the set of all n-level
vertices of the tree X for each n ∈ N, where a vertex x is of n-level if |x| = n. Then

V =
⋃

n∈N
Vn.

Given a vertex x ∈ V , set

Ix := {ξ ∈ ∂X : the geodesic ray [0, ξ) passes through x}.
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Let Q = {Ix : x ∈ V } and Qn = {Ix : x ∈ Vn} for each n ∈ N. Then Q0 = {∂X} and our
dyadic decomposition Q satisfies

Q =
⋃

n∈N
Qn.

Given I ∈ Qn, there is a unique element Î in Qn−1 such that I ⊂ Î. If I = Ix for some
x ∈ Vn, then Î = Iy where y is the unique mother of x in the tree X. Hence the structure of
the dyadic decomposition of ∂X is uniquely determined by the structure of the K-regular
tree X.

We recall a definition from [25].

Definition 2.4. For 0 ≤ θ < 1, p ≥ 1 and λ ∈ R, the Besov-type space Bθ,λp (∂X) consists

of all functions f ∈ Lp(∂X) for which the Ḃθ,λp -dyadic energy of f defined as

‖f‖pḂθ,λp (∂X)
:=

∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)
∣∣fI − fÎ

∣∣p

is finite. The norm on Bθ,λp (∂X) is

‖f‖Bθ,λp (∂X)
:= ‖f‖Lp(∂X) + ‖f‖Ḃθ,λp (∂X)

.

The measure ν above is the Ahlfors regular measure given by Proposition 2.2 and
fI := −

∫
I f dν = 1

ν(I)

∫
I f dν is the usual mean value.

Definition 2.5. For 0 < θ < 1 and p ≥ 1, The Besov space Bθp(∂X) consists of all the

functions f ∈ Lp(∂X) for which the Ḃθp-dyadic energy of f defined as

‖f‖pḂθp(∂X)
:=

∞∑

n=1

eεnθp
∑

I∈Qn

ν(I)
∣∣fI − fÎ

∣∣p

is finite. The norm of Bθp(∂X) is

‖f‖Bθp(∂X) := ‖f‖Lp(∂X) + ‖f‖Ḃθp(∂X).

The Besov-type spaces Bθ,λp (∂X) and Bθp(∂X) were first introduced in [25]. Notice that

Bθp(∂X) coincides with Bθ,λp (∂X) when λ = 0. Next we introduce the Haj lasz-Besov spaces

N θ
p,p(∂X) first introduced by [27] on the boundary ∂X.

Definition 2.6. (i) Let 0 < θ <∞ and let u be a measurable function on ∂X. A sequence
of nonnegative measurable functions, ~g = {gk}k∈Z, is called a fractional θ-Haj lasz gradient
of u if there exists Z ⊂ ∂X with ν(Z) = 0 such that for all k ∈ Z and ζ, ξ ∈ ∂X \ Z
satisfying 2−k−1 ≤ dX(ζ, ξ) < 2−k,

|u(ζ)− u(ξ)| ≤ [dX(ζ, ξ)]θ[gk(ζ) + gk(ξ)].

Denote by Dθ(u) the collection of all fractional θ-Haj lasz gradients of u.
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(ii) Let 0 < θ < ∞ and 0 < p < ∞. The Haj lasz-Besov space N θ
p,p(∂X) consists of all

functions u ∈ Lp(∂X) for which the seminorm ‖u‖Ṅθ
p,p(∂X) defined as

‖u‖Ṅθ
p,p(∂X) := inf

~g∈Dθ(u)
‖(‖gk‖Lp(∂X))k∈Z‖lp = inf

~g∈Dθ(u)

(∑

k∈Z

∫

∂X
[gk(ξ)]

p dν(ξ)

)1/p

is finite. The norm of N θ
p,p(∂X) is

‖u‖Nθ
p,p(∂X) := ‖u‖Lp(∂X) + ‖u‖Ṅθ

p,p(∂X).

The following proposition states that these three Besov-type spaces Bθp(∂X), Bθ
p,p(∂X)

and N θ
p,p(∂X) coincide with each other.

Proposition 2.7. (i) Let 0 < θ < 1 and p ≥ 1. For any f ∈ L1
loc(∂X), we have

‖f‖Ḃθp(∂X) ≈ ‖f‖Ḃθp(∂X) ≈ ‖f‖Ṅθ
p,p(∂X).

(ii) Let 0 < s < θ < 1, λ ∈ R and p ≥ 1. For any f ∈ L1
loc(∂X), we have

‖f‖Ḃsp(∂X) . ‖f‖Ḃθ,λp (∂X)
.

Proof. (i): The first part ‖f‖Ḃθp(∂X) ≈ ‖f‖Ḃθp(∂X) follows by [25, Proposition 2.13]. The

second part ‖f‖Ḃθp(∂X) ≈ ‖f‖Ṅθ
p,p(∂X) is given by [3, Lemma 5.4] and [15, Theorem 1.2].

(ii): From the definitions of the Besov-types norms, we have

‖f‖Ḃθ,λp (∂X)
=

∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)
∣∣fI − fÎ

∣∣p

and

‖f‖Ḃsp(∂X) =
∞∑

n=1

eεnsp
∑

I∈Qn

ν(I)
∣∣fI − fÎ

∣∣p .

For 0 < s < θ < 1, we have eεnsp . eεnθpnλ for all n ∈ N. Hence the result ‖f‖Ḃsp(∂X) .
‖f‖Ḃθ,λp (∂X)

follows.

The dyadic norms give an easy way to introduce Orlicz-Besov spaces by replacing tp

with some Zygmund function (logarithmic Orlicz function) Φ(t).

Definition 2.8. Let Φ be the Young function Φ(t) = tp logλ1(e+ t) with p > 1, λ1 ∈ R or

p = 1, λ1 ≥ 0. Then the Orlicz-Besov space Bθ,λ2

Φ (∂X) consists of all f ∈ LΦ(∂X) whose
norm generally defined as

‖f‖Bθ,λ2
Φ (∂X)

:= ‖f‖LΦ(∂X) + inf
{
k > 0 : |f/k|Ḃθ,λ2

Φ (∂X)
≤ 1
}

is finite, where for any g ∈ L1
loc(∂X), the Ḃθ,λ2

Φ -dyadic energy is defined as

|g|Ḃθ,λ2
Φ (∂X)

:=
∞∑

n=1

eεn(θ−1)pnλ2
∑

I∈Qn

ν(I)Φ

(∣∣gI − gÎ
∣∣

e−εn

)
.
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In this paper, we are only interested in the Young functions in the above definition.
Hence in the rest of this paper, we always assume that the Young function is Φ(t) =
tp logλ1(e+ t) with p > 1, λ1 ∈ R or p = 1, λ1 ≥ 0.

3 Proofs

3.1 Proof of Theorem 1.1

We prove Theorem 1.1 by two parts: trace part and extension part. In the trace part,
we give the definition of trace Tr f in (3.1) via limits along geodesic rays for any function
f ∈ N1,Φ(X,µλ2). Then we prove the existence of the trace function Tr f and prove
the norm estimate ‖Tr f‖Bθ,λ2

Φ (∂X)
. ‖f‖N1,Φ(X,µλ2

). For the extension part, we give the

definition of the extension Eu in (3.14)-(3.16) for any function u ∈ Bθ,λ2

Φ (∂X). Then we
show that Tr (Eu) = u (i.e., Tr ◦E = Id ) and prove the norm estimate ‖Eu‖N1,Φ(X,µλ2

) .
‖u‖Bθ,λ2

Φ (∂X)
.

Proof. Trace Part: Let f ∈ N1,Φ(X). We follow an idea from [25] and set

(3.1) Tr f(ξ) := f̃(ξ) = lim
[0,ξ)3x→ξ

f(x), ξ ∈ ∂X,

provided that the limit taken along the geodesic ray [0, ξ) exists. We begin by showing
that the above limit exists for ν-a.e. ξ ∈ ∂X.

Since gf is an upper gradient of f , it suffices to show that the function f̃∗ defined by
setting

(3.2) f̃∗(ξ) = |f(0)|+
∫

[0,ξ)
gf ds

belongs to LΦ(∂X), where [0, ξ) is the geodesic ray from 0 to ξ. Indeed, if f̃∗ ∈ LΦ(∂X),
we have |f̃∗| <∞ for ν-a.e. ξ ∈ ∂X, and hence the limit in (3.1) exists for ν-a.e. ξ ∈ ∂X.

Fix ξ ∈ ∂X. Set rj = 2e−jε/ε and xj = xj(ξ) be the ancestor of ξ with |xj | = j for
j ∈ N. Recall from (2.1) and (2.2) that

ds(x) = e−ε|x| d |x|, dµλ2(x) ≈ eβ|x|λ2 d |x|.

Then for any y ∈ [xj , xj+1], we have that

(3.3) ds(y) ≈ e(β−ε)jj−λ2 dµλ2(y) ≈ r1−β/ε
j j−λ2 dµλ2(y), µλ2([xj , xj+1]) ≈ rβ/εj jλ2 ,

where [xj , xj+1] is the edge connecting xj = xj(ξ) and xj+1 = xj+1(ξ). Thus

f̃∗(ξ) = |f(0)|+
+∞∑

j=0

∫

[xj ,xj+1]
gf ds

≈ |f(0)|+
+∞∑

j=0

r
1−β/ε
j j−λ2

∫

[xj ,xj+1]
gf dµλ2
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≈ |f(0)|+
+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dµλ2 .(3.4)

Since θ = 1 − (β − logK)/(pε) > 0, we may choose 1 ≤ q < ∞ such that max{(β −
logK)/ε, 1} < q < p if p > 1 or q = 1 = p. Let Ψ(t) := tp/q logλ1/q(e + t). Then Ψq = Φ
and Ψ is a Young function satisfying the ∆2-condition. By the Jensen inequality and the
∆2 property of Ψ, since

∑+∞
j=0 rj ≈ 1, we have that

Ψ(f̃∗(ξ)) . Ψ(|f(0)|) + Ψ




+∞∑

j=0

rj−
∫

[xj ,xj+1]
gf dµλ2




. Ψ(|f(0)|) +
+∞∑

j=0

rj−
∫

[xj ,xj+1]
Ψ(gf ) dµλ2 .

Choose 0 < κ < 1 − (β − logK)/(qε). If q > 1, by the Hölder inequality, we obtain the
estimate

Φ(f̃∗(ξ)) = Ψ(f̃∗(ξ))q . Φ(|f(0)|) +




+∞∑

j=0

rκj r
(1−κ)
j −

∫

[xj ,xj+1]
Ψ(gf ) dµλ2



q

(3.5)

. Φ(|f(0)|) +
+∞∑

j=0

r
(1−κ)q
j

(
−
∫

[xj ,xj+1]
Ψ(gf ) dµλ2

)q
(3.6)

. Φ(|f(0)|) +
+∞∑

j=0

r
q−κq−β/ε
j j−λ2

∫

[xj ,xj+1]
Φ(gf ) dµλ2 .(3.7)

Second inequality follows from the fact that

+∞∑

j=0

r
κq/(q−1)
j ≈ 1.

If q = 1, then Ψ = Φ, and hence the estimates (3.5)-(3.7) are not needed. We conclude
that

Φ(f̃∗(ξ)) . Φ(|f(0)|) +
+∞∑

j=0

r
q−κq−β/ε
j j−λ2

∫

[xj ,xj+1]
Φ(gf ) dµλ2 .

Since ν(∂X) ≈ 1, integration of this estimate over ∂X together with Fubini’s theorem
gives

∫

∂X
Φ(f̃∗(ξ)) dν . Φ(|f(0)|) +

∫

∂X

+∞∑

j=0

r
q−κq−β/ε
j j−λ2

∫

[xj ,xj+1]
Φ(gf ) dµλ2 dν(ξ)

= Φ(|f(0)|) +

∫

X
Φ(gf (x))

∫

∂X

+∞∑

j=0

r
q−κq−β/ε
j j−λ2χ[xj ,xj+1](x) dν(ξ) dµλ2(x).(3.8)
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Since χ[xj ,xj+1](x) is nonzero only if j ≤ |x| ≤ j + 1 and x < ξ, our estimate (3.8) can be
reformulated as

(3.9)

∫

∂X
Φ(f̃∗(ξ)) dν . Φ(|f(0)|) +

∫

X
Φ(gf (x))r

q−κq−β/ε
j(x) j(x)−λ2ν(E(x)) dµλ2(x),

where E(x) = {ξ ∈ ∂X : x < ξ} and j(x) is the largest integer such that j(x) ≤ |x|.
By Proposition 2.2, we have ν(E(x)) . rQj(x), since E(x) ⊂ B(ξ, r) for any ξ ∈ E(x)

and r = diam(E(x)) . e−εj(x) ≈ rj(x), see [3, Lemma 5.21]. This together with q − κq −
β/ε+Q > 0 gives

r
p(1−κ)−β/ε+Q
j(x) j(x)−λ2 . 1.

Consequently, (3.9) implies that

∫

∂X
Φ(f̃∗(ξ)) dν . Φ(|f(0)|) +

∫

X
Φ(gf (x))r

q−κq−β/ε+Q
j(x) j(x)−λ2 dµλ2(x)

. Φ(|f(0)|) +

∫

X
Φ(gf (x)) dµλ2(x).

Actually, the value |f(0)| is not essential. For any y ∈ {x ∈ X : |x| < 1}, a neighborhood
of 0, we could modify the definition of f̃∗(ξ) as

f̃∗∗(ξ) = |f(y)|+ |f(y)− f(0)|+
∫

[0,ξ)
gf ds.

Since µλ2(X) ≈ 1, we have that

Φ(|f(y)− f(0)|) ≤ Φ

(∫

[0,y]
gf ds

)
≤ Φ

(∫

X
gf ds

)
.
∫

X
Φ(gf ) dµλ2 .

By the same argument as above, we obtain the estimate
∫

∂X
Φ(f̃∗∗(ξ)) dν(ξ) . Φ(|f(y)|) +

∫

X
Φ(gf ) dµλ2 ,

for any y ∈ {x ∈ X : |x| < 1}. The fact that f ∈ LΦ(X,µλ2) gives us that Φ(|f(y)|) <∞
for µλ2-a.e. y ∈ X. This shows that f̃∗∗(ξ) is LΦ-integrable on ∂X, which finishes the
proof of the existence of the limit in (3.1).

We continue towards norm estimates. Since |f̃ | ≤ f̃∗ for any modified f̃∗, the above
arguments also show that for any y ∈ {x ∈ X : |x| < 1}, we have that

∫

∂X
Φ(f̃(ξ)) dν(ξ) . Φ(|f(y)|) +

∫

X
Φ(gf ) dµλ2 .

Integrating over all y ∈ {x ∈ X : |x| < 1}, since µλ2({x ∈ X : |x| < 1}) ≈ 1, we arrive at
the estimate

(3.10)

∫

∂X
Φ(f̃(ξ)) dν(ξ) .

∫

X
Φ(|f |) dµλ2 +

∫

X
Φ(gf ) dµλ2 .



Characterization of trace spaces on regular trees via dyadic norms 13

Assume that ‖f‖LΦ(X,µλ2
) = t1 and ‖gf‖LΦ(X,µλ2

) = t2. By the definition of Luxemburg
norms, we know that

∫

X
Φ(f/t1) dµλ2 ≤ 1 and

∫

X
Φ(gf/t2) dµλ2 ≤ 1.

By estimate (3.10), there exists a constant C > 0 such that

∫

∂X
Φ(f̃(ξ)) dν(ξ) ≤ C

(∫

X
Φ(|f |) dµλ2 +

∫

X
Φ(gf ) dµλ2

)
.

We may assume C ≥ 1, since if C < 1, we choose C = 1. Then we obtain that

∫

∂X
Φ

(
f̃(ξ)

2C(t1 + t2)

)
dν ≤ C

(∫

X
Φ

(
f

2Ct1

)
dµλ2 +

∫

X
Φ

(
gf

2Ct2

)
dµλ2

)

≤ 1

2

(∫

X
Φ(f/t1) dµλ2 +

∫

X
Φ(gf/t2) dµλ2

)
≤ 1,

which implies

(3.11) ‖f̃‖LΦ(∂X) ≤ 2C(t1 + t2) ≈ ‖f‖LΦ(X,µλ2
) + ‖gf‖LΦ(X,µλ2

) = ‖f‖N1,φ(X,µλ2
).

Next, we estimate the dyadic energy |f̃ |Ḃθ,λ2
Φ (∂X)

. Given I ∈ Qn, ξ ∈ I and ζ ∈ Î, we

have xn−1 = yn−1, where xj = xj(ξ) and yj = yj(ζ) are the ancestors of ξ and ζ with
|xj | = |yj | = j, and therefore

(3.12) |f̃(ξ)− f̃(ζ)| ≤
+∞∑

j=n−1

|f(xj)− f(xj+1)|+
+∞∑

j=n−1

|f(yj)− f(yj+1)|.

By (3.3) and an argument similar to (3.4), we infer from (3.12) that

|f̃(ξ)− f̃(ζ)| .
+∞∑

j=n−1

rj−
∫

[xj ,xj+1]
gf dµλ2 +

+∞∑

j=n−1

rj−
∫

[yj ,yj+1]
gf dµλ2 .

It follows from the Jensen inequality that

Ψ

(
|f̃(ξ)− f̃(ζ)|

e−εn

)
.

+∞∑

j=n−1

r−1
n−1rj−

∫

[xj ,xj+1]
Ψ(gf ) dµλ2 +

+∞∑

j=n−1

r−1
n−1rj−

∫

[yj ,yj+1]
Ψ(gf ) dµλ2 ,

since we have the estimate

rn−1 ≈ e−εn ≈
+∞∑

j=n−1

rj .

By using the fact Φ = Ψq and the Hölder inequality if q > 1, we get that

Φ

(
|f̃(ξ)− f̃(ζ)|

e−εn

)
= Ψ

(
|f̃(ξ)− f̃(ζ)|

e−εn

)q
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. r−q+κqn−1

+∞∑

j=n−1

r
q−β/ε−κq
j j−λ2

(∫

[xj ,xj+1]
Φ(gf ) dµλ2 +

∫

[yj ,yj+1]
Φ(gf ) dµλ2

)
.

If q = 1, then Φ = Ψ and it is easy to check that the above estimate still holds. Since
ν(I) ≈ ν(Î) and Î is the mother of I, it follows from Fubini’s theorem that

∑

I∈Qn

ν(I)Φ

(
|f̃I − f̃Î |
e−εn

)
≤
∑

I∈Qn

ν(I)−
∫

I
−
∫

Î
Φ

(
|f̃(ξ)− f̃(ζ)|

e−εn

)
dν(ζ) dν(ξ)

.
∫

∂X
r−q+κqn−1

+∞∑

j=n−1

r
q−β/ε−κq
j j−λ2

∫

[xj ,xj+1]
Φ(gf ) dµλ2 dν(ξ)

=

∫

X∩{|x|≥n−1}
Φ(gf )r−q+κqn−1

∫

∂X

+∞∑

j=n−1

r
q−β/ε−κq
j j−λ2χ[xj ,xj+1](x) dν(ξ) dµλ2(x).(3.13)

Note again that χ[xj ,xj+1](x) is nonzero only if j ≤ |x| ≤ j + 1 and x < ξ. Recall that
E(x) = {ξ ∈ ∂X : x < ξ}, that j(x) is the largest integer such that j(x) ≤ |x| and that
ν(E(x)) . rQj(x). Hence (3.13) gives

∑

I∈Qn

ν(I)Φ

(
|f̃I − f̃Î |
e−εn

)
.
∫

X∩{|x|≥n−1}
Φ(gf )r−q+κqn−1 r

q−β/ε−κq
j(x) j(x)−λ2ν(E(x)) dµλ2(x)

.
∫

X∩{|x|≥n−1}
Φ(gf )r−q+κqn−1 r

q−β/ε−κq+Q
j(x) j(x)−λ2 dµλ2(x).

Since e−εn ≈ rn−1, we conclude the estimate

|f̃ |Ḃθ,λ2
Φ (∂X)

.
+∞∑

n=1

r
(1−θ)p−q+κq
n−1 nλ2

∫

X∩{|x|≥n−1}
Φ(gf )r

q−β/ε−κq+Q
j(x) j(x)−λ2 dµλ2(x)

=

+∞∑

n=0

r(1−θ)p−q+κq
n (n+ 1)λ2

+∞∑

j=n

∫

X∩{j≤|x|<j+1}
Φ(gf )r

q−β/ε−κq+Q
j j−λ2 dµλ2(x)

=
+∞∑

j=0

∫

X∩{j≤|x|<j+1}
Φ(gf )r

q−β/ε−κq+Q
j j−λ2 dµλ2(x)

(
j∑

n=0

r(1−θ)p−q+κq
n (n+ 1)λ2

)
.

Recall that rn = 2e−nε/ε and

(1− θ)p− q + κq = κq − (q − (β − logK)/ε) = κq + β/ε− q − logK/ε < 0.

Hence we obtain that

j∑

n=0

r(1−θ)p−q+κq
n (n+ 1)λ2 ≈ rκq+β/ε−q−logK/ε

j (j + 1)λ2 ≈ rκq+β/ε−q−Qj jλ2 .
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Therefore, our estimate above for the dyadic energy can be rewritten as

|f̃ |Ḃθ,λ2
Φ (∂X)

.
+∞∑

j=0

∫

X∩{j≤|x|<j+1}
Φ(gf ) dµλ2(x) =

∫

X
Φ(gf ) dµλ2(x).

By an argument similar to the one that we used to prove (3.11) after getting (3.10), we
have that

inf
{
k > 0 : |f̃/k|Ḃθ,λ2

Φ (∂X)
≤ 1
}
. ‖gf‖LΦ(X,µλ2

),

which together with (3.11) gives the norm estimate

‖f̃‖Bθ,λ2
Φ (∂X)

. ‖f‖N1,Φ(X,µλ2
).

Extension Part: Fix u ∈ Bθ,λ2

Φ (∂X). Given x ∈ X with |x| = n ∈ N, set

(3.14) Eu(ξ) = ũ(x) = −
∫

Ix

u dν,

where Ix ∈ Qn is the set of all the points ξ ∈ ∂X such that the geodesic ray [0, ξ) passes
through x.

Let y be a child of x. Then |y| = n+ 1 and Ix is the mother of Iy. We define ũ on the
edge [x, y] by setting

(3.15) gũ(t) :=
ũ(y)− ũ(x)

dX(x, y)
=

ε(uIy − uIx)

(1− e−ε)e−εn =
ε(uIy − uÎy)

(1− e−ε)e−εn

and

(3.16) ũ(t) := ũ(x) + gũ(t)dX(x, t).

By repeating this procedure for all edges, we obtain an extension ũ of u. Then (3.1) and
(3.14) imply that Tr ũ(ξ) = u(ξ) whenever ξ ∈ ∂X is a Lebesgue point of u.

Simple integration shows that |gũ| is an upper gradient of ũ. Clearly

∫

[x,y]
Φ(|gũ|) dµλ2 ≈

∫ n+1

n
Φ

( |uIy − uÎy |
e−ε(n+1)

)
e−βτ (τ + C)λ2 dτ

≈ e−β(n+1)(n+ 1)λ2Φ

( |uIy − uÎy |
e−ε(n+1)

)
.

By summing over all the edges of X, we conclude that

(3.17)

∫

X
Φ(|gũ|) dµλ2 ≈

+∞∑

n=1

∑

I∈Qn

e−βnnλ2Φ

( |uI − uÎ |
e−εn

)
.

We have that
ν(I) ≈ e−εnQ = e−nK
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whenever I ∈ Qn, which implies that

(3.18) eεn(θ−1)pν(I) ≈ e−εn((β−logK)/ε+Q) ≈ e−βn.

The above estimates (3.17) and (3.18) give

(3.19)

∫

X
Φ(|gũ|) dµλ2 ≈

∞∑

n=1

eεn(θ−1)pnλ2
∑

I∈Qn

ν(I)Φ

(∣∣uI − uÎ
∣∣

e−εn

)
= |u|Ḃθ,λ2

Φ (∂X)
.

When obtaining the LΦ-estimate of ũ, notice that when |x| = n and y is the child of x,

(3.20) |ũ(t)| ≤ |ũ(x)|+ |gũ|dX(x, y) = |ũ(x)|+ |ũ(y)− ũ(x)| . |uIx |+ |uIy |

for any t ∈ [x, y]. Since µλ2([x, y]) ≈ e−βnnλ2 and ν(Ix) ≈ ν(Iy) ≈ e−εnQ, this gives us

∫

[x,y]
Φ(|ũ(t)|) dµλ2 . µλ2([x, y])

(
Φ(|uIx |) + Φ(|uIy |)

)
. e−βn+εnQnλ2

∫

Ix

Φ(|u|) dν.

By summing over all the edges of X, we arrive at

∫

X
Φ(|ũ(t)|) dµλ2 .

+∞∑

n=0

∑

I∈Qn

e−βn+εnQnλ2

∫

I
Φ(|u|) dν

=

+∞∑

n=0

e−βn+εnQnλ2

∫

∂X
Φ(|u|) dν.

The sum of e−βn+εnQnλ2 converges, because β − εQ = β − logK > 0. It follows that

(3.21)

∫

X
Φ(|ũ(t)|) dµλ2 .

∫

∂X
Φ(|u|) dν.

Applying the very same arguments that we used in proving (3.11) after getting (3.10)
to (3.19) and (3.21), we finally arrive at the desired estimate for the norms

‖ũ‖N1,Φ(X,µλ2
) . ‖u‖Bθ,λ2

Φ (∂X)
.

3.2 Proof of Proposition 1.2

In this section, we always assume that Φ(t) = tp logλ1(e + t) with p > 1, λ1 ∈ R or
p = 1, λ1 ≥ 0.

Lemma 3.1. Let λ, λ1, λ2 ∈ R. Assume that λ1 + λ2 = λ. For any f ∈ L1(∂X), we
have that the condition ‖f‖Ḃθ,λp (∂X)

< ∞ is equivalent to the condition |f |Ḃθ,λ2
Φ (∂X)

< ∞
whenever 0 < θ < 1.
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Proof. When λ1 = 0, then the result is obvious since ‖f‖pḂθ,λp (∂X)
= |f |Ḃθ,λ2

Φ (∂X)
.

When λ1 > 0, first we estimate the logarithmic term from above. Since f ∈ L1(∂X),
for any I ∈ Qn, it follows from ν(I) ≈ ν(Î) ≈ e−n logK that

logλ1

(
e+
|fI − fÎ |
e−εn

)
≤ logλ1

(
e+
|fI |+ |fÎ |
e−εn

)
. logλ1

(
e+

‖f‖L1(∂X)

e−(ε+logK)n

)
≤ Cnλ1 ,

where C = C(‖f‖L1(∂X), λ1, ε,K). Hence we can estimate |f |Ḃθ,λ2
Φ (∂X)

as follows:

|f |Ḃθ,λ2
Φ (∂X)

=
∞∑

n=1

eεn(θ−1)pnλ2
∑

I∈Qn

ν(I)Φ

(∣∣fI − fÎ
∣∣

e−εn

)

=
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)

≤ C
∞∑

n=1

eεnθpnλ2+λ1
∑

I∈Qn

ν(I)|fI − fÎ |
p = C‖f‖pḂθ,λp (∂X)

,

where C = C(‖f‖L1(∂X), λ1, ε,K).

In order to estimate the logarithmic term from below, for any I ∈ Qn, we define

(3.22) χ(n, I) =

{
1, if |fI − fÎ | > e−εn(θ+1)/2

0, otherwise.

Then we have that

‖f‖pḂθ,λp (∂X)
=
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)|fI − fÎ |
p

=

∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)χ(n, I)|fI − fÎ |
p

+
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)(1− χ(n, I))|fI − fÎ |
p

=: P1 + P2.

If |fI − fÎ | > e−εn(θ+1)/2, since θ < 1 and λ1 > 0, we obtain that

logλ1

(
e+
|fI − fÎ |
e−εn

)
> logλ1

(
e+ eεn(1−θ)/2

)
≥ Cnλ1 ,

where C = C(ε, θ, λ1). Hence we have the estimate

P1 ≤ C
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)
= C|f |Ḃθ,λ2

Φ (∂X)
.
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For P2, since
∑

I∈Qn
ν(I) ≈ 1, we have that

P2 ≤
∞∑

n=1

eεnθpnλ
∑

I∈Qn

ν(I)e−εnp(θ+1)/2 ≈
∞∑

n=1

eεnp(θ−1)/2nλ = C ′ < +∞,

where C ′ = C ′(θ, p, λ). Therefore, we obtain

(3.23)
1

C
|f |Ḃθ,λ2

Φ (∂X)
≤ ‖f‖pḂθ,λp (∂X)

= P1 + P2 ≤ C|f |Ḃθ,λ2
Φ (∂X)

+ C ′,

where C and C ′ are constants depending only on ε, θ, λ1, λ, p and ‖f‖L1(∂X).

When λ1 < 0, in order to estimate the logarithmic term from above, using definition
(3.22), we obtain that

|f |Ḃθ,λ2
Φ (∂X)

=

∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)

=
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)χ(n, I)|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)

+
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)(1− χ(n, I))|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)

=: P ′1 + P ′2.

If |fI − fÎ | > e−εn(θ+1)/2, since θ < 1 and λ1 < 0, we have that

logλ1

(
e+
|fI − fÎ |
e−εn

)
< logλ1

(
e+ eεn(1−θ)/2

)
≤ Cnλ1 ,

where C = C(ε, θ, λ1). Hence we have the estimate

P ′1 ≤ C
∞∑

n=1

eεnθpnλ2+λ1
∑

I∈Qn

ν(I)|fI − fÎ |
p = C‖f‖pḂθ,λp (∂X)

.

For P ′2, since logλ1(e+ t) ≤ 1 for any t ≥ 0 and
∑

I∈Qn
ν(I) ≈ 1, we obtain that

P ′2 ≤
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)e−εnp(θ+1)/2 =

∞∑

n=1

eεnp(θ−1)/2nλ2 = C ′ < +∞,

where C ′ = C(ε, θ, λ2).

Next, we estimate the logarithmic term from below. Since f ∈ L1(∂X) and λ1 < 0, for
any I ∈ Qn, it follows from ν(I) ≈ ν(Î) ≈ e−n logK that

logλ1

(
e+
|fI − fÎ |
e−εn

)
≥ logλ1

(
e+
|fI |+ |fÎ |
e−εn

)
& logλ1

(
e+

‖f‖L1(∂X)

e−(ε+logK)n

)
≥ Cnλ1 ,
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where C = C(‖f‖L1(∂X), λ1, ε,K). Now we get the estimate

‖f‖pḂθ,λp (∂X)
=
∞∑

n=1

eεnθpnλ2+λ1
∑

I∈Qn

ν(I)|fI − fÎ |
p

≤ C
∞∑

n=1

eεnθpnλ2
∑

I∈Qn

ν(I)|fI − fÎ |
p logλ1

(
e+
|fI − fÎ |
e−εn

)

= C|f |Ḃθ,λ2
Φ (∂X)

.

Therefore, we obtain the estimate

(3.24)
1

C
‖f‖pḂθ,λp (∂X)

≤ |f |Ḃθ,λ2
Φ (∂X)

= P ′1 + P ′2 ≤ C‖f‖pḂθ,λp (∂X)
+ C ′,

where C and C ′ are constants depending only on ε, θ, λ1, λ2 and ‖f‖L1(∂X).
Combining the inequalities (3.23) and (3.24) which are respect to λ1 > 0 and λ1 < 0

with the case λ1 = 0, we obtain that ‖f‖pḂθ,λp (∂X)
< +∞ is equivalent to |f |Ḃθ,λ2

Φ (∂X)
<

+∞.

Let us recall the following result from functional analysis, see for example [11].

Lemma 3.2 (Closed graph theorem). Let X,Y be Banach spaces and let T : X → Y be a
linear operator. Then T is continuous if and only if the graph

∑
:= {(x, T (x)) : x ∈ X}

is closed in X × Y with the product topology.

Let LΦ(∂X) ∩ Ḃθ,λp (∂X) be the Banach space equipped with the norm

‖f‖
LΦ(∂X)∩Ḃθ,λp (∂X)

:= ‖f‖LΦ(∂X) + ‖f‖Ḃθ,λp (∂X)
.

Using the same manner, we could define the space X ∩ Y for any two spaces X and Y .

Corollary 3.3. Let λ, λ1, λ2 and Φ be as in Lemma 3.1. Then we have

LΦ(∂X) ∩ Ḃθ,λp (∂X) = Bθ,λ2

Φ (∂X)

with equivalent norms.

Proof. It directly follows from Lemma 3.1 that LΦ(∂X)∩Ḃθ,λp (∂X) and Bθ,λ2

Φ (∂X) are the
same vector spaces. Next we use Lemma 3.2 (Closed graph theorem) to show that they
are the same Banach spaces with equivalent norms.

Consider the identity map Id : LΦ(∂X)∩Ḃθ,λp (∂X)→ Bθ,λ2

Φ (∂X), i.e., Id (x) = x for any

x ∈ LΦ(∂X) ∩ Ḃθ,λp (∂X). Then the graph of Id is closed. Indeed, if (xn, xn) is a sequence

in this graph that converges to (x, y) in (LΦ(∂X) ∩ Ḃθ,λp (∂X)) × (LΦ(∂X) ∩ Ḃθ,λ2

Φ (∂X))
with product topology, then xn converges to x in ‖ · ‖

LΦ(∂X)∩Ḃθ,λp (∂X)
norm and hence in

LΦ(∂X). In the same manner, xn converges to y in ‖ · ‖Bθ,λ2
Φ (∂X)

and hence in LΦ(∂X).

But the limits are unique in LΦ(∂X), so x = y.
Applying Lemma 3.2 (Closed graph theorem), we see that the map Id is continuous

from LΦ(∂X) ∩ Ḃθ,λp (∂X) to Bθ,λ2

Φ (∂X); similarly for the inverse. Thus the norms ‖ ·
‖
LΦ(∂X)∩Ḃθ,λp (∂X)

and ‖ · ‖Bθ,λ2
Φ (∂X)

are equivalent and the claim follows.
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There is a not big difference between the results in Corollary 3.3 and Proposition 1.2,
since Bθ,λp (∂X) = Lp(∂X) ∩ Ḃθ,λp (∂X). To get Proposition 1.2 from Corollary 3.3, we
need some estimates between the Lp-norm and LΦ-norm. Since ν(∂X) ≈ 1, we have the
following lemma, see [28, Theorem 3.17.1 and Theorem 3.17.5].

Lemma 3.4. Let Φ1,Φ2 be two Young functions. If Φ2 ≺ Φ1, then

‖u‖LΦ2 (∂X) . ‖u‖LΦ1 (∂X)

for all u ∈ LΦ1(∂X).

By the relation (2.3), for any δ > 0, we have

(3.25) ‖u‖Lmax{p−δ,1}(∂X) . ‖u‖LΦ(∂X) . ‖u‖Lp+δ(∂X)

for all u ∈ Lp+δ(∂X).

Recall that ν(∂X) ≈ 1 and diam(∂X) ≈ 1. Since ∂X is Ahlfors Q-regular where
Q = logK

ε , we obtain the following lemma immediately from [23, Theorem 4.2]

Lemma 3.5. Let 0 < s < 1 and p ≥ 1. Let u ∈ Ṅ s
p,p(∂X). If 0 < sp < Q = logK

ε , then

u ∈ Lp∗(∂X), p∗ = Qp
Q−sp and

inf
c∈R

(
−
∫

∂X
|u− c|p∗ dν

)1/p∗

. ‖u‖Ṅs
p,p(∂X)

Proof of Proposition 1.2. Let s = min{ θ2 ,
Q
2p}, where Q = logK

ε . Then sp < 2sp ≤ Q. Let

p∗ = Qp
Q−sp and δ = p∗ − p. Since s ≤ θ/2 < θ, it follows from Proposition 2.7 that

Ḃθ,λp (∂X) ⊂ Ḃsp(∂X) = Ṅ s
p,p(∂X).

By Lemma 3.5 and triangle inequality, we obtain that

(
−
∫

∂X
|u− u∂X |p

∗
dν

)1/p∗

≤ 2 inf
c∈R

(
−
∫

∂X
|u− c|p∗ dν

)1/p∗

. ‖u‖Ṅs
p,p(∂X) . ‖u‖Ḃθ,λp (∂X)

,

for any u ∈ Ḃθ,λp (∂X), where u∂X = −
∫
∂X u dν. Since |u| ≤ |u−u∂X |+|u∂X | and ν(∂X) ≈ 1,

it follows from the Minkowski inequality that

‖u‖Lp∗ (∂X) ≤ ‖u− u∂X‖Lp∗ (∂X) + ‖u∂X‖Lp∗ (∂X)

=

(
−
∫

∂X
|u− u∂X |p

∗
dν

)1/p∗

+

∣∣∣∣−
∫

∂X
u dν

∣∣∣∣
. ‖u‖L1(∂X) + ‖u‖Ḃθ,λp (∂X)

,
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for any u ∈ Ḃθ,λp (∂X). Since ‖ · ‖L1(∂X) ≤ ‖ · ‖Lp(∂X) ≤ ‖ · ‖Lp∗ (∂X) is trivial, we have that

L1(∂X) ∩ Ḃθ,λp (∂X) = Bθ,λp (∂X) = Lp
∗
(∂X) ∩ Ḃθ,λp (∂X).

Recall the relation (3.25) and δ = p∗ − p. Hence we have that

‖ · ‖L1(∂X) . ‖ · ‖LΦ(∂X) . ‖ · ‖Lp∗ (∂X).

Thus,
Bθ,λp (∂X) = LΦ(∂X) ∩ Ḃθ,λp (∂X).

Combining this with Corollary 3.3, i.e., the equivalences

LΦ(∂X) ∩ Ḃθ,λp (∂X) = LΦ(∂X) ∩ Ḃθ,λ2

Φ (∂X) = Bθ,λ2

Φ (∂X),

we finally arrive at
Bθ,λp (∂X) = Bθ,λ2

Φ (∂X).
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