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The Max-Product Algorithm Viewed as Linear
Data-Fusion: A Distributed Detection Scenario

Younes Abdi, Member, IEEE, and Tapani Ristaniemi, Senior Member, IEEE

Abstract—In this paper, we disclose the statistical behavior
of the max-product algorithm configured to solve a maximum a
posteriori (MAP) estimation problem in a network of distributed
agents. Specifically, we first build a distributed hypothesis test
conducted by a max-product iteration over a binary-valued pair-
wise Markov random field and show that the decision variables
obtained are linear combinations of the local log-likelihood ratios
observed in the network. Then, we use these linear combinations
to formulate the system performance in terms of the false-
alarm and detection probabilities. Our findings indicate that,
in the hypothesis test concerned, the optimal performance of the
max-product algorithm is obtained by an optimal linear data-
fusion scheme and the behavior of the max-product algorithm
is very similar to the behavior of the sum-product algorithm.
Consequently, we demonstrate that the optimal performance
of the max-product iteration is closely achieved via a linear
version of the sum-product algorithm, which is optimized based
on statistics received at each node from its one-hop neighbors.
Finally, we verify our observations via computer simulations.

Index Terms—Statistical inference, distributed systems, max-
product algorithm, sum-product algorithm, linear data-fusion,
Markov random fields, factor graphs, spectrum sensing.

I. INTRODUCTION

STANDARD optimization methods are computationally de-
manding when dealing with a large collection of correlated

random variables. This is a well-known challenge in design-
ing statistical inference techniques used in a wide range of
signal-processing applications such as channel decoding, im-
age processing, spread-spectrum communications, distributed
detection, etc. Alternatively, message-passing algorithms over
factor graphs provide a powerful low-complexity approach to
characterizing and optimizing the collective impact of those
variables on the desired system performance, see e.g., [1]–[3].
Consequently, a better understating of the statistical behavior
of the message-passing algorithms leads to statistical inference
systems with better performance. Two widely-used message-
passing algorithms are the so-called sum-product and max-
product algorithms. We have analyzed the behavior of the sum-
product algorithm, a.k.a., the belief propagation algorithm, in
[4].

Our main focus in this paper is on the max-product algo-
rithm, which is an iterative method for approximately solving
the problem of maximum a posteriori probability (MAP)
estimation [5]. We analyze the behavior of this algorithm in
a distributed detection scenario where every network node
estimates a binary-valued random variable based on noisy
observations collected throughout the entire network. The
correlations between the random variables are modeled by
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+358 40 7214 218 (e-mail:younes.abdi@jyu.fi, tapani.ristaniemi@jyu.fi).

a pairwise Markov random field (MRF) [1] whose structure
fits well into pairwise interactions between the nodes in
an ad-hoc network configuration. An MRF is an undirected
graph where vertices correspond to the random variables of
interest and edges represent the correlations between them.
By using the max-product algorithm, the estimation problem
concerned is decomposed into a number of small optimizations
performed locally at each node based on information provided
by other nodes in the network via one-hop communications per
iteration.

A. Max-Product v.s. Sum-Product

Let x = [x1, ..., xN ]T denote a vector of N discrete-
valued random variables to be estimated given the observations
Y , [y1, ...,yN ] where yi , [yi(1), ..., yi(K)]T denotes
K samples collected at node i and i = 1, ..., N . The MAP
estimation of x is formally stated as

x̂ = arg max
x

p(x|Y ). (1)

This is an integer program, which is NP-hard. When p(x|Y )
is stated in the form of an MRF, (1) can be solved with
low complexity by using two commonly-used message-passing
algorithms, i.e., the sum-product and max-product algorithms.
We provide a brief overview of the origins and differences
of the two algorithms here. An interested reader may refer
to [1]–[3], [5] for further details and more comprehensive
discussions.

The optimization in (1) can be approximated by the so-
called Bethe variational problem [1, Sec. 4] and also by a
linear program [1, Sec. 8]. For a tree-structured MRF, both
of these approximations turn out to be convex, can be solved
by the Lagrangian dual method, and provide exact solutions
for (1). The sum-product iteration solves the dual of the Bethe
problem while the max-product algorithm solves the dual of
the linear program. When the MRF contains cycles, the fixed
points of both message-passing algorithms provide approxi-
mate solutions for the MAP estimation problem concerned.

The sum-product algorithm solves (1) by finding the
marginal distributions associated with p(x|Y ) whereas the
max-product is an attempt to find the so-called max-
marginals. More specifically, the sum-product algorithm gives
the marginal distribution, at node i, defined as

p(xi|Y ) ,
∑

{x′|x′i=xi}

p(x′|Y ) (2)

that is used to solve (1) by

x̂i = arg max
xi

p(xj |Y ). (3)
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The outcome of the max-product algorithm at node i is the
max-marginal distribution of xi defined as

q(xi|Y ) , κ max
{x′|x′i=xi}

p(x′|Y ), (4)

where κ denotes a positive arbitrary normalization constant.
If for each node, the maximum of q(xi|Y ) is attained at a
unique value, then the MAP configuration is unique and can
be obtained by maximizing the corresponding max-marginal
at each node [5], i.e.,

x̂i = arg max
xi

q(xi|Y ). (5)

In case there is a node at which the maximum of q(xi|Y ) is
not attained at a unique value, Eq. (5) provides a sub-optimal
solution. We discuss this case in Section IV-C. The analysis
proposed in this paper along with the work in [4] shows that,
in a distributed detection scenario, both methods are equivalent
to a linear data-fusion.

B. Related Work and Motivation

Many existing works on the max-product algorithm attempt
to pave the way towards theoretical guarantees on the conver-
gence of the algorithm and on the quality of the resulting fixed
points on graphs with arbitrary topology and with arbitrary
probability distributions, see e.g., [5]–[8]. This is still an open
and growing research field. There also exist numerous works
that tailor the max-product iteration into a particular statistical
inference scenario taking into account the graph structure and
available resources in that particular setting. Examples of such
works can be found in LDPC decoding [9], multi-sensor target
tracking [10], [11], clock synchronization in wireless sensor
networks (WSN) [12], [13], sparse code multiple access [14],
etc. Moreover, several works in the literature use some sort of
approximation in modeling various message-passing structures
to offer a deeper insight into the behavior of message-passing
algorithms or to propose better distributed inference methods,
see e.g., [15]–[19].

To the best of our knowledge, the existing works do not
offer a comprehensive analysis and optimization framework
for the max-product algorithm in the context of distributed de-
tection. Formulating the performance of a WSN that employs
distributed detection requires understanding the statistical be-
havior of the underlying data-exchange process between the
sensing nodes. When the max-product algorithm is used, this
data-exchange process is built based on the structure of the
factor graph that models the network behavior. Therefore, an
optimal system design calls for finding the relation between
the parameters of the factor graph and the network perfor-
mance metrics. More specifically, an optimal design requires
answering the following questions:
• How to best represent the network behavior by a pair-

wise MRF and how to impose certain constraints on
the system performance, in terms of the desired false-
alarm or detection probabilities, when the data-exchange
process between the nodes is realized by the max-product
algorithm over that MRF?

We answer these questions in this paper. The importance of
the research gap discussed here is highlighted by noting that
distributed detection is a major functionality in many advanced
communication scenarios such as industrial internet of things,
internet of vehicles, mobile crowdsensing, and cognitive radio
(CR) networks, see e.g., [20]–[24].

C. Contribution

We show that the max-product algorithm works as a linear
data-fusion process. Linear fusion schemes are commonly
used in distributed detection systems to achieve near-optimal
performance with low implementation complexity, see e.g.,
[25]–[28]. Therefore, we indicate that the knowledge already
developed in linear distributed detection methods can be used
to better understand the behavior of the max-product algo-
rithm. The proposed analysis is supported by a strong connec-
tion between the sum-product and max-product operations. In
particular, we show that, in the distributed detection scenario
concerned, the behavior of the max-product algorithm is very
similar to the behavior of the sum-product algorithm and that
the decision variables built by the max-product operation are
linear combinations of the local likelihoods in the network—
a behavior we have already observed in the sum-product
algorithm [4]. By using this linearity, we make the following
contributions:
• We show that the message-update rule in the max-product

algorithm is almost the same as its counterpart in the
sum-product algorithm.

• We show that when performing a distributed MAP es-
timation via the max-product algorithm over a network
modeled by a pairwise MRF, under certain practical
conditions, the decision variables obtained are linear
combinations of the local log-likelihood ratios (LLR) in
the network.

• We find the probability distribution function of the de-
cision variables in a practical detection scenario and
formulate the detection performance in closed form.

• We show how to set the detection threshold to achieve a
predefined detection performance.

• We show that the optimal linear message-passing algo-
rithm in [4] attains the optimal detection performance
of the max-product algorithm in the distributed detection
scenario concerned.

As in [4], [24], and [29], we clarify our findings by
considering a spectrum sensing scheme in a CR network. In
these networks, the wireless nodes perform spectrum sensing
in bands allocated to the so-called primary users (PU) to
discover vacant parts of the radio spectrum and to establish
communication on those temporarily- or spatially-available
spectral opportunities [30]. In this context, CRs are considered
secondary users (SU) in the sense that they have to vacate the
spectrum, to avoid making any harmful interference, once the
PUs are active.

The rest of the paper is organized as follows. In Section
II, we discuss how to solve the MAP estimation problem
in a network of distributed agents via the sum-product and
max-product algorithms. In addition, we illustrate in Section
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II the connection between the sum-product and max-product
operations. Then, we analyze the behavior of the max-product
algorithm in Section III to show that it works as a linear fusion
scheme. In Section IV, we briefly discuss the use of linear
data-fusion in distributed detection along with the proposed
optimization framework. We then verify our analysis by com-
puter simulations in Section V and present our concluding
remarks in Section VI.

II. DISTRIBUTED DETECTION VIA MESSAGE-PASSING

We consider a pairwise MRF defined on an undirected
graph G = (V, E) composed of a set of N vertices or nodes
V , {1, ..., N} and a set of edges E ⊂ V × V . Each node
i ∈ V corresponds to a random variable xi and each edge
(i, j) ∈ E , which connects nodes i and j, represents a possible
correlation between random variables xi and xj . The MRF is
used to factorize the a posteriori distribution function p(x|Y )
into single-variable and pairwise terms, i.e.,

p(x|Y ) ∝
∏
n∈V

φn(xn)
∏

(i,j)∈E

ψij(xi, xj), (6)

where ∝ denotes proportionality up to a multiplicative con-
stant. In our detection scenario, the main goal of each node,
say node i, is to find its max-marginal a posteriori distribution
q(xi|y). This goal is achieved by the max-product algorithm
where the messages sent from node k to node j in the network
are built as

µ
(l)
k→j(xj) ∝ max

xk

[
φk(xk)ψkj(xk, xj)

∏
n∈N j

k

µ
(l−1)
n→k (xk)

]
,

(7)

where N j
k denotes the set of neighbors of node k except for

node j. Fig. 1 illustrates this process. The belief of node
j at iteration l, denoted b

(l)
j (xj), is formed by multiplying

the local inference result φj(xj) by all the messages received
from its neighbors, i.e., b(l)j (xj) ∝ φj(xj)

∏
k∈Nj

µ
(l)
k→j(xj).

The resulting belief is then used to estimate the desired max-
marginal distribution, i.e., q(xj |Y ) ≈ b(l)j (xj). We can express
b
(l)
j (xj) in the logarithm form as

ln b
(l)
j (xj) = lnφj(xj) +

∑
k∈Nj

m
(l)
k→j(xj), (8)

where

m
(l)
k→j(xj) , lnµ

(l)
k→j(xj)

= max
xk

[
lnφk(xk) + lnψkj(xk, xj) +

∑
n∈N j

k

m
(l−1)
n→k (xk)

]
.

(9)

We have replaced ∝ by equality in our formulations since the
proportionality constant turns into an offset value in the log
domain with no impact on the proposed analysis. We adopt the
commonly-used exponential model to represent the probability
measure defined on x, i.e.,

p(x) ∝ exp

∑
n∈V

θnxn +
∑

(i,j)∈E

Jijxixj

 . (10)

Fig. 1: An schematic diagram of the max-product algorithm
illustrating how the messages are generated.

Consequently, from p(x|Y ) = p(Y |x)p(x)/p(Y ), we obtain
[4]

p(x|Y ) ∝
∏
k∈V

p(yk|xk)
∏

(i,j)∈E

eJijxixj , (11)

where the proportionality sign covers 1
p(Y ) . Since θk does not

affect the proposed analysis, we have set θk = 0 for all k. By
comparing (11) to (6), we obtain

φk(xk) , p(yk|xk), (12)
ψkj(xk, xj) , eJkjxkxj . (13)

Assuming Gaussian observations at the nodes, we have

p(yk|xk) =
1√
2πσ

exp

(
−1

2σ2

∥∥∥yk − µyk|xk

∥∥∥2) , (14)

where µyk|xk
, E[yk|xk]. For i = 1, ...,K, we have

yk(i) = ξksk(i) + νk(i) where ξk , 1
2 (xk + 1) and νk(i) ∼

N (0, σ2). In the vector format, we have yk = ξksk + νk
where sk , [sk(1), ..., sk(K)]T denotes a deterministic but
unknown sequence of PU signal samples received at node k
and νk , [νk(1), ..., νk(K)]T . Hence, µyk|xk

= ξksk. We
have xk ∈ {−1,+1} for all k ∈ V while ξk ∈ {0, 1} maps
the state of xk to the occupancy state of the radio spectrum
sensed by node k. See Table I for a list of symbols used in
this paper.

The max-marginals obtained by the max-product algorithm
are used to conduct a distributed MAP estimation as in (5).
Specifically, after l iterations, at each node the approximate
max-LLR is built and compared, as a decision variable, to a
predefined threshold, i.e.,

λ
(l)
j , ln

b
(l)
j (xj = +1)

b
(l)
j (xj = −1)

≷ τj . (15)

which means that x̂j = +1 if λ(l)j > τj and x̂j = −1

otherwise. Note that λ(l)j ≈ ln
q(xj=+1|Y )
q(xj=−1|Y ) . To see the impact

of messages on the decision variable, we express λ(l)j as

λ
(l)
j = γj +

∑
k∈Nj

δ
(l)
k→j , (16)

where γj denotes the local LLR obtained at node j, i.e., γj ,
ln

φj(xj=+1)
φj(xj=−1) = ln

p(yj |xj=+1)

p(yj |xj=−1) while δ(l)k→j denotes the LLR
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TABLE I: Main Parameters Specifying the Detector Structure

Symbol Meaning
N Number of sensing nodes in the network
K Number of samples collected at each sensing node
V Set of vertices in the factor graph
E Set of edges in the factor graph
Nj Set of neighbors of node j
N k

j Set of neighbors of node j except for node k

µ
(l)
k→j(xj) Max-product message sent to node j from node k

µ̄
(l)
k→j(xj) Sum-product message sent to node j from node k

b
(l)
j (xj) Max-product beliefs

b̄
(l)
j (xj) Sum-product beliefs

m
(l)
k→j(xj) Max-product message in the log domain

m̄
(l)
k→j(xj) Sum-product message in the log domain

λ
(l)
j Max-product decision variable at node j

λ̄
(l)
j Sum-product decision variable at node j

δ
(l)
k→j LLR of max-product messages

δ̄
(l)
k→j LLR of sum-product messages
τj Max-product detection threshold
τ̄j Sum-product detection threshold
γj Local sensing outcome at node j
Ej Energy of the PU signal received at node j
sj Signal to be detected at node j
yj Noisy received signal at node j
νj Noise received at node j
µyj |xj

Conditional mean of yj given xj
σ2 Noise variance
ξj Auxiliary variable that maps xj to {0, 1}
f(x) Transfer function built by the sum-product operation
P

(j)
f False-alarm probability at node j
P

(j)
d Detection probability at node j
φn(xn) Single-variable factor in p(x|Y )
ψij(xi, xj) Pairwise factor in p(x|Y )
θn Single-variable exponent factor in p(x)
Jij Pairwise exponent factor in p(x)
T Sample-window size in updating Jij ’s
ζ Determines the impact of T samples on Jij ’s
x̂
(l)
k (xj) Outcome of the MLE at node k, equals to u(l)kj + v

(l)
kj xj

x̂k Outcome of the desired MAP estimation at node k

of the messages at iteration l, i.e.,

δ
(l)
k→j , ln

µ
(l)
k→j(xj = +1)

µ
(l)
k→j(xj = −1)

= m
(l)
k→j(xj = +1)−m(l)

k→j(xj = −1). (17)

By using the signal model in (14), we obtain

γj = sTj yj −
1

2
Ej , (18)

where Ej , ‖sj‖2. Consequently, it is clear that, given xj , the
local LLR γj follows a Gaussian distribution. For simplicity
we assume that σ2 = 1. Eq. (18) indicates a matched filtering
process, a.k.a., coherent detection [31] performed locally at
each sensing node. In practice, since sk is unknown, energy
detection is used as the local sensing scheme [4], [24]. That
is, the local sensing outcome is formed as

γj ,
1

K

∥∥yj∥∥2 − τ0, (19)

where τ0 is set such that Pr{γk > 0|xk = 0} = α, i.e., τ0 =

σ2
ν

(
1 +

√
2
KQ

−1(α)
)

where Q−1(·) denotes the inverse of

the Q-function. Assuming the number of signal samples K is
large enough [25]–[27], the central limit theorem states that,
given xj , the sensor outcome γj in (19) follows a Gaussian
distribution.

The sum-product algorithm has a similar structure except
that the max operator in (9) is replaced by a summation. This
message-update rule is given by

µ̄
(l)
k→j(xj) ∝

∑
xk

[
φk(xk)ψkj(xk, xj)

∏
n∈N j

k

µ̄
(l−1)
n→k (xk)

]
.

(20)

The beliefs made by the sum-product algorithm are denoted
b̄j(xj) in this paper and calculated by (8) in which µ

(l)
k→j is

replaced by µ̄
(l)
k→j . The sum-product algorithm approximates

the marginal distributions of the random variables of interest,
i.e., b̄j(xj) ≈ p(xj |Y ). The detection process is conducted
by comparing the resulting decision variable to a predefined
threshold as in (15) where λj , bj(xj), and τj are replaced by
λ̄j , b̄j(xj), and τ̄j , respectively.

Similar to (16), the detection variable build by the sum-
product iteration can be expressed as

λ̄
(l)
j = γj +

∑
k∈Nj

δ̄
(l)
k→j , (21)

where δ̄(l)k→j , m̄
(l)
k→j(+1) − m̄(l)

k→j(−1) while m̄(l)
k→j(xj) ,

ln µ̄
(l)
k→j(xj). Through some algebra, we obtain

δ̄
(l)
k→j = S

Jkj , γk +
∑
n∈N j

k

δ̄
(l−1)
n→k

 , (22)

where S(a, b) , ln 1+ea+b

ea+eb
. Jkj is determined by a moving

average of length T time slots, i.e.,

Jkj ,
ζ

T

T∑
t=1

[1{x̂j(t) = x̂k(t)} − 1{x̂j(t) 6= x̂k(t)}] , (23)

where ζ is a constant and 1{·} denotes the indicator function.
We use the first-order Taylor series expansion of S to

linearize the message-update rule as

δ̄
(l)
k→j ≈ cjk

γk +
∑
n∈N j

k

δ̄
(l−1)
n→k

 , (24)

where cjk = (e2Jkj−1)
(1+eJkj )2

[4]. Consequently, at node j we have

λ̄j ≈ γj +
∑
k∈Nj

cjkγk +
∑
k∈Nj

∑
n∈N j

k

cjkcknγn

+
∑
k∈Nj

∑
n∈N j

k

∑
m∈Nk

n

cjkckncnmγm + ..., (25)

where λ̄j , liml→∞ λ̄
(l)
j . Eq. (25) shows that the sum-product

algorithm is approximately a linear fusion scheme. Since the
local LLRs are normal random variables, given the state of
xi’s, the decision variable λ̄j is, approximately, a normal
random variable as well. We can express this linear fusion
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Fig. 2: max{x1, x2} provides a piece-wise linear approxima-
tion for ln (ex1 + ex2).

in compact form as λ̄j ≈
∑
k∈V w̄jkγk where w̄jk denotes

the weight of γk in this combination.
To see the connection between the sum-product and max-

product operations, let us take a closer look at the messages
in the sum-product algorithm. In the log domain, we have

m̄
(l)
k→j(xj) , ln µ̄

(l)
k→j(xj) =

ln
∑
xk

exp

[
lnφk(xk) + lnψkj(xk, xj) +

∑
n∈N j

k

m̄
(l−1)
n→k (xk)

]
,

(26)

which shows that the messages, received at node k and
combined with the likelihoods lnφk(xk) and lnψkj(xk, xj),
pass through the following transformation to form the message
sent to node j

f(x) , ln
∑
k

exk . (27)

As shown in Fig. 2, due to the highly selective nature of the
exponential function, f(·) behaves like a max operator, i.e.,

f(x) ≈ max
k

xk. (28)

Consequently, we can approximate the message-update rule in
the sum-product algorithm as

m̄
(l)
k→j(xj)

≈ max
xk

[
lnφk(xk) + lnψkj(xk, xj) +

∑
n∈N j

k

m̄
(l−1)
n→k (xk)

]
,

(29)

which clearly shows that the message-update rule in the sum-
product algorithm is almost the same as its counterpart in the
max-product algorithm.

Therefore, we expect the max-product algorithm to work as
a linear fusion as well. More specifically, we expect to have
λj =

∑
k∈V wjkγk where wjk denotes the weight of γk in this

linear fusion. In the following section, we formally establish
that the max-product algorithm is a distributed linear fusion
scheme.

III. ANALYSIS OF THE MAX-PRODUCT OPERATION

Performance of a binary hypothesis test is commonly mea-
sured by two parameters: the probability of detection and
the probability of false alarm. These performance metrics are
calculated based on the statistical behavior of the decision
variable λj . Specifically, at node j we have

P
(j)
f = Pr{λj > τj |xj = −1}, (30)

P
(j)
d = Pr{λj > τj |xj = +1}, (31)

where P (j)
f denotes the false-alarm probability of node j and

P
(j)
d denotes the corresponding detection probability.
Hence, we need to find the probability distribution of λj

to measure the system performance analytically. To realize
this goal, we calculate the outcome of each iteration and
show that even though the iteration process involves nonlinear
transformations, its outcome is a linear combination of the
local LLRs. The analysis of the max-product process provided
in this section does not require the node variables to be binary-
valued. We only use binary-valued xi’s when evaluating the
result of the proposed analysis.

Recall that the local observation at node k is represented by
φk(xk) while the correlation between the observations at nodes
k and j is captured by ψkj(xk, xj). Since in the beginning
there are no messages received, i.e., m(0)

k→j(xj) = 0, each node
builds its message only based on its own local observation
and the correlation of its random variable with the ones of the
neighboring nodes. That is, at l = 1 the messages are created
based on

m
(1)
k→j(xj) = max

xk

[
lnφk(xk) + lnψkj(xk, xj)

]
= lnφk(x̂

(1)
k (xj)) + lnψkj(x̂

(1)
k (xj), xj), (32)

where x̂
(1)
k (xj) is found by solving ∂

∂xk
[lnφk(xk) +

lnψkj(xk, xj)] = 0 that leads to

x̂
(1)
k (xj) = u

(1)
kj + v

(1)
kj xj , (33)

where, by using ∂
∂xk

lnφk(xk) = sTk (yk − ξksk), we have

u
(1)
kj =

2γk
Ek
− 1, (34)

v
(1)
kj =

2Jkj
Ek

. (35)

Consequently, at the beginning of the iteration, the message
sent form node k to node j is a linear function of two
components: i) the local LLR at node k, denoted γk, and ii)
the realization of the random variable concerned at node j, i.e.,
xj . We see x̂(1)k (xj) as the outcome of a maximum-likelihood
estimation (MLE) process at node k. This estimation provides
a point at which the likelihood functions at node k are
evaluated to build a message sent to node j. Please make sure
to distinguish between the MLE performed locally at each
node and the MAP estimation discussed earlier.

As we show in the following, the linear behavior observed
in (33) propagates throughout the entire iteration. Specifically,
at the l’th iteration, the MLE results at node k, which build the
messages sent to node j, are in the form of linear combinations
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of xj and local LLRs obtained at nodes located within less
than l hops from node j. Consequently, given xj , the decision
variable at node j (i.e., λj) is built by a linear fusion of the
local LLRs obtained at node j and at all the nodes located
within less than l hops from node j. In other words, the
hypothesis test result obtained by the max-product algorithm
is equivalent to the one obtained by a distributed linear data-
fusion scheme whose scope is increased by every iteration.

We now clarify this observation by solving the iterative
optimizations in (9). For l = 2, we have

m
(2)
k→j(xj) = max

xk

{
lnφk(xk) + lnψkj(xk, xj)

+
∑
n∈N j

k

max
xn

[
lnφn(xn) + lnψnk(xn, xk)

]}
,

(36)

which leads to

m
(2)
k→j(xj) = lnφk(x̂

(2)
k (xj)) + lnψkj(x̂

(2)
k (xj), xj)

+
∑
n∈N j

k

[
lnφn(x̂(1)n (x̂

(2)
k (xj)))

+ lnψnk(x̂(1)n (x̂
(2)
k (xj)), x̂

(2)
k (xj))

]
, (37)

where x̂(2)k (xj) is found by solving

∂

∂xk

{
lnφk(xk) + lnψkj(xk, xj)

+
∑
n∈N j

k

[
lnφn(x̂(1)n (xk)) + lnψnk(x̂(1)n (xk), xk)

]}
= 0,

(38)

which leads to

x̂
(2)
k (xj) = u

(2)
kj + v

(2)
kj xj , (39)

where

u
(2)
kj =

u
(1)
kj + 1

Ek

∑
n∈N j

k
Enu

(1)
nk v

(1)
nk

1− 1
Ek

∑
n∈N j

k
En

[
v
(1)
nk

]2 , (40)

v
(2)
kj =

v
(1)
kj

1− 1
Ek

∑
n∈N j

k
En

[
v
(1)
nk

]2 . (41)

Consequently, x̂(2)k (xj) is built as a linear function of xj
plus a linear combination of the local LLRs obtained at node
k and at its one-hop neighbors. More specifically, from (39),
(40), and (41) we see that x̂(2)k (xj) is formed as a linear
combination of γk with γn’s for n ∈ N j

k . In addition, note
that v(2)kj is a constant whereas u(2)kj is a random variable that
captures the statistical behavior of the local observations.

Through iterative calculations for l = 3, 4, ..., we see that
the MLE result x̂(l)k (xj) has similar components, i.e., a linear
function of xj plus a linear combination of the local LLRs
obtained within less than l hops from node j, i.e.,

x̂
(l)
k (xj) = u

(l)
kj + v

(l)
kj xj , (42)

where v(l)kj is a constant and u(l)kj can be expressed as a linear
combination of the local likelihood values, i.e.,

u
(l)
kj =

∑
i∈V

ω
(l)
kj (i)γi, (43)

where ω(l)
kj (i) denotes the weight of γi in this linear combina-

tion. Moreover, ω(l)
kj (i) is zero if node i is located more than

l − 1 hops away from node j. Therefore, by increasing l, we
expand the maximum radius around node j within which the
local likelihoods are combined to build u

(l)
kj . Consequently,

to include all the local LLRs in the fusion process, the
maximum number of iterations does not need to be greater
than the length of the longest path in the network graph. This
justifies the observation in [24] where the desired detection
performance is achieved by only a few iterations.

It is worth noting that, one does not need to perform
many iterative calculations to see the linearity of the final
result. Starting from m

(1)
k→j(xj) in (32), we see that the term

lnφk(xk) + lnψkj(xk, xj) is concave quadratic in xk. Hence,
its partial derivative leads to a linear equation, which, in
turn, leads to a linear expression for x̂(1)k (xj) in terms of
γk and xj . Moreover, in order to build m

(l)
k→j from m

(l−1)
k→j

one needs to add some terms, inside the max operator in (9),
with similar concave quadratic attributes. The only difference
is that, these new terms have as their arguments some linear
expressions with positive coefficients. Note that xk in (9) is
calculated by (42). Since these linear transformations preserve
the concave quadratic nature of the whole expression inside
the max operator, the maximum in (9) is found by solving a
linear equation that leads to a linear expression in terms of
u
(l)
kj and xj .
Based on this observation, we propose a set of formulas to

recursively calculate x̂(l)k (xj). This calculation is realized by
using a quadratic form to represent the messages, which can
be expressed as

m
(l)
k→j(xj) = a

(l)
kjx

2
j + b

(l)
kjxj . (44)

The partial derivative of the messages is then a linear expres-
sion as

∂

∂xj
m

(l)
k→j(xj) = 2a

(l)
kjxj + b

(l)
kj . (45)

Now, by solving the following equation
∂

∂xk

[
lnφk(xk) + lnψkj(xk, xj) +

∑
n∈N j

k

m
(l−1)
n→k (xk)

]
= 0,

(46)
we link a(l)kj and b(l)kj to u(l)kj and v(l)kj as

u
(l)
kj =

u
(1)
kj + 2

Ek

∑
n∈N j

k
b
(l−1)
nk

1− 1
Ek

∑
n∈N j

k
Ena

(l−1)
nk

, (47)

v
(l)
kj =

v
(1)
kj

1− 1
Ek

∑
n∈N j

k
a
(l−1)
nk

. (48)

Hence, by using u
(l−1)
kj and v

(l−1)
kj we calculate a

(l−1)
kj and

b
(l−1)
kj , which are then used to obtain u

(l)
kj and u

(l)
kj . This

recursive calculation starts from u
(1)
kj and v(1)kj in (34) and (35).
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The fusion weights in (43) are determined in terms of v(l)kj ’s.
As we saw in (35) and (41), v(l)kj ’s are determined in terms
of Jkj’s, which capture the inter-dependencies of the random
variables in the MRF. We will further discuss this point and
its implications on the system design later.

Eqs. (47) and (48) indicate that, the higher the received SNR
level at node k, the lower the impact of other nodes on the
data sent from node k to node j. Hence, node k relies more on
its own local observation when it is operating under good SNR
conditions. Otherwise, it relies more on the data received from
its neighbors. In addition, according to (40) and (41), each
LLR received from a neighbor is scaled by the SNR level
perceived at that neighbor. Consequently, the message-update
rule in (9) works like a maximal-ratio combining (MRC)
scheme.

Since the outcomes of the MLEs are derived in closed form,
we can now see their impact on the binary hypothesis test. To
this end, we show that δ(l)k→j is a linear combination of the
local LLRs. First note that for all k, n we have

lnφk(u+ v)− lnφk(u− v) = 2v

[
γk −

Ek
2

(u+ 1)

]
, (49)

lnψnk(u1 + v1, u2 + v2)− lnψnk(u1 − v1, u2 − v2) =

2Jnk(u1v2 + u2v1), (50)

which are linear expressions in u, u1, and u2.
Then, recall that x̂(l)k (xj = ±1) = u

(l)
kj ±v

(l)
kj . Consequently,

δ
(l)
k→j in (17) contains expressions, in the form of (49) and (50),

that are linear functions of u(l)kj ’s. To clarify this observation,
we focus on l = 2 here. A similar argument can be made for
l > 2. We see that,

δ
(2)
k→j = m

(2)
k→j(xj = +1)−m(2)

k→j(xj = −1) =

lnφk(x̂
(2)
k (+1))− lnφk(x̂

(2)
k (−1))

+ lnψkj(x̂
(2)
k (+1),+1)− lnψkj(x̂

(2)
k (−1),−1)

+
∑
n∈N j

k

[
lnφn(x̂(1)n (x̂

(2)
k (+1)))− lnφn(x̂(1)n (x̂

(2)
k (−1)))

]
+
∑
n∈N j

k

[
lnψnk(x̂(1)n (x̂

(2)
k (+1)), x̂

(2)
k (+1))

− lnψnk(x̂(1)n (x̂
(2)
k (−1)), x̂

(2)
k (−1))

]
, (51)

where

x̂
(2)
k (±1) = u

(2)
kj ± v

(2)
kj , (52)

x̂(1)n (x̂
(2)
k (±1)) = u

(1)
nk + v

(1)
nk x̂

(2)
k (±1)

= u
(1)
nk + v

(1)
nk u

(2)
kj ± v

(1)
nk v

(2)
kj . (53)

Comparing (51) to (49) and (50) makes it clear that, (51) is a
linear combination of u(1)nk and u(2)kj , for k ∈ Nj and n ∈ N j

k .
Since u(1)nk and u

(2)
kj are, respectively, linear combinations of

the local likelihoods γk’s for k ∈ Nj and γn’s for n ∈ N j
k ,

we conclude that λ(2)j is a linear combination of γk’s for k ∈
{j} ∪ Nj and γn’s for n ∈ N j

k .
Through similar arguments, we can show that the resulting

decision variable after l iterations is constructed as a linear

combination of the local likelihoods, i.e.,

λ
(l)
j =

∑
i∈M(l)

j

w
(l)
ji γi, (54)

where w
(l)
ji ’s denote the weights in this linear combination

while M(l)
j denotes the set of indices referring to node j and

all its neighbors within its (l−1)-hop distance. Consequently,
given enough time or when the max-product algorithm con-
verges to a fixed point, the decision variable is built as

λj =
∑
i∈V

wjiγi, (55)

where λj , liml→∞ λ
(l)
j . We can summarize these observa-

tions in the following proposition.
Proposition I: The max-LLRs obtained by running the max-

product algorithm, over a network described by the factor
graph in (6) where lnφk(xk) + lnψkj(xk, xj) is concave
quadratic in xk, are built as linear combinations of the local
LLRs in that network. Moreover, at the l’th iteration, each
node combines local LLRs from its neighbors located within
less than l hops away from itself.

We know that Jkj’s specify the factor graph, which models
the stochastic behavior of the network. The proposed analysis
shows that the fusion weights in (11) are determined in terms
of Jkj’s. Therefore, finding the optimal Jkj’s to best represent
the network behavior is equivalent to optimizing the fusion
weights in (55). This observation gives us a deeper insight into
the impact of the MRF parameters on the system performance
and enables us to offer our second proposition as follows.

Proposition II: Learning the parameters of the pairwise
factor graph in (11) to best represent the statistical correlations
in a network of distributed agents and running the max-
product algorithm based on that graph can be viewed as the
optimization of a distributed linear data-fusion scheme in that
network.

Linear data-fusion has been extensively investigated in the
literature. For the completeness of presentation, we briefly
explain how to realize optimal linear data-fusion in the fol-
lowing section. An interested reader may refer to [25]–[27]
for more comprehensive discussions. We have explained in
detail the proposed optimization framework in [4] where we
optimize the sum-product algorithm. In the following section,
we discuss why that framework can be applied to the max-
product algorithm as well.

IV. LINEAR DATA-FUSION

The fact that the decision variable λj is the result of a linear
fusion facilitates analyzing the system behavior and optimizing
its performance. Given the status of xi’s, the local LLRs follow
Gaussian distributions. Consequently, the decision variable λj
follows a Gaussian distribution and we only need its first- and
second-order statistics to derive its probability distribution.
We can find the impact of fusion weights (i.e., wjk’s) on
the system performance by noting that they determine the
contribution of each node on the mean and variance of λj .
The system false-alarm and detection probabilities at node j
depend not only on the state of xj , but also, in general, on
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the state of all other xi’s being sensed throughout the entire
network. Consequently, based on the total probability theorem,
we have

gj(τj , v) , Pr{λj > τj |xj = v}

=
∑

b∈{−1,1}N−1

Pr{λj > τj |x(j) = b, xj = v}px(j)|xj
(b|v)

=
∑

b∈{−1,1}N−1

Q

(
τj − ηj,v(b)
σj,v(b)

)
px(j)|xj

(b|v), (56)

where x(j) , [x1, x2, ..., xj−1, xj+1, xj+2, ..., xN ],
px(j)|xj

(b|v) , Pr{x(j) = b|xj = v}, and for
v = −1, 1, ηj,v(b) , E[λj |x(j) = b, xj = v]

and σ2
j,v(b) , Var[λj |x(j) = b, xj = v].

Q(x) ,
∫∞
x

1√
2π
e−z

2/2dz is the so-called Q-function.
Note that x(j) ∈ {−1, 1}N−1 contains all xi’s except for xj .
It is clear that P (j)

f = gj(τj ,−1) and P
(j)
d = gj(τj , 1). By

solving gj(τj ,−1) = α or gj(τj , 1) = β we obtain a value
for τj that guarantees the false-alarm or detection probability
at node j be, respectively, equal to α or β. We have discussed
how to find the detection threshold to guarantee a predefined
performance level in [4].

A. Centralized Linear Fusion

In a centralized distributed detection [30], the local sensing
outcomes are constantly reported to a so-called fusion center
(FC), which is usually a more powerful node like a base station
or an access point. The FC uses the received information from
the cooperating nodes to estimate the statistics required for a
linear fusion scheme and then directly combines the received
local sensing results into a global decision variable. In this
fusion process, the vector of decision variables is built as

λ = Wγ, (57)

where W denotes the weighting coefficients, see (55).
Now, the problem is to find the optimal fusion weights

and detection thresholds to have the best detection perfor-
mance. A linear fusion scheme can be optimized by assign-
ing rewards to the detection and costs to the false-alarm
incidents. In particular, we assume that the system obtains
reward ri for performing a correct detection at node i and
incurs cost ci when a false alarm happens. Therefore, the
average reward obtained by the system regarding the detection
performance at node i is riP

(i)
d whereas the average cost of

false alarms happening at that node is ciP
(i)
f . Consequently,

the aggregate reward obtained throughout the entire network
is stated as R(λ, τ ) , rTPd where r = [r1, ..., rN ]T and
Pd = [P

(1)
d , ..., P

(N)
d ]T while the aggregate cost of false

alarms is taken into account by C(λ, τ ) = cTPf where
c = [c1, ..., cN ]T and Pf = [P

(1)
f , ..., P

(N)
f ]T . Accordingly,

the system performance optimization is formulated as

max
W,τ

R(λ, τ ), (P1)

s.t., C(λ, τ ) ≤ C0, Pf(λ, τ ) ≤ α, Pd(λ, τ ) ≥ β,

where C0 denotes the maximum cost allowed while α =
[α1, ..., αN ]T and β = [β1, ..., βN ]T denote the per-node
constraints the system has to meet when performing the
hypothesis test. That is, we optimize the aggregate system
performance while maintaining the constraints P (j)

f ≤ αj and
P

(j)
d ≥ βj for j = 1, ..., N . The optimization problem in

(P1) is solved in [32] in the context of distributed multiband
spectrum sensing in CR networks.

B. Decentralized Linear Fusion

The message-passing algorithms are of special interest in
decentralized distributed settings where there is no FC and the
network has to conduct the detection process based on limited
computation and communication resources offered only by the
sensing nodes. Here we discuss how to optimize the message-
passing process in such a design scenario.

Since the max-product algorithm works like the sum-
product algorithm, we first explain how to derive the op-
timal detection performance by optimizing the sum-product
algorithm. This optimization framework is based on the fact
that the resulting linear fusion favors the LLRs received from
shorter distances, especially, the ones generated at the one-hop
neighbors. Then, we show that the linear fusion realized by
the max-product algorithm has the same property. Therefore,
the same optimization framework gives the optimal detection
performance of the max-product algorithm as well.

Eq. (25) reveals the effect of the network topology on how
the fusion coefficients are arranged by a sum-product iteration.
Specifically, for the one-hop neighbors of node j we have one
coefficient cjk affecting the local LLRs received, for the two-
hop neighbors we have two coefficients cjkckn and so on.
Since |cjk| < 1, the system favors LLRs received through the
shortest paths when building the decision variables. Moreover,
the impact of γn on λj , which depends on the correlation
between xn and xj , is determined by multiplying two factors
ckn and cjk corresponding, respectively, to the link from node
n to node k and the link from node k to node j. Accordingly,
we decompose the problem of optimizing cjk’s into N small
optimizations, each carried out locally at a sensing node,
that collectively lead to a near-optimal performance in a
decentralized distributed network configuration.

In the proposed optimization framework each node is fo-
cused on the fusion of the LLRs received from its one-hop
neighbors by using the following approximation [4]

λ̄j ≈ γj +
∑
k∈Nj

cjkγk, (58)

which is used to formulate the local optimizations as

max
cj ,τj

P
(j)
d (λ̄j), (P2)

s.t., P
(j)
f (λ̄j) ≤ αj ,

|cjk| < 1
maxn |Nn|−1 ,∀k ∈ Nj ,

where we maximize the detection probability at node j while
maintaining its false-alarm probability below the predefined
threshold α. This optimization is based on the Neyman-
Pearson method [33]. P (j)

d and P (j)
f are derived approximately
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by

gj(τj , v) ≈
∑

b∈{0,1}|Nj |

Q

(
τj − η̃j,v(b)
σ̃j,v(b)

)
px̃(j)|xj

(b|v), (59)

where x̃(j) is a vector that contains xi’s with i ∈ Nj while
for v = 0, 1, we have η̃j,v(b) , E[λ̄j |x̃(j) = b, xj = v]

and σ̃2
j,v(b) , Var[λ̄j |x̃(j) = b, xj = v]. Note that, |Nj |

denotes the number of one-hop neighbors of node j while
η̃j,v and σ̃j,v denote an estimation of the first- and second-
order conditional statistics of λ̄j given the value of xj and
its immediate neighbors. This optimization can be solved by
the blind adaptation method provided in [4] when the required
statistics are not available a priori. The last constraint in (P2)
is imposed by the contracting mapping principle [34], which
guarantees the convergence of the message-passing iteration.

By solving (P2), the optimal cjk’s are found in terms of
the correlations between the LLRs made at nodes j and k.
Consequently, if node n is connected to node j through node k,
the correlation between xj and xk is captured in cjk while the
correlation between xk and xn is accounted for by ckn. Hence,
both of the correlations concerned are taken into account in
the system design by the multiplication cjkckn in (25) while
each node sees its immediate neighbors only when optimizing
its own fusion coefficients. This fusion process is inline with
the Markovian structure of the factor graph. Recall that, the
correlation between xn and xj is accounted for in (6) by
two factors ψk,n(xk, xn) and ψjk(xj , xk) multiplied together
within p(x|Y ).

The same approach can be used to optimize the max-
product algorithm. The reason is that the local LLRs received
from the one-hop neighbors have dominant effects on the
decision variables build by the max-product operation. This
is a behavior we saw earlier in the sum-product algorithm.
To clarify this observation, when formulating the decision
variable λ(l)j , we use the fact that v(1)kj is proportional to 1

K
and, assuming the number of samples K to be large [25]–[27],
we can see that the system favors data received from closer
distances. Again, we focus on l = 2 for simplicity. By using
(49) and (50) while approximating the terms proportional to
1
K by zero, we have

lnφk(x̂
(2)
k (+1))− lnφk(x̂

(2)
k (−1))

≈ v(1)kj

[
γk −

Ek
2

(
u
(1)
kj + 1

)]
= 0, (60)

lnψkj(x̂
(2)
k (+1),+1)− lnψkj(x̂

(2)
k (−1),−1) ≈ 2Jkju

(1)
kj ,

(61)

lnφn(x̂(1)n (x̂
(2)
k (+1)))− lnφn(x̂(1)n (x̂

(2)
k (−1)))

= v
(1)
nk v

(2)
kj

[
γn −

En
2

(
u
(1)
nk + v

(1)
nk u

(2)
kj + 1

)]
≈ 0, (62)

lnψnk(x̂(1)n (x̂
(2)
k (+1)), x̂

(2)
k (+1))

− lnψnk(x̂(1)n (x̂
(2)
k (−1)), x̂

(2)
k (−1))

= 2Jkj

[
(u

(1)
nk + v

(1)
nk u

(2)
kj )v

(2)
kj + u

(2)
kj v

(1)
nk

]
≈ 0. (63)

By plugging these approximations into (51), we derive the

fusion result in (25) as1

λj ≈ γj +
∑
k∈Nj

Jkjγk, (64)

which shows that, firstly, the decision variable of each node
can be derived approximately by linearly combining its local
LLR with the LLRs obtained at its one-hop neighbors; sec-
ondly, the likelihoods are scaled in this combination by Jkj’s,
which capture the correlation between the node variables; and
thirdly, we only need the statistics of the one-hop neighbors
here to analyze the stochastic behavior of λj .

Since Jkj’s are our degrees of freedom in this design, (58)
and (64) are the same from an optimization point of view.
Note that, cjk is a monotonically-increasing function of Jkj .

To sum up, the max-product and sum-product operations
provide almost the same message-passing algorithms in which
the local LLRs are combined linearly to build the decision
variables while the closer neighbors having a more significant
contribution on the decision variables obtained. Consequently,
the optimal detection performance of a max-product-based
system can be achieved by the optimal linear message-passing
algorithm defined by (24) in which the coefficients are ob-
tained by (P2).

C. Discussion

In case there is a node at which the maximum of q(xj |y)
is not attained at a unique value, then the hypothesis test
conducted by using the max-marginals is not necessarily equal
to the MAP estimation in (1). This means that compared
to the MAP estimation we may have some extra error in
the system performance. However, by using the proposed
analysis, now we can control this error and even minimize
it. In addition, this performance optimization can be realized
with low computational complexity and in a distributed setting.
Hence, in practice, the proposed message-passing process
provides performance guarantees and ease of implementation
not typically available when dealing with a generic MAP
estimation process. In the following section, we show that the
proposed detector closely achieves the optimal performance
level.

Moreover, the detection performance is affected by the
parameters adopted for the MRF and finding the optimal or
even near-optimal values for those parameters is certainly a
challenge, see e.g., [35]. Based on the proposed analysis, now
we can optimize the resulting data-fusion process and that is
equivalent to optimizing the parameters of the MRF. This was
not possible before.

V. NUMERICAL RESULTS

In this section, we verify our analysis by computer simula-
tions. Fig. 3 demonstrates the network configuration consid-
ered in our simulations. We use the same network structure
as in [4]. Specifically, five SUs are cooperating in an ad-
hoc setting via a parallel message-passing iteration, in sensing
the radio spectrum to find vacant bands temporarily not in

1We have merged 2 into Jkj .
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Fig. 3: The network configuration considered in the simu-
lations. Five sensing nodes cooperate to find transmission
opportunities within the spectrum bands allocated to two
primary transmitters. The dashed lines depict the links between
the sensing nodes through which the distributed detection is
conducted.

use by two PU transmitters. Nodes 1 and 2 are located
within the range of PU transmitter 1 and nodes 4 and 5 are
located within the range of PU transmitter 2 while node 3
can receive signals from both of the PU transmitters. The
distributed detection is conducted through the one-hop links
depicted in Fig. 3 by dashed lines. We realize a spatially-
correlated occupancy pattern by making the PU transmitters
exhibit correlated random on and off periods. This is an
extension of the simulation scenario in [24] where one of the
PU transmitters is constantly on while the other one is off all
the time.

The spatial diversity in the network structure is accounted
for by assigning different SNR levels to different nodes.
Specifically, the SNR levels, in dB, of the signals received
from PU transmitter 1 at nodes 1, 2, and 3 are ρ+ ∆ρ, ρ, and
ρ−∆ρ, while the SNR levels of the signals received from PU
transmitter 2 at nodes 3, 4, and 5 are ρ, ρ−∆ρ, and ρ+ ∆ρ,
respectively. Consequently, ρ denotes the average SNR level
in the network while ∆ρ measures the level of SNR dispersion
among the network nodes.

We first study the statistical behavior of the decision vari-
ables built by the max-product algorithm. Specifically, we
show that, given the status of the PU transmitters, λi’s follow
Gaussian distributions when coherent detection or energy
detection is used in the sensing nodes. Figs. 4a and 4b depict
the cumulative distribution functions (CDF) of the decision
variables obtained at nodes 1, 3, and 5 when coherent detection
is used at each node by processing 100 samples of the received
signal, i.e., when K = 100. In this simulation, ρ = −5 dB
and ∆ρ = 1 dB while Jkj values are randomly drawn, with
a uniform distribution, from (0, 100). For a given realization
of Jkj’s, each data point is obtained by averaging over 10,000
detection outcomes. Fig. 4a depicts the case in which only
PU transmitter 1 is active while in the case depicted in Fig.
4b both PU transmitters are active. For each decision variable,
we have provided two curves. The curves labeled ”sim.” depict
the CDFs of the decision variables observed in our simulations
whereas the ones labeled ”theory” depict Gaussian CDFs fitted
to the behavior of those decision variables. We can now clearly
see the Gaussian behavior in the decision variables and this
behavior validates our argument regarding the linearity of the
max-product operation.
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Fig. 4: Cumulative distribution functions of the decision
variables built by the max-product algorithm while coherent
detection is used as the local sensing method. The resulting
decision variables follow Gaussian distributions given the
status of the PU transmitters.

Such a linear behavior is also demonstrated in Figs. 5a and
5b where energy detection is used as the local sensing method.
Again, we see that the decision variables obtained by the max-
product algorithm follow Gaussian distributions. The reason is
that, when we replace matched filtering by energy detection we
do not alter the structure of the max-product algorithm, which
leads to a linear combination of the local sensing outcomes.
We only change the local sensing outcomes exchanged by
the sensing nodes. Since the local sensing outcomes produced
by energy detection are Gaussian random variables, a linear
combination of those outcomes follows a Gaussian distribution
as well.

Since we have now established that the max-product algo-
rithm is a linear fusion method, we know that its performance
level is bounded from above by the performance of the
optimal linear fusion scheme. We also know from [25] that the
performance of the optimal linear fusion is very close to that
of the optimal detector, i.e., likelihood-ratio test. In addition,
we expect the linear message-passing framework in (P2),
which closely achieves the optimal detection performance, to
outperform both the max-product and sum-product algorithms.
We also expect the proposed method to outperform the equal-
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Fig. 5: Cumulative distribution functions of the decision
variables built by the max-product algorithm while energy
detection is used as the local sensing method. The resulting
decision variables follow Gaussian distributions given the
status of the PU transmitters.

gain combining (EGC) method, which is a linear fusion
scheme that treats all local sensing outcomes equally [31].
All these expectations are confirmed by the results depicted in
Fig. 6.

In Fig. 6, we compare the performance levels of all these
methods under different SNR levels. Specifically, for the SNR
dispersion level of ∆ρ = 0.1ρ, the average detection rate
of the different methods discussed are depicted in Fig. 6 vs.
different values of the average SNR level ρ while their false-
alarm rates are fixed at 0.1. The curves in Fig. 6 measure
the average of the detection and false-alarm rates over all
of the five sensing nodes in the network while each data
point is obtained by averaging over 20,000 sensing outcomes.
Each sensing outcome is calculated by processing 100 received
signal samples at each node for energy detection. A window of
T = 2500 time slots is used for training the sum-product, max-
product, and the proposed linear message-passing algorithms.
We realize EGC by cjk = c0, for all (j, k) ∈ E , where c0 is a
constant.

In Fig. 6, we depict the average detection rate achieved
by the max-product algorithm for ζ = 0.1, 0.3, 1.0 in (23) by
curves labeled, respectively, as ”mp0.1”, ”mp0.3” and ”mp1.0”
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Fig. 6: Performance of different detection methods under
different average SNR levels. The SNR dispersion level is
∆ρ = 0.1ρ. The detection and false-alarm rates are obtained
by averaging the corresponding rates over all five sensing
nodes in the network.

while for the corresponding curves regarding the sum-product
algorithm we use labels ”bp0.1”, ”bp0.3” and ”bp1.0”. The op-
timal linear fusion is labeled ”linOpt” and the proposed linear
message-passing algorithm in [4] is labeled ”linProp” while
the detection rate of its blind version is labeled ”linPropB”.
EGC is realized in our simulations for c0 = 0.1, 0.3, 1.0 whose
detection rates in Fig. 6 are labeled, respectively, by ”egc0.1”,
”egc0.3” and ”egc1.0”. The label ”local” refers to the local
sensing method, which is energy detection here, performed
individually at each node and without cooperating with other
nodes. To refer to the false-alarm rate (FAR) of a specific
method we put an ”f” in the beginning of the label already
used for the detection rate of that method. For instance, we use
”fmp0.1” to refer to the FAR of the detection method labeled
”mp0.1”.

The blind optimization in [4] is conducted based on an
offline iterative estimation of the required statistics where each
node, say node j, processes data received from its neighbors
to derive a reliable x̂j , which is then used in estimating
the required statistics, i.e., E[γk|xj ] and cov(γi, γk|xj) for
i, k ∈ Nj . This estimation can be improved by adding a
majority rule [36] to the iteration. Specifically, at each iteration
node j corrects its decision by applying the majority rule on
x̂j and the estimates of xj inferred from γk’s generated by its
neighbors. Those estimates are obtained by thresholding γk’s
received at node j while the thresholds are simply updated
by using the mean and variance of the same received data.
Iterative correction of x̂j’s significantly increases the effec-
tiveness of our offline adaptation and enables us to achieve
near-optimal results in very low SNR regimes as shown in
Fig. 6.

As we expected, Fig. 6 shows that the optimal linear fusion
scheme exhibits the highest detection rates in all the SNR
levels considered. Note however that, this method requires
the first- and second-order statistics of all the local sensing
outcomes to be available a priori [25]. The proposed linear
message-passing algorithm closely achieves the optimal per-
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formance when only the first- and second-order statistics of the
one-hop neighbors are available at each node. When no such
statistics are available, the proposed linear message-passing in
(24) optimized by the blind offline adaptation scheme in [4]
obtains a near-optimal detection performance.

In Fig. 6, we see that both of the sum-product and max-
product algorithms exhibit different performance levels for
different values of ζ and their performance is bounded from
above by the detection rate of the proposed linear message-
passing algorithm. Moreover, Fig. 6 indicates that the val-
ues we choose for ζ or c0 heavily affect the performance
of the message-passing algorithms concerned. For instance,
the detection rates of the max-product algorithm and EGC
drop below that of the local sensing method for ζ = 1
and c0 = 1. We have observed in our simulations that the
performance of the max-product algorithm is improved when
the learning factor ζ is increased from 0.01 to 0.1 and then
is degraded severely by a further increase in ζ, indicating that
an optimization of the message-passing iteration is needed.
Optimal values for the parameters of the message-passing
iteration are found by the proposed optimization method while
the analysis provided in this paper justifies why the resulting
detector outperforms the max-product algorithm. Note that,
it is not clear how to determine the optimal value for c0
when EGC is used. The proposed optimization framework
solves this problem effectively since EGC is, in fact, a special
case of linear data-fusion. We see in Fig. 6 that the optimal
performance of EGC is achieved by the proposed method
while no information is available a priori.

It is worth noting that, the existing works do not clarify
how to best determine Jkj’s in the max-product operation.
The analysis proposed in this paper clarifies that such an
optimization is equivalent to designing an optimal linear
fusion scheme. By comparing the detection rate of the max-
product algorithm against that of the optimal linear fusion,
the performance gain obtained by the proposed framework
is visualized. Specifically, by comparing the curves labeled
”mp0.1”, ”mp0.3”, and ”mp1.0” in Fig. 6 against the detection
rates labeled ”linPropB”, ”linProp”, and ”linOpt” we see the
performance gain obtained.

VI. CONCLUSION

The analysis and numerical results presented in this paper
demonstrate that in a distributed detection scenario and under
practical assumptions the max-product algorithm works as a
linear data-fusion scheme. Therefore, the knowledge already
developed in the literature regarding distributed linear data-
fusion can be used to better understand the behavior of the
max-product algorithm.
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