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Introduction

A classical solution to a partial differential equation is a suitably smooth func-
tion that satisfies an equation pointwise in a domain. However, many equations
that appear in applications admit no such solutions and therefore the notion of
solution needs to be extended. One such extension is achieved by integration by
parts in the theory of distributional weak solutions. Another class of extended
solutions is the viscosity solutions defined by generalized pointwise derivatives.
If both viscosity and weak solutions can be meaningfully defined, it is natural
to ask whether they coincide. This dissertation studies the equivalence of solu-
tions to different equations related to the p-Laplacian and stochastic tug-of-war
games.

1. Backgrounds

1.1. Viscosity solutions. Crandall and Lions [CL83] introduced viscosity so-
lutions as a uniqueness criterion for first order equations, though related ideas
were also published by Evans [Eva78, Eva80]. Viscosity solutions to second
order equations remained of limited interest for several years as the uniqueness
of solutions was known only in some special cases. A major breakthrough took
place when Jensen [Jen88] proved the uniqueness of viscosity solutions to equa-
tions of the form F (u,Du,D2u) = 0 under certain assumptions. His results
were further extended by Ishii [Ish89] to include equations that depend on x.

The name of viscosity solutions originates from the so called vanishing vis-
cosity method in which one adds a vanishing viscosity term to an equation and
passes to the limit to obtain the existence of solutions. However, this method
is no longer central. To illustrate the basic idea and definition of viscosity
solutions, consider a partial differential equation

F (x,Du,D2u) = 0 in Ω, (1.1)

where F : Ω × RN × SN → R is continuous, D2u is the Hessian matrix of u
and Ω ⊂ RN is a bounded domain. Here SN denotes the set of symmetric real
valued N × N matrices and is equipped with the usual partial ordering where
X ≤ Y if η′Xη ≤ η′Y η for all η ∈ RN . Suppose moreover that F is degenerate
elliptic, meaning that

F (x, η,X) ≥ F (x, η, Y ) whenever X ≤ Y.

To give an example, the Laplace equation would now correspond to

F (x, η,X) := −trX := −
N∑

i=1
Xii.

Definition. A lower semicontinuous function u : Ω → (−∞,∞] is a viscosity
supersolution to (1.1) in Ω if u 6≡ ∞ and whenever ϕ ∈ C2(Ω) is such that u−ϕ
has a local minimum at x ∈ Ω, we have

F (x,Dϕ(x), D2ϕ(x)) ≥ 0. (1.2)

Similarly, an upper semicontinuous function u : Ω → [−∞,∞) is a viscosity
subsolution to (1.1) in Ω if u 6≡ −∞ and whenever ϕ ∈ C2(Ω) is such that u−ϕ
has a local maximum at x ∈ Ω, we have

F (x,Dϕ(x), D2ϕ(x)) ≤ 0.

A function is a viscosity solution if it is both viscosity sub- and supersolution.
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Too see that the concept of viscosity solutions extends classical solutions,
recall from calculus that if ψ ∈ C2 has a local minimum at x, then we have

Dψ(x) = 0 and D2ψ(x) ≥ 0.
Therefore, if u, ϕ ∈ C2 are such that u− ϕ has a local minimum at x, we have

Du(x) = Dϕ(x) and D2u(x) ≥ D2ϕ(x).
Consequently, if u is a classical supersolution to (1.1), it follows from degenerate
ellipticity that

F (x,Dϕ(x), D2ϕ(x)) ≥ F (x,Du(x), D2u(x)) ≥ 0,
which means that u is a viscosity supersolution. Similarly we see that it is a
viscosity subsolution and thus classical solutions are viscosity solutions.

A useful equivalent definition of viscosity supersolutions requires that the in-
equality (1.2) holds whenever ϕ ∈ C2 touches u from below at x, i.e. whenever
ϕ(x) = u(x) and ϕ(y) < u(y) for y 6= x. Analogously, definition of subsolutions
uses test functions that touch from above. So far we assumed that F is con-
tinuous. For singular equations the definition of viscosity solutions needs to be
adjusted, see the sections discussing the articles [B] and [C].

Viscosity solutions have turned out to be the natural class of solutions for
many applications. They appear for example in optimal control (Hamilton–
Jacobi–Bellman equation) [CL83, BCD97], stochastic games [PS08, PSSW09,
MPR10, MPR12, BR19] and geometric flows [CGG91, ES91, AD00, FLM14].
In particular viscosity solutions can be formulated for equations in a non-
divergence form or even for fully nonlinear equations. Viscosity solutions also
have good stability properties with respect to uniform convergence. The ex-
istence of viscosity solutions can be often achieved via Perron’s method. The
standard reference to viscosity solutions is the paper by Crandall, Ishii and Li-
ons [CIL92], see also the books by Caffarelli and Cabre [CC95], Koike [Koi12]
and Katzourakis [Kat15].

1.1.1. Viscosity solutions and tug-of-war. Tug-of-war games provide an impor-
tant motivation for the equations which we study in articles [A] and [C]. The
connection of tug-of-war game to viscosity solutions was first discovered by
Peres, Schramm, Sheffield and Wilson [PSSW09]. They introduced a two-player
zero-sum stochastic game called tug-of-war and showed that the value function
of the game is related to the solutions of the so called ∞-Laplace equation

−∆∞u := −(Du)′D2uDu = −
N∑

i,j=1
DijuDiuDju = 0, (1.3)

where (Du)′ denotes the transpose of the column vector Du. The ∞-Laplacian
was first studied by Aronsson in the 60s. It is related to optimal Lipschitz
extensions [Aro67, Jen93]. The equation −∆∞u = 0 needs to be understood
in the viscosity sense as it is in a non-divergence form and classical solutions
turn out to be too restrictive. Indeed, any C2 solution to −∆∞u = 0 must be a
constant if it has any critical points [Aro68, Yu06]. This implies non-existence
of classical solutions to the Dirichlet problem with suitable C2 boundary data.

In 2008 Peres and Sheffield [PS08] introduced tug-of-war with noise, this
time in connection to the normalized (or game-theoretic) p-Laplacian which for
smooth u with a non-vanishing gradient can be written as

∆N
p u := |Du|2−p div(|Du|p−2Du) = ∆u+ (p− 2) |Du|−2 ∆∞u, (1.4)

where 1 < p < ∞ and the N stands for “normalized”. In the time depen-
dent case this leads to a normalized p-parabolic equation, see [MPR10, BG15].
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The normalized p-Laplacian was also studied in the context of image process-
ing [Doe11, ETT15]. To describe its connection to game theory, consider the
following version of tug-of-war with noise by Manfredi, Parviainen and Rossi
[MPR12]. Suppose that p > 2 for simplicity and that ∂Ω is suitably regular. A
step size ε > 0 is fixed and a token is placed at x0 in a domain Ω. A biased
coin is tossed so that it lands heads with probability α = (p− 2)/(p + N) and
tails with probability 1 − α. If it lands tails, the token moves to a random
position x1 ∈ Bε(x0) according to a uniform probability distribution. Other-
wise, a tug-of-war step is played: a fair coin is tossed and the winning player
is allowed to select a new position x1 ∈ Bε(x0) for the token. Once the token
exits the domain, the game ends and Player II pays Player I the amount g(xτ ),
where xτ is the final location of the token and g : RN \Ω→ R is called a payoff
function. There is a well defined concept of a value for this game. At each point
x ∈ Ω, the value of the game uε(x) equals the amount of money that Player I
is expected to win from Player II if the game starts from x. The value function
satisfies the dynamic programming principle

uε(x) = α

2

(
sup
Bε(x)

uε + inf
Bε(x)

uε

)
+ (1− α)−

∫

Bε(x)
uε(y) dy

from which one can essentially read the rules of the game.
To heuristically link the dynamic programming principle to the normalized

p-Laplacian, suppose for the moment that u is a smooth solution to −∆N
p u = 0

whose gradient does not vanish. By Taylor’s theorem we have

u(y) = u(x) + (y − x) ·Du(x) + 1
2(y − x)′D2u(x)(y − x) + o(|x− y|2).

Taking an average over Bε(x) we obtain

−
∫

Bε(x)
u(y) dy = u(x) + ε2

2(N + 2)∆u(x) + o(ε2).

On the other hand, since the maximum and minimum of the Taylor expansion
in Bε(x) are roughly at the points y = x ± εDu(x)/ |Du(x)|, we heuristically
have

1
2( sup

Bε(x)
u+ inf

Bε(x)
u) ≈ u(x) + ε2

2 |Du(x)|−2 (Du(x))′D2u(x)Du(x) + o(ε2).

Combining the last two displays, recalling that α = (p− 2)/(p+N) and using
that u is a solution to −∆N

p u = 0, we would see that u satisfies the dynamic
programming principle with a small error.

When the step size approaches zero, the value function converges uniformly
up to a subsequence to a viscosity solution of the Dirichlet problem




−∆N

p u = 0 in Ω,
u = g on ∂Ω.

This result can be extended to the case of space dependent probabilities [AHP17],
which provides motivation for the study of the normalized p(x)-Laplacian

∆N
p(x)u := ∆u+ (p(x)− 2) |Du|−2 ∆∞u

in article [A]. It is also possible to include a running payoff by requiring that
Player II pays an amount equal to ε2f(xk) whenever the token is moved from xk.
In this case the value function converges to a solution of the non-homogeneous
equation −∆N

p u = f [Ruo16] which is a special case of the equation studied in
article [C].
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1.2. Distributional weak solutions. The origins of distributional weak so-
lutions (weak solutions for short) go back about a century to the works of Levi,
Morrey, Sobolev, Tonelli and others on Hilbert’s 20th problem. This problem
asks if every regular variational problem has a solution with given boundary
values, provided that the notion of solution is extended if needed. It turns out
that the correct space in which to look for a solution is a Sobolev space. Further-
more, solutions to a regular variational problem coincide with weak solutions
to the corresponding Euler-Lagrange equation. While Hilbert’s 20th problem
is concerned with existence, his 19th problem asks if a solution to a regular
variational problem is always analytic. This was resolved independently by De
Giorgi [Gio57] and Nash [Nas58] who proved that weak solutions to the corre-
sponding Euler-Lagrange equation are Hölder continuous. By previous results
this yielded analyticity of the solutions.

Today weak solutions are a central part of the analysis of partial differential
equations with a large number of applications and vast literature. For an intro-
duction to the topic, see for example the textbooks by Gilbarg and Trudinger
[GT01], Wu, Yin and Wang [WYW06] or Evans [Eva10].

Let us recall the idea of weak solutions by considering the p-Laplace equation,
which for a smooth function u with a non-vanishing gradient can be written as

−∆pu :=− div(|Du|p−2Du)
=− |Du|p−2 (∆u+ (p− 2) |Du|−2 ∆∞u) = 0, (1.5)

where 1 < p <∞. The p-Laplace equation is a model for quasilinear equations
in a divergence form. It is in a sense singular when p < 2 and degenerate when
p > 2. The cases p = 1 and p→∞ are related to the mean-curvature operator
and the ∞-Laplacian, respectively. The book by Heinonen, Kilpeläinen and
Martio [HKM06] and the notes by Lindqvist [Lin17] are good introductions to
the topic. The p-Laplace equation is the Euler-Lagrange equation corresponding
to the problem of minimizing the Dirichlet energy

∫

Ω
|Du|p dx

among all functions in Ω with the same boundary values. By applying the direct
method in calculus of variations, one finds that the minimizer must satisfy

∫

Ω
|Du|p−2Du ·Dϕdx = 0 (1.6)

for all ϕ ∈ C∞0 (Ω). The equation (1.6) is called the weak form of the equation
−∆pu = 0. Observe that it only contains first derivatives even though the
original equation is of second order. For weak solutions we merely require these
derivatives to exist in the distributional sense.

Definition. A function u ∈ W 1,p
loc (Ω) is a weak solution to

−∆pu = 0 in Ω

if (1.6) holds for all ϕ ∈ C∞0 (Ω), where Du is understood in the distributional
sense. For weak supersolutions we require that the integral in (1.6) is non-
negative for all non-negative ϕ ∈ C∞0 (Ω). Analogously, for weak subsolutions
we require that the integral is non-positive.

To see that classical solutions are weak solutions, let ϕ ∈ C∞0 (Ω) be arbitrary
and suppose that u is a smooth solution to −∆pu = 0 whose gradient does not
vanish. Multiplying the equation by ϕ, integrating over Ω and applying the
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Gauss-Green theorem, we obtain

0 =−
∫

Ω
ϕ div(|Du|p−2Du) dx

=
∫

Ω
|Du|p−2Du ·Dϕdx−

∫

∂Ω
ϕ |Du|p−2Du · n dS.

The normal vector n makes sense only for suitably regular ∂Ω but this is not a
problem since any domain can be exhausted with smooth domains. Since ϕ has a
compact support, the surface integral vanishes and we obtain the equation (1.6).
Conversely, a C2 weak solution is a classical solution since by the fundamental
lemma in the calculus of variations the integral

∫
Ω ϕ div(|Du|p−2Du) dx vanishes

for all ϕ ∈ C∞0 (Ω) only if div(|Du|p−2Du) ≡ 0. Weak solutions are therefore a
generalization of classical solutions.

1.3. Equivalence of solutions. The relationship between viscosity and weak
solutions has been extensively studied starting from the work of Ishii [Ish95]
on linear equations. The equivalence of viscosity and weak solutions to the
p-Laplace equation and its parabolic version was first proved by Juutinen,
Lindqvist and Manfredi [JLM01] for 1 < p < ∞. In fact, they showed that
u : Ω → (−∞,∞] is a viscosity supersolution to the equation −∆pu = 0 in
Ω if and only if u is p-superharmonic in Ω. Recall that u : Ω → (−∞,∞] is
p-superharmonic if it is lower semicontinuous, u 6≡ ∞ and it satisfies the com-
parison principle on each subdomain D b Ω: if v ∈ C(D) is a weak solution to
−∆pv = 0 in D, then

u ≥ v on ∂D implies u ≥ v in D.
For example the so called fundamental solution

V (x) =



|x|

p−N
p−1 , p 6= N,

log(|x|), p = N,

is p-superharmonic in RN , but it is not a weak supersolution to the p-Laplace
equation when p ≤ N because it fails to be in the correct Sobolev space. How-
ever, a locally bounded p-superharmonic function is a weak supersolution and a
lower semicontinuous weak supersolution is p-superharmonic [Lin86]. The proof
in [JLM01] relies on the comparison principle of viscosity and weak solutions.
Later Julin and Juutinen [JJ12] proved the equivalence of viscosity and weak
solutions to the p-Laplace equation without relying on the comparison principle
of viscosity solutions. Equivalence of solutions to the p(x)-Laplace equation

−∆p(x)u := − div(|Du|p(x)−2Du) = 0
was showed by Juutinen, Lukkari and Parviainen [JLP10] for p ∈ C1(Ω) and
1 < infΩ p < supΩ p <∞. More recently, Attouchi, Parviainen and Ruosteenoja
[APR17] proved and used the equivalence of solutions to obtain C1,α regularity
of solutions to the normalized p-Poisson problem

−∆N
p u = f,

where p ≥ 2 and f ∈ C(Ω) is in a suitable Lebesgue space. Ochoa and Medina
[MO19] proved the equivalence of solutions to the non-homogeneous p-Laplace
equation

−∆pu = f(x, u,Du)
under suitable assumptions on f . Parviainen and Vazquez [PV] showed that
radial viscosity solutions to the parabolic equation

∂tu = |Du|q−2 ∆N
p u,
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where q, p > 1 coincide with weak solutions to a one-dimensional equation
related to the radial q-Laplacian. Fractional equations were considered for ex-
ample by Servadei and Valdinoci [SV14] and Korvenpää, Kuusi and Lindgren
[KKL19]. Equivalence questions have been studied also in non-Euclidean set-
tings. For example, Bieske [Bie06] proved the equivalence of viscosity and weak
solutions to the p-Laplace equation in the Heisenberg group and recently Bieske
and Freeman [BF] considered the p(x)-Laplace equation in Carnot groups.

In this dissertation we show equivalence of viscosity and weak solutions in
three different cases. In article [A] we study the normalized or game-theoretic
p(x)-Laplacian which appears in stochastic tug-of-war games. In article [B] we
consider a parabolic p-Laplace equation with a gradient term. Finally, in [C]
we study radial solutions to a non-homogeneous equation that includes both
the normalized and standard p-Laplace equations. Though the main results are
equivalence theorems, in [A] and [C] we also derive some applications from the
equivalence of solutions.

2. The normalized p(x)-Laplacian and article [A]

In [A] we study the normalized p(x)-Laplace equation which for smooth u
with a non-vanishing gradient can be written as

−∆N
p(x)u := −∆u− p(x)− 2

|Du|2
∆∞u = 0 in Ω, (2.1)

where ∆∞u is the ∞-Laplacian defined in (1.3), Ω ⊂ RN is a bounded domain
and p : Ω → R is Lipschitz continuous with pmin := infΩ p > 1. As mentioned,
the study of (2.1) is partially motivated by its connection to stochastic tug-of-
war games with space dependent probabilities [AHP17].

Our main result is that viscosity solutions to (2.1) coincide with weak solu-
tions once the equation is written in an appropriate divergence formulation. To
find the divergence formulation, suppose for the moment that u is a smooth
function whose gradient does not vanish. Then a direct calculation yields

|Du|p(x)−2 ∆N
p(x)u = div(|Du|p(x)−2Du)− |Du|p(x)−2 log(|Du|)Du ·Dp,

where the logarithm appears because of the variable exponent inside the di-
vergence. The right-hand side is the so called strong p(x)-Laplacian ∆S

p(x)u
which was introduced by Adamowicz and Hästö [AH10, AH11] in connection
with mappings of finite distortion. We show that viscosity solutions to (2.1) are
equivalent to weak solutions of the strong p(x)-Laplace equation

−∆S
p(x)u = 0. (2.2)

Weak solutions to (2.2) are defined using appropriate variable exponent Sobolev
spaces W 1,p(·)(Ω). Under our assumptions they are Banach spaces and have
similar properties as the usual Sobolev spaces. For details we refer the reader
to the monograph by Diening, Harjulehto, Hästö and Růžička [DHHR11]. The
precise definitions of solutions to the the strong and normalized p(x)-Laplace
equations are below.

Definition 2.1. [A, Definition 3.1] A function u ∈ W 1,p(·)
loc (Ω) is a weak super-

solution to −∆S
p(x)u = 0 in Ω if

∫

Ω
|Du|p(x)−2Du ·Dϕ+ |Du|p(x)−2 log (|Du|)Du ·Dpϕdx ≥ 0

for all non-negative ϕ ∈ W 1,p(·)(Ω) with a compact support. We say that u is a
weak subsolution if −u is a weak supersolution and that u is a weak solution if
it is both weak super- and subsolution.
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At the beginning of this introduction we mentioned that viscosity solutions
are based on generalized pointwise derivatives. This refers to the so called
second order semi-jets. For example, the subjet of a function u at x is defined
by setting (η,X) ∈ J2,−u(x) if

u(y) ≥ u(x) + (y − x) · η + 1
2(y − x)′X(y − x) + o(|y − x|2) as y → x.

Using Taylor’s theorem one can show that
J2,−u(x) =

{
(Dϕ(x), D2ϕ(x)) : ϕ ∈ C2 and u− ϕ has a min at x

}
.

Therefore it is clear that viscosity solutions can be also defined using semi-jets.

Definition 2.2. [A, Definition 3.3] A lower semicontinuous function u : Ω→ R
is a viscosity supersolution to −∆N

p(x)u = 0 in Ω if, whenever (η,X) ∈ J2,−u(x)
with x ∈ Ω and η 6= 0, then

− tr(X)− (p(x)− 2)
|η|2

η′Xη ≥ 0.

A function u is a viscosity subsolution if −u is a viscosity supersolution, and a
viscosity solution if it is both viscosity super- and subsolution.

Observe that in Definition 2.2 we ignore test functions whose gradient van-
ishes at the point of touching. This can be done because the equation is homo-
geneous; it would not lead to a reasonable definition if the right-hand side was
non-zero.

To show that viscosity solutions are weak solutions, we adapt the method
introduced by Julin and Juutinen [JJ12]. This way we can avoid relying on the
uniqueness of solutions which to the best of our knowledge is still open for both
the normalized and strong p(x)-Laplace equations. The idea is to fix a bounded
viscosity supersolution u to −∆N

p(x)u ≥ 0 and approximate it by inf-convolution

uε(x) := inf
y∈Ω

{
u(y) + 1

q̂εq̂−1 |x− y|
q̂

}
,

where ε > 0 and q̂ > 2 is so large that pmin − 2 + (q̂ − 2)/(q̂ − 1) ≥ 0. If there
was no x-dependence in −∆N

p(x)u = 0, it would be straightforward to show that
uε is still a viscosity supersolution in the smaller set

Ωr(ε) := {x ∈ Ω : dist(x, ∂Ω) > r(ε)} ,
where r(ε)→ 0. To deal with the x-dependence, we modify an argument from
[Ish95] to prove the following lemma. Roughly speaking it says that uε is a
viscosity supersolution to −∆N

p(x)u ≥ 0 in Ωr(ε) up to some small error. The
proof is based on the Theorem of sums.

Lemma 2.3. [A, Lemma 5.3] Assume that u is a uniformly continuous viscosity
supersolution to −∆N

p(x)u = 0 in Ω. Then, whenever (η,X) ∈ J2,−uε(x), η 6= 0
and x ∈ Ωr(ε), it holds

− |η|min(p(x)−2,0)
(

trX + (p(x)− 2)
|η|2

η′Xη
)
≥ E(ε),

where E(ε)→ 0 as ε→ 0. The error function E depends only on p, q and the
modulus of continuity of u.

The inf-convolution uε is semi-concave in Ωr(ε) and therefore twice differen-
tiable almost everywhere by Alexandrov’s theorem. This combined with the
previous lemma essentially means that uε satisfies the equation −∆N

p(x)uε ≥ 0
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pointwise almost everywhere in Ωr(ε) up to some error. Moreover, the proof
of Alexandrov’s theorem in [EG15] establishes that we can approximate the
semi-concave function uε with smooth functions uε,j so that

uε,j → uε, Duε,j → Duε and D2uε,j → D2uε

almost everywhere in Ωr(ε). We also denote by pj the standard mollification of
p. Very roughly speaking, we can now compute that

|Duε,j|pj(x)−2∆N
pj(x)uε,j = ∆S

pj(x)uε,j

and let j → ∞ at both sides to obtain from Lemma 2.3 that uε is a weak
supersolution to −∆S

p(x)uε ≥ 0 with some error. However, there are additional
technicalities on the way since ∆N

pj(x) is singular when pj(x) < 2. To overcome
this, we first regularize the equation by considering the identity

(|Duε,j|2 + δ)
pj(x)−2

2 (∆uε,j + pj(x)− 2
δ + |Duε,j|2

∆∞uε,j)

= div((δ + |Duε,j|2)
pj(x)−2

2 Duε,j)

− 1
2(δ + |Duε,j|2)

pj(x)−2
2 log(δ + |Duε,j|2)Duε,j ·Dpj.

Then we let j →∞ and δ → 0, in that order. This is the part where the choice
of large enough q̂ in the definition of inf-convolution gets into play. Heuristically
speaking, it makes the inf-convolution so flat that the singularity of ∆S

p(x) gets
canceled and we can pass to the limit. In the end we obtain the following
lemma, which says that uε is a weak supersolution to −∆S

p(x)uε ≥ 0 with some
error.

Lemma 2.4. [A, Lemma 5.5] Assume that u is a uniformly continuous viscosity
supersolution to −∆S

p(x)u = 0 in Ω. Let uε be the inf-convolution of u. Then
∫

Ωr(ε)
|Duε|p(x)−2Duε · (Dϕ+ log |Duε|Dpϕ) dx ≥ E(ε)

∫

Ωr(ε)
|Duε|s(x) ϕdx

for all non-negative ϕ ∈ W 1,p(·)(Ωr(ε)) with compact support, where E(ε) → 0
as ε→ 0 and s(x) = max(p(x)− 2, 0).

With this lemma at hand, we use a Caccioppoli type estimate to conclude
that Duε is bounded in Lp(·)(Ω′) for any Ω′ b Ω with respect to ε. To do this, we
test the inequality of Lemma 2.4 with ϕ := (L−uε)ξpmax , where L := supε,x∈Ω′ u
and ξ ∈ C∞0 (Ω) is a cut-off function such that ξ ≡ 1 in Ω′. This yields
∫

Ωr(ε)
|Duε|p(x)ξpmax dx ≤

∫

Ωr(ε)
|Duε|p(x)−1ξpmax−1(L− uε)pmax|Dξ| dx

+
∫

Ωr(ε)
|Duε|p(x)−1| log |Duε|||Dp|(L− uε)ξpmax dx

+ |E(ε)|
∫

Ωr(ε)
|Duε|max(p(x)−2,0)(L− uε)ξpmax dx.

The terms containing |Duε| can be absorbed to the left-hand side by using
Young’s inequality, and we obtain that

∫

Ω′
|Duε|p(x) dx ≤ C(p, L,Dp,Dξ).

Since Duε is bounded in the variable exponent Lebesgue space, it has a weakly
converging subsequence. Using the inequality of Lemma 2.4 again and some
algebraic inequalities, we obtain a further subsequence for which Duε converges
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strongly in the variable exponent Lebesgue space. It then remains to pass to
the limit in the inequality of Lemma 2.4 to see that u is a weak supersolution.
Theorem 2.5. [A, Theorem 5.8] If u ∈ C(Ω) is a viscosity supersolution to
−∆N

p(x)u ≥ 0 in Ω, then u is a weak supersolution to −∆S
p(x)u ≥ 0 in Ω.

Corollary 2.6. [A, Corollary 5.10] Since weak solutions to −∆S
p(x)u = 0 are

C1,α regular [ZZ12], Theorem 2.5 implies the C1,α regularity of viscosity solu-
tions to −∆N

p(x)u = 0.
To show the other direction of the equivalence, we adapt a standard argument

used for example in [JLM01]. We suppose on the contrary that a weak solution
u to −∆S

p(x)u = 0 is not a viscosity supersolution to −∆N
p(x)u ≥ 0. This means

that there is a function ϕ ∈ C2 that touches u from below at x ∈ Ω so that
−∆N

p(x)ϕ(x) < 0
and Dϕ 6= 0 near x. By continuity the above inequality holds in some neigh-
borhood of x where the gradient of ϕ does not vanish. Therefore a direct
computation yields

−∆S
p(y)ϕ(y) = − |Dϕ(y)|p(y)−2 ∆N

p(y)ϕ(y) < 0
for all y in some ball Br(x). In other words, ϕ is a classical subsolution to
the strong p(x)-Laplace equation. On the other hand, since ϕ touches the
C1 function u from below, we have Du(x) = Dϕ(x) 6= 0. Therefore, by taking
smaller r > 0 if necessary, we can ensure that the gradient of u does not vanish
in Br(x). Next we lift ϕ slightly by setting

ϕ̃ := ϕ+ l,

where l := supy∈∂Br(x)(u − ϕ) > 0. Then ϕ̃ is still a subsolution and we have
ϕ̃ ≤ u on ∂Br(x). Using that u and ϕ̃ have non-vanishing gradients in Br(x),
we can prove a comparison principle to show that u ≤ ϕ̃ in Br(x). This yields
a contradiction since ϕ̃(x) = ϕ(x) + l = u(x) + l and l > 0.
Theorem 2.7. [A, Theorem 4.1] Let u ∈ W

1,p(·)
loc (Ω) be a weak solution to

−∆S
p(x)u = 0 in Ω. Then it is a viscosity solution to −∆N

p(x)u = 0 in Ω.

3. A parabolic p-Laplace equation and article [B]

In [B] we study the relationship of viscosity and weak supersolutions to the
parabolic equation

∂tu−∆pu = f(Du) in Ξ, (3.1)
where ∆p is the p-Laplace operator defined in (1.5), p > 1, f ∈ C(R) satisfies
suitable assumptions and Ξ ⊂ RN+1 is a bounded domain. Our main result is
that bounded viscosity supersolutions to (3.1) coincide with lower semicontinu-
ous weak supersolutions. Our proof is different than in [JLM01] even for f ≡ 0.
The lower semicontinuity of weak supersolutions is needed since by definition
they are only in a parabolic Sobolev space. However, under slightly stronger
assumptions on f and in the range p ≥ 2, we show that weak supersolutions
are in fact lower semicontinuous.

For a domain Ω ⊂ RN , we denote the space-time cylinder Ωt1,t2 := Ω×(t1, t2),
where t1 < t2. A Lebesgue measurable function u : Ωt1,t2 → R belongs to the
parabolic Sobolev space Lp(t1, t2;W 1,p(Ω)) if u(·, t) ∈ W 1,p(Ω) for almost all
t ∈ (t1, t2) and the norm

(∫

Ωt1,t2
|u|p + |Du|p dx dt

) 1
p
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is finite.
In the first part of the article we suppose the following growth condition on

the gradient term
|f(ξ)| ≤ Cf (1 + |ξ|β) for all ξ ∈ RN , (3.2)

where Cf > 0 and 1 ≤ β < p. This ensures in particular that f(Du) is summable
whenDu ∈ Lp. The precise definitions of weak and viscosity solutions are below.

Definition 3.1. [B, Definition 2.1] A function u : Ξ→ R is a weak supersolution
to (3.1) in Ξ if u ∈ Lp(t1, t2;W 1,p(Ω)) whenever Ωt1,t2 b Ξ and

∫

Ξ
−u∂tϕ+ |Du|p−2Du ·Dϕ− ϕf(Du) dx dt ≥ 0

for all non-negative test functions ϕ ∈ C∞0 (Ωt1,t2). For weak subsolutions the
inequality is reversed and a function is a weak solution if it is both super- and
subsolution.

Definition 3.2. [B, Definition 2.2] A lower semicontinuous and bounded func-
tion u : Ξ→ R is a viscosity supersolution to (3.1) in Ξ if whenever ϕ ∈ C2(Ξ)
and (x0, t0) ∈ Ξ are such that





ϕ(x0, t0) = u(x0, t0),
ϕ(x, t) < u(x, t) when (x, t) 6= (x0, t0),
Dϕ(x, t) 6= 0 when x 6= x0,

then
lim sup

(x,t)→(x0,t0)
x 6=x0

(∂tϕ(x, t)−∆pϕ(x, t)− f(Dϕ(x, t))) ≥ 0.

An upper semicontinuous and bounded function u : Ξ→ R is a viscosity subso-
lution to (3.1) in Ξ if whenever ϕ ∈ C2(Ξ) and (x0, t0) ∈ Ξ are such that





ϕ(x0, t0) = u(x0, t0),
ϕ(x, t) > u(x, t) when (x, t) 6= (x0, t0),
Dϕ(x, t) 6= 0 when x 6= x0,

then
lim inf

(x,t)→(x0,t0)
x6=x0

(∂tϕ(x, t)−∆pϕ(x, t)− f(Dϕ(x, t))) ≤ 0.

A function that is both viscosity sub- and supersolution is a viscosity solution.

The limiting process in the definition of viscosity solutions is in the spirit of
[JLM01]. It is used to deal with the singularity of ∆p when 1 < p < 2. When
p ≥ 2, the operator is degenerate and the limiting process disappears.

To show that viscosity supersolutions are weak solutions, we adapt the method
of Julin and Juutinen [JJ12] to the parabolic case. This was previously done
in [PV] for radial solutions. The inf-convolution needs to be adapted to the
parabolic setting and it takes the form

uε(x, t) := inf
(y,s)∈Ξ

{
u(y, s) + |x− y|

q̂

q̂εq−1 + |t− s|
2

2ε

}
,

where ε > 0 and q̂ ≥ 2 is a constant so large that p− 2 + (q̂ − 2)/(q̂ − 1) > 0.
If u is a weak supersolution to (3.1) in Ξ, then uε is still a weak supersolution
to (3.1) in a smaller set Ξε. Moreover, if uε is differentiable in time and twice
differentiable in space at (x, t) ∈ Ξε andDuε(x, t) = 0, then ∂tuε(x, t)−f(0) ≥ 0.
Using these observations we show that uε is a weak supersolution to (3.1) in Ξε.
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Lemma 3.3. [B, Lemmas 4.1 and 4.2] Let u be a bounded viscosity supersolu-
tion to (3.1) in Ξ. Then uε is a weak supersolution to (3.1) in Ξε.

In [B, Lemma 4.3] we show that Lipschitz continuous weak supersolutions to
(3.1) satisfy the Caccioppoli’s inequality

∫

Ξ
ξp |Du|p dx dt ≤ C

∫

Ξ
M2∂tξ

p +Mp |Dξ|p + (M
p

p−β +M)ξp dx dt, (3.3)

where ξ ∈ C∞0 (Ξ) and M = ‖u‖L∞(spt ξ). This implies that the sequence Duε
converges weakly in Lploc(Ξ) up to a subsequence. However, this is not enough
to pass to the limit under the integral sign of

∫

Ξ
−uε∂tϕ+ |Duε|p−2Duε ·Dϕ− ϕf(Duε) dx dt ≥ 0. (3.4)

To this end, we prove the next lemma.

Lemma 3.4. [B, Lemma 4.4] Suppose that (uj) is a sequence of locally Lipschitz
continuous weak supersolutions to (3.1) such that uj → u in Lploc(Ξ). Then
(Duj) is a Cauchy sequence in Lrloc(Ξ) for any 1 < r < p.

The proof is more involved than in the elliptic setting and it is based on the
proof of Lemma 5 in [LM07], see also Theorem 5.3 in [KKP10]. The idea is
to fix 1 < r < p and use the test functions (δ − wjk)θ and (δ + wjk)θ, where
θ ∈ C∞0 (Ξ) is a cut-off function with θ ≡ 1 in U b Ξ and

wjk :=





δ, uj − uk > δ,

uj − uk, |uj − uk| ≤ δ,

−δ, uj − uk < −δ.
This gives us information about the behavior of |Duj −Duk| in the set where
|uj − uk| < δ. More precisely, we obtain after estimations that

∫

U∩{|uj−uk|<δ}
|Duj −Duk|r dz ≤ Cδ

r
max(2,p) ,

where C is independent of j, k and δ. To handle the set where |uj − uk| ≥ δ,
we apply Hölder’s and Chebysheff’s inequalities as well as the Caccioppoli’s
inequality (3.3) to obtain

∫

U∩{|uj−uk|≥δ}
|Duj −Duk|r dz ≤ Cδr−p||uj − uk||p−rLp(U).

By taking first small δ > 0 and then large j, k, we see that ||Duj −Duk||Lr(U)
can be made arbitrarily small.

With Lemma 3.4 at hand, we can pass to the limit in (3.4) and conclude that
u is a weak supersolution.

Theorem 3.5. [B, Theorem 4.5] Let 1 < p <∞ and suppose that (3.2) holds.
Let u be a bounded viscosity supersolution to (3.1) in a domain Ξ. Then u is a
weak supersolution to (3.1) in Ξ.

To prove the other part of the equivalence, we apply a parabolic version of
the argument described at the end of the section discussing article [A]. Most of
the work is therefore in proving suitable comparison principles for the equation
(3.1) at the weak side. To state this part of the equivalence, we define the lower
semicontinuous regularization of a function u : Ξ→ R by

u∗(x, t) := lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.
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Theorem 3.6. [B, Theorem 3.5] Let 1 < p <∞ and suppose that (3.2) holds.
Let u be a bounded lower semicontinuous weak supersolution to (3.1) in Ξ for
which u = u∗ almost everywhere in Ξ. Then u∗ is a viscosity supersolution to
(3.1) in Ξ.

The lower semicontinuous regularization is needed because weak supersolu-
tions are not semicontinuous by definition. In other words, it is not clear if all
weak supersolutions satisfy the assumption u = u∗. By adapting the work of
Kuusi [Kuu09], we show that this is the case at least when p ≥ 2, provided that
f(0) = 0 and the following stronger growth condition holds

|f(ξ)| ≤Cf
(
1 + |ξ|p−1

)
.

The proof first applies Moser’s iteration technique to obtain essential supremum
estimates for weak subsolutions. These estimates are then used to show that a
weak supersolution coincides with its lower semicontinuous regularization at its
Lebesgue points.

4. radial solutions to − |Du|q−2 ∆N
p u = f and article [C]

In [C] we study radial solutions to the equation
− |Du|q−2 ∆N

p u = f(|x|) in BR ⊂ RN , (4.1)
where f ∈ C[0,R), p, q ∈ (1,∞), N ≥ 2 and ∆N

p denotes the normalized
p-Laplacian defined in (1.4). The use of viscosity solutions is appropriate as
the equation (4.1) may be in a non-divergence form: the left-hand side is the
normalized p-Laplacian when q = 2 and the usual p-Laplacian when q = p.
Since we are interested in radial solutions, it is natural to restrict to a ball at
the origin and assume that the source term is radial.

Our main result is that bounded radial viscosity supersolutions to (4.1) coin-
cide with bounded weak solutions of a one-dimensional equation related to the
p-Laplacian. This kind of equivalence was recently obtained by Parviainen and
Vázquez [PV] for solutions of the parabolic equation

∂tu = |Du|q−2 ∆N
p u.

Stated slightly more precisely, we show that u(x) = v(|x|) is a bounded viscosity
supersolution to (4.1) if and only if v is a bounded weak supersolution to the
one-dimensional equation

−κ∆d
qv = f in (0, R), (4.2)

where
∆d
qv = |v′|q−2 ((q − 1)v′′ + d− 1

r
v′)

and the positive constants κ and d are given in (4.4). Heuristically speaking,
the operator ∆d

q is the radial q-Laplacian in a fictitious dimension d which is not
necessarily an integer. However, we show in [C, Theorem 5.3] that if d happens
to be an integer, then weak supersolutions to (4.2) correspond to radial weak
supersolutions of the equation

−∆qu = f(|x|) in BR ⊂ Rd.

In order to derive the one dimensional equation (4.2), suppose for the moment
that u : BR → R is a smooth radial function. This means that there exists
a smooth function v : [0, R) → R such that u(x) = v(|x|). Then by a direct
computation we have for r > 0

Du(re1) = e1v
′(r) and D2u(re1) = e1 ⊗ e1v

′′(r) + 1
r

(I − e1 ⊗ e1)v′(r).
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In particular, |Du(re1)| = |v′(r)|. Assuming that the gradient does not vanish,
we have by the definition of the normalized p-Laplacian

∆N
p u(re1) =∆u(re1) + p− 2

|Du(re1)|2
N∑

i,j=1
Diju(re1)Diu(re1)Dju(re1)

=v′′(r) + N − 1
r

v′(r) + p− 2
|v′(r)|2

v′′(r) |v′(r)|2

=(p− 1)v′′(r) + N − 1
r

v′(r). (4.3)

Denoting

κ := p− 1
q − 1 , d := (N − 1)(q − 1)

p− 1 + 1 (4.4)

and multiplying (4.3) by |Du(re1)|q−2, we obtain

|Du(re1)|q−2 ∆N
p u(re1) = κ |v′(r)|q−2 ((q − 1)v′′(r) + d− 1

r
v′(r)) = κ∆d

qv(r).

This suggests that u(x) = v(|x|) solves (4.1) whenever v solves (4.2). How-
ever, to make this rigorous, we must carefully exploit the precise definitions of
viscosity and weak solutions.

Weak solutions to (4.2) are defined using appropriate weighted Sobolev spaces.
A Lebesgue measurable function v : (0, R) → R is in W 1,q(rd−1, (0, R)) if the
norm

‖v‖W 1,q(rd−1,(0,R)) :=
( ∫ R

0
|v|q rd−1 dr +

∫ R

0
|v′|qrd−1 dr

)1/q

is finite, where v′ denotes the distributional derivative of v. For details on these
spaces, see [Kuf85]. To derive the weak formulation of (4.2), we multiply the
equation by rd−1 to obtain

frd−1 =− κrd−1 |v′|q−2 ((q − 1)v′′ + d− 1
r

v′)

=− κ(|v′|q−2
v′rd−1)′.

This is in a divergence form and the precise definition of weak solutions to (4.2) is
below. Observe that we require the test function space to be C∞0 (−R,R) instead
of C∞0 (0, R). This is necessary as otherwise there may exist weak solutions that
do not correspond to radial viscosity solutions of (4.1) [C, Example 2.3].

Definition 4.1. [C, Definition 2.2] We say that v is a weak supersolution to
(4.2) in (0, R) if v ∈ W 1,q(rd−1, (0, R′)) for all R′ ∈ (0, R) and we have

∫ R

0
κ |v′|q−2

v′ϕ′rd−1 − ϕfrd−1 dr ≥ 0

for all ϕ ∈ C∞0 (−R,R). For weak subsolutions the inequality is reversed. Fur-
thermore, v ∈ C[0, R) is a weak solution if it is both weak sub- and supersolu-
tion.

Viscosity solutions to (4.1) are defined as follows.

Definition 4.2. [C, Definition 2.1] A bounded lower semicontinuous function
u : BR → R is a viscosity supersolution to (4.1) in BR if whenever ϕ ∈ C2

touches u from below at x0 and Dϕ(x) 6= 0 when x 6= x0, then we have

lim sup
x0 6=y→x0

(
− |Dϕ(y)|q−2 ∆N

p ϕ(y)
)
− f(|x0|) ≥ 0.
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A bounded upper semicontinuous function u : BR → R is a viscosity subsolution
to (4.1) in BR if whenever ϕ ∈ C2 touches u from above at x0 and Dϕ(x) 6= 0
when x 6= x0, then we have

lim inf
x0 6=y→x0

(
− |Dϕ(y)|q−2 ∆N

p ϕ(y)
)
− f(|x0|) ≤ 0.

A function is a viscosity solution if it is both viscosity sub- and supersolution.

The precise equivalence result is now contained in the following theorems.

Theorem 4.3. [C, Theorem 3.1] Let v be a bounded weak supersolution to (4.2)
in (0, R). Let u(x) := v∗(|x|), where

v∗(r) := lim
S→0

ess inf
s∈(r−S,r+S)∩(0,R)

v(s) for all r ∈ [0, R).

Then u is a viscosity supersolution to (4.1) in BR ⊂ RN .

Theorem 4.4. [C, Theorem 4.1] Let u be a bounded radial viscosity supersolu-
tion to (4.1) in BR ⊂ RN . Then v(r) := u(re1) is a weak supersolution to (4.2)
in (0, R).

Since the equation (4.2) satisfies a comparison principle [C, Theorem 3.4], we
obtain the uniqueness of radial viscosity solutions to (4.1) as a consequence of
the equivalence. To the best of our knowledge this was previously known only
for f ≡ 0 or f with a constant sign [KMP12]. However, the full uniqueness and
comparison principle remain open.

Corollary 4.5. [C, Corollary 4.3] Let u, h ∈ C(BR) be radial viscosity solutions
to (4.1) in BR such that u = h on ∂BR. Then u = h.

To show Theorem 4.3, we adapt the basic argument and suppose on the
contrary that u(x) := v∗(|x|) is not a viscosity solution. Roughly speaking, this
implies that there exists a smooth function ϕ touching u from below at x0 ∈ BR

so that ϕ is a subsolution to (4.1) near x0. We use ϕ to construct a new function
φ that is a weak subsolution to (4.2) and touches v∗ from below. Since v∗ is a
weak supersolution, this violates a comparison principle and we arrive at the
desired contradiction. A special argument is needed if the point of touching
is the origin. We also exploit a different but equivalent definition of viscosity
solutions by Birindelli and Demengel [BD04] to avoid technicalities that might
arise should the gradient of ϕ vanish at the point of touching.

To prove Theorem 4.4, we fix a bounded radial viscosity supersolution u to
(4.1) in BR. We begin by approximating u by its inf-convolution uε. Then
uε → u pointwise and it is standard to show that uε is a viscosity supersolution
to

−|Duε|q−2∆N
p uε ≥ fε(|x|) in BRε , (4.5)

where
fε(r) := inf

|r−s|≤ρ(ε)
f(s),

Rε := R − ρ(ε) and ρ(ε) → 0 as ε → 0. Since uε is semi-concave, it is twice
differentiable almost everywhere by Alexandrov’s theorem and therefore satisfies
(4.5) almost everywhere in BRε . Since u(x) = v(|x|) is a radial function, so is
its inf-convolution and we have uε(x) = vε(|x|) for some vε : (0, R) → R.
Therefore we can perform a radial transformation on (4.5) to roughly obtain
that vε satisfies −κ∆d

qvε ≥ fε for almost every r ∈ (0, Rε). More precisely, we
have the following lemma.
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Lemma 4.6. [C, Lemma 4.6] Assume that u is a bounded radial viscosity su-
persolution to (4.1) in BR. Set vε(r) := uε(re1) and assume that vε is twice
differentiable at r ∈ (0, Rε). Then, if q > 2 or v′ε(r) 6= 0, we have

−κ |v′ε(r)|q−2 ((q − 1)v′′ε (r) + d− 1
r

v′ε(r)
)
− fε(r) ≥ 0.

Moreover, if 1 < q ≤ 2 with v′ε(r) = 0, then we have fε(r) ≤ 0.

Combining the above lemma with mollification and regularization arguments,
we obtain the next lemma which states that vε is a weak supersolution to
−κ∆d

qvε ≥ fε in (0, Rε).

Lemma 4.7. [C, Lemmas 4.7 and 4.8] Let 1 < q < ∞. Assume that u is
a bounded radial viscosity supersolution to (4.1) in BR. Then the function
vε(r) := uε(re1) is a weak supersolution to −κ∆d

qvε ≥ fε in (0, Rε).

Using that vε is a weak supersolution, we show that it satisfies a Caccioppoli’s
inequality

∫ R

0
|v′ε|q ξqrd−1 dr ≤ C

∫ R

0

(
|ξ′|q + ξq |f |

)
rd−1 dr

for all ξ ∈ C∞0 (−Rε, Rε), where C depends only on κ, q and ‖v‖L∞(0,R). It follows
that vε is a bounded sequence in the weighted Sobolev space W 1,q(rd−1, (0, R′))
for any R′ ∈ (0, R) and therefore we can extract a weakly converging sub-
sequence. Using the supersolution property of vε again, we find a further
subsequence that converges strongly. It then remains to fix a test function
ϕ ∈ C∞0 (−R,R) and pass to the limit in the inequality

∫ R

0
κ |v′ε|q−2

v′εϕ
′rd−1 − ϕfεrd−1 dr ≥ 0

to conclude that v is a weak supersolution to −∆d
qv ≥ f in (0, R).
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EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS FOR

THE NORMALIZED p(x)-LAPLACIAN

JARKKO SILTAKOSKI

Abstract. We show that viscosity solutions to the normalized p(x)-Laplace
equation coincide with distributional weak solutions to the strong p(x)-Laplace
equation when p is Lipschitz and inf p > 1. This yields C1,α regularity for the
viscosity solutions of the normalized p(x)-Laplace equation. As an additional
application, we prove a Radó-type removability theorem.

1. Introduction

In this paper, we study viscosity solutions to the normalized p(x)-Laplace equa-
tion which is de�ned by

−∆N
p(x)u := −∆u− p(x)− 2

|Du|2
∆∞u = 0, (1.1)

where

∆∞u :=
〈
D2uDu,Du

〉
.

There has been recent interest in normalized equations, see e.g. [JS17, IJS, BG15].
We are partly motivated by the connection to stochastic tug-of-war games [PS08,
PSSW09] as the case of space dependent probabilities leads to (1.1) [AHP17].

The objective of this work is to show that viscosity solutions to (1.1) coincide
with solutions in the distributional weak sense, when the equation is rewritten in
an appropriate divergence formulation. One approach to this kind of equivalence
results [JLM01, Ish95] is based on the uniqueness of solutions. However, it seems
di�cult to use uniqueness in our case because the uniqueness of solutions is an
open problem for the equation (1.1) as pointed out in [JLP10]. The equation (1.1)
is in non-divergence form. In order to �nd the appropriate weak formulation, we
note that for u ∈ C2(Ω) with non-vanishing gradient it holds that

− |Du|p(x)−2∆N
p(x)u =−div

(
|Du|p(x)−2Du

)
+ |Du|p(x)−2 log (|Du|)Du ·Dp.

Thus the weak formulation of (1.1) should be the strong p(x)-Laplace equation

−∆S
p(x)u := −div(|Du|p(x)−2Du) + |Du|p(x)−2 log |Du|Du ·Dp = 0. (1.2)

Our main result, Theorem 5.9, is that viscosity solutions to (1.1) coincide with
weak solutions to (1.2) when the function p is Lipschitz with inf p > 1. With
these assumptions weak solutions to (1.2) in a domain are locally C1,α continuous
[ZZ12]. Thus our equivalence result yields local C1,α regularity also for viscosity
solutions to (1.1). As an application, we prove a Radó-type removability theorem
for the strong p(x)-Laplacian. The theorem follows from the equivalence result
since in the de�nition of a viscosity solution we may ignore the test functions
whose gradient vanishes. The equivalence result also implies that the equation
(1.2) is homogeneous: if u is a solution, so is λu. This is not completely obvious
and was established in [AH10].

That viscosity solutions to (1.1) are weak solutions to (1.2) is proven by applying
the method of [JJ12]. The idea is to approximate a viscosity solution through a

1
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sequence of inf-convolutions, show that the inf-convolutions are essentially weak
supersolutions, and then pass to the limit.

First, in Lemma 5.3 we show that the inf-convolution uε of a viscosity super-
solution u to (1.1) is still, in essence, a viscosity supersolution up to some error.
This fact is a key part of our proof. If there was no x-dependence in (1.1), it
would be straightforward to see that the inf-convolution of a viscosity supersolu-
tion is still a viscosity supersolution. This is because a test function that touches
the inf-convolution from below also touches the original function from below at
a nearby point once we add some constant to it. From this it would follow that
the inf-convolution is a supersolution to the original equation. However, the equa-
tion (1.1) has x-dependence caused by p(x). Thus the inf-convolution no longer
satis�es the original equation.

In Lemma 5.5 we use the standard molli�cation on uε and p to deduce from
Lemma 5.3 that uε is �almost� a weak solution to −∆S

p(x)uε ≥ 0. Applying Cac-
cioppoli type estimates and vector inequalities we are then able to deduce that the
sequence of inf-convolutions converges to the viscosity supersolution in W

1,p(·)
loc (Ω)

as ε → 0. This allows us to pass to the limit and conclude that the function u
satis�es −∆S

p(x)u ≥ 0 in the weak sense.
Due to the variable exponent, the operator∆S

p(x) can be singular in some subsets
and degenerate in others. Therefore we apply di�erent arguments in the cases
p(x) < 2 and p(x) ≥ 2, and �nally need to be able to combine them.

The equivalence of weak and viscosity solutions to the usual p-Laplace equation
was �rst proven by Juutinen, Lindqvist and Manfredi [JLM01]. Later Julin and
Juutinen [JJ12] presented a more direct way to show that viscosity solutions to
−∆pu = f are also weak solutions. This proof was adapted in [APR17] to show
that viscosity solutions to −∆N

p u = f coincide with weak solutions to −∆pu =
|Du|p−2 f when p ≥ 2. Similar arguments were also used in [MO] to study the
equivalence of solutions to −∆pu = f(x, u,Du). The variable exponent case was
explored in [JLP10] where the equivalence of weak and viscosity solutions was
proven for the p(x)-Laplace equation using techniques of [JLM01].

As mentioned, the equation (1.1) appears in stochastic tug-of-war games. Let
us illustrate this in the case where p > 2 is a constant by considering the following
two-player, zero-sum game from [MPR12]. A step size ε > 0 is �xed and a token is
placed at x0 in a domain Ω. The players toss a biased coin that is heads with the
probability α = p−2

p+N and tails with the probability β = 1 − α. If the outcome is
heads, the following tug-of-war step is played: a fair coin is tossed and the winning
player is allowed to move the token to any position x1 ∈ Bε(x0). If the outcome
is tails, the token moves to a random position in x1 ∈ Bε(x0). Once the token
exits the domain, the game ends and player I pays player II according to the �nal
location of the token. When the players optimize over their strategies, we obtain
a value of the game. Then, as the step-size approaches zero, the value function
converges uniformly to a viscosity solution of −∆N

p u = 0 in Ω. This result can be
extended to the general case 1 < p(x) <∞, see [PS08, AHP17].

The equation (1.2) was introduced by Adamowicz and Hästö [AH10] in connec-
tion with mappings of �nite distortion. Unlike the standard p(x)-Laplace equation,
the equation (1.2) is homogeneous and its solutions satisfy a classical Harnack
inequality [AH11]. The equation (1.2) has been further studied for example in
[ZZ12, PL13, ZZZ17].

The paper is organized as follows: in Section 2 we recall the variable exponent
Lebesgue and Sobolev spaces. Section 3 contains the rigorous de�nitions of so-
lutions to equations (1.1) and (1.2). In Section 4 we show that weak solutions
of (1.2) are viscosity solutions to (1.1) and the converse statement is proven in
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Section 5. Finally, in Section 6 we formulate and prove a Radó-type removability
theorem for weak solutions of (1.2).

2. Variable exponent lebesgue and sobolev spaces

We brie�y recall basic facts about these spaces. For general reference see e.g.
[DHHR11]. Let Ω ⊂ RN be an open and bounded set and let p : Ω → (1,∞) be a
measurable function. We denote

pmax := ess sup
x∈Ω

p(x) and pmin := ess inf p(x).
x∈Ω

The variable exponent Lebesgue space Lp(·)(Ω) is de�ned as the set of measurable
functions u : Ω → R for which the p(·)-modular

%p(·)(u) :=

∫
Ω
|u|p(x) dx

is �nite. It is a Banach space equipped with the Luxemburg norm

‖u‖Lp(·)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x) dx ≤ 1

}
.

Given that pmax < ∞ or %p(·)(u) > 0, the norm and the modular satisfy the in-
equality (see [DHHR11, p75])

min
{
%p(·)(u)

1
pmin , %p(·)(u)

1
pmax

}
≤ ‖u‖Lp(·)(Ω)

≤ max
{
%p(·)(u)

1
pmin , %p(·)(u)

1
pmax

}
. (2.1)

A version of Hölder's inequality holds [DHHR11, p81] : if u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω),
where 1

p(x) +
1

p′(x) = 1 for a.e. x ∈ Ω, then∫
Ω
|u| |v| dx ≤ 2 ‖u‖Lp(·)(Ω) ‖v‖Lp′(·)(Ω) .

As a consequence of the Hölder's inequality we have that

‖u‖Lq(·)(Ω) ≤ 2 (1 + |Ω|) ‖u‖Lp(·)(Ω)

for all u ∈ Lp(·)(Ω) if q(x) ≤ p(x) for a.e. x ∈ Ω.
If 1 < pmin ≤ pmax < ∞, then Lp(·)(Ω) is re�exive and the dual of Lp(·)(Ω) is

Lp′(·)(Ω).
The variable exponent Sobolev space W 1,p(·)(Ω) is the set of functions in u ∈

Lp(·)(Ω) for which the weak gradient Du belongs in Lp(·)(Ω). It is a Banach space
equipped with the norm

‖u‖W 1,p(·)(Ω) := ‖u‖Lp(·)(Ω) + ‖Du‖Lp(·)(Ω) .

The space W 1,p
0 (Ω) is the closure of compactly supported Sobolev functions in

the spaceW 1,p(·)(Ω). A function belongs to the the local Lebesgue space L
p(·)
loc (Ω) if

it belongs to Lp(·)(Ω′) for all Ω′ b Ω. The space W
1,p(·)
loc (Ω) is de�ned analogically.

3. The strong and normalized p(x)-Laplace equations

In this section, we de�ne weak solutions to the strong p(x)-Laplace equation
and viscosity solutions to the normalized p(x)-Laplace equation.

From now on we assume that p is Lipschitz continuous and pmin > 1.
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De�nition 3.1. A function u ∈W
1,p(·)
loc (Ω) is a weak supersolution to −∆S

p(x)u ≥ 0

in Ω if ∫
Ω
|Du|p(x)−2Du ·Dϕ+ |Du|p(x)−2 log (|Du|)Du ·Dpϕdx ≥ 0

for all non-negative ϕ ∈W 1,p(·)(Ω) with compact support. We say that u is a weak
subsolution to −∆S

p(x)u ≤ 0 if −u is a supersolution and that u is a weak solution
to −∆S

p(x)u = 0 if u is both supersolution and subsolution.

Lemma 3.2. It is enough to consider C∞
0 (Ω) test functions in the previous de�-

nition.

Proof. Assume that ϕ ∈W 1,p(·)(Ω) has a compact support in an open set Ω′ b Ω.
Since p is log-Hölder continuous and bounded as a Lipschitz function, there is a
sequence of functions ϕj ∈ C∞

0 (Ω′) such that ϕj → ϕ inW 1,p(·)(Ω′) (see [DHHR11,
p347]). We set ψj := ϕ− ϕj . Then it is enough to show that∫

Ω′
|Du|p(x)−2Du ·Dψj dx+

∫
Ω′

|Du|p(x)−2 log (|Du|)Du ·Dpψj dx→ 0

as j → ∞. The �rst integral convergences to zero by Hölder's inequality so we fo-
cus on the second integral. We may assume that N > 1. We set q(x) := p(x)

p(x)−1+ 1
N

.
Using the inequality as log a ≤ Nas+

1
N + 1

s for a, s > 0 we get∫
Ω′

|Du|p(x)−1 |log |Du|| |Dp| |ψj | dx

≤ ‖Dp‖L∞(Ω′)

(∫
Ω′

|ψj |
p(x)− 1

dx+N

∫
Ω′

|Du|p(x)−1+ 1
N |ψj | dx

)
≤ C(p,Ω)

(
‖ψj‖Lp(·)(Ω′) +

∥∥∥|Du|p(x)−1+ 1
N

∥∥∥
Lq(·)(Ω′)

‖ψj‖Lq′(·)(Ω′)

)
.

We take r ∈ (1, N) such that q′+ ≤ r∗ := Nr
N−r . Then we have q′(x) = Np(x)

N−1 ≤
min(p∗(x), r∗), where p∗(x) := Np(x)

N−p(x) . Therefore

‖ψj‖Lq′(·)(Ω′) ≤ 2 (1 + |Ω|) ‖ψj‖Lmin(p∗(·),r∗)(Ω′) .

Since ψj ∈W
1,min(p(·),r)
0 (Ω′) , we have by a variable exponent version of the Sobolev

inequality (see e.g. [DHHR11, p265])

‖ψj‖Lmin(p∗(·),r∗)(Ω′) ≤ C ‖Dψj‖Lmin(p(·),r)(Ω′) ≤ 2C(1 + |Ω|) ‖Dψj‖Lp(·)(Ω′) .

These estimates imply the claim since ‖ψj‖W 1,p(Ω′) → 0 as j → ∞. �

In order to de�ne viscosity solutions to −∆N
p(x)u = 0, we set

F (x, η,X) := −
(
trX +

p(x)− 2

|η|2
〈Xη, η〉

)
for all (x, η,X) ∈ Ω×

(
RN \ {0}

)
× SN where SN is the set of symmetric N ×N

matrices. We also recall the concept of semi-jets. The subjet of a function u : Ω →
R at x is de�ned by setting (η,X) ∈ J2,−u(x) if

u(y) ≥ u(x) + η · (y − x) +
1

2
〈X(y − x), (y − x)〉+ o(|y − x|2) as y → x. (3.1)

The closure of a subjet is de�ned by setting (η,X) ∈ J
2,−
u(x) if there is a sequence

(ηi, Xi) ∈ J2,−u(xi) such that (xi, ηi, Xi) → (x, η,X). The superjet J2,+u(x) and
its closure J

2,+
u(x) are de�ned in the same manner except that the inequality

(3.1) is reversed.
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De�nition 3.3. A lower semicontinuous function u : Ω → R is a viscosity su-
persolution to −∆N

p(x)u ≥ 0 in Ω if, whenever (η,X) ∈ J2,−u(x) with x ∈ Ω and
η 6= 0, then

F (x, η,X) ≥ 0.

A function u is a viscosity subsolution to −∆N
p(x)u ≤ 0 if −u is a viscosity super-

solution, and a viscosity solution to −∆N
p(x)u = 0 if it is both viscosity super- and

subsolution.

Remark. Observe that in the previous de�nition we require nothing in the case
(0, X) ∈ J2,−u(x).

Viscosity solutions may be equivalently de�ned using the jet-closures or test
functions. The next proposition follows easily from the proof of Proposition 2.6 in
[Koi12].

Proposition 3.4. Let u : Ω → R be lower semicontinuous. Then the following
conditions are equivalent.

(i) The function u is a viscosity supersolution to −∆N
p(x)u ≥ 0 in Ω.

(ii) Whenever (η,X) ∈ J
2,−
u(x) with x ∈ Ω, η 6= 0, we have F (x, η,X) ≥ 0.

(iii) Whenever ϕ ∈ C2(Ω) is such that ϕ(x) = u(x), Dϕ(x) 6= 0 and ϕ(y) <
u(y) for all y 6= x, it holds F (x,Dϕ(x), D2ϕ(x)) ≥ 0.

When ϕ is as in the third condition above, we say that ϕ touches u from below
at x.

4. Weak solutions are Viscosity solutions

We show that if u is a weak solution to −∆S
p(x)u = 0, then it is a viscosity

solution to −∆N
p(x)u = 0.

Juutinen, Lukkari and Parviainen [JLP10] showed that weak solutions to the
standard p(x)-Laplace equation are also viscosity solutions. This was accomplished
with the help of the comparison principle. For if u is a weak supersolution to
−∆p(x)u ≥ 0 that is not a viscosity supersolution, then there is a test function
ϕ ∈ C2 touching u from below at x so that −∆p(x)ϕ < 0 in some ball B(x).
Lifting ϕ slightly produces a new function ϕ̃ still satisfying −∆p(x)ϕ̃ < 0 in B(x)
and ϕ̃ ≤ u in ∂B(x). Comparison principle now implies that ϕ̃ ≤ u in B(x) which
is a contradiction since ϕ̃(x) > ϕ(x) = u(x).

Our di�culty is that, to the best of our knowledge, the comparison principle
is an open problem for the strong p(x)-Laplacian. Our strategy is therefore to
consider a ball so small that the gradient of the test function does not vanish.
Then the comparison principle holds and we arrive at a contradiction.

Theorem 4.1. If u ∈ W
1,p(·)
loc (Ω) is a weak solution to −∆S

p(x)u = 0, then it is a

viscosity solution to −∆N
p(x)u = 0 in Ω.

Proof. Zhang and Zhou [ZZ12] showed that weak solutions of −∆S
p(x)u = 0 are in

C1(Ω). Therefore it su�ces to show that if u ∈ C1(Ω) is a weak supersolution to
−∆S

p(x)u ≥ 0, then it is also a viscosity supersolution to −∆N
p(x)u ≥ 0. Assume on

the contrary that there is ϕ ∈ C2(Ω) touching u from below at x0 ∈ Ω, Dϕ(x0) 6= 0
and

0 > −h > F (x0, Dϕ(x0), D
2ϕ(x0)).

Then by continuity there is r > 0 such that in Br(x0) it holds

−h |Dϕ|p(x)−2 ≥− |Dϕ|p(x)−2

(
∆ϕ+

p(x)− 2

|Dϕ|2
∆∞ϕ

)
. (4.1)
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Since Du(x0) = Dϕ(x0) 6= 0, we may also assume that there is m > 0 such that

inf
x∈Br(x0)

|Dϕ|p(x)−2 ≥ m (4.2)

and

ess sup
x∈Br(x0)

|Dp|
∣∣∣|Dϕ|p(x)−2 log (|Dϕ|)Dϕ− |Du|p(x)−2 log (|Du|)Du

∣∣∣ ≤ hm

2
. (4.3)

Let l := minx∈∂Br(x0) (u− ϕ) > 0 and set ψ(x) := max (ϕ(x) + l − u(x), 0) . Then

ψ ∈W 1,2
0 (Br(x0)) so there are ψj ∈ C∞

0 (Br(x0)) such that ψj → ψ inW 1,2(Br(x0)).
Let pj be the standard molli�cation of p. Multiplying (4.1) by ψ and integrating
over Br(x0) yields

−h
∫
Br(x0)

|Dϕ|p(x)−2 ψ dx

≥
∫
Br(x0)

− |Dϕ|p(x)−2

(
∆ϕ+

p(x)− 2

|Dϕ|2
∆∞ϕ

)
ψ dx

= lim
j→∞

∫
Br(x0)

− |Dϕ|pj(x)−2

(
∆ϕ+

pj(x)− 2

|Dϕ|2
∆∞ϕ

)
ψj dx, (4.4)

where the last equality holds because ψj → ψ in W 1,2(Br(x0)) and pj → p uni-

formly in Br(x0). Calculating the divergence of |Dϕ|pj(x)−2Dϕ and integrating
by parts we get∫

Br(x0)
− |Dϕ|pj(x)−2

(
∆ϕ+

pj(x)− 2

|Dϕ|2
∆∞ϕ

)
ψj dx

=

∫
Br(x0)

−div
(
|Dϕ|pj(x)−2Dϕ

)
ψj + |Dϕ|pj(x)−2 log (|Dϕ|)Dϕ ·Dpj ψj dx

=

∫
Br(x0)

|Dϕ|pj(x)−2Dϕ · (Dψj + log (|Dϕ|)Dpj ψj) dx. (4.5)

By the convergence of ψj and pj , it follows from (4.4) and (4.5) that

−h
∫
Br(x0)

|Dϕ|p(x)−2 ψ dx ≥
∫
Br(x0)

|Dϕ|p(x)−2Dϕ · (Dψ + log (|Dϕ|)Dpψ) dx.

(4.6)

Since u is a weak supersolution to ∆S
p(x)u = 0 and ψ ∈ W 1,p(·)(Ω) has a compact

support in Ω, we have∫
Br(x0)

|Du|p(x)−2Du · (Dψ + log |Du|Dpψ) dx ≥ 0. (4.7)

Denoting A := {x ∈ Br(x0) : ψ(x) > 0} and combining (4.6) and (4.7) we arrive
at ∫

A

(
|Dϕ|p(x)−2Dϕ− |Du|p(x)−2Du

)
· (Dϕ−Du) dx

≤
∫
A

∣∣∣|Du|p(x)−2 log (|Du|)Du− |Dϕ|p(x)−2 log (|Dϕ|)Dϕ
∣∣∣ |Dp|ψ dx

− h

∫
A
|Dϕ|p(x)−2 ψ dx

≤− hm

2

∫
A
ψ dx, (4.8)
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where the last inequality follows from (4.2) and (4.3). Since(
|a|p(x)−2 a− |b|p(x)−2 b

)
· (a− b) ≥ 0

for any two vectors a, b ∈ RN when p(x) > 1, it follows from (4.8) that |A| = 0.
But this is impossible since ϕ(x0) = u(x0) and l > 0. �

5. Viscosity solutions are Weak solutions

We show that if u is a viscosity supersolution to −∆N
p(x)u ≥ 0, then it is a weak

supersolution to −∆S
p(x)u ≥ 0. The same statement for subsolutions then follows

by analogy.
We recall the usual partial ordering for symmetric N × N matrices by setting

X ≤ Y if 〈Xξ, ξ〉 ≤ 〈Y ξ, ξ〉 for all ξ ∈ RN . For a matrix X we also set ‖X‖ :=
max {|λ| : λ is an eigenvalue of X} and for vectors ξ, η ∈ RN we use the notation
ξ ⊗ η := ξη′, i.e. ξ ⊗ η is an N ×N matrix whose (i, j) entry is ξiηj .

De�nition 5.1 (Inf-convolution). Let q ≥ 2 and ε > 0. The inf-convolution of a
bounded function u ∈ C(Ω) is de�ned by

uε(x) := inf
y∈Ω

{
u(y) +

1

qεq−1
|x− y|q

}
. (5.1)

The inf-convolution is well known to provide good approximations of viscosity
supersolutions and often one only needs to consider it for q = 2 (see e.g. [CIL92]).
However, as the authors in [JJ12] observed, considering large enough q essentially
cancels the singularity in the usual p-Laplace operator when 1 < p < 2. In similar
fashion it also cancels the singularity of the operator ∆S

p(x). This is due to the
property (v) in the next lemma. We also list some other properties of the inf-
convolution.

Lemma 5.2. Let u ∈ C(Ω) be a bounded function. Then the inf-convolution uε
as de�ned in (5.1) has the following properties.

(i) We have uε ≤ u in Ω and uε → u locally uniformly in Ω as ε→ 0.
(ii) There exists r(ε) > 0 such that

uε(x) = inf
y∈Br(ε)(x)∩Ω

{
u(y) +

1

qεq−1
|x− y|q

}
and r(ε) → 0 as ε→ 0. In fact we can choose r(ε) =

(
qεq−1oscΩ u

) 1
q .

(iii) The function uε is semi-concave in Ωr(ε), that is, the function x 7→ uε(x)−
q−1
2εq−1 r(ε)

q−2 |x|2 is concave.
(iv) If x ∈ Ωr(ε) := {x ∈ Ω : dist(x, ∂Ω) > r(ε)}, then there exists a point xε ∈

Br(ε)(x) such that uε(x) = u(xε) +
1

qεq−1 |x− xε|q.
(v) If (η,X) ∈ J2,−uε(x) with x ∈ Ωr(ε), then η = (x−xε)

εq−1 |xε − x|q−2 and

X ≤ q−1
ε |η|

q−2
q−1 I, where xε is as in (iv).

These properties are well known, see appendix of [JJ12] and also [Kat15b] where
more general ��at inf-convolution� is considered. Regardless, we give a proof of
(v) based on [Kat15a, p53] due to its critical role in the proof of Lemma 5.5.

Proof of property (v) in Lemma 5.2. Let (η,X) ∈ J2,−uε(x). Then there is a
function ϕ ∈ C2(RN ) such that it touches uε from below at x and Dϕ(x) = η,
D2ϕ(x) = X. Therefore for all y, z ∈ Ω we have

u(y) +
|y − z|q

qεq−1
− ϕ(z) ≥uε(z)− ϕ(z) ≥ 0.
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Choosing y = xε, we obtain

ϕ(z)− |xε − z|q

qεq−1
≤ u(xε) for all z ∈ Ω.

Since ϕ(x) = uε(x) = u(xε)+
|xε−x|q
qεq−1 , the above inequality means that the function

z 7→ ϕ(z)− |xε − z|q

qεq−1
=: ϕ(z)− ψ(z)

has a maximum at x. Thus η = Dψ(x) = (x−xε)
εq−1 |xε − x|q−2 and

X ≤ D2ψ(x) =
1

εq−1
|xε − x|q−4

(
(q − 2) (xε − x)⊗ (xε − x) + |xε − x|2 I

)
≤ 1

εq−1
|xε − x|q−4

(
(q − 2) ‖(xε − x)⊗ (xε − x)‖ I + |xε − x|2 I

)
=
q − 1

εq−1
|xε − x|q−2 I

=
q − 1

εq−1

(
ε |η|

1
q−1

)q−2
I

=
q − 1

ε
|η|

q−2
q−1 I. �

We will show that the inf-convolution provides approximations of viscosity su-
persolutions to −∆N

p(x)u ≥ 0. If there was no x-dependence in the equation, it
would be straightforward to show that the inf-convolution of a supersolution is still
a supersolution. However, the equation −∆N

p(x)u ≥ 0 has x-dependence caused by

p(x). Regardless, in [Ish95, Thm 3] it is shown that with some assumptions on
G, the inf-convolution uε of a viscosity supersolution to G(x, u,Du,D2u) ≥ 0 is
still a viscosity supersolution to G(x, uε, Duε, D

2uε) ≥ E(ε), where E(ε) → 0 as
ε→ 0.

We prove a modi�ed version of this theorem for the solutions of −∆N
p(x)u ≥ 0.

The important modi�cation is the term |η|min(p(x)−2,0) in (5.2) as it cancels a
singular gradient term that appears due to the error term in the proof of Lemma
5.5, see (5.14). Another di�erence is that we consider inf-convolution with the
exponent q ≥ 2.

Lemma 5.3. Assume that u is a uniformly continuous viscosity supersolution to
−∆N

p(x)u ≥ 0 in Ω. Then, whenever (η,X) ∈ J2,−uε(x), η 6= 0 and x ∈ Ωr(ε), it

holds

|η|min(p(x)−2,0) F (x, η,X) ≥ E(ε), (5.2)

where E(ε) → 0 as ε → 0. The error function E depends only on p, q and the
modulus of continuity of u.

Proof. Fix x ∈ Ωr(ε) and (η,X) ∈ J2,−uε(x), η 6= 0. Then by Lemma 5.2 there is
xε ∈ Br(ε)(x) such that

uε(x) = u(xε) +
|xε − x|q

qεq−1
(5.3)

and η = (x−xε)
εq−1 |xε − x|q−2. There exists a function ϕ ∈ C2(RN ) such that it

touches uε from below at x and Dϕ(x) = η, D2ϕ(x) = X. By the de�nition of
inf-convolution

u(y)− ϕ(z)+
|y − z|q

qεq−1
≥ uε(z)− ϕ(z) ≥ 0 for all y, z ∈ Ωr(ε). (5.4)
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Since by (5.3) we have u(xε) = ϕ(x) − |xε−x|q
qεq−1 , it follows from (5.4) that the

expression u(y)− ϕ(z) + |y−z|q
qεq−1 reaches its minimum at (y, z) = (xε, x). Thus

max
(y,z)∈Ωr(ε)×Ωr(ε)

−u(y) + ϕ(z)− |y − z|q

qεq−1
= −u(xε) + ϕ(x)− |xε − x|q

qεq−1
.

We denote Φ(y, z) := 1
qεq−1 |y − z|q and invoke the Theorem of sums (see [CIL92]).

There exist Y, Z ∈ SN such that

(η,−Y ) ∈ J
2,−
u(xε), (η,−Z) ∈ J

2,+
ϕ(x)

and (
Y 0
0 −Z

)
≤ D2Φ(xε, x) + εq−1

(
D2Φ(xε, x)

)2
(5.5)

where

D2Φ(xε, x) =

(
M −M
−M M

)
with M = 1

εq−1 |xε − x|q−4
(
(q − 2) (xε − x)⊗ (xε − x) + |xε − x|2 I

)
and

(
D2Φ(xε, x)

)2
= 2

(
M2 −M2

−M2 M2

)
.

The above implies Y ≤ Z ≤ −D2ϕ(x) = −X. Multiplying (5.5) by the R2N

vector ( η
|η|
√
p(xε)− 1, η

|η|
√
p(x)− 1) from both sides yields

(p(xε)− 1)

|η|2
〈Y η, η〉 − (p(x)− 1)

|η|2
〈Zη, η〉 ≤ Λ2

〈(
M + 2εq−1M2

) η

|η|
,
η

|η|

〉
, (5.6)

where Λ =
√
p(x)− 1−

√
p(xε)− 1. We have

0 ≤F (xε, η,−Y )

=F (x, η, Z)− F (xε, η, Y )− F (x, η, Z)

= (p(xε)− 1)

〈
Y
η

|η|
,
η

|η|

〉
− (p(x)− 1)

〈
Z
η

|η|
,
η

|η|

〉
+ tr(Y )−

〈
Y
η

|η|
,
η

|η|

〉
− tr(Z) +

〈
Z
η

|η|
,
η

|η|

〉
+ F (x, η,−Z)

≤Λ2

〈(
M + 2εq−1M2

) η

|η|
,
η

|η|

〉
+ F (x, η,X), (5.7)

where we used (5.6) and the fact that Y ≤ Z implies

tr (Y − Z)−
〈
(Y − Z)

η

|η|
,
η

|η|

〉
≤ 0.

We have the estimate

‖M‖ ≤ 1

εq−1
|xε − x|q−4

(
(q − 2) ‖(xε − x)⊗ (xε − x)‖+ |xε − x|2 ‖I‖

)
=
q − 1

εq−1
|xε − x|q−2 .

Since p is Lipschitz continuous and pmin > 1, we have also

Λ2 =
|p(x)− p(xε)|2∣∣∣√p(x)− 1 +

√
p(xε)− 1

∣∣∣2 ≤ C(p) |x− xε|2 .
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Combining these with (5.7) we get (we may assume that r(ε) < 1)

−F (x, η,X) ≤Λ2
(
‖M‖+ 2εq−1 ‖M‖2

)
≤Λ2

(
q − 1

εq−1
|xε − x|q−2 + 2εq−1

(
q − 1

εq−1

)2

|xε − x|2(q−2)

)

≤3 (q − 1)2

εq−1
Λ2 |xε − x|q−2

≤C(p, q) 1

εq−1
|xε − x|q . (5.8)

Moreover, by uniform continuity of u there is a modulus of continuity ω such that
ω(t) → 0 as t→ 0 and |u(y)− u(z)| ≤ ω(|y − z|) for all y, z ∈ Ω. Hence by (5.3)

|xε − x| ≤
(
qεq−1 (u(x)− u(xε))

) 1
q ≤ q

1
q ε

q−1
q ω(r(ε))

1
q . (5.9)

We now consider the situations p(x) ≤ 2 and p(x) > 2 separately.

If p(x) ≤ 2, we multiply (5.8) by |η|p(x)−2 and estimate using (5.9). We get

− |η|p(x)−2 F (x, η,X) ≤C(p, q) 1

εq−1
|xε − x|q |η|p(x)−2

=C(p, q)
1

εq−1
|xε − x|q

∣∣∣∣ 1

εq−1
(x− xε) |xε − x|q−2

∣∣∣∣p(x)−2

=C(p, q)

(
1

ε

)(q−1)(p(x)−1)

|xε − x|q+(q−1)(p(x)−2)

≤C(p, q)
(
1

ε

)(q−1)(p(x)−1) (
q

1
q ε

q−1
q ω(r(ε))

1
q

)q+(q−1)(p(x)−2)

=C(p, q)

(
1

ε

)(
q−1
q

)
(p(x)−2)

ω(r(ε))
q+(q−1)(p(x)−2)

q

≤C(p, q)ω(r(ε))
q+(q−1)(pmin−2)

q ,

where the last inequality is true when ε < 1 is so small that ω(r(ε)) < 1. This
proves (5.2) when p(x) ≤ 2.
If p(x) > 2, we estimate (5.8) directly using (5.9). We get

−F (x, η,X) ≤C(p, q) 1

εq−1

(
q

1
q ε

q−1
q ω(r(ε))

1
q

)q
= C(p, q)ω(r(ε))),

which proves (5.2) when p(x) > 2. �

Next we will use the previous lemma to show that inf-convolution of a viscosity
supersolution to −∆N

p(x)u ≥ 0 in Ω is a weak supersolution to −∆S
p(x)u ≥ 0 in

Ωr(ε) up to some error term. Before proceeding we make some remarks about the
point-wise di�erentiability of inf-convolution.

Remark 5.4. It follows from semi-concavity that the inf-convolution uε is locally
Lipschitz in Ωr(ε) (see [EG15, p267]). Therefore it belongs in W 1,∞

loc (Ωr(ε)), is
di�erentiable almost everywhere in Ωr(ε), and its derivative agrees with its Sobolev
derivative almost everywhere in Ωr(ε) (see [EG15, p155 and p265]).

By Lemma 5.2 the function φ(x) := uε(x) − C(q, ε, u) |x|2 is concave in Ωr(ε).
Thus Alexandrov's theorem implies that uε is twice di�erentiable almost every-
where in Ωr(ε). Furthermore, the proof of Alexandrov's theorem in [EG15, p273]
establishes that if φj is the standard molli�cation of φ, then D2φj → D2φ almost
everywhere in Ωr(ε).
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Lemma 5.5. Assume that u is a uniformly continuous viscosity supersolution to
−∆N

p(x)u ≥ 0 in Ω. Let q > 2 be so large that pmin − 2 + q−2
q−1 ≥ 0 and let uε be the

inf-convolution of u as de�ned in (5.1). Then∫
Ωr(ε)

|Duε|p(x)−2Duε · (Dϕ+ log |Duε|Dpϕ) dx ≥ E(ε)

∫
Ωr(ε)

|Duε|s(x) ϕdx

for all non-negative ϕ ∈ W 1,p(·)(Ωr(ε)) with compact support, where E(ε) → 0 as
ε→ 0 and s(x) = max(p(x)− 2, 0).

Proof. It is enough to consider ϕ ∈ C∞
0 (Ωr(ε)). This can be proven as Lemma 3.2,

but since uε ∈W 1,∞
loc (Ωr(ε)), the proof is even simpler.

(Step 1) We show that uε satis�es the auxiliary inequality (5.11) for all 0 <
δ < 1. As mentioned in Remark 5.4, the function φ(x) := uε(x)− C(q, ε, u) |x|2 is
concave in Ωr(ε) and therefore we can approximate it by smooth concave functions
φj so that

(
φj , Dφj , D

2φj
)
→
(
φ,Dφ,D2φ

)
almost everywhere in Ωr(ε). We de�ne

uε,j(x) := φj(x) + C(q, ε, u) |x|2

and denote by pj the standard molli�cation of p. Since uε,j and pj are smooth,
we calculate∫

Ωr(ε)

−
(
δ + |Duε,j |2

) pj(x)−2

2

(
∆uε,j +

pj(x)− 2

δ + |Duε,j |2
∆∞uε,j

)
ϕdx

=

∫
Ωr(ε)

−div

((
δ + |Duε,j |2

) pj(x)−2

2
Duε,j

)
ϕ

+
1

2

(
δ + |Duε,j |2

) pj(x)−2

2
log
(
δ + |Duε,j |2

)
Duε,j ·Dpj ϕdx

=

∫
Ωr(ε)

(
δ + |Duε,j |2

) pj(x)−2

2
Duε,j ·

(
Dϕ+

1

2
log
(
δ + |Duε,j |2

)
Dpj ϕ

)
dx.

(5.10)

We let j → ∞ in (5.10) and intend to use Fatou's lemma at the LHS and the Dom-
inated convergence theorem at the RHS. This results in the auxiliary inequality∫

Ωr(ε)

−
(
δ + |Duε|2

) p(x)−2
2

(
∆uε +

p(x)− 2

δ + |Duε|2
∆∞uε

)
ϕdx

≤
∫
Ωr(ε)

(
δ + |Duε|2

) p(x)−2
2

Duε ·
(
Dϕ+

1

2
log
(
δ + |Duε|2

)
Dpϕ

)
dx,

(5.11)

where D2uε is the Hessian of uε in the Alexandrov's sense. We still need to check
that the assumptions of the Dominated convergence theorem and Fatou's lemma
hold. By Lipschitz continuity of uε and p there is M ≥ 1 such that

sup
j

‖Duε,j‖L∞(suppϕ) , sup
j

‖Dpj‖L∞(suppϕ) ≤M.

This justi�es our use of the Dominated convergence theorem. In order to justify
our use of Fatou's lemma, we notice �rst that by concavity of φj we have D

2uε,j ≤
C(q, ε, u)I. Thus the integrand at the LHS of (5.10) is clearly bounded from below
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by a constant independent of j if Duε,j = 0. If Duε,j 6= 0, we have

(
δ + |Duε,j |2

) pj(x)−2

2

(
∆uε,j +

pj(x)− 2

δ + |Duε,j |2
∆∞uε,j

)

=

(
δ + |Duε,j |2

) pj(x)−2

2

δ + |Duε,j |2

(
|Duε,j |2

(
∆uε,j +

pj(x)− 2

|Duε,j |2
∆∞uε,j

)
+ δ∆uε,j

)

≤
δ

pj(x)−2

2 +
(
δ +M2

) pj(x)−2

2

δ + |Duε,j |2
C(q, ε, u)

(
|Duε,j |2 (N + pj(x)− 2) + δN

)
≤ C(q, ε, u)

(
δ

pmin−2

2 +
(
δ +M2

) pmax−2
2

)
(2N + pmax − 2) ,

where the �rst inequality follows like estimate (5.7) since pj ≥ pmin > 1.
(Step 2) We let δ → 0 in the auxiliary inequality (5.11). The RHS becomes

∫
Ωr(ε)\{Duε=0}

|Duε|p(x)−2Duε · (Dϕ+ log |Duε|Dpϕ) dx

by the Lebesgue's dominated convergence theorem. We intend to apply Fatou's
lemma on the LHS. We have

(
Duε(x), D

2uε(x)
)
∈ J2,−uε(x) for almost every x ∈

Ωr(ε). Therefore by Lemma 5.3 it holds that

|Duε|min(p(x)−2,0) F (x,Duε, D
2uε) ≥ E(ε) in

{
x ∈ Ωr(ε) : Duε 6= 0

}
(5.12)

and by the property (v) in Lemma 5.2 we have

D2uε ≤
q − 1

ε
|Duε|

q−2
q−1 I. (5.13)

Observe that since q > 2, the condition (5.13) implies that the Hessian D2uε is
negative semi-de�nite in the set where the gradient Duε vanishes. Using this fact,
Fatou's lemma and (5.12) we get

lim inf
δ→0

∫
Ωr(ε)

−
(
|Duε|2 + δ

) p(x)−2
2

(
∆uε +

p(x)− 2

|Duε|2 + δ
∆∞uε

)
ϕdx

≥ lim inf
δ→0

∫
{Duε 6=0}

−
(
|Duε|2 + δ

) p(x)−2
2

(
∆uε +

p(x)− 2

|Duε|2 + δ
∆∞uε

)
ϕdx

+ lim inf
δ→0

∫
{Duε=0}

−δ
p(x)−2

2 ∆uεϕdx

≥
∫
{Duε 6=0}

− |Duε|p(x)−2

(
∆uε +

p(x)− 2

|Duε|2
∆∞uε

)
ϕdx

≥E(ε)

∫
{Duε 6=0}

|Duε|max(p(x)−2,0) ϕdx, (5.14)
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and thus we arrive at the desired inequality. Our use of Fatou's lemma is justi�ed
since if Duε 6= 0 and p(x) ≤ 2, we have by (5.13)

(
|Duε|2 + δ

) p(x)−2
2

(
∆uε +

p(x)− 2

|Duε|2 + δ
∆∞uε

)

=

(
|Duε|2 + δ

)
|Duε|2 + δ

p(x)−2
2 (

|Duε|2
(
∆uε +

p(x)− 2

|Duε|2
∆∞uε

)
+ δ∆uε

)

≤

(
|Duε|2 + δ

)
|Duε|2 + δ

p(x)−2
2

q − 1

ε

(
|Duε|

q−2
q−1

+2
(N + p(x)− 2) + |Duε|

q−2
q−1 δN

)
≤ |Duε|p(x)−2+ q−2

q−1

(
q − 1

ε

)
(2N + p(x)− 2)

≤
(
‖Duε‖L∞(suppϕ) + 1

)pmax−2+ q−2
q−1

(
q − 1

ε

)
(2N + pmax − 2) ,

where the last inequality follows from pmin−2+ q−2
q−1 ≥ 0. If Duε 6= 0 and p(x) > 2,

we have

(
|Duε|2 + δ

) p(x)−2
2

(
∆uε +

p(x)− 2

|Duε|2 + δ
∆∞uε

)
≤
(
‖Duε‖2L∞(suppϕ) + 1

) pmax−2
2

+ q−2
q−1

(
q − 1

ε
) (N + pmax − 2) . �

In the next two lemmas we use Caccioppoli type estimates and algebraic in-
equalities to show that the sequence of inf-convolutions converges to the viscosity
supersolution in W

1,p(·)
loc (Ω).

Lemma 5.6. Under the assumptions of Lemma 5.5, the function u belongs in
W

1,p(·)
loc (Ω) and for any Ω′ b Ω we have Duε → Du weakly in Lp(·)(Ω′) for some

subsequence.

Proof. Take a cut-o� function ξ ∈ C∞
0 (Ω′) such that 0 ≤ ξ ≤ 1 in Ω and ξ ≡ 1 in

Ω′. Then assume that ε is so small that supp ξ =: K ⊂ Ωr(ε). We de�ne a test
function ϕ := (L− uε)ξ

pmax where L := supε,x∈Ω′ |uε(x)| is �nite since uε → u
locally uniformly. We have

Dϕ = −Duε ξpmax + (L− uε)p
+ξpmax−1Dξ

and therefore by Lemma 5.5∫
Ωr(ε)

|Duε|p(x) ξpmax dx ≤
∫
Ωr(ε)

|Duε|p(x)−1 ξpmax−1 (L− uε) pmax |Dξ| dx

+

∫
Ωr(ε)

|Duε|p(x)−1 |log |Duε|| |Dp| (L− uε) ξ
pmax dx

+ |E(ε)|
∫
Ωr(ε)

|Duε|max(p(x)−2,0) (L− uε) ξ
pmax dx

=:I1 + I2 + I3.
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We estimate these integrals using Young's inequality. The �rst integral is estimated

by the facts p(x)(pmax−1)
p(x)−1 ≥ pmax and ξ ≤ 1 as follows

I1 ≤
∫
Ωr(ε)

δ |Duε|p(x) ξ
p(x)(pmax−1)

p(x)−1 +

(
2

δ
Lpmax |Dξ|

)p(x)

dx

≤δ
∫
Ωr(ε)

|Duε|p(x) ξpmax dx+ C(δ, p, L,Dξ).

To estimate I2, we also use the inequality a
s |log a| ≤ as+

1
2 + 1

s for a > 0 and s > 0,

I2 ≤
∫
Ωr(ε)

(
|Duε|p(x)−

1
2 +

1

p(x)− 1

)
ξpmax |Dp| 2Ldx

≤
∫
Ωr(ε)

δ |Duε|p(x) ξ
pmaxp(x)

p(x)− 1
2 +

(
2

δ
|Dp|L

)2p(x)

+
2L |Dp| ξpmax

pmin − 1
dx

≤δ
∫
Ωr(ε)

|Duε|p(x) ξpmax dx+ C(δ, p,Dp, L).

The last integral is estimated by the two alternatives in max(p(x)−2, 0) as follows
(we may assume that |E(ε)| ≤ 1)

I3 ≤
∫
Ωr(ε)∩{p(x)>2}

|Duε|p(x)−2 ξpmax2Ldx+

∫
Ωr(ε)∩{p(x)≤2}

2Lξpmax dx

≤
∫
Ωr(ε)∩{p(x)>2}

δ |Duε|p(x) ξ
pmaxp(x)
p(x)−2 +

(
2

δ
L

) p(x)
2

dx+ C(p, L)

≤δ
∫
Ωr(ε)

|Duε|p(x) ξpmax dx+ C(δ, p, L).

Taking small δ we conclude that Duε is bounded in Lp(·)(Ω′) with respect to ε.

Since Lp(·)(Ω′) is a re�exive Banach space [DHHR11, p76 and p89], it follows that

there is a functionDu ∈ Lp(·)(Ω′) such thatDuε → Du weakly in Lp(·)(Ω′) for some
subsequence. Consequently u ∈W 1,p(·)(Ω′) with Du as its weak derivative. �

Lemma 5.7. Under the assumptions of Lemma 5.5, for any Ω′ b Ω we have
Duε → Du in Lp(·)(Ω′) for some subsequence.

Proof. Take a cut-o� function ξ ∈ C∞
0 (Ω) such that ξ ≡ 1 in Ω′ and de�ne a test

function ϕ := (u−uε)ξ. Then assume that ε is so small that supp ξ =: K ⊂ Ωr(ε).
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Since ϕ ∈W 1,p(·)(Ωr(ε)) with compact support it follows from Lemma 5.5 that∫
Ωr(ε)

(
|Du|p(x)−2Du− |Duε|p(x)−2Duε

)
· (Du−Duε) ξ dx

≤
∫
Ωr(ε)

|Duε|p(x)−2Duε ·Dξ (u− uε) dx

+

∫
Ωr(ε)

|Duε|p(x)−2 log (|Duε|)Duε ·Dp (u− uε)ξ dx

+ |E(ε)|
∫
Ωr(ε)

|Duε|max(p(x)−2,0) (u− uε)ξ dx

+

∫
Ωr(ε)

|Du|p(x)−2Du · (Du−Duε) ξ dx

≤‖u− uε‖L∞(K)

∫
K

(
C(pmin) + |Duε|p(x)

)
(Dξ + |Dp|+ |E(ε)|) dx

+

∫
K
|Du|p(x)−2Du · (Du−Duε) ξ dx. (5.15)

According to Lemma 5.6 we have uε → u locally uniformly and Duε → Du weakly
in Lp(·)(K) for a subsequence. Thus by passing to a subsequence we may assume
that the right hand side of (5.15) converges to zero. The claim now follows from
the inequalities (see e.g. [Lin17, Chapter 12])(

|a|p(x)−2 a− |b|p(x)−2 b
)
· (a− b)

≥

(p(x)− 1) |a− b|2
(
1 + |a|2 + |b|2

) p(x)−2
2

p(x) < 2

22−p(x) |a− b|p(x) p(x) ≥ 2

for a, b ∈ RN . Indeed, we immediately get that
∫
Ω′∩{p(x)≥2} |Du−Duε|p(x) dx →

0. To deal with the set {p(x) < 2}, we �rst apply the above algebraic inequality
and then estimate using Hölder's inequality, the modular inequality (2.1) and the
de�nition of the ‖·‖Lp(·)-norm. We get∫

Ω′∩{p(x)<2}
|Du−Duε|p(x) dx

≤
∫
Ω′∩{p(x)<2}

((
|Du|p(x)−2Du− |Duε|p(x)−2Duε

)
· (Du−Duε)

) p(x)
2

·
(

1

p(x)− 1

) p(x)
2 (

1 + |Du|2 + |Duε|2
) p(x)(2−p(x))

4
dx

≤

∥∥∥∥∥((|Du|p(x)−2Du− |Duε|p(x)−2Duε

)
· (Du−Duε)

) p(x)
2

∥∥∥∥∥
L

2
p(·) (Ω′∩{p(x)<2})

· 2

pmin − 1

∥∥∥∥∥(1 + |Du|2 + |Duε|2
) p(x)(2−p(x))

4

∥∥∥∥∥
L

2
2−p(·) (Ω′∩{p(x)<2})

≤

(∫
Ωr(ε)

(
|Du|p(x)−2Du− |Duε|p(x)−2Duε

)
· (Du−Duε) ξ dx

)s

· 2

pmin − 1

(
1 +

∫
Ω′∩{p(x)<2}

(
1 + |Du|2 + |Duε|2

) p(x)
2
dx

)
,
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where s ∈
{pmax

2 , pmin
2

}
. The last integral is bounded since the sequence Duε is

bounded in Lp(·)(Ω′) by its weak convergence. The RHS therefore converges to
zero by (5.15). �

Next, we use the previous convergence result to pass to the limit in the inequality
of Lemma 5.5 and conclude that viscosity supersolutions to −∆N

p(x)u ≥ 0 are weak
supersolutions to −∆S

p(x)u ≥ 0.

Theorem 5.8. If u ∈ C(Ω) is a viscosity supersolution to −∆N
p(x)u ≥ 0 in Ω, then

u is a weak supersolution to −∆S
p(x)u ≥ 0 in Ω.

Proof. It is clear from the de�nition of weak supersolutions to −∆S
p(x)u ≥ 0 that

we can without loss of generality assume that u is uniformly continuous in Ω by
restricting to a smaller domain. Fix a non-negative test function ϕ ∈ C∞

0 (Ω) and
take an open Ω′ b Ω such that suppϕ ⊂ Ω′. Let q and uε be as in Lemma 5.5 and
assume that ε is so small that Ω′ ⊂ Ωr(ε). Then the claim follows from Lemma
5.5 if we show that

lim
ε→0

∫
Ω′

|Duε|p(x)−2Duε ·Dϕdx =

∫
Ω′

|Du|p(x)−2Du ·Dϕdx (5.16)

and

lim
ε→0

∫
Ω′

|Duε|p(x)−2 log (|Duε|)Duε ·Dpϕdx

=

∫
Ω′

|Du|p(x)−2 log (|Du|)Du ·Dpϕdx (5.17)

as well as

lim
ε→0

E(ε)

∫
Ω′

|Duε|max(p(x)−2,0) ϕdx = 0. (5.18)

By Lemma 5.7 we have that uε → u in W 1,p(·)(Ω′).
Claim (5.16) follows from the inequalities (see e.g. [Lin17, Chapter 12])∣∣∣|a|p(x)−2 a− |b|p(x)−2 b

∣∣∣ ≤ {22−p(x) |a− b|p(x)−1 p(x) < 2

2−1
(
|a|p(x)−2 + |b|p(x)−2

)
|a− b| p(x) ≥ 2

(5.19)

for a, b ∈ RN . Indeed, when ε is so small that
∫
Ω′ |Duε −Du|p(x) dx < 1 we have

by Hölder's inequality and the modular inequality∫
Ω′

∣∣∣|Duε|p(x)−2Duε − |Du|p(x)−2Du
∣∣∣ dx

≤2

∫
Ω′∩{p(x)<2}

|Duε −Du|p(x)−1 dx

+ 2−1

∫
Ω′∩{p(x)≥2}

(
|Duε|p(x)−2 + |Du|p(x)−2

)
|Duε −Du| dx

≤C(p,Ω)
(∫

Ω′
|Duε −Du|p(x) dx

) 1
pmax

+ C(p,Ω)

(
1 +

∫
Ω′

|Duε|p(x) + |Du|p(x) dx
)
‖Duε −Du‖Lp(·)(Ω′) .

Claim (5.18) holds since
∫
Ω′ |Duε|p(x) dx is bounded and E(ε) → 0.

Claim (5.17) follows if we show that

lim
ε→0

∫
Ω′

∣∣∣|Duε|p(x)−2 log (|Duε|)Duε − |Du|p(x)−2 log (|Du|)Du
∣∣∣ dx = 0. (5.20)
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To this end, �x 0 < ε < 1. The mapping (a, x) 7→ |a|p(x)−2 log (|a|) a is uniformly
continuous in bounded sets of RN × Ω′. Hence there exists δ = δ(ε) < ε such that
whenever x ∈ Ω′ and a, b ∈ B(0, 3) satisfy |a− b| < δ, it holds∣∣∣|a|p(x)−2 log (|a|) a− |b|p(x)−2 log (|b|) b

∣∣∣ ≤ ε. (5.21)

If |a| , |b| ≥ 1 and |a− b| < δ, then we use (5.19) to get the estimate∣∣∣ |a|p(x)−2 log (|a|) a− |b|p(x)−2 log (|b|) b
∣∣∣

≤ |b|p(x)−1 |log |a| − log |b||+ |log |a||
∣∣∣|a|p(x)−2 a− |b|p(x)−2 b

∣∣∣
≤ |b|p(x) |a− b|+ |a| ·

{
22−p(x) |a− b|p(x)−1 , p(x) < 2

2−1
(
|a|p(x)−2 + |b|p(x)−2

)
|a− b| , p(x) ≥ 2

≤(1 + 2−1)
(
|a|p(x) + |b|p(x)

)
|a− b|+ 2 |a| |a− b|p(x)−1

≤C
(
|a|p(x) + |b|p(x)

)
εmin(pmin−1,1). (5.22)

We denote

Fε =
{
x ∈ Ω′ : |Duε(x)−Du(x)| ≥ δ

}
.

The strong convergence of Duε to Du in Lp(·)(Ω′) implies that Duε → Du in
measure in Ω′ (see [DHHR11, Lemma 3.2.10]). Thus there is ε0 = ε0(δ) such that
for all ε < ε0 it holds |Fε| ≤ δ. Using the inequality as |log a| ≤ as+

1
2 + 1

s for
a, s > 0, we get for all ε < ε0∫

Fε

∣∣∣|Duε|p(x)−2 log (|Duε|)Duε − |Du|p(x)−2 log (|Du|)Du
∣∣∣ dx

≤
∫
Fε

2

p(x)− 1
+ |Duε|p(x)−

1
2 + |Du|p(x)−

1
2 dx

≤C(pmin) |Fε|+ ‖1‖L2p(·)(Fε)

(
‖Duε‖

L

p(·)
p(·)− 1

2 (Fε)

+ ‖Du‖
L

p(·)
p(·)− 1

2 (Fε)

)

≤C(pmin) |Fε|+ |Fε|
1

2pmax

(
2 +

∫
Fε

|Duε|p(x) + |Du|p(x) dx
)

≤C(pmin)

(
1 +

∫
Ω′

|Duε|p(x) + |Du|p(x) dx
)
ε

1
2pmax . (5.23)

If x ∈ Ω′ \ Fε, then either |Duε| , |Du| ≤ 3 or |Duε| , |Du| ≥ 1. Hence by (5.21)
and (5.22) we have∫

Ω′\Fε

∣∣∣|Duε|p(x)−2 log (|Duε|)Duε − |Du|p(x)−2 log (|Du|)Du
∣∣∣ dx

≤C
(∫

Ω′
|Duε|p(x) + |Du|p(x) + 1 dx

)
εmin(pmin−1,1). (5.24)

Combining (5.24) and (5.23) proves (5.20) since ε was arbitrary. �

Merging Theorems 4.1 and 5.8 yields the following equivalence result.

Theorem 5.9. A function u is a viscosity solution to −∆N
p(x)u = 0 in Ω if and

only if it is a weak solution to −∆S
p(x)u = 0 in Ω.

Since the weak solutions to the strong p(x)-Laplace equation are locally C1,α

continuous [ZZ12], our equivalence result yields local C1,α regularity also for vis-
cosity solutions of the normalized p(x)-Laplace equation.
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Corollary 5.10. If u is a viscosity solution to −∆N
p(x)u = 0 in a bounded domain

Ω, then u ∈ C1,α(Ω) with α ∈ (0, 1).

6. An Application: A Radó-type removability theorem

The classical theorem of Radó says that if a continuous complex-valued function
f de�ned on a domain Ω ⊂ C is holomorphic in Ω\{f = 0}, then it is holomorphic
in the whole Ω. Similar results have been proven for solutions of partial di�erential
equations. We prove a Radó-type removability theorem for the strong p(x)-Laplace
equation. It is worth pointing out that it could be di�cult to show this kind of
result without appealing to viscosity solutions whereas it is straightforward to do
so with the help of the equivalence result. The theorem follows by observing that
weak solutions to ∆S

p(x)u = 0 coincide with viscosity solutions of an equation that
satis�es the assumptions of a Radó-type removability theorem in [JL05].

Recall that we ignore the test functions whose gradient vanishes at the point
of touching in the De�nition 3.3 of viscosity solutions to −∆N

p(x)u = 0. Sometimes
this kind of solutions are called feeble viscosity solutions (e.g. [JL05, Kat15b]).
We will observe that these feeble viscosity solutions to −∆N

p(x)u = 0 are exactly
the usual viscosity solutions to

−tr(A(x,Du)D2u) = 0, (6.1)

where A(x,Du) := |Du|2 I + (p(x)− 2)Du ⊗ Du. To be precise, we de�ne the
viscosity solutions to (6.1).

De�nition 6.1. A lower semicontinuous function u is a viscosity supersolution to
(6.1) in Ω if, whenever (η,X) ∈ J2,−u(x) with x ∈ Ω, then

−tr(A(x, η)X) ≥ 0.

A function u is a viscosity subsolution to (6.1) if −u is a supersolution, and a
viscosity solution if it is both viscosity super- and subsolution.

Lemma 6.2. A function u is a viscosity solution to −∆N
p(x)u = 0 if and only if it

is a viscosity solution to (6.1).

Proof. It is enough to consider supersolutions. Take (η,X) ∈ J2,−u(x) with x ∈ Ω.
If η = 0, then the conditions for both de�nitions are satis�ed, so we may assume
that η 6= 0. Then we have

F (x, η,X) ≥ 0

if and only if

−
(
|η|2 tr(X) + (p(x)− 2) 〈Xη, η〉

)
≥ 0,

where

|η|2 tr(X) + (p(x)− 2) 〈Xη, η〉 = |η|2 tr(X) + (p(x)− 2) tr(η ⊗ ηX)

=tr
((

|η|2 I + (p(x)− 2) η ⊗ η
)
X
)
.

Hence the de�nitions are equivalent. �

Theorem 6.3 (A Radó-type removability theorem). Let u ∈ C1(Ω) be a weak
solution to −∆S

p(x)u = 0 in Ω\{u = 0}. Then u is a weak solution to −∆S
p(x)u = 0

in the whole Ω.

Proof. By Lemma 6.2 and our equivalence result weak solutions to −∆S
p(x)u = 0

coincide with viscosity solutions to (6.1). Therefore it su�ces to show that if u is
a viscosity solution to (6.1) in Ω \ {u = 0}, it is a viscosity solution to (6.1) in the
whole Ω. This on the other hand follows from [JL05, Theorem 2.2]. The matrix A
satis�es the assumptions of the theorem as it is symmetric, has continuous entries
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and A(x, 0, 0) = 0 for all x ∈ Ω. It is also positive semi-de�nite since for all ξ ∈ RN

we have

ξ′
(
|η|2 I + (p(x)− 2) η ⊗ η

)
ξ ≥ξ′

(
|η|2 I − η ⊗ η

)
ξ

≥ |ξ|2
(
|η|2 − ‖η ⊗ η‖

)
= 0. �
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EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS FOR A
p-PARABOLIC EQUATION

JARKKO SILTAKOSKI

Abstract. We study the relationship of viscosity and weak solutions to the equation
∂tu−∆pu = f(Du)

where p > 1 and f ∈ C(RN ) satisfies suitable assumptions. Our main result is that
bounded viscosity supersolutions coincide with bounded lower semicontinuous weak
supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions
when p ≥ 2.

1. Introduction

A classical solution to a partial differential equation is a smooth function that satisfies
the equation pointwise. Since many equations that appear in applications admit no such
solutions, a more general class of solutions is needed. One such class is the extensively
studied distributional weak solutions defined by integration by parts. Another is the
celebrated viscosity solutions based on generalized pointwise derivatives. When both
classes of solutions can be meaningfully defined, it is naturally crucial that they coincide.
This has been profusely studied starting from [Ish95]. In [JLM01] the equivalence of
solutions was proved for the parabolic p-Laplacian. The objective of the present work is
to prove this equivalence in a different way while also allowing the equation to depend
on a first-order term. To the best of our knowledge, the proof is new even in the
homogeneous case, at least when 1 < p < 2.

More precisely, we study the parabolic equation

∂tu−∆pu = f(Du) (1.1)

where 1 < p <∞ and f ∈ C(RN) satisfies a certain growth condition, for details see Sec-
tion 2. We show that bounded viscosity supersolutions to (1.1) coincide with bounded
lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity
of weak supersolutions in the range p ≥ 2 under slightly stronger assumptions on f .

To show that viscosity supersolutions are weak supersolutions, we apply the technique
introduced by Julin and Juutinen [JJ12]. In contrast to [JLM01], we do not employ the
uniqueness machinery of viscosity solutions. Instead, our strategy is to approximate a
viscosity supersolution u by its inf-convolution uε. It is straightforward to show that
uε is still a viscosity supersolution in a smaller set. This and the pointwise properties
of the inf-convolution imply that uε is also a weak supersolution in the smaller set.

Date: March 2020.
2010 Mathematics Subject Classification. 35K92, 35J60, 35D40, 35D30, 35B51.
Key words and phrases. comparison principle, gradient term, parabolic p-Laplacian, viscosity solu-

tion, weak solution.
1
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Furthermore, it follows from Caccioppoli’s estimates that uε converges to u in a suitable
Sobolev space. It then remains to pass to the limit to see that u is a weak supersolution.

To show that weak supersolutions are viscosity supersolutions, we apply the argument
from [JLM01] that is based on the comparison principle of weak solutions. However,
we could not find a reference for comparison principle for the equation (1.1). Therefore
we give a detailed proof of such a result.

To prove the lower semicontinuity of weak supersolutions, we adapt the strategy of
[Kuu09]. First we prove estimates for the essential supremum of a subsolution using the
Moser’s iteration technique. Then we use those estimates to deduce that a supersolution
is lower semicontinuous at its Lebesgue points.

The equivalence of viscosity and weak solutions for the p-Laplace equation and its
parabolic version was first proven in [JLM01]. A different proof in the elliptic case was
found in [JJ12]. Recently the equivalence of solutions has been studied for various equa-
tions. These include the normalized p-Poisson equation [APR17], a non-homogeneous
p-Laplace equation [MO19] and the normalized p(x)-Laplace equation [Sil18]. More-
over, in [PV] the equivalence is shown for the radial solutions of a parabolic equation.
We also mention that an unpublished version of [Lin12] applies [JJ12] to sketch the
equivalence of solutions to (1.1) in the homogeneous case when p ≥ 2.

Comparison principles for quasilinear parabolic equations have been studied by sev-
eral authors. In [Jun93] comparison is proven for ∂tu−∆pu+ f(u, x, t) = 0 when p > 2
and f is a continuous function such that |f(u, x, t)| ≤ g(u) for some g ∈ C1. The ho-
mogeneous case for the p-parabolic equation is considered also in [KL96] and the gen-
eral equation ∂tu− divA(x, t,Du) = 0 in [KKP10]. Equations with gradient terms are
studied for example in [Att12], where comparison principle is shown for the equation
∂tu−∆pu− |Du|β = 0 when p > 2 and β > p− 1. In the recent papers [BT14, BT],
both positive results and counter examples are provided for the comparison, strong com-
parison and maximum principles for the equation ∂tu−∆pu− λ |u|p−2 u− f(x, t) = 0.
Furthermore, according to [BGKT16], the equation ∂tu−∆pu = q(x) |u|α can admit
multiple solutions with zero boundary values when 0 < α < 1.

The paper is organized as follows. Section 2 contains the precise definitions of weak
and viscosity solutions. In Section 3 we show that weak supersolutions are viscosity
supersolutions, and the converse is shown in Section 4. Finally, the lower semicontinuity
of weak supersolutions is considered in Section 5.

2. Preliminaries

The symbols Ξ and Ω are reserved for bounded domains in RN × R and RN , respec-
tively. For t1 < t2, we define the cylinder Ωt1,t2 := Ω× (t1, t2) and its parabolic boundary
∂pΩt1,t2 := (Ω× {t1}) ∪ (∂Ω× (t1, t2]). Moreover, for T > 0 we set ΩT := Ω0,T .

The Sobolev space W 1,p(Ω) contains the functions u ∈ Lp(Ω) for which the distribu-
tional gradient Du exists and belongs in Lp(Ω). It is equipped with the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖Du‖Lp(Ω) .

A Lebesgue measurable function u : Ωt1,t2 → R belongs to the parabolic Sobolev space
Lp(t1, t2;W 1,p(Ω)) if u(·, t) ∈ W 1,p(Ω) for almost every t ∈ (t1, t2) and the norm

(∫

Ωt1,t2
|u|p + |Du|p dz

) 1
p
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is finite. By dz we mean integration with respect to space and time variables, i.e.
dz = dx dt. Integral average is denoted by

−
∫

ΩT
u dz := 1

|ΩT |
∫

ΩT
u dz.

Growth condition. Unless otherwise stated, the function f ∈ C(RN) is assumed to
satisfy the growth condition

|f(ξ)| ≤ Cf (1 + |ξ|β) for all ξ ∈ RN , (G1)
where Cf > 0 and 1 ≤ β < p.

Definition 2.1 (Weak solution). A function u : Ξ→ R is a weak supersolution to (1.1)
in Ξ if u ∈ Lp(t1, t2;W 1,p(Ω)) whenever Ωt1,t2 b Ξ, and

∫

Ξ
−u∂tϕ+ |Du|p−2Du ·Dϕ− ϕf(Du) dz ≥ 0

for all non-negative test functions ϕ ∈ C∞0 (Ωt1,t2). For weak subsolutions the inequality
is reversed and a function is a weak solution if it is both super- and subsolution.

To define viscosity solutions to (1.1), we set for all ϕ ∈ C2 with Dϕ 6= 0

∆pϕ := |Dϕ|p−2
(

∆ϕ+ p− 2
|Dϕ|2

〈
D2ϕDϕ,Dϕ

〉)
.

Definition 2.2 (Viscosity solution). A lower semicontinuous and bounded function
u : Ξ → R is a viscosity supersolution to (1.1) in Ξ if whenever ϕ ∈ C2(Ξ) and
(x0, t0) ∈ Ξ are such that





ϕ(x0, t0) = u(x0, t0),
ϕ(x, t) < u(x, t) when (x, t) 6= (x0, t0),
Dϕ(x, t) 6= 0 when x 6= x0,

then
lim sup

(x,t)→(x0,t0)
x 6=x0

(∂tϕ(x, t)−∆pϕ(x, t)− f(Dϕ(x, t))) ≥ 0.

An upper semicontinuous and bounded function u : Ξ→ R is a viscosity subsolution to
(1.1) in Ξ if whenever ϕ ∈ C2(Ξ) and (x0, t0) ∈ Ξ are such that





ϕ(x0, t0) = u(x0, t0),
ϕ(x, t) > u(x, t) when (x, t) 6= (x0, t0),
Dϕ(x, t) 6= 0 when x 6= x0,

then
lim inf

(x,t)→(x0,t0)
x 6=x0

(∂tϕ(x, t)−∆pϕ(x, t)− f(Dϕ(x, t))) ≤ 0.

A function that is both viscosity sub- and supersolution is a viscosity solution.
If a function ϕ is like in the definition of viscosity supersolution, we say that ϕ touches

u from below at (x0, t0). The limit supremum in the definition is needed because the
operator ∆p is singular when 1 < p < 2. When p ≥ 2, the operator is degenerate and
the limit supremum disappears.
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3. Weak solutions are viscosity solutions

We show that bounded, lower semicontinuous weak supersolutions to (1.1) are viscos-
ity supersolutions when 1 < p <∞ and f ∈ C(RN) satisfies the growth condition (G1).
One way to prove this kind of results is by applying the comparison principle [JLM01].
However, we could not find the comparison principle for the equation (1.1) in the litera-
ture and therefore we prove it first. To this end, we first prove comparison Lemmas 3.2
and 3.3 for locally Lipschitz continuous f . The local Lipschitz continuity allows us to
absorb the first-order terms into the terms that appear due to the p-Laplacian, see Step
2 in proof of Lemma 3.2. To deal with general f , we take a locally Lipschitz continuous
approximant fδ such that ‖f − fδ‖L∞(RN ) < δ/4T . Then for sub- and supersolutions u
and v, we consider the functions

uδ := u− δ

T − t/2 and vδ := v + δ

T − t/2 .

These functions will be sub- and supersolutions to (1.1) where f is replaced by fδ. Since
fδ is locally Lipschitz continuous, it follows from the Lemmas 3.2 and 3.3 that uδ ≤ vδ.
Letting δ → 0 then yields that u ≤ v.

For similar comparison results, see [Att12, Proposition 2.1] and [Jun93]. See also
Chapters 3.5 and 3.6 in [PS07] for the elliptic case. A minor difference in our results is
that instead of requiring that both the subsolution and the supersolution have uniformly
bounded gradients, we only require this for the subsolution.

To prove the comparison principle, we need to use a test function that depends on the
supersolution itself. However, supersolutions do not necessarily have a time derivative.
One way to deal with this is to use mollifications in the time direction. For a compactly
supported ϕ ∈ Lp(ΩT ) we define its time-mollification by

ϕε(x, t) =
∫

R
φ(x, t− s)ρε(s) ds,

where ρε is a standard mollifier whose support is contained in (−ε, ε). Then ϕε has time
derivative and ϕε → ϕ in Lp(ΩT ). Furthermore, the time-mollification of a supersolution
satisfies a reguralized equation in the sense of the following lemma.

Lemma 3.1. Let v ∈ L∞(ΩT ) be a weak supersolution (subsolution) to (1.1) in ΩT .
Then we have ∫

ΩT
−vε∂tϕ+

(
|Dv|p−2Dv

)ε ·Dϕ− ϕ (f(Dv))ε dz ≥ (≤) 0 (3.1)

for all ϕ ∈ W 1,p(ΩT ) ∩ L∞(ΩT ) with compact support in ΩT . Moreover, if the stronger
growth condition (G2) holds, then the assumption ϕ ∈ L∞(ΩT ) is not needed.

If ϕ is smooth, then testing the weak formulation of (1.1) with ϕε, changing variables
and using Fubini’s theorem yields (3.1). The general case follows by approximating ϕ
in W 1,p(ΩT ) with the standard mollification. We omit the details.

Lemma 3.2. Let 1 < p < 2 and let f be locally Lipschitz. Let u, v ∈ L∞(ΩT ) respec-
tively be weak sub- and supersolutions to (1.1) in ΩT . Assume that for all (x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Suppose also that Du ∈ L∞(ΩT ). Then u ≤ v a.e. in ΩT .
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Proof. (Step 1) Let l > 0 and set w := (u− v − l)+. Let also s ∈ (0, T ). We want to
use w · χ[0,s] as a test function, but since it is not smooth, we must perform mollifica-
tions. Let h > 0 and define

ϕ := η ((u− v − l) ε)+ ,

where

η(t) =





1, t ∈ (0, s− h],
(−t+ s+ h)/2h, t ∈ (s− h, s+ h),
0, t ∈ [s+ h, T ).

The function ϕ is compactly supported and belongs in W 1,p(ΩT ). Therefore by Lemma
3.1 we have

∫

ΩT
− (u− v)ε∂tϕdz

≤
∫

ΩT

((
|Dv|p−2Dv

)ε −
(
|Du|p−2Du

)ε) ·Dϕ+ ϕ (f(Du)ε − f(Dv)ε) dz. (3.2)

We use the linearity of convolution and integration by parts to eliminate the time
derivative. We obtain

∫

ΩT
−(u− v)ε∂tϕdz

=−
∫

ΩT
(u− v)ε ((u− v − l)ε)+ ∂tη + η(u− v)ε∂t ((u− v − l)ε)+ dz

=−
∫

ΩT
(u− v − l)ε((u− v − l)ε)+∂tη + l ((u− v − l)ε)+ ∂tη

+ η(u− v − l)ε∂t ((u− v − l)ε)+ + lη∂t ((u− v − l)ε)+ dz

=−
∫

ΩT
((u− v − l)ε)2

+∂tη + 1
2η∂t((u− v − l)

ε)2
+ dz

=− 1
2

∫

ΩT
((u− v − l)ε)2

+∂tη dz

→
ε→0
− 1

2

∫

ΩT
(u− v − l)2

+∂tη dz.

Moreover, by the Lebesgue differentiation theorem for a.e. s ∈ (0, T ) it holds

−1
2

∫

ΩT
(u− v − l)2

+∂tη dz = 1
4h

∫ s+h

s−h

∫

Ω
w2(x, t) dx dt →

h→0

1
2

∫

Ω
w2(x, s) dx.

The terms at the right-hand side of (3.2) converge similarly. Hence for a.e. s ∈ (0, T )
we have

1
2

∫

Ω
w2(x, s) dx

≤
∫

Ωs
|f(Du)− f(Dv)|w dz −

∫

Ωs

(
|Du|p−2Du− |Dv|p−2Dv

)
·Dw dz

=:I1 − I2. (3.3)

(Step 2)We seek to absorb some of I1 into I2 so that we can conclude from Grönwall’s
inequality that w ≡ 0 almost everywhere. Since f is locally Lipschitz continuous, there
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are constants M ≥ max(2 ‖Du‖L∞(ΩT ) , 1) and L = L(M) such that
|f(ξ)− f(η)| ≤ L |ξ − η| when |ξ| , |η| < M. (3.4)

We denote Ω+
s := {x ∈ Ωs : w ≥ 0},

A := Ω+
s ∩ {|Dv| < M} and B := Ω+

s ∩ {|Dv| ≥M} .
Observe that in B we have by the growth condition (G1), choice of M and the assump-
tion that β ≥ 1

|f(Du)| ≤ Cf (1 + |Du|β) ≤ Cf (M +Mβ) ≤ 2CfMβ ≤ 2Cf |Dv|β (3.5)
and

|f(Dv)| ≤ Cf (1 + |Dv|β) ≤ 2Cf |Dv|β . (3.6)
It follows from (3.4), (3.5), (3.6) and Young’s inequality that

I1 ≤
∫

A
L |Du−Dv|w dz +

∫

B
(|f(Du)|+ |f(Dv)|)w dz

≤
∫

A
L |Du−Dv|w dz +

∫

B
4Cf |Dv|β w dz

≤
∫

A
ε |Du−Dv|2 + C(ε, L)w2 dz +

∫

B
ε |Dv|

βp
β + C(ε, p, β, L, Cf )w

p
p−β dz

≤ε
∫

A
|Du−Dv|2 dz + ε

∫

B
|Dv|p dz + C(ε, p, β, L, Cf , ‖w‖L∞)

∫

Ωs
w2 dz, (3.7)

where in the last step we used that p
p−β > 2 to estimate

∫

Ωs
wp/(p−β) dz =

∫

Ωs
wp/(p−β)−2w2 dz ≤ ‖w‖p/(p−β)−2

L∞(ΩT )

∫

Ωs
w2 dz.

Using the vector inequality
(
|a|p−2 a− |b|p−2 b

)
· (a− b) ≥ (p− 1) |a− b|2

(
1 + |a|2 + |b|2

) p−2
2 , (3.8)

which holds when 1 < p < 2 [Lin17, p98], we get

I2 =
∫

Ωs

(
|Du|p−2Du− |Dv|p−2Dv

)
·Dw dz

≥(p− 1)
∫

Ω+
s

|Du−Dv|2
(
1 + |Du|2 + |Dv|2

) 2−p
2
dz

≥(p− 1)
∫

A

|Du−Dv|2

(1 +M2 +M2)
2−p

2
dz + (p− 1)

∫

B

(|Dv| − |Du|)2

(
3 |Dv|2

) 2−p
2

dz

≥C(p,M)
∫

A
|Du−Dv|2 dz + (p− 1)

∫

B

(
|Dv| − 1

2M
)2

(
3 |Dv|2

) 2−p
2

dz

≥C(p,M)
∫

A
|Du−Dv|2 dz + (p− 1)

∫

B

(
1
2 |Dv|

)2

(
3 |Dv|2

) 2−p
2
dz

=C(p,M)
∫

A
|Du−Dv|2 dz + C(p)

∫

B
|Dv|p dz, (3.9)
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where C(p,M), C(p) > 0. Combining the estimates (3.7) and (3.9) we arrive at

I1 − I2 ≤ (ε− C(p,M))
∫

A
|Du−Dv|2 dz + (ε− C(p))

∫

B
|Dv|p dz + C0

∫

Ωs
w2 dz,

where C0 = C(ε, p, β, L, Cf , ‖w‖L∞). Recalling (3.3) and taking small enough ε yields
∫

Ω
w2(x, s) dx ≤ 2C0

∫

Ωs
w2 dz.

Since this holds for a.e. s ∈ (0, T ), Grönwall’s inequality implies that w ≡ 0 a.e. in ΩT .
Finally, letting l→ 0 yields that u− v ≤ 0 a.e. in ΩT . �
Lemma 3.3. Let p ≥ 2 and let f be locally Lipschitz. Let v ∈ L∞(ΩT ) be a weak
supersolution to (1.1) and let u ∈ L∞(ΩT ) be a weak subsolution to

∂tu−∆pu− f(Du) ≤ −δ in ΩT

for some δ > 0. Assume that for all (x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Suppose also that Du ∈ L∞(ΩT ). Then u ≤ v a.e. in ΩT .
Proof. Let l > 0 and set w := (u− v− l)+. Let also s ∈ (0, T ). Repeating the first step
of the proof of Lemma 3.2, we arrive at the inequality

1
2

∫

Ω
w2(x, s) dx

≤
∫

Ωs
|f(Du)− f(Dv)|w dz −

∫

Ωs

(
|Du|p−2Du− |Dv|p−2Dv

)
·Dw dz −

∫

Ωs
δw dz

=:I1 − I2 −
∫

Ωs
δw dz. (3.10)

Moreover, we define the constants M and L, and the sets A and B, exactly in the same
way as in the proof of Lemma 3.2. Then by (3.4), (3.5), (3.6) and Young’s inequality

I1 ≤
∫

A
L |Du−Dv|w dz +

∫

B
(|f(Du)|+ |f(Dv)|)w dz

≤
∫

A
ε |Du−Dv|p + C(ε, L)w

p
p−1 dz +

∫

B
4Cf |Dv|β w dz

≤ε
∫

A
|Du−Dv|p dz + ε

∫

B
|Dv|p dz + C(ε, p, β, L, Cf )

∫

Ωs
w

p
p−1 + w

p
p−β dz. (3.11)

Using the vector inequality
(
|a|p−2 a− |b|p−2 b

)
· (a− b) ≥ 22−p |a− b|p , (3.12)

which holds when p ≥ 2 [Lin17, p95], we get

I2 ≥C(p)
∫

A
|Du−Dv|p dz + C(p)

∫

B
|Du−Dv|p dz.

Furthermore, since in B it holds

|Du−Dv|p ≥ (|Dv| − |Du|)p ≥
(
|Dv| − 1

2M
)p
≥ C(p) |Dv|p ,

we arrive at
I2 ≥ C(p)

∫

A
|Du−Dv|p dz + C(p)

∫

B
|Dv|p dz. (3.13)
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Combining (3.11) and (3.13) with (3.10) we get
1
2

∫

Ω
w2 dx ≤ (ε− C(p))

(∫

A
|Du−Dv|p dz +

∫

B
|Dv|p dz

)

+
∫

Ωs
C(ε, p, β, L, Cf )

(
w

p
p−1 + w

p
p−β
)
− δw dz.

By taking small enough ε = ε(p), the above becomes
∫

Ω
w2(x, s) dx ≤

∫

Ωs
C(p, β, L, Cf )

(
w

p
p−1 + w

p
p−β
)
− δw dz. (3.14)

Observe that since w is bounded and p
p−1 ,

p
p−β > 1, the integrand at the right-hand side

is bounded by some constant times w2. To argue this rigorously, we write down the
following algebraic fact.

If a0, δ, γ > 0 and α > 1, then there exists C(α, γ, δ, a0) > 0 such that
γaα ≤ δa+ C(α, γ, δ, a0)a2 for all a ∈ [0, a0).

To see this, let first α < 2. Then by Young’s inequality

γaα = γa · aα−1 ≤ δ

1 + a
2

3−α
0

a
2

3−α + C(α, γ, δ, a0)a(α−1)· 2
α−1

≤δa+ C(α, γ, δ, a0)a2.

If α ≥ 2, then
γaα = γaα−2 · a2 ≤ γaα−2

0 a2.

Applying the algebraic fact on (3.14) we get
∫

Ω
w2(x, s) dx ≤ C(p, β, L, Cf , δ, ‖w‖L∞)

∫

Ωs
w2 dz.

The conclusion now follows from Grönwall’s inequality and letting l→ 0. �
Next we use the previous comparison results to prove the comparison principle for

general continuous f .

Theorem 3.4. Let 1 < p < ∞. Let u, v ∈ L∞(ΩT ) respectively be weak sub- and
supersolutions to (1.1) in ΩT . Assume that for all (x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Assume also that Du ∈ L∞(ΩT ). Then u ≤ v a.e. in ΩT .
Proof. For δ > 0, define

uδ := u− δ

T − t/2 .

Then for any non-negative test function ϕ ∈ C∞0 (ΩT ) we have by integration by parts
∫

ΩT
−uδ∂tϕdz =

∫

ΩT
−u∂tϕ+ δ

T − t/2∂tϕdz

=
∫

ΩT
−u∂tϕ− ϕ

δ

2 (T − t/2)2 dz

≤
∫

ΩT
−u∂tϕ− ϕ

δ

2T 2 dz.
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Since f is continuous, there is a locally Lipschitz continuous function fδ such that
‖f − fδ‖L∞(RN ) ≤ δ

4T (see e.g. [Mic00]). Then, since u is a weak subsolution, we have
∫

ΩT
− uδ∂tϕ+ |Duδ|p−2Duδ ·Dϕ− ϕfδ(Duδ) dz

≤
∫

ΩT
−u∂tϕ+ |Du|p−2Du ·Dϕ− ϕf(Du) + ϕ ‖f − fδ‖L∞(RN) − ϕ

δ

2T 2 dz

≤
∫

ΩT
− δ

4T 2ϕdz.

Hence uδ is a weak subsolution to

∂tuδ −∆puδ − fδ(Duδ) ≤ −
δ

4T 2 in ΩT .

Similarly, since v is a weak supersolution, we define

vδ := v + δ

T − t/2
and deduce that vδ is a weak supersolution to

∂tvδ −∆pvδ − fδ(Dvδ) ≥ 0 in ΩT .

Now it follows from the comparison Lemmas 3.2 and 3.3 that uδ ≤ vδ a.e. in ΩT . Thus

u ≤ v + 2δ
T − t/2 a.e. in ΩT .

Letting δ → 0 finishes the proof. �
Now that the comparison principle is proven, we are ready to show that weak solu-

tions are viscosity solutions. To state this part of the equivalence, we define the lower
semicontinuous regularization of a function u : Ξ→ R by

u∗(x, t) := ess lim inf
(y,s)→(x,t)

u(y, s) := lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.

The time scaling Rp is technically convenient in Section 5. We have included it here
for notational consistency.

Theorem 3.5. Let 1 < p < ∞. Let u ∈ L∞loc(Ξ) be a weak supersolution to (1.1) in Ξ
for which u = u∗ almost everywhere in Ξ. Then u∗ is a viscosity supersolution to (1.1)
in Ξ.

Proof. Assume on the contrary that there is φ ∈ C2(Ξ) touching u∗ from below at
(x0, t0) ∈ Ξ, Dφ(x, t) 6= 0 for x 6= x0 and

lim sup
(x,t)→(x0,t0)

x 6=x0

(∂tφ(x, t)−∆pφ(x, t)− f(Dφ(x, t))) < 0. (3.15)

Denote Qr := Br(x0)× (t0 − r, t0 + r). It follows from above that there are r > 0 and
δ > 0 such that

∂tφ−∆pφ− f(Dφ) < −δ in Qr \ {x = x0} . (3.16)
Indeed, otherwise there would be a sequence (xn, tn)→ (x0, t0) such that xn 6= x0 and

∂tφ(xn, tn)−∆pφ(xn, tn)− f(Dφ(xn, tn)) > − 1
n
,
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but this contradicts (3.15). Using Gauss’s theorem and (3.16) we obtain for any non-
negative test function ϕ ∈ C∞0 (Qr) that

∫

Qr
− φ∂tϕ+ |Dφ|p−2Dφ ·Dϕ− ϕf(Dφ) dz

= lim
ρ→0

∫

Qr\{|x−x0|≤ρ}
−φ∂tϕ+ |Dφ|p−2Dφ ·Dϕ− ϕf(Dφ) dz

= lim
ρ→0

( ∫

Qr\{|x−x0|≤ρ}
ϕ∂tφ− ϕ div(|Dφ|p−2Dφ)− ϕf(Dφ) dz

+
∫ t0+r

t0−r

∫

{|x−x0|=ρ}
ϕ |Dφ|p−2Dφ · (x− x0)

ρ
dS dt

)

= lim
ρ→0

∫

Qr\{|x−x0|≤ρ}
ϕ (∂tφ−∆pφ− f(Dφ)) dz

≤
∫

Qr
−δϕ dz.

Let l := min∂pQr (u∗ − φ) > 0 and set φ̃ := φ + l. Then by the above inequality, φ̃ is a
weak subsolution to

∂tφ̃−∆pφ̃− f(Dφ̃) ≤ −δ in Qr

and on ∂pQr it holds φ̃ = φ + l ≤ φ + u∗ − φ = u∗. Hence Theorem 3.4 implies that
φ̃ ≤ u almost everywhere in Qr. By the definition of u∗, it follows that

φ̃ ≤ u∗ everywhere in Qr, (3.17)

which is a contradiction since in particular φ̃(x0, t0) = φ(x0, t0) + l > u∗(x0, t0).
To see (3.17), fix (y0, s0) ∈ Qr and let ε > 0. By continuity of φ̃ and the definition

of u∗, there is R > 0 such that
∣∣∣φ̃(y, s)− φ̃(y0, s0)

∣∣∣ ≤ ε for all (y, s) ∈ Q′R
and ∣∣∣ ess inf

Q′R
u− u∗(y0, s0)

∣∣∣ < ε,

where we denoted Q′R := BR(y0)× (s0 −Rp, s0 +Rp). In particular
u∗(y0, s0) ≥ ess inf

Q′R
u− ε.

By the definition of ess infQ′R u, there is A ⊂ Q′R with |A| > 0 such that

ess inf
Q′R

u+ ε > u(y, s) for all (y, s) ∈ A.

Moreover, since φ̃ ≤ u almost everywhere in Qr, we can take (y, s) ∈ A such that

φ̃(y, s) ≤ u(y, s).
Now we have by the last three displays

u∗(y0,s0) ≥ ess inf
Q′R

u− ε > u(y, s)− 2ε ≥ φ̃(y, s)− 2ε ≥ φ̃(y0, s0)− 3ε.

Since ε > 0 was arbitrary, this implies that u∗(y0, s0) ≥ φ̃(y0, s0). �
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4. Viscosity solutions are weak solutions

We show that bounded viscosity supersolutions to (1.1) are weak supersolutions when
1 < p < ∞ and f ∈ C(RN) satisfies the growth condition (G1). We use the method
developed in [JJ12]. The method of [JJ12] was previously applied to parabolic equations
in [PV], but for radially symmetric solutions.

The idea is to approximate a viscosity supersolution u to (1.1) by the inf-convolution

uε(x, t) := inf
(y,s)∈Ξ

{
u(y, s) + |x− y|

q

qεq−1 + |t− s|
2

2ε

}
,

where ε > 0 and q ≥ 2 is a fixed constant so large that p− 2 + q−2
q−1 > 0. It is straight-

forward to show that the inf-convolution uε is a viscosity supersolution in the smaller
set

Ξε =
{

(x, t) ∈ Ξ : Br(ε)(x)× (t− t(ε), t+ t(ε)) b Ξ
}
,

where r(ε), t(ε)→ 0 as ε→ 0. Moreover, uε is semi-concave by definition and therefore
it has a second derivative almost everywhere. It follows from these pointwise properties
that uε is a weak supersolution to (1.1) in Ξε. Caccioppoli type estimates then imply
that uε converges to u in a parabolic Sobolev space and consequently u is a weak
supersolution.

The standard properties of the inf-convolution are postponed to the end of this sec-
tion. Instead, we begin by proving the key observation: that the inf-convolution of a
viscosity supersolution is a weak supersolution in the smaller set Ξε. When p ≥ 2, the
idea is the following. Since uε is a viscosity supersolution to (1.1) that is twice differen-
tiable almost everywhere, it satisfies the equation pointwise almost everywhere. Hence
we may multiply the equation by a non-negative test function ϕ and integrate over Ξε

so that the integral will be non-negative. Then we approximate this expression through
smooth functions uε,j defined via the standard mollification. Since uε,j is smooth, we
may integrate by parts to reach the weak formulation of the equation, see (4.1). It then
remains to let j →∞ to conclude that uε is a weak supersolution. The range 1 < p < 2
is more delicate because of the singularity of the p-Laplace operator

∆pu := |Du|p−2
(

∆u+ (p− 2)
|Du|2

〈
D2uDu,Du

〉)
,

and therefore we consider the case p ≥ 2 first.

Lemma 4.1. Let p ≥ 2. Let u be a bounded viscosity supersolution to (1.1) in Ξ. Then
uε is a weak supersolution to (1.1) in Ξε.

Proof. Fix a non-negative test function ϕ ∈ C∞0 (Ξε). By Remark 4.8, the function

φ(x, t) := uε(x, t)− C(q, ε, u)
(
|x|2 + t2

)

is concave in Ξε and we can approximate it by smooth concave functions φj so that
(φj, ∂tφj, Dφj, D2φj)→ (φ, ∂tφ,Dφ,D2φ) a.e. in Ξε. We define

uε,j(x, t) := φj(x, t) + C(q, ε, u)
(
|x|2 + t2

)
.
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Since uε,j is smooth and ϕ is compactly supported in Ξε, we integrate by parts to get
∫

Ξε
ϕ

(
∂tuε,j − |Duε,j|p−2

(
∆uε,j + (p− 2)

|Duε,j|2
〈
D2uε,jDuε,j, Duε,j

〉)
− f(Duε,j)

)
dz

=
∫

Ξε
ϕ∂tuε,j − ϕ div

(
|Duε,j|p−2Duε,j

)
− ϕf(Duε,j) dz

=
∫

Ξε
−uε,j∂tϕ+ |Duε,j|p−2Duε,j ·Dϕ− ϕf(Duε,j) dz. (4.1)

This implies that

lim inf
j→∞

∫

Ξε
ϕ

(
∂tuε,j − |Duε,j|p−2

(
∆uε,j + (p− 2)

|Duε,j|2
〈
D2uε,jDuε,j, Duε,j

〉)
− f(Duε,j)

)
dz

≤ lim
j→∞

∫

Ξε
−uε,j∂tϕ+ |Duε,j|p−2Duε,j ·Dϕ− ϕf(Duε,j) dz.

We intend to use Fatou’s lemma at the left-hand side and dominated convergence at
the right-hand side. Once we verify their assumptions, we arrive at the inequality
∫

Ξε
ϕ (∂tuε −∆puε − f(Duε)) dz ≤

∫

Ξε
−uε∂tϕ+ |Duε|p−2Duε ·Dϕ− ϕf(Duε) dz.

The left-hand side is non-negative since by Lemma 4.7 the inf-convolution uε is still a
viscosity supersolution in Ξε. Consequently uε is a weak supersolution in Ξε as desired.
It remains to justify our use of Fatou’s lemma and the dominated convergence theorem.
It follows from Remark 4.8 that |uε,j|, |∂tuε,j| and |Duε,j| are uniformly bounded by
some constant M > 0 in the support of ϕ with respect to j. This justifies our use of
the dominated convergence theorem. Observe then that since φj is concave, we have
D2uε,j ≤ C(q, ε, u)I. Hence

∂tuε,j − |Duε,j|p−2
(

∆uε,j + (p− 2)
|Duε,j|2

〈
D2uε,jDuε,j, Duε,j

〉)
− f(Duε,j)

≥−M − C(q, ε, u)Mp−2 (N + p− 2)− sup
|ξ|≤M

|f(ξ)| .

The integrand at the left-hand side of (4.1) is therefore bounded from below with respect
to j, justifying our use of Fatou’s lemma. �

Next we consider the singular case 1 < p < 2. We cannot directly repeat the previous
proof because ∆puε no longer has a clear meaning at the points where Duε = 0. To
deal with this, we consider the regularized terms

∆p,δu :=
(
δ + |Du|2

) p−2
2

(
∆u+ p− 2

δ + |Du|2
∆∞u

)
, (4.2)

where ∆∞u = 〈D2uDu,Du〉 .
Lemma 4.2. Let 1 < p < 2 . Let u be a bounded viscosity supersolution to (1.1) in Ξ.
Then uε is a weak supersolution to (1.1) in Ξε.

Proof. (Step 1) Let ϕ ∈ C∞0 (Ξε) be a non-negative test function. We set

φ(x, t) := uε(x, t)− C(q, ε, u)
(
|x|2 + t2

)
,
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where C(q, ε, u) is the semi-concavity constant of uε in Ξε. Then by Remark 4.8 we
can approximate φ by smooth concave functions φj so that (φj, ∂tφj, Dφj, D2φj) →
(φ, ∂tφ,Dφ,D2φ) a.e. in Ξε. We define

uε,j(x, t) := φj(x, t) + C(q, ε, u)
(
|x|2 + t2

)
.

Let δ ∈ (0, 1). Since uε,j is smooth and ϕ is compactly supported in Ξε, we calculate
via integration by parts

∫

Ξε
ϕ

(
∂tuε,j −

(
δ + |Duε,j|2

) p−2
2

(
∆uε,j + p− 2

δ + |Duε,j|2
∆∞uε,j

)
− f(Duε,j)

)
dz

=
∫

Ξε
ϕ∂tuε,j − ϕ div

((
δ + |Duε,j|2

) p−2
2 Duε,j

)
− ϕf(Duε,j) dz

=
∫

Ξε
−uε,j∂tϕ+

(
δ + |Duε,j|2

) p−2
2 Duε,j ·Dϕ− ϕf(Duε,j) dz.

Recalling the shorthand ∆p,δ defined in (4.2), we deduce from the above that

lim inf
j→∞

∫

Ξε
ϕ (∂tuε,j −∆p,δuε,j − f(Duε,j)) dz

≤ lim
j→∞

∫

Ξε
−uε,j∂tϕ+

(
δ + |Duε,j|2

) p−2
2 Duε,j ·Dϕ− ϕf(Duε,j) dz. (4.3)

We use Fatou’s lemma at the left-hand side and the dominated convergence at the
right-hand side. Once we verify their assumptions, we arrive at the auxiliary inequality

∫

Ξε
ϕ (∂tuε −∆p,δuε − f(Duε)) dz

≤
∫

Ξε
−uε∂tϕ+

(
δ + |Duε|2

) p−2
2 Duε ·Dϕ− ϕf(Duε) dz. (4.4)

Next we verify the assumptions of Fatou’s lemma and the dominated convergence theo-
rem. By Remark 4.8, the functions |uε,j|, |∂tuε,j| and |Duε,j| are uniformly bounded by
some constant M > 1 in the support of ϕ with respect to j. Hence the assumptions of
the dominated convergence theorem are satisfied. Observe then that the concavity of
φj implies that D2uε,j ≤ C(q, ε, u)I. Thus the integrand at the left-hand side of (4.3)
has a lower bound independent of j when Duε,j = 0. When Duε,j 6= 0, we have

∂tuε,j −
(
δ + |Duε,j|2

) p−2
2

(
∆uε,j + p− 2

δ + |Duε,j|2
∆∞uε,j

)
− f(Duε,j)

=∂tuε,j −
(
δ + |Duε,j|2

) p−2
2

δ + |Duε,j|2
(
|Duε,j|2

(
∆uε,j + p− 2

|Duε,j|2
∆∞uε,j

)
+ δ∆uε,j

)
− f(Duε,j)

≥− ∂tuε,j −
(
δ + |Duε,j|2

) p−2
2

δ + |Duε,j|2
C(q, ε, u)

(
|Duε,j|2 (N + p− 2) + δN

)
− f(Duε,j)

≥− ∂tuε,j − C(q, ε, u)
(
δ + |Duε,j|2

) p−2
2 (2N + p− 2)− f(Duε,j)

≥−M − C(q, ε, u)δ
p−2

2 (2N + p− 2)− sup
|ξ|≤M

|f(ξ)| ,

so that our use of Fatou’s lemma is justified.
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(Step 2) We let δ → 0 in the auxiliary inequality (4.4). Since uε is Lipschitz
continuous, the dominated convergence theorem implies

lim inf
δ→0

∫

Ξε
ϕ (∂tuε −∆p,δuε − f(Duε)) dz

≤
∫

Ξε
−uε∂tϕ+ |Duε|p−2Duε ·Dϕ− ϕf(Duε) dz. (4.5)

Applying Fatou’s lemma (we verify assumptions at the end), we get

lim inf
δ→0

∫

Ξε
ϕ (∂tuε −∆p,δuε − f(Duε)) dz

≥
∫

Ξε
lim inf
δ→0

ϕ (∂tuε −∆p,δuε − f(Duε)) dz

=
∫

Ξε∩{Duε 6=0}
lim inf
δ→0

ϕ (∂tuε −∆p,δuε − f(Duε)) dz

+
∫

Ξε∩{Duε=0}
lim inf
δ→0

ϕ(∂tuε − δ
p−2

2 ∆uε − f(0)) dz

=
∫

Ξε∩{Duε 6=0}
ϕ (∂tuε −∆puε − f(Duε)) dz

+
∫

Ξε∩{Duε=0}
ϕ (∂tuε − f(0)) dz ≥ 0, (4.6)

where the last inequality follows from Lemma 4.7 since uε is twice differentiable almost
everywhere. Combining (4.5) and (4.6), we find that uε is a weak supersolution in Ξε.
It remains to verify the assumptions of Fatou’s lemma, i.e. that the integrand at the
left-hand side of (4.5) has a lower bound independent of δ. When Duε = 0, this follows
directly from the inequality

D2uε ≤
q − 1
ε
|Duε|

q−2
q−1 I,

which holds by Lemma 4.6. When Duε 6= 0, we recall that by Lipschitz continuity ∂tuε
and Duε are uniformly bounded in Ξε, and estimate

−
(
δ + |Duε|2

) p−2
2

(
∆uε + p− 2

δ + |Duε|2
∆∞uε

)

= −
(
δ + |Duε|2

) p−2
2

δ + |Duε|2
(
|Duε|2

(
∆uε + p− 2

|Duε|2
∆∞uε

)
+ δ∆uε

)

≥ −
(
δ + |Duε|2

) p−2
2

δ + |Duε|2
(q − 1)
ε

(
|Duε|

q−2
q−1 +2 (N + p− 2) + |Duε|

q−2
q−1 δN

)

≥ −
(
δ + |Duε|2

) p−2
2 (q − 1)

ε
|Duε|

q−2
q−1 (2N + p− 2)

≥ − |Duε|p−2+ q−2
q−1

(q − 1)
ε

(2N + p− 2)

≥ −‖Duε‖
p−2+ q−2

q−1
L∞(Ξε)

(q − 1)
ε

(2N + p− 2) ,

where we used that p−2+ q−2
q−1 > 0. Hence the assumptions of Fatou’s lemma hold. �



EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS 15

If uε is the sequence of inf-convolutions of a viscosity supersolution to (1.1), then
by next Caccioppoli’s inequality the sequence Duε converges weakly in Lploc(Ξ) up to
a subsequence. However, we need stronger convergence to pass to the limit under the
integral sign of

∫

Ξ
−uε∂tϕ+ |Duε|p−2Duε ·Dϕ− ϕf(Duε) dz ≥ 0.

For this end, we show in Lemma 4.4 that Duε converges in Lrloc(Ξ) for all 1 < r < p.

Lemma 4.3 (Caccioppoli’s inequality). Let 1 < p < ∞. Assume that u is a locally
Lipschitz continuous weak supersolution to (1.1) in Ξ. Then there is a constant C =
C(p, β, Cf ) such that for any test function ξ ∈ C∞0 (Ξ) we have

∫

Ξ
ξp |Du|p dz ≤ C

∫

Ξ
M2∂tξ

p +Mp |Dξ|p + (M
p

p−β +M)ξp dz,

where M = ‖u‖L∞(spt ξ).

Proof. Since u is locally Lipschitz continuous, the function ϕ := (M − u) ξp is an ad-
missible test function. Testing the weak formulation of (1.1) with ϕ yields

∫

Ξ
ξp |Du|p dz ≤

∫

Ξ
u∂tϕ+ pξp−1(M − u) |Du|p−1 |Dξ|+ ϕf(Du) dz. (4.7)

We have by integration by parts
∫

Ξ
u∂tϕdz =

∫

Ξ
−ξpu∂tu+ u(M − u)∂tξp dz

=
∫

Ξ
−1

2ξ
p∂tu

2 + u(M − u)∂tξp dz

=
∫

Ξ

1
2u

2∂tξ
p + u(M − u)∂tξp dz ≤

∫

Ξ
CM2∂tξ

p dz.

By Young’s inequality

∫

Ξ
pξp−1(M − u) |Du|p−1 |Dξ| dz ≤

∫

Ξ

1
4ξ

p |Du|p dz + C(p)
∫

Ξ
Mp |Dξ|p dz.

Using the growth condition (G1) and Young’s inequality we get
∫

Ξ
ϕf(Du) dz ≤

∫

Ξ
(M − u) ξpCf

(
1 + |Du|β

)
dz

=
∫

Ξ
Cf (M − u) ξp−βξβ |Du|β + Cf (M − u)ξp dz

≤
∫

Ξ

1
4ξ

p |Du|p + C(p, β, Cf ) (M − u)
p

p−β ξp + Cf (M − u) ξp dz

≤
∫

Ξ

1
4ξ

p |Du|p + C(p, β, Cf )
(
M

p
p−β +M

)
ξp dz.

Combining these estimates with (4.7) and absorbing the terms with Du to the left-hand
side yields the desired inequality. �

The proof of Lemma 4.4 is based on that of Lemma 5 in [LM07], see also Theorem
5.3 in [KKP10]. For the convenience of the reader, we give the full details.



16 JARKKO SILTAKOSKI

Lemma 4.4. Let 1 < p <∞. Suppose that (uj) is a sequence of locally Lipschitz con-
tinuous weak supersolutions to (1.1) such that uj → u in Lploc(Ξ). Then (Duj) is a
Cauchy sequence in Lrloc(Ξ) for any 1 < r < p.

Proof. Let U b Ξ and take a cut-off function θ ∈ C∞0 (Ξ) such that 0 ≤ θ ≤ 1 and θ ≡ 1
in U . For δ > 0, we set

wjk =





δ, uj − uk > δ,

uj − uk, |uj − uk| ≤ δ,

−δ, uj − uk < −δ.
Then the function (δ−wjk)θ is an admissible test function with a time derivative since it
is Lipschitz continuous. Since uj is a weak supersolution, testing the weak formulation
of (1.1) with (δ − wjk)θ yields

0 ≤
∫

Ξ
−uj∂t((δ − wjk)θ) + |Duj|p−2Duj ·D((δ − wjk)θ)− (δ − wjk)θf(Duj) dz

=
∫

Ξ
−θ |Duj|p−2Duj ·Dwjk + (δ − wjk) |Duj|p−2Duj ·Dθ − (δ − wjk)θf(Duj)

+ uj∂t(wjkθ)− (δ − wjk)uj∂tθ dz.
Since |wjk| ≤ δ and Dwjk = χ{|uj−uk|<δ} (Duj −Duk), the above becomes

∫

{|uj−uk|<δ}
θ |Duj|p−2Duj · (Duj −Duk) dz

≤
∫

Ξ
2δ |Duj|p−1 |Dθ|+ 2δθ |f(Duj)|+ uj∂t(wjkθ) + 2δ |uj| |∂tθ| dz.

Since uk is a weak supersolution, the same arguments as above but testing this time
with (δ + wjk)θ yield the analogous estimate

∫

{|uj−uk|<δ}
− θ |Duk|p−2Duk · (Duj −Duk) dz

≤
∫

Ξ
2δ |Duk|p−1 |Dθ|+ 2δθ |f(Duk)| − uk∂t (wjkθ) + 2δ |uk| |∂tθ| dz.

Summing up these two inequalities we arrive at
∫

{|uj−uk|<δ}
θ
(
|Duj|p−2Duj − |Duk|p−2Duk

)
· (Duj −Duk) dz

≤2δ
∫

Ξ
|Dθ|

(
|Duj|p−1 + |Duk|p−1

)
dz + 2δ

∫

Ξ
θ (|f(Duj)|+ |f(Duk)|) dz

+
∫

Ξ
(uj − uk)∂t (wjkθ) dz + 2δ

∫

Ξ
(|uj|+ |uk|) |∂tθ| dz

=:I1 + I2 + I3 + I4. (4.8)
We proceed to estimate these integrals. DenotingM := supj ‖uj‖L∞(spt θ) <∞, we have
by the Caccioppoli’s inequality Lemma 4.3

sup
j

∫

spt θ
|Duj|p dz ≤ C(p, β, Cf , θ,M). (4.9)

The estimate (4.9) and Hölder’s inequality imply that
I1 ≤ δC(p, β, Cf , θ,M).
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To estimate I2, we also use the growth condition (G1) and the assumption β < p. We
get

I2 ≤ 2δ
∫

Ξ
θCf (2 + |Duj|β + |Duk|β) dz ≤ δC(p, β, Cf , θ,M).

The integral I3 is estimated using integration by parts and that |wjk| ≤ δ

I3 =
∫

Ξ
θ(uj − uk)∂t (wjk) + (uj − uk)wjk∂tθ dz =

∫

Ξ

1
2θ∂tw

2
jk + (uj − uk)wjk∂tθ dz

=
∫

Ξ
−1

2w
2
jk∂tθ + (uj − uk)wjk∂tθ dz ≤ δC(θ,M).

For the last integral we have directly I4 ≤ δC(θ,M). Combining these estimates with
(4.8) we arrive at

∫

{|uj−uk|<δ}
θ
(
|Duj|p−2Duj − |Duk|p−2Duk

)
· (Duj −Duk) dz ≤ δC0, (4.10)

where C0 = C(p, β, Cf , θ,M). If 1 < p < 2, Hölder’s inequality and the algebraic
inequality (3.8) give the estimate (recall that 1 < r < p and θ ≡ 1 in U)

∫

U∩{|uj−uk|<δ}
|Duj −Duk|r dz

≤
(∫

U∩{|uj−uk|<δ}

(
1 + |Duj|2 + |Duk|2

) r(2−p)
2(2−r) dz

) 2−r
2

·
(∫

U∩{|uj−uk|<δ}

|Duj −Duk|2
(
1 + |Duj|2 + |Duk|2

) 2−p
2
dz

) r
2

≤ C(p, β, r, Cf , θ,M)

·
(∫

{|uj−uk|<δ}
θ
(
|Duj|p−2Duj − |Duk|p−2Duk

)
· (Duj −Duk) dz

) r
2

,

where in the last inequality we also used (4.9) with the knowledge r(2−p)
(2−r) ≤

p(2−p)
2−p = p.

If p ≥ 2, Hölder’s inequality and the algebraic inequality (3.12) imply
∫

U∩{|uj−uk|<δ}
|Duj −Duk|r dz

≤
(∫

Ξ
1 dz

) p−r
p

(∫

U∩{|uj−uk|<δ}
|Duj −Duk|p dz

) r
p

≤ C(p, r)
(∫

{|uj−uk|<δ}
θ
(
|Duj|p−2Duj − |Duk|p−2Duk

)
· (Duj −Duk) dz

) r
p

.

Hence (4.10) leads to
∫

U∩{|uj−uk|<δ}
|Duj −Duk|r dz ≤ δ

r
max(2,p)C(p, β, r, Cf , θ,M).
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On the other hand, Hölder’s and Tchebysheff’s inequalities with (4.9) imply
∫

U∩{|uj−uk|≥δ}
|Duj −Duk|r dz

≤ |U ∩ {|uj − uk| ≥ δ}|
p−r
p

(∫

U∩{|uj−uk|≥δ}
|Duj −Duk|p dz

) r
p

≤ δr−p ‖uj − uk‖p−rLp(U) C(p, β, r, Cf , θ,M).

So we arrive at
∫

U
|Duj −Duk|r dz ≤ (δ

r
max(2,p) + δr−p ‖uj − uk‖p−rLp(U))C(p, β, r, Cf , θ,M).

Taking first small δ > 0 and then large j, k, we can make the right-hand side arbitrarily
small. �

Now we are ready to prove the main result of this section which states that bounded
viscosity supersolutions are weak supersolutions.

Theorem 4.5. Let 1 < p < ∞. Let u be a bounded viscosity supersolution to (1.1) in
Ξ. Then u is a weak supersolution to (1.1) in Ξ.

Proof. Fix a non-negative test function ϕ ∈ C∞0 (Ξ) and take an open cylinder Ωt1,t2 b Ξ
such that sptϕ b Ωt1,t2 . Let ε > 0 be so small that Ωt1,t2 b Ξε. Then Lemma 4.2 implies
that uε is a weak supersolution to (1.1) in Ξε. Therefore by the Caccioppoli’s inequality
Lemma 4.3, Duε is bounded in Lp(Ωt1,t2). Hence Duε converges weakly in Lp(Ωt1,t2) up
to a subsequence. Since also uε → u in Lp(Ωt1,t2) by dominated convergence and the
fact that uε → u pointwise in Ωt1,t2 , it follows that u ∈ Lp(t1, t2;W 1,p(Ω)).

Since uε is a weak supersolution, it remains to show that up to a subsequence

lim
ε→0

∫

Ωt1,t2
uε∂tϕ+ |Duε|p−2Duε ·Dϕdz =

∫

Ωt1,t2
u∂tϕ+ |Du|p−2Du ·Dϕdz (4.11)

and
lim
ε→0

∫

Ωt1,t2
ϕf(Duε) dz =

∫

Ωt1,t2
ϕf(Du) dz. (4.12)

Since uε → u in Lp(Ωt1,t2) and Duε → Du in Lr(Ωt1,t2) for any 1 < r < p by Lemma
4.4, the claim (4.11) follows by applying the vector inequality (see [Lin17, p95-96])

∣∣∣|a|p−2 a− |b|p−2 b
∣∣∣ ≤





22−p |a− b|p−1 when p < 2,
2−1

(
|a|p−2 + |b|p−2

)
|a− b| when p ≥ 2.

To show (4.12), let M ≥ 1 and write using the growth condition (G1)
∫

Ωt1,t2
|f(Duε)− f(Du)| dz

≤
∫

{|Duε|<M}
|f(Duε)− f(Du)| dz +

∫

{|Duε|≥M}
Cf (2 + |Duε|β + |Du|β) dz

=:I1 + I2.
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Then by Hölder’s inequality

I2 = Cf

∫

{|Duε|≥M}

2 |Duε|p
|Duε|p

+ |Duε|p

|Duε|p−β
+ |Du|

β |Duε|p−β

|Duε|p−β
dz

≤ Cf

(
2
Mp

+ 1
Mp−β

)
‖Duε‖pLp(Ωt1,t2 ) + Cf

1
Mp−β ‖Du‖

β
Lp(Ωt1,t2 ) ‖Duε‖

p−β
Lp(Ωt1,t2 )

≤ 1
Mp−βC(p, β, Cf , ‖Du‖Lp(Ωt1,t2 ) , sup

ε
‖Duε‖Lp(Ωt1,t2 )).

On the other hand, we have |f(Duε)− f(Du)| → 0 a.e. in Ωt1,t2 up to a subsequence and
the integrand in I1 is dominated by an integrable function since the growth condition
(G1) implies

|f(Duε)− f(Du)| ≤ Cf (2 + |M |β + |Du|β) when |Duε| < M.

Hence, for any M ≥ 1, we have I1 → 0 as ε → 0 by the dominated convergence
theorem. By taking first large M ≥ 1 and then small ε > 0, we can make I1 + I2
arbitrarily small. �

The rest of this section is devoted to the properties of the inf-convolution. The facts
in the following lemma are well known, see e.g. [CIL92], [JJ12], [Kat15] or [PV].

Lemma 4.6. Assume that u : Ξ → R is lower semicontinuous and bounded. Then uε
has the following properties.

(i) We have uε ≤ u in Ξ and uε → u pointwise as ε→ 0.
(ii) Denote r(ε) := (qεq−1 oscΞ u)

1
q , t(ε) := (2ε oscΞ u)

1
2 . For (x, t) ∈ RN+1, set

Ξε :=
{

(x, t) ∈ Ξ : Br(ε)(x)× (t− t(ε), t+ t(ε)) b Ξ
}
.

Then for any (x, t) ∈ Ξε there exists (xε, tε) ∈ Br(ε)(x)× [t− t(ε), t+ t(ε)] such
that

uε(x, t) = u(xε, tε) + |x− xε|
q

qεq−1 + |t− tε|
2

2ε .

(iii) The function uε is semi-concave in Ξε with a semi-concavity constant depending
only on u, q and ε.

(iv) Assume that uε is differentiable in time and twice differentiable in space at
(x, t) ∈ Ξε. Then

∂tuε(x, t) =t− tε
ε

,

Duε(x, t) = (x− xε)
|x− xε|q−2

εq−1 ,

D2uε(x, t) ≤
q − 1
ε
|Duε|

q−2
q−1 I.

Next we show that the inf-convolution of a viscosity supersolution to (1.1) is still
a supersolution in the smaller set Ξε. Since the inf-convolution is “flat enough”, that
is, since q > p/(p− 1), the inf-convolution essentially cancels the singularity of the p-
Laplace operator. This allows us to extract information on the time derivative at those
points of differentiability where Duε vanishes.



20 JARKKO SILTAKOSKI

Lemma 4.7. Let 1 < p < ∞. Let u be a viscosity supersolution to (1.1) in Ξ. Then
the inf-convolution uε is also a viscosity supersolution to (1.1) in Ξε.

Moreover, if uε is differentiable in time and twice differentiable in space at (x, t) ∈ Ξε

and Duε(x, t) = 0, then ∂tuε(x, t)− f(0) ≥ 0.

Proof. Assume that ϕ touches uε from below at (x, t) ∈ Ξε. Let (xε, tε) be like in the
property (ii) of Lemma 4.6. Then

ϕ(x, t) = uε(x, t) = u(xε, tε) + |x− xε|
q

qεq−1 + |t− tε|
2

2ε , (4.13)

ϕ(y, τ) ≤ uε(y, τ) ≤ u(z, s) + |y − z|
q

qεq−1 + |τ − s|
2

2ε for all (y, τ), (z, s) ∈ Ξ. (4.14)

Set
ψ(z, s) := ϕ(z + x− xε, s+ t− tε)−

|x− xε|q
qεq−1 − |t− tε|

2

2ε .

Then ψ touches u from below at (xε, tε) since by (4.13)

ψ(xε,tε) =ϕ(x, t)− |x− xε|
q

qεq−1 − |t− tε|
2

2ε = u(xε, tε)

and selecting (y, τ) = (z + x− xε, s+ t− tε) in (4.14) gives

ψ(z, s) =ϕ(z + x− xε, s+ t− tε)−
|x− xε|q
qεq−1 − |t− tε|

2

2ε ≤ u(z, s).

Since u is a viscosity supersolution, it follows that
0 ≤ lim sup

(z,s)→(xε,tε)
z 6=xε

(∂sψ(z, s)−∆pψ(z, s)− f(Dψ(z, s)))

= lim sup
(z,s)→(x,t)

z 6=x

(∂sϕ(z, s)−∆pϕ(z, s)− f(Dϕ(z, s))) ,

and the first claim is proven. To prove the second claim, assume that uε is differentiable
in time and twice differentiable in space at (x, t) ∈ Ξε and Duε(x, t) = 0. By the
property (iv) in Lemma 4.6, we have x = xε, so that

uε(x, t) = u(x, tε) + |t− tε|
2

2ε .

Hence by the definition of inf-convolution

u(y, s) + |x− y|
q

qεq−1 + |t− s|
2

2ε ≥ uε(x, t) = u(x, tε) + |t− tε|
2

2ε for all (y, s) ∈ Ξ.

Arranging the terms as

u(y, s) ≥ u(x, tε)−
|x− y|q
qεq−1 −

|t− s|2
2ε + |t− tε|

2

2ε =: φ(y, s),

we see that the function φ touches u from below at (x, tε). Since u is a viscosity
supersolution and Dφ(y, s) 6= 0 when y 6= x, we have

lim sup
(y,s)→(x,tε)

y 6=x

(∂sφ(y, s)−∆pφ(y, s)− f(Dφ(y, s))) ≥ 0.
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On the other hand, since q > p/(p−1), we have ∆pφ(y, s)→ 0 as y → x. Hence we get

0 ≤ ∂sφ(x, tε)− f(0) = t− tε
ε
− f(0) = ∂tuε(x, t)− f(0),

where the last equality follows from the property (iv) in Lemma 4.6. �

Remark 4.8. Semi-concavity implies that the inf-convolution uε is locally Lipschitz
in Ξε (see [EG15, p267]). Therefore uε is differentiable almost everywhere in Ξε,
∂tuε ∈ L∞loc(Ξε) and uε ∈ L∞(t1, t2;W 1,∞(Ω)) for any Ωt1,t2 b Ξε (see [EG15, p266]).

Moreover, since the function φ(x, t) := uε(x, t) − C(q, ε, u)(|x|2 + |t|2) is concave,
Alexandrov’s theorem implies that uε is twice differentiable almost everywhere in Ξε.
Furthermore, the proof of Alexandrov’s theorem in [EG15, p273] establishes that if φj
is the standard mollification of φ, then D2φj → D2φ almost everywhere in Ξε.

5. Lower semicontinuity of supersolutions

We show the lower semicontinuity of weak supersolutions when p ≥ 2 and the function
f ∈ C(RN) satisfies that f(0) = 0 as well as the stronger growth condition

|f(ξ)| ≤ Cf
(
1 + |ξ|p−1

)
. (G2)

Our proof follows the method of Kuusi [Kuu09], but the first-order term causes some
modifications. In particular, our essential supremum estimate is slightly different, see
Theorem 5.3 and the brief discussion before it. The assumption f(0) = 0 is used to
ensure that the positive part u+ of a subsolution is still a subsolution.

We begin by proving estimates for the essential supremum of a subsolution using the
Moser’s iteration technique. We first need the following Caccioppoli’s inequalities.

Lemma 5.1 (Caccioppoli’s inequalities). Assume that p ≥ 2 and that (G2) holds. Sup-
pose that u is a non-negative weak subsolution to (1.1) in Ωt1,t2 and u ∈ Lp−1+λ(Ωt1,t2)
for some λ ≥ 1. Then there exists a constant C = C(p, Cf ) that satisfies the estimates

ess sup
t1<τ<t2

∫

Ω
u1+λ(x, τ)ζp(x, τ) dx

≤C
∫

Ωt1,t2
λup−1+λ |Dζ|p + u1+λ |∂tζ| ζp−1 + λ

(
uλ + up−1+λ

)
ζp dz

and
∫

Ωt1,t2

∣∣∣∣D(u
p−1+λ
p ζ)

∣∣∣∣
p

dz

≤C
∫

Ωt1,t2
λpup−1+λ |Dζ|p + λp−1u1+λ |∂tζ| ζp−1 + λp

(
uλ + up−1+λ

)
ζp dz

for all non-negative ζ ∈ C∞(Ω× [t1, t2]) such that spt ζ(·, t) b Ω and ζ(x, t1) = 0.
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Proof. We test the regularized equation in Lemma (3.1) with ϕ := min(uε, k)λ−1uεζpη,
where η is the following cut-off function

η(t) =





0, t ∈ (t1, s− h),
(t− s+ h)/2h, t ∈ [s− h, s+ h],
1, t ∈ (s+ h, τ − h),
(−t+ τ + h)/2h, t ∈ [τ − h, τ + h],
0, t ∈ (τ + h, t2),

and t1 < s < τ < t2, h > 0. We denote g(l) :=
∫ l
0 min(r, k)λ−1r dr. Then integration by

parts and Lebesgue’s differentiation theorem yield for a.e. s, τ ∈ (t1, t2)
∫

Ωt1,t2
∂t(uε) min(uε, k)λ−1uεζpη dz

=
∫

Ωt1,t2
∂tg(uε)ζpη dz

=
∫

Ωt1,t2
−ηg(uε)∂t(ζp)− ζpg(uε)∂tη dz

→
ε→0,h→0

∫

Ωs,τ
−g(u)∂t(ζp) dz −

∫

Ω
ζp(x, s)g(u(x, s)) dx+

∫

Ω
ζp(x, τ)g(u(x, τ)) dx.

Letting s→ t1 and observing that the other terms of (3.1) converge as well, we obtain
for a.e. τ ∈ (t1, t2) that

∫

Ω
g(u(x, τ))ζp(x, τ) dx

≤
∫

Ωt1,τ
g(u)∂t(ζp)− |Du|p−2Du ·D(uλ−1

k uζp) + uλ−1
k uζpf(Du) dz,

where we have denoted uk := min(u, k). Since
Duλ−1

k = χ{u<k}(λ− 1)uλ−2Du,

we have by Young’s inequality
− |Du|p−2Du ·D(uλ−1

k uζp) ≤− ζp
(
(λ− 1)χ{u<k}uλ−1 + uλ−1

k

)
|Du|p

+ pζp−1uλ−1
k u |Du|p−1 |Dζ|

≤ − 1
2ζ

puλ−1
k |Du|p + C(p)up−1+λ |Dζ|p .

Moreover, by the growth condition (G2) and Young’s inequality
uλ−1
k uζpf(Du) ≤Cfζpuλ−1

k u+ Cfζ
puλ−1

k u |Du|p−1

≤Cfζpuλ−1 + C(p, Cf )ζpup−1+λ + 1
4ζ

puλ−1
k |Du|p .

Collecting the estimates, moving the terms with Du to the left-hand side and letting
k →∞, we arrive at

λ−1
∫

Ω
uλ+1ζp(x, τ) dx+

∫

Ωt1,τ

1
4ζ

puλ−1 |Du|p dz

≤C(p, Cf )
∫

Ωt1,τ
λ−1uλ+1 |∂tζp|+ up−1+λ |Dζ|p + ζp(uλ−1 + up−1+λ) dz. (5.1)
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Since the integrals are positive, this yields the first inequality of the lemma by taking
essential supremum over τ . The second inequality follows from (5.1) by using that

∫

Ωt1,t2

∣∣∣∣D(u
p−1+λ
p ζ)

∣∣∣∣
p

dz ≤C(p)
∫

Ωt1,t2
up−1+λ |Dζ|p + λpζpuλ−1 |Du|p dz. �

We first prove the following essential supremum estimate where we assume that the
subsolution is bounded away from zero.
Lemma 5.2. Assume that p ≥ 2 and that (G2) holds. Suppose that u is a weak
subsolution to (1.1) in Ξ and BR(x0)× (t0 − T, t0) b Ξ where R, T < 1 are such that

Rp

T
≤ 1 and u ≥

(
Rp

T

) 1
p−1

. (5.2)

Then there exists a constant C(N, p, Cf ) such that

ess sup
BσR(x0)×(t0−σpT,t0)

u ≤ C

(
T

Rp
(1− σ)−N−p−

∫

BR(x0)×(t0−T,t0)
up−2+δ dz

)1/δ

for every 1/2 ≤ σ < 1 and 1 < δ < 2.
Proof. Let σR ≤ s < S < R. For j ∈ 0, 1, 2, . . ., we set

Rj := S − (S − s) (1− 2−j)
and

Uj := Bj × Γj := BRj(x0)× (t0 − (Rj/S)pT, t0).
We choose test functions ϕj ∈ C∞(Uj) such that sptϕj(·, t) b BRj(x0),

0 ≤ ϕj ≤ 1, ϕj ≡ 0 on ∂pUj, ϕj ≡ 1 in Uj+1

and
|Dϕj| ≤

C

S − s2j, |∂tϕj| ≤
Rp

T

C

(S − s)p2jp.

We set γ := 1 + p/N and
λj := 2γj − 1, j = 0, 1, 2, . . . .

Assuming that we already know that u ∈ Lp−1+λj(Uj), then we have by a parabolic
Sobolev’s inequality (see [DiB93, p7])

∫

Uj+1
uκα dz ≤

∫

Uj

(
uα/pϕ

β/p
j

)κp
dz

≤C(N, p)
∫

Uj

∣∣∣D(uα/pϕβ/pj )
∣∣∣
p
dz

(
ess sup

Γj

∫

Bj

(
uα/pϕ

β/p
j

)(κ−1)N
dx

)p/N
, (5.3)

where
α = p− 1 + λj, κ = 1 + p(1 + λj)

N(p− 1 + λj)
, β=p(p− 1 + λj)

1 + λj
.

The first estimate in Lemma 5.1 gives

ess sup
Γj

∫

Bj

(
uα/pϕ

β/p
j

)(κ−1)N
dx = ess sup

Γj

∫

Bj
u1+λjϕpj dx

≤Cλj
∫

Uj
up−1+λj |Dϕj|p + u1+λj |∂tϕj|ϕp−1

j +
(
uλj + up−1+λj

)
ϕpj dz. (5.4)
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Using the second estimate with ζ = ϕ
β/p
j we obtain

∫

Uj

∣∣∣D(uα/pϕβ/pj )
∣∣∣
p
dz

≤Cλpj
∫

Uj
up−1+λj |Dϕj|p + u1+λj |∂tϕj|ϕp−1

j +
(
uλj + up−1+λj

)
ϕpj dz. (5.5)

Combining (5.3) with (5.4) and (5.5) we arrive at
(∫

Uj+1
uκα dz

) 1
γ

≤ Cλpj

∫

Uj

2jp
(S − s)pu

p−1+λj + Rp2jp
T (S − s)pu

1+λj + uλj dz, (5.6)

where γ = 1 + p/N . We wish to iterate this inequality, but having multiple terms at
the right-hand side is a problem. This is where the assumption (5.2) comes into play.
Since u ≥ (Rp/T )1/(p−1), we have

uλj =
(1
u

)p−1
up−1+λj ≤

(
T

Rp

) p−1
p−1

up−1+λj ≤ 1
(S − s)pu

p−1+λj

and since T/Rp ≥ 1, we have also

u1+λj =
(1
u

)p−2
up−1+λj ≤

(
T

Rp

) p−2
p−1

up−1+λj ≤ T

Rp
up−1+λj .

Using these estimates it follows from (5.6) that
(∫

Uj+1
uκα dz

) 1
γ

≤ Cλpj2jp

(S − s)p
∫

Uj
up−1+λj dz. (5.7)

Observe that
κα = p− 1 + λj(1 + p/N) + p/N = p− 1 + λj+1.

Hence by denoting Y := C(S − s)−p, the inequality (5.7) becomes
(∫

Uj+1
up−1+λj+1 dz

) 1
γ

≤ Y (2γ)jp
∫

Uj
up−1+λj dz.

We iterate this inequality. When j = 0, it reads as
(∫

U1
up−1+λ1 dz

) 1
γ ≤ Y

∫

U0
up dz.

Then, when j = 1, we have
(∫

U2
up−1+λ2 dz

) 1
γ2
≤Y 1

γ (2γ)p
1
γ

(∫

U1
up−1+λ1 dz

) 1
γ ≤ Y 1+ 1

γ (2γ)p
1
γ

∫

U0
up dz.

Continuing this way we arrive at
(∫

Uj+1
up−1+λj+1 dz

) 1
γj+1

≤Y 1+ 1
γ

+...+ 1
γj (2γ)p(

1
γ

+ 2
γ2 +...+ j

γj
)
∫

U0
up dz

≤CY N
p

+1
∫

U0
up dz,

so that (∫

Uj+1
up−1+λj+1 dz

) 1
p−1+λj+1

≤
(
CY

N
p

+1
∫

U0
up dz

) γj+1
p−1+λj+1

.
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Since γj+1/(p− 1 + λj+1)→ 1/2 and p− 1 + λj+1 →∞ as j →∞, we obtain that

ess sup
Q(s)

u ≤ C

(
(S − s)−N−p

∫

Q(S)
up dz

)1/2

,

where Q(s) = B(x0, s) × (t0 − (s/S)pT, t0). By Young’s inequality we have for every
1 < δ < 2 that

ess sup
Q(s)

u ≤
(

ess sup
Q(S)

u2−δ(S − s)−N−p
∫

Q(S)
up−2+δ dz

)1/2

≤1
2 ess sup

Q(S)
u+

(
(S − s)−N−p

∫

BR(x0)×(t0−T,t0)
up−2+δ dz

)1/δ

. (5.8)

A standard iteration argument such as [GG82, Lemma 1.1] now finishes the proof.
Indeed, if f : [T0, T1] → R is a non-negative bounded function such that all T0 ≤ t ≤
τ ≤ T1 satisfy

f(t) ≤ θf(τ) + (τ − t)−ηA, (5.9)
where A, θ, η ≥ 0 with θ < 1, then

f(T0) ≤ C(η, θ)(T1 − T0)−ηA.
Selecting T0 := σR, T1 := (σR +R) /2 and the other variables so that (5.8) implies
(5.9), we get the desired estimate. �

Next we consider the case where the non-negative subsolution is not necessarily
bounded away from zero. Observe that the estimate differs from the usual estimate
for the p-Laplacian because of the power 1/(p− 1) in the first term (cf. [DiB93, Theo-
rem 4.1] or [Kuu09, Theorem 3.4]). However, we have the additional assumption (5.10).

Theorem 5.3. Assume that p ≥ 2 and that (G2) holds. Suppose that u is a non-
negative weak subsolution to (1.1) in Ξ and BR(x0) × (t0 − T, t0) b Ξ with R, T < 1
such that

Rp

T
≤ 1. (5.10)

Then there exists a constant C = C(N, p, Cf , δ) such that we have the estimate

ess sup
B(x0,R/2)×(t0−T/2p,t0)

u ≤ C
(
Rp

T

) 1
p−1 ·

δ−1
δ

+ C

(
T

Rp
−
∫ t0

t0−T
−
∫

BR(x0)
up−2+δ dx dt

) 1
δ

for all 1 < δ < 2.

Proof. We denote

Λ := (1− σ)−N−p, θ :=
(
Rp

T

) 1
p−1

.

Using Lemma 5.2 on the subsolution v := θ + u we get the estimate

ess sup
BσR(x0)×(t0−σpT,t0)

u ≤C
(
Λ
T

Rp
−
∫

BR(x0)×(t0−T,t0)
(θ + u)p−2+δ dz

) 1
δ

≤CΛ 1
δ

(
T

Rp
θp−2+δ

) 1
δ

+ CΛ
1
δ

(
T

Rp
−
∫

BR(x0)×(t0−T,t0)
up−2+δ dz

) 1
δ

,
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where
T

Rp
θp−2+δ = T 1− p−2+δ

p−1 R−p+
p(p−2+δ)
p−1 =

(
T 1−δRp(δ−1)

) 1
p−1 =

(
Rp

T

) δ−1
p−1

.

Taking σ = 1/2 now yields the desired inequality. �
Lemma 5.4. Assume that p ≥ 2 and that f(0) = 0. Let u be a weak subsolution to
(1.1) in Ωt1,t2. Then u+ = max(u, 0) is also a weak subsolution.

Proof. Fix a non-negative test function ζ ∈ C∞0 (Ωt1,t2). We test the regularized equation
in Lemma 3.1 with min {k(uε)+, 1} ζ. Then by similar arguments as in the proof of
Lemma 5.1 we get the estimate

∫

Ωt1,t2
min {ku+, 1} (−u∂tζ + |Du|p−2Du ·Dζ − ζf(Du)) dz

≤− 1
2k

∫

Ωt1,t2
(min {ku+, 1})2 ∂tζ dz − k

∫

{0<ku<1}
ζ |Du|p dz.

Letting k →∞ this implies
∫

{u>0}
−u∂tζ + |Du|p−2Du ·Dζ − ζf(Du) dz ≤ 0.

Since f(0) = 0 and u+∂tζ = 0 = Du+ a.e. in {u ≤ 0}, we get that
∫

Ωt1,t2
−u+∂tζ + |Du+|p−2Du+ ·Dζ − ζf(Du+) dz ≤ 0. �

Theorem 5.5. Assume that p ≥ 2, (G2) holds and that f(0) = 0. Suppose that u is a
weak supersolution to (1.1) in Ξ. Let u∗ denote the lower semicontinuous regularization
of u, that is,

u∗(x, t) := ess lim inf
(y,s)→(x,t)

u(y, s) := lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.

Then u = u∗ almost everywhere.

Proof. For all M ∈ N, we define the cylinders
QM
R (x, t) := BR(x)× (t−MRp, t+MRp).

We denote by EM the set of Lebesgue points with respect to the basis {QM
R }, that is,

EM :=
{

(x, t) ∈ Ξ : lim
R→0
−
∫

QMR (x,t)
|u(x, t)− u(y, s)|p− 1

2 dy ds = 0
}
.

Then EM ⊂ EM+1 so that
E :=

⋂

M∈N
EM = E1.

Moreover, we have |E| = |Ξ|, which follows from [Ste93, p13] by a simple argument,
see for example [EG15, p54].

We now claim that if (x0, t0) ∈ E, then
u(x0, t0) ≤ ess lim inf

(x,t)→(x0,t0)
u(x, t). (5.11)

We make the counter assumption
u(x0, t0)− ess lim inf

(x,t)→(x0,t0)
u(x, t) = ε > 0.
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Let R0 be a radius such that
∣∣∣∣∣ess lim inf
(x,t)→(x0,t0)

u(x, t)− ess inf
Q1
R(x0,t0)

u

∣∣∣∣∣ ≤ ε/2

for all 0 < R ≤ R0. For such R we have
u(x0, t0)− ess inf

Q1
R(x0,t0)

u ≥ ε/2. (5.12)

We set v := (u(x0, t0) − u)+. Since (x0, t0) ∈ E, we find for any M ∈ N a radius
R1 = R1(M) such that

−
∫

QMR1
(x0,t0)

vp−
1
2 dx dt ≤ −

∫

QMR1
(x0,t0)

|u(x0, t0)− u|p− 1
2 dx dt ≤

( 1
M

)2
. (5.13)

On the other hand, by Lemma 5.4 the function v is a weak subsolution to
∂tv + ∆pv − g(Dv) ≤ 0,

where g(ξ) = −f(−ξ). Observe also that the cylinder QM
R1(x0, t0) satisfies the condition

(5.10) since Rp
1/(MRp

1) ≤ 1. Hence we may apply Theorem 5.3 with δ = 3/2 and then
use (5.13) to get

ess sup
QM(R1)/2(x0,t0)

v ≤C
(

Rp
1

Rp
1M

) 1
3(p−1)

+ C

(
Rp

1M

Rp
1
−
∫

QMR1
(x0,t0)

vp−
1
2 dx dt

) 2
3

≤ C

M3(p−1) + C
(
M · 1

M2

) 2
3

≤C
( 1
M

) 1
3
.

Now we first fix M so large that C/M 1
3 ≤ ε/4 and this will also fix R1. Then we

take R ∈ (0, R0] so small that Q1
R(x0, t0) ⊂ QM

(R1)/2(x0, t0). Then (5.12) leads to a
contradiction since

ε/4 ≥ ess sup
QM(R1)/2(x0,t0)

v ≥ ess sup
Q1
R(x0,t0)

v ≥ u(x0, t0)− ess inf
Q1
R(x0,t0)

u ≥ ε/2.

Hence (5.11) holds and we have

u(x0, t0) ≤ ess lim inf
(x,t)→(x0,t0)

u(x, t) ≤ lim
R→0
−
∫

Q1
R

u(x, t) dx dt = u(x0, t0).

Thus u∗ = u almost everywhere and it is easy to show that u∗ is lower semicontinuous.
�
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EQUIVALENCE BETWEEN RADIAL SOLUTIONS OF
DIFFERENT NON-HOMOGENEOUS p-LAPLACIAN TYPE

EQUATIONS

JARKKO SILTAKOSKI

Abstract. We study radial viscosity solutions to the equation
− |Du|q−2 ∆N

p u = f(|x|) in BR ⊂ RN ,
where f ∈ C[0, R), p, q ∈ (1,∞) and N ≥ 2. Our main result is that u(x) =
v(|x|) is a bounded viscosity supersolution if and only if v is a bounded weak
supersolution to −κ∆d

qv = f in (0, R), where κ > 0 and ∆d
q is heuristically

speaking the radial q-Laplacian in a fictitious dimension d. As a corollary we
obtain the uniqueness of radial viscosity solutions. However, the full uniqueness
of solutions remains an open problem.

1. Introduction

In this paper, we study radial viscosity solutions to the equation

− |Du|q−2 ∆N
p u = f(|x|) in BR, (1.1)

where

∆N
p u := ∆u+ (p− 2)

|Du|2
N∑

i,j=1
DijuDiuDju

is the normalized p-Laplacian, f ∈ C[0, R), BR ⊂ RN , N ≥ 2 and p, q ∈ (1,∞).
The left-hand side of the equation (1.1) is the usual p-Laplacian when q = p and
the normalized p-Laplacian when q = 2. In particular, the equation (1.1) may be
in a non-divergence form and therefore the use of viscosity solutions is appropriate.
Since we are interested in radial solutions, it is natural to restrict to a ball at the
origin and assume that the source term is radial.

Recently Parviainen and Vázquez [PV] proved that radial viscosity solutions to
the parabolic equation ∂tu = |Du|q−2 ∆N

p u coincide with weak solutions of a one
dimensional equation related to the usual radial q-Laplacian. The objective of
the present work is to obtain a similar equivalence result for the equation (1.1)
while also considering supersolutions. Since the one dimensional equation satisfies
a comparison principle, we obtain the uniqueness of radial solutions to (1.1) as
a corollary. To the best of our knowledge, this was previously known only for
f = 0 or f with a constant sign [KMP12] and the full uniqueness remains an open
problem.

Stated more precisely, our main result is that u(x) := v(|x|) is a bounded viscos-
ity supersolution to (1.1) if and only if v is a bounded weak supersolution to the

Date: March 2020.
2010 Mathematics Subject Classification. 35J92, 35J70, 35J75, 35D40, 35D30.
Key words and phrases. fictitious dimension, non-homogeneous equation, p-Laplacian, normal-

ized p-Laplacian, radial solutions.
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one-dimensional equation

− κ∆d
qv ≥ f in (0, R) ⊂ R, (1.2)

where
∆d
qv := |v′|q−2 ((q − 1)v′′ + d− 1

r
v′
)

and κ and d are given in (1.4). Heuristically speaking, the operator ∆d
q is the

usual radial q-Laplacian in a fictitious dimension d. Indeed, we show that if d is
an integer, then supersolutions to (1.2) coincide with radial supersolutions to the
equation −∆qu ≥ f(|x|) in BR ⊂ Rd. The precise definition of weak supersolutions
to (1.2) uses certain weighted Sobolev spaces and is given in Section 2.

Let us illustrate the relationship between equations (1.1) and (1.2) by a few
formal computations. Assume that u : RN → R is a smooth function such that
u(x) = v(|x|) for some v : [0,∞) → R. Then by a simple calculation, we have
Du(re1) = e1v

′(r) and D2u(re1) = e1 ⊗ e1v
′′(r) + r−1(I − e1 ⊗ e1)v′(r) for r > 0.

In particular we have |Du(re1)| = |v′(r)|. Assuming that the gradient does not
vanish, we obtain

∆N
p u(re1) = ∆u+ p− 2

|Du(re1)|2
N∑

i,j=1
DijuDiuDju

= (p− 1)v′′(r) + N − 1
r

v′(r). (1.3)

Denoting

κ := p− 1
q − 1 , d := (N − 1)(q − 1)

p− 1 + 1 (1.4)

and multiplying (1.3) by |Du(re1)|q−2, it follows that

|Du(re1)|q−2 ∆N
p u(re1) = κ |v′(r)|q−2 ((q − 1)v′′(r) + d− 1

r
v′(r)

)
,

where the right-hand side equals κ∆d
qv(r). Thus at least formally there is an equiv-

alence between the equations (1.1) and (1.2). However, to make this rigorous, we
need to carefully exploit the exact definitions of viscosity and weak supersolutions.

To show that v is a weak supersolution to (1.2) whenever u is a viscosity superso-
lution to (1.1), we apply the method developed by Julin and Juutinen [JJ12]. The
idea is to approximate u using its inf-convolution uε. Since uε is still radial, there
is vε such that uε(x) = vε(|x|). Using the pointwise properties of inf-convolution,
we show that vε is a weak supersolution to (1.2). It then suffices to pass to the
limit to see that v is also a weak supersolution.

To show that u is a viscosity supersolution to (1.1) whenever v is a weak su-
persolution to (1.2), we adapt a standard argument used for example in [JLM01].
Thriving for a contradiction, we assume that u is not a viscosity supersolution.
Roughly speaking, this means that there exists a smooth function ϕ that touches
u from below and (1.1) fails at the point of touching. We use ϕ to construct a
new function φ that is a weak subsolution to (1.2) and touches v from below. This
violates a comparison principle and produces the desired contradiction. To avoid
technicalities that might occur should the gradient of ϕ vanish, we use an equiv-
alent definition of viscosity supersolutions proposed by Birindelli and Demengel
[BD04]. Extra care is also needed if the point of touching is the origin.
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The equation (1.1) has received an increasing amount of attention in the last
several years. For example, the C1,α regularity of radial solutions to (1.1) was
shown by Birindelli and Demengel [BD12]. Using a different technique Imbert and
Silvestre [IS12] proved the C1,α regularity of solutions to |Du|q−2 F (D2u) = f when
q > 2. More recently Attouchi and Ruosteenoja [AR18] obtained C1,α regularity
results for any solution of (1.1) and also proved some W 2,2 estimates.

The equivalence of viscosity and weak solutions was first studied by Ishii [Ish95]
in the case of linear equations. The equivalence of solutions for p-Laplace equation
was first obtained by Manfredi, Lindqvist and Juutinen [JLM01], later in a different
way by Julin and Juutinen [JJ12] and for the p(x)-Laplace equation by Juutinen,
Lukkari and Parviainen [JLP10]. Recent papers on this matter include the works
of Attouchi, Parviainen and Ruosteenoja [APR17] on the normalized p-Poisson
problem where the equivalence was used to obtain C1,α regularity of solutions,
Medina and Ochoa [MO19] on a non-homogeneous p-Laplace equation, Siltakoski
[Sil18] on a normalized p(x)-Laplace equation and Bieske and Freeman [BF] on the
p(x)-Laplace equation in Carnot groups.

The paper is organized as follows. Section 2 contains the precise definitions of
viscosity solutions and weak solutions in our context. In Section 3 we show that
weak supersolutions to (1.2) are viscosity supersolutions to (1.1) and the converse
is proved in Section 4. In Section 5 we consider the special case where d is an
integer and finally the Appendix contains some properties of the weighted Sobolev
spaces.

2. Preliminaries

2.1. Viscosity solutions. Let ϕ, u : BR → R. We say that ϕ touches u from below
at x0 ∈ BR if ϕ(x0) = u(x0) and ϕ(x) < u(x) when x 6= x0.

Definition 2.1. A bounded lower semicontinuous function u : BR → R is a vis-
cosity supersolution to (1.1) in BR if whenever ϕ ∈ C2 touches u from below at x0
and Dϕ(x) 6= 0 when x 6= x0, then we have

lim sup
x0 6=y→x0

(
− |Dϕ(y)|q−2 ∆N

p ϕ(y)
)
− f(|x0|) ≥ 0.

A bounded upper semicontinuous function u : BR → R is a viscosity subsolution to
(1.1) in BR if whenever ϕ ∈ C2 touches u from above at x0 and Dϕ(x) 6= 0 when
x 6= x0, then we have

lim inf
x0 6=y→x0

(
− |Dϕ(y)|q−2 ∆N

p ϕ(y)
)
− f(|x0|) ≤ 0.

A function is a viscosity solution if it is both viscosity sub- and supersolution.

The limit procedure in Definition 2.1 is needed because of the discontinuity in
the equation when q ≤ 2. When q > 2 the equation is continuous and the limit
procedure is unnecessary.

2.2. Weak solutions. In order to define weak solutions, we must first define the
appropriate Sobolev spaces. The weighted Lebesgue space Lq(rd−1, (0, R)) is defined
as the set of all measurable functions v : (0, R)→ R such that the norm

‖v‖Lq(rd−1,(0,R)) :=
( ∫ R

0
|v|q rd−1 dr

)1/q
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is finite. We define the weighted Sobolev space W 1,q(rd−1, (0, R)) as the set of all
functions v ∈ Lq(rd−1, (0, R)) whose distributional derivative v′ is in Lq(rd−1, (0, R)).
As usual, by distributional derivative we mean that v′ satisfies

∫ R

0
v′ϕdr = −

∫ R

0
vϕ′ dr

for all ϕ ∈ C∞0 (0, R). We equip W 1,q(rd−1, (0, R)) with the norm

‖v‖W 1,q(rd−1,(0,R)) :=
( ∫ R

0
|v|q rd−1 dr +

∫ R

0
|v′|qrd−1 dr

)1/q
.

Then W 1,q(rd−1, (0, R)) is a separable Banach space, see e.g. [KO84] or [Kuf85].
Since d > 1, it follows from Theorem 7.4 in [Kuf85] that the set

C∞[0, R] :=
{
u|(0,R) : u ∈ C∞(R)

}

is dense in W 1,q(rd−1, (0, R)). For the benefit of the reader we have also in-
cluded a proof in the appendix, see Theorem A.1. We point out that any v ∈
W 1,q(rd−1, (0, R)) has a representative that is continuous in (0, R]. Indeed, for any
δ > 0 we have δd−1 < rd−1 < Rd−1 when r ∈ (δ, R) and consequently the restriction
v|(δ,R) is in the usual Sobolev space W 1,q(δ, R).

In addition to [Kuf85], weighted Sobolev spaces have been studied for example
in [HKM06]. However, the weight w : R → R, w(x) = |x|d−1 is not necessarily
q-admissible in the sense of [HKM06]. Indeed, in the one dimensional setting q-
admissible weights coincide with Muckenhoupt’s Aq-weights [JBK06]. Thus w is
q-admissible if and only if d− 1 < p− 1 which by (1.4) is equivalent to p > N .

With the weighted Sobolev spaces at hand, we can define weak solutions. Recall
that formally the equation (1.2) reads as

−κ |v′|q−2 ((q − 1)v′′ + d− 1
r

v′
)

= f in (0, R),

where κ and d are the constants given in (1.4). If v is smooth and the gradient
does not vanish, this can be equivalently written as

−κ
(
|v′|q−2

v′rd−1
)′ − frd−1 = 0 in (0, R).

Definition 2.2. We say that v is a weak supersolution to (1.2) in (0, R) if v ∈
W 1,q(rd−1, (0, R′)) for all R′ ∈ (0, R) and we have

∫ R

0
κ |v′|q−2

v′ϕ′rd−1 − ϕfrd−1 dr ≥ 0 (2.1)

for all non-negative ϕ ∈ C∞0 (−R,R). For weak subsolutions the inequality (2.1) is
reversed. Furthermore, v ∈ C[0, R) is a weak solution if it is both weak sub- and
supersolution.

Recall that our goal is to establish an equivalence between radial viscosity su-
persolutions of (1.1) and weak supersolutions of (1.2). For this reason the class of
test functions in Definition 2.2 needs to be C∞0 (−R,R) instead of C∞0 (0, R), see
the example below. We also point out that if d is an integer, then weak superso-
lutions in the sense of Definition 2.2 coincide with radial weak supersolutions to
∆qu ≥ f(|x|), where ∆q is the usual q-Laplacian in d-dimensions, see Theorem 5.3.
Example 2.3. Let p > N , f ≡ 0, and define v : (0, R)→ R by

v(r) := 1
1− αr

1−α, where α := N − 1
p− 1 .
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Then v ∈ W 1,q(rd−1, (0, R)) and it satisfies (2.1) for all non-negative ϕ ∈ C∞0 (0, R),
but u(x) := v(|x|) is not a viscosity supersolution to (1.1). To verify this, observe
first that v is in the correct Sobolev space. Indeed, the distributional derivative of
v is v′(r) = r−α and thus v′ ∈ Lq(rd−1, (0, R)) since

−αq + d− 1 = −N − 1
p− 1 q + (N − 1)(q − 1)

p− 1 = −N − 1
p− 1 > −1.

Moreover, for any non-negative ϕ ∈ C∞0 (0, R), we have
∫ R

0
κ |v′|q−2

v′ϕ′rd−1 dr =
∫ R

0
κr−(q−1)αϕ′r

(N−1)(q−1)
p−1 dr =

∫ R

0
κϕ′ dr = 0.

To see that the function u(x) = v(|x|) is not a viscosity supersolution to (1.1), set
φ(x) := (x1 − 1)2. Then u− φ has a local minimum at 0 and Dφ(0) 6= 0, but

− |Dϕ(0)|q−2 ∆N
p ϕ(0)

= − |2|q−2
(
tr(2e1 ⊗ e1) + (p− 2)

22 (−2e1)′(2e1 ⊗ e1)(−2e1)
)
< 0,

which means that u is not a supersolution.

Lemma 2.4. We may extend the class of test functions in Definition 2.2 to ϕ ∈
W 1,q(rd−1, (0, R)) such that sptϕ ⊂ [0, R′) for some R′ ∈ (0, R).

Proof. Take a cut-off function ξ ∈ C∞0 (−R,R) such that ξ ≡ 1 in [0, R′]. Take
ϕj ∈ C∞[0, R] such that ϕj → ϕ in W 1,q(rd−1, (0, R)). Set φj := ϕjξ. Then
φj ∈ C∞0 (−R,R) and hence

0 ≤
∫ R

0
|v′|q−2

v′φ′jr
d−1 − fφjrd−1 dr

=
∫ R

0
|v′|q−2

v′ϕ′jξr
d−1 − fϕjξrd−1 dr +

∫ R

0
|v′|q−2

v′ϕjξ
′rd−1 dr. (2.2)

Since ξ ≡ 1 in sptϕ, we have ϕ′ξ = ϕ′ and so

∫ R

0
|v′|q−2

v′ϕ′jξr
d−1 − fϕjξrd−1 dr

=
∫ R

0
|v′|q−2

v′(ϕ′j − ϕ′)ξrd−1 − f(ϕj − ϕ)ξrd−1 dr

+
∫ R

0
|v′|q−2

v′ϕ′rd−1 − fϕrd−1 dr.

Combining this with (2.2), we get
∫ R

0
|v′|q−2

v′ϕ′rd−1 − fϕrd−1 dr ≥ −
∫ R

0
|v′|q−1

∣∣∣ϕ′j − ϕ′
∣∣∣ ξrd−1 + |f | |ϕj − ϕ| ξrd−1dr

−
∫ R

0
|v′|q−1 |ϕj| |ξ′| rd−1 dr.

The first integral at the right-hand side converges to zero by Hölder’s inequality.
Moreover, since ϕξ′ ≡ 0 in (0, R), we have

∫ R

0
|v′|q−1 |ϕj| |ξ′| rd−1 dr =

∫ R

0
|v′|q−1 |ϕj − ϕ| |ξ′| rd−1 dr → 0. �
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3. Weak solutions are viscosity solutions

We show that bounded weak supersolutions to (1.2) are radial viscosity super-
solutions to (1.1). In order to formulate the precise statement, we recall that the
lower semicontinuous reguralization of a function v : (0, R)→ R is defined by

v∗(r) := ess lim inf
s→r v(s) := lim

S→0
ess inf

s∈(r−S,r+S)∩(0,R)
v(s)

for all r ∈ [0, R]. Observe that since any function v ∈ W 1,q(rd−1, (0, R)) admits a
continuous representative, we have v = v∗ almost everywhere in (0, R) for such v.

Theorem 3.1. Assume that v is a bounded weak supersolution to (1.2) in (0, R).
Then u(x) := v∗(|x|) is a viscosity supersolution to (1.1) in BR.

To prove Theorem 3.1, we use the following definition of viscosity supersolutions
introduced by Birindelli and Demengel [BD04]. Its advantage is that we may
restrict to test functions whose gradient does not vanish. It is shown in [AR18]
that Definitions 2.1 and 3.2 are equivalent.

Definition 3.2. A bounded and lower semicontinuous function u : BR → R is a
viscosity supersolution to (1.1) if for any x0 ∈ BR one of the following conditions
holds.

(i) The function u is not a constant in Bδ(x0) for any δ > 0, and whenever
ϕ ∈ C2 touches u from below at x0 with Dϕ(x0) 6= 0, we have

− |Dϕ(x0)|q−2 ∆N
p ϕ(x0) ≥ f(|x0|). (3.1)

(ii) The function u is a constant in Bδ(x0) for some δ > 0, and we have
f(|x|) ≤ 0 for all x ∈ Bδ(x0).

Proof of Theorem 3.1. Let x0 ∈ BR. We first consider the case where u is a
constant in Bδ(x0) for some δ > 0. In this case also v is a constant a.e. in
I := (0, R) ∩ (|x0| − δ, |x0| + δ). This implies that v′ ≡ 0 a.e. in I and thus,
since v is a weak supersolution to (1.2), we have

∫

I
ϕfrd−1 dr ≤ 0

for all non-negative ϕ ∈ C∞0 (I). Since f is continuous, it follows that f ≤ 0 in I
and consequently f(|x|) ≤ 0 in Bδ(x0), as desired.

Assume then that u is not a constant near x0. Suppose on the contrary that the
condition (i) of Definition 3.2 fails at x0, that is, there exists ϕ ∈ C2 touching u
from below at x0 with Dϕ(x0) 6= 0 and

f(|x0|) > − |Dϕ(x0)|q−2 ∆N
p ϕ(x0). (3.2)

We consider the case x0 6= 0 first and argue like in the proof of Proposition A.3
in [PV]. Let Q be an orthogonal matrix such that x0 = r0Qe1, where r0 := |x0|
and define ψ(x) := ϕ(Qx). Then ψ touches u from below at r0e1 and we have
Dψ(x) = Q′Dϕ(Qx) and D2ψ(x) = Q′D2ϕ(Qx)Q. From these and (3.2) it follows
that

f(r0) > − |Dψ(r0e1)|q−2 ∆N
p ψ(r0e1). (3.3)

Since ψ touches the radial function u from below at r0e1 6= 0, we haveDiψ(r0e1) = 0
and Diiψ(r0e1) ≤ 1

r0
D1ψ(r0e1) for 1 < i ≤ N (see Lemma 3.3 below). Thus by
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setting φ(r) := ψ(re1), we obtain from (3.3)

f(r0) > − |D1ψ(r0e1)|q−2
(
D11ψ(r0e1) +

N∑

i=2
Diiψ(r0e1) + (p− 2)D11ψ(r0e1)

)

≥ − |D1ψ(r0e1)|q−2
(
(p− 1)D11ψ(r0e1) + N − 1

r0
D1ψ(r0e1)

)

= −κ |φ′(r0)|q−2 ((q − 1)φ′′(r0) + d− 1
r0

φ′(r0)
)
,

where we used that κ = p−1
q−1 and d = (N−1)(q−1)

p−1 + 1. Since the above inequality is
strict, by continuity it remains true in some interval I b (0, R) containing r0. In
other words, for any r ∈ I it holds that

f(r)rd−1 >− κ |φ′(r)|q−2 ((q − 1)φ′′(r) + d− 1
r

φ′(r)
)
rd−1

=− κ
(
|φ′(r)|q−2

φ′(r)rd−1
)′
.

Multiplying this by a non-negative function η ∈ C∞0 (I) and integrating by parts
we find that ∫

I
κ |φ′|q−2

φ′η′rd−1 − ηfrd−1 dr ≤ 0. (3.4)

We set
φ(r) := φ(r) + l,

where l := minr∈∂I(v∗(r)− φ(r)) > 0. Then φ still satisfies (3.4). Since φ ≤ v∗ on
∂I, it follows from a comparison principle that φ ≤ v∗ in I (see Lemma 3.5 below).
But this is a contradiction since φ(r0) = v∗(r0) and l > 0.

Consider then the case x0 = 0. Denote ξ := Dϕ(0)/ |Dϕ(0)| and define a function
φ : [0, R)→ R by

φ(r) := ϕ(rξ).

Then for r > 0 we have

φ′(r) = ξ ·Dϕ(rξ) and φ′′(r) = ξ′D2ϕ(rξ)ξ.

Since ξ · Dϕ(0) = |Dϕ(0)| > 0, it follows by continuity that there are constants
M, δ > 0 such that

φ′(r) ≥M when r ∈ (0, δ). (3.5)

Hence the quantity (d− 1)r−1φ′(r) is large when r > 0 is small. Therefore, since
f and φ′′ are bounded in (0, R′) for any R′ < R, there exists δ > 0 such that for
all r ∈ (0, δ) we have

f(r) ≥− κ |φ′(r)|q−2 ((q − 1)φ′′(r) + d− 1
r

φ′(r)
)

=− κ
(
|φ′(r)|q−2

φ′(r)rd−1
)′
r1−d.

In other words, for all r ∈ (0, δ) it holds that

− κ
(
|φ′(r)|q−2

φ′(r)rd−1
)′ − f(r)rd−1 ≤ 0. (3.6)
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On the other hand, since φ′ is bounded in (0, δ) we have φ ∈ W 1,q(rd−1, (0, δ)).
Moreover, for any non-negative ζ ∈ C∞0 (−δ, δ) we obtain using integration by parts
∫ δ

0
κ |φ′|q−2

φ′ζ ′rd−1 − ζfrd−1 dr

= lim
h→0

∫ δ

h
κ |φ′|q−2

φ′ζ ′rd−1 − ζfrd−1 dr

= lim
h→0

(∫ δ

h
−κ

(
|φ′|q−2

φ′rd−1
)′
ζ − ζfrd−1 dr − κ |φ′(h)|q−2

φ′(h)hd−1ζ(h)
)
≤ 0,

where we used (3.6) and noticed that the last term converges to zero because
d− 1 > 0 and φ′ ≥M > 0 in (0, δ). Thus φ is a weak subsolution to (1.2) in (0, δ).
We set

φ(r) := φ(r) + l,

where l := φ(δ)− v∗(δ) > 0. Then φ ≤ v∗ in (0, δ) by Theorem 3.4. Hence it fol-
lows from continuity of φ and definition of v∗ that φ(0) ≤ v∗(0). But this is a
contradiction since φ(0) = ϕ(0) + l = v∗(0) + l and l > 0. �

We still need to prove the lemmas used in the previous proof: the comparison
theorems and the following fact about the derivatives of test functions.

Lemma 3.3. Let u : BR → R be radial. Assume that ϕ ∈ C2 touches u from below
at re1 6= 0. Then for 1 < i ≤ N we have

Diϕ(re1) = 0 and Diiϕ(re1) ≤ 1
r
D1ϕ(re1).

Proof. Since ϕ ∈ C2, we have

ϕ(y) = ϕ(re1) + (y− re1) ·Dϕ(re1) + 1
2(y− re1)′D2ϕ(re1)(y− re1) + o(|y − re1|2)

as y → re1. Letting y = re1 + hei, where h > 0 and 1 < i ≤ N , the above implies
that

hDiϕ(re1) + 1
2h

2Diiϕ(re1) = ϕ(re1 + hei)− ϕ(re1) + o(|h|2) as h→ 0. (3.7)

Let now
S(h) := r −

√
r2 − h2

so that the vector re1 +hei−S(h)e1 lies on the boundary of the ball Br(0). Since u
is constant on ∂Br(0), the assumption that ϕ touches u from below at re1 implies

ϕ(re1) = u(re1) = u(re1 + hei − S(h)e1) ≥ ϕ(re1 + hei − S(h)e1).
Combining this with (3.7) we obtain

hDiϕ(re1) + 1
2h

2Diiϕ(re1) ≤ ϕ(re1 + hei)−ϕ(re1 + hei−S(h)e1) + o(|h|2). (3.8)

Since ϕ ∈ C2, there is M > 0 such that for all a, z ∈ B1(re1) we have the estimate

ϕ(a)− ϕ(z) ≤ −(z − a) ·Dϕ(a) +M |z − a|2 .
Setting a = re1 + hei and z = re1 + hei − S(h)e1, the above and (3.8) lead to

1
h
Diϕ(re1) + 1

2Diiϕ(re1) ≤ S(h)
h2 D1ϕ(re1 + hei) +M

|S(h)|
h2

2
+ o(|h|2)

h2 .
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Observe that S(h)
h2 → 1

2r as h→ 0, so the left hand side of the above inequality tends
to 1

2rD1ϕ(re1). Thus we must have Diϕ(re1) ≤ 0. On the other hand, repeating
the previous arguments, but instead selecting y = re1 − hei at the beginning, we
can deduce the estimate

−1
h
Diϕ(re1) + 1

2Diiϕ(re1) ≤ S(h)
h2 D1ϕ(re1 − hei) +M

|S(h)|2
h2 + o(|h|2)

h2 ,

from which it follows that Diϕ(re1) ≥ 0. Thus Diϕ(re1) = 0 and we may let h→ 0
to obtain that Dii(re1) ≤ 1

r
D1ϕ(re1). �

Theorem 3.4 (Comparison principle). Let w and v respectively be bounded weak
sub- and supersolutions to (1.2) in (0, R). Assume that we have

lim sup
r→R

w(r) ≤ lim inf
r→R

v(r)

Then w ≤ v a.e. in (0, R).

Proof. Let ε > 0. Then there is 0 < R′ < R such that w − v − ε < 0 in (R′, R).
We set

ϕ := max(w − v − ε, 0).
By Lemma A.4 we have ϕ ∈ W 1,q(rd−1, (0, R)) with

ϕ′ =



w′ − v′, a.e. in {w > v + ε} ,
0, a.e. in (0, R) \ {w > v + ε} .

By Lemma 2.4 we may use ϕ as a test function in (2.1) for w and v. This yields
the inequalities

∫

{w>v+ε}
κ |w′|q−2

w′(w′ − v′)rd−1 dr ≤
∫ R

0
ϕfrd−1 dr,

∫

{w>v+ε}
κ |v′|q−2

v′(w′ − v′)rd−1 dr ≥
∫ R

0
ϕfrd−1 dr.

Subtracting the second inequality from the first we get
∫

{w>v+ε}
κ(|w′|q−2

w′ − |v′|q−2
v′)(w′ − v′)rd−1 dr ≤ 0.

Since (|a|q−2 a− |b|q−2 b) (a− b) ≥ 0 for all a, b ∈ R, it follows that w′ − v′ ≡ 0 in
{w > v + ε}. Hence ϕ′ ≡ 0 a.e. in (0, R). This implies that also ϕ ≡ 0 a.e. in (0, R)
since we have ϕ ∈ W 1,q

loc (0, R) and ϕ ≡ 0 in (R′, R). Consequently w ≤ v − ε a.e.
in (0, R) and letting ε→ 0 finishes the proof. �

Lemma 3.5. Let v be a bounded weak supersolution to (1.2) in (0, R). Let I b
(0, R) be an interval and suppose that φ ∈ C2(I) satisfies

∫

I
|φ′|q−2

φ′ϕ′rd−1 − ϕfrd−1 dr ≤ 0 (3.9)

for all ϕ ∈ C∞0 (I). Assume also that for all r0 ∈ ∂I we have

lim sup
r→r0

φ(r) ≤ lim inf
r→r0

v(r).

Then φ ≤ v a.e. in I.
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Proof. Since v ∈ W 1,q(rd−1, (0, R)) we have v|I ∈ W 1,q(I) with (v|I)′ = v′ in I.
Moreover, we have

∫ R

0
|(v|I)′|q−2(v|I)′ϕ′rd−1 − ϕfrd−1 dr ≥ 0 (3.10)

for all ϕ ∈ C∞0 (I). For ε > 0, we set
ϕ := (φ− v|I − ε)+.

Then ϕ ∈ W 1,q(I) and sptϕ b I. Thus we may after approximation use ϕ as a test
function in (3.9) and (3.10). It then follows similarly as in the proof of Theorem
3.4 that ϕ ≡ 0 a.e. in I and letting ε→ 0 finishes the proof. �

4. Viscosity solutions are weak solutions

We show that bounded radial viscosity supersolutions to (1.1) are weak super-
solutions to (1.2). More precisely, we prove the following theorem.

Theorem 4.1. Let u be a bounded radial viscosity supersolution to (1.1) in BR.
Then v(r) := u(re1) is a weak supersolution to (1.2) in (0, R).

As a corollary of Theorem 4.1, we obtain the uniqueness of radial viscosity solu-
tions to (1.1). We also have the following comparison result for radial super- and
subsolutions. However, the full uniqueness and comparison principle still remain
open as far as we know.

Lemma 4.2. Let h, u ∈ C(BR) be bounded radial viscosity sub- and supersolutions
to (1.1) in BR, respectively. Assume that for all x0 ∈ ∂BR it holds

lim sup
x→x0

h(x) ≤ lim inf
x→x0

u(x).

Then h ≤ u in BR.
Proof. By Theorem 4.1, the functions w(r) := h(re1) and v(r) := u(re1) are weak
sub- and supersolutions to (1.2) in (0, R), respectively. Hence by Theorem 3.4 we
have w ≤ v a.e. in (0, R). It follows from continuity that h ≤ u in BR. �
Corollary 4.3. Let u, h ∈ C(BR) be radial viscosity solutions to (1.1) in BR such
that u = h on ∂BR. Then u = h.

One way to prove that viscosity solutions are weak solutions is by using a com-
parison principle [JLM01]. As mentioned however, full comparison principle for the
equation (1.1) is open and Lemma 4.2 is not a priori available. Therefore we use
the method developed by Julin and Juutinen [JJ12]. The idea is to approximate a
viscosity supersolution u by its inf-convolution

uε(x) := inf
y∈BR

{
u(y) + |x− y|

q̂

q̂εq̂−1

}
,

where ε > 0 and q̂ > 2 is a fixed constant so large that q− 2 + (q̂− 2)/(q̂− 1) > 0.
Then uε → u pointwise in BR and it is standard to show that uε is a viscosity
supersolution to

− |Duε|q−2 ∆N
p uε ≥ fε(|x|) in BRε , (4.1)

where fε(r) := inf |r−s|≤ρ(ε) f(s), Rε := R− ρ(ε) and ρ(ε)→ 0 as ε→ 0. Moreover,
uε is semi-concave by definition and thus twice differentiable almost everywhere by
Alexandrov’s theorem (see e.g. [EG15, p273]). Hence uε satisfies the equation (4.1)
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pointwise almost everywhere. Since uε is still radial, we can perform a radial trans-
formation on (4.1) to obtain after mollification arguments that vε(r) := uε(re1) is a
weak supersolution to −κ∆d

qvε = fε in (0, Rε). Caccioppoli’s estimate then implies
that vε converges to v in the weighted Sobolev space up to a subsequence and we
obtain that vε is a weak supersolution.

Before beginning the proof of Theorem 4.1, we collect some well known properties
of inf-convolution in the following lemma (see e.g. [CIL92, Kat15, JJ12]).

Lemma 4.4. Assume that u : BR → R is bounded and lower semicontinuous.
Then the inf-convolution uε has the following properties.

(i) We have uε ≤ u and uε → u pointwise in BR as ε→ 0.
(ii) There exists ρ(ε) > 0 such that

uε(x) = inf
y∈Bρ(ε)(x)∩BR

{
u(y) + 1

qεq̂−1 |x− y|
q̂

}

and ρ(ε)→ 0 as ε→ 0. In fact we can choose ρ(ε) =
(
qεq̂−1oscBR u

) 1
q̂ .

(iii) Denote Rε := R−ρ(ε). Then uε is semi-concave in BRε. Moreover, for any
x ∈ BRε there is xε ∈ Bρ(ε)(x) such that uε(x) = u(xε) + 1

q̂εq̂−1 |x− xε|q̂ .
(iv) If uε is twice differentiable at x ∈ BRε, then

Duε(x) =(x− xε)
|x− xε|q̂−2

εq̂−1 , (4.2)

D2uε(x) ≤(q̂ − 1) |x− xε|
q̂−2

εq̂−1 I.

Remark. Observe that if u is radial, then so is uε. Moreover, if we set v(r) := uε(re1)
and assume that v is twice differentiable at r ∈ (0, Rε), then by (iv) of Lemma 4.4
we have

v′ε(r) =(r − rε)
|r − rε|
εq̂−1

q̂−2
, (4.3)

v′′ε (r) ≤ q̂ − 1
ε
|v′ε(r)|

q̂−2
q̂−1 , (4.4)

where rε ∈ (r − ρ(ε), r + ρ(ε)).

Lemma 4.5. Assume that u is a bounded viscosity supersolution to (1.1) in BR.
Then uε is a viscosity supersolution to (4.1) in BRε.

Proof. Suppose that ϕ ∈ C2 touches uε from below at x ∈ BRε and that Dϕ(y) 6= 0
when y 6= x. Let xε be as in (iii) of Lemma 4.4. Then

ϕ(x) =uε(x) = u(xε) + 1
q̂εq̂−1 |x− xε|

q̂ , (4.5)

ϕ(y) ≤uε(y) ≤ u(z) + 1
q̂εq̂−1 |y − z|

q̂ for all y, z ∈ BR. (4.6)

Set

ψ(z) = ϕ(z + x− xε)−
|x− xε|q̂
q̂εq̂−1 .
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It follows from (4.5) and (4.6) that ψ touches u from below at xε. Therefore, since
u is a viscosity supersolution to (1.1), we have

0 ≤ lim sup
x 6=z→xε

(
− |Dψ(z)|q−2 ∆N

p ψ(z)
)
− f(|xε|)

≤ lim sup
x 6=y→x

(
− |Dϕ(y)|q−2 ∆N

p ϕ(y)
)
− fε(|x|),

where we used that |x− xε| ≤ ρ(ε) and fε(r) = inf |r−s|≤ρ(ε) f(s). Consequently uε
is a viscosity supersolution to (4.1). �

Next we combine the previous lemma with the radial transformation of (4.1).

Lemma 4.6. Assume that u is a bounded radial viscosity supersolution to (1.1) in
BR. Set vε(r) := uε(re1) and assume that vε is twice differentiable at r ∈ (0, Rε).
Then, if q > 2 or v′ε(r) 6= 0, we have

− κ |v′ε(r)|q−2 ((q − 1)v′′ε (r) + d− 1
r

v′ε(r)
)
− fε(r) ≥ 0. (4.7)

Moreover, if 1 < q ≤ 2 with v′ε(r) = 0, then we have fε(r) ≤ 0.

Proof. Consider first the case q > 2 or v′ε(r) 6= 0. Since uε is twice differentiable at
re1, it follows from the definition of viscosity supersolutions that

− |Duε(re1)|q−2 (∆uε(re1) + (p− 2)∆N
∞uε(re1))− fε(r) ≥ 0, (4.8)

where
∆N
∞uε = |Duε|−2

N∑

i,j=1
DijuεDiuεDjuε. (4.9)

Moreover, we have

Duε(re1) = e1v
′
ε(r) and D2uε(re1) = e1 ⊗ e1v

′′
ε (r) + 1

r

(
I − e1 ⊗ e1

)
v′ε(r).

It is now straightforward to compute that

∆uε(re1) = trD2uε(re1) = v′′ε (r) + N − 1
r

v′ε(r)

and using (4.9)
∆N
∞uε(re1) = v′′ε (r).

Combining these with (4.8) and recalling that d − 1 = (N − 1)(q − 1)/(p − 1),
κ = (p− 1)/(q − 1), we obtain (4.7).

Consider then the case 1 < q ≤ 2 and v′ε(r) = 0. Denote x := re1. Then
Du(x) = 0 and so by (4.2) we have xε = x. Therefore by the definition of inf-
convolution

u(y) + |x− y|
q̂

q̂εq̂−1 ≥ uε(x) = u(x) for all y ∈ BR.

Rearranging the terms, we find that

φ(y) := u(x)− |x− y|
q̂

q̂εq̂−1 ≤ u(y) for all y ∈ BR.

In other words, the function φ touches u from below at x. Since u is a viscosity
supersolution and Dφ(y) 6= 0 when y 6= x, it follows that

lim sup
y→x,y 6=x

(
|Dφ(y)|q−2 ∆N

p φ(y)− f(|y|)
)
≥ 0.
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This implies that −f(|x|) = −f(r) ≥ 0 since |Dφ(y)|q−2 ∆N
p φ(y) → 0 as y → x.

Indeed, we have

|Dφ(y)|q−2
∣∣∣∆N

p φ(y)
∣∣∣ ≤C(q, q̂, ε) |y − x|(q−2)(q̂−1) (N + |p− 2|)||D2φ(y)||
≤C(q, q̂, p,N, ε) |y − x|(q−2)(q̂−1)+q̂−2 ,

where (q − 2)(q̂ − 1) + q̂ − 2 > 0 by definition of q̂. �

Next we show that the inf-convolution is a weak supersolution to −κ∆d
quε = fε

in (0, Rε). We consider the case q > 2 first.

Lemma 4.7. Let q > 2. Assume that u is a bounded radial viscosity supersolution
to (1.1) in BR. Then the function vε(r) := uε(re1) is a weak supersolution to
−κ∆d

qu = fε in (0, Rε).

Proof. Since uε is semi-concave in BRε , it is also locally Lipschitz continuous there
[EG15, p267]. Consequently we have vε ∈ W 1,q(rd−1, (0, R′)) for all R′ ∈ (0, Rε) by
Lemma A.2. Observe then that since φ(x) := uε(x) − C(q̂, ε, u) |x|2 is concave in
BRε , it is twice differentiable almost everywhere by Alexandrov’s theorem. More-
over, the proof of Alexandrov’s theorem in [EG15, p273] establishes that we can
approximate φ by smooth concave radial functions φj with the standard mollifica-
tion. Therefore, by setting uε,j(x) := φj(x)+C(q̂, ε, u) |x|2, the following pointwise
limits hold almost everywhere in BRε

uε,j → uε, Duε,j → Duε and D2uε,j → D2uε.

Thus, since uε is radial, setting vε,j(r) := uε,j(re1) we have

vε,j → vε, v′ε,j → v′ε and v′′ε,j → v′′ε

almost everywhere in (0, Rε). Since vε,j is smooth and q > 2, a direct calculation
yields for r ∈ (0, Rε)

−κ|v′ε,j|q−2
(
(q − 1)v′′ε,j + d− 1

r
v′ε,j

)
rd−1 =− κ(|v′ε,j|q−2v′ε,jr

d−1)′. (4.10)

Fix a non-negative ϕ ∈ C∞0 (−Rε, Rε). Then, integrating by parts we find for h > 0
∫ R

h
−ϕκ(|v′ε,j|q−2v′ε,jr

d−1)′ dr

=
∫ R

h
κ|v′ε,j|q−2v′ε,jr

d−1ϕ′ dr + ϕ(h)κ|v′ε,j(h)|q−2v′ε,j(h)hd−1.

Combining this with (4.10), letting h→ 0 and subtracting
∫ R

0 ϕfεr
d−1 dr from both

sides, we obtain
∫ R

0
− κϕ|v′ε,j|q−2

(
(q − 1)v′′ε,j + d− 1

r
v′ε,j

)
rd−1 − ϕfεrd−1 dr

=
∫ R

0
κ|v′ε,j|q−2v′ε,jϕ

′rd−1 − ϕfεrd−1 dr.

Since vε,j is Lipschitz continuous, we have M := supj ||v′ε,j||L∞(sptϕ) <∞. Thus
we may let j → ∞ in the above inequality and apply the dominated convergence
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theorem at the right hand side to obtain

lim inf
j→∞

∫ R

0
−κϕ|v′ε,j|q−2

(
(q − 1)v′′ε,j + d− 1

r
v′ε,j

)
rd−1 − ϕfεrd−1 dr

≤
∫ R

0
κ|v′ε|q−2v′εϕ

′rd−1 − ϕfεrd−1 dr. (4.11)

It now suffices to show that the left-hand side is non-negative to finish the proof.
Observe that v′′ε,j ≤ C(q̂, ε, u) since φj is concave. Thus

−|v′ε,j|q−2
(
(q − 1)v′′ε,j + d− 1

r
v′ε,j) ≥−M q−2

(
C(q, q̂, ε, u) + d− 1

r
M
)
.

Since d− 2 > −1, it follows from the above inequality that the integral at the left
hand side of (4.11) has an integrable lower bound. Hence by Fatou’s lemma

lim inf
j→∞

∫ R

0
−κϕ|v′ε,j|q−2

(
(q − 1)v′′ε,j + d− 1

r
v′ε,j

)
rd−1 − ϕfεrd−1 dr

≥
∫ R

0
−κϕ|v′ε|q−2

(
(q − 1)v′′ε + d− 1

r
v′ε
)
rd−1 − ϕfεrd−1 dr ≥ 0,

where the last inequality follows from Lemma 4.6. �

Next we consider the case 1 < q ≤ 2. We need an additional regularization
step because of the singularity of |Du|q−2 ∆N

p u at the points where the gradient
vanishes.

Lemma 4.8. Let 1 < q ≤ 2. Assume that u is a bounded radial viscosity superso-
lution to (1.1) in BR. Then the function vε(r) := uε(re1) is a weak supersolution
to −κ∆d

qu ≥ fε in (0, Rε).

Proof. (Step 1) We define the smooth semi-concave functions vε,j exactly as in
the proof of Lemma 4.7. Then again

vε,j → vε, v′ε,j → v′ε and v′′ε,j → v′′ε

almost everywhere in (0, Rε). Let δ > 0. We regularize the radial transformation
of equation (1.1) by considering the following term

Gδ(v) := −κ(|v′|2 + δ)
q−2

2

((
1 + (q − 2) |v′|2

|v′|2 + δ

)
v′′ + d− 1

r
v′
)
.

Since vε,j is smooth, a direct calculation yields for r ∈ (0, Rε)

Gδ(vε,j)rd−1 = −κ
(
(|v′ε,j|2 + δ)

q−2
2 v′ε,jr

d−1
)′
. (4.12)

Fix a non-negative ϕ ∈ C∞0 (−Rε, Rε). Then, integrating by parts we have for h > 0
∫ R

h
−κϕ

(
(|v′ε,j|2 + δ)

q−2
2 v′ε,jr

d−1
)′
dr

=
∫ R

h
κ(|v′ε,j|2 + δ)

q−2
2 v′ε,jr

d−1ϕ′ dr + ϕ(h)κ(|v′ε,j(h)|2 + δ)
q−2

2 v′ε,j(h)hd−1.

Combining this with (4.12), letting h→ 0 and subtracting
∫ R

0 ϕfεr
d−1 dr from both

sides we obtain
∫ R

0
ϕGδ(vε,j)rd−1 − ϕfεrd−1 dr =

∫ R

0
κ(|v′ε,j|2 + δ)

q−2
2 v′ε,jϕ

′rd−1 − ϕfεrd−1 dr.
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This implies that

lim inf
j→∞

∫ R

0
ϕGδ(vε,j)rd−1 − ϕfεrd−1 dr

≤ lim
j→∞

∫ R

0
κ(|v′ε,j|2 + δ)

q−2
2 v′ε,jϕ

′rd−1 − ϕfεrd−1 dr. (4.13)

We intend to apply Fatou’s lemma at the left-hand side and the dominated con-
vergence theorem at the right-hand side. Since vε is Lipschitz continuous, we have
M := supj ||v′ε,j||L∞(sptϕ) <∞, which justifies the use of the dominated convergence
theorem. Observe then that v′′ε,j ≤ C(q̂, ε, u) by semi-concavity. Hence

Gδ(vε,j) =− κ(|v′ε,j|2 + δ)
q−2

2

((
1 + (q − 2) |vε,j|2

|vε,j|2 + δ

)
v′′ε,j + d− 1

r
v′ε,j

)

≥− κδ q−2
2 (C(q, q̂, ε, u) + d− 1

r
M).

Since d − 2 > −1, it follows from the above estimate that the integrand at the
left-hand side of (4.13) has an integrable lower bound independent of j. Thus

∫ R

0
ϕ (Gδ(vε)− fε) rd−1 dr ≤

∫ R

0
κ(|v′ε|2 + δ)

q−2
2 v′εϕ

′rd−1 − ϕfεrd−1 dr. (4.14)

(Step 2) We let δ → 0 in the auxiliary inequality (4.14) and obtain

lim inf
δ→0

∫ R

0
ϕ(Gδ(vε)− fε)rd−1dr

≤ lim
δ→0

∫ R

0
κ(|v′ε|2 + δ)

q−2
2 v′εϕ

′rd−1 − ϕfεrd−1dr

=
∫ R

0
κ |v′ε|q−2

v′εϕ
′rd−1 − ϕfεrd−1 dr, (4.15)

where the use of the dominated convergence theorem was justified since vε is Lip-
schitz continuous. It now suffices to show that the left-hand side of (4.15) is
non-negative to finish the proof. By (4.4) we have

v′′ε ≤
q̂ − 1
ε
|v′ε|

q̂−2
q̂−1 (4.16)

almost everywhere in (0, Rε). Hence, when v′ε 6= 0, it holds that

Gδ(vε) = −κ(|v′ε|2 + δ)
q−2

2

((
1 + (q − 2) |v′ε|2

|v′ε|2 + δ

)
v′′ε + d− 1

r
v′ε

)

≥ −κ |v′ε|q−2 (C(q, q̂, ε) |v′ε|
q̂−2
q̂−1 + d− 1

r
|v′ε|)

= −κ(C(q, q̂, ε) |v′ε|q−2+ q̂−2
q̂−1 + d− 1

r
|v′ε|q−1),

where q − 2 + q̂−2
q̂−1 ≥ 0 by definition of q̂. Moreover, when v′ε = 0, we have

Gδ(vε) ≥ 0 directly by (4.16). Since vε is Lipschitz continuous in the support of
ϕ, these estimates imply that the integrand at the left-hand side of (4.15) has an
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integrable lower bound independent of δ. Thus by Fatou’s lemma

lim inf
δ→0

∫ R

0
ϕ (Gδ(vε)− fε) rd−1 dr

≥
∫ R

0
lim inf
δ→0

ϕ (Gδ(vε)− fε) rd−1 dr

=
∫

{v′ε 6=0}
ϕ
(
− κ |v′ε|q−2 ((q − 1)v′′ε + d− 1

r
v′ε
)
− fε

)
rd−1 dr

+
∫

{v′ε=0}
lim inf
δ→0

ϕ(−κδ q−2
2 v′′ε − fε)rd−1 dr

=:A1 + A2. (4.17)
It follows directly from Lemma 4.6 that A1 ≥ 0. Moreover, if r ∈ {v′ε = 0}, then
Lemma 4.6 implies that fε(r) ≤ 0 and inequality (4.16) reads as v′′ε (r) ≤ 0. Hence
also A2 ≥ 0. Combining (4.15) and (4.17) we have thus established the desired
inequality. �

We use the following Caccioppoli’s estimate to show that the sequence vε is
bounded in the weighted Sobolev space.
Lemma 4.9 (Caccioppoli’s estimate). Let v be a bounded weak supersolution to
(1.2) in (0, R). Suppose moreover that v is Lipschitz continuous in (0, R′) for any
R′ ∈ (0, R). Then for any non-negative ξ ∈ C∞0 (−R,R) we have

∫ R

0
|v′|q ξqrd−1 dr ≤ C

∫ R

0

(
|ξ′|q + ξq |f |

)
rd−1 dr,

where C = C(κ, q,M) and M = ‖v‖L∞((0,R)∩spt ξ).

Proof. Since ξ ∈ C∞0 (−R,R), we can use ϕ := (M − v)ξq as a test function by
Lemma 2.4. This yields

0 ≤
∫ R

0
κ |v′|q−2

v′(−v′ξq + (M − v)qξ′ξq−1)rd−1 − (M − v)ξqfrd−1 dr.

Rearranging the terms and using that (M − v) ≤ 2M , we obtain
∫ R

0
κ |v′|q ξqrd−1 dr ≤ 2M

∫ R

0
q |v′|q−1 |ξ′| ξq−1rd−1 + ξq |f | rd−1 dr. (4.18)

By Young’s inequality, we have for any ε > 0
q |v′|q−1 |ξ′| ξq−1rd−1 ≤ ε |v′|q ξqrd−1 + C(q, ε) |ξ′|q rd−1.

Applying this to (4.18), taking small enough ε > 0 and absorbing the term with
v′ to the left-hand side, we obtain the desired estimate. Absorbing the term is
justified as it is finite by the Lipschitz continuity of v. �

It now remains to use the Caccioppoli’s estimate to obtain a subsequence of vε
that converges to v in the weighted Sobolev space. Then we can pass to the limit
to see that v is a weak supersolution to (1.2) in (0, R).
Proof of Theorem 4.1. Set vε(r) := uε(re1) and let 0 < R′′ < R. We start by
showing that vε → v in W 1,q(rd−1, (0, R′′)). By assuming that ε is small enough,
we find R′ such that

R′′ < R′ < Rε < R.

Since by Lemmas 4.7 and 4.8 the function vε is a weak supersolution to −κ∆d
qvε ≥

fε in (0, Rε), Lemma 4.9 implies that v′ε is bounded in Lq(rd−1, (0, R′)). Thus by
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Lemma A.3 we have v ∈ W 1,q(rd−1, (0, R′)) and v′ε → v′ weakly in Lq(rd−1, (0, R′))
up to a subsequence. We set

ϕ := (v − vε)ξq,
where ξ ∈ C∞0 (−R′, R′) is a non-negative cut-off function such that ξ ≡ 1 in (0, R′′).
Using ϕ as a test function in the weak formulation of −κ∆d

qvε ≥ fε we obtain

0 ≤
∫ R′

0
κ|v′ε|q−2v′ε

(
(v′ − v′ε)ξq + qξ′ξq−1(v − vε)

)
rd−1 − (v − vε)ξqfεrd−1 dr.

Rearranging the terms and adding
∫ R′

0 κ|v′|q−2v′(v′ − v′ε)ξqrd−1 dr to both sides of
the inequality, we get

∫ R′

0
κ(|v′|q−2v′ − |v′ε|q−2v′ε)(v′ − v′ε)ξqrd−1 dr

≤
∫ R′

0
κq|v′ε|q−1|v − vε||ξ′|ξq−1rd−1 dr

+
∫ R′

0
|v − vε| ξq |fε| rd−1 dr

+
∫ R′

0
κ|v′|q−2v′(v′ − v′ε)ξqrd−1 dr

=: A1 + A2 + A3.

Since v′ε is bounded in Lq(rd−1, (0, R′)), vε → v in Lq(rd−1, (0, R′)) and f ∈ L∞, it
follows from Hölder’s inequality that A1, A2 → 0 as ε→ 0. Moreover, since v′ε → v′

weakly in Lq(rd−1, (0, R′)), also A3 converges to zero. We conclude that v′ε →
v′ strongly in Lq(rd−1, (0, R′′)) by applying Hölder’s inequality and the following
inequality (see [Lin17, p95-96])

(|a|q−2 a− |b|q−2 b) (a− b) ≥




(q − 1) |a− b|2 (1 + |a|2 + |b|2) q−2
2 , 1 < q < 2,

22−q |a− b|q , q ≥ 2.

Recall then that since vε is a weak supersolution to −κ∆d
qvε ≥ fε in (0, Rε), any

ϕ ∈ C∞0 (−R′′, R′′) satisfies
∫ R′′

0
κ|v′ε|q−2v′εϕ

′rd−1 − ϕfεrd−1 dr ≥ 0.

Since v′ε → v′ strongly in Lq(rd−1, (0, R′′)), we may let ε→ 0 in the above inequality.
Since R′′ < R was arbitrary, the proof is finished. �

5. The case of integer d

We show that if d is an integer, then weak supersolutions to (1.2) coincide with
radial weak supersolutions to −∆qu ≥ f(|x|), where ∆q is the usual q-Laplacian in
d-dimensions. We begin by recalling the definition of weak supersolutions to the
latter equation.

Definition 5.1. Let d be an integer and let BR ⊂ Rd be a ball centered at the
origin. A function u ∈ W 1,q

loc (BR) is a weak supersolution to −∆qu ≥ f(|x|) in BR

if ∫

BR
|Du|q−2 Du ·Dϕ− ϕf(|x|) dx ≥ 0

for all non-negative ϕ ∈ C∞0 (BR).
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We will use the following lemma which states that the weighted Sobolev space
W 1,q(rd−1, (0, R)) can be identified with the space of radial Sobolev functions
in d-dimensions. Similar results hold also for higher-order Sobolev spaces, see
[dFdSM11].

Lemma 5.2. Let d be an integer. Assume that u : BR → R is radial, i.e. u(x) =
v(|x|) for all x ∈ BR. Then u ∈ W 1,q(BR) if and only if v ∈ W 1,q(rd−1, (0, R)).
Moreover, we have

Du(x) = x

|x|v
′(|x|) for a.e. x ∈ BR. (5.1)

Proof. Suppose first that v ∈ W 1,q(rd−1, (0, R)). By Lemma A.1 there is a sequence
vn ∈ C∞[0, R] such that vn → v in W 1,q(rd−1, (0, R)). Setting un(x) := vn(|x|) we
have un ∈ W 1,q(BR) by Lipschitz continuity and

Dun(x) = x

|x|v
′
n(|x|) for all x ∈ BR \ {0} . (5.2)

We obtain using the formula (9) in [SS05, p280]
∫

BR
|un − u|q dx =

∫

∂B1

∫ R

0
|un(rz)− u(rz)|q rd−1 dr dσ(z)

=
∫

∂B1

∫ R

0
|vn(|rz|)− v(|rz|)|q rd−1 dr dσ(z)

= σ(∂B1)
∫ R

0
|vn(r)− v(r)|q rd−1 dr,

where σ is the spherical measure. Similarly, but now also using (5.2), we compute
∫

BR

∣∣∣∣∣Dun −
x

|x|v
′(|x|)

∣∣∣∣∣

q

dx =
∫

BR
|v′n(|x|)− v′(|x|)|q dx

=σ(∂B1)
∫ R

0
|v′n(r)− v′(r)|q rd−1 dr.

Since vn → v in W 1,q(rd−1, (0, R)), it follows from the last two displays that u ∈
W 1,q(BR) and that (5.1) holds.

Suppose then that u ∈ W 1,q(BR). Since u is radial, there exists a sequence of
radial functions un(x) = vn(|x|) such that un ∈ C∞(BR) and un → u in W 1,q(BR).
Now we have

σ(∂B1)
∫ R

0
|vn(r)− v(r)|q rd−1 dr =

∫

∂B1

∫ R

0
|vn(|rz|)− v(|rz|)|q rd−1 dr dσ(z)

=
∫

BR
|un(x)− u(x)|q dx,

which means that vn → v in Lq(rd−1, (0, R)). Observe then that for all m,n ∈ N
we have

σ(∂B1)
∫ R

0
|v′n(r)− v′m(r)| rd−1 dr =

∫

BR
|v′n(|x|)− v′m(|x|)|q dx

=
∫

BR

∣∣∣∣∣
x

|x| ·Dun(x)− x

|x| ·Dum(x)
∣∣∣∣∣

q

dx

≤
∫

BR
|Dun(x)−Dum(x)|q dx.
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In other words, vn is Cauchy in W 1,q(rd−1, (0, R)) and thus converges to some
function. This function has to be v since vn → v in Lq(rd−1, (0, R)). Hence we
have established that v ∈ W 1,q(rd−1, (0, R)). The formula (5.1) now follows from
the first part of the proof. �
Theorem 5.3. Let d be an integer. Then v is a radial weak supersolution to
(1.2) in (0, R) if and only if the function u(x) := v(|x|) is a weak supersolution to
−∆qu = f(|x|) in BR ⊂ Rd.
Proof. Suppose first that v is a weak supersolution to (1.2) in (0, R). By Lemma 5.2
we have at least u ∈ W 1,q

loc (BR). Let ϕ ∈ C∞0 (BR) be a non-negative test function.
Then by [SS05, p280] and (5.1) we have

∫

BR
|Du|q−2 Du ·Dϕ− ϕf(|x|) dx

=
∫

∂B1

∫ R

0
|Du(rz)|q−2 Du(rz) ·Dϕ(rz)rd−1 − ϕ(rz)f(|rz|)rd−1 dr dσ(z)

=
∫

∂B1

∫ R

0
|v′(r)|q−2

v′(r)z ·Dϕ(rz)rd−1 − ϕ(rz)f(r)rd−1 dr dσ(z) ≥ 0,

where the last inequality follows from the assumption that v is a weak supersolution
to (1.2) and that φ(r) := ϕ(rz), z ∈ ∂B1, is an admissible test function in Definition
2.2. Thus u is a weak supersolution to −∆qu ≥ f(|x|) in BR.

Suppose then that u is a radial weak supersolution to −∆qu ≥ f(|x|) in BR. By
Lemma 5.2 we have v ∈ W 1,q(rd−1, (0, R′)) for all R′ ∈ (0, R). Let φ ∈ C∞0 (−R,R)
be a non-negative test function and set ϕ(x) := φ(|x|). Then ϕ is a Lipschitz
continuous function that is compactly supported in BR and therefore an admissible
test function in Definition 5.1. Using formula (5.1) we obtain

0 ≥
∫

BR
|Du|q−2 Du ·Dϕ− ϕf(|x|) dx

=
∫

BR

∣∣∣∣∣
x

|x|v
′(|x|)

∣∣∣∣∣

q−2

v′(|x|) x|x| ·
x

|x|φ
′(|x|)− φ(|x|)f(|x|) dx

=
∫

BR
|v′(|x|)|q−2

v′(|x|)φ′(|x|)− φ(|x|)f(|x|) dx

=σ(∂B1)
∫ R

0
|v′(r)|q−2

v′(r)φ′(r)rd−1 − φ(r)f(r)rd−1 dr,

which means that v is a weak supersolution to (1.2) in (0, R). �
Combining Theorems 3.1, 4.1 and 5.3 we get the following corollary.

Corollary 5.4. Let d be an integer. Then u(x) := v∗(|x|) is a bounded viscosity
supersolution to (1.1) in BR ⊂ RN if and only if w(x) := v(|x|) is a bounded weak
supersolution to −∆qw = f(|x|) in BR ⊂ Rd.
Remark 5.5. Let us conclude this section with a brief remark on the special case
where (1.1) is simply the homogeneous p-Laplace equation (q = p and f ≡ 0). Re-
call that p-superharmonic functions are defined as lower semicontinuous functions
that satisfy a comparison principle with respect to the solutions of the p-Laplace
equation [Lin86]. In particular, the so called fundamental solution

V (x) =



|x|

p−N
p−1 , p 6= N,

log(|x|), p = N,
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is p-superharmonic. It is possible to show that if u(x) := v(|x|) is a radial p-
superharmonic function, then v satisfies a comparison principle with respect to
weak solutions of (1.2). The converse is also true. If v : [0, R) → (−∞,∞],
v 6≡ ∞, is a lower semicontinuous function that satisfies a comparison principle
with respect to weak solutions of (1.2), then u is p-superharmonic. However, for
expository reasons we have decided to not discuss this further here.

Appendix A. Some properties of the weighted Sobolev space

In this section we collect some basic facts about the weighted Sobolev space
W 1,q(rd−1, (0, R)), where d > 1. In particular, we have the following theorem from
[Kuf85] about the density of smooth functions.

Theorem A.1. The set

C∞[0, R] :=
{
v|(0,R) : v ∈ C∞(R)

}

is dense in W 1,q(rd−1, (0, R)).

Proof. Let v ∈ W 1,q(rd−1, (0, R)). Take θ1,θ2 ∈ C∞(R) such that 0 ≤ θi ≤ 1,
θ1 + θ2 = 1 in [0, R] and spt θ1 ⊂ (−∞, R′), spt θ2 ⊂ (R′′,∞) for some 0 < R′′ <
R′ < R. Then we have

v = θ1v + θ2v.

Since θ2v vanishes near zero, we have θ2v ∈ W 1,q(0, R). Hence by [Bre11, Theo-
rem 8.2] there exists a sequence of functions in C∞[0, R] that converges to θ2v in
W 1,q(0, R) and thus also in W 1,q(rd−1, (0, R)). Consequently it remains to approx-
imate the function

w := θ1v.

For λ > 0, we define the function wλ : (−λ,R)→ R by setting

wλ(r) := w(r + λ).

We show that wλ → w in W 1,q(rd−1, (0, R)) as λ→ 0. We start with the estimate
∫ R

0
|w′λ − w′|qrd−1 dr

=
∫ R

0
|w′λr

d−1
q − w′λ · (r + λ)

d−1
q + w′λ · (r + λ)

d−1
q − w′r d−1

q |q dr

≤ 2q−1
( ∫ R

0
|w′λ|q|r

d−1
q − (r + λ)

d−1
q |q dr +

∫ R

0
|w′λ · (r + λ)

d−1
q − w′r d−1

q |q dr
)

=: 2q−1(I1 + I2). (A.1)

To see that I1 → 0 as λ → 0, fix ε > 0. Since w′ ∈ Lq(rd−1, (0, R)), we can take
positive δ = δ(ε) < 1 such that

∫ 2δ

0
|w′|q rd−1 dr < ε. (A.2)



EQUIVALENCE BETWEEN RADIAL SOLUTIONS 21

Then for all 0 < λ < δ we have

I1 =
∫ R

0
|w′(r + λ)|q (r + λ)d−1

∣∣∣∣∣1−
r
d−1
q

(r + λ)
d−1
q

∣∣∣∣∣

q

dr

≤
∫ δ

0
|w′(r + λ)|q (r + λ)d−1 dr +

∫ R

δ
|w′(r + λ)|q (r + λ)d−1

∣∣∣∣∣1−
r
d−1
q

(r + λ)
d−1
q

∣∣∣∣∣

q

dr

=
∫ δ+λ

λ
|w′(r)|q rd−1 dr +

∫ R+λ

δ+λ
|w′(r)|q rd−1

∣∣∣∣∣1−
(r − λ)

d−1
q

r
d−1
q

∣∣∣∣∣

q

dr

≤ε+
∫ R+1

δ
|w′(r)|q rd−1

∣∣∣∣∣1−
(r − λ)

d−1
q

r
d−1
q

∣∣∣∣∣

q

dr, (A.3)

where in the last estimate we used (A.2). Since the term
∣∣∣∣∣1−

(r − λ)
d−1
q

r
d−1
q

∣∣∣∣∣

q

is bounded by 1 and converges to zero as λ → 0 for all r > δ, it follows from
Lebesgue’s dominated convergence theorem that for small enough λ = λ(ε) < δ we
have

∫ R+1

δ
|w′(r)|q rd−1

∣∣∣∣∣1−
(r − λ)

d−1
q

r
d−1
q

∣∣∣∣∣

q

dr < ε. (A.4)

It follows from (A.3) and (A.4) that I1 → 0 as λ→ 0. Observe then that

I2 =
∫ R

0
|w′(r + λ)(r + λ)

d−1
q − w′(r)r d−1

q |q dr =
∫ R

0
|g(r + λ)− g(r)|q dr, (A.5)

where g(r) = w′(r)r
d−1
q . Since w′ ∈ Lq(rd−1, (0, R)), we have g ∈ Lq(0, R). Thus g

is q-mean continuous by [PKJF12, Theorem 3.3.3]. This means that the integral at
the right-hand side of (A.5) converges to zero as λ→ 0 and so also I2 → 0. It now
follows from (A.1) that w′λ → w′ in Lq(rd−1, (0, R)) and the convergence wλ → w
is seen in the same way. Consequently, for any ε > 0 we may take λε > 0 such that

‖wλε − w‖W 1,q(rd−1,(0,R)) < ε. (A.6)
Observe now that wλε ∈ W 1,q(−µ,R) for some µ ∈ (0, λε). Hence there is a function
ψ ∈ C∞[−µ,R] such that

‖wλε − ψ‖W 1,q(−µ,R) < ε. (A.7)
Using (A.6) and (A.7) we obtain
‖w − ψ‖W 1,q(rd−1,(0,R)) ≤‖wλε − ψ‖W 1,q(rd−1,(0,R)) + ‖wλε − w‖W 1,q(rd−1,(0,R))

≤
( ∫ R

0
|wλε − ψ|qrd−1 + |w′λε − ψ′|qrd−1 dr

)1/q
+ ε

≤R d−1
q

( ∫ R

0
|wλε − ψ|q + |w′λε − ψ′|q dr

)1/q
+ ε

≤R d−1
q ‖wλε − ψ‖W 1,q(−µ,R) + ε

≤ε(R d−1
q + 1).

Thus w can be approximated by functions in C∞[0, R] and the proof is finished. �
Lemma A.2. The usual Sobolev spaceW 1,q(0, R) is contained inW 1,q(rd−1, (0, R)).
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Proof. If v ∈ W 1,q(0, R), then v has a distributional derivative v′. The claim then
follows from the inclusion Lq(0, R) ⊂ Lq(rd−1, (0, R)) which holds since

∫ R

0
|v|q rd−1 dr ≤

∫ R

0
|v|q Rd−1 dr. �

Lemma A.3. Let vn ∈ W 1,q(rd−1, (0, R)) be a sequence such that
vn → v weakly in Lq(rd−1, (0, R))

and v′n is bounded in Lq(rd−1, (0, R)). Then v ∈ W 1,q(rd−1, (0, R)) and
v′n → v′ weakly in Lq(rd−1, (0, R))

up to a subsequence.

Proof. Since v′n is bounded in Lq(rd−1, (0, R)), there is g ∈ Lq(rd−1, (0, R)) such
that v′n → g in Lq(rd−1, (0, R)) weakly up to a subsequence (see e.g. [Yos80, p126]).
Let ϕ ∈ C∞0 (0, R). Then

∫ R

0
gϕ dr =

∫ R

0
g
ϕ

rd−1 r
d−1 dr = lim

n→∞

∫ R

0
v′n

ϕ

rd−1 r
d−1 dr

= lim
n→∞

∫ R

0
v′nϕdr

= lim
n→∞−

∫ R

0
vnϕ

′ dr

= −
∫ R

0
vϕ′ dr.

Hence g ∈ Lq(rd−1, (0, R)) is the distributional derivative of v, as desired. �
Lemma A.4. If v ∈ W 1,q(rd−1, (0, R)), then v+ := max(v, 0) ∈ W 1,q(rd−1, (0, R))
with

(v+)′ =



v′ a.e. in {r ∈ (0, R) : v > 0} ,
0 a.e. in {r ∈ (0, R) : v ≤ 0} .

Proof. Let ϕ ∈ C∞0 (0, R) with sptϕ ⊂ I, where I b (0, R) is an interval. Since
the restriction v|I is in the standard Sobolev space W 1,q(I), we have also (v|I)+ ∈
W 1,q(I) and

((v|I)+)′ =



v′ a.e. in {r ∈ I : v > 0} ,
0 a.e. in {r ∈ I : v ≤ 0} .

Therefore
∫ R

0
v+ϕ

′ dr =
∫

I
(v|I)+ϕ

′ dr = −
∫

I
((v|I)+)′ϕdr =

∫ R

0
(v+)′ϕdr.

Since clearly (v+)′ ∈ Lq(rd−1, (0, R)), it follows that v ∈ W 1,q(rd−1, (0, R)). �
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