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Abstract
We study reconstruction of an unknown function from its d-plane Radon transform
on the flat torus T

n = R
n/Z

n when 1 ≤ d ≤ n − 1. We prove new reconstruction
formulas and stability results with respect to weighted Bessel potential norms. We
solve the associated Tikhonov minimization problem on Hs Sobolev spaces using the
properties of the adjoint and normal operators. One of the inversion formulas implies
that a compactly supported distribution on the plane with zero average is a weighted
sum of its X-ray data.

Keywords Radon transform · Fourier analysis · Periodic distributions ·
Regularization

Mathematics Subject Classification 44A12 · 42B05 · 46F12 · 45Q05

1 Introduction

We study reconstruction of an unknown function from its d-plane Radon transform
on the flat torus T

n = R
n/Z

n when 1 ≤ d ≤ n − 1. The d-plane Radon transform of
a function f on T

n encodes the integrals of f over all periodic d-planes. The usual
d-plane Radon transform of compactly supported objects on R

n can be reduced into
the periodic d-plane Radon transform, but not vice versa. This was demonstrated for
the geodesic X-ray transform in the recent work of Ilmavirta et al. [11]. As general
references on the Radon transforms, we point to [5,6,14,15].

Reconstruction formulas for integrable functions and a family of regularization
strategies considered in this article were derived in [11] for the geodesic X-ray trans-
form (d = 1) on T

2. We extend these methods to the d-plane Radon transforms of
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higher dimensions, study new types of reconstruction formulas for distributions, and
prove new stability estimates on the Bessel potential spaces. This article considers only
the mathematical theory of Radon transforms on T

n , whereas numerical algorithms
(Torus CT) were implemented in [11,13].

Injectivity, a reconstruction method and certain stability estimates of the d-plane
Radon transform on T

n were proved for distributions by Ilmavirta in [7]. Our recon-
struction formulas and stability estimates in this article are different than the ones in
[7]. The first injectivity result for the geodesic X-ray transform on T

2 was obtained
by Strichartz in [19], and generalized to T

n by Abouelaz and Rouvière in [2] if the
Fourier transform is �1(Zn). Abouelaz proved uniqueness under the same assumption
for the d-plane Radon transform in [1].

TheX-ray transform and tensor tomography onT
n has been applied to other integral

geometry problems. These examples include the broken ray transform on boxes [7],
the geodesic ray transform on Lie groups [8], tensor tomography on periodic slabs
[10], and the ray transforms on Minkowski tori [9]. We expect that the d-plane Radon
transform on T

n has applications in similar and generalized geometric problems as
well, but have not studied this possibility any further.

This article is organized as follows. The main results are stated in Sect. 1.1. We
recall preliminaries and prove some basic properties in Sect. 2. We prove new inver-
sion formulas in Sect. 3. We prove our stability estimates and theorems on Tikhonov
regularization in Sect. 4.

1.1 Results

We describe our results next. Here we only briefly introduce the notation used, and
more details are given in the subsequent sections. One can also find more details in
[7,11]. Let n, d ∈ Z be such that n ≥ 2 and 1 ≤ d ≤ n − 1. We define the d-plane
Radon transform of f ∈ T := C∞(Tn) as

Rd f (x, A) :=
∫

[0,1]d
f (x + t1v1 + · · · + tdvd)dt1 · · · dtd (1)

where A = {v1, . . . , vd} is any set of linearly independent integer vectors vi ∈ Z
n .

It can be shown that A spans a periodic d-plane on T
n , and on the other hand,

any periodic d-plane on T
n has a basis of integer vectors. We can identify all peri-

odic d-planes on T
n by the elements in the Grassmannian space Gr(d, n) which is

the collection of all d-dimensional subspaces of Q
n . We redefine the d-plane Radon

transform on T
n as Rd f : Gr(d, n) → C

∞(Tn) without a loss of data. The defini-
tion of Rd extends to the periodic distributions f ∈ T ′ such that Rd f (·, A) ∈ T ′
for any A ∈ Gr(d, n). We use the shorter notations Rd,A f = Rd f (·, A) and
Xd,n = T

n × Gr(d, n). More details are given in Sect. 2.1.
Let w : Z

n ×Gr(d, n) → (0,∞) be a weight function such that w(·, A) is at most
of polynomial decay (20) for any fixed A ∈ Gr(d, n). If not said otherwise, then a
weight w is always assumed to be of this form. The associated Fourier multipliers
on distributions are denoted by Fw. We denote the weighted Bessel potential space
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on the image side by L p,l
s (Xd,n;w) where s ∈ R, p, l ∈ [1,∞]. The usual Bessel

potential spaces onT
n are denoted by L p

s (Tn), and Hs(Tn) = L2
s (T

n) is the fractional

L2 Sobolev space. The L p,l
s (Xd,n;w) norms are �l norms over Gr(d, n) of the w-

weighted Bessel potential norms of L p
s (Tn;w(·, A))with A ∈ Gr(d, n). More details

are given in Sect. 2.2.
We show that L p,l

s (Xd,n;w) are Banach spaces when p ∈ [1,∞] in Lemma 2.1.
Many of our results consider the Hilbert spaces with p = l = 2. Most of the theorems
in this articlewould have been unreachable for Rd when d < n−1 if we did not include
weights in the data spaces. We construct weights which satisfy the assumptions of our
theorems in Sect. 2.3.

Remark 1.1 If d = n − 1, then weights are not that important for the analysis of Rd

since Rd maps f ∈ Hs(Tn) with f̂ (0) = 0 continuously to the natural image space
Hs(Xd,n)without setting anyweight. Therefore weights are only required at the origin
on the Fourier side of the data space. This was demonstrated in the case of n = 2 and
d = 1 in [11], or for example in the special case (7) of Theorem 1.3.

Our first theorem considers the adjoint and the normal operators of Rd : Hs(Tn) →
L2,2
s (Xd,n;w). This generalizes [11, Proposition 11] into higher dimensions. Theorem

1.1 and Corollary 1.2 are proved in Sect. 2.4.3.

Theorem 1.1 (Adjoint and normal operators) Let s ∈ R and suppose that there exists
Cw > 0 such that

∑
A∈�k

w(k, A)2 ≤ C2
w, �k := { A ∈ Gr(d, n) ; k⊥A } (2)

for any k ∈ Z
n. Then the adjoint of Rd : Hs(Tn) → L2,2

s (Xd,n;w) is given by

R̂∗
dg(k) =

∑
A∈�k

w(k, A)2 ĝ(k, A) (3)

and the normal operator R∗
d Rd : Hs(Tn) → Hs(Tn) is the Fourier multiplier associ-

ated with Wk := ∑
A∈�k

w(k, A)2. In particular, the mapping FW−1
k

R∗
d : Rd(T ′) →

T ′ is the inverse of Rd .

Theorem 1.1 gives a new inversion formula in terms of the adjoint and a Fourier
multiplier. Its Corollary 1.2 gives new stability estimates on Hs(Tn). The stability
estimates of R1 on Hs(T2) were not explicitly written down in [11] but they can be
found between the lines. We denote by R∗,w

d the adjoint of Rd associated to the weight
w when the weight needs to be specified.

Corollary 1.2 (Stability estimates) Suppose that the assumptions of Theorem 1.1 hold,
and that there exists cw > 0 such that Wk ≥ c2w for any k ∈ Z

n.

(i) Then FW−1
k

R∗
d : L2,2

s (Xd,n;w) → Hs(Tn) is 1/cw-Lipschitz.
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(ii) Let f ∈ T ′. Then

‖ f ‖Hs (Tn) ≤ 1

cw

‖Rd f ‖L2,2
s (Xd,n;w)

. (4)

(iii) Let w̃(k, A) = w(k,A)√
Wk

and p ∈ [1,∞]. Then R∗,w̃
d Rd f = f and ‖ f ‖L p

s (Tn) =
‖R∗,w̃

d Rd f ‖L p
s (Tn) for any f ∈ T ′.

In order to prove L p
s � L p

s type stability (iii) for more general weights in terms of
the normal operator, one would have to show that FW−1

k
is a bounded L p multiplier.

Other stability estimates on L p
s (Tn) are given in terms of Rd f in Proposition 4.3.

These stability estimates follow from Corollary 1.2 and the Sobolev inequality on T
n .

This method requires additional smoothness of Rd f in order to control the norm of f
due to the use of the Sobolev inequality.

We have proved three other new inversion formulas for Rd as well. The other two
inversion formulas are given in Proposition 3.1 and its Corollary 3.3. Proposition
3.1 generalizes the inversion formula [11, Theorem 1] into higher dimensions. Its
Corollary 3.3 generalizes the formula for all periodic distributions using the structure
theorem. We state the third inversion formula here since we find it to be the most
interesting one. Theorem 1.3 is proved in the end of Sect. 3.

Theorem 1.3 (Periodic filtered backprojections) Suppose that f ∈ T ′. Let w : Z
n ×

Gr(d, n) → R be a weight so that

∑
A∈�k

w(k, A) = 1, �k := { A ∈ Gr(d, n) ; k⊥A } (5)

and the series is absolutely convergent for any k ∈ Z
n. (The weight does not have to

generate a norm or have at most of polynomial decay.) Then

( f , h) =
∑

A∈Gr(d,n)

(Fw(·,A)Rd,A f , h), ∀h ∈ C∞(Tn). (6)

Moreover, if f has zero average and d = n − 1, then

f =
∑

A∈Gr(d,n)

Rd,A f . (7)

Remark 1.2 The author is not aware of a similar formula for the inverse Radon trans-
form in earlier literature. We emphasize that this new result implies that a clever sum
of the (n − 1)-plane Radon transform data is the target function. If n = 2, this holds
true for the X-ray transform of compactly supported functions on the plane R

2. We
further remark that it is easy to recover the average of a function and filter it out from
Rn−1 f .
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Finally, we state our results on regularization. These results generalize [11, The-
orems 2 and 3] into higher dimensions. The proofs are given in Sect. 4. Let g ∈
L2,l
r (Xd,n;w). We consider the Tikhonov minimization problem

argmin
f ∈Ht (Tn)

(
‖Rd f − g‖l

L2,l
r (Xd,n;w)

+ α‖ f ‖2Hs (Tn)

)
. (8)

for any n ≥ 2, 1 ≤ d ≤ n−1,α > 0, l = 2, and r , s, t ∈ R.We do not fix the regularity
of f a priori but the space Ht (Tn)will be found after solving theminimization problem
for distributions in general.

Let w be a weight, z ∈ R, and α > 0. We define the operator Pα
w,z : T ′ → T ′ to

be the Fourier multiplier associated with

pα
w,z(k) := 1

Wk + α 〈k〉2z . (9)

Theorem 1.4 (Tikhonov minimization problem) Let w be a weight such that c2w ≤
Wk ≤ C2

w for some uniform constants cw,Cw > 0. Suppose that α > 0, and s ≥
r . Then the unique minimizer of the Tikhonov minimization problem (8) with g ∈
L2,2
r (Xd,n;w) is given by f = Pα

w,s−r R
∗
dg ∈ H2s−r (Tn).

The last theorem we state in the introduction generalizes the result [11, Theorem
3] on regularization strategies to higher dimensions.

Theorem 1.5 (Regularization strategy) Let w be a weight such that c2w ≤ Wk ≤ C2
w

for some uniform constants cw,Cw > 0. Suppose r , t, s, δ ∈ R are constants such
that 2s + t ≥ r , δ ≥ 0, and s > 0. Let g ∈ L2,2

t (Xd,n;w) and f ∈ Hr+δ(Tn).
Then the Tikhonov regularized reconstruction operator Pα

w,s R
∗
d is a regularization

strategy in the sense that

lim
ε→0

sup
‖g‖

L2,2t (Xd,n ;w)
≤ε

‖Pα(ε)
w,s R∗

d(Rd f + g) − f ‖Hr (Tn) = 0 (10)

where α(ε) = √
ε is an admissible choice of the regularization parameter.

Moreover, if ‖g‖L2,2
t (Xd,n;w)

≤ ε, 0 < δ < 2s, and 0 < α ≤ c2w(2s/δ − 1), we have
a quantitative convergence rate

‖Pα
w,s R

∗
d(Rd f + g) − f ‖Hr (Tn)

≤ αδ/2sc−δ/s
w C(δ/2s)‖ f ‖Hr+δ(Tn) + C3

wc
−2
w

ε

α

(11)

where C(x) = x(x−1 − 1)1−x .

Remark 1.3 The optimal rate of convergence with respect to ε > 0 can be found by
choosing the regularization parameter α(ε) so that the terms on the right hand side of
(11) are of the same order.
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2 Preliminaries

2.1 Periodic Radon Transforms and Grassmannians

We denote by T the set C∞(Tn) and T ′ its dual space, i.e. the space of periodic
distributions. Denote by Gn

d the set of linearly independent unordered d-tuples in
Z
n \ 0. We may write any element A ∈ Gn

d as A = {v1, . . . , vd}. The elements in the
set Gn

d span all periodic d-planes on T
n .

Suppose that f ∈ T . We define the d-plane Radon transform of f as

Rd f (x, A) :=
∫

[0,1]d
f (x + t1v1 + · · · + tdvd)dt1 · · · dtd . (12)

We remark that Rd : T → T Gn
d , Rd f : T

n × Gn
d → C and Rd f (·, A) : T

n → C.
Denote the duality pairing between T ′ and T by (·, ·). If f , g ∈ T , it follows easily

from Fubini’s theorem that

( f , Rdg(·, A)) = (Rd f (·, A), g). (13)

We define the d-plane Radon transform for any f ∈ T ′ and A ∈ Gn
d simply as

(Rd f (·, A))(g) = ( f , Rdg(·, A)) ∀g ∈ T . (14)

This is the unique continuous extension of Rd(·, A) to the periodic distributions. The
Fourier series coefficients of Rd f (·, A) are defined as usual.

We denote the Grassmannian of d-dimensional subspaces of Q
n by Gr(d, n). If

A, B ∈ Gn
d span the same subspace ofQ

n , then A and B represent the same element in
Gr(d, n), and Rd f (·, A) = Rd f (·, B) holds for any f ∈ T ′ by Theorem 2.4. On the
other hand, for every A ∈ Gr(d, n) there exists Ã ∈ Gn

d that spans A. This allows one
to define the Radon transform as Rd f : Gr(d, n) → T ′ without data redundancy by
setting Rd f (·, A) := Rd f (·, Ã) where Ã ∈ Gn

d spans A ∈ Gr(d, n). This connection
to the Grassmannians was mentioned earlier in [7] but was not directly used.

Remark 2.1 Let us denote the projective space P
n−1 := Gr(1, n). The height of P ∈

P
n−1 is defined by H(P) = gcd(p)−1 |p|�∞ using any representative p of P . The

projective spaceP
1 and the heightwere used in [11] to analyze the number of projection

directions required to reconstruct the Fourier series coefficients of a phantom up to a
fixed radius. This question reduces to Schanuel’s Theorem [17] in algebraic number
theory. This analysis in [11] extends to higher dimensions when d = n − 1.

2.2 Bessel Potential Spaces and Data Spaces

Let f ∈ T ′. We mean by the expression
∑

k∈Zn 〈k〉s f̂ (k)e2π ik·x the limit

f̃ (x) := lim
r→∞ fr ,s(x), fr ,s(x) :=

∑
|k|�∞(Zn )≤r

〈k〉s f̂ (k)e2π ik·x , (15)
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in the sense of distributions. If f ∈ L p(Tn) with p ∈ (1,∞), then fr ,0 → f in
L p(Tn) as r → ∞. Moreover, if p ∈ (1,∞], then f̃ = f almost everywhere as
the pointwise limit by a higher dimensional Carleson–Hunt theorem. These facts are
proved for example in [21, Theorems 4.2 and 4.3]. If p = 1, one can utilize the Cesàro
sums to reconstruct a distribution in L1(Tn) from its Fourier series.

For any Sobolev scale s ∈ R, we define the Bessel potential spaces L p
s (Tn) ⊂ T ′

by the relation f ∈ L p
s (Tn) if and only if (1 − �)s/2 f ∈ L p(Tn) (see e.g. [3]). We

define the Bessel potential norms by

‖ f ‖L p
s (Tn) := ‖(1 − �)s/2 f ‖L p(Tn). (16)

Then the space L p
s (Tn) ⊂ T ′ consists of all f ∈ T ′ with ‖ f ‖L p

s (Tn) < ∞. If
p ∈ (1,∞) and s ∈ R, then

‖ f ‖L p
s (Tn) = lim

r→∞ ‖
∑

|k|�∞(Zn )≤r

〈k〉s f̂ (k)e2π ik·x‖L p(Tn),

‖ f ‖Hs (Tn) =
√√√√∑

k∈Zk

〈k〉2s
∣∣∣ f̂ (k)

∣∣∣2
(17)

where 〈k〉 = (1 + |k|2)1/2 as usual. When p ∈ (1,∞), one has equivalently that
f ∈ L p

s (Tn) if and only if (1 − �)s/2 f ∈ L p(Tn) in terms of the L p convergent
Fourier series and f ∈ T ′. Moreover, for any p ∈ (1,∞] and f ∈ L p

s (Tn) it holds
that

‖ f ‖L p
s (Tn) = ‖ lim

r→∞
∑

|k|�∞(Zn )≤r

〈k〉s f̂ (k)e2π ik·x‖L p(Tn) (18)

where the limit is taken pointwise since the Fourier series converges almost every-
where. If p = 2, then Hs(Tn) = L p

s (Tn) is the fractional L2 Sobolev space. If
p ∈ [1,∞] and s = 0, then the L p

0 (Tn) and L p(Tn) norms agree. The Bessel poten-
tial spaces are used as domains of Rd in this work, which extends studies of the case
p = 2 in [7,11].

If ω : Z
n → (0,∞) and f ∈ T ′, then we define the ω-weighted norms by

‖ f ‖L p
s (Tn;ω) := ‖Fω f ‖L p

s (Tn) (19)

where Fω is the Fourier multiplier of ω. We say that a weight ω : Z
n → (0,∞) is at

most of polynomial decay if there exists C, N > 0 such that

ω(k) ≥ C 〈k〉−N ∀k ∈ Z
n . (20)

We next define suitable data spaces that contain ranges of Rd when its domains
are restricted to the Bessel potential spaces. Let us denote Xd,n := T

n × Gr(d, n)

to keep our notation shorter. We generalize the data space given in [11] to all n ≥ 2,



   64 Page 8 of 27 Journal of Fourier Analysis and Applications            (2020) 26:64 

1 ≤ d ≤ n−1, and p ∈ [1,∞], using the Grassmannians, the Bessel potential spaces
and weights.

Let 1 ≤ d ≤ n − 1 and w : Z
n × Gr(d, n) → (0,∞) be a weight function such

that w(·, A) is at most of polynomial decay for any fixed A ∈ Gr(d, n). We always
assume in this work that the weight is at most of polynomial decay. We say that a
(generalized) function g : Xd,n → C belongs to L p,l

s (Xd,n;w) with 1 ≤ l < ∞ if
the norm

‖g‖l
L p,l
s (Xd,n;w)

:=
∑

A∈Gr(d,n)

‖g(·, A)‖l
L p
s (Tn;w(·,A))

(21)

is finite and g(·, A) ∈ T ′ for any fixed A ∈ Gr(d, n). Similarly, if l = ∞, we define

‖g‖L p,∞
s (Xd,n;w) := sup

A∈Gr(d,n)

‖g(·, A)‖L p
s (Tn;w(·,A)). (22)

In the above definition, one can replace Gr(d, n) by any countable set Y (cf. Lemma
2.1).

If p, l = 2, then the norm is generated by the inner product

(h, g)L2,2
s (Xd,n;w)

:=
∑

A∈Gr(d,n)

(Fw(·,A)h, Fw(·,A)g)Hs(Tn) (23)

which makes L2,2
s (Xd,n;w) a Hilbert space. We prove that the spaces L p,l

s (Xd,n;w)

are Banach spaces when p ∈ [1,∞] in Lemma 2.1. We emphasize that a weight does
not have to have uniform coefficients for its at most of polynomial decay with respect
to Gr(d, n).

There is a connection to the norms used in [11]. Let w be any weight such that∑
A∈Gr(1,2) w(0, A)2 = 1, and w(k, A) ≡ 1 if k �= 0. Now the results in [11] follow

from the results of this article using the norm L2,2
s (X1,2;w) as the image side spaces

in [11] are contained in L2,2
s (X1,2;w).

Yet another norm was used for the stability estimates in [7]. In the cases d = n − 1
and l = ∞, our analysis of Rd would not require weights, and can be performed
similarly to [7,11]. The analysis of Rd |L p

s (Tn) has not been done before if p �= 2. The
Bessel potential norms on the domain side are used to understand better the mapping
properties of Rd .

We state and prove the following lemma for the sake of completeness. We remark
that without the decay condition on weights these weighted spaces would not be
complete.

Lemma 2.1 Let Y be a countable set. Let w : Z
n × Y → (0,∞) be a weight that is

at most of polynomial decay for any fixed y ∈ Y . Suppose that s ∈ R, p ∈ [1,∞], l ∈
[1,∞], and n ≥ 1. Then L p,l

s (Tn ×Y ;w) is a Banach space. In particular, L2,2
s (Tn ×

Y ;w) is a Hilbert space.
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Proof Suppose that 1 ≤ l < ∞. (If l = ∞, the proof is similar.) We first show that
L p,l
s (Tn × Y ;w) is a vector space. Let c ∈ C and f , g ∈ L p,l

s (Tn × Y ;w). We have
trivially that

‖c f ‖l
L p,l
s (Tn×Y ;w)

= |c|l
∑
y∈Y

‖ f (·, y)‖l
L p
s (Tn;w)

. (24)

The Minkowski and triangle inequalities imply

‖ f + g‖
L p,l
s (Tn×Y ;w)

=
⎛
⎝∑

y∈Y
‖Fw(·,y) f (·, y) + Fw(·,y)g(·, y)‖lL p

s (Tn)

⎞
⎠

1/l

≤ ‖ f ‖
L p,l
s (Tn×Y ;w)

+ ‖g‖
L p,l
s (Tn×Y ;w)

.

(25)

This shows that L p,l
s (Tn ×Y ;w) is a vector subspace of all collections of distributions

{ f (·, y)}y∈Y with f (·, y) ∈ T ′.
We show next that L p,l

s (Tn ×Y ;w) is a complete space. Let fi ∈ L p,l
s (Tn ×Y ;w)

be a Cauchy sequence. It follows from the definition of the norm in L p,l
s (Tn × Y ;w)

that fi (·, y) ∈ L p
s (Tn;w(·, y)) is a Cauchy sequence for any y ∈ Y . Suppose that

each L p
s (Tn;w(·, y)) is complete. It follows that fi (·, y) → fy ∈ L p

s (Tn;w(·, y)) as
i → ∞. This implies that there exists a limit of fi in L p,l

s (Tn × Y ;w) by standard
arguments.

Let us prove that L p
s (Tn;w(·, y)) is complete for any y ∈ Y . Take a Cauchy

sequence fi ∈ L p
s (Tn;w(·, y)). Now it follows that the distributions

gi = (1 − �)s/2Fw(·,y) f (26)

are in L p(Tn) and form a Cauchy sequence. Therefore limi→∞ gi =: g exists. We
claim that the distribution defined on the Fourier side as f̂ (k) := ĝ(k)

〈k〉sw(k,y) is the limit

of fi in L p
s (Tn;w(·, y)).

We need to show two things, that f ∈ T ′ and ‖ fi − f ‖L p
s (Tn;w(·,y)) → 0 as i → ∞.

We first notice that (1−�)s/2Fw(·,y) f = g belongs to L p(Tn). We can now calculate
that

‖ fi − f ‖L p
s (Tn;w(·,y)) = ‖(1 − �)s/2Fw(·,y)( fi − f )‖L p(Tn)

= ‖gi − g‖L p(Tn)

(27)

for any i ∈ N. Therefore, ‖ fi − f ‖L p
s (Tn;w(·,x)) → 0 as i → ∞.

It is enough that the Fourier coefficients of f have polynomial growth by the
structure theorem of periodic distributions [18, Chapter 3.2.3]. We have

∣∣ĝ(k)∣∣ ≤
C1 〈k〉α for some α,C1 > 0 since g ∈ L p(Tn) ⊂ T ′. On the other hand, we assumed
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that w(k, y) ≥ C2 〈k〉−N for some C2, N > 0. Hence, we obtain that

∣∣∣ f̂ (k)
∣∣∣ =

∣∣∣∣ ĝ(k)

〈k〉s w(k, y)

∣∣∣∣ ≤ (C1/C2) 〈k〉α+N−s . (28)

This shows that f ∈ T ′. ��
Remark 2.2 One uses the fact that weights have at most of polynomial decay only
to show that the limits of Cauchy sequences are in T ′. One could also allow more
rapid decay for weights but in that case, the objects of the completion would not be
distributions but ultra-distributions [18]. In the analysis of Rd , such generality seems
to be unnecessary and our assumptions avoid this.

2.3 On Constructions ofWeights

In this section, we discuss how to construct weights that satisfy the assumptions of
our theorems. The weights of this paper are of the form w : Z

n ×Gr(d, n) → (0,∞)

with the following properties.

(i) For any A ∈ Gr(d, n) there exists C, N > 0 such that w(k, A) ≥ C 〈k〉−N for
every k ∈ Z

n .
(ii) There exists C > 0 such that Wk ≤ C for every k ∈ Z

n where Wk =∑
A∈�k

w(k, A)2 and �k = { A ∈ Gr(d, n) ; k⊥A }.
(iii) There exists c > 0 such that c ≤ Wk for every k ∈ Z

n .

The property (i) is assumed for any weight in this article to guarantee that
L p,l
s (Xd,n;w) are Banach spaces. The property (ii) is assumed for most of the weights

to guarantee that Rd : L p
s (Tn) → L p,l

s (Xd,n;w) is continuous (with some restrictions
if p, l �= 2). The property (iii) is additionally assumed to prove the stability estimates
and the theorems on regularization.

First of all, it is very easy to construct weights that satisfy (i) alone. It is not hard to
construct weights that satisfy (i) and (ii). Since the set Gr(d, n) is countable, we may
write it with an enumeration ϕ : Gr(d, n) → N. For example, we construct a weight
w(k, A) = 2−ϕ(A) 〈k〉−N with large enough N > 0 chosen such that

∑
k∈Zn 〈k〉−2N <

∞. Then
∑

A∈Gr(d,n)

∑
k∈Zn w(k, A)2 < C for some C > 0. This shows that both

conditions (i) and (ii) hold.
We give next a nontrivial example of a weight satisfying (ii) and (iii) but not (nec-

essarily) (i). Let ϕk : �k → N be an enumeration. Let Q := { (k, A) ∈ Z
n ×

Gr(d, n) ; A ∈ �k }. For any (k, A) ∈ Q, we define the weight w(k, A) := h(k)
ϕk (A)1/2+ε

with some mapping h : Z
n → (a, b) with 0 < a ≤ b < ∞ and ε > 0. If (k, A) /∈ Q,

we set w(k, A) = 1. One has that |�k | = ∞ if 1 ≤ d < n− 1 or k = 0, and |�k | = 1
if d = n − 1 and k �= 0. Now

∑
A∈�k

w(k, A)2 = h2(k)
|�k |∑
i=1

i−1−2ε . (29)
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Hence, we get that a2 ≤ Wk ≤ Cb2 where C = ∑∞
i=1 i

−1−2ε .
The problem gets more difficult if the all three conditions must be satisfied at the

same time.We solve this problem now by combining ideas from the both constructions
above. We make a proposition about a concrete example, and more general methods
are summarized in Remarks 2.3 and 2.4.

Proposition 2.2 Let ϕk : �k → N be an enumeration for any k ∈ Z
n, and let ϕ :

Gr(d, n) → N be an enumeration. Let h : Z
k → (a, b) with 0 < a ≤ b < ∞ and

g(k) = 〈k〉−N for some N ≥ 0. Then the weight

w(k, A) :=
{

h(k)
ϕk (A)

+ g(k)
ϕ(A)

(k, A) ∈ Q

1 (k, A) ∈ Qc
(30)

satisfies the properties (i), (ii) and (iii).

Proof Using the definition (30) and the positivity of the involved functions, we have
that

Wk ≥ h2(k)
∑
A∈�k

ϕk(A)−2 = h2(k)
|�k |∑
i=1

i−2 ≥ a2. (31)

This shows (iii).
Suppose that (k, A) ∈ Q. We use

1

2
w(k, A)2 ≤ h2(k)

ϕk(A)2
+ g2(k)

ϕ(A)2
(32)

to estimate Wk from above. The formula (32) gives

1

2
Wk ≤

∑
A∈�k

(
h2(k)

ϕk(A)2
+ g2(k)

ϕ(A)2

)
≤ h2(k)

|�k |∑
i=1

i−2 + 〈k〉−2N
|�k |∑
i=1

i−2. (33)

Since 〈k〉−2N ≤ 1 and h(k) ≤ b for any k ∈ Z
n , we obtain that Wk ≤ 2C(1 + b2)

where C = ∑∞
i=1 i

−2 < ∞. This shows (ii).
Using the definition (30) and the positivity of the involved functions, we can directly

estimate that

|w(k, A)| ≥ min{1, 1

ϕ(A)
〈k〉−N } = 1

ϕ(A)
〈k〉−N . (34)

This shows that w(·, A) is at most of polynomial decay (i). ��
Remark 2.3 Proposition 2.2 generalizes for w(k, A)|Q = h(k)ψ(k, A) + g(k)ω(A)

with the conditions that h(k) is bounded from above and below, g(k) has at most of
polynomial decay and is bounded above, the sums of ω(A)2 over �k are uniformly
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bounded from above, and the sums of ψ(k, A)2 over �k are uniformly bounded from
below and above.

Remark 2.4 If a weightw satisfies the conditions (i) and (ii), then it can be normalized
as w̃(k, A) := w(k,A)√

Wk
. The normalized weight w̃ has the property that W̃k = 1 for any

k ∈ Z
n . Moreover, since w(k, A) is at most of polynomial decay and

√
Wk ≤ C for

some C > 0, it follows that w̃ is at most of polynomial decay.

We can construct weights that satisfy the assumptions of Theorem 1.3 by defining
w(k, A) = 2−ϕk (A) for any (k, A) ∈ Q and w(k, A) = 1 if (k, A) /∈ Q. If d < n − 1,
then

∑
A∈�k

w(k, A) = 1 for any k ∈ Z
n , and the series

∑
A∈�k

w(k, A) are absolutely
convergent.

2.4 Basic Properties of Periodic Radon Transforms

In this section,we state andprove somebasic properties of Rd . Someof these properties
were used earlier in the special cases in [7,11]. We have chosen to include most of the
proofs here for completeness.

2.4.1 Periodic Radon Transforms for Integrable Functions

Let T = (t1, . . . , td) ∈ R
d and A = {v1, . . . , vd} ∈ Gn

d . We can define Rd f (·, A) for
L1(Tn) functions simply as

Rd,A f (x) :=
∫

[0,1]d
f (x + t1v1 + · · · + tdvd)dt1 · · · dtd (35)

where the formula is defined for a.e. x ∈ T
n . We lighten our notation by denoting the

corresponding linear combinations by T · A = t1v1 + · · · + tdvd with respect to the
enumeration of A. The following basic properties are valid.

Lemma 2.3 Suppose that f ∈ L1(Tn) and A ∈ Gn
d. Then Rd,A f can be defined by

the formula (35) for a.e. x ∈ T
n. Moreover,

(i) this definition coincides with the distributional definition: for every f ∈ L1(Tn)

and g ∈ L∞(Tn) it holds that (Rd,A f , g) = ( f , Rd,Ag);
(ii) Rd,A : L p(Tn) → L p(Tn) is 1-Lipschitz for any p ∈ [1,∞].
(iii) Suppose that f ∈ T ′, A ∈ Gn

d and Rd f (·, A) ∈ L1(Tn). Then Rd,A f (x+S ·A) =
Rd,A f (x) for a.e. x ∈ T

n and every S ∈ R
d .

We postpone the proof of Lemma 2.3 for a while. We remark that Lemma 2.3 is a
simple generalization of [11, Lemma 7], which was stated in [11] without a proof. We
need to first introduce some useful notations.

Let q = n − d and V be the linear subspace of R
n spanned by A. Now there

exist distinct unit vectors e1A , . . . , eqA ∈ R
n along the positive coordinate axes,
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{e1, . . . , en}, such that eiA /∈ V and EA := {v1, . . . , vd , e1A , . . . , eqA } spans R
n .

We define ϕA : [0, 1]n → R
n by the formula

ϕA(t1, . . . , tq , s1, . . . , sd) = t1e1A + · · · + tqeqA + s1v1 + · · · + sdvd . (36)

We may write T = (t1, . . . , tq), S = (s1, . . . , sd) and dx = dSdT = dTdS to
shorten notation.

Remark 2.5 These coordinates are not unique, but we suppose that we have fixed some
e1A , . . . , eqA for every A ∈ Gn

d . The specific choice is not important in our method.

Next we discuss some elementary properties of the coordinates ϕA. The image
of ϕA is an n-parallelepiped when interpreted in R

n . A simple calculation shows
that |det(DϕA)| = ∣∣det(v1, . . . , vn, e1A , . . . , eqA )

∣∣ ∈ Z+, which is also equal to the
volume of the n-parallelepiped spanned by EA. The corners of the parallelepiped,
ϕA(T , S) with T ∈ {0, 1}q , S ∈ {0, 1}d , have integer coordinates as well. It can
be argued that the coordinates (36) wrap around the torus |det(DϕA)| times when

projected into T
n , i.e. |det(DϕA)| =

∣∣∣ϕ−1
A (x)

∣∣∣ for any x ∈ T
n .

Let us denote the Lebesgue measure on T
n by dm and on [0, 1]n by dx . We thus

have the change of coordinates formula for integrals of measurable functions in the
form of

∫
Tn

f dm = 1

|det(DϕA)|
∫

[0,1]n
f ◦ ϕA |det(DϕA)| dx

=
∫

[0,1]n
f ◦ ϕAdx .

(37)

The formula (37), in a slightly different form, was used in the proofs given in [11].
The connection to [11] is explained with more details in Remark 2.6.

Remark 2.6 Let n = 2, d = 1, v = (v1, v2) ∈ Z
2 \ {0} and A = {v}. Suppose that v

is not parallel to e1, which in turn implies that v2 �= 0. If we choose EA = {e1}, then
the formula |det(DϕA)| = ∣∣v2∣∣ holds and it is easy to check that the coordinates wrap∣∣v2∣∣ times around T

2. If v is parallel to e1, then one chooses EA = {e2} instead of e1.
This is in-line with the formulas derived in [11] but there the coordinates were scaled
so that they wrap around T

2 exactly once.

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3 The properties (i) and (iii) follow easily from the definitions, and
the proofs are thus omitted.

We show first that the mapping Rd,A is well defined by the formula (35). Let
0̃ = (0, . . . , 0) ∈ R

d . We get from Fubini’s theorem and the formula (37) that

∫
Tn

f dm =
∫

[0,1]q
Rd,A f (ϕA(T , 0̃))dT (38)
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and Rd,A f (ϕA(T , 0̃)) ∈ L1([0, 1]q). It follows from the definition (35) of Rd,A f that

Rd,A f (ϕA(T , 0̃)) = Rd,A f (ϕA(T , S)) (39)

for all S ∈ R
d .

We show that Rd,A f is a measurable function. Suppose for simplicity that f is real
valued. Let α > 0 and define the sets

Xα = { T ∈ [0, 1]q ; Rd,A f (ϕA(T , 0̃)) > α }. (40)

We have already proved that the set Xα is measurable for any α > 0. Now we get
from the formula (39) that

{ p ∈ [0, 1]n ; Rd,A f (ϕA(p)) > α } = Xα × [0, 1]d . (41)

The set Xα × [0, 1]d is measurable as a product of measurable sets. Since ϕA is a
smooth change of coordinates, we first find that ϕA(Xα × [0, 1]d) is measurable, and
thus Rd,A f is measurable. If f is complex valued, then the above argument can be
done separately for the real and imaginary parts as Rd,A is linear.

Now we are ready to prove the property (ii). Suppose that f ∈ L p(Tn) and p ∈
[1,∞). The formulas (37) and (39), and Hölder’s inequality give

∫
Tn

∣∣Rd,A f
∣∣p dm =

∫
[0,1]q

∫
[0,1]d

∣∣Rd,A f ◦ ϕA
∣∣p dx

=
∫

[0,1]q

∣∣∣(Rd,A f )(ϕA(T , 0̃))
∣∣∣pdT

≤
∫

[0,1]q
(Rd,A | f |p)(ϕA(T , 0̃))dT

= ‖ f ‖p
L p(Tn)

< ∞.

(42)

Hence Tonelli’s theorem implies that Rd,A f ∈ L p(Tn). If p = ∞, then trivially
‖Rd,A f ‖L∞(Tn) ≤ ‖ f ‖L∞(Tn). ��

2.4.2 Mapping Properties of Periodic Radon Transforms

We first recall the inversion formula in [7]. If one writes the formula [7, Eq. (2)] in
terms of the periodic subspaces, it gives the following theorem.

Theorem 2.4 (Eq. (2) in [7]) Let f ∈ T ′, k ∈ Z
n and A ∈ Gr(d, n). Then

R̂d f (k, A) = f̂ (k)δk⊥A, where

δk⊥A =
{
1 if k⊥A

0 otherwise.
(43)
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It is evident that for every k ∈ Z
n there exists A ∈ Gr(d, n) such that k⊥A, see [1,

p. 11] and [7, Lemma 9]. This directly gives a reconstructive inversion procedure for
Rd . In Sect. 3, we derive new inversion formulas which might provide computational
advantage in practice (cf. [11] when n = 2 and d = 1).

Lemma 2.5 Let A ∈ Gr(d, n).

(i) If P : T ′ → T ′ acts as a Fourier multiplier (pk)k∈Zn , then [P, Rd,A] = 0.
(ii) Rd,A : L p

s (Tn) → L p
s (Tn) is 1-Lipschitz for any p ∈ [1,∞].

Proof (i) This is a simple application of Theorem 2.4. We calculate that

R̂d(P f )(k, A) = P̂ f (k)δk⊥A = pk f̂ (k)δk⊥A = P̂(Rd f )(k, A). (44)

(ii) Suppose that f ∈ L p
s (Tn). Now h := (1 − �)s/2 f ∈ L p(Tn). Notice that

Rd,Ah ∈ L p(Tn) by Lemma 2.3. We have by the property (i) that (1−�)s/2Rd,A f =
Rd,Ah ∈ L p(Tn). Hence Rd,A f ∈ L p

s (Tn). We can conclude that

‖Rd,A f ‖L p
s (Tn) = ‖Rd,Ah‖L p(Tn) ≤ ‖h‖L p(Tn) = ‖ f ‖L p

s (Tn) (45)

by Lemma 2.3. ��
The next lemma generalizes [11, Proposition 11] to many different directions.

Lemma 2.6 Let p ∈ [1,∞].
(i) Let l ∈ [1,∞). Suppose that for any A ∈ Gr(d, n) there exists CA > 0 such that

w(k, A) = CA for every k⊥A. Moreover, suppose that

Cl
w :=

∑
A∈Gr(d,n)

Cl
A < ∞. (46)

Then the Radon transform Rd : L p
s (Tn) → L p,l

s (Xd,n;w) is Cw-Lipschitz.
(ii) Suppose that for any A ∈ Gr(d, n) there exists CA > 0 such that w(k, A) = CA

for every k⊥A. Moreover, suppose that

Cw = sup
A∈Gr(d,n)

CA < ∞. (47)

Then the Radon transform Rd : L p
s (Tn) → L p,∞

s (Xd,n;w) is Cw-Lipschitz.
(iii) Suppose that there exists Cw > 0 such that

∑
A∈�k

w(k, A)2 ≤ C2
w, �k := { A ∈ Gr(d, n) ; k⊥A } (48)

for any k ∈ Z
n. Then the Radon transform Rd : Hs(Tn) → L2,2

s (Xd,n;w) is
Cw-Lipschitz.
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Proof (i) We have that

‖Rd,A f ‖L p
s (Tn) ≤ ‖ f ‖L p

s (Tn) (49)

for any A ∈ Gr(d, n) by Lemma 2.5. Theorem 2.4 implies that

Fw(·,A)Rd,A f (x) =
∑
k⊥A

w(k, A) f̂ (k)e2π ik·x . (50)

This gives that Fw(·,A)Rd,A f = CARd,A f . Now it follows from (49) and the definition
of Cl

w that

‖Rd f ‖l
L p,l
s (Xd,n;w)

=
∑

A∈Gr(d,n)

Cl
A‖Rd,A f ‖l

L p
s (Tn)

≤ Cl
w‖ f ‖l

L p
s (Tn)

.

(51)

(ii) A calculation similar to the proof of (i) shows that

‖Rd f ‖L p,∞
s (Xd,n;w) ≤ ‖ f ‖L p

s (Tn) sup
A∈Gr(d,n)

CA. (52)

(iii) We have that

‖Rd f ‖2L2,2
s (Xd,n;w)

=
∑

A∈Gr(d,n)

‖
∑
k⊥A

w(k, A) 〈k〉s f̂ (k)e2π ik·x‖2L2(Tn)

=
∑

A∈Gr(d,n)

∑
k⊥A

w(k, A)2
∣∣∣〈k〉s f̂ (k)

∣∣∣2

=
∑
k∈Zn

∑
A∈�k

w(k, A)2 〈k〉2s
∣∣∣ f̂ (k)

∣∣∣2

≤ C2
w‖ f ‖2L2

s (T
n)

(53)

where the order of summation can be interchanged by non-negativity of the terms. ��
Remark 2.7 If d = n − 1, then the only restriction on w in the case of (iii) is∑

A∈Gr(n−1,n) w(0, A)2 < ∞. This follows since each A ∈ Gr(n − 1, n) has a
unique normal direction.

2.4.3 Adjoint and Normal Operators

Next, we study the adjoint and normal operators of Rd when the image side is equipped
with the Hilbert space L2,2

s (Xd,n;w) satisfying the assumptions (iii) of Lemma 2.6.
This generalizes the considerations in [11, Sect. 2.4] into higher dimensions and for
any 1 ≤ d ≤ n − 1.
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Proof of Theorem 1.1 Let f ∈ Hs(Tn) and g ∈ L2,2
s (Xd,n;w). Using the definition of

the inner product (23), we get

(Rd f , g)L2,2
s (Xd,n;w)

=
∑

A∈Gr(d,n)

(Fw(·,A)Rd f , Fw(·,A)g)Hs(Tn)

=
∑

A∈Gr(d,n)

∑
k⊥A

w(k, A)2 〈k〉2s f̂ (k)ĝ(k, A)∗

=
∑
k∈Zn

∑
A∈�k

w(k, A)2 〈k〉2s f̂ (k)ĝ(k, A)∗

=
∑
k∈Zn

〈k〉2s f̂ (k)

⎛
⎝ ∑

A∈�k

w(k, A)2 ĝ(k, A)

⎞
⎠

∗

=: ( f , R∗
dg)Hs(Tn)

(54)

wherewe can interchange the order of the summation by the Cauchy-Schwarz inequal-
ity as it implies that the series is absolutely convergent.

We have that

R̂∗
d Rd f (k) =

∑
A∈�k

w(k, A)2 R̂d f (k, A)

=
∑
A∈�k

w(k, A)2 f̂ (k)δk⊥A

= f̂ (k)
∑
A∈�k

w(k, A)2

(55)

by the formula for the adjoint and Theorem 2.4. ��

We prove Corollary 1.2 on inversion formulas and stability estimates next.

Proof of Corollary 1.2 (i) We first calculate that

‖FW−1
k

R∗
dg‖2Hs (Tn) =

∑
k∈Zn

〈k〉2s 1

W 2
k

∣∣∣∣∣∣
∑
A∈�k

w(k, A)2 ĝ(k, A)

∣∣∣∣∣∣
2

(56)

for any g ∈ L2,2
s (Xd,n;w). The triangle inequality and Hölder’s inequality for the

sequences w(k, A) and w(k, A)
∣∣ĝ(k, A)

∣∣ over A ∈ �k gives that

∣∣∣∣∣∣
∑
A∈�k

w(k, A)2 ĝ(k, A)

∣∣∣∣∣∣
2

≤ Wk

⎛
⎝ ∑

A∈�k

w(k, A)2
∣∣ĝ(k, A)

∣∣2
⎞
⎠ . (57)
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Recall that

‖g‖2
L2,2
s (Xd,n;w)

=
∑
k∈Zn

〈k〉2s
∑

A∈Gr(d,n)

w(k, A)2
∣∣ĝ(k, A)

∣∣2 (58)

after a rearrangement of the series. We can conclude from the formulas (56), (57) and
(58) that ‖FW−1

k
R∗
dg‖Hs (Tn) ≤ 1

cw
‖g‖L2,2

s (Xd,n;w)
.

(ii) This is a simple calculation using the formula for the normal operator:

(Rd f , Rd f )L2,2
s (Xd,n;w)

= ( f , FWk f )Hs (Tn) ≥ inf
k∈Zn

Wk‖ f ‖2Hs (Tn) (59)

if f ∈ Hs(Tn).
(iii) We have by Remark 2.4 that w̃ is a weight that satisfies the assumptions of

Theorem 1.1 and W̃k = 1 for any k ∈ Z
n . Therefore, the corresponding adjoint R∗,w̃

d

is well-defined, and R∗,w̃
d Rd f = f for any f ∈ T ′ by Theorem 1.1. ��

3 Inversion Formulas

We have already proved one new inversion formula in Corollary 1.2 for Hs(Tn)

functions. In this section, we prove three other inversion formulas. One of the formulas
generalizes the inversion formula for R1 on L1(T2) proved in [11, Theorems 1 and 8].
The second inversion formula is a corollary of the first one and remains valid for any
distribution. The third inversion formula takes a slightly different approach and shows
that a distribution f ∈ T ′ is a weighted sum of the data Rd,A f over the set Gr(d, n).
These formulas might have practical value.

Proposition 3.1 (The first inversion formula) Let A ∈ Gr(d, n) and k ∈ Z
n. Suppose

that f ∈ T ′ and Rd,A f ∈ L1(T2). If k⊥A, then

f̂ (k) =
∫

[0,1]q
Rd,A f (ϕA(T , 0)) exp(−2π i(k1A t1A + · · · + kqA tqA))dT . (60)

Proof Fubini’s theorem, Theorem 2.4 and the formula (37) implies that

R̂d,A f (k)

=
∫

[0,1]q

∫
[0,1]d

Rd,A f (ϕA(T , S)) exp(−2π ik · ϕA(T , S))dSdT .
(61)

Since k⊥A, a simple calculation shows that

k · ϕA(T , S) = k1A t1A + · · · + kqA tqA , (62)

and Lemma 2.3 implies that

Rd,A f (ϕA(T , S)) = Rd,A f (ϕA(T , 0)) (63)
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for a.e. T ∈ [0, 1]q .
Hence, using the formulas (62) and (63), we may simplify the formula (61) into the

form

R̂d,A f (k)

=
∫

[0,1]q
Rd,A f (ϕA(T , 0)) exp(−2π i(k1A t1A + · · · + kqA tqA))dT .

(64)

��
Remark 3.1 The proof shows that instead of choosing S = 0, wemay choose any other
values for the S-coordinates as well.

We immediately get the following corollary from Proposition 3.1 and Lemma 2.3.

Corollary 3.2 Suppose that f ∈ L1(Tn). Then the inversion formula (60) is valid.

Remark 3.2 One could prove Corollary 3.2 directly without using Lemma 2.3 and
Theorem 2.4 (or Proposition 3.1). This proof is given for the geodesic X-ray transform
in [11] and it could be adapted to this setting as well.

Recall that the structure theorem of periodic distributions [16, Theorem 2.4.5] states
that for any f ∈ T ′ there exist h ∈ C(Tn) and s ≥ 0 such that

f = (1 − �)sh. (65)

We get another Corollary of Proposition 3.1 and Lemma 2.5.

Corollary 3.3 (The second inversion formula) Let A ∈ Gr(d, n) and k ∈ Z
n. Suppose

that f ∈ T ′ and f = (1 − �)sh, h ∈ C(Tn). If k⊥A, then

f̂ (k) = 〈k〉2s R̂d,Ah(k) = R̂d,A f (k) (66)

where R̂d,Ah(k) can be calculated by the formula (60).

We now prove our third inversion formula stated in the introduction.

Proof of Theorem 1.3 Using Theorem 2.4, we calculate that

F(Fw(·,A)Rd,A f )(k) = w(k, A) f̂ (k)δk⊥A. (67)

Hence, we get

F

⎛
⎝ ∑

A∈Gr(d,n)

Fw(·,A)Rd,A f

⎞
⎠ (k) =

∑
A∈Gr(d,n)

w(k, A) f̂ (k)δk⊥A

= f̂ (k)
∑
A∈�k

w(k, A)

= f̂ (k)

(68)
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Suppose now that d = n − 1 and f̂ (0) = 0. Notice that |�k | = 1 if k �= 0 and
�0 = Gr(n − 1, n). Hence, the formula (7) follows by choosing any weight w such
that

∑
A∈Gr(n−1, n)

w(0, A) = 1, w(0, A) ≥ 0, (69)

and w(k, A) = 1 for any A ∈ Gr(n − 1, n) and k �= 0. ��

4 Stability Estimates and RegularizationMethods

In this section, we look at stability estimates for functions in theBessel potential spaces
when p �= ∞. We also generalize the Tikhonov regularization methods developed in
[11]. In the Tikhonov regularization part, we restrict our study to the functions in
Hs(Tn), as done in [11]. Our results on regularization are new for any 1 ≤ d ≤ n − 1
when n ≥ 3, and the stability estimates are new in any dimension.

4.1 Stability Estimates and the Sobolev Inequality

Recall that in Corollary 1.2 we obtained the estimate

‖ f ‖2Hs (Tn) ≤ 1

c2w
‖Rd f ‖2L2,2

s (Xd,n;w)
(70)

if the weight w is such that the normal operator R∗
d Rd has a uniform lower bound

1
c2w

as a Fourier multiplier. The condition on the weight w is that c2w ≤ Wk =∑
A∈�k

w(k, A)2 ≤ C2
w for some uniform cw,Cw > 0. This implies stability on

L p
s (Tn) if p ≤ 2, as we will show later. We can reach stability estimates for p > 2

using the Sobolev inequality on T
n .

Theorem 4.1 (Sobolev inequality [20]) Let f ∈ T ′. Suppose that s > 0 and 1 < q <

p < ∞ satisfy s/n ≥ q−1 − p−1. Then

‖ f ‖L p(Tn) ≤ C‖ f ‖Lq
s (Tn) (71)

for some C > 0 that does not depend on f .

A proof of the Sobolev inequality on T
n is given in [3, Corollary 1.2].

Lemma 4.2 Let l ∈ [1,∞] and g : Gr(d, n) → T ′.
(i) If t ∈ R, s > 0, and 1 < q < p < ∞ satisfy s/n ≥ q−1 − p−1, then

‖g‖
L p,l
t (Xd,n;w)

≤ C‖g‖
Lq,l
t+s (Xd,n;w)

(72)

for some C > 0 that does not depend on g.
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(ii) If 1 ≤ p < q ≤ ∞, then for any s ∈ R holds

‖g‖
L p,l
s (Xd,n;w)

≤ ‖g‖
Lq,l
s (Xd,n;w)

. (73)

Proof (i) We have

‖g(·, A)‖L p(Tn;w(·,A)) ≤ C‖g(·, A)‖Lq
s (Tn;w(·,A)) (74)

for any A ∈ Gr(d, n) by the Sobolev inequality where C > 0 does not depend on f ,
A andw. Now (72) with t = 0 follows from the definition of the norms ‖ ·‖

Lq,l
s (Xd,n;w)

and the inequality (74).
Fix any z ∈ R. Define then the function g̃ : Gr(d, n) → T ′ by the formula

g̃(·, A) = (1 − �)z/2g(·, A). Now (72) with t = 0 implies

‖g‖
L p,l
z (Xd,n;w)

= ‖g̃‖
L p,l
0 (Xd,n;w)

≤ C‖g̃‖
Lq,l
s (Xd,n;w)

= C‖g‖
Lq,l
z+s (Xd,n;w)

. (75)

(ii) The inequality (73) can be proved similarly. Now the Sobolev inequality is
replaced by the inequality ‖ f ‖L p

s (Tn) ≤ ‖ f ‖Lq
s (Tn), which holds sincem(Tn) = 1 and

p ≤ q. ��
Theorem 1.1 and Lemma 4.2 imply the following, slightly more general, shifted

stability estimates.

Proposition 4.3 (Shifted stability estimates) Let w be a weight such that c2w ≤ Wk ≤
C2

w for some uniform constants cw,Cw > 0. Let f ∈ T ′, s ∈ R, and s(p, n) :=
n

∣∣∣ p−2
2p

∣∣∣.
(i) If 1 < p ≤ 2, then

‖ f ‖L p
s (Tn) ≤ C1‖Rd f ‖L2,2

s (Xd,n;w)
≤ C2‖Rd f ‖L p,2

s+s(p,n)
(Xd,n;w)

, (76)

where C1,C2 > 0 do not depend on f . If p = 1, then the first inequality of (76)
holds.

(ii) If 2 ≤ p < ∞, then

‖ f ‖L p
s (Tn) ≤ C1‖Rd f ‖L2,2

s+s(p,n)
(Xd,n;w)

≤ C2‖Rd f ‖L p,2
s+s(p,n)

(Xd,n;w)
, (77)

where C1,C2 > 0 do not depend on f .

Proof (i) Suppose that f ∈ T ′ and 1 ≤ p ≤ 2. Let h = (1 − �)s/2 f . We have that
‖h‖L p(Tn) ≤ ‖h‖L2(Tn) since p ≤ 2 and m(Tn) = 1. This implies that ‖ f ‖L p

s (Tn) ≤
‖ f ‖L2

s (T
n). Now the first inequality follows from Corollary 1.2.

Suppose additionally that 1 < p < 2. Choose s p = n 2−p
2p > 0 in the part (i) of

Lemma 4.2. Now it holds that

‖Rd f ‖L2,2
s (Xd,n;w)

≤ ‖Rd f ‖L p,2
s+s p (Xd,n;w)

(78)
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for any s ∈ R.
(ii) Suppose that f ∈ T ′ and p > 2. Choose in the Sobolev inequality (71) that

q = 2. Now we can calculate that the Sobolev inequality is valid if s ≥ n p−2
2p . Let us

define that sp = n p−2
2p > 0. Hence, ‖ f ‖L p(Tn) ≤ C‖ f ‖Hsp (Tn).

Let now s ∈ R and f ∈ L p
s (Tn). We then have that

‖ f ‖L p
s (Tn) = ‖(1 − �)s/2 f ‖L p(Tn)

≤ C‖(1 − �)s/2 f ‖Hsp (Tn) = C‖ f ‖Hs+sp (Tn).
(79)

Now the first inequality follows from the part (i) of the theorem. The second inequality
follows from the part (ii) of Lemma 4.2 since p > 2. ��

Remark 4.1 For any f ∈ T ′ there exists s ≥ 0 such that f ∈ L p
−s(T

n) for any
p ∈ [1,∞] by the structure theorem of periodic distributions.

4.2 TikhonovMinimization Problem

We will show that Pα
w,s−r R

∗
dg is the unique minimizer of (8) when l = 2. We first

analyze the regularity properties of Pα
w,z and Pα

w,s−r R
∗
d . Then we understand which

space the regularized reconstruction Pα
w,s−r R

∗
dg lives in when g ∈ L2,2

r (Xd,n;w).

First of all, R∗
d : L2,2

r (Xd,n;w) → Hr (Tn). On the other hand, Pα
w,z : Hr (Tn) →

Hr+2z(Tn) for any r , z ∈ R sinceWk is uniformly bounded from below. We conclude
that Pα

w,s−r R
∗
d : L2,2

r (Xd,n;w) → H2s−r (Tn).
We are not ready to prove Theorem 1.4. The proof uses the same ideas as the proof

of [11, Theorem 2]. The proof presented here also explains somemissing details about
the splitting of the minimization problem into the real and imaginary parts in (84),
(85) and (86). This is one of the crucial parts of the proof of [11, Theorem 2] though
it is not mentioned at all in [11].

Proof of Theorem 1.4 We have that

‖Rd f − g‖2
L2,2
r (Xd,n;w)

=
∑

A∈Gr(d,n)

∑
k⊥A

〈k〉2r w(k, A)2
∣∣∣ f̂ (k) − ĝ(k, A)

∣∣∣2

+
∑

A∈Gr(d,n)

∑
k �⊥A

〈k〉2r w(k, A)2
∣∣ĝ(k, A)

∣∣2 .

(80)
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Since the second term of (80) is independent of f , it can be neglected in the mini-
mization problem (8). On the other hand,

∑
A∈Gr(d,n)

∑
k⊥A

〈k〉2r w(k, A)2
∣∣∣ f̂ (k) − ĝ(k, A)

∣∣∣2

=
∑
k∈Zn

〈k〉2r
∑
A∈�k

w(k, A)2
∣∣∣ f̂ (k) − ĝ(k, A)

∣∣∣2 .

(81)

We next expand the term

α‖ f ‖2Hs (Tn) = α
∑
k∈Zn

〈k〉2s
∣∣∣ f̂ (k)

∣∣∣2 . (82)

We can conclude that a solution to the minimization problem (8) is a minimizer of

∑
k∈Zn

〈k〉2r
⎛
⎝α 〈k〉2s−2r

∣∣∣ f̂ (k)
∣∣∣2 +

∑
A∈�k

w(k, A)2
∣∣∣ f̂ (k) − ĝ(k, A)

∣∣∣2
⎞
⎠ . (83)

Hence, a minimizer of (83) must minimize

Hk( f ) := α 〈k〉2s−2r
∣∣∣ f̂ (k)

∣∣∣2 +
∑
A∈�k

w(k, A)2
∣∣∣ f̂ (k) − ĝ(k, A)

∣∣∣2 (84)

for each k ∈ Z
n .

To proceed, we need to minimize the real part and the imaginary part of (84)
separately. Let us write the real and imaginary parts of the involved terms simply
as fr (k) := �( f̂ (k)), fi (k) := �( f̂ (k)), gr (k, A) := �(ĝ(k, A)) and gi (k, A) :=
�(ĝ(k, A)) to keep our notation shorter. Now, we define the operators

Rk( f ) := α 〈k〉2s−2r fr (k)
2 +

∑
A∈�k

w(k, A)2( fr (k) − gr (k, A))2 (85)

and

Ik( f ) := α 〈k〉2s−2r fi (k)
2 +

∑
A∈�k

w(k, A)2( fi (k) − gi (k, A))2. (86)

These functions have the property that Rk( f ) + Ik( f ) = Hk( f ). Moreover, if Hk is
minimized, then Rk and Ik are minimized, and vice versa.

We show how the minimization is done for the real part. As the minimization for
the imaginary part is similar, we do not repeat the calculations twice. We expand the
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second term of (85), and get

∑
A∈�k

w(k, A)2( fr (k) − gr (k, A))2

= Wk fr (k)
2 − 2 fr (k)

∑
A∈�k

w(k, A)2gr (k, A) +
∑
A∈�k

w(k, A)2gr (k, A)2.
(87)

The last term of (87) does not depend on f , so it can be neglected in the minimization.
Thus, we have arrived to the minimization problem

− 2 fr (k)
∑
A∈�k

w(k, A)2gr (k, A) + (Wk + α 〈k〉2s−2r ) fr (k)
2. (88)

Simple calculus shows that the minimizer of (88) is

fr (k) =
∑

A∈�k
w(k, A)2gr (k, A)

Wk + α 〈k〉2s−2r = �(F(Pα
w,s−r R

∗
dg)(k)). (89)

We can similarly calculate that the unique minimizer of the minimization problem
associated to the imaginary part (86) is fi (k) = �(F(Pα

w,s−r R
∗
dg)(k)). This shows

that the unique minimizer of (84) satisfies f̂ (k) = F(Pα
w,s−r R

∗
dg)(k).

Hence, the unique minimizer of (8) is f = Pα
w,s−r R

∗
dg. The claimed regularity of

f follows from the discussion preceding the proof. ��
Remark 4.2 If l �= 2, the analysis of the Tikhonov minimization problem becomes
more difficult but it might still be possible to adapt the method also in that case (when
p = 2).

4.3 Regularization Strategies

Let X and Y be subsets of Banach spaces and F : X → Y a continuous mapping.
A family of continuous maps Rα : Y → X with α ∈ (0, α0], α0 > 0, is called
a regularization strategy if limα→0 Rα(F(x)) = x for any x ∈ X . A choice of
regularization parameter α(ε) with limε→0 α(ε) = 0 is called admissible if

lim
ε→0

sup
y∈Y

{‖Rα(ε)y − x‖X ; ‖y − F(x)‖Y ≤ ε
} = 0 (90)

holds for any x ∈ X [4,12].
We will show that the solution found in Theorem 1.4 to the Tikhonov minimiza-

tion problem (8) is an admissible regularization strategy with a quantitative stability
estimate. Our proof follows that of [11, Theorem 3].

Proof of Theorem 1.5 Let α > 0. Theorem 1.1 implies that

Pα
w,s R

∗
d(Rd f + g) − f = (Pα

w,s FWk − Id) f + Pα
w,s R

∗
dg. (91)
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To estimate the first term on the right hand side of (91), we calculate that

Pα
w,s FWk − Id = − αW−1

k 〈k〉2s
1 + αW−1

k 〈k〉2s (92)

as a Fourier multiplier. This shows that ‖Pα
w,s FWk − Id‖Hr (Tn)→Hr (Tn) = 1 as Wk is

bounded from below and above. It follows from the dominated convergence theorem
that ‖(Pα

w,s FWk − Id) f ‖2r → 0 as α → 0 if f ∈ Hr (Tn).
Suppose that ‖g‖L2,2

t (Xd,n;w)
≤ ε. We have that ‖R∗

d‖ = ‖Rd‖ = Cw by Lemma

2.6. Hence ‖R∗
dg‖2Ht (Tn)

≤ C2
wε2. This implies that

‖Pα
w,s R

∗
dg‖2Hr (Tn) ≤ C2

wε2 sup
k∈Zn

(
W−1

k

1 + αW−1
k 〈k〉2s

)2

〈k〉2r−2t

≤ C2
wε2c−4

w sup
k∈Zn

(
1

1 + αC−2
w 〈k〉2s

)2

〈k〉2r−2t

≤ C6
wc

−4
w α−2ε2

(93)

where the last inequality follows using −4s + 2r − 2t ≤ 0. We can conclude that

‖Pα
w,s R

∗
dg‖Hr (Tn) ≤ C3

wc
−2
w

ε

α
. (94)

This shows that choosing α = √
ε gives a regularization strategy.

Suppose now that δ > 0. The proof of the estimate (11) is similar to that of [11].
Using the formula (92), we get that

‖Pα
w,s FWk − Id‖Hr+δ(Tn)→Hr (Tn) = sup

k∈Zn

αW−1
k 〈k〉2s−δ

1 + αW−1
k 〈k〉2s . (95)

We can estimate the norm by defining the functions

Fk(x) := αW−1
k x2s−δ

1 + αW−1
k x2s

. (96)

The formula [11,Eq. (38)] implies that themaximumvalueof Fk is (W
−1
k α)δ/2sC(δ/2s)

if α ≤ Wk(2s/δ − 1). We see that α ≤ Wk(2s/δ − 1) holds as we assumed that
α ≤ c2w(2s/δ − 1).

We obtain that

‖(Pα
w,s FWk − Id)‖Hr+δ(Tn)→Hr (Tn)

≤ sup
k∈Zn ,x∈R

Fk(x) ≤ (c−2
w α)δ/2sC(δ/2s). (97)



   64 Page 26 of 27 Journal of Fourier Analysis and Applications            (2020) 26:64 

Hence

‖(Pα
w,s FWk − Id) f ‖Hr (Tn) ≤ (c−2

w α)δ/2sC(δ/2s)‖ f ‖Hr+δ(Tn). (98)

Now the formulas (94) and (98) imply the quantitative estimate (11). ��
Acknowledgements Open access funding provided by University of Jyväskylä (JYU). This work was
supported by the Academy of Finland (Center of Excellence in Inverse Modelling and Imaging, Grant
Numbers 284715 and 309963). The author is grateful to Joonas Ilmavirta who has shared his insight of the
questions studied in the article. The author wishes to thank Giovanni Covi, Keijo Mönkkönen and Mikko
Salo for their valuable comments on the manuscript and suggestions for improvements. The author thanks
the anonymous referees for their helpful comments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abouelaz, A.: The d-plane Radon transform on the torus T
n . Fract. Calc. Appl. Anal. 14(2), 233–246

(2011)
2. Abouelaz, A., Rouvière, F.: Radon transform on the torus. Mediterr. J. Math. 8(4), 463–471 (2011)
3. Bényi, A., Oh, T.: The Sobolev inequality on the torus revisited. Publ. Math. Debr. 83(3), 359–374

(2013)
4. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Appli-

cations, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)
5. Helgason, S.: The Radon Transform. Progress in Mathematics, vol. 5, 2nd edn. Birkhäuser, Boston

(1999)
6. Helgason, S.: Some personal remarks on the Radon transform. Geometric Analysis and Integral Geom-

etry. Contemporary Mathematics, vol. 598, pp. 3–19. American Mathematical Society, Providence
(2013)

7. Ilmavirta, J.: On Radon transforms on tori. J. Fourier Anal. Appl. 21(2), 370–382 (2015)
8. Ilmavirta, J.: On Radon transforms on compact Lie groups. Proc. Am. Math. Soc. 144(2), 681–691

(2016)
9. Ilmavirta, J.: X-ray transforms in pseudo-Riemannian geometry. J. Geom. Anal. 28(1), 606–626 (2018)

10. Ilmavirta, J., Uhlmann, G.: Tensor tomography in periodic slabs. J. Funct. Anal. 275(2), 288–299
(2018)

11. Ilmavirta, J., Koskela, O., Railo, J.: Torus computed tomography. SIAM J. Appl. Math. (2019)
12. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical

Sciences, vol. 120, 2nd edn. Springer, New York (2011)
13. Koskela, O., Railo, J.: Matlab implementation of Torus CT (2019). https://doi.org/10.5281/zenodo.

3243363
14. Krishnan, V.P., Quinto, E.T.: Microlocal analysis in tomography. In: Handbook ofMathematical Meth-

ods in Imaging, vol. 1–3, pp. 847–902. Springer, New York (2015)
15. Quinto, E.T.: An introduction to X-ray tomography and Radon transforms. In: The Radon Trans-

form, Inverse Problems, and Tomography, Proc. Sympos. Appl. Math., vol. 63, pp. 1–23. American
Mathematical Society, Providence, RI (2006)

16. Salo, M.: Fourier Analysis and Distribution Theory, 2013. Lecture Notes, Fall (2013)
17. Schanuel, S.: On heights in number fields. Bull. Am. Math. Soc. 70, 262–263 (1964)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.3243363
https://doi.org/10.5281/zenodo.3243363


Journal of Fourier Analysis and Applications            (2020) 26:64 Page 27 of 27    64 

18. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester
(1987)

19. Strichartz, R.S.: Radon inversion—variations on a theme. Am. Math. Mon. 89(6):377–384, 420–423
(1982)

20. Strichartz, R.S.: Improved Sobolev inequalities. Trans. Am. Math. Soc. 279(1), 397–409 (1983)
21. Weisz, F.: Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory 7,

1–179 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Fourier Analysis of Periodic Radon Transforms
	Abstract
	1 Introduction
	1.1 Results

	2 Preliminaries
	2.1 Periodic Radon Transforms and Grassmannians
	2.2 Bessel Potential Spaces and Data Spaces
	2.3 On Constructions of Weights
	2.4 Basic Properties of Periodic Radon Transforms
	2.4.1 Periodic Radon Transforms for Integrable Functions
	2.4.2 Mapping Properties of Periodic Radon Transforms
	2.4.3 Adjoint and Normal Operators


	3 Inversion Formulas
	4 Stability Estimates and Regularization Methods
	4.1 Stability Estimates and the Sobolev Inequality
	4.2 Tikhonov Minimization Problem
	4.3 Regularization Strategies

	Acknowledgements
	References




