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A Coulomb excitation campaign on 106,108,110Sn at 4.4-4.5 MeV/u was launched at the HIE-ISOLDE
facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to
previous experiments at ∼2.8 MeV/u. More precise B(E2; 0+1 → 2+1 ) values, lifetimes of states via
the Doppler shift attenuation method, and new B(E2; 0+1 → 2+x ), B(E2; 2+1 → 4+1 ) and Q(2+1 ) values
from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

KEYWORDS: shell model, nuclear collectivity, Coulomb excitation

1. Introduction

In nuclear structure, the doubly magic nucleus 100Sn is a key test case of the robustness of the
traditional shells far away from stability. The single-particle description of 100Sn and nuclei with
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similar N and Z may be weakened by collective behavior, driven by proton-neutron interactions and
exhibited through core excitations and nuclear deformation. Many experiments to determine nuclear
collectivity in even-mass Sn isotopes through measurements of reduced electromagnetic transition
probabilities, B(E2), have been performed [1–6]. In order to achieve a higher experimental precision
on the B(E2) values to better evaluate different modern theories addressing this phenomenon, as
discussed in Ref. [7] for instance, a series of safe Coulomb excitation (CE) experiments was carried
out in a new campaign at CERN-ISOLDE.

2. Experiment method

Three unstable Sn isotopes 106,108,110Sn were produced in separate experiments, where a 1.4-GeV
proton beam from the CERN PS Booster induced spallation reactions on a lanthanum carbide target.
Sn isotopes were selectively ionized with the Resonance Ionization Laser Ion Source (RILIS). and
were post-accelerated at the HIE-ISOLDE [8] facility to 4.4-4.5 MeV/u before impinging on a 206Pb
target with a thickness of ∼4 mg/cm2. At these beam energies, contributions to the excitation cross
section from nuclear reactions which are subject to large systematic uncertainties, are eliminated.

The γ rays emitted from the excited states of Sn isotopes were detected with Miniball [9], an
array of segmented high-purity germanium detectors. Doppler correction of γ rays emitted in flight
from beam nuclei was performed by measuring the particles’ scattering angles with a CD-shaped
double-sided silicon strip detector that is segmented in sectors and rings. Forward scattering angles
of nuclei in the range of 20◦-60◦ in the lab frame were covered by the CD detector, as shown in Fig. 1.
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Fig. 1. Top left: energies detected in the CD detector as a function of the lab scattering angle θ, for a beam
nucleus 110Sn and the knocked-out target nucleus 206Pb. Top right, bottom left and bottom right: Doppler-
corrected γ-ray energy spectra for the 0+1 → 2+1 excitations of 110Sn, 108Sn and 106Sn, respectively. The γγ
coincidence projection spectra, gated on the 2+1 → 0+1 transitions, are shown in the insets. In all three Sn
isotopes, the 4+1 → 2+1 γ rays were observed for the first time in Coulomb excitation. Approximately 50% of
the γ-ray data is shown for 110Sn, where the rest is pending a refined data sorting.
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Fig. 2. Left: comparison of experimental (blue) and simulation (red) forward-emitted γ-ray energy spectra
from the 110Sn beam, where the target nucleus 206Pb was detected in the same quadrant of the CD detector
as Miniball. This spectrum was well reproduced in the simulation when assuming a 0.75-ps lifetime of the 2+1
state. Right: the same spectra, but with a simulated lifetime of 1.25 ps.

3. Preliminary results and outlook

By using a higher-Z target with higher beam energies, the CE cross sections were significantly
enhanced compared to past CE experiments at REX-ISOLDE involving the same tin isotopes on a
58Ni target [10, 11]. The γ-ray spectra from this experimental campaign at HIE-ISOLDE are shown
in Fig. 1, along with a CD detector energy matrix for beam/target particle identification and Doppler
correction. The gain in statistics is expected to improve the precision on B(E2; 0+1 → 2+1 ) values sig-
nificantly. Furthermore, the CE to the 4+1 states in all three Sn isotopes was observed for the first time
based on γγ coincidence projection spectra. This enables an opportunity to determine B(E2; 2+1 → 4+1 )
for the first time in 106,108,110Sn. Evidence of γ rays from non-yrast states was also found, so that ad-
ditional B(E2; 0+1 → 2+x ) values may be extracted from the data.

In addition, a lifetime estimate of the 2+1 state in 110Sn was performed via the Doppler shift
attenuation method (DSAM). Using Geant4, the experimental setup, reaction kinematics and γ-ray
emission/detection were simulated. By varying the hypothetical lifetime of the 2+1 state in 110Sn,
simulated γ-ray spectra from both the partially and fully stopped nuclei were then compared with the
experimental spectrum. As shown in Fig. 2, a good agreement was found for τ = 0.75 ps. Efforts to
determine the final lifetime and proper uncertainties will be taken. Lifetime measurements of other
CE γ rays will be attempted using the same DSAM, and compared to the values reported in Ref. [12].

By combining the CE results with previous experiments using the 58Ni target, Q(2+1 ) will be
investigated for 108,110Sn and plotted against their B(E2) values for comparisons with shell model
theories. Further analysis of the data and simulations are underway.

References
[1] A. Banu et al., Phys. Rev. C 72, 061305 (2005).
[2] C. Vaman et al., Phys. Rev. Lett. 99, 162501 (2007).
[3] A. Jungclaus et al., Phys. Lett. B 695, 110 (2011).
[4] G. Guastalla et al., Phys. Rev. Lett. 110, 172501 (2013).
[5] P. Doornenbal et al., Phys. Rev. C 90, 061302(R) (2014).
[6] J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015).
[7] T. Togashi et al., Phys. Rev. Lett. 121, 062501 (2018).
[8] M. J. G. Borge, Nucl. Instrum. Methods Phys. Res., Sect. B 376, 408 (2016).
[9] N. Warr et al., Eur. Phys. J. A 49, 40 (2013).

[10] J. Cederkäll et al., Phys. Rev. Lett. 98, 172501 (2007).
[11] A. Ekström et al., Phys. Rev. Lett. 101, 012502 (2008).
[12] M. Siciliano et al., arXiv:1905.10313v2.

3■■■

010036-3JPS Conf. Proc. , 010036 (2020)32

Proceedings of 13th International Conference on Nucleus-Nucleus Collisions
Downloaded from journals.jps.jp by 130.234.241.61 on 07/16/20




