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Diss. 

The aim of this study is to introduce a statistical inference 

model applicable to the analysis of an instant sample. In this 

connection instant sample means an observed probability sample 

or designed experiment which is not repeated or aimed to be 

repeated. We have demonstrated that the method of support put 

forward by Edwards, is an appropriate statistical inference 

model for such an inference situation. The central inference 

concept of the method of support is logarithm of the likeli­

hood ratio named support S(0), Because the method of support, 

as such is not able to measure inference uncertainty, we 

have proven a new theorem in order to show how the support S(e) 

measures local uncertainty. This theorem shows that the 

method of support is an ordinary inference model. The proof 

is based on Renyi's incomplete probability distribution and 

Renyi's local uncertainty concept defined for it. In the case 

of instant sample we observe only one event whose probability 

is the joint probability P0(y) of the sample, which is accor­

dingly an incomplete probability distribution. In practice, 

applications of the method of support to the estimation and 

statistical test theory lead to the least local uncertainty 

(LLU) estimators and tests. As an empirical application we have 

analyzed an instant sample from Finnish pupils in 1970 with 

their learning achievement (Finnish IEA data). The normal 

linear regression analysis is used as a statistical model. 

Parameter estimation and diagnostics are performed using the 

method of support as inference model. 

Inference Model; Method of Support; Local Uncertainty; Instant 

Sample. 
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I INTRODUCTION 

1 

The present study deals with statistical inference on a 

theoretical level, with a practical research situation as the 

frame of reference. The research situation considered here is 

a typical statistical study in social sciences which can be 

described in terms of statistical concepts on the basis of the 

data producing system. We are dealing with a probability sample 

drawn at random from an existing human population at a given 

moment. Thus, the target population is finite and the sample 

obtained from the population is large, calculated as sampling 

units. Because of the nature of the population, sampling pro­

cedure cannot be repeated as such and often it is not even 

intended to be repeated. In short, the data {y} is obtained 

by means of instant sampling. There is in statistical literature 

criticism the methods commonly used in this type of research, 

as can be seen in the report of Henke 1 and Morrison ( 1969) on the incor­

rect use of statistical inference. Nevertheless, scientific and 

other institutes on different fields of research produce statisti­

cal surveys based on the instant sampling procedure described 

above. In the present study, we are primarily interested in how 

the inference situation described above can be analyzed in such 

a way that statistical inference can be seen as an entity of 

its own and also in how the properties of the data influence 

the choice of the inference model and the expression of infer­

ence uncertainty. 

In Chapters 2-1 and 2-2 preliminary definitions are presented, 

which concern the decomposition of a statistical inference situation 

into a model triplet [M,P,IJ where M denotes the substantive 

problem- examined as a mathematical model and P the randomness 

of observations due either to the phenomenon in question or to 

a data producing system like the probability sampling. The. 

symbol I denotes the inference model the central concept of 

which is the measurement of inference uncertainty. By inference 
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uncertainty we mean uncertainty occurring in inductive in-

ference where generalizations are made on the basis of the 

particular data. 

Inference uncertainty is one of the main objects of interest 

considered in the present study. It is examined in Chapter 2-3 

where a synthesis of the inference models in use is presented, 

including the Neyman-Pearson test theory and Bayesian inference. 

Inference uncertainty is considered in terms of the definition 

of those events for which the inference uncertainty, usually 

some concept of probability, used in the model is determined. 

Our frame of reference is the concept of total evidence, put 

forward by Suppes (1966), which refers to the observed events 

at a statistician's disposal and to such events which he is 

able t,o obtain (unobserved events). The synthesis of the infer­

ence models reveals that most of these models presuppose the 

use of unobserved events in the measurement of inference uncer­

tainty. The clearest case of unobserved events is found in the 

frequentist inference which presupposes the multiple repetition 

of the sample. 

In the case of an instant sample only one point is observed from 

the sample space. The realization of this point is data {y} and 

the probability assigned to it is the joint probability P
0

(y) of 

the sample. The probability measure P
0 

is assumed to be discrete 

and it includes in some mathematical form the substantial problem to 

be studied and the stochastic element du� to the sampling fluctu­

ations. In a situation like this, it is appropriate to use the 

class of inference models operating with a limited total evidence 

where the central concept is usually likelihood and the application 

of a likelihood function. If the parameter 0 belongs to the parameter 

space a, then the likelihood for 0 is L
Y

(0) � P
0

(y). In its most 

reduced case, an inference model based on likelihood uses data 

alone as the total evidence. This class of inference models 

includes the method of support, put forward by Edwards (1972), 

whose central concept of inference, the support S(0),is defined 

as the natural logarithm of the likelihood ratio. 
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The problem that there does not exist any clear measure of 

inference uncertainty in the method of support is considered 

in Chapter 3-1. The support is compared with both Kullback's 

and Shannon's information but it is to be discovered that they 

do not provide any interpretation for it with regard to the 

measurement of inference uncertainty. Instead, we arrive at 

the central find,ing of the present study, according to which 

the support is the difference between two Renyi' s :Iocal uncer­

tainties (Theorem 1 in Chapter 3-1). It is proved on the basis 

of Renyi's incomplete probability distribution and the concept 

of local uncertainty determined for it by him. It is only this 

interpretation which makes the method of support a statistical 

inference model with a concept of inference uncertainty of its 

own. In a statistical reasearch situation, for example, the 

incomplete probability distribution is represented by the joint 

probability of the observed sample P
0

(y) for which the local 

uncertainty is thus determined. In the case of statistical 

instant samples, the statistician has only one event at his 

disposal and in Chapter 3-6 the method of support is shown 

to be an inference model for this kind of samples. 

The properties of the method of support, like norming, 

are considered in the present study from an information theo­

retical point of view. An interesting interpretation for 

support is provided by a statistical model by means of which 

the least local uncertainty can be achieved. With regard to 

this, we present in Chapters 3-3 and 3-5 a new interpretation 

for estimation and the testing of hypotheses. According to this 

interpretation, the method of support produces least local 

uncertainty estimates (LLU estimates) and least local uncer­

tainty tests (LLU tests). They correspond to Edwards's concepts 

of evaluation and support tests, respectively. 
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In Chapter 4, we go back to the original starting point of our 

study and apply the method of support to a statistical infer­

ence situation where the data is an instant sample, Obviously, 

the ability of an inference model to function is best found out 

in a real research situation. The statistical method used is 

the linear regression analysis, a well-known tool of scientific 

communities, by means of which a substantive problem in the 

field of educational sciences is analyzed. 

Preparatory considerations in Chapters 4-1 and 4-2 deal with 

statistical inference in connection with the regression analy­

sis to which the method of support is applied as the inference 

model. These considerations are more comprehensive than the 

empirical applications on this study require. They concern the 

least local uncertainty estimates of the regression coefficients 

and statistical tests, the latter of which can be used in con­

structing a hierarchic least local uncertainty test of the re­

gression analysis. The hierarchic test is analogous to Kullback� 

(1959) information theoretical test. 

The empirical application of the method of support is presented 

in Chapter 4-3, As a substantive problem it belongs to the field 

of educational sciences. Our aim is to provide an explanation 

for pupils' school achievement with home type and school type 

variables and to evaluate what the relative explanation of 

each group of these variables is. Several international studies 

of this problem have been carried out, one of which, by Noonan 

and Wold (1977), has here been used as the reference study. 

The data used consists of 1310 primary school pupils drawn in 

1970 by instant sample from Finnish primary schools. 
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2 MODELS IN A STATISTICAL INFERENCE SITUATION 

A statistical inference situation is a stage of a scientific 

or practical research in which inferences are made with the aid 

of information derived from the data by estimating the unknowns 

of a model, theory or preconception under study or their fit­

tings with the observations. Our aim is thus the reduction of 

informational uncertainty in the phenomenon studied by perfor­

ming statistical experiments and sampling procedures. 

The inductive nature of statistical inference is due to the 

property that we make a generalization either to the direction 

of a hypothetical population (the space of all experiments), or 

to the direction of an existing population (a finite existing 

population) on the basis of an observed experimental design or 

sample. The proper treatment of a statistical inference situa­

tion presupposes the representation of its stages as models. 

The definition of the models can be derived from the phases 

of empirical research: specification of the substantive problem, 

planning and implementation of data producing and, as the last 

phase, statistical inference. 

The starting point is a substantive problem, derived from the 

phenomenon studied, which we try to specify as a mathematical 

model M{ }. The mathematical model M{ } implies the structure 

of a causal relationship, dependence,or some other property 

deduced from the theory of the field. It is often linked with 

the definition of the connections between the parameters of 

the model. Our aim is a model the interpretation of which 

corresponds to a substantive problem and which is as careful 

a description of real world as possible. Such a model is also 

called a substantive model. 

A substantive problem is made statistical by adding a random 

component to the mathematical model. The model of the random 
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component is a probability model P{ }. Its introduction is based 

on the randomness of separate measurements, of data producing, 

or on the substantive randomness of the phenomenon under study. 

Each of these alone brings about that the data is·interpreted 

as one event or realization among all the events and realiza­

tions of a random phenomenon. Statistical inference cannot even 

be considered in any other system as that described above, as 

has been emphasized by Fraser (1979). 

In a statistical inference situation, the mathematical model 

M{ } and the probability model P{ } are formally treated as their 

c.ombination or as the statistical model [M, PJ. A theoretically

important statistical model is the joint probability of an ob­

served simple random sam.ple, determined for a sample space, 

.where P
0 

is a probability measure dependent on the mathematical 

model M{ } and the probability model P{ } , and y is an observation 

of an n-dimensional random variable (Y1, ... ,Y
n

). Parameter 0

represents the unknown.component which is specified.in the 

statistical inference model. Thus, the joint probability P
0

(y) 

is the probability of a single event, which plays a central 

role in statistical inference. 

The statistical inference model I{} is either a collection of 

inference rules or an inference function by means of which the 

researcher draws conclusions about the unknown parts of the 

statistical model. The properties of the inference model include 

an expression of uncertainty of inference results or an infer­

ence situation. In this respect, the statistical inference models 

in use offer different alternatives depending on what is meant 

by a total evidence at the statistician's disposal in an infer­

ence situation. Probability is often used as a measure of uncer­

tainty in a frequentist sense, in which case the total evidence is the sample 
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space of an observed sample and its multiple repetition. In the 

present study, we concentrate on an inference model I{ } in 

which inference uncertainty is measured with information theo­

retical concepts. 

From the definition of the model triplet above, we can deduce 

Requirement 1 concerning a statistical inference situation. 

Requirement 1. A statistical inference situation should be organ-

ized into a model triplet [M,P,IJ. 

The organization of a statistical inference situation into a 

model triplet clarifies the empirical research strategy and the 

measurement of uncertainty in inference results. 

2-1 Substantive Model 

In a statistical inference situation, we are studying a real world 

state or system the realization of which in a research situa­

tion is the data. For example,according to Fraser (1979), we 

should deduce from the background information or from the theory 

based on earlier studies a mathematical model in which our 

research problem is formulated in a statistically solvable form. 

In the present study, this model is termed a substantive model 

M{ }. It contains the listing of the variables, their relation­

ships,which are of interest to us, and parameters. 

Technically, the substantive model is usually given as an 

explicit formula. For example, linear regression analysis is 

based on the folloving model for the relationship between the 

variables X and Y: 

y is a vector of n observations 

on the dependent variable 

M ++ y
= xe, where X is an n X p matrix of n observations 

on the independent variables 

0 is an p-vector of parameters. 
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The mathematical model is often a very scarce one, due to the 

nature of the phenomenon. This alternative regularly leads 

from the substantive model directly to the testing of statis­

tical hypotheses. For example, in behavioural sciences the ob­

ject of interest may be the comparison of two populations with 

regard to some common attribute, in which case the mathematical 

model is reduced as follows: 

M +--+ 0 
A 

= 0
8

, where 
0A attribute in population A,

0
8 

attribute in population B. 

The importance of the substantive model is pointed out many times 

in the discussions of the fallacious use of statistical infer­

ence see Pearson (1962) and Sterling (1959). Erroneous in­

terpretations of inference results arise from the fact that 

researchers have not been able to return to the substantive 

model at the end of an inference situation. A statistical infer­

ence situation ought to start from and end in the consideration 

of the substantive model. 

The consideration and deduction of the substantive model is the 

task of the researchers in the substantive field. Statistical 

knowledge is required in checking, for example,whether it is 

possible to measure the variables of the substantive model with 

the aid of data planned to be collected. The substantive model is not 

examined separately in the present study. 

2-2 Probability Mod�l

The second member in the model triplet [M,P,IJ of a statis­

tical inference situation is the probability model P{ }. It is 

used, in the first place, for defining the joint probability 

P 
0 

( y). On the other hand, it is also used :in statistical inference 

models as a measure of uncertainty, as in the Neyman-Pearson 

theory for the size and power of the test. Seidenfeld (1979) 

describes this dualism of the probability model in the follow­

ing manner: probability
1 

describes the random nature of a 
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phenomenon .and probability 2 measures the inference uncertainty. 
As we in the present study also use other concepts than proba­
bility for the measurement of uncertainty in an inference sit­
uation, we will later define a more comprehensive concept which 
will also include the probability model in the sense of proba­
bility2. 

The probability model here means the same as the probability 
P(A) which is defined in an algebra of events as follows: If 
P(A) is the mathematical probability of an event A and events 
A and B are subsets of a sure event E, then 

0 � P(A) < 1, for every event A 

P(E) = 1, for sure event E and 

P(AUB) = P(A) + P(B), for every pair of mutually exclusive 
events A and B. 

The probability model is linked with the substantive model as 
a distribution assumption. A normal regression analysis would 
be as follows if the distribution of its random component 
is assumed to be known: 

M +-+ y = X0 + E: 

P +-+ E: "' NID ( 0, I a
2

)

If we consider the x matix as given, the density i
0

(y) of the 
joint probability P0(y) of a sample y = {Y1, ... ,Yn} is

f
0

(y) = (2 1ra2)-n/ 2 exp{- -1
-(y - X0)'(y - X0)}.

2 a
2 

(The consinuity of the probability distributions is unessential, 
when dealt with likelihood rations (cf. Chapter 3)). 

What makes the use of the probability model as inference uncer­
tainty appealing is the fact that the probability measure P0
can be defined by using various philosophical principles as the 
starting point. Good (1950) lists six concepts of probability: 
classical, empirical, frequentist, axiomatic, subjective and 
fiducial. One problem in the use of these probabilities in the 
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measurement of inference uncertainty is how to find those 

events for which the corresponding probability is determined. 

This problem is not associated with the statistical model 

P0(y).

2-3 Ihfere�ce Model

The third member of the mod�l triplet[M,P,IJ of a statistical 

inference situation is the statistical inference model I{ }. 

It is either a collection of inference rules or an inference 

function. By using the inference model we produce the estimates 

or statistical tests concerning the unknown constants of the 

statistical model and express the degree of uncertainty includ­

ed in our inferences. The central problem is thus how to mea­

sure uncertainty in general. We will approach this problem 

from two points of view: from the theory of statistical infer­

ence and from the information theory. Another essential ques­

tion is for which events we define the inference uncertainty. 

Our starting point is the data together with the various sets 

of events added to it by the statistical model and the infer­

ence situation. The collection of these sets is here regarded as the 
concept of the statistician's total evidence. 

The status of probability as a measure of uncertainty is empha­

sized by the fact that uncertainty is often expressed as vari­

ous risks which are probabilities. This has also been stressed 

in inductive logic where, according to Hacking (1965) and 

Seidenfeld (1979), it has been concluded that the confirmation 

function c( I) measuring the degree of uncertainty or accept­

ance of a hypothesis must follow some axioms of probability 

with the difference, however, that there is no interpretation 

for the unconditional event c ( ) . 'Ihis view of the measurement of uncertainty 
is found in the most common statistical inference models,as 
can be deduced from their synthesis. 
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The use of the probability concept as a mea�ure for inference 

uncertainty is restricted by that algebra of events for which 

the probability in question has been defined. Here we borrow 

from inductive logic the concept of total evidence, put forward 

by Suppes (1966). By total evidence we mean all the information 

at the statistician's disposal at the moment of inference. It 

consists of: 1)one observed event as the data {y}, 2) unobserved 

events which the statistician is able (in principle) to obtain like all the 

events of the sample space or the whole of sample space {Y}, 

and 3) those parts of the statistical model which are connected 

with the measurement of uncertainty as, for example, the para­

meter space. 

The collection of these events forms the class of all events for 

which the measure of uncertainty is defined. For example, if 

uncertainty is defined as a mean over the whole sample space, 

the statistician introduces events which he is not normally able 

to observe in practice. 'Ihe observation of all the events of the sample 

space is often quite impossible. Total evidence is denoted as 

an unordered sequence { } . 

Let us consider how inference uncertainty is treated in some 

inference models and how large their required total evidence is. 

The inference models are the following: 

1. Significance test (Fisher - Karl Pearson - Student)

2. Neyman-Pearson test theory (Neyman - Egon Pearson)

3. Fiducial inference (Fisher)

4. Bayesian inference (Savage et al.)

5. Likelihood inference (Fisher et al.)

5,1. Likelihood test (Hacking)

5.2. Relative likelihood (Kalbfleisch - Sprott)

5,3. Method of support (Edwards)

6. Kullback's information (Kullback)

The inference function of the significance test is the statis­

tical model P0( y) in which the data is a realization in the

sample space Y. The sample space is divided into two subsets 

C and C so that the size of the regionC(the critical region) is 
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a �  O. The size of the acceptance region is 1 - a and the in­
ference rule consists of determing whether the observation y belongs 
into the rejection or the acceptanceFegion. Inference uncertainty 
is measured as a risk level a for which a frequentist inter-

pretation is given in terms of repeated experfulents or samples. Criticism 
against the significance test has been directed, according 
to Hagood (1969), at the interpretation of the inference 
result. We are dealing with a simple logical disjunction: if 
the realization is located in the critical region C, then P0
is either true or untrue but, in the former case we have a rare event. 
Inference uncertainty is determined from two different spaces 
of events connected with the data. They are the sample space 
and the infinite repetition of the sample space, the latter 
being Y (oo) = {Y (l) , Y (2) , y C3) , ••. }. The total evidence of the
significance test is {y,Y,Y (00) }.

In the Neyman-Pearson test theory also an unambigous 
division into acceptance and critical region of the sample 
space is needed. This is made by applying the likelihood 
ratio \ = LY (0

0
) /LY (01), which is used as the inference

function in this inference model, and which in fact 

thus presupposes the addition of a parameter space into the 
total evidence in order that the alternative models could be 
specified. Inference uncertainty consists of two risk levels, 
a and S,which determine the division of the sample space Y,and 
which are usually interpreted in a frequentist manner. Egon 
Pearson ( 1962) points out that the frequentist use was not origi­
nally intended for the Neyman-Pearson test theory. The total 

• • { (oo) } evidence of Neyman-Pearson inference is thus y,Y,Y ,0 . 

In fiducial inference, the inference function is a fiducial 
probability Pf (0) which is determined by the pivotal function
g (y;0) from the statistical model P0 (y). The fiducial proba­
bility represents both inference uncertainty and a form of 
output. The user of the results must continue his 
own inference from the observed fiducial distri-
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bution. Wilkinson (1977) recommends the fiducial distribution 

as a general solution in the measurement of inference uncer­

tainty. The use of a parameter as a random variable has been 

criticized. Usually it is known for sure in advance that there 

exists only a single correct value for the parameter 0. In 

fiducial inference, the required total evidence is {y ,e} ,where a repre­

sents the whole parameter space for which the probability mea­

sure P
f 

has been deduced. 

In Bayesian inference, the inference function is a posteriori 

distribution P
B

(0) which is determined by the Bayesian postu­

late from the a priori distribution PA(0). When applying this

inference model the user of inference results must make two 

independent decisions. First, he has to make a subjective choice 

of the a priori distribution and second, to decide which concept 

of probability to apply to the distribution in question. The 

alternatives {d
1

,d
2

, ... } connected with the choice form an, 

addition to the statistician's required total evidence which is denoted 

by the set of choices D. The required total evidence of Bayesian inference 

is {y,Y,0,D}. 

Bayesian inference is a very interesting inference model used 

by scientific communities. New scientific knowledge produced 

by means of observations is a link in the chain which starts 

from the level of earlier accumu lated knowledge and culminates 

in a new level corrected by ob�ervations. In Bayesian inference 

these phases are represented by a priori distribution, statis­

tical model and a posteriori distribution as inference result. 

Lindley (1956) has presented an interesting application of this. 

He treats the a priori distribution as an expected a priori 

inference uncertainty which is corrected by expected informa­

tion carried by the data. Technically speaking, one has here 

passed on from the concept of probability to the concept of 

information. 
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The difficulty with Bayesian inference is the choice of distri­

bution that together with its concept of probability determines 

the measurement of uncertainty. Here Savage (1954) clearly rec­

ognizes the existence of metacriteria in a statistical infer­

ence situation, because the statistician has to make subjective 

decisions when choosing the statistical model. These decisions 

imply the existence of metacriteria. A clear expression of the 

statistician's choices for example for the a priori distribu­

tion is organized subjcctiviam which is superior to a choice 

lost behind a more "objective"inference model. Bayesian infer­

ence has been criticized because of its use of subjective pro­

babilities. For example, in Hoggarth's (l975) extensive lite­

rature synthesis, the core of criticism is against the poor 

communication of subjective probabilities from one person to 

another and the weak consistency from one inference sit1iation 

to another. If we want to be free from the statistician's own 

subjective, previously fixed probabilities, one possibility is 

to produce the a priori distribution as a nomogram, as Dickey 

(19 7 3) and together with Freeman ( 1975) recommends .In nomograms, some para­

meters are left open and determined case by case in the way 

which the user of inference results considers the best. 

In likelihood inference, the inference function is a likelihood 

function. 

Definition 1. The likelihood of a statistical model 

is L (0) = P
0

(y). 
y 

Likelihood is often considered as a likelihood function L (0) 
y 

which is represented in the form of c P
0

(y), where c is an 

arbitrary multiplicative constant and the value of y is fixed. 

Inferences made by means of the likelihood function are based 

on various likelihood principles. These principles regulate 

the expression of inference uncertainty in likelihood infer­

ence. In our study, we consider three different principles 
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which lead to different inference models. The total required 

evidence of likelihood inference is {y,9}. 

Of the various applications of the likelihood function, we will 

consider here three inference models: likelihood tast (Hacking), 

relative likelihood (Kalbfleisch-Sprott) and the method of sup­

port (Edwards). The common property of these three models is 

the fact that uncertainty is measured by a rank measure which 

thus cannot realize the axioms of the function c( ) measuring 

the acceptance order in inductive logic, at least not in a pro­

babilistic sense. It is a question of the order of statistical 

models with regard to acceptance or uncertainty. Maybe because 

of this,likelihood inference is generally regarded as a weak 

inference model. 

According to Hacking (1965) , the acceptance order of statis­

tical models can be expressed by comparing observed likelihoods 

with each other. The inference function is an operator that ranks 

observed likelihoods in the order of magnitude and arranges 

the corresponding hypothesis according to the order of acceptance 

or uncertainty. Nothing is normed in this inference model. 

In relative likelihood, Kalbfleisch and Sprott (1970) norm the 

likelihood function in relation to its own maximum and thus 

get as the inference function the ratio 

In this case, too, the acceptance order of statistical models 

is produced by means of relative values R(0) which are strik­

ingly similar to propabilities. We are dealing with an accep­

tance order which at the same time indicates the order of 

inference uncertainty. 
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The comparison of different.models produces families in the 

acceptance order. Difficulties in interpretation may come up 

when the acceptance orders between families and inside families 

are compared. 

In the method of support, the inference function is the natural 

logarithm of likelihood ratio S(0) = log
eR(0). Edwards (1972)

holds the view that the support function, when used for in the 

comparison of scientific hypotheses, is an adequate inference 

model which produces the acceptance order. The method of support 

is considered in more detail in the following chapters of this 

study. In the empirical appli�ation presented in Chapter 4-3 

we use the method of support as an inference model and its 

computational results are compared with those obtained by 

fiducial and relative likelihood inference. 

It is also possible to measure uncertainty in a statistical 

inference situation with some other concepts than that of pro­

bability, in connection with likelihood inference, The 

measurement of uncertainty is on� of the central concepts 

of information theory. Kullback (1959) has considered the 

relation of statistical inference and information theory. 

Kullback information is derived from the likelihood axiom, 

according to which all information obtained from the data which 

concern the comparison of two statistical models is contained 

in the ratio P
0_

(y) / P
0_(y). Its logarithm

l J 

log P
0_(y) - log P

0_
(y)

l J 

is the discrimination between the models at the point Y = y. 

Kullback information is its mean value 
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I(i:j) = log 

Although Kullback inforrmtion measures expected uncertainty of ·choosing 

between two statistical models, it is not, as such, used as 

inference uncertainty in a statistical inference situation. 

In an inference situation, Kullback information is put into the 

Neyman-Pearson inference function as a statistic and after that 

uncertainty is expressed, according to the inference theory in 

question, as risk levels a and S,which are probabilities and 

commonly interpreted. Thus Kullback information measures sub­

stantive uncertainty between statistical models,and its 

required total evidence is {y, Y, Y (oo) ,e}.

The synthesis of inference models reveals three common proper­

ties which should be checked and displayed in a statistical 

inference situation. They are a) inference function, b) total 

evidence {y, ••• } and c) inference uncertainty of the statis­

tical model. The statistician has to consider these things 

prior to inference and thus to set himself the metacriteria 

presupposed by a genuine inference situation. The consideration 

of these questions in an inference situation gets clearer, if 

the statistical inference model I{ } is decomposed into the 

model triplet as a formula which expresses both the inference 

function and the property measuring inference uncertainty. In 

order to illustrate this, we have chosen the linear regression 

analysis based on normal distribution,where the statistical 

model remains the same [M,PJ but the inference models is 

a) Neyman-Pearson inference, b) Bayesian inference and c) rela­

tive likelihood R(0). Three different inference models in connec­

tion with the same substantive and probability model.
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M +➔ y = X0 + t:: 

2 P +➔ t:: ~ NID (O,Icr )

I +➔ N - P theory a , B , where a and � arP. risk levels 
0 0 0 0 

(b) I++ Bayes {PA(0), P8(0)}, where PA(0) is a priori and

_________________________ 
P8(0) 

_
a

_
posteriori

_
distribution 

(c) I+-➔ R (0) and 1OO{R(0)}%,where 1OO{R(0)}% is percent order
of acceptance 

An important factor with regard to the realization of a statis­

tical inference situation is Requirement 2, derived from the 

above, which concerns the definition of the inference model. 

Requirement 2. In a statistical inference situation, the infer­

ence function and the concept of inference un­

certainty must be displayed. 

The display of the inference models does not include a visible 

statement of the total evidence. It is examined as a criterion 

of choice of the inference models included in the synthesis. 

The total evidence observed in an inference situation and the 

adapted inference model should correspond to each other because 

the measurement of uncertainty is linked with it. The structure 

of the total evidence is presented as a figure below, 

in which the data y{} is in the middle and the other components 

surround it as suppelements. 

y 

l 
e ------y------

D 
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Explanation of the components of the total evidence 

y 

y 

e 

D 

Data, which corresponds to one realized point of the sample space Y. 

The probability of this point is P
0

(y). 

Sample space, which depends of the sampling 

procedure or design of experiment. 

Infinite repetition of the sample space, necessary 

for the realization of the frequency principle in 

defining the risk levels. 

Parameter spa9e which is needed 

for the construction of the inference measures for a 

parameter. 

Space of detision alternatives, necessary in choosing 

the a priori distribution in the Bayesian inference. 

The measurement of the total evidence and inference uncertainty 

can be combined as Requirement 3 concerning the choice of the 

statistical inference model I{ } 

Requirement 3. The statistical inference model must be chosen 

in such a way that the total evidence needed for 

the measurement of inference uncertainty matches 

with the total evidence observed or the total 

evidence at the statistician's disposal. 

An interesting dualism is connected with the measurement of 

inference uncertainty. If we use a concept of probability, we 

always have to add to the data a class of events in order to 

make the total evidence as extensive as possible. In this sense, 

the richest total evidence is that of the Bayesian infer-

ence {y,Y,9,D} from which an a posteriori distribution is 

deduced. The most reduced total evidence in the inference models 

considered above is connected with the likelihood inference 

and fiducial inference in which the total evidence is {y,9}. 

The most concise total evidence of all is the one which in­

cludes the data {y} alone. That is why it is important to know 
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what kind of concept of inference uncertainty can be deduced 

for it. We are dealing with the uncertainty of a single event 

P
0

(y), which is later shown, can be interpreted as Renyi's 

(1970) concept of uncertainty of one event with probability 

P
0

(y). This will be called Renyi's local uncertainty. It is sig­

nificant in an inference situation in which the total evidence 

cannot be expanded by adding sets of events to the data. What 

follows is that we shall show the inference function in 

Edward's (1972) method of support can be interpreted as the 

difference between two Renyi's local uncertainties. 

The synthesis of the inference models led to two additional 

requirements which are connected with the measurement of infer­

ence uncertainty. Measurements can be made either with concepts 

of probability or with information-theoretical concepts, the 

latter of which makes it possible to use the relatively reduced 

total evidence {y,9}. This will be shown in Chapter 3. 

2-4 Choice of Models in an Inference Situation

In a statistical inference situation the choice of models 

concerns the models in the triplet [M, P, IJ. The choice should be 

examined-case by case, as is emphasized by Bartlett (1971). The 

statistician makes choices in which he, from among statistical 

and inference models, looks for those he thinks are best suited 

to the situation. According to Menges (1973), we are here deal­

ing with a genuine decision situation in which the statistician 

has to put the different alternatives in order of preference 

on the basis of some metacriterion. By the metacriteria of 

a statistical inference situation we refer to those hidden 

preferences which the statistician must make use of before the 

inferences can be made. 

In the previous chapters the examination of a statistical infer­

ence model and an inference situation led us to the three require­

ments connected with the,metacriteria of the inference situa-
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tion. They concern the decomposition of an inference situation into 

the model triplet tM,P,IJ, inference un6ertainty and the notion 

of required total evidence. 

The choice of the statistical model tM,PJ can be made from two 

directions. It is either a substantive model of the phenomenon 

being examined as such, in which randomness derives from the 

phenomena themselves, or an instrumental statistical model is 

in question. In the latter case we are referring to such a sta­

tistical model P0(y) which is a prob�bility model. In that case

randomness derives from the data producing system or the mea­

surement in general. A good example of these cases is the pro­

perty of large sample statistics to approach their limit dis­

tribution, which in many cases is a normal distribution. In 

choosing a statistical model this finding is worth exploiting. 

The choice of the statistical inferehce model I{ } is linked 

with: a) the display of inference results, b) how inference 

uncertainty is measured and c) what is the observed total evidence in 

an inference situation. The examination of inference models 

indicated that the results can be left open,in which case the 

user of the results must make the decisions in his own 

inference situation. Both the Bayesian and the fiducial inference, for 

example, display an a posteriori distribution. On the other 

hand, in N-P test theory a genuine decision is made between 

the choice of alternatives. 

Actually,only the definition of total evidence introduces a 

criterion which directs the choice of an inference model. This 

is so because of the fact that the required total evidence and inference 

are linked with each other. This can be seen in the tabulation 

below, which is a summary of the previous discussion. Anyone 

choosing an inference model should keep in mind that a certain 

inference model requires its own supplements in total evidence. 

Th� choice of an inference model thus presupposes the justifi­

cation of the legitima�y of these additions. 
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Table 1. 

The supplements of total evidence to be added to the data {y} 

and the connection of certain inference models with them in 

measuring inference uncertainty. 

Inference model Sample Repetition Parameter Decision 
(Always observation space of sample space space 
{y}) space 

y y ( 00) 
e D 

1 . Bayesian inference yes no yes yes 

2. Neyman-Pearson 
test theory yes yes yes no 

3. Kullback's
infonnation yes yes yes no 

4. Significance 
test yes yes no no 

5. Method of 
support no no yes no 

6. Fiducial 
inference no no yes no 

The examination of statistical total evidence has shown that 

unobserved sets of events can be reduced from the very richest 

total evidence in the way that the inference uncertainty can 

be measured from those left over. The most reduced total evi­

dence is naturally the single event {y}. In Chapter 3 it will 

be demonstrated that local uncertainty can be expressed with it 

supplemented by the parameter space e.
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3 THE METHOD OF SUPPORT AS INFERENCE MODEL FOR INSTANT SAMPLE 

In scientific investigations a widely accepted principle is that 
of repetition of observed experiments and samples. Then,conclu­
sions drawn by scientists are based on this principle. In 
actual research activity,  however,this requirement is rarely 
realized as is seen from many warnings exposed elsewhere-see 
Henkel an'd Morrison ( 1969), Sterling ( 1959) and Pearson ( 1962). 
A typical example is an empirical investigation, where the 
data is generated by an experiment or sample, which is only 
once performed. We define this kind of data as an instant 
sample. 

Definition 2. An instant sample is a probability sample or an 
observed experiment which is not repeated or 
aimed to be repeated. 

There are no hindrances to the use of an instant sample in sta­

tistical inference, because it represents the concerned existing or 
hypotetical population in a proper way. In the direction of measuring infer­
ence uncertainty there is a noticeable restriction .since the 
instant sample provides total evidence whose extent is only the 
observed sample {y}. We have no further information carried 
by repeated data so that inference uncertainty cannot be 
measured either in a freq uentist sense as, for example, linked with 

the N-P test theory. In this we have to keep to the local 
uncertainty supplied by an instant sample. 

It is evident that we need an inference model which can be 
used with instant samples. If the earlier defined 
Requirements 1-3 are kept in mind the total evidence 
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provided by the instant sample should match with the total evidence 
required by the model to be chosen . Our taxonorr.iy of inference 
models on page 22 contains no inference model whose total 
evidence is only the data {y}. At least one supplement is to be done. 
If this is a parameter space a, possible models are like� 
lihood or fiducial inference. Here we have chosen the method 
of support, whose properties are to be examined next. 

The basis of the method of support is the observed likelihood. For 
the various definitions we refer to Fraser' s (1979), Edwards' 
( 1972) and Birnbaum' s ( 1969) presentations, where the law of 
likelihood and the likelihood principle are thrown into a single 
axiom. In this study we have taken the definition directly from 
Edwards (1972), in which the frame of analysis is the statistical 
model [M, PJ. Here the unknown parameter '0 of the model is varied 
by two hypotheses Hi: 0 = 0i and Hj: 0 = 0j. The specifications
of the hypotheses are here interpreted as two statistical models 
P 0. ( y) and P 0. ( y) .

l J 

The law of likelihood: The data { y }  supports the statistical 
model P0i

(y) better than P0.CY) , if the
observed likelihood of the Jfirst statis­
tical model Ly(0i) is greater than that
of the latter L (0.) .  

y J 

This law gives us some indication of how to interpret likelihoods. 
This is to be done without any probability concepts if Hacking's 
(1965) ideas are to be followed. He has transferred the law of 
likelihood for discrete distribution in a proposition including 
a language of logic, which uses no nonlogical terms. Thus we 
can use it as a joint proposition and formulate a 
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confirmation function c(I) accordig to Seidenfeld (1979), which \
brings together observed likelihood and .the measurement of infer-\ 
ence uncertainty through the fcillowing equivalence relation 

This relation also demonstrates how we ea� measure inference 
uncertainty without any probability assertion. Confirmation 
function is defined as a rational person's assessment of the 
relative support for various hypotheses given any well-formed 
evidential basis. This interpretation for the law of likelihood 
sustains our aims to provide a measure for inference uncertainty 
without probability concepts. It should be noted that we do not need 
the above mentioned language of logic in searching our information theoretical 
interpretation for the law of likelihood. 

The use of likelihood presupposes that it is statistically 
sufficient for inference. This is ascertained in the likelihood 
principle. 

The likelihood principle: All the information in the data {y} 
concerning the mutual plausibility 
of two statistical models is con­
tained in the observed likelihood 
ratio of these models A= L (0. )/ 

y l 

Ly ( 0 j). 

The likelihood principle contains the sufficiency concept in 
the sense of measuring inference uncertainty. This concept is 
not the same as sufficient statistic in estimation, the exist­
ence of which is often verified by the factorization theorem. 
Fraser (1979), Birnbaum (1969) and Edwards (1972) have demon­
strated that at least on the basis of a weak likelihood princi­
ple the data {y} can be replaced by the likelihood L

Y
(0), which

at least contains the same inference uncertainty as the data 
(see Fraser p. 74). The likelihood ratio is,then,as the ratio 
of two sufficient statistics also a sufficient statistic. 
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Birnbaum demonstrates in another way as well that likelihood 

is a sufficient statistic in the sense of statistical evidence. 

As is known, likelihood ! differs only by an arbitrary constant from 

the joint probability of a sample. Consequently, if P
0

(y) is

a sufficient statistic in the sense of statistic;al evidence 

then L
Y

(0) � c P
0

(y) is it as well. Statistical evidence is

defined by Birnbaum as the acceptance order of statistical models. 

A part of the difficulty of the likelihood principle arises from the fact 

that the joint probability of a sample does not necessary 

depend on the population values. Birnbaum (1969) gives an 

example of this misconvenience concerning random sampling without 

replacement from a finite population. In the narrower area for 

the case of parametric hypotheses,we consider the likelihood 

function to be exhaustive with regard to the parameter given the 

class of possible likelihood functions. 'Ihus observed likelihood and the 

class of likelihood functions,possible under the joint probabil­

ity of a sample, contain all the inferential content of the data, 

given that the model under consideration is appropriate. 

Finally the law of likelihood and the likelihood principle are 

thrown into a single axiom. 

The likelihood axiom: The relative plausibility of two statisti­

cal models i and j is displayed suffi­

ciently in the sense of measuring infer­

ence uncertainty from the data {y} as a 

likelihood ratio A =  L (0.)/L (0.). 
l y J 

The likelihood axiom asserts that the ratio of likelihoods is 

useful only for the comparison of rival hypotheses. This prop­

e�ty is included in the method of support, whose central infer­

ence concept is the natural logarithm of a li_kelihood ratio. Really, 

support is a one-to-one transformation of the likelihood ratio 
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and thus preserves all the properties of the likelihood ratio 
itself. Three main �oncepts of the method of support are given 
in Definitions 3-5. 

Definition 3, Support function is the natural logarithm of the 

likelihood function S
Y

(0) = log L/0) = log P0(y) + cy.

The likelihood function has an arbitrary constant as coeffi­

cient which adds the term C into S (0). In chapter 3-2,deal-' ' y y 
ing with the norming of the support function,the choice of this 

constant will be examined. In the following we will drop the 

reference to y from S (0) and index the support function according 
y 

to the alternative statistical models [Mj,PjJ, i.e. Sj(0). 

According to the likelihood axiom,an observed value for support 
function is meaningless in an inferential sense. After we have given 
the information theoretical interpretation for the method of support 
it is seen that observed likelihood also has inferential content 
in a local sense. For a moment we shall proceed in the frame of 
that axiom and define the difference between two models as observed 
support. 

Definition 4. The difference of two observed supports is the 
support S{i;j} = Si(0) - Sj(0), which indicates
to what extent the support given by the data increases 
or decreases when the statistical model i is 
compared with the statistical model j. 

By means of a suitable order of the models {i,j} or {j,i},sup­
port can be restricted as non-positive, in which case its in­
terpretation is: support measures to what extent a statistical 
model gets less support than the model better supported by the 
data. Defined in this way decrease in support is in question, 
when we move from one statistical model to another. 
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Definition 5. The use of support function and support as a sta­

tistical inference model is called the method 

of support. 

There are many examples on the application of the method of 

support in statistical literature. However, Edwards (1972) must 

be seen as one of the few consistent users of the method. In 

particular, he emphasizes its use in testing scientific hypoth­

eses, where even a small difference between two hypotheses, 

which can be revealed by support often is significant. Yet one 

crucial point has been revealed in the empirical researches 

performed by Edwards (1972), Cole (1975), Kalbfleisch and 

Support (1970), Fraser (1979) and so on, namely, the clear 

interpretation for the support difference and its ability to 

measure inference uncertainty is lacking. This problem is 

considered in the following chapter. 

3-1 Information Theoretical Interpretation for the Method of

Support 

We distinguish three main interpretations for the likelihood ratio: 

Bayesian, information theoretical and a practical one. In the Bayesian 

version (see Birnbaum p.136) the posterior probabilities depend 

upon the data only through its likelihood function so that relative 

posterior probabilities differ from the corresponding relative prior 

probabilities in the factor which is just the likelihood ratio. 

The same arguments are considered by Lindley (1956), Good (1950) and 

Pearson (1962). In the information theoretical interpretation 

a Bayesian view has many times been borrowed so that an a prior 

calculated information is increased or decreased by the informa­

tion carried by the data quoted as the logarithm of the likelihood 
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ratio -see for example Theil(1972) and Lindley (195 6). Edwards 
(1972) uses a practical interpretation for the log likeli­
hood ratio and asserts that it measures increase or decrease 
of support provided by the data. This is one version of the interpret­
ation of the confirmation function, which measures the relative 
support for one hypothesis relative to another. However, the dis­
cussion of Hacking (1965) and Seidenfeld ( 1979) should also be kept in 
mind. The foregoing has revealed those interpretational difficulties which 
efficiently prevent· the common use o§ likelihood ratio or its 
logarithm for statistical inference. 

Our interpretation is based on information theoretical concepts 
without any Bayesian reasoning. First we shall show that the 
Kullback's information and the Shannon's entropy are not good for 

an information theoretical interpretation for an observed 
likelihood ratio. The solution is to be found in Renyi's local 
uncertainty concept. 

Kullback's information is the expectation 

I{i:j} = y�Y Pe. (y) log
l 

P0. (y)

It denotes the average information carried by the data in the 
discrimination between the models [M,PJi ja [M,PJj. According
to Definition 1, P0(y) = L

Y
(0), which for Kullback's information 

implies the formula 

I{i:j} = E0_[log Pe. (y)
l l 

log P 0. (y )J
J 

= Ee [log L (0.) - log Ly(e
J
.)J

- i y l 

= E0_[S{i:j}J
l 

The last expression indicates that Kullback's information and 
support are equal only in the sense of expectation.Thus Kullback's 
information is deleted as an information theoretical interpretation 
for an observed likelihood ratio in an instant sample. 
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Shannon's entropy is one of the central uncertainty concepts of 
the coding theory, for which several sets of axioms have been 
developed. From these Ash's (1965) approach is quoted here. 

Consider a finite probability distribution pi > 0 (i = 1, •.• ,m)
m 
E p1. = 1. Then Shannon's entropy is
i 

m 
Hm = Hm(P1,P2, ···,pm) �- - ih Pi log2pi'

which has e.g. the following properties: 

2. ) Hm = 0, if pi = 1 and pi = 0 (1 < i < m: it i0),
0 

1 1 
H (p1,··•,P ) < H (-m,·••,m-).m m - m 

In the case of a single event Shannon's entropy can only be 
interpreted as EE - log2piJ, for which a weak presentation
corresponding to support can be developed, 

= Ee [-log2L (e.)J-Ee [-log2L (e.)J-. y l -. y J l J 

={Ee [-S(e.)J-Ee [-S(e.)J}log 2.
- I l -. J l J 

So by using the concepts of Shannon's entropy it is difficult 
to find an information theoretical interpretation for support. 
The difference of two Shannon's entropies is namely minus the 
difference of the expectations of thetwo supports Eei 

[S(e
i)J and

Ee [S(e.)J. The coefficient -1 has no practical significance-. J 
si�ce instead of measuring increase in uncertainty we can 
think of measuring decrease in certainty. At the first glance 
the expectation property excludes Shannon's entropy in its 
original sense ES an information theoretical interpretation 
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for the m�thod of support, since when expectation is formed the 
probabilities of the unobserved events are needed, as well. 

Statistical inference connected with instant sample and, 
consequently, the main field of application of the method of 
support has one observation {y} and the probabilities P0i

(y)
linked with it as its special feature. The impossibility of 
repetition brings about that the statistician does not have 
the possibility to get further data. 
A natural and useful model for this kind of situation is yielded 
by Renyi's (1970) incomplete probability distribution and 
Renyi's local uncertainty concept, defined on it. These will 
be discussed next. 

We examine a finite set of positive numbers�= {p1, ... ,pm},

the sum of which v(p) has the property 

0 < v(p) 

If v(e) = 1 an ordinary probability distribution is in question, 
but if v(p) < 1 we are dealing with an incomplete probability 
distribution. 

Renyi (1970) (p. 579) assigns to every incomplete probability 
distribution an uncertainty concept by defining 

m 

HR(�) kh pklog2(1/pk)
= m 

Pk k=1 

Especially, for the case m = 1, p = {p} we get 

HR (�) = - log2(p),
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which can be interpreted as uncertainty associated with occurence 
of an event with probability p (cf. Renyi (1970) p. 572). In what 
follows we use the notation 

HR(p) = HR(�) , if p = {p}.
- = 

Definition 6. The Renyi's local uncertainty of a single event 
{y} in relation to the probability distribution
P0(y) is HR(P0(y)) = -log2P0(y).

The linking of statistical models with local uncertainties 
makes it possible'to compare the models with one another by using 

.differences HR{i;j} = -log2P0i 
(y) - (-log2P0.(y)). According

to Renyi,those differences can be interpreted ai a gain or loss 
of uncertainty when the statistical model [M,PJi is changed into
the model [M,PJj.

In connection with this information concept Goad's (1950) and 
later Pitman's (1979) works must be mentioned , according to 
which S{i;j} is the discrimination between statistical models 
based on one observed event yEY. Without information theoreti­
cal argumentation this refers to the ability of a single obser­
vation and not of its expectation to measure inference uncer­
tainty in comparing two statistical models. Later Good together 
with Osteyee (1974) has presented an axiomatic system for the 
uncertainty of one event. They arrive at the measure -log P(A), 
but this does not fit as naturally an instant sample case as 
Renyi's local uncertainty concept. 

The connection between support and Renyi's local uncertainty 
is obtained in the following way: from Definition 6 it follows 
that 

HR(P0_(y)) = -log2 Pe. (y) and
l l 

HR(P0_(y)) = -log2 P0_(y) ,
J J 

which are put into the Definition 3 of support , 



S{i;j} = S(0.) - S(0.) 
l J 
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=-log P0.(y)-(-log P0.Cy))
l J 

= (-log 2) {log2P0. (y)} - (-log 2) {log2P0.(y)}
l J 

= {-log 2}{-HR(Pe. (y)) + HR(Pe. (y)}.
l J 

We have thus proved the following Theorem 1.  

Theorem 1. The support S{i:j} is minus the difference of two 
Renyi's local uncertainties multiplied by the module 
log 2. 

Theorem 1 gives the basis for the statistical analysis of in­
stant samples since it gives a clear interpretation to infer­
ence uncertainty measured from the total evidence including 

only two elements, the observed data {y} and a parameter space 
8 . This directly corresponds to the total evidence required 

by the method of support. Although Renyi uses a 2-based loga­
rithm system, which derives from the definition of Shannon's 
entropy it has no significance for the interpretation of support. 
The difference of two local uncertainties in Renyi's termin­
ology means either gain or loss of information. 

Consequently, the interpretation of support is thus fully in­
formation theoretical. Although we are dealing with minus the 
difference of Renyi's local uncertainties,it does not make any 
difference to the statistician whether he communicates the 
results of the comparison of the models i and j as increase 
of uncertainty (Renyfs local uncertainty) or as decrease of 
certainty (method of support) . 

The comparison of the method of support and the information 
theoretical concepts yielded an unambiguous result. Support 
is minus the difference of two Renyi's local uncertainties multi-



34 

plied by the module log 2. Interpretationally it corresponds 

to the confirmation function c(!) of inductive logic in the 

sense of plausibility order. In a statistical inference situa­

tion we should keep to Edwards' communication concept, accord­

ing to which support difference measures the decrease or in­

crease pf support when we move from one statistical model to 

another. The use of Renyi's local uncertainty presupposes 

a considerably concise total evidence {y,e}. The questions of 

support communication and·norming still remain open. They will 

be discussed in chapters 3-2 and 3-4. 

3-2 Communication of Inference Results

In the method of support the production of inference results 

begins with the determination of an observed support function 

and support. The observed support function is displayed either 

graphically or as observed values of communication parameters. 

The most important of them are connected with the maximum of 

the support function and with the behaviour of the function in 

the neighbourhood of this value. The communication of the sup­

port function is connected with interval and point estimation 

and in the shape of support with the testing of statistical 

hypotheses. The communication concepts are presented in the 

case where the support function S(0) is a regular continuous 

function of one parameter with unambiguous first and second 

derivates. The communication parameters are included in defi­

nitions 7 to 12. The words evaluator and evaluation are intro-

duced as substitutes for estimator and estimation 
to Edwards (1972). 

according 

Definition 7. The evaluate 0 is the solution max S(0) = S(0). 
0 
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Evaluation is connnected with the maximum likelihood estimation. 
The value of the support function at 0 = 0 yields maximum 
support for the model and thus the least local uncertainty. 
The evaluate is a communication parameter linked with the posi­
tion of the support function. 

In comparing statistical models it is interesting to know how 
the support function behaves in the neighbourhood of its maxi­
mum. Derivates are suitable for the communication of this prop­
erty. The second derivate, much discussed in literature, pri­
marily comes into question. 

Definition 8. Minus the second derivate of support function is 
2 

the information, 10 = -
dS

2 
• The 18 is called

d0 
observed (Fisher) information. 

The observed (Fisher) information is geometrically interpreted 
as the curvature of the support function in the neighbourhood 
of the evaluate. It denotes the speed by which the support 
reduces when we move from the evaluate to the parameter values:in 
its neighbourhood. Pitman (1979) gives a well-argumented inter­
pretation for Fisher information, which in his opinion measures 
the sensitivity of a statistical model in the neighbourhood of the 
evaluate. More meaningful communication parameters of the support 
function are two transformations of the observed (Fisher) 

information in which the order of magnitude of the observed 
support can also be expressed. These are radius of curvature 
of the support curve at its maximum and the square root of the 
radius. 

Definition 9. The reciprocal of observed.·(Fisher) information 
w2 = 1/I

0 
is called observed radius of curvature. 

By the circle of curvature belonging to the point S(0) of the
support function we mean a circle whose radius is w2 and whose 
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centre is situated on the normal of the observed support func­
tion, on the concave·side of the curve. The radius is a non­
linear function of the evaluate and, for instance, it does 
not directly communicate to what extent support decreases if, 
for example, we move from the evaluate 0 to the parameter value 
0 1 0. In this sense the square root w of the radius, which 
is geometrically thought to be the chord of a circle with the 
radius w2, is a more perspicious communication parameter for 
the shape of support curve at its maximum. If it is put on the 
perpendicular of the observed support function we can, from 
the points common to its end points and the curve of the support 
function,formulate the space of two parameter values {0U,0L},
in the field of which the support function value S(0) � S(0u) =
S(0L). The square root w of the radius thus represents a com­
parable measure from one inference situation to another, because 
the {0U,0L} totally depends on the interval w. In this sense
it is defined as accuracy. 

Definition 10. Accuracy is the square root w of the observed 
radius of the support- function curvature at its maxi­
mum. Notationally w = 1

✓re
Accuracy in the method of support is analogous to the standard 
error of estimation theory. It can be used in the same sense , 

however, with the difference that inference uncertainty here 
equals support. 

The most important communication concept of the method of sup­
port is support S{i:j}itself, which is the result of the com­
parison of two statistical models. If support has been defined 
in the way that the larger support is substracted from the 
smaller we get a normed support as result. We label this communi­
cation form of the support as S{i:j} E: (- 00,OJ. Norming 
is dicussed later in greater detail in Chapter 3-4. As such it 
is difficult to link them with some observable frame of compa­
rison unless some transformations are made. Depending of the 
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inference situation Edwards (1972), for example,recommends the 
transformation exp S{i:j}, by means of '19lich support is trans­
formed to the odds, like 1:m. An interesting communication in­
terpretation has been presented by Good (1950). He takes the 
concept of decibel in acoustics to be used as the communication 
form of support,in which case S{i:j} implies the noise corre­
sponding to 10(log 10)IS(i:j)ldb. It must be noted that Good 
does not present support at the level of local support but as 
the difference of a priori and observed support. The alternative 
communication forms of support are presented in Definition 11. 

Definition 11. The observed support S{i:j} is communicated 
a) as a number§ 8 (- 00,0J
b) as the odds n:m = exp S{i:j}:1
c) in decibels (10 log 10)IS{i:j}I.

The communication parameters of the method of support in Defi­
nitions 7-11 are primaly applicable to such an inference situa­
tion in which the statistical model mainly remains unchanged 
and only its parameter 0 is varied. If different statistical 
models are compared the only thing to be communicated is the 
support S{i:j} or its transformation, which in both cases is a point 
function.Its use has justifiably been criticized by Fraser (1979) 
and Menges (1973). The situation is different, however, if sup­
port is used at the level of ordinal scale like Lindsey (1974a) 
and Kalbfleisch and Sprott (197 0) have done in their own ana­
logous applications. In the comparison of the statistical models 
[M,P J1, ... ,[M,PJ k the maximum value of each support function
S.(0) is determined, after which the order of these observed 

J 

values yields plausibility order of the statistical models, 
which is also regarded as one form of communication of the 
method of support. 

Definition 12. The order of observed maximum supports Sj(0j)
is the plausibility order of the. corresponding sta­
tistical models. 
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This form of communication is deduced from the law of likeli­

hood because the logarithm of likelihood preserves the order 

relation. Communication at the level of ordinal scale is a 

natural alternative in a situation where supports are compared 

with one another without them being calculated from the same 

support function. Different models have, of course, different 

support functions. Comparison between models, which is more 

precise than that based on plausibility order, can be accom­

plished if the support functions for each model can be deduced 

from the same function type or if the statistical models can 

be transformed to the same statistical model by means of repa­

rametrization, for example. These questions are linked with 

the norming of the support function, which will be discussed 

in Chapter 3 - 4. 

The form of communication of inference results is a transforma­

tion of Renyi's local uncertainty. Consequently, it is at the 

same time inference uncertainty in the sense of the method of 

support. Within a given statistical model it is natural to 

compare different 0 values with the evaluate 0 using support 

3{0:0} = S(0) - S(0). A suitable specification is to state the 

accuracy w. In the comparison between statistical models the 

method of support leads to (point) function, by means of which 

the plausibility order of the corresponding statistical models 

is displayed. The direction of the order is determined in 

relation to the statistical model which has obtained the maxi­

mum support. The model in question represents the least local 

uncertainty in the sense of Renyi's uncertainty concept. 
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3-3 Evaluators

In connection with the communication concepts the point evaluate 

0 describing the position of the maximum of the support function 

was defined. The evaluates are connected with the point estimation 

of statistical inference. According to Fraser (1979) and Menges 

(1973), point estimation is no statistical inference at all, 

but calculation of a statistic , which describes the data. In 

the method of support the point evaluate is connected with 

local uncertainty,which measures inference uncertainty. In 

that way point evaluates , in the sense of the method of support, 

are part of statistical inference where the communication of 

inference results and the measuring of inference uncertainty 

are combined. 

As an estimation method the calculation of evaluates means 

minimizing local uncertainty. In this sense estimates produced 

by the method of support are estimates of the least local un­

certainty (LLU estimates). They are tied to one observation 

like the instant sample and to the statistical model used. 

Below three kinds of LLU estimates will be defined: the m-unit 

support neighbourhood, the sum evaluate and the joint evaluate. 

The concept in the method of support corresponding to interval 

estimation is the determination of the m-unit support neighbour­

hood. Definition 13 presupposes that support function is a 

regular function of the parameter. 

Definition 13. The m-unit support neighbourhood is the set of 

all parameter values at which the support is not 

more than m-units below the maximum i.e. S(0) - S(0) > ':" m. 

For a one-dimensional parameter the m-unit support neighbour­

hood leads in a regular case to the m-unit support limits, which 

are displayed as {0IS(0) --S(0) > - m}. This resembles the 
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construction of a confidence interval. Because it is to be 
operated with the concept of local uncertainty the �-unit 
support limits are not always placed symmetrically around the 
evaluate§. The LLU estimation differs from th� usual interval 
estimation. For example, the set {BIS(B) - S(�) � - m} may 
consist of several disjoint intervals� Also� we don't have any 
confidence coefficient in the construction of the m-unit support 
neighbourhoods. It should be observed that the m-neighbourhood 
is contained in the parameter space e, which is not always the 
case in the classical interval estimation. 

A A 

In the following the point evaluate 0 and the accuracy w will be 
extended to inference situations in which the data (treated as 
an instant sample) either consist of several subdata indepen­
dent of one another or it can be classified into mutually 
exclusive groups. First the support functions Sh(Bh) of the
subdata are determined. These are used in the calculation of 
joint evaluates by means of summing or weighing. It is assumed 
below that the subdata are independent of one another and that the 
corresponding support functions are of the form, 

thus the quadratic approximation of S(B) is adequate. Then, 

(1) (h) (k) and the sum support function of the subdata y , ... ,y , ... ,y 
which are independent of one another, is 

(0 - 0 ) 2 

h h 

A2 wh
This combination property of support function leads to the 
concept of joint evaluate, which is 
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A 

� k 0 k 
A'-2 h 

0 : = h�1 � 
I hh wh,

wh
and whose accuracy is 

The joint evaluate is applicable in an inference situation where 
we want to compare two statistical models, the evaluate of the 
one being th� subdata specific evaluate § (h) and of the other 
the joint evaluate@. The decrease in support is then caused by 
the division of the data by grouping or by combining different 
data, and it is 

k 1 " "' 2 = I (0h. - 0) •h=1 � 2wh 

The point and interval evaluates and their various combinations 
at the same time correspond to both tre communication concepts and 
the measurement of inference uncertainty. They are analogous 
with point and interval estimations in other inference models. 
Above they were discussed in a restricted case,in which the 
support function is a regular function of the parameter and the 
function, in addition, quadratic. These restrictions, in general, 
hold in the case of large instant samples. 

3-4 Norming of Support Function

The norming of the support function aims at producing a form 
of communication which is comparable from one inference situa­
tion to another. The central concept of communication namely 
the support should be normed that it measures the same prop­
erty in different situations. This can be achieved by the. 
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norming of the support function, in which case the same 
support function 3(0) is always used, or by the norming 

of the statistical model, in which case the support 
is always used in connection with the same statistical model 

�0(y). 

In the norming of the support function its range is defined 
and such a transformation of the function is looked for,by 
means of which S(0) is always transformed into same function 
S(0) so that 

where K1, K0, KC are constants and

3(0) is the normed support function. 

b) max S(0) = Kc or
8E8

c) q{S(g(0))} = 3(0), where g is a suitable chosen one-to -one 
function of 8 and q indicates func­
tional transformation to express S(0) 
in the normed form as §{0). 

The first alternative starting point is norming 
the statistical model itself with regard to its own evaluate 
vector. It follows from Definition 7 that if S(0) is regular 
and it has only one maximum, then max S(0) = S(0). The normed 
support function is then 

3(0) = S(0) - S(0). (3.1) 

Norming means the parallel displacement of the coordinate axis 
which includes the properties a) and b), for 

3(0) E (-oo, OJ 

max S(0) = 0 

This norming retains the original form of the support 
function. 
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The second alternative is to find such a transformation of the 
support function by means of which the result is always the 
same type of function. Edwards (1972) recommends the quadratic 
support function �hich corresponds to the statistical model of 
the normal distribution N(0,o2) (o2known). Kalbfleisch and 
Sprott (1970) come to the same conclusion when examining the 

relative likelih9od R(0). An unknown support function can often 
be approximated by the first three terms of the Taylor polynomial 
expanded about the evaluate�, which also yields the quaratic 
support function 

2 d
2

S = S(0) + (1/ 2)(0-0) 
d

e
2 

(0)

2 = a +  b0 + c0 , 

where the constants a, b and c are functions 
of the evaluate and accuracy. 

(3.2) 

Norming in this case has been made in the support function and 
thus it does not necessarily follow from the statistical model 
of the normal distribution. The observed support function of 
the normal distribution model P ++ N(0,o2) is always of the form 
SN ( 0 ) as has been pointed out by Edwards ( 1972). If the original support 
function is asymmetrical in the neig hbourhood of its evaluate, 
the quadratic approximation is not always useful. Asymmetric­
ality can often be corrected by a one-to-one transformation 
of the parameter. The quadratic support function is important 
in the case of large instant samples for which the distributions 
of the statistics approach their own, in many cases normal, 
limit distributions. 

The third alternative in norming is to reparametrize the orig inal 
statistical model P0(y) always into the same statistical model 
P0(y) .. The natural starting point in this case is the statistical

model which best fits the data; the multinomial distribution 



44 

has often been recommended (see for example Lindsey �974 a 
and b). The multinomial distribution is the simplest statis­
tical model for which the observed sample is most probable. 

In philosophical· jargon it corresponds __ to a model for an event 
which had to happen. When put in the order of magnitude, the 
observations form the discrete n-tuple Cy(1)''"'Y(i)''"Y(n)J.
By combining possibly tie� observations with each othe�, 
corresponding frequency distribution is obtained. This is, 

where yi is the result of measuring a sampling unit i and ni is the 
observed frequency. 

The statistical model of the above frequency distribution is the 
multionomial distribution 

where 0 < 0. < 1 when i = 1,2, ..• ,k,
l -

k k 

ih8i 
= 1 and ih n. 

l 

= n.

The support function of the parameter vector 0 is with a prop­
erly chosen constant 

which yields the solution of the evaluate vector 
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Thus, the least local uncertainty is 

The statistical model under study is transformed into a multinomial 
model by the following reparqmetrization, so that 

0-
l 

a discrete statistical model 

a continuous statistical model where 
t.y. is a unit of measurement. 

l 

Using the above described multinomial model as the statistical 
model P

0
(y) we always get the same normed support function, 

namely 

( 3. 3) 

The normed support function SM(0) is commensurate between dif­
ferent statistical models, and thus the plausibility order of 
the models can be achieved by means of it. A more accurate 
result is not obtained because R�nyi's local uncertainty 
due to approximation by the multinomial model P

0
(y) is cancelled

when the support SM(0i) - SM(0j) in the comparison of two models
is calculated. The result is the support difference on 
the condition that the statistical models have first been repa­
rametrized into multinomial models. 

Reparametrization often creates a grouping bias which is caused, 
for example, by the discretization of a continuous statistical 
model into a multinomial model. As a matter of fact, we should 
make a distinction between two procedures: the discretization 
of the continuous model and the classification of the data. 
These procedures are often mixed up with each other. Below, it 
is shown how classification, in the sense of support, always 
reduces the informativeness of the data. Let the original 
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discrete frequency distribution be k-categorical, in which case 
the local uncertainty of the multinomial model is 

S(0) 

If categories are combined, it follows that at least in one 
category 0j = 0i 

+ 0i+i' and nj = ni 
+ ni+i' and so

where k and k'are the numbers of the corresponding categories. 

By combining of all categories we get s1(0) = N log 1 = 0. 
If we examine two models simultaneously, one of which is 
P

0
(y) and the other is, for example; a statistical model of a

continuous random variable, like the normal distribution, 
P ++ P0(y) � N(0,o2 ) the range of which is divided by classifi­
cation, then;alone by decreasing the number of categories a 
complete fit in the sense of the support S{i:j} is obtained. 
We are here dealing with a problem which in statistical litera-
ture is treated as optimal classification. In the empirical 
part of the present study, we use Mineo's (1979) method of nat­
ural classes which is interpreted by means of the concepts of support. 
It is included in the discussion of the regression residuals in 
Chapter 4-3-4.

The norming in the method of support aims at such a presentation 
of the support which makes it possible to measure the decrease of 
support when two statistical models are compared with each other. 
The observed value of the support is in that case always non­
positive and it is also used like an ordinal scale as the plau­
sibility order of the models. The alternative ways of norming, 
presented above, are shown in the table below. These notations 
will be used later. 



Observed 
support 

S. ( 0)
J 

§j ( 0) = 

s{i:j} = 

SN(0) = 

SM(0) = 
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Explanation or relation 

The support function of the statistical model CM,PJ
j with a given value of the parameter vector. 

S. (0)
J 

s. c e)
J 

Si(0) §j(0), on condition that Si(0) < sj(0)

a+ b0 + c02 quadratic approximation 

k

i�i ni (log 0i - log 0i), multinomial support

Normed supports can be used for the determination of statistical 
tests and evaluates corresponding to estimation. The aim of 
norming is to find a measure of inference uncertainty commesu­
rate from one inference situation to another. The decrease in 
support is here considered as such a measure. It corresponds to 
the inference risks used in the other statistical inference 
models analyzed earlier in this study. A special case in this 
connection is the support SM(0) in which the statistical model
under comparison is a multinomial model best supported by data. 
SM( 0) is, however, cancelled if two statistical models, i and j,
are compared with each other by determining the difference of 
the supports. In this way we get the support which provides the 
plausibility order between statistical models in the sense 
of support yielded by the data. This kind of an interpretation 
is not contradictory to the fact that there always is in question 
the difference between two Renyi's local uncertainties. 

3-5 Support Tests

In a statistical test, the hypothesis 
probability distribution P0(y) or its
hypothesis is expressed as H

0 
: P 0 (y)

the method of support, Edwards (197 2) 

H concerns either the 
0 

parameter 0. Thus the 
= P�(y) or 0 = 0

0
• In 

considers a statistical 
test as an insertion into the support function from which the 
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support between hypothetical and arbitary models or parameter 

values is calculated,,A natural way of making the insertion is 

to use a normed support function in which case we are comparing 

the hypothetical parameter value 0
0 

with the evaluate@. 

Definition 14. The support test of the statistical hypothesis 

H; 0 = 0 is the insertion of P0 (y) into the
0 

A A-Q A 

normed support function S(0), SN(0) or 3M(6) from

which the supportmeasuring inference uncertainty is 

obtained. 

The support test is a hierarchial test the first stage of which 

is the comparison of statistical models and the second stage is 

the comparison of the parameter vectors of the chosen statisti­

cal model. Borth (1975), for example, deals with a test analogo­

us to the support test in such way that the expected total en­

tropy is divided into a model component and a parameter component. 

Lindsey (1974b) uses §M(0) for the comparison of statistical 

models alone. As a statistical test, the support test produces 
the plausibility order of the hypotheses, and some order 

of magnitude of the support, for example IS{i:j}I 2 m, can be

used as the criterion of plausibility. If the support is smaller 

than m, all the hypotheses belong to the same equivalence class 

and so their mutual plausibility does not matter. However, 

Edwards (1972) warns of this kind of standard technique which 

in the frequentist inference has led to scientifically question­
able inferences, as Sterling (1959) has demonstrated. 

The inference uncertainty of the support test is expressed as 

the communication forms of the method of support: the support, 

the odds or desibels, depending on the inference situation. 
The support test will be discussed in more detail in connection 
with the regression analysis in Chapter 4-2. 
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3-6 The Method of Support and Inference Situation

The properties of the method of �upport and Requirements 

1-3 of a statistical inference situation are considered.

In Theorem 2 it is proven that the total evidence provided by 

an instant sample with a supplement by a parameter space coincides 

with the total evidence required by the method of support. Thus 

we shall conclude that the method of support is an inference 

model for instant samples. 

The general requirements of a statistical inference situation 

concern the decomposition of an inference situation into the 

model triplet [M, ;p, IJ, the existence of the total evidence and 

the measuring of inference uncertainty. Requirement 1 refers 

to the organization of a statistical inference situation into 

the model triplet [M, P, IJ. Its components M and P do not as such 

place special restrictions on the use of the method of support. 

The component I denotes the observed support function S(0). 

Thus, there exists the relation I+-+ S(0) between the inference 

model and the method of support.The only restriction is the 

condition that it must be possible to write down the statisti­

cal model into the form of a likelihood function the trans­

formation of which is S(0). It is convenient with regard to the 

inference results if S(0) is a regular function with only one 

maximum because it is natural to represent the support as 

the difference between the least local uncertainties. It is 

possible to influence the regularity of the support function 

by the choice of the statistical model. Thus the method of 

support is a statistical inference model in the sense of 

Requirement 1. 

Requirements 2 and 3 concern the total evidence at the statistician's 

disposal and the measuring of inference uncertainty. For the 
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choice of .an inference model Requirement 3 presupposes that the 

extent of the required total evidence coincides with the total 

evidence provided by the inference situation. 

As was mentioned earlier, the method of support nee9s a total 

evidence which includes only two components: data y and 

parameter space e, abbreviated as {y ,8}. According to 'Iheorem 1, 

we can measure with this total evidence inference uncer-

tainty expressed as the difference- of two Renyi' s local uncer­

tainties. Thus the method of support fulfils Requirement 2. 

On the other hand,recalling Definition 2 we see that the 

total evidence provided by an instant sample is only data y. If we 

add a parameter space 8 as a supplement we get the total evidence 

at the statistician's disposal whose extent is {y,9}. To add a 

parameter space is very natural, because it represents 

those unknowns which are of interest at all. The above 

coincidence of two total evidences leads to the following 

Theorem 2. 

Theorem 2. The method of support is a statistical inference 

model for instant samples and non-repeated 

designed experiments. 

The method of support has been used as a statistical inference 

model in the sense of Theorem 2, although the support has not 

been interpreted as inference uncertainty. Edwards (1972), for 

example, has often used the method of support as an inference 

model for non-repeated experiments in genetics. Cole (1975) 

has applied the method of support to medical instant samples 

gathered from various geographical areas. His samples have 

been probability samples including 1 00-2000 persons and they 

have not been repeated. Other practical studies are to be 

found which have made use of the method of support and 

so proved the usefulness of this inference model. How frequent 
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is an instant sample in social sciences is revealed by 

Hagood (1969). For example an interview of people at a certain 

moment t
0 

represents the population at that moment. Continuous 

changes in social and cultural phenomena exclude the possibility 

of collecting a sample or experimental data in successively 

similar occasions. In particular, it is possible to speak of 

uniqueness in connection with the empirical data of these 

phenomena, urtiqueness which refers to the population at the 

moment of measurement or to the circumstances in which the 

designed experiment: � realized. The need for inference models 

without a frequency principle is thus urgent in this field. 

The concept of total evidence gives a sound ground to prove our 

Theorem 2. which supplies an inference model for those research 

situations where the frequentist principle is not in force. 

This concept is of great use also as a method to clarify 

and analyze inference models. For example, the often 

argued misuse of frequentist measurment of inference uncertainty, 

would have been better indicated if total evidence or other 

corresponding concepts had been used. See for earlier consider­

ations Hacking (1965), Seidenfeld (1979) for the philosophical 

part and Hagood (1969), Henkel and Morrison (1969) and Sterling 

(1959) for the behaviouristic part, and Savage (1954) and 

Pearson (1962) for the statistician's part. 
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4 AN APPLICATION OF THE METHOD OF SUPPORT TO THE LIN EAR 

REGRESSION AN ALYSIS 

The linear regression analysis is one of the most commonly used 

statistical methods. In the linear regression analysis, statis­

tical inference means an estimation of regression coefficients and 

testing hypotheses. For performing and. the stages of the regres­

sion analysis, see Seber (1977). Below, we concentrate only on 

those stages in which the method of support is needed. Our start­

ing point is the decomposition of the statistical inference situation 

into the model triplet [M,P,IJ. 

M ++ E(y) = xe, where y is the vector of observations of the 

dependent variable (n :>< 1), 

X is the known matrix of the independent 

variables (n x p). 

P ++ y � N (X0,Io
2
), where N refers to the multivariate normal

distribution and 0 is the parameter 

vector (p x 1). 

Alternatively, the statistical model above can be represented 

by means of the (n x 1) vector of errors E in the following way: 

M ++ Y = ){0 + E, 

P ++ E � N(O, I o
2

),

where E(E) = O and V(E) = 10
2

. 

or equivalently, i.e., the density of the distribution of the E vector is 

1 
2 

-E 1 E/ 2o
e 

In statistical studies and literature, the presentation of infer­

ence models usually ends here. Good planning, however, presupposes 

the display of the statistical inference model . Thus the model 

triplet [M,P,IJ of the linear regression analysis is the follow­

ing (the method of support as the statistical inference model): 
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M ++ Y = X0 + £ 

I++ 3(0) 

The models are defined in more detail. 

The Mathematical Model M{} 

The mathematical models of the regression analysis are clearly 
hierarchic. A typical variance analytic model can be regarded 
as the basic model and the final model is the one that fits data as 
closely as possible. 

Mathematical model 

M ( 1) ++ E ( y) = 0
0 

M ( 2) ++ E (y) = 0 

M ( 3) ++ E ( y) = X0

M ( 4) ++ E ( g ( y )) = q ( X) 0

Explanation of the model 

The H
0 

hypothesis of the variance 
analysis. , (No effect on the 
levels of the explanatory variabl�. 
The H1 hypothesis of the variance 
analysis. 
The general linear regression. 
Linear regression between the trans­
formations of the variables Y and X. 

The objects of interest in the linear regression analysis are 
the model M ( 3) and its generalization M (4) , the appropriateness
of which as an explanatory or predictive model of the phenomenon 
studied is examined. The models M (i) and M (2)are used in comparison by 
means of which it is decided a) whether the linear regression 
analysis is worth undertaking at all (model M (i)

) or b) how well 
the chosen linear model explains the variations in the phenom­
enon (model M (2)

). 



54 

The Statistical Model P0 (y)

The statistical model of the linear regression analysis is 

connected with the distribution of the dependent variable Y, 

if independent variables are regarded as constants. It is 

generally assumed that the observations are independent of each 

other and so it is realistic to assume in the case of a large 

sample that the ::statistics in use follows the multivariate 

normal distribution. The properties of the multivariate normal 

distribution are not dealt with here. The linear regression 

analysis is linked with the determination of the mean vector 

of the model in question. Thus the mathematical models M (i) _

M (4) each yield a different statistical model because their

mean vectors are different. 

The Statistical Inference Model S (0) 

In the linear regression analysis, the method of support is 

defined by means of the likelihood of the parameter vector. 

When the statistical model is a multivariate normal distribu­

tion, the likelihood for the parameter vector {e,a2 } is

and the support function is 

( 
2 n 2 1 s e, a ) = - 2 log a - -

2 
{ ( y - xe)' ( y - xe) }, 

2a 

2 from which by solving d log L/d0 = 0 and a log L/3a = 0 we get 

the evaluates of the parameters, if X'X is nonsingular. These 

are 

02 = RSS (0)

where the residual sum of squares is RSS (0) = (y - X0) '(y - X0).  

In the following discussion the nuisance parameter a 2 is elimi­

nated by the maximum relative likelihood method (see Edwards (1972), pp.111-15 ). 
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It is also possible'to write down the support function as the 
function of the residual sum of squares including the parameter 
vector under study. Using the notations above we get 

n RSS(0(j)) 
2 log n 2 , 

where the residual sum of squares depends on the chosen sta­
tistical model M (j) . Because the support function is quadratic 
for a normal statistical model, it follows that 

where B (j) is the observed Fisher information matrix, the ele­
ments of which on the main diagonal are the terms wf indicating 
the accuracy of the evaluates and the other elements 
are second order derivates ,is;aei aek I 0 = e· The plausibility
order of the hypothetical values of the parameter vector can be 
solved by determining the local uncertainties with the normed 
support function SN(0). If the m-unit support region is chosen
in advance,its boundaries are to be found in the quadaratic 
support function as the hyperellipsoid defined by 

which defines the m-unit support region. 

Figures are a typical form of communication in the method of support. 
They are succesful mainly in connection with such parameter 
vectors which have one, two or three components at most. It is 
because of this that a multiparameter model should either be 
reparametrisized into a model with only one parameter or one 
parameter at a time should be considered. In the case of a 
model with one parameter, the support can be determined by means 
of the sum of squared residuals 
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n . 2) - - (a+ b0 + C0 2 

where the coefficients of the parabola are solved by assigning 
different values to the parameter. The parabola yields the 
value {-b/2c, (nc)

-112} for the communication paramet�r {e,w}.

An application of this will be presented in the empirical part 
of this study, see Chapter 4-3-3. 

In the linear regression analysis, the multinomial support 
SM(0 (j)

) measures two things simultaneously: t'he fitting of 
parameter vector in the statistical model and the fitting of 
the probability model. With this support, it is possible to 
express the local uncertainty of the statistical model [M,PJj
with regard to the multinomial model best supported by data. 
When determining the multinomial support, it is worthwhile to 
divide the data into independent sets. As it is known, in 
the multinormal regression the conditional distribution 
f (y. Ix

(
.

)
) of the dependent variable is a normal distribution l l (j) 2 with parameters ( x(i)

0 ,a ) where x
(i) 

is the i'th row vector
of X. By fitting the multinomial distribution according to the 
levels l, ••. ,i, ... ,k of the independent variables, we get at 
each level the multinomial supports SM(0) which by direct 
summing yield the support of the statistical model [M,PJ .• Dif-

J 
ferent ways of using the normed support function will be consid-
ered in connection with tests in the regression analysis. 

The method of support resembles the descriptive methods of the 
regression analysis, for it is based on the OLS (Ordinary Least 
Squares) estimation in connection with the multinomial statis­
tical model. In addition to the observed regression, it yields 
the local uncertainty of the inference results as the multi­
nomial support §M (0) and the plausibility of the hypothetical 
models in the regression analysis. Chapters 4-1 and 4-2 deal with 

the estimation of the regression coefficients and their sup­
port tests. 
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4-1 Evaluates of Regression Coefficients

The determination of the numerical values of the unknown para­
meter vector {0 (j)} in the regressim analysis is evaluation which
also includes the determination of the accuracy of the evaluates. 
Because the evaluates in the multinormal statistical model are 
the same as the OLS or ML estimates, they are produced by cor­
responding estimation methods. As the normed support SN(0),S(0),
etc. has been defined generally for some parameter vector it 
is possible to regard the hypothetical parameter vector as an 
evaluate which is compared to the evaluate vector best sup­
ported by the data. The latter evaluate is the same as the ML 
estimate 

It is easy, for example, to examine the vector estimators 
yielded by different estimation methods by means of the method 
of support with the m-unit hyperellipsoid (0 - 0) 'B (0 - 0). 'lhe accu­
racies of treevaluates are obtained by taking square roots of the 
inverse numbers of the main diagonal elements in the observed 
Fisher information matrix B (on the condition that they are 
non-negative), which yields the vector�- Because of the quad­
ratic nature of the support function, one parameter at a time 
can be separated from the parameter vector to formulate a 
separate support function 

A 2 A2 SN ( 0 · ) = S (e · ) - ( 0 . - 0 . ) I 2 w • 
J J J J J 

and by means of it, the plausibility order of the differ­
ent values of the point evaluates can be found. 

A neighbourhood evaluate for a parameter vector is a hyper­
ellipsoid, but for a single parameter it is the solution of the 
m-unit support limits {0, ,0. } determined from the support

JL Ju function .§N(0j).
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In some connections, it is useful to apply the joint evaluate 
of Definition 14 when determining the evaluates of the regres­
sion analysis. The joint evaluate was detemined on the basis 
of the combinational properties of the data. The regressions 
of two different data can be combined or the data can be divided 
into independent sets of data and the regressions of the subsets 

can be estimated from them. The determination of the support 
function is in these cases accomplished by arranging the data 

( combined) into categories. 1, .•• ,h, ... ,k, in each of which 
there are nh observations. The support function is applied to 
each category and so the normed support of the parameter 0. 

J
in the model {j} is in a one dimensional case 

The combining of the supports of the subsets of the data yields 
for the model { j } the total support as follows: 

h � 1 3h ( e (
j ) ) =

k 2 
RSS ( 0 (j))}- ( 1/2)hh nh {( ah+ bh0 + ch0 

The joint evaluate of the total data is the solution of the deriv­
ative equation 

k 
A hhnhbh 
0 = - -=-k __ _ 

2hhnhch 

By using the second derivative we get the accuracy of the joint evaluate 

The use of the joint evaluate in the regression analysis makes 
sense, for example, if it {s possible to divide the data into 
subdata on the basis of some dummy variables. It can then be 
determined directly from the support function how much the sup­
port �ecreases when the evaluates for each data are substituted 
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with the joint evaluate. Its magnitude is 

A A(J.) k 1 A A(J.) 2 S(0)- S(0 ) = hh � (0 - 0 . ) •
2wh

The fundamental difference between the concepts evaluate and 

estimate lies in the fact that estimation aims at prediction 

and for example in the frequentist inference it is clearly 

interpreted in that way. An evaluate refers to the correction 

of a more or less vague a priori belief, the amount of which 

is measured as the support, based on data alone.Because evalu­

ation closely resembles the ML estimation it is often confused 

with it, as Edwards (1972) points out. Compared with estima­

tion, evaluation is a form of statistical inference because 

inference uncertainty is included in the notion of the least 

local uncertainty estimators. In this study, however, we have 

not rejected Edwards's concepts because the evaluate clearly 

distinguishes them from the ML and OLS estimates. 

4-2 Support Tests of the Regression Analysis

In the linear regression analysis, statistical hypotheses are 

classified into two groups: on the one hand, the hypotheses of 

the mathematical model and on the other, those of the probabil­

ity model. The hypotheses of the mathematical model concern the 

parameter vector. The tests of the probability model are con­

nected with the homogeneity of variance, the normal distribu­

tion of residuals and their mutual independence. The hypotheses 

are, however, nested and thus a hierarchy of support tests will 

here be developed for them. In addition, it will be shown that 

the transformations of the statistics t, F and x
2 are support

tests as well. 

Seber (1977) has considered the hierarchic test of the regres-

sion analysis as an application of the Neyman-Pearson test the-
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ory. His treatment represents the most frequently used testing procedure 

in the linear regression analysis. Fraser (1979) divides a 

hierarchic test of the regression analysis into two stages: 

the first step is to get some assessment how valid the distri­

bution assumption is and the second is to perform the tests of 

the parameter vector as significance tests. He names this as 

an adaptive procedure. An example of the information theore-

tical approaches is Berth's (1975) method of dividing the 

expected joint entropy (Shannon's entropy)determined from the 

statistical model into two components: entropy of the probabil­

ity model and that of the parameter vector. By means of his 

own information concept, Kullback (1959) deals with the hierar­

chic test of the parameter vector 0 in which the hypotheses 

are nested and thus information increases on each step of the 

hierarchy. Tn this study, it will be shown how by combining 

the first step of Fraser's adaptive procedure and Kullback's 

hierarchic test of the parameter vector we obtain a hierar­

chic support test of the hypotheses which are nested. As we 

move from the multinomial model representing the least local 

uncertainty to the model specified by the regression analysis, 

inference uncertainty increases on each stage. 

We are dealing with a hierarchic support test when the dependent 

variable y can be defined according to the levels 1, •.• ,1, ••• ,k 

of the independent variables. The data are then of the form: 

Y11'Y12• •.. ,Y1n are n1 repeat observations at the level 1
1 of the independent variables 

( x (1)1•···,x (1)p)

Y21•Y22•··•,Y2n are n2 repeat observations at the level 2
2 of the independent variables 

Yk1'Yk2••••,Yknk
are nk repeat observations at the level k

of the independent variables. 

According to the multinormal regression ana-

lysis we assume that on each level.l of the independent vari-
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able Y1 follows the normal distribution with the parameter
( A 2 

) ( 0 A2 
) • • • • µrcr1 = X(l)-,cr1 • In addition, it is assumed that the obser-

vations of .the dependent variable are independent of each other 
both iniide the levels and between the�: 

The basis of the hierarchic support test is the multinomial 
statistical model which is fitted on each level of the depen­
dent variable. This yields the local uncertainty SM(µ1) which
is the least local uncertainty on each level. Because the 
observations on each level are independent of each other (as­
sumption), we get the total local uncertainty 

which is the sum of the least local uncertainties. Hierarchy 
in connection with this test implies that at the same time as 
we start from the least local uncertainty, the total uncertainty 
measured as support values increases with the specification of 
the hypotheses H

0
, H1, ••• ,Hh. The steps of the hierarchic test

of the regression analysis are described below. 

Step 1. The least local uncertainty SM(µ1) is determined on
each level of the dependent variable and summed up as 
the local uncertainty SM(0). 

Step 2, The normal distribution is discretisized on each level 
of the dependent variable in such a way that the evaluate 
vector (µ1 ,&i) is the parameter vector of the fit and
the method of natural class interval proposed by Mineo
(1980) is used for the discretization. The supports for 
each level are then calculated frpm the standardized 
support function SM(µ1) and, by summing up, these sup­
ports yield the total support SM(0). At the first stage 
of the fitting, the expected cell frequencies of the 
theoretical normal distribution are applied. If the 
local uncertainty SM(0) is subtracted from this 
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the results is the loca�uncer-
tainty SNI(0) of the discretisized normal distribution.

Step 3. A fitted distribution is made in which the discretisized 
normal distribution of Step 2 is transtormed in such a 
way that the cell frequencies for �he classes are the 
observed cell frequencies. This yields the local uncer­
tainty SNII(0) 2 SNI(0). The total local uncertainty 
SNII(0) should be used as the basis of the comparison 
because there th�-evaluate vector has been formed of 
the estimates of the least local uncertainty and the 
hypotheses of the re gression analysis have not yet been 
used. 

Step 4. At this step, all the usual hypotheses of the parameter 
vector® of the regression analysis can be tested. 'Ihese hy­
potheses concern the lack of fit, linearity and the 
homogeneity of variance . 

The hierarchic 

Hypothesis 

support test formally listed 

Explanation 

Least local un­
certainty 

Local uncertainty 

Normal fit I

Normal fit II

General linear hy­
pothesis (presup­
poses no homogen.of 
variance) 
General linear hy­
pothesis (presup­
poses homogen. of 
variance) 
Lack of fit (presup­
poses no homogen. of 
variance) 

Lack of fit (presup­
poses homogeneity 
of variance) 

(A A2) 
s__ 0 w -NII reg,



The hierarchy of the hypotheses is 

in which the local inference uncertainty between the hypoth­
eses forms a corresponding order. With respect to some supports 
it must be mentioned that the difference between the hypoth­
eses Hi and HiI measures the loss of information due to clas­
sification, as it was already pointed out in Chapter 3-4. An 
example of this is the consideration of the evaluates of the 
normal distribution in Chapter 4-3-4, The supports S{H5;H3}
and S{H4:H2} measure the increase in uncertainty which is due
to lack of fit of the linear regression in explaining the phe­
nomenon under study. In all, the hierarchic support test in­
cludes at the same time the tests of the normal distribution 
and those of the homogeneity of variance in the regression 
analysis. In his interpretation of the support tests, Edwards 
(1972) does not recommend the use of a special fixed support 
level. Similarly, Kullback (1959) in his study does not in­
clude fixed discrimation rates in his information concept but 
regards them as statistics in the frequentist inference. In 
the present study, the support measures directly inference un­
certainty as well. The comparison with the hypothesis H

0 
makes 

it justifiable to define the test procedure above as a test 
of the least local uncertainty. 

2In the linear regression analysis, the statistics x , t and F 
are usually used as test statistics and they are displayed by 
the computer programmes in use. Following Edwards (1972) we show 
next how we can use them as arguments for deterrning local uncertainties 
of the appropriate hypothesis. Furthermore the following formulas 
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lead to the normed support function s'(e). 'Ihus the tests are performed 
by inserting 0 = 0

0 
into it,according to Definition 14. 

Student's test as a support test 

The statistic t is in a normal statistical model connected 
with the hypothetical value of the mean e, when the variance 
cr2 is unknown. The normed support for 0 is then 

where 

t2 

A v +1 \) S(0) = -
2
- log (1 + v)

t
\) 

= g(0) = 
y-0 ✓v '\) iss the 

y. In s2 1
y = E and = 

n-l E (yil 

degree 

- 2 
- y)

Karl Pearson's x2 test as a support test 

of freedom, 

The statistic x2 concerns the hypothesis either of location 
(a) or that of scale (b) in a normal statistical model. It is a
common practice to test the goodness of fit by means of the
x2 statistics. In the latter case the hypotheses of location and
scale are often confused with each other, as pointed out by
Edwards ( 197 2). Testing tre Jccation hypothesis H : 8 = 0 ,

0 0 

when the variance cr2 is known under a normal probab�lity
model, leads to the normed support f unction for 0, which is

s ( e) =
1 x2
2 1

= 
n(y-0)2 

where x� = g(e) 
cr 

T t. 
. 2 2 es mg the scale hypothesis H : cr = cr , when the mean 0 is known, 

0 0 

yields under a normal probability model the normed support func-
2 tion for cr, 

v[l 2 l J 1 [ 2 J 2 og Xv 
- og v - 2 Xv 

- v '

where vis the number of degrees of freedom 
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2 2 ns2 

X . = g( a ) = -2 , v d
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2 1 - 2 s = n-1 L (yi - y) '

An important observation in the hypothesi:;i of .scale with regard 
to interpretation is the fact that in the goodness of fit test 
the value x2 = v of the statistic yields the value zero to the 
support

. 
Thus the best fit with regard to the local uncertainty

is obtained with the value x2 
= E(x2

) = v and not with x2 
= 6 

\} \} \} 

which is characteristic of the frequentist inference. 

The F test as a support test 

The ratio of two sampling variances F = si/s� is connected 
with the testing of the poorness of fit, the general linear 
hypothesis and other corresponding hypotheses. From this test 
statistics it is possible to deduce two normed support functions. 
Consider an inference situation where it is to be tested a hy-
pothesis that two pop�lations have the variances di and d�, 
whose the ratio is s = di/o�. The normed support function for 
parameter (cri,o�) is 

when the two samples are mutually independent. If the generalized 
A 

"2 "2hypothesis conce�ning parameter s, whose evaluate is s = a1/a2
l_eads to the normed support function 

A 
S(s) = S(s)

= S(s 

= s1 <t 

= s1 <t 

- s(€)

" 2 " 2 
a

2
,a2) 

A 2
)(12 

+ 

A 2 
a

2
)

.

" 2 " 2 - S(a
1
,a

2
) 

A A 2 
s

2 <a2
)
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'Ihe support for� is easily expressed in terms of F 

v
1 

= n1 - 1 and v
2 

= n2 - 1 as

1 v
2 � v

1 F S(O = - 2cv1 log(1 + v
1 

F) + v
2 

log (1 + v
2 

i).+ v1 
log v

1 +

It is assumed above that F � F when� = 1. (n1 -1), (n2-1)

n -1 
2 

n -1 ' 
1 

It is characteristic of the support tests to measure infer­
ence uncertainty directly. So there is no need to assign any 

support limits as "critical values". We can directly calculate 
the support increase available, without any conventional sta­
tistical tables. Thus they are appropriate for the statistical 
tests of instant samples. 

4-3 Empirical Application to the IEA Data

The international evaluation of educational achievement is an 
extensive research project aiming at the comparison of learning 
achievements between different countries. Its largest data con­
sist of interviews of schoolchildren in twelve different coun­
tries, gathered in 1970, The data include observations about 
approximately 250 000 pupils, 50 000 teachers and 9 700 schools. 
The data are located at the Institute of International Education 
at the University of Stockholm and it is available for research­
ers in the educational field. -copies of the international 
data have been given to the institutes participating in the 
IEA project, one of which is the Institute of Educational Re­
search in Jyvaskyla. On a national level, the data consist of 
two-stage cluster samplings of pupil, school and teacher popula­
tions. 
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The choice of the IEA data for the empirical application in 

this study is due to the fact that the data correspond to 

the previously defined large instant samples which are regarded 

as the central area of the application of the method of support. 

These data cannot be repeated in a sampling situation or in 

an designed experiment. For example, in Finland at the time 

of the sampling, in 1970 basic education was given within the 

elementary school system which, by 1980, was in the most part 

reorganized into a new compulsory school system. Thus, the 

data form a large instant sample in terms of the number of 

observations. The choice of the IEA data has also been influ­

enced by the fact that they are easily accessible in the In­

stitute of Educational Research at the University of Jyvaskyla. 

The data have not been utilized as a whole but only a part of 

them have been used, as specified in the description of the 

Finnish IEA data bank (see Chapter 4-3-2). 

Internationally, the IEA data have been studied quite exten­

sively. This becomes evident, for example, from the comprehen­

sive bibliography of Munck's study (1979), The most important 

findings are presented in Chapter 4-3-1, where the statistical 

and inference models used are listed. The substantive model 

of the regression analysis applied to the data in this study 

is presented there. 

4-3-1 Inference Models used by IEA Researchers

The IEA data have been an object of a massive research activity for 

almost ten years in different countries. Some bf these studieB 

�ill, be discussed here mainly from the point of view of the 

inference model used and the way in which the inference has, 

in general, been realized. The studies which will be discussed 

have intentionally been chosen from those in which the substan­

tive model has been displayed as a linear regression analysis. 
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In addition, we refer to the work of the hypothesis committee 

of the IEA research project whereby researchers of the educational 

field would have had a chance to define an a priori distri-

bution for an eventual Bayesian inference. 

The most extensive application of regression and variance 

analyses so far has been carried out by Peaker (1975), the 

statistical advisor of the IEA project. Comber and Keeves 

(1973) have, also used regression analysis complemented by path 

modelling. As for statistical inference,frequentist inference 

has mainly been used in applying the partial F-test to insert 

new variables until the regression equation is ,satisfactory. 

They have used as a critical value for acceptance F � 2. The 

significance of regression r.oefficients has not been tested 

and no dia�nostic examinations have been carried out either. 

The significance levels of 5%, 1% and 0.1% have been used. 

In both studies it has obviously been assumed that the asympotic 

properties of the used ML estimates are in f0rce because ofthe 

large sample size and so a multinormal distribution is admissible 

as a statistical model for the distribution of the statistics. 

A model choice different from the classical regression analysis 

is represented by Noonan's and Wold's ll977) application of 

the latent variable technique to IEA data. Their starting 

point is to describe large statistical data by means of a struc­

tural model which is as simple as possible and has as few para­

meters as possible. Consequently, this application does not 

contain inductive statistical inference. The computational 

stage has been realized by the use of NIPALS procedures (Non­

linear Iterative Partial Least Squares). The three variables 

of the regression analysis are latent variables which are 

combinations of observed variables. The coefficient of deter-
. • 

2% mination lOOR • has been regarded as one criterion of finding 

the structure of the following model: 
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A 

Y = 0H +(1-0)S 

= (.6l)H + (.26)S 

Interpretationally this regression model is interesting 

because there it can be sien what fraction e E [O,1J of 

that part of learning,achievements,which is divided between the 

home and school variables, can be explained by means of these 

variables. They obtain as one estimated value for 0: (1-0) = 2: 1. 

Since the analysis includes no distribution assumption there 

is no knowledge of the inference uncertainty linked with this 

fraction. 'lhe application of the method of support carried out here aims 

at estimating the same parameter e and, in addition, at deter­

mining the accuracy of the evaluate to be yielded as the LLU 

estimate. 

Munck (1979) has applied Joreskog's LISREL statistical model 

and LISREL IV computer program in his model building. The choice 

of a school achievement model is started with a simple a�d 

accurately specified model which by means of the LISREL approach 

is developed to a more general model. She has aimed at a struc­

tural model based on the linear regression analysis whose de­

pendent variable and independent variables are latent variables 

combined from observed variables. No statistical inference 

model has been recognized although the compatibility of the 

models is tested by means of the chi square test according to 

the LISREL IV program. Munck uses the significance levels of 

5%, 1% and 0.1% fre quentistically.In this case, for example, 

it would have been useful to aim at a statistical model whos� 

measure of goodness of fit, denoted by , x; would have been in the

neighbourhood of its own expectation. (See Chapter 4-2 for 

Pearson's x 2 test as a support test).

An application of decision making theory has been performed by Bulcock 

et al. (1977) who have evolved a statistical decision function 

for school achievement. In addition to the data and preconcep-
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tions a cost function has been needed. He has primarily aimed 
; at producing research findings for the use of school planning authorities. 

After the computation of .results Bulcock draws relatively scanty 

and questionable conclusions, as for as their u�ili ty is concerned. 

We have no knowledge .of any empirical Bayesian inference, al though 

the IEA project would have offered an interesting opportunity 

for such a study. Indeed, at the beginning of the IEA project 

in 1966 and 1967 multidisctplinary conferences were arranged 

where besides educational researchers, sociologists, political 

economists and other behavioural and social scientists were 

present� The aim of the conferences was to deduce structural 

hypotheses before the collection of the data . . A large scientific 

community was assembled to discuss an a priori re-

search situation in which it would have been possible to look 

for a priori distributions applicable in Bayesian analysis. The 

result of the conferences was a number of hypotheses but no 

a priori distributions. 

In a real research situation Bayesian inference is,according 

to Hogarth (1975), prevented by the fact that the members of 

the scientific community should know the probability concept 

before it can be used as a. measure of an a priori knowledge. 

On the other hand, Hogarth's second requirement is suitable 

for the IEA scientific community. He claims that an a priori 

distribution should be combined as some kind of a priori prob­

ability distribution of a group of researchers as the mean 

of the a priori distributions of all the researchers. As is 

known, the IEA community has a large group of researchers and 
no researchers are working on their own. It seems that scien­

tific communities do not have enough knowledge to utilize 

Bayesian inference. 

The main emphasis of the empirical IEA research carried out 

so far has been on descriptive methods. No attention has been 
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paid to sampling errors in the data. It has obviously been 

thought that the numerical magnitude of the data provides the re­

sults with some certainty. However, in contradiction to the 

descriptive strategy, frequentist statistical inference has 

been used as a criterion in choosing variables (partial F 

tests) and in the fitting of models (chi square tests), 

for example. 

4-3-2 Description of the Finnish IEA Data Bank

The Institute for Educational Research at the University of 

Jyvaskyla has planned and realized an IEA sampling in Finland. 

We are dealing with the data bank of what can be called the 

survey sample of school achievement in six subjects whose 

collection and filing has been discussed by Saari (1977), 

The target population of the IEA stugy was the population 

of all pupils at the age of compulsory 

education, �hich was grouped according to age. From these the

subpopulation I has been chosen for this research. At the mo­

ment of the IEA measurement in 1970 it consisted of ten-year­

old Finnish speaking pupils in normal classes. At the time 

the total population consisted of 73 369 pupils. 

The sampling method used was a two-stage cluster sample. The 

primary sampling unit was school, which in the whole country 

numbered 4741 in 1970, A sample of 97 schools was chosen by 

means of stratified sampling in such a way that the stratification 

was made on the basis of the location of the schools (adminis­

trative district), the degree of urbanization of the munici­

pality in which the schools were situated, the category 

and size of the schools determined by the number of pupils. 

At the second stage the pupils in the age group in question 

were chosen from the clusters or, in this case, from schools 

in the following way: in small schools up to 40 pupils all of 
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the pupils were chosen and in the other schools with regard 

to the total number of the pupils proportionally the same number 

or approximately 13 pupils from each school were chosen. The 

sampling method at the last stage was sys_tematic according to 

the month of birth. The sample included the total of 1331 pupils, 

which form about 1.8% of the target population of 73 369 pupils 

(sampling ratio 1:55). Here we had to drop out 44 pupils whose 

sampling records were incomplete because of outlying or missing 

observations in some variables. Then, the total number of the 

sampling units was limited to the 1287 pupils. The teacher 

sample consisted of teachers who taught the pupils in question 

in the sampled schools at the time of sampling. The 350 teachers 

included in the sample represent about 7% of the total of 4592 

_primary and secondary school teachers in the country (sampling 

ratio for teachers 1:13). 

From the description of the data it is clear why it has been 

chosen for an illustration of the method of support. Firstly, 

it is a large sample (n 2 1000), in which case the asymptotic 

properties of statistics can be utilized in inference. Secondly, 

we are dealing with a two-stage cluster sample with the properties 

of a probability sample obtained from a finite and real population. 

Thirdly, it must be noted that the sampling has not been repeated 

and it cannot be repeated as such because the school system has 

after 1970 (year of measurement) been changed into the new· 

comprehensive school (1980). Consequently, the degree of uncer­

tainty in inference must be expressed by means of the sample 

data available and not on the basis of an imaginary repetition 

principle. In short, the IEA project has a large sample obtained 

by instant sampling and thus it is most suitable for the use 

of the method of support. 
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4-3-3 Empirical Results and their Interpretation

The above discu�sion on the IEA data and some earlier studies 

specify th� inference situation, which will here be dealt 

with by referring to Theorem 1 and to Requirements 1 

to 3 of the inference situation. The substantive problem is 

the same as in Noonan's and Wold's (1977) application of the 

NIPALS modelling •. The score Y by any me pupil in a science test 

can be explained by means of the school type Sand the home 

type H variables. These together and separately explain a 

certain part 100 R
2

% of the variation of the score Y. In

addition , we want to know how the explanation is divided 

between the variables Hands. This is measured by the fraction 

parameter 0 E [0, 1] which consists of our parameter space 0 . Our 

aim is to evaluate the least local uncertainty estimate for e, 

to determine its accuracy and to perform certain support tests 

for some hypothetical fraction values. The data {y}a.re an 

instant sample of IEA and so the observed total evidence is {y ,e}. 

A statistical inference situation must first be formulated 

into the model triplet [M,P,IJ. As it was already pointed out 

in Chapter 4-3-2, the Finnish IEA data is a large (n > 1000) 

instant sample. Consequently, the statistical model must be 

one which uses the pair {y ,a} as the total evidence. The method of 

support, fiducial inference and relative likelihood infer­

ence are such inference models. Of these the method of sup­

port is chosen, but for comparison some results of the other 

two inference models are also reported. On the other hand, 

the large size of the instant sample guarantees that for the 

statistics to be computed we can use a normal distribution as 

their statistical model. The model triplet of this inference 

situation is; 

M ++ 

p +.+ 

I +-.. 

y = 0H + ( 1 - 0 ) S + E 

E"' NID ( 0, I cr
2
)

A 2 
sN(e) = a +  be + ce
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The mathematical model is that of Noonan and Wold (cf. p. 60) 

and the probability model is derived from the discussions on 

pages 46-48. 

All the variables, indexed below as x ·, are taken from. the 
UV ' 

Finnish IEA Data Bank, which is located at the Institute for 

Educational Research at the University of Jyvaskyla. We use 

three blocks of IEA variables; Home,School and Achievement. 

I. Learning Achiement (y)

y = x
12 

Science Tests A & B Corrected Score -10, ••• ,60 

II. School Block (S)

S1 = X55

S2 = X57

S
3 

= X59

s4 = x62

School Environment Score 

Learning in the School Score 

Grade in School 

Number of Students in Class 

-11, ... ,11,

-6, ... ,6,

3 or 4, 

1, 2, .•. 

s
5 

= x
78

Regular Science Lessons Available 1,2, .•• 

s6 = x82 Observations made in Science 1, 2, •.. 

s
7 

= x87
Number of Grades in the same Classroom 1, ... , 5 

Need for further Education 1 or 2 

III. Home Block (H)

h1 = x60 Fat·her's Occupation 1, •.. ,10 

h2 = x
63 

Homework Hours/Week in all Subjects hrs/day 

h
3 

= x
77 

Position in Birth Order 1,2, •.• 

The relation of the latent variables S and H to the observed 

variables is assumed to be linear. The first step is to fit 

the following linear regressions 
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Y = .r:1)..h. + ,..J= J J .,

� A 

from which we get the OLS coefficients w. and). .•l J 

Consequently, the estimated latent variables S and H are; 

3 A 

and H = .r
1

Lh. 
J = J J 

The non-linear property linked with the evaluation of the 
fraction e can be seen if we examine in more detail the 
structure of the mathematical model defined by means of 
latent variables. This procedure is justified because in the present 
case the observed variables are not multicollinear. 

In fact we can write 

Y = 06.h. + (1- B)E�.s. +l l J J 

By using re�arametrisation eii =

obtain the linear regression, 

Thus learning achievement has been written as the weighted 
sum of the home and school variables, in which the weights are 
non-linear functions of the original parameters. In this kind 
of latent structure the regression coefficients can be estimated 
iteratively by means of the NIPALS method by Noonan and Wold (1977). 

The method of support leads to another kind of estimation pro­
cedure which is based on the quadratic support function of a 
normal statistical model. In the regression analysis the support 
function can be determined by means of the residual sum of 
squares RSS(B) obtained through the OLS principle. The quadratic 
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support function has thus the following form for the fraction 9, 

§ (9) = (-!!)[a' + b'9 + c 1 0 2 - lo g RSS(S)J.N 2 

The parameter triplet {a' ,b' ,c'} of the observed support function 
is thus determined by varying the parameter 9 and calculating the 
corresponding residual sum of squares RSS (9). Some of these 
values are in the table below: 

Values for 9 .o .1 .2 .3 .4 .6 .7 • 8 • 9 1.0 

lo gRSS( 9) 7.09 7.0 2 6.97 6.93 6.91 6,91 6,94 6.98 7,03 7.11 7,20 

The observed support function for 9 is a parabola (see Fi g. 1), 

'See) 

-2.

_., 

-6

-8

-10

1287 2 
= (- -

2
-)[7.09+ (-.81)9+ (,92)9 - 6,91]. 

0,lf 3 o.s

Figure 1. Support curve for Home/School f raction 9 £ [0 ,1J. 
Finnish IEA six subjects data. 

The least local uncertainty (LLU) estimate 0 and its accuracy 
w from the observed support function are 

e 
1 b' 1 (-.81) . 44 = -
2( c' ) = -

2 
. 

(+,92 ) 
=

1 " 
w = (n C I) 2 = 0 .  03 • 
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In order to communicate the computation results m-unit sup­
port limits can be �etermined for the parameter S as the solu­
tion of the equation; 

from which it follows that the 2-unit support limits for the 
fraction e are: 

.44 _: .05 or 0 = .44 (.39, .49). 

By transforming the domain of the fraction 0 to be percentual 
it is possible to state as an evaluate that in the IEA data about 
44 + 5% of the pupils learning achievement is explained by the 
home latent variable and the rest by the school latent variable 
from that part which is explained by these variables together. 

For the sake of comparison the computional results will here 
also be given the relative likelihood RN(e) = e3N(0) and the
fiducial distribution ff(e) which in this case is derived 

from 0 '\, N ( e, w2). In the technical appendix ( table 1 ), the values 

of the support function, relative likelihood and fiducial den­
sity functions have been tabulated on some values of the frac­
tion 0. The fiducial distribution for the fraction 0 should be 
defined as a double-sided truncated normal distribution, because 
the parameter belongs to the interval e E [0,1J instead of 
0 E [-oo,+oo]. Indeed,the truncation is of little value as is 
seen from the following tail areas, 

Fr(0) = f ff(e ) de = Ff(- 15.15) � o and 

-oo 
+oo 

1 - Fr( 1) = f rrCe) .de = 1 - Fr( + 19.34) � o.

1 

and, consequently, no correction is worth doing. 



78 

Fiducial distribution can be used in an inference situation 

in the same way as Bayesian a posteriori distribution. For 

example, the fiducial probability Pf{eL � e < Su}� ,95 indi­

cates the upper and lower bound of the location of•a fiducial 

mass of a given size. The 95% fiducial condifi�ence interval 

for the fraction e computed of the IEA data is 

Pf{.382326 � e < .495990} > ,95 or

0.3 

0.2. 

0.:1. 

0.3 0.5 0.6 8 

Figure 2. Fiducial density function for Home/School fraction 

e € [0,1J. Finnish IEA six subjects data. 

Both in the method of support formula and in the fiducial dis­

tribution the value for the evaluate and for the mean is the 

same e = 0.44. The accuracy of the support function and the 

standard deviation w of the fiducial distribution are also the 

same. Consequently, only the norming of the inference model 

used in inference is different. The support function denotes 
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to what extent the local uncertainty increases (or as in

Edward's terminology support decreases) when the parameter 
value moves away from the evaluate 6. In a fiducial formula 
the parameter values are not compared with each other, but an 
area of the parameter space 0 e: C0,1J, whose Pf probability
exceeds a given bound by getting up to 95%, for example, is 
indicated. In the choice of the area we can, however, central­
ize it about' the evaluate 6.

The relative likelihood RN(S) = e8N (S) is a transformation of the 
formula for the support function. A noticeable advantage is 

the use of a likelihood unit which can, for example, be denot­
ed percentually 100 RN(0)%. The relative likelihood RN(S) must 
not be mistaken for probability. Consequently, by means of 
this inference model the domain of the parameter 0 which has 
a relative likelihood higher than some a priori chosen relative 
likelihood a e: C0,1] can be stated. For instance, a 2.5% like­
lihood interval is 0 e: C. 36, . 51] if the function 100 RN ( 0) % > 2.5%. 

r-

R(OJ 

1.o

0.5 

Figure 3. Relative likelihood function of Home/School fraction 
0 e: C0,1]. Finnish IEA six subjects data. 
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The one to one transformation between relative likelihood andthe 
support function indicates that we are dealing with the use of 
a different measuring scale. 

Although the interpretation of the percentual relative likeli­
hood 100 RN(e)% is easy for the user of the inference results
an incorrect inference may occur if it is confused with proba­
bility concepts. Only in fiducial inference there is a proba­
bility concept in the background. It is assumed that there is at 
the statistician's disposal a certain confidence mass, which 
can be represented as a fiducial distribution, in the parameter 
space. Since there is no frequency interpretation for this 
probability concept the fiducial inference results are closely 
tied to the inference situation which clea�ly refers to the 
concept of an instant sample. 

In order to compare the inference models SN(a), RN(e) and Ff(e)
some intervals of the fraction 0 have been listed in the table 
below. 

Inference model and arbitrary 
chosen value for inference 
uncertainty 

1. Support �unction SN(�).
The 2-unit support limits

2. Relative likelihood 100 RN(,e)
The 2.5% likelihood interval

3. Fiducial probability Ff(e)
95% fiducial confidence in­
terval

Range for e 
(Finnish IEA Data) 

.379 < e < .497 

.360 < e < .509 

.380 < e < .498 

Because the measure for inference uncertainty varies according 
to the inference model, they are not directly comparable to each 
other, if the width of range is considered. The width of a 
confidence interval depends on the value of the chosen criterion 
alone. On the other hand, with the value e = .44 all inference 
functions obtain their maximum values. For further ranges see 
Table 2 in Appendices. 
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In order to supplement the statistical inference some hypoth­
eses linked with the home/school fraction e can be examined. 
In advance the following ones would seem to be of interest: 

Null and alternative 
hypothesis 

H ( 1)· 0 
0 

J 

H ( 2) · 0 
0 

J 

= 0 

= 1 

H0).9- 5 
0 , 

- • 

H ( 4\e= .3
0 

H ( 1).1 J 

H ( 2). 1 J 

H ( 3);1 

H ( 4). 1 J 

e > o 

e < 1 

e =. 5 

e =. 3 

Substantive interpre­
tation 

Home has no effect 

School has no effect 

Effect is divided evenly 
between home and school 

Effect is divided between 
home and school in odds 
1:2. 

The test statistic of a support test is, according to Definition 15, 
an insertion into a standardized support function, which in 
this case is SN (e). The test result directly yields a support
decrease with regard to the hypothesis best supported by the 
data, which here has the value e = 0 = .44. 

The support test yields the following result for 
esis: 

Null hypothesis and the 
value of the test 
tistic 

H ( 1). 
0 

J 

H 
( 2)
0 

SN ( O) ::: -oo 

SN{1) 'l: -oo 

sta-

No support obtained 

No support obtained 

each hypoth-

from the data 

from the data 

For both hypotheses it can be inferred that neither the school nor 
the home variable alone explains learning achievement if both of 
these variables are considered together. 
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The data support this kind of 
hypothesis to some extent. The 
hypothetical e = ,5 is at the 
distance of nearly twice the 
accuracy w from the hypothesis 
best supported by the data. 

Little support obtained from the data 

The result of the support test indicates how quickly local 
uncertainty increases when we move away from the neighbourhood 
of the evaluate. On the othifr hand, a support test is not very il­
lustrative because the result is one number which denotes the 
change of local uncertainty in Renyi's terminology. Instead 
of support tests, in the case of one parameter, the observed 
support function and its\graph should be displayed, 
This rnethod has earlier been used by the already mentioned 
Edwards, Cole and Dickey; Dickey, however, has not used it in 
the sense of the method of support. 

Although the aim of presenting the numerical results has been 
to show the ability of the method of support to function as 
an inference model of an instant sample, it is worth empha­
sizing the substantive results connected with the estimation 
of the fraction 0. Firstly, the regression analysis which was 
carried out explained 62.3% of the total variation of the 
score Y. This figure can be regarded as rather high. Second� 
the evaluate of the home/school fraction was 8 = .44, which 
yields the odds 1:1,3 when we are considering how the foregoing 
degree of explanation is divided between these two variables. 
'llie odds is in favour of the school variable and, consequently, is 

in accordance with expectations as Noonan and Wold (1977) have 
pointed out in connection with their NIPALS modelling. Their odds 
is 2:1 according to the empirical computations, but in their 
opinion the method overestimates the influence of home. Peaker 
(1975), who has the odds 6:1, has the greatest deviation in 
favour of home. This result is, however, due to the fact that in 
the regression analysis in question the home block variables 



were entered first as independent variables and thus explain a 

larger portion due to the interaction with the school block 

variables. 

As for the measuring techniques the IEA data are soft and of 

behavioural nature to which, with rep;ard to the distribution assump­

tion, hard statistical methods have here been applied. For the 

reliability of the results it should thus be confirmed to what 

extent suohconditions hold. Since there is an instant sample as 

data the use of the method of support as a statistical infer­

ence model cannot be questioned. It still remains open in what 

way the statistical distribution assumption of a normal distri­

bution and the other assumptions of the regression analysis 

hold. They will be examined in the next Chapter 4-3-4. 

4-3-4 Adequacy of the Underlying Assumptions

The assumptions in the regression analysis usually concern the 

residual vector and the examination of its properties of this 

serves as a diagnostic check of the inference situation in 

question. It forms an inference situation of its own in which, 

in the case of an instant sample, the method of support should 

be applied. Inference is here an application of the support 

tests. 

The regression residuals are assumed to have the following 

properties: they a) are mutually uncorrelated, b) have homo­

geneous variance, c) have a normal distribution and d) are 

unbiased. From the properties a) and b) it follows that D
2 (E) =

cr2 I and the property d) means that E{E} = O. In addition, it

follows from the properties a) and c) that all the residuals 

are mutually independent. Each of these properties can be stud­

ied as a statistical hypothesis and appropriate statistical 

tests can be performed. We consider here only the normality 



84 

assumption which is examined by means of the test for goodness 

of fit and of the support determined from that test. 

In this study, the value of the home/school fraction e must 

always be fixed before the regression residuals can be calcu­

lated. A natural value for 0 is the evaluate 0 = .44. The 

corresponding 1287 regression residuals are presented in 

Table 2 of Appendices. The evaluate for the para-

meter {µ,cr2 } of the residuals is {O, 3,582 } which will be

applied to. make the normal distribution fit. Because the 

observed frequency distribution is always discrete, we must, 

for the fitted distribution, discretisize the continuous random 

variable which in this case is the normal distribution. It was 

pointed out earlier that discretization decreases local uncer­

tainty which, measured as support, may create discrepancy be­

tween the observed distribution and its fit. Thus, it is 

impor�ant to classify the variable in such a way that it fol­

lows the form of the theoretical distribution as closely as 

possible. 

In his treatment of the classification of data, Lindsey (1974 a) 

has emphasized the number of classes. However, Mineo (1979) has 

demonstrated that, in the discreti�ation of a continuous 

random variable, the number of classes is not as essential as 

their width. Classification in general has been treated in sta­

tistical literature and, for example, one method presupposes 

such widths of classes in-which there is in each of the classes 

the same percentage of observations. One of these methods, put 

forward by Mineo (1979), brings about the most accurate good­

ness of fit in connection with the x 2 test. This kind of clas­

sification is called the method of natural class interval. On 

the other hand, Lindsey has used the support §M( 0) in the manner of 

the rrultinomial model but has got nowhere because when the number 

of classes decreases, the goodness of fit increases and 

naturally becomes perfect when there is exactly one class. 
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In our study, we have combined Lindsey's support and Mineo's 
natural classification consisting of classes of different 
lengths. Because classification is of great significance here, 
it is considered in more detail below. 

The basis of the natural classification is the orderedn-tuple 

of observations y1' ••• ,yi' •• �,Y
rr 

where ties are also possible.
We are aiming at a classification in which variance inside the 
classes i_s minimized compared to variance between the classes. 
The criterion for the minimization is either the squared devi­
ation (D) calculated from neighbouring observations or the 
variance (V) obtained from the formulae: 

where j = 1,2, ••• ,m-1 and thus forms in all m-1 statistics 
calculated of neighbouring observations. The smallest of these 
is chosen and the corresponding classes are combined by choos­
ing as the new statistic of the class the mean 

y.n. + Y·+1n· 1J J J J + 
n. + n. 

1 J J + 

the corresponding frequency of 
which is ns = nj + nj+i·

After this we obtain a new empirical distribution with m-1 
classes. The combining procedure is repeated so many times 
that a distribution with the required number of classes is 
reached. It is reasonable to fix the final number of classes 
a priori. In our study, for example, we have chosen k = 20 
as the number of classes. The frequency distribution of the 
regression residuals is presented in Figure 4. It is based 
on a statistical model (see formula 4.3.3.1) the evaluate of 
which gets the value ·e = • 44. The class widths have been deter­
mined by Mineo's method. 
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Figure 4. Histogram of the distribution of 1287 regression 

residuals and a normal distribution curve (class 

lengths are unequal) Finnish IEA six subjects data. 

In examining the distribution of the regression residuals, 

three fits are made which form a plausibility order with regard 

to the goodness of fit. They are the multinomial fit, the 

normal fit I, in which the cell frequencies of the classes are 

identical with the observed cell frequencies, and the normal 

fit II, in which the frequencies of the classes are the fitted 

frequencies. We use the two fitted normal distributions I and II 

to cancel out the additional uncertainty caused by the discre­

tization of the continuous normal distribution. Here we refer to 

our discussions concerning the loss of uncertainty in Chapter 

3-4. The multinomial model represents the least local uncer­

tainty, as demonstrated in Chapter 3-4, and it is obtained from 

the following formula: 



8 7  

20 A 

= ih ni log Hi = 3 log • 0023 + 6 log .0047+ ••. + 6 log .0047

= -2415.09 , where ei = ni/n.

Two normal fits are deliberately made, the first of which, the 
fit I, represents a model in which classification does not 
increase local uncertainty. The local uncertainty of the normal 
fit I can be.calculated by using the mean of the residual dis­
tribution E = 0 as the mean of the fit and D(E:) = 3.58344 as 
standard deviation. The bounds of the classes are identical 
with those of the residual distribution and their frequencies 
are identical with the frequencies ni of the residual distri­
bution. The local uncertainty for the normal fit I is thus 

20 
SN (0) = ih ni log ei = 3 log .002 7 + 6 log .0051+

I 
••• + 6 log .0059 

= -3440.32 , where Bi = t(y0_) - t(yL_), where U
l l 

and L denote the lower and upper 
bounds of the natural classes deter­
mined from the normal distribution. 

The normal fit II is an accurate fit when a continuous random variable 
is approximated by a discrete one. There .the probabilities for each 

class are the same as in the fit I am. the frequencies for each 
class are exactly as expected by the fit. Thus they differ from 
those of observed frequencies ni. Local uncertainty
based on these facts represents local uncertainty determined 
without observations, for this fit is assigned to the data on 
the basis of the bounds of classes, standard deviation and 
the total number of observations. (For details see 
Appendices, Table 2). Thus, the local uncertainty of the normal 
fit II is 
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20 ~ 
= i�i ni log ei = 3 log .0027+7-log- .. 0051+

• • ,+ 6 log ,0059

The comparison of the three distribution fits yields a plausi­

bility order, measured with supports, in which the support of 

the two normal fits is relatively small 

According to this, the distribution of observations follows the 

same distribution as a discrete normal distribution 

with observations of the same order of magnitude. This leads 

us to the conclusion that the residuals follow a 

normal distribution. If we calculate the corresponding statis-
2 tic of the x test, it gets the value

2 2 7.61 E [7.56, 30.19J = [x. 025, x_ 975J.

With this measure, a relatively high goodness of fit is achieved. 

As it was pointed out in Chapter 4-2, too high a goodness of 

fit does not, however, guarantee that there could not exist 

some hypothesis, or in this case a distribution, whose local 

uncertainty were even smaller. As a matter of fact, such a 

distribution is the multinomial fit, the local uncertainty of 

which is SM{0} = -2415.09, Measured with support, both the

normal fit I and II are very far from this multinomial distri­

bution which represent the least local uncertainty model. 

This casts some doubts upon our mathematical and statistical 

models. There are to be found other models with a better fit. 

A high goodness of fit between the discrete normal distri­

bution and the observations was achieved with the choice of a 

natural class interval. At the same time, we aimed at decreasing 
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one variance. Thus it is possible to calculate directly from 
the statistic x 2 the support 

1/ (log 1.7 - log 7.61) - ½ (17 - 7 .61)

= - 2 .13 • 

This implies that we can search for a statistical model with a 
smaller variance as the one used and get an increased support. 

The diagnostic examination of the regression residuals as a 
support test results in the conclusion that the residuals may follow 

a normal distribution. On the other hand, there exists an other 
statistical model which is considerably better supported by the .IBA 
data and that is the multinomial model. Thus,the discrete 
normal distribution used as a reference distribution is locally 
not the best distribution fit of /the phenomenon to be analyzed. 
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5 CONCLUSIONS 

Following remarks cpncern some restrictions on the use of the 

method of support and the diversification on inference uncer­

tainty and uncertainty of the phenomen on to be studied. In 

addition, we shall give indications for further research activity 

in the LLU -estimation and -test theory. 

First we shall point out that a well-performed inference situ­

ation must be decomposed as the model triplet [M,P,IJ. In 

addition the content of total evidence at the statistician's 

disposal, which conveys the choice of the inference model, must 

be checked. If the method of support is used, the first thing 

to be checked is that the joint probability of sample exists 

and that the likelihood function is dependent on population 

parameters of interest: For this reason we notice that 

when the distributional properties of a parent population are 

unknown we can use the large sample properties of ML estimators 

which are applied in our inference situation. As a result we 

are generally dealing with large instant samples, as mentioned 

earlier. This restricts the use of the method of support 

to large samples. Naturally, there are really no obstacles for 

an analysis of small samples, too, if the joint probability of 

the sample can be properly evaluated. 

It cannot be denied that communication results achieved by the 

method of support are relatively modest compared to those of 

richer inference models. But it must also be noticed that, in 

the case of an instant sample, the observed total evidence is so 

scarce that inference uncertainty can only be measured as differ­

ences in local uncertainties, unless imaginary components are 

deliberately added to the required total evidenie. Thus, we can 

recommend the method of support primarily for an inference model 

of statistical instant samples. 
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Secondly, we shall direct attention to the t�o distinct uncer­
tainty concepts which appeared in our empirical application. 
With regard to the diagnostic considerations we must pay atten­
tion to the observation concerning the commonly used fit of 
regression residuals based on a normal distribution. In a case 
like that, it is possible to determine by means of the method 
of support the least local uncertainty of a reference distri­
bution, here the normal distribution, by classifying obser­
vations to ensure the best possible fit. In this way, the local 
uncertainty of the reference distribution can be determined and, 
by inserting the classified observations obtained from the data, 
the loca�_uncertainty of this, in a traditional sense, distri­
bution fit can be calculated. The support between these two 
distributions measures, in an ordinary sense, the fitting of 
observations with the normal distribution. Here, for example, 
the goodness of fit was high enough when a suitable classifi­
cation was applied. But the most important observation is that 
on uncertainty of the phenomen on under study and uncertainty 
caused by sampling fluctuation or inference uncertainty are separated 
from each other. The used normal distribution as a reference 
distribution represents substantive fluctuation and, as we saw, 
it gets very little support in comparison with the multinomial 
distribution best supported by data. So we recommended the 
search of some other substantive probability model with to 
smaller variance. Accordingly!, total uncertainty prevailing 
in an inference situation is decomposed in to two parts: one 
of substantial type and the other of inferential type. Analysing 
instant samples thus presupposes two uncertainty concepts, both 
of which are Renyi's local uncertainties, one for inference 
uncertainty and one for the entropy of the phenomen on itself. 

In the present study, the method of support was applied to an 
instant sample gathered from Finnish schools in 1970. It is 
not possible to repeat this kind of sampling, even in a histor­
ical sense. A similar kind of situation is presumably often 
encountered in other behavioural scientific research, too. 
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We evaluated some LLU-estimates concerning Home/School fraction 

0 and performed LLU-tests for a few hypothetical values for e. 

Compared to the results of some early studies in the same field, 

the LLU-results were in good agreement with them. For further 

research we recommend the evaluation of the general statistical 

properties of the LLU-tests and- estimates. It can easily be 

seen that some locality properties are linked with them and 

an application to the superpopulation sampling theory is possible. 
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FINNISH SUMMARY 

Tieteellisen tutkimustyön tilastollisessa osassa kohdataan mo­

nesti tilanne, jossa havaintoaineisto on todennäköisyysotos tai 

havaittu koeasetelma, jota ei ole toistettu eikä edes aiottu 

toistaa. Tällaista havaintoaineistoa nimitetään tässä kertaotok­

seksi, jolle etsitään tilastollinen päättelymalli, koska päätte­

lyepävarmuuden mittaamisen osalta toistoperiaatteeseen nojautu­

vat päättely�allit eivät siihen sovellu. 

Lauseessa 2 on osoitettu miten Edwardsin (1972) hioma tukifunk­

tiotekniikka sopii kertaotoksen tilastolliseksi päättelymalliksi. 

Todistus nojautuu siihen miten päättelymallin edellyttämän ja 

päättelijän käytössä olevan kokonaistiedoston tulee vastata toinen 

toisiaan, jotta päättelytuloksiin otosaineiston mukanaan tuoma 

päättelyepävarmuus on mitattavissa. Kokonaistiedosto koostuu 

esimerkiksi havaintoaineistosta (ja sen toistosta), otos- ja 

parametriavaruudesta. Kertaotoksen tapauksessa kokonaistiedostona 

on havaintoaineisto ja parametriavaruus. 

Tukifunktiotekniikan keskeinen päättelykäsite on logaritminen 

uskottavuusosamäärä, jolle tämän tutkimuksen lauseessa 1 osoi­

tetaan informaatioteoreettinen tulkinta. Todistus perustuu Renyin 

(1970) epätäydellisen todennäköisyysjakauman ja sille määritellyn 

epävarmuuskäsitteen varaan. Siten logaritminen uskottavuusosamää­

rä on kahden paikallisen Renyi-epävarmuuden erotus. Kertaotoksen 

tapauksessa on kysymyksessä yksi havaittu tapahtuma, joka tässä 

mielessä riittää päättelyepävarmuuden mittaamiseen. 

Tukifunktiotekniikan sovellus tilastolliseen estimointi- ja tes­

titeoriaan johtaa pienimmän paikallisen epävarmuuden (engl. lyh. 

LLU) estimaattoreihin ja testeihin. Näiden toimivuus teoreetti­

sella tasolla on osoitettu viivallisen regressioanalyysin esti­

moinnissa ja hypoteesien testauksessa. Empiirinen laskenta liit­

tyy kansainvälisen koulusaavutustutkimuksen (IEA) Suomen havainto­

aineistoon, joka on laaja kertaotos, ja josta on määrätty eräitä 

LLU-estimaatteja ja -testejä. 
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Table 1. 'Ihree inference uncertainty measures for estimation of 
Home/School fraction 8 E [0,lJ. Finnish IEA Six-Subject data*. 

Measure for inference uncertainty 
Selected 

values for 
fraction 

8 

.ooo 

.330 

.340 

.350 

.360 

.380 

.381 

.439 

.497 

.498 

.510 

.520 

.530 

.540 

1.000 

Support 
fi,µ1ction 

3N(8) 

- 00 

-6.907
-5.846
-4.727
-3.726
-2.081
-2.000

± .000 

-2.000
-2.080
-3.887
-4.605
-4.908
-6.907

- 00 

Relative 
likelihood 
function 

�(8) 

.ooo 

,001 
.003 
.010 
.024 
.125 
.135 

1.000 

.135 

.125 

.020 

.010 

.007 

.001 

.ooo 

" n( 2 " 
3N( 8) = 2 a+ b8 + c8 - log RSS ( 8)

= - 1�87 (7 .09 - .81 8 + .92 02 - 6.91)

�(8) = exp 3N(8) 

Fiducial c.:wHUlative 
distri.bution 

function Ff(8)

.000 

.000 

.000 
.001 
.005 
.025 
.228 

.500 

.772 

.975 
,995 
,998 
.999 

1.000 

1.000 

*Finnish IEA Six-Subject Sur vey data is in posession of the 
Institute for Educ ational Resear ch, Univer sity of Jyvask yla. 
Saar i (1977) has reported how the data have been doc u mented 
for research use. 
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Table 2. Observed frequency distribution of regression residuals and its 

normal fit (e). Selected value for Home/School fraction is the 

evaluate 0 = 0.44. Finnish IEA data (see footnote table I). 

Class irtterval lengths used are unequal. 

Frequencies 

Number Class upper Observed Expected (e) 
of class poirtt Pupils % Pupils% 

1 <-2.65 3 0.23 3 0.27 

2 -2.42 6 o.47 7 0.51 

3 -2.09 6 o.47 14 1.05 

4 -1. 75 26 2.02 28 2.18 

5 -1.42 48 3.73 49 3.77 

6 -1.17 62 4.82 56 4.32 

7 -o.86 97 7.54 95 7.39 

8 -0.64 91 1.01 85 6.62 

9 -0.41 103 8.00 103 7.98 

10 -0.16. 128 9.95 123 9.55 

11 +0.09 123 9.56 128 9.95 

12 +0.33 121 9.40 120 9.34 

13 +0.62 125 9.71 133 10.31 

14 +0.90 110 8.55 108 8.35 

15 +l.34 118 9.17 121 9.40 

16 +l.68 57 4.43 56 4.36 

17 +l.96 34 2.64 30 2.32 

18 +2.24 15 1.17 14 1.08 

19 +2.52 8 0.62 8 o.66

20 00 6 o.47 6 0.59

Totals 1287 100.00 1287 100.00 
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