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Abstract
We discuss a robust method to simultaneously fit a complex multi-body model both 
to the complex impedance and the noise data for transition-edge sensors. It is based 
on a differential evolution (DE) algorithm, providing accurate and repeatable results 
with only a small increase in computational cost compared to the Levenberg–Mar-
quardt (LM) algorithm. Test fits are made using both DE and LM methods, and the 
results compared with previously determined best fits, with varying initial value 
deviations and limit ranges for the parameters. The robustness of DE is demon-
strated with successful fits even when parameter limits up to a factor of 10 from the 
known values were used. It is shown that the least squares fitting becomes unreliable 
beyond a 10% deviation from the known values.

Keywords  Thermal model · Genetic algorithm · Differential evolution · Transition-
edge sensor

1  Introduction

Transition-edge sensors (TES) are versatile, state-of-the-art radiation detectors [1, 
2], currently used in many applications, such as particle-induced X-ray emission 
spectroscopy [3, 4], and ground- and space-borne telescopes [5, 6]. However, the 
modelling of transition-edge sensors and finding fits to data has sometimes proven 
quite challenging in practice, due to the complexities of the thermal circuit of the 
device [7–12], as two- and three-block thermal models [13] need to be employed at 
times. Fitting these models by the commonly used least squares fitting methods or 
with certain initial guesses manually, as was done in references [7, 8], has proven to 
be tedious or even unreliable.

Here, we propose a different approach to fit TES thermal models, which is inde-
pendent of the initial parameters given, and can fit both the complex impedance and 
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the noise data simultaneously, even for three-block models, producing more reliable 
results than the more commonly used Levenberg–Marquardt method [15]. It is based 
on the differential evolution (DE) algorithm [14], a branch of genetic algorithms. In 
this study, we fit previously measured data from Ref. [7] both with the DE algorithm 
and with the LM algorithm and use the published manual fits in that paper as the 
control to evaluate the performance.

2 � Two‑ and Three‑Block Thermal Models

In Ref. [7], it was shown that for good fitting of the complex impedance and noise 
data, three-block thermal models had to be employed. The models chosen for study 
here are the so-called hanging (H) model for two-block and intermediate–hanging 
(IH) model of Ref. [13], see Fig.1. In the IH model, in addition to the heat capacity 
of the TES sensor element, Ctes , there are two additional heat capacities: one inter-
mediate, C2 , and one hanging, C1 . For the H model, only one additional heat capac-
ity C1 is connected. The full equations for the complex impedance and for all the 
noise terms are lengthy and can be found in full detail from Ref. [13].

3 � Genetic Algorithm and Differential Evolution

Differential evolution (DE) is a high-performance, yet simple, optimizer algorithm 
based on mutation and crossover of the trial argument vectors of the fit function 
[14]. DE is initialized by selecting a number of initial population entities (typically 
D-dimensional vectors xi ) that are evaluated with the cost function. In each step, 
trial vectors are randomly mutated yi = xi + F(xj − xk) , where F ∈ [0, 2] is the muta-
tion factor, and a crossover is performed by randomly mixing the vector elements 
(yi)k → (yj)k of two distinct entities yi and yj . The cost function is then re-evaluated 
for the decision whether the trial is kept or discarded from the population.

Three different functions are simultaneously fitted to the measured data. The 
complex impedance is broken down to its real and imaginary parts and used as the 
first two fit functions. The third function comes from the total TES current noise, 

Fig. 1   a The two-block hanging model and b the three-block thermal model used in this study, with addi-
tional intermediate, C

2
 , and hanging, C

1
 , heat capacities. Parameters gi describe the differential thermal 

conductances connecting the heat capacities, and Ti are the steady state temperatures of the blocks
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including a constant (4 pA∕
√

Hz)2 SQUID noise component. The cost function to 
be minimized for both the DE and LM fitting methods is the sum of squared errors 
(considered as dimensionless numbers), summed over the real and imaginary parts 
of the complex impedance and the noise. For the noise data and fit, an additional 
log10 is taken prior to the subtraction. In order to normalize the relative weighting 
between the impedance and noise datasets, the number of impedance data points is 
increased to match the noise. All the calculations are done with Python 3.7, NumPy 
version 1.15.1, and SciPy version 1.1.0, and both of the optimization algorithms 
are from the package scipy.optimize: least_squares and differential_evolution. The 
DE strategy was “best2bin,” and following parameters were used for the algorithm: 
population size 15, mutation 1.8, recombination 0.1, tolerance 10−7 , and absolute 
tolerance 0. No seed was chosen, in order to see whether the fit found is always the 
same. Polishing was used, which runs scipy.optimize.minimize with limited memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm, and initial population was deter-
mined by “latinhypercube.”

4 � Calculations and Results

A total of six fitting parameters were chosen for the three-block model to be free 
parameters for the fitting tests: All the three heat capacities of the model, the two 
steady state temperatures T0 and T2 , and one of the thermal conductances, gtes,2 . gtes,1
,�I and �I were kept fixed at the values determined in Ref. [7], and g2,b is not free 
anymore, if gtes,2 , T0 and T2 are set, as the overall dynamic conductance to the bath is 
known from the I-V measurements [13].

For the estimation of initial values, the Corbino geometry of the devices of Ref. 
[7] allows for a reasonable estimation of the heat capacities Ctes and C1 , but very little 
is known beforehand on C2 , the “excess” heat capacity. The TES ( T0 ) and the inter-
mediate block ( T2 ) temperatures have certain limits that they follow, but are typically 
not exactly known. A good initial guess for the TES temperature can be calculated 
from the I-V curves, based on the bias point dissipated power P = IV  and its meas-
ured bath temperature Tbath dependence, P = K(Tn

0
− Tn

bath
) , by T0 =

(

P

K
+ Tn

bath

)
1

n . 
The intermediate block temperature is somewhere between the TES temperature and 
the bath temperature, depending on the values of gtes,2 and g2,b . Figure  2 shows the 
obtained DE (red) and LM (blue) fits of complex impedance and noise at several 
bias points, with a 10% deviation of the parameter limits from the manual control fit 
[7] (green). We see that both methods, in this case, give reasonable fits, with the DE 
method giving slightly better results.

We compared both algorithms with the same lower and upper parameter limits 
( ±1% , ±10% , or ±50% ) with several different runs (initial conditions). For the LM 
fit, the initial guess is randomized from the control fit parameters [7] by an addi-
tional factor of ±1%,±10% , or ±20% , respectively. The LM fit for ±1% is good, but 
with the ±10% limits, LM algorithm gets stuck in local minima and loses its consist-
ency, as shown in Fig. 3. However, the DE algorithm is robust even with ±50% lim-
its (Fig. 3). This underlines the importance of the accuracy of the initial parameters 
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for Levenberg–Marquardt algorithm and, conversely, the robustness of the differ-
ential evolution algorithm. A two-block H model with similar parameters was also 
explored with artificially generated noisy data. DE still performs better, but the dif-
ference between the performance of the algorithms is not as significant.

Relative weighting between the noise and impedance data was also explored for 
the DE algorithm. Examples of fits and their residuals are shown in Fig.  4, with 

Fig. 2   (Color online) a Impedance fits (curves) and data (points). Data are only taken up to 100 kHz, fits 
shown up to 1 MHz. b Noise fits (colored curves) and data (black). The electrical cutoff due to the meas-
urement circuitry is visible above 100 kHz frequencies. Manual fits (green lines), DE (red lines), and LM 
(blue lines), with 10% deviation in limits. The bias points range from 0.2 to 0.8 R∕RN

Fig. 3   (Color online) Ten randomized LM fits with 10% (top) and ten randomized DE fits with 50% lim-
its (bottom) deviation from the initial values, for the same dataset. Black dots and lines represent the data 
for impedance and noise, respectively. The upper limit for the number of iterations for both LM and DE 
was 5000
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Table 1   Four differently weighted scenarios with 20 run average (relative standard error) of fitting 
parameters. 

Noticeable difference can be found between fitting impedance only, noted by additional Z in ratios, and 
fitting both noise and impedance data simultaneously. Last columns for both levels are goodness-of-fit 
(GoF) values in arbitrary units

Z/N (50% dev) Ttes (mK) Tex (mK) gtes,2 (nW/K) GoF: Re (Im)(arb.u.)

95/5 163.1 (0.13%) 119.8 (0.46%) 1.07 (0.33%) 0.040 (0.051)
75/25 163.0 (0.20%) 120.2 (0.52%) 1.06 (0.63%) 0.041 (0.051)
50/50 162.9 (0.54%) 120.2 (1.6%) 1.06 (1.3%) 0.044 (0.053)
25/75 163.1 (0.59%) 119.8 (1.4%) 1.06 (1.7%) 0.052 (0.055)
100/0 163.0 (0.19%) 85.7 (43.9%) 1.25 (0.16%) 0.038 (0.081)

 Z/N (50% dev) Ctes (fJ/K) Cabs (fJ/K) Cex (fJ/K) GoF: Noise (Sum)(arb.u.)

95/5 74 (1.1%) 267 (0.11%) 447 (1.6%) 0.0836 (0.175)
75/25 74 (1.4%) 269 (0.14%) 446 (0.84%) 0.0842 (0.176)
50/50 72 (2.7%) 269 (0.26%) 446 (1.8%) 0.0843 (0.181)
25/75 70 (3.2%) 269 (0.11%) 449 (0.22%) 0.0852 (0.192)
100/0 74 (1.3%) 267 (0.58%) 400 (18.5%) – (0.119)

Fig. 4   (Color online) Weight ratios 75%, 25% (top) and 25%, 75% (bottom) for impedance and noise, 
respectively, 20 runs per set. Inset figures show residuals of three randomly chosen runs versus fre-
quency. Variance in impedance fits is easily visible when noise is weighted more heavily. Better results 
are found when weighting is in favor of impedance. Noise tends to fit decently with almost any weight 
ratio; however, the best total fits are given when weight ratio is heavily in favor of impedance. Roughly, 
1700 iterations and 50% deviation were used for these runs
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averages and standard errors for the fit parameters, and overall goodness-of-fit meas-
ures (cost function metric) are shown in Table 1 for all ratios studied. The observed 
general trend is that increasing the weighting ratio to favor impedance increases the 
consistency of the fits. We also see from Table 1 that fitting only the impedance does 
give quite different fit parameter values, which do not describe the noise data well.

Finally, in Fig.  5, we show the effect of increasing the parameter limits signifi-
cantly for the DE algorithm, to demonstrate its robustness. For the factor of ten devi-
ated DE fits, the fit tends to change the phonon and internal fluctuation components 
the most, by changing the temperature of the extra heat capacity (from ∼ 120 mK 
up to ∼ 164 mK, which is equal to the TES temperature) and by increasing gtes,2 by 
a factor of eleven. Looking at both fits individually without a prior knowledge of 
the model, they both look like reasonable physical solutions. Thus, one should help 
the algorithm with all the intuition available. In this case, we could have limited the 
TES temperature to a smaller deviation from a calculated value, or in general, one 
could limit the fit parameters individually based on prior knowledge.

5 � Conclusions and Outlook

We have implemented a robust method for simultaneous fitting of complex imped-
ance and noise data of TES detectors by a differential evolution (DE) algorithm. A 
three-block thermal model could be fitted to the data manually, but with DE, the 
problem of choosing the initial parameters and the tediousness and unreliability of 
the fitting process is removed. When the number of fitting parameters is small and 
the limits are close to the actual physical values, the Levenberg–Marquardt algo-
rithm will be faster, finding the solution in a matter of seconds, whereas DE takes 
roughly a minute. However, a few extra minutes, in the case of less accurate initial 
estimates, is a small price to pay for the robustness and reliability that DE offers.

Fig. 5   (Color online) Top: 50% deviation fits with noise components visible. Bottom: fits with 10x devia-
tion. Two different solutions found with different weighting of phonon and extra heat capacity internal 
fluctuation noise components. Slight difference is also noticeable in the impedance fits on the left with 
10x having a larger kink prior to the tilting back to Z∞ . For both, 5000 iterations were used
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It was also found that the fits for the tested dataset were more consistent, if 
impedance data were weighted more heavily. However, only taking into account the 
impedance leads to much worse noise fits and large parameter deviations from the 
cases where both impedance and noise are simultaneously fitted.

In addition, when running the calculations with larger deviations, multiple dif-
ferent solutions may arise. This may require user intervention, in some cases, to 
drive the system toward a more physical solution. Nevertheless, DE-based fitting 
algorithms can help avoid some of the caveats commonly encountered in multivari-
able nonlinear fitting problems, and in particular, it is a reasonable tool for the data 
analysis of TES detectors.
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