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Abstract

The step of expert taxa recognition currently slows down the response time
of many bioassessments. Shifting to quicker and cheaper state-of-the-art ma-
chine learning approaches is still met with expert scepticism towards the ability
and logic of machines. In our study, we investigate both the differences in ac-
curacy and in the identification logic of taxonomic experts and machines. We
propose a systematic approach utilizing deep Convolutional Neural Nets and
extensively evaluate it over a multi-pose taxonomic dataset with hierarchical
labels specifically created for this comparison. We also study the prediction
accuracy on different ranks of taxonomic hierarchy in detail. We compare the
results of Convolutional Neural Networks to human experts and support vector
machines. Our results revealed that human experts using actual specimens yield
the lowest classification error (C'E = 6.1%). However, a much faster, automated
approach using deep Convolutional Neural Nets comes close to human accuracy
(CE = 11.4%) when a typical flat classification approach is used. Contrary to
previous findings in the literature, we find that for machines following a typical
flat classification approach commonly used in machine learning performs better
than forcing machines to adopt a hierarchical, local per parent node approach
used by human taxonomic experts (CE = 13.8%). Finally, we publicly share
our unique dataset to serve as a public benchmark dataset in this field.

Keywords: hierarchical classification; taxonomy; convolutional neural net-
works; taxonomic expert; multi-image data; biomonitoring
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1. Introduction

Due to its inherent slowness, traditional manual identification has long been
a bottleneck in bioassessments (Fig. 1). The growing demand for biological
monitoring and the declining funding and number of taxonomic experts is forcing
ecologists to search for alternatives for the cost intensive and time consuming
manual identification of monitoring samples [6, 28]. Identification of taxonomic
groups in biomonitoring of, e.g., aquatic environments often involves a large
number of samples, specimens in a sample, and the number of taxonomic groups
to identify. For example, even in relatively species-poor regions like Finland, the
calculation of the EU Water Framework Directive related indices often involves
hundreds of individual specimens from 118-349 lotic diatom taxa and 44-113
lotic benthic macroinvertebrate taxa [1].

Ecological assessment

Figure 1: A schematic of the biomonitoring process.

While a growing body of work has used different genetic tools [e.g. 12, 39]
for species identification, these methods are not yet standardized or capable of
producing reliable abundance data currently required in, e.g., Water Framework
Directive. While we have also worked on genetic approaches and acknowledge
the great promise that genetic taxa identification methods hold [e.g. 14], we
will not explore them here but alternatively examine the suitability of machine
learning techniques on image data for routine taxa identification.

Many studies on automatic classification of biological image data have been
published during the past decade. Yousef Kalafi et al. [38] have done an exten-
sive review on automatic species identification and automated imaging systems.
Classification methods for aquatic macroinvertebrates have been proposed in
several studies [e.g. 11, 25, 20, 4, 17, 31]. The most popular classification meth-
ods used for identification of biological image data, such as insects, are deep
neural networks and support vector machines [19] which are also applied in this
work.

Despite the potential of computational, as well as DNA methods for taxa
identification, some taxonomists continue to object the shift from manual to



novel identification methods [18, 23]. Often biologists that take a cursory look
at automated identification tend to mistrust computational methods because
they observe that a classifier is unable to separate two specimens which to them
are clearly different to the human eye. Similarly, experts are baffled when the
same classifier is able to discriminate between two specimens from low-resolution
images while they as taxonomic experts cannot. This mismatch in the ability of
computers to identify taxa observed for single cases is often mistakenly extrapo-
lated into an overall unreliability of algorithms. But how different truly is both
the logic used and the overall accuracy of taxonomic experts and algorithms?

Only few studies assess the accuracy of human experts and automatic clas-
sifiers, and their consequences on aquatic biomonitoring. In a study on human
accuracy, Haase et al. [13] reported on the audit of macroinvertebrate samples
from an EU Water Framework Directive monitoring program. They found a
great discrepancy between the experts determining the true taxonomic classes
and the audited laboratory workers. Contrastingly, in a study on the effect
of mistakes made in automated taxa identification on biological indices, Arje
et al. [2] found a relatively small impact. Literature on direct human versus
machine comparisons in classification tasks in an aquatic biomonitoring context
is equally scant and ambiguous. Culverhouse et al. [10] compared human and
machine identification of six phytoplankton species using images and noted a
similar average performance for both the experts and a computer algorithm.
In Lytle et al. [25], automatic classifiers outperformed 26 humans (a mix of
experts and amateurs) when distinguishing between two stonefly taxa. Given
these contrasting results, we feel it is necessary to simultaneously examine the
effect of taxonomic hierarchy and of using human logical pathways for human
and computer-based identification.

Taxonomic experts identify specimens based on a predefined taxonomic res-
olution while automatic classifiers operate on the information of taxonomic rank
used in the training data. There are different ways for accounting for data hier-
archy, such as taxonomy, in classification. Hierarchical classification is widely in-
vestigated in the current literature. Silla and Freitas [34] sought to describe and
unify the concepts of methods used in hierarchical classification problems from
different domains. Using the existing literature, they categorized the classifica-
tion approaches into: 1) flat classification, where the classification is performed
at the most specific (deepest) rank of the taxonomy which may not always be
species level, 2) local classification per level, per node or per parent node, and
3) global classification, where the whole hierarchical structure of taxonomy is
taken into account at once. They found that the existing literature suggested
any local or global hierarchical classifier performed better than a flat classifier, if
the performance measure was specifically designed for a hierarchical structure.

Several subsequent studies have compared flat classifiers to hierarchical clas-
sifiers. Rodrigues et al. [33] did not find a significant difference between flat and
hierarchical approaches in classification of points-of-interest for land-use analysis
whereas Levatic et al. [24] found that the use of hierarchy and multi-label struc-
ture improved classification results when compared to single-label cases. Babbar
et al. [5] performed a theoretical study on the difference between flat and hierar-



chical classification and found that for well-balanced data flat classifiers should
be preferred, whereas hierarchical classifiers are a better for unbalanced data.

Automatic classification of benthic macroinvertebrates, as well as plankton,
has received increasing attention in recent years. However, most of the previ-
ous studies have focused on single-image data [see e.g. 3, 20, 4, 17, 35, 22, 2]
and have not taken the inherent hierarchical structure of the data into account.
In single-image data studies, the posture of the specimens can have substan-
tial impact on the classification. Besides Lytle et al. [25], an imaging system
producing multiple-image data is presented in Raitoharju et al. [31]. In this
paper, we present a comparison of taxonomic experts and automatic classifi-
cation methods on a benthic macroinvertebrate data that incorporates infor-
mation on the taxonomic resolution. We test flat classifiers, local per level
classifiers, and hierarchical top-down classification, i.e., local classification per
parent node, and perform the automatic classification using convolutional neu-
ral networks (CNNs) and support vector machines (SVMs). The results are
compared with the results of a proficiency test organized for human taxonomic
experts and with a test where taxonomic experts used the same images as the
automatic classifiers. The comparisons evaluate traditional single level accuracy
and additionally use a novel variant of an accuracy measure that accounts for
the hierarchical structure of the data.

2. Theory

2.1. Hierarchy in classification

Silla and Freitas [34] unified the concepts of methods used in hierarchical
classification problems, and in this section we follow their terminology.

Human experts base visual identification of, e.g., invertebrate taxa on rules
defined in the International commission on zoological nomenclature [15]. There-
fore, human experts can be thought of as hierarchical, local per parent node
classifiers (see Fig. 2c) that first identify the order of the specimen, then the
family, genus, and species. The classification task is not necessarily a single level
problem as some taxa need to be identified to different taxonomic levels (see
Fig. 2a) either because of predefined rules, such as minimal taxonomic require-
ments, or as a function of necessity when specimens lack characteristics needed
to allow for better resolution. While for some taxa, genus or family might be
enough, others might require species level identification depending on what the
taxa information is later used for.

Usually, automatic classification methods have no information on the pos-
sible hierarchical nature of the data. The classifiers simply aspire to identify
the specimens to the class labels provided in the training data. In the case
of benthic macroinvertebrate data, the class labels represent a mix of families,
genera, and species. An algorithm working this way is called a flat classifier as
it is not aware that species A and B belong to the same genus A, but uses the
same approach to distinguish them from each other as when separating species
A from genus B. Flat classification produces a single label prediction for each
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Figure 2: Different types of classifiers for hierarchical data: (a) Flat classification, (b) Local

classification per level, (c) Local classification per parent node. The dashed boxes represent a
single trained classifier.

specimen but the hierarchical level of that label may vary depending on the
data (Fig. 2a).

Depending on what the taxa information is later used for, it could be ben-
eficial to build a classifier that identifies a certain taxonomic rank well. For
example, a common biological index used in river macroinvertebrate biomoni-
toring is the number of typical EPT families (Ephemeroptera, Plecoptera, Tri-
choptera). For the purpose of evaluating this index, it would be reasonable to
train a classifier to identify the family level with high accuracy. However, such a
classifier trained with the family level labels would have no intrinsic information
on certain families descending from the same order. This type of a classification
scheme is known as local classification per level (see Fig. 2b). One could build
a classification system with local level classifiers for each level of the hierarchy.
While such a system would predict multiple labels for each specimen there would




be no guarantee that the predictions for the different levels are taxonomically
coherent.

It is also possible to build a hierarchical classification system that accounts
for the hierarchical nature of the data and force it to operate in the same manner
as human experts. This requires to build a sequence of several classifiers: i) an
order level classifier to predict the order of each specimen, ii) multiple family
level classifiers, one for each possible order present in the data, iii) multiple
genus level classifiers, one for each family present in the data, and finally, iv)
multiple species level classifiers to predict the species within each genus. This
type of a hierarchical classification scheme is known as local classification per
parent node and it predicts the labels for each rank of taxonomic resolution
for all the specimens in the data (see Fig. 2c). While a human-like hierarchical
classifier is guaranteed to logically follow taxonomy all classification errors made
on higher levels of hierarchy will propagate to the lower level predictions.

The focus of this work is on the comparison of identification results obtained
by taxonomic expert logic and machine logic. As traditional machine logic
uses flat classification and taxonomic expert logic can be thought of as local
classification per parent node, we will not consider global hierarchical classifiers.

2.2. Performance measures
Traditionally, classification methods are compared based on their accuracy,
which is the proportion of correct predictions, or classification error (CE),

1 n
CE = — L(Ui, i),
n; (i, y:)

where L(-,-) is a 0-1 loss function and n is the total number of observations.
Other measures of performance such as false positive rate, false negative rate,
sensitivity, and specificity can also be calculated from the confusion matrix and
take single label predictions into account. These performance measures can
be calculated for both flat classification (Fig. 2a) or for each level of local
classification (Fig. 2b, 2¢).

With hierarchical data, each observation has multiple labels and we need to
measure the performance as a whole accounting for all the labels. Verma et al.
[37] presented context sensitivite loss (CSL) function which takes the top-down
success into account. They used this loss function to define context-sensitive
error (CSE),

where
h, where h is the height of the deepest
L(gi,y:) = common ancestor of pair (g;,y;)
Oa if Z)i =Yi



and H is the total number of levels in the hierarchy.
Because the deepest available level of hierarchy can vary in taxonomic data,
we propose to modify the measure to a level-aware context-sensitive error (LCSE),

11
LCSE = =) —L(@, ),
cs n;:lHi (Y, i)

where L(3;,y;) is as above and H; is the number of available levels in the hier-
archy for observation i.

3. Materials and methods

3.1. Proficiency test for human experts

In order to compare automatic and manual classification, we needed clas-
sification results on the same set of taxa for both. The Finnish Environment
Institute (SYKE), an appointed National Reference Laboratory in the environ-
mental sector in Finland, organized a proficiency test on taxonomic identifi-
cation of boreal freshwater lotic, lentic, profundal, and North-Eastern Baltic
benthic macroinvertebrates in 2016. The aim of the test was to assess the reli-
ability of professional and semi-professional identification of macroinvertebrate
taxa routinely encountered during North-Eastern Baltic coastal or boreal lake
and stream monitoring [26]. A part of the proficiency test included 10 par-
ticipants who all identified a different set of 50 specimens of lotic freshwater
macroinvertebrates belonging to a total of 46 taxonomic groups, of which 39 are
in common with the multiple-image data introduced in the following Section 3.2
(see taxa list in Table .3). The samples sent out to the participants included 0-4
specimens of each taxa. The class labels of the 39 overlapping taxa consisted of
26 species, 12 genera, and one family. The chosen taxonomic resolution is based
on the requirements for the Finnish national freshwater monitoring program
for macroinvertebrates [16]. The ’true’ labels of the specimens were predeter-
mined by an expert panel and the specimens were shipped to the participants.
Participants were provided with the list of the almost 300 possible taxa labels
[26].

3.2. Image data

We produced all images with a new imaging system described in Raitoharju
et al. [31] that allows for multiple images per specimen. The system is illustrated
in Fig. 3. It consists of two Basler ACA1920-155UC cameras (frame rate of 150
fps) with Megapixel Macro Lens (f=75mm, F:3.5-CWD<535mm) placed at a
90 degree angle to each other, a high power LED light and a cuvette (i.e. a
rectangular test tube) in a metal container. The device is sealed with a lid
to block any extra light. The imaging system has a software that builds a
model of the background of the cuvette filled with alcohol and sets off the
cameras when a significant change in the view of the camera is detected. When
a macroinvertebrate specimen is put into the cuvette, it sinks and both cameras
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Figure 3: Schematic of the imaging system for macroinvertebrates pictured from above.

take multiple shots of it (Fig. 4). The number of images per specimen depends
on the size and weight of each specimen: Heavier specimens sink faster, leading
to a smaller number of images. Compared to the system and data described in
Raitoharju et al. [31], we have improved the system to handle more than two
images per specimen.

In Finland, the national reference taxa list determines the taxonomic ranks
to which human experts are required to identify specimens from monitoring
samples [16]. In the human proficiency test only a subset of the taxa from the
national reference taxa list is used. The choice of the specific taxa and speci-
mens used in the proficiency test is determined both by relevance of the taxa
in national assessment indices, the availability of adequate testing material and
to a lesser degree the inclusion of easily misidentified taxa. Human participants
were required to key 50 specimens in total for the river benthic subtest [26]. Us-
ing the described imaging device, the Finnish Environment Institute compiled
a new image database of 126 lotic freshwater macroinvertebrate taxa and over
2.6 million images. This data has 39 taxa overlapping with those present in the
human proficiency test which are therefore used in the current work (Table .3).
We restricted the number of images per specimen to a maximum of 50 images for
computational reasons. If a specimen had more images from both cameras com-
bined, we randomly selected 50 of them. The final data comprises 9631 observa-
tions and a total of 460004 images belonging to 39 taxa at the deepest available
taxonomic rank. In total, considering one taxonomic rank at a time, the data
consists of 7 orders, 23 families, 30 genera, and 26 species (see Fig. 5). The num-
ber of specimens for each taxa and the taxonomic resolution are shown in Table
.3. The image resolution for this data varies from 32 x 20 pixels to 468 x 540



Figure 4: Example images of a Polycentropus flavomaculatus specimen from two cameras.
The top row images are from camera 1 and the bottom row images from camera 2.

pixels. The ’true’ labels for the specimens were defined by a group of taxonomic
experts. While we acknowledge that there might be some mislabeled speci-
mens, combining the knowledge of multiple taxonomic experts should improve
the accuracy [7]. We provide the data for public use as FIN-Benthic2 in https:
//etsin.fairdata.fi/dataset/allcdc26-b9d0-4af1-9285-803d65a696a3.

3.8. Classification set-up

To have classification results comparable to the proficiency test, we compiled
a set of data divisions for the image data with the exact same number of test
specimens per taxa as in the proficiency test. As the proficiency test had 10
participants identifying lotic freshwater macroinvertebrates, we created 10 data
divisions. The test sets comprise randomly selected 45-46 specimens belonging
to the 39 taxonomic groups present in both the physical data and the image
data. The test sets have an approximately equal number of specimens from each
class. We divided the rest of the specimens of each data split for training (80 %)
and validation (20 %). Due to the nature of the collected data, the training and
validation data are unbalanced. In the following sections, these data sets are
referred to as the ”comparison data”. The number of specimens per test set in
the comparison data is lower than in the proficiency test because 4—5 specimens
sent to each participant belonged to taxonomic groups not present in the image
data.

Since the comparison between professionals and semi-professionals analysing
physical data with a laboratory microscope and automatic classifiers using image
data is unequal, we asked the proficiency test participants to also try to identify
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Figure 5: Taxonomic resolution and distribution of the multilabel image data. The area of the
slices represent the relative size of each taxonomic group at the different ranks of taxonomic
hierarchy.

taxa from the test images of the comparison data. Each participant received
one of the test sets and a list of the 39 possible taxa labels. To avoid fatigue and
to encourage more experts to participate, we restricted the number of images
per test specimen to 10. The automatic classifiers used exactly the same test
data. In addition, because some of the images are fuzzy, the experts were
allowed to classify the taxa to a higher taxonomic rank if they were unsure. The
automatic classifiers always predicted the classes of the test specimens to the
deepest available rank of taxonomic resolution. Of the ten experts participating
in the proficiency test, three volunteered to take part in this image classification
study.

As the comparison test sets are very small, we also studied the performance
of the automatic classifiers on larger test sets. We split the specimens randomly
into training (70 %), validation (10 %) and test (20 %) data 10 times. This time
the number of specimens in each taxon varied in all training, validation, and
test sets depending on the size of the taxa in the dataset. We refer to these sets
as the "machine learning data” as the splitting is typical for machine learning,
but not suitable for comparisons with humans. For the test sets in the machine
learning data, we included all images (max. 50) per specimen.

We considered different approaches to take the hierarchical nature of the data
into account: A flat classifier is a single classifier with the 39 taxa as output

10




labels. Local per level classifiers are built for each taxonomic rank separately: a
classifier for the orders and another classifier for the families. We only trained
local per level classifiers for the two highest taxonomic ranks as some of the
taxa in the data have information only on these ranks. The top-down, local per
parent node classifier is a system comprising 17 classifiers: one classifier at the
top to identify the order of a specimen, four classifiers at the family level as
there are four families with more than one genus within them, five classifiers at
the genus level, and seven classifiers at the species level (see Table .3). Some
of the specimens get their predictions already at the order level since there are
three orders with only one family or genus within them. In the data, there
are two genera (Leuctra sp. and Nemoura sp.) for which only some of the
specimens have information on species (Leuctra nigra and Nemoura cinerea).
To separate these groups with the local per parent node classification approach,
we temporarily marked the species for the rest of the Leuctra sp. and Nemoura
sp. specimens as ’0’. We trained the local species level classifiers and if they
predicted the ’0’ label, we marked the specimen as predicted only to genus level.

3.4. Classification methods

We selected our methods for the automatic classification to be CNN [21] and
SVM [9] which are the most popular ones used for biological image data [19]. As
our CNN model, we used the MatConvNet [36] implementation of the AlexNet
CNN architecture [21]. The architecture has five convolution layers followed
by three fully-connected layers. The last fully-connected layer is followed by
a softmaxloss(train) /softmax(test) layer. In our tests, we considered also the
output of the last fully-connected layer instead of the softmax output, because
we observed that this produced better results, when the final class was decided
based on the average of the outputs for each image of a specimen [30]. We
trained flat and local per level classifiers from scratch using 60 training epochs.
For the 17 classifiers of each local per parent node classifier, we took the flat
classifier for the corresponding data split as our starting point and fine-tuned
the network for 10 epochs (5 epochs only the last fully-connected layer, 3 epochs
all fully-connected layers, and 2 epochs all layers). In all cases, we used a batch
size of 256 and trained the network using stochastic gradient descent with a
momentum of 0.9. When training from scratch, we used a learning rate varying
from 0.01 to 0.0001 and for fine-tuning a learning rate varying from 0.005 to
0.0001. We saved the networks after each epoch and selected the final model
based on the classification accuracy on the validation set.

While CNNs use the original images as input, we extracted a set of 64
simple geometry and intensity-based features from the images using ImagelJ
[32] for SVMs. The geometric features extracted include, e.g., area, perimeter,
width and height of a bounding rectangle, while the intensity-based features
were extracted from gray, red, green, and blue scale channels of the images.
The complete set of features is listed in detail in Table .4. As these features are
simple and the classification task of identifying such a large number of classes is
a complex one, we found that making a principal component transformation on
the features improves classification results. Therefore, we performed a principal

11



component transformation, as well as standardization, on the features before
using them for classification.

We built our SVM model [8] using R [29] package 1071 [27] and used a
Gaussian kernel. For flat classification and local per level classification, we
performed a grid search for the parameters over ¢ = {2829 210 211} and 4 =
{2711 2710 929 9-81 " For the local per parent node hierarchical classification
system, we explored a larger grid as the classification problems can be very
different from another at different nodes of the hierarchical system. Due to
the amount of data and time consumed by evaluating just a single parameter
combination, we did the following: we randomly selected one image per specimen
and used this data to perform the grid search for the parameters over ¢ =
{2422 .. 215} and v = {2715, 271 ... 271}, After determining the optimal
parameter values with this smaller data, we did a small, 3 x 3, grid search around
those values with all the images (max. 50 images per specimen).

For both, the comparison and the machine learning data, we did the follow-
ing: With each data split, we used the training data to train the model and
the validation data to either select the best epoch to stop training (CNNs) or
select optimal parameter values (SVMs) based on the classification accuracy of
the validation specimens. With SVMs, we combined the training and validation
data to train the final model after fixing the parameters. At the end, we classi-
fied each test image and selected the final class for each specimen using either
average output (CNNs) or majority vote over all the images of the specimen
(CNNs, SVMs).

4. Analysis and inference

4.1. Comparison data

Classification results for the comparison test sets of the image data as well as
results of the proficiency test on physical data are presented in Table 1. The first
row of results shows the average CE on the deepest available rank of taxonomy.
These are the results traditionally examined with flat classifiers. Taxonomic
experts using physical data and microscopes to identify the taxa still outperform
the automatic approaches. This result by taxonomic experts can be considered
as a gold-standard to compare to. However, taxonomic experts predicting taxa
from the images make the most classification errors. This is understandable as
the image quality can be sub-par for some specimens and the experts have not
studied identification from these types of images. For the automatic classifiers,
CNN using the flat classification approach and the average output for deciding
the final class has the lowest CE and is in the range of taxonomic experts with
physical data. The average output clearly outperforms the majority vote as a
decision rule for the final class even though the number of images per specimen
is relatively high.

While flat classification gives only a single level and single label predictions, it
is still possible to make comparisons on different ranks of taxonomic resolution.
We simply take the predictions from the deepest rank of taxonomy of the data

12



CNN | CNN | CNN | CNN | SVM | SVM | SVM | Experts | Experts
flat, flat, | local/ | hier. flat local/ | hier. images physical
aver. vote level level data
CE 0.114 | 0.131 0.138 | 0.243 0.28 0.553 0.061
Deepest level sd(CE) 0.036 | 0.054 0.055 | 0.081 0.074 0.153 0.053
LCSE 0.052 | 0.070 0.070 | 0.173 0.191 0.353 0.028
sd(LCSE) 0.023 | 0.034 0.036 | 0.061 0.053 0.162 0.024
Order CE 0.004 | 0.018 | 0.011 | 0.011 | 0.085 | 0.075 | 0.075 0.210 0.007
sd(CE) 0.009 | 0.02 | 0.012 | 0.012 | 0.041 | 0.026 | 0.026 0.190 0.015
Family CE 0.039 | 0.059 | 0.150 | 0.059 | 0.173 | 0.181 | 0.193 0.291 0.020
sd(CE) 0.029 | 0.037 | 0.259 | 0.044 | 0.070 | 0.062 | 0.069 0.151 0.020
#ERR (order) 2 8 5 39 34 29 3
#ERR (family 16 19 22 40 54 11 6
Error structure #ERRggenus)) 12 12 12 16 22 15 6
#ERR(species) 22 21 24 16 18 21 13

Table 1: Classification results for comparison test data. CE and LCSE are averaged over all 10
experts/data splits (for experts with images, 3 data splits). The number of new classification
errors at each taxonomic rank is summed over all 10 data splits, where ngotq; = 457 (for
experts with images, 3 data splits, ngotq; = 137).

and add the ascending taxa labels accordingly. Let us call this a bottom-up
examination. Using the bottom-up examination, we can calculate LCSE also
for flat classifiers. The LCSE values for all classifiers as well as for taxonomic
experts are clearly smaller than the CE values (see Table 1). This means that
most of the classification errors occur on deeper ranks of taxonomic resolution
while the order and family might be predicted correctly. If all the classification
errors were done already on the order level, CE and LCSE would be the same.
For taxonomic experts using physical data, LCSE is close to zero as expected
since taxonomic experts use a top-down hierarchical logic for the classification
task, and identifying the higher ranks of taxonomy should be an easy task for
an expert. Also in terms of LCSE, CNNs get close to the taxonomic expert
level.

Contrary to the previous findings in hierarchical classification literature [34],
the flat classifiers for both CNN and SVM produce better results than the
hierarchical classification approach. Babbar et al. [5] stated in their study that
if the data is highly unbalanced, hierarchical classifiers are better options even
though their empirical error (CE) may be higher due to error propagation.
While our test data is balanced, the training data used to train the classifiers
is not. However, taking the hierarchical nature of the data into account when
building the classifier produces not only a higher CE but also a little higher
LCSE. It is worth noting that the optimization of the classifiers is based on CE,
not LCSE. The only improvement the hierarchical classification system offers is
a slightly lower CE on the order level for SVM. Note that for the order level, the
hierarchical classifier and the local per level classifier are the same. Interestingly,
the local per level SVM and CNN classifiers for family level perform worse than
the flat classifiers with the ascending taxa labels. The notably high CE for local
per level CNN for family level is due to data split three, where CNN classifies
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all observations to the family Elmidae. When leaving this data split out, the
average classification error is 7 %.

The bottom part of Table 1 shows the error structure for each classifier and
the taxonomic experts. The number of new errors at the different taxonomic
ranks sum up to the total amount of misclassifications for the 10 balanced test
splits. The difference in taxonomic expert and machine logic is evident through
the number of errors on each taxonomic rank. For taxonomic experts using
physical data, there are very few misclassifications at the order level and the
number of errors increases with the taxonomic resolution. For experts using
image data, all the order level errors are due to completely missing predictions
for images being too challenging to identify. That is, all the predictions made by
the experts were correct at the order level and as with physical data, the number
of errors increases as with the taxonomic rank. For the automatic classifiers,
most misclassifications are made at either species or family level. There is no
such clear hierarchy in the error structure as for the taxonomic experts.

In biomonitoring and ecosystem assessment, not only a low number of clas-
sification errors is essential, but also the type of errors made as some misclas-
sifications can have higher cost than others. To examine this, we analysed the
confusion matrices of the classifiers and taxonomic experts. Concerning es-
pecially demanding taxa, both the taxonomists and automatic classifiers had
difficulties identifying Hydropsyche sazonica. Human experts easily misclassi-
fied them as Hydropsyche angustipennis when using physical data and into a
mix of other Hydropsyche species when using image data. The image data has
no Hydropsyche angustipennis specimens and the automatic classifiers predicted
many of the Hydropsyche sazonica to be Hydropsyche pellucidula (see Fig. 6).
Hydropsyche sazonica is also one of the least represented taxa in the image data
with only 17 specimens (see Table .3) which is likely to be the reason the au-
tomatic classifiers have trouble classifying them. Besides this taxa, the human
experts had another challenging taxa in the physical data. Some Rhyacophila
nubila were misclassified as Rhyacophila fasciata. With the more difficult image
data, the taxonomic experts classified these individuals to genus level only or
left them unidentified, while SVMs mixed them with other taxa as there were
no Rhyacophila fasciata in the image data. In addition, with the image data,
the human experts had trouble identifying the Coleopteran Elmis aenea with
some of them unidentified completely and some of them misclassified as the
Coleopteran Oulimnius tuberculatus. The automatic classifiers identified this
taxon more easily.

4.2. Machine learning data

The results on the machine learning data with larger test sets are shown in
Table 2. Both CE and LCSE for all the classifiers are clearly lower with these
data splits. That is due to two factors: these results are more stable, meaning
they are not affected by individual difficult specimens, and here the size of each
taxa in the test set reflects the size of the taxa in the training/validation sets.
The comparison test sets of Section 4.1 had only 0—4 specimens of each taxa
and therefore the taxa with only few training specimens had the same weight as
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the taxa with hundreds of training specimens. For the machine learning data,
taxa with little training data will also have only few test specimens and a small
weight on the classification error of the entire test set.

CNN | CNN | CNN | CNN | SVM | SVM | SVM
flat, flat, | local/ | hier. flat | local/ | hier.
aver. vote level level
CE 0.078 | 0.087 0.087 | 0.17 0.181
Deepest level sd(CE) 0.009 | 0.009 0.013 | 0.008 0.009
LCSE 0.044 | 0.052 0.048 | 0.124 0.129
sd(LCSE) 0.006 | 0.006 0.005 | 0.006 0.008
Order CE 0.01 | 0.015 | 0.011 | 0.011 | 0.055 | 0.053 | 0.053
sd(CFE) 0.002 | 0.003 | 0.002 | 0.002 | 0.006 | 0.005 | 0.005
Family CE 0.041 | 0.05 | 0.033 | 0.044 | 0.129 | 0.126 | 0.135
sd(CE) 0.006 | 0.007 | 0.003 | 0.004 | 0.006 | 0.008 | 0.011
#ERR/(order) 194 287 216 1071 1017
Error stricture #ERR(family) 605 685 638 1428 1589
#ERR(genus) 304 307 319 455 505
#ERR(species) | 410 412 510 344 393

Table 2: Classification results for machine learning test data. CE and LCSE are averaged
over all 10 data splits, where each test split has n = 1937. The number of new classification
errors at each taxonomic rank is summed over all 10 data splits, where nyo1q; = 19370.

The results are similar to those in Table 1. CNNs produce the best classifica-
tion results. Again, the flat classification versions of CNN and SVM outperform
the hierarchical classifiers contradicting previous findings of hierarchical classi-
fication studies [34]. With the machine learning data splits, the local per level
classification approach gives slightly lower CE than the flat classifier on both
order level (SVM) and family level (SVM and CNN).

When considering individual challenging taxa, the best classifier, CNN, has
mostly trouble with the least represented taxa in the data due to lack of adequate
training data. The smallest taxa are Hydropsyche saxonica, Nemoura cinerea,
Capnosis schilleri, Sialis sp., Leuctra nigra and Sphaerium sp. with average
number of specimens in the training data, N = {13,11,15,19,19,107} and
#images = {349, 540, 730, 856,960, 1239} respectively. With the exceptions of
Sialis sp. and Sphaerium sp., the average CE for these taxa ranged from 62%
to 98% for CNNs and from 61% to 100% for SVMs. On the contrary, all the
classifiers performed well on classifying Sphaerium sp. (CE € [0,8%]), and
CNNs also relatively well on classifying Sialis sp. (CE € [15,18%)]).

One reason why the hierarchical, local per parent node approach performs
worse than flat classification could be that the hierarchy in the data is not
based on visual aspects. The taxonomic resolution is based on affinity which
can be independent of the appearance of the taxa. However, the automatic
classifiers base all classification decisions on visual features hence the man-made
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Figure 6: Examples of visual differences among taxa belonging to the same family or genus.
Top row: Hydropsyche pellucidula, Hydropsyche saxonica, and Hydropsyche siltalai all belong
to the genus Hydropsyche sp. Bottom row: Neureclipsis bimaculata, Plectronemia, Polycen-

tropus flavomaculatus, and Polycentropus irroratus all belong to the family Polycentropodidae.
In both cases, the taxa are of different sizes and colors.

hierarchy of the data could confuse the classifiers. Fig. 6 gives examples of taxa
that belong to the same family or genus but have clear differences in their
appearance, e.g., size.

5. Discussion

The status assessment of ecosystems is often based on the use of biological
indicators that are manually identified by human experts. The manual collec-
tion and identification of the data by ecological experts is, however, known to be
costly and time consuming. While recently a growing number of studies explore
the enormous potential of genetic identification methods, these are currently
not standardized, and thus currently cannot be used to their full potential for
legislative biomonitoring purposes [e.g. 14]. An interim solution could lie in the
use of a computer-based identification system that could be used to simply re-
place the step of human identification in current biomonitoring while preserving
all other steps of the existing process chain. To switch to this novel approach,
ecologists must start to put trust in the machine logic. In this work, we com-
pared human expert predictions for physical and image data to those of machine
learning methods on image data.

To automate the identification process, we have developed a generic imaging
system producing multiple images for each specimen. With our imaging system,
we collected a large dataset of benthic freshwater macroinvertebrate images and
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assigned labels consisting of multiple taxonomic ranks. The classical approach
in the computer-based identification has been a flat classification, where the
classification is performed at the most specific rank of the taxonomic resolution.
In addition to the classical flat approach, we considered also local hierarchical
classifiers, namely local per level classifiers and local per parent node classi-
fiers. We selected convolutional neural networks (CNNs) and support vector
machines (SVMs) as classification methods. We are not aware of any earlier
works applying the local hierarchical classifiers based on the taxonomic resolu-
tion of invertebrates. We evaluated both automatic classifiers and taxonomic
experts using the classification error (CE) at the most specific level and a novel
variant of the context sensitivity error (CSE) taking the top-down success into
account. We call this variant level-aware context-sensitive error (LCSE).

We split the image data to produce test sets similar to the ones used in the
proficiency test with physical data for taxonomic experts to be able to directly
compare machines and human experts. We found that the taxonomic experts
obtained the best classification performance when analysing the physical data
using a microscope (CE = 6.1% and LOSE = 2.8%) and the worst when us-
ing the image data (CE = 55.3% and LCSE = 35.3%). The best automatic
classifier was the CNN using flat classification approach and the average output
of all the images for a specimen as the decision rule to decide the final label
(CE = 11.4% and LCSE = 5.3%). This result is well within the range of hu-
man experts taking part in the proficiency test. We observed also that, contrary
to earlier observations in the literature, the flat classifiers with both CNN and
SVM performed better than the local per parent node hierarchical classifiers.
We assume this is because the hierarchy based on the taxonomic resolution does
not necessarily correlate with the visual similarity of the taxa. The hierarchical
classifiers would be likely more successful if they could first separate the easi-
est superclasses and then concentrate on more subtle differences within those
superclasses. Besides the CE and LCSE measures, we also investigated the
main differences in confusion matrices. The most difficult classes were partially
overlapping for machines and experts, but there were some differences as well.
Human experts using images preferred to stay at higher ranks of taxonomic
hierarchy for difficult taxa while machines were forced to predict the deepest
possible level, and thus, ended up predicting wrong species. Unsurprisingly, we
observed that CNNs had trouble identifying the classes with a low amount of
training samples.

The test sets in our comparison data were very small to not burden the
human participants too much. This naturally makes the results unstable in the
sense that few difficult specimens or bad images may affect the results a lot.
Therefore, we evaluated the automatic classifiers also on different data splits,
where the test sets were considerably larger and also represented the overall
taxa distribution. The ranking of the automatic classifiers with respect to the
CE and LCSE measures was similar, while the absolute CE and LCSE values
were much smaller for these larger test sets. Again, forcing automatic classifiers
to operate with the logic of human experts, i.e., local per parent node approach,
did not improve classification results.
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6. Conclusion

The main purpose of this paper was to investigate differences in the identifi-
cation logic of humans and machines. When compared to the existing literature,
up to our knowledge this was the first attempt to use a human-like hierarchical
classifier for macroinvertebrate image data. With respect to accuracy of iden-
tification human taxonomic experts still outperformed the selected automatic
methods on the limited set of taxa and specimens used in proficiency tests, but
CNNs’ performance was close and fell within the range of typical human experts.
With respect to speed, human identification is no match to that of machines’
as a taxonomic expert uses 2 seconds to several minutes to identify a specimen
while a machine spends milliseconds on a single specimen and will be faster
still with improved algorithms and increases in computing power. In addition,
computers can run during the night and weekends while human experts have
limited working hours and also other tasks at work. In future studies, we will
apply more advanced machine learning techniques, further boost the identifica-
tion performance on the most rare classes using, e.g., transfer learning and data
augmentation, and consider global hierarchical classifiers.

It is important that ecologists understand and leverage the potential that
the high speed and overall good accuracy of automated identification can have
on assessments. If applied, these methods will significantly reduce human work-
load and perform routine identification tasks to a sufficiently accurate degree.
Given our results and the fast pace in the field of image recognition, we expect
that automatic identification methods can replace human experts in the routine
identification of bulk taxa soon, while human experts and genetic methods will
still be needed to concentrate on the harder to identify cases. We hope that
our results convince doubting ecologists to trust that machine logic can indeed
be used to take over a task traditionally done by humans while also increas-
ing their understanding of the main challenges still associated with automatic
identification.
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Appendix

Taxa Species Genus Family Order #specimens #images
Elmis aenea Elmis aenea Elmis Elmidae Coleoptera 648 32398
Limnius volckmari Limnius volckmari Limnius Elmidae Coleoptera 314 15621
Oulimnius tuberculatus Oulimnius tuberculatus Oulimnius Elmidae Coleoptera 335 16674
Hydraena sp. - Hydraena Hydraenidae Coleoptera 198 9900
Simuliidae - - Simuliidae Diptera 887 44240
Ameletus inopinatus Ameletus inopinatus Ameletus Ameletid. Ephemeroptera 127 6346
Baetis rhodani Baetis rhodani Baetis Baetidae Ephemeroptera 404 19829
Baetis vernus group Baetis vernus Baetis Baetidae Ephemeroptera 176 8588
Ephemerella aurivillii Ephemerella aurivillii Ephemerella Ephemerellidae Ephemeroptera 356 16458
Ephemerella mucronata Ephemerella mucronata Ephemerella Ephemerellidae Ephemeroptera 304 15175
Heptagenia sulphurea Heptagenia sulphurea Heptagenia Heptageniidae Ephemeroptera 438 21502
Kageronia fuscogrisea Kageronia fuscogrisea Kageronia Heptageniidae Ephemeroptera 222 10826
Leptophlebia sp. - Leptophlebia Leptophlebiidae Ephemeroptera 412 20366
Sialis sp. - Sialis Sialidae Megaloptera 26 1162
Capnopsis schilleri Capnopsis schilleri Capnopsis Capniidae Plecoptera 21 1050
Leuctra nigra Leuctra nigra Leuctra Leuctridae Plecoptera 27 1350
Leuctra sp. - Leuctra Leuctridae Plecoptera 298 14899
Amphinemura borealis Amphinemura borealis Amphinemura Nemouridae Plecoptera 322 16100
Nemoura cinerea Nemowura cinerea Nemoura Nemouri Plecoptera 16 800
Nemoura sp. - Nemoura Nemouridae Plecoptera 187 9314
Protonemura sp. - Protonemura Nemouridae Plecoptera 100 4908
Diura sp. - Diura Perlodiae Plecoptera 98 4427
Isoperla sp. - Isoperla Perlodiae Plecoptera 243 12148
Taeniopteryx nebulosa Taeniopteryx nebulosa Taeniopteryx Taenioptegyridae Plecoptera 331 16325
Micrasema gelidum Micrasema gelidum Micrasema Brachycentridae Trichoptera 233 11528
Micrasema setiferum Micrasema setiferum Micrasema Brachycentridae Trichoptera 323 13819
Agapetus sp. - Agapetus Glossosomatidae Trichoptera 290 14387
Silo pallipes Silo pallipes Silo Goeridae Trichoptera 56 2658
Hydropsyche pellucidula Hydropsyche pellucidula Hydropsyche Hydropsychidae Trichoptera 192 6513
Hydropsyche sazonica Hydropsyche sazonica Hydropsyche Hydropsychidae Trichoptera 17 490
Hydropsyche siltalai Hydropsyche siltalai Hydropsyche Hydropsychidae Trichoptera 395 19456
Ozxyethira sp. - Ozxyethira Hydroptilidae Trichoptera 218 10381
Lepidostoma hirtum Lepidostoma hirtum Lepidostoma Lepidostomatidae Trichoptera 267 10982
Neureclipsis bimaculata Neureclipsis bimaculata Neureclipsis Polycentropodidae Trichoptera a77 23721
Plectrocnemia sp. - Plectrocnemia Polycentropodidae Trichoptera 63 3015
Polycentropus flavomaculatus | Polycentropus flavomaculatus | Polycentropus | Polycentropodidae Trichoptera 224 11005
Polycentropus irroratus Polycentropus irroratus Polycentropus Polycentropodidae Trichoptera 59 2917
Rhyacophila nubila Rhyacophila nubila Rhycophila Rhyacophilidae Trichoptera 177 6993
Sphaerium sp. - Sphaerium Sphaeridae Veneroida 150 1733

Table .3: Taxonomic resolution of the multiple image data and the numbers of specimens and
images per taxa. Taxa included in the proficiency test for human experts but not included in
the image data were Brachyptera risi, Cloeon sp., Cloeon diptera group, Cloeon inscriptum,
Cloeon simile, Helobdella stagnalis, and Tinodes waeneri.
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Geometric features

RGB and grey scale features

Area

Center of mass

e X and Y coordinates

Perimeter

Bounding rectangle

e Width and Height

e X and Y coordinates of the upper left corner
Fit ellipse

e Major and Minor axis

e Angle

e X and Y coordinates of the center
Circularity

Aspect ratio

Roundness

Solidity

Feret’s diameter

e Length

e Angle

e Minimum caliper length

e X and Y starting coordinates

Mean

Standard deviation
Mode

Minimum
Maximum

Center of mass

e X and Y coordinates
Integrated density
Median

Skewness

Kurtosis

Table .4: Features used for SVM classification.
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