

Anssi Lahtinen

TEST AUTOMATION STRATEGY IN DEVOPS
ENVIRONMENT: AN IT MANAGEMENT VIEWPOINT

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2020

TIIVISTELMÄ

Lahtinen, Anssi
Testausautomaatiostrategian luominen DevOps-ympäristössä: Tietohallinnon
näkökulma
Jyväskylä: Jyväskylän yliopisto, 2020, 88 s.

Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Abrahamsson, Pekka

Jatkuvasti muuttuvat teknologiat, sekä jatkuvat muutokset niitä ympäröivillä
markkinoilla ovat luoneet ohjelmistokehitysorganisaatioille tarpeen sopeutua
muutokseen. Digitalisaatio ohjaa organisaatioita asiakaslähtöisiin lähestymista-

poihin, sekä vaatii organisaatioilta uusia tapoja ja resursseja, joita ei mahdolli-
sesti ole aikaisemmin koettu tarpeellisiksi. Jatkuvasti muuttuvat ympäristöt
kuten pilvi- ja verkkopohjaiset teknologiat luovat tarpeen palveluiden kehittä-
miseksi nopeammin, paremmalla laadulla sekä pienemmällä julkaisusyklillä.
Jatkuvan julkaisemisen sekä integroinnin periaatteet ovat luoneet edellytykset
DevOps-viitekehykselle, joka ylläpitää ketterien ohjelmistokehitysmenetelmien
tuomia hyötyjä, mutta muokkaa myös osaltaan organisaation rakennetta ja kult-
tuuria.

Tämä tutkimus pyrkii muodostamaan kuvan tehokkaan ohjelmiston tes-
tausautomaatiostrategian luomisesta DevOps-ympäristössä. Koska DevOps on
järjestelmäkehityksen saralla melko uusi viitekehys, pyritään tässä tutkimuk-
sessa myös määrittämään sen ydinkyvykkyydet olemassa olevan kirjallisuuden,
sekä tutkimuksen perusteella. Mallia tutkittiin sen tuomien hyötyjen, taustavaa-
timusten sekä mahdollisten implementointia hidastavan esteiden löytämisen
kannalta. DevOpsia on tutkittu myös strategisesta näkökulmasta, jolloin sen
yhteyteen on liitetty liiketoimintastrategia sekä jatkuva innovaatiokehitys.
Vaikka malli itsessään käsittelee ohjelmistokehitystä, on nämä näkökulmat otet-
tu huomioon tutkimusta tehdessä.

Projektiluontoisten toimintamallien tapauksessa organisaatioilla saattaa
olla ongelmia ketterien ohjelmistokehitysmenetelmien käyttöönotossa. Tutki-
muksen ensimmäisessä osiossa keskitytään DevOpsin ja testausautomaation
ilmiöihin yksittäisinä kokonaisuuksina, sekä niiden tehokkaaseen yhdistämi-
seen. Toisessa osiossa analysoidaan laadullinen haastattelututkimus, jossa selvi-
tetään kuinka DevOps-kyvykkyydet näyttäytyvät organisaatiossa sekä selvite-
tään, kuinka testausautomaatiostrategia tulisi rakentaa.

Asiasanat: DevOps, testausautomaatio, ketterät ohjelmistokehitysmenetelmät,
tietohallinto, muutosjohtaminen, liiketoimintaprosessit

ABSTRACT

Lahtinen, Anssi
Test automation strategy in DevOps environment: an IT management view-
point
Jyväskylä: University of Jyväskylä, 2020, 88 pp.
Information Systems, Master’s Thesis
Supervisor: Abrahamsson, Pekka

Software developing organizations need to adapt to the ever-changing technol-
ogies as well as constant alterations in markets surrounding them. Digitaliza-
tion has steered organizations to customer-driven approaches while requiring
new assets and skills which might have not existed before. The constantly
changing environments such as cloud and web-based technologies require or-
ganization to develop services faster, with enhanced quality and in demand of
smaller release-cycle. The requirements of continuous integration, continuous
delivery and continuous deployment have created the framework of DevOps.
While maintaining the benefits of agile software development methods DevOps
also concentrates on changing the organizational structure.

This study concentrates on creating an efficient software test automation
strategy in a DevOps environment in a case organization. Since the framework
and its capabilities have been vaguely defined, model of DevOps was con-
structed from existing literature by defining the core capabilities of the frame-
work. The model was studied to find out the benefits, background requirements
and possible barriers of adapting the framework in practice. DevOps has also
been researched from a strategical viewpoint as how the framework affects
business and change management processes. While the framework strives to
streamline developing practices, these dimensions were also carefully examined
while constructing the research.

In case of project natured operating models, organizations might have
problems of adopting agile software methods. The first section of the research
concentrates on the frameworks of DevOps and software test automation and
an efficient combination of these two methods. The second section is about
conducting and analysing a qualitative interview research. This qualitative re-
search is about examining how DevOps capabilities are presented in the current
operating model and how a test automation strategy should be built.

Keywords: DevOps, software test automation, agile software development
methods, IT management, change management, business processes

FIGURES

FIGURE 1 DevOps processes (Hüttermann, 2012) .. 18

FIGURE 2 BizDevOps framework (Fitzgerald & Stol, 2014) 19

FIGURE 3 Test management processes and activities (Garousi & Elberzhager,
2017) .. 28

FIGURE 4 Implementation of test automation strategy in DevOps environment
(derived from Fitzgerald & Stol, 2014) ... 35

FIGURE 5 Interview themes.. 44

FIGURE 6 Interviews and gathered data ... 46

TABLES

TABLE 1 Core capabilities of DevOps ... 16

TABLE 2 Benefits of implementing test automation framework 30

TABLE 3 Summary of the interviewees ... 48

TABLE 4 Primary empirical conclusions ... 65

TABLE OF CONTENTS

TIIVISTELMÄ ... 2

ABSTRACT ... 3

FIGURES ... 4

TABLES ... 4

TABLE OF CONTENTS ... 5

1 INTRODUCTION ... 7

1.1 Motivation .. 7

1.2 Research question .. 9

1.3 Structure of thesis .. 9

2 THEORETICAL BACKGROUND ... 11

2.1 DevOps ... 11

2.1.1 Continuous software engineering ... 12

2.1.2 History of DevOps .. 13

2.1.3 Defining DevOps .. 14

2.1.4 Framework approaches .. 17

2.1.5 DevOps adoption .. 20

2.1.6 Empirical knowledge of DevOps .. 21

2.2 Software test Automation ... 22

2.2.1 Definition of test automation ... 23

2.2.2 Different types of software testing .. 24

2.2.3 Implementing test automation .. 26

2.2.4 Benefits of test automation frameworks 28

2.2.5 Limitations of test automation in software development 30

2.3 Summary .. 32

3 RESEARCH MODEL FOR TEST AUTOMATION STRATEGY IN DEVOPS
ENVIRONMENT ... 34

3.1 Research model .. 34

3.2 Business strategy in DevOps planning .. 35

3.3 DevOps framework in the model ... 36

3.4 Test automation strategy ... 37

3.5 Summary .. 38

4 RESEARCH DESIGN .. 40

4.1 Goals of an empirical research .. 40

4.2 Choice of the research method ... 41

4.3 Semi-structured interview as method of gathering data 42

4.4 Themes of the interview and choosing the interviewees 43

4.5 Analysing the data ... 45

4.5.1 Case Company Description ... 46

4.6 Interviewees and individual theme interviews 47

5 EMPIRICAL RESULTS ... 49

5.1 DevOps core capabilities ... 49

5.1.1 Agile software development principles 50

5.1.2 Software test automation ... 52

5.1.3 Continuous monitoring .. 53

5.1.4 Combination of software development and IT operations 55

5.1.5 Frequent software releasing ... 57

5.1.6 Cultural movement within organization 58

5.2 Test automation strategy ... 60

5.3 Business strategy as part of the framework ... 62

5.4 Summary of primary empirical conclusions 64

6 DISCUSSION ... 67

6.1 Theoretical implications .. 67

6.2 Practical implications... 70

7 CONCLUSIONS .. 73

7.1 Answers to research question ... 73

7.2 Limitations of the research .. 78

7.3 Future research opportunities... 79

REFERENCES ... 81

ATTACHMENT 1 THEMES AND INTERVIEW QUESTIONS 86

ATTACHMENT 2 NEW ACCOUNT PROCESS ... 87

ATTACHMENT 3 SCRIPT RESULTS .. 88

1 INTRODUCTION

As technologies rapidly change and evolve, organizations look for frameworks
and tools that can enhance software development and business processes. One
of the most intriguing frameworks of the last decade has been DevOps – a com-
bination of agile software development methods and specific organizational
shifts and cultural changes. Information systems are critical for organizations to
thrive so efficient software development methods are constantly researched on.
Organizations need to be proactive regarding software development, constantly
changing requirements and changing technologies around them. These organi-
zations need to adapt their operating models to match these dimensions as they
look to streamline their processes. This chapter is divided to three sub-sections:
motivation, research question, and structure of thesis.

1.1 Motivation

Technologies such as cloud and web-based services have created demand for
different software development methods. This research concentrates on three
software engineering methods: continuous delivery, continuous deployment,
and continuous integration. These methods are built to enhance construction,
testing, and releasing the initial software. While all these models resemble each
other there are a few differences between them. Where continuous delivery au-
tomatizes the whole product pipeline except the actual release continuous de-
ployment strives for automation of the whole pipeline. Continuous integration
gives software development teams more possibilities to integrate their work
which can improve release cycle and product quality. While these frameworks
slightly differ from each other, the similarity between them is that DevOps uti-
lizes all of them in a specific way. By enabling continuous integration and de-
ployment the product release cycle can be done in smaller phases while contin-
uously releasing new software for testing. This requires lot from software test-

8

ers as they need to keep up with software development. (Fitzgerald & Stol,
2017.)

DevOps – a combination of the word development and operations – is a
framework that combines agile software development methods with organiza-
tional changes and continuous software development. (Lwakatare, Kuvaja &
Oivo, 2015.) The purpose of DevOps is to bring these traditionally siloed teams
together while transparently communicating and changing organizational
structures. The definition of DevOps be somewhat vague with two different
branches of research: the other concentrating on technical and tangible entire-

ties while the other concentrates on organizational and cultural changes. By
combining these two branches the defining characteristics of DevOps are de-
fined as utilization of agile software development principles, test automation,
continuous monitoring, combination of software development and operations,
frequent software releases and cultural movement within organization. By
adopting the framework organizations can enhance the quality of the final
product and production efficiency, enable quicker reaction to requirement
changes and streamlining the development process with different automated
processes. (Virmani, 2015.)

Even though DevOps is a rather new concept, test automation has been a
part of software development for decades. Software testing can be divided to
two categories: manual and automated testing. Test automation is automation
of different activities such as development and execution of test scripts, confir-
mation of different testing requirements and usage of automated testing tools
and methods in software development (Karhu et al., 2009). By enabling test au-
tomation software development teams can reduce costs, minimize the amount
of manual labour, and increase efficiency and quality of software development.
Test scripts can be executed to test a specific part of the software or ultimately
the entire program. Automated test scripts can help organizations allocate the
resources needed in manual testing elsewhere, minimize the possibility for hu-
man errors and run tests on a more frequent basis. This can be utilized especial-
ly in regression testing, where typically tests of the previous release are execut-
ed in the newer version to inspect functionalities and possible defects. However,
software development teams should not automate every test possible, but those
which are cost-effective to be executed manually. This requires careful design
from test developers and IT management since some manual testing is required
in almost every software developing project.

DevOps itself is one of the most trending software development methods
and frameworks during the last decade. The nature of utilizing agile software
development methods while combining siloed business units by enabling

transparent communication throughout the project is attracting software devel-
opment teams to implement the framework. However, the operating model is a
complex entirety which needs to be implemented in carefully planned phases.
The difference between previous agile development models and DevOps is the
aspect that it strives for change in organizational structures and culture. Ac-
cording to Senapathi, Buchan and Osman (2018) supporting software engineer-

9

ing capabilities are just as important as the technical aspects of implementing
DevOps. These capabilities include dimensions such as open communication,
responsibility alignment and trust among management and employees. Learn-
ing new methods and technologies as well as feeling valued and higher level of
autonomy have positive influence on engagement to the project. According to
the researchers these capabilities can be encouraged and enhanced by IT man-
agement which could ultimately lead to a more successful product release. With
successful implementation of supporting capabilities organizations can enhance
their probability of a successful DevOps implementation while boosting the

overall employee morale.

1.2 Research question

Even though software test automation is a part of DevOps framework there is
minimal amount of empirical studies around the combination of these method-
ologies. The synthesis of this research is based on the BizDevOps model by
Fitzgerald & Stol (2014) which argues for implementation of business strategy
in DevOps environment. The business processes involved are dynamic open-
ended artifacts that develop with the changes to business environment. Integra-
tion between business processes and software development is needed as these
two dimensions require tighter integration in-between. The goal of this research
is to find recommendations and guidelines for organizations to follow for cost-
effective test automation strategy implementation. For these reasons, the re-
search question can be shaped the following way:

• How to implement test automation strategy in DevOps environment?

To answer the research question, the research itself is divided to two specific
sections with the first section being a theoretical framework built on existing
literature and research. The second part of this study is the empirical section
which is discoursed as a qualitative interview within the case organization.

1.3 Structure of thesis

Chapters two to four address DevOps and software test automation as separate
dimensions, as well as creating the theoretical framework of successful combi-
nation of them. The first chapter of the theoretical section concentrates on defin-
ing the core capabilities of a DevOps framework and how they are visible in the
organizational context. This chapter also addresses the benefits formed when
implementing the framework successfully. Chapter three concentrates on soft-
ware test automation separately and which benefits and disadvantages the
model can produce when implemented. The last chapter of the theoretical sec-

10

tion ties DevOps, software test automation and business strategy as a theoreti-
cal synthesis derived from Fitzgerald and Stol (2014). The theoretical section of
the research was conducted as a literature review to create a theoretical synthe-
sis for software test automation strategy. The actual literature of this section
included scientific publications of software engineering, Information Systems,
and strategical management. Most of the literature came from the following
publications: IEEE Software, International Journal of Computer Theory and En-
gineering, Journal of Systems and Software and Information Systems Manage-
ment. Because of the minimal empirical research of DevOps Google Scholar was

also used as a database of gathering theoretical implications of the framework.
Regarding DevOps, the assessment of references was reflected more on authors
and publication than the number of citations made. This is because the frame-
work itself is rather new and the empirical studies regarding the model has
merely started.

The rest of the research is covered by the empirical section. The theoretical
synthesis of the framework applied was built on previous chapters. Chapter
five describes research design of the study. The chapter introduces qualitative
semi-structured interview as a research method and describes how it was used
on the study. Chapter six concludes the empirical results of the interviews
made. This chapter also constitutes the primary empirical results made in this
study while reflecting them to the theoretical synthesis. The 7th chapter discuss-
es about the theoretical and practical implications of the study and the 8th and
final chapter concludes the research. The final chapter discusses about answer-
ing the research question, limitations of the study and future research opportu-
nities.

11

2 THEORETICAL BACKGROUND

This chapter describes and visualizes the theoretical background of DevOps
and software test automation. While DevOps strives for automation of all pos-
sible – including test automation – they are presented in separate sections to
better describe the respective dimensions. Both concepts are examined in the
light of existing literature and possible empirical research. This chapter was
created to give a detailed description of the theoretical background and the base
for the research model. The first section and its sub-sections addresses DevOps
and continuous software engineering as a framework. The second section con-
centrates on software test automation as a separate dimension and the final sec-
tion summarizes the chapter.

2.1 DevOps

This sub-section describes continuous software development and DevOps as a
framework, with the first section concentrating on the first mentioned continu-
ous software engineering and its relevant branches. The second section de-
scribes the history and rationale of the DevOps framework. Third section con-
centrates on core characteristics of DevOps from existing literature. The fourth
section describes different approaches of similar frameworks. Fifth section de-
scribes requirements for DevOps adoption and the final and sixth section con-
centrates on empirical knowledge of existing DevOps literature.

A shift towards continuous software deployment creates possibilities and
challenges. DevOps – a shortened version of the words Developers and Opera-
tions - is a method created to simplify these challenges. DevOps was originally
created to combine software development and IT operations (Lwakatare, Kuva-
ja & Oivo, 2015). Data, requirements, tools, and practices must be available to
all parties involved in the project. Not only do these aspects always need to be
available but also easily found, delivered constantly and accurate enough that
anyone within the project can work on their respective area. DevOps was also

12

introduced to use automated systems to reduce information gap between pro-
ject team entities so processes can ensure real-time communication. (Cois, Yan-
kel & Connell, 2014.) By integrating these aspects, the model facilitates a lean
connection between different actors which have been traditionally separated.
(Ebert, Gallardo, Hernantes & Serrano, 2016.) While doing so the model enables
real-time communication to detect possible defects in the system developed and
minimize the futile endeavour working with incorrect information.

2.1.1 Continuous software engineering

Continuous software engineering is a method which strives to quickly develop,
deploy, and get quick feedback from the software produced. This sub-section
concentrates on three different software engineering methods: continuous inte-
gration, continuous delivery, and continuous deployment. These methods are
built to enhance construction, testing, and releasing the initial software. How-
ever, there are differences between these methodologies. While continuous de-
livery is more concentrated on releasing the software manually, continuous de-
ployment aims to deliver software frequently through automated deployments.
The main difference between these two methodologies is that in continuous
delivery software teams can decide when to release patches of the software
where in continuous deployment this step is automated to a certain point. Con-
tinuous integration on the other hand is a method where developers integrate
work in the software more often so it can improve different aspects of product
release such as release cycle and product quality. (Shahin, Babar & Zhu, 2017.)

Continuous software delivery is a software engineering method where the
software teams produce software in short cycles. By doing so the teams can en-
sure that the quality of the software is good, and any version could be released
whenever needed. Continuous delivery consists of a deployment pipeline
which has three main components: visibility, feedback, and continual deploy-
ment. Visibility as an aspect ensures that every task and stage is visible to eve-
ryone in the project team. This promotes collaboration and transparent com-
munication. Feedback is ensuring that the team can detect possible defects in

the system as quickly as possible. This helps with reacting to requirement
changes and possible bug fixes. Continual deployment enables releasing any
part of the service whenever needed. By doing so the program can be inspected
at any given time as well as continuously tested and reviewed. (Shahin, Babar &
Zhu, 2017.)

Continuous deployment differs from delivery in a way that the deploy-
ments in this method are frequent and automated to some environments but
not necessarily to the customers. The other main difference between these
methodologies is that continuous deployment is a prerequisite for continuous
delivery, but not necessarily the other way around (Fitzgerald & Stol, 2014). In
practice this means that as soon as the developers have committed a change,
updated product will automatically go to production through the deployment
pipeline instead of doing the final step manually.

13

Continuous integration is a software engineering method where product
of work is integrated to the actual software multiple times a day. As well as
making the release cycle faster and increasing product quality, continuous inte-
gration also can enhance the software teams’ productivity since new code is
released early and often. This method has appeared as a method of eliminating
waste between software development and deployment. By this definition, con-
tinuous integration as a method has a lot of same features as DevOps does as
they both try to eliminate the gap between development and operations. Con-
tinuous integration is implemented in many agile software development meth-

ods which will be explained in the later chapters. Popularity of continuous inte-
gration has also been increased by many free tools which help automating the
processes mentioned. Continuous integration has also been around for a longer
time than continuous deployment and delivery, which might be one of the rea-
sons of its general success. It can also be said that continuous integration is a
bigger entirety which include the aspects of continuous deployment and deliv-
ery. (Fitzgerald & Stol, 2014.)

Even though there are many similarities, these methodologies cannot be
directly compared to DevOps method. This is because DevOps is a much wider
concept which includes aspects of organizational culture and shift. On the other
hand, DevOps might be a product of continuous delivery as it is adopted within
the said framework. As does continuous integration, DevOps also needs a func-
tioning link between the departments of development and operations. DevOps
and history of the framework is described in the following sub-sections with
references to other similar frameworks.

2.1.2 History of DevOps

DevOps is a framework created to enhance collaboration between software de-
velopment and IT operations teams. Instead of traditionally using isolated cate-
gories separating different functions and operations DevOps was created to
enhance communication and delivering value swiftly among project parties.
The framework was also created to enhance continuous development, decreas-

ing problems of communication within the project team, and speeding up the
problem resolution time. (Ebert et al., 2016.)

According to Zhu, Bass and Champlin-Scharff (2016) developers used to
spend as much as 2 hours per day handling different builds. DevOps was partly
created for minimizing this gap with continuous development. Improved inter-
net and cloud services have made the change possible during the last decades
even though DevOps as an idea has been introduced some time ago. Some agile
software development methods such as Scrum were introduced at the turn of
the millennium. Agile software development methods are defined as iterative
phases which are followed by continuous delivery of the software. (Highsmith
& Cockburn, 2001). This way different phases of software development can be
derived to specific categories which makes modifying them later in the process
easier. These methods also empower the customer since they are continuously

14

getting concrete products of the process. Nevertheless, Virmani (2015) argued
that continuous integration principles in software delivery lifecycle alone are
not enough to achieve efficiency in organizations. By adapting DevOps organi-
zations can implement continuous feedback in their software development and
improve the product more frequently.

Within project teams, transparent communication throughout the project
might be a key factor between success and failure. Even though this part has
been studied very little regarding DevOps framework Diel, Marczak and Cruz-
es (2016) argued that the framework includes the same communicational chal-

lenges as any other software development method. These challenges include
aspects such as geographical, socio-cultural and distance related challenges.
These dimensions can be seen even bigger factors in organizations that are
global and spread out geographically. By automatizing specific tasks regarding
communication DevOps as a framework can enhance communication between
different teams. This can be seen critical especially between development and IT
operations teams since these two teams have traditionally been the teams with
the biggest gap between. This also helps with the problem resolution time since
both teams have the same real-time information and communication through-
out possible defects. (Diel, Marczak & Cruzes, 2016.)

Even though the history why DevOps was created is clear the actual defi-
nition of the framework remains somewhat unstable. Most of the definitions
have same dimensions in them but a unifying definition remains vague. In the
next sub-section known definitions are explained and investigated thoroughly.
By doing so the benefits and challenges of DevOps framework are easier to de-
tect. This will also help with the later stages of this paper with unifying con-
cepts and describing the most essential ingredients of these frameworks.

2.1.3 Defining DevOps

DevOps is defined by Riungu-Kalliosaari, Mäkinen, Lwakatare, Tiihonen and
Männistö (2016) as a phenomenon in software engineering which combines the

traditional software engineering roles with an enhanced communication to ad-
vance production release frequency to maintain software quality. These roles
include the actual software engineering, IT operations and communication in-
between. According to the authors the other core characteristic for DevOps is
usage of agile principles and automation to configure different deployment en-
vironments. Combination of development team’s tasks such as continuous inte-
gration, deployment, delivery, and security are combined with operations’ tasks
such as continuous use and run-time monitoring. DevOps comprises both tech-
nical and non-technical practices that help software-intensive organizations to
build responsiveness to client needs through frequent and automated software
releases (Lwakatare, Karvonen, Sauvola, Kuvaja, Olsson, Bosch & Oivo, 2016).
Bridging the gap between different departments and improving collaboration
between them is required from a development team to function efficiently.

15

While DevOps is seen as change to current methods, it has also been researched
from the cultural movement point of view. The characteristics for these cultural
aspects are open communication, incentive and responsibility alignment, re-
spect, and trust (Senapathi, Buchan & Osman, 2018). While the cultural changes
might not be enough to define what DevOps is, they are factors that influence
on rapid development processes. DevOps is a framework designed to enhance
all these areas in software development and its surrounding core capabilities.

Utilizing agile principles, automation and monitoring in software devel-
opment is a critical part of DevOps (Riungu-Kalliosaari et al., 2016). Properly

used, these dimensions can speed up the release time and development teams
can work autonomously concentrating only on necessary tasks. In their research
Stillwell and Coutinho (2015) noticed that frequent releases, continuous test au-
tomation and monitoring improved a software development teams’ work in
several ways. By releasing frequently developers get feedback on their work
and communication between a larger team is minimized. By running monitor-
ing and automated testing developers get real-time feedback on their work and
possible bugs can be noticed via automated testing. Callahan and Spillane (2016)
also argued that test automation and monitoring speeds up the development
process as test automation can be executed after every release which gives
proper feedback on work done. These dimensions also help with rolling back a
release if serious flaws are noted in the released product.

Frequent releases can help with decreasing risks that are related with de-
ployment of the software as well as helping with quicker feedback to changes
made in the software, its different setups, and different environments. By ena-
bling fast as possible feedback organizations can help their future endeavours
by managing new data which will be processed in the later stages of software
development. By following the framework of DevOps, organizations can main-
tain continuous improvement on their software development and improve their
overall software quality while eliminating waste. By doing so software devel-
opment teams can discover flaws faster and easier. Finding these defects early
can also help the development team’s work since they can be found earlier thus
creating minimized rework. (Fitzgerald & Stol, 2014.)

One core characteristic of DevOps comes from its name – combining soft-
ware development and IT operations. Since implementing DevOps includes
changes in the structural level it should also be viewed as an organizational
change. By bridging the gaps in the organizational level and within different
project teams the organization should shift toward unified processes in soft-
ware development and operations. Mohamed (2015) introduced four different
keys to bridge the gap between software development team and IT operations:

quality, automation, collaboration, and governance. Quality aspect helps with
the faster development cycle, where automation aspect ensures repeatability.
Collaboration aspect concentrates on communication between different project
teams and governance aspect is about blending these above-mentioned aspects
to a functioning entirety. By addressing these factors organizations can enable
the implementation of DevOps. These factors also help with unifying these tra-

16

ditionally separated organizational structures and enables agility across the
whole life cycle of the service.

In the existing literature the definition of DevOps clearly has two different
streams of research: dimensions that include technical and concrete descriptions
like automation and monitoring and more abstract cultural movement which
includes dimensions of open communication, incentive and responsibility
alignment, respect and trust (Senapathi, Buchan & Osman, 2018). These social
aspects are effective actors in agile software development and are required for
organizations to succeed in DevOps environment. While the social aspects

might not be the main defining characteristics of DevOps framework, they are
so-called supporters for specific software engineer capabilities. However, these
capabilities are needed for organizational success regarding software develop-
ment. Learning new methods and technologies as well as feeling valued and
higher level of autonomy have positive influence on engagement to the project.
All these capabilities can be encouraged and enhanced by IT management
which can ultimately lead to a more successful product release. These social
aspects can be optimized with proper team combinations as well as empower-
ing the employees. High autonomy and motivating collaboration have also
been factors increasing the development teams’ morale and overall product
quality (Senapathi, Buchanan & Osman, 2018).

The defining capabilities of DevOps framework are described in table 1
below. These core capabilities are shown in three different columns with the
focus on impact and possible benefits gained. The table will be explained in the
following paragraph.

TABLE 1 Core capabilities of DevOps

Defining char-
acteristic

Impact Benefit Reference(s)

Agile software

development
principles

Continuous de-

livery of the
product

Modifying the prod-

uct after version re-
lease

Lwakatare et al.
(2016); High-

smith & Cock-
burn (2001)

Test automation
Automatic test-
ing of new re-

leases

Automatic reports of
the changes needed,

feedback

Callahan &
Spillane (2016)

Continuous
monitoring

Frequent feed-
back from

changes made

Faster response time,
quicker fixes

Stillwell &
Coutinho

(2015)

Combination of
software devel-
opment and IT

operations

Organizational
shift

Faster and more
transparent commu-

nication

Mohamed
(2015)

17

Frequent soft-
ware releases

Continuous pro-
gress of the pro-

ject

Decreasing risks
with deployment

Fitzgerald &
Stol (2014)

Cultural
movement

within organi-
zation

Open communi-
cation, responsi-
bility alignment,

trust

Enabling/supporting
specific software en-
gineering capabilities

Senapathi,
Buchan & Os-

man (2018)

Each characteristic constitutes benefits which can be seen from table 1 and have
their own influence on the initial software development and its final life cycle. It
can be argued that DevOps is a framework that encourages software develop-
ment teams to release early and often and update the product by the feedback
from test automation, monitoring and customers. The framework also consists
of organizational shift of combining software development and IT operations

and enhancing communication within. The last part of defining DevOps is the
cultural movement which acts as a supporter for specific software engineering
capabilities.

2.1.4 Framework approaches

Implementing DevOps as a software development framework requires strong
efforts from an organization. Organizations might have to make changes in
their organizational structure to combine departments, change to different
technologies and modify their habits of working (see sub-section 2.1.3). Even
though there is no one standard to define DevOps we can say that the main
purpose of the framework is to employ continuous software development pro-
cesses to support the life cycle of agile software development (Senapathi, Buch-
an & Osman, 2018). Even though DevOps has claimed a lot of interest during
the recent decade there is very little empirical research done about the practical
parts of implementing DevOps as the dominant practice. Traditional frame-
work of DevOps has also been used to create new trends. This sub-section con-
centrates on the approaches of DevOps, what are the main drivers for organiza-
tions to pursue DevOps as their functioning framework and how new trends of
software development processes have been utilized in the existing literature.

It was also argued in the previous sub-sections that DevOps is a change to
processes, but also a change to the organizational culture. In his research Vir-
mani (2015) argued that organizations can decide which approaches or princi-

ples of DevOps they want to adapt. These approaches vary with desired resolu-
tions to organizational needs, organizational capabilities, and project needs.
Therefore, it could be problematic for organizations to move from not utilizing
DevOps framework to full end-to-end DevOps utilization. Different capabilities
for DevOps bring different benefits and organizations should plan these capa-
bilities to fit their operational strategy. The figure below clarifies different tasks
related to DevOps and different capabilities required for the framework.

18

FIGURE 1 DevOps processes (Hüttermann, 2012)

Regarding its many core capabilities DevOps can be approached from different
perspectives by organizations. There is more than one possible approach re-
garding the framework of DevOps. Even though the definition of this said
framework vary there are same elements in different descriptions of the model.
The above figure illustrates different dimensions of development processes and
operations tasks which are critical for the framework. Code, build, and test are
described as development processes while deployment, operation and monitor-
ing have previously been only operations processes. Release and planning are
done in co-operation with both parties, which makes the communication trans-
parent throughout the process. Continuous integration is described as release in
the figure, which leads to deployment and operating. Continuous feedback on
the other hand helps organizations with planning and building. The figure is
described as a loop because the process of real-time communication and lifecy-
cle-wide traceability never stops. Different methods can help organizations
achieve these challenges and implement the framework as their own. (Hütter-
mann, 2012.)

While DevOps has been an intriguing concept by organizations to adapt
during recent years there are other software development frameworks that uti-

lize the same concepts. BizDev is a framework planned to combine software
development teams and business strategies while DevOps concentrates on
software development and IT operations (Fitzgerald & Stol, 2014). BizDev fo-
cuses on aligning software development dimensions such as continuous inte-
gration and development aligned with continuous planning which help busi-
ness strategy teams understand the requirements of development teams and
vice versa. While doing so the main purpose is to enhance communication with-
in these teams: make software development teams understand customer needs
and the market while business teams learn about implementation of desired
preferences. The problem of BizDev is that it is mostly seen as only a business
administration development framework with very little literature found on
computer or information system papers. From a computer science perspective
BizDev can be defined as a framework of continuous integration of business

19

strategy and software development (Forbrig, 2018). Non-stop interconnection
between different business departments and software development is im-
portant for successful business strategy implementation.

BizDevOps framework was created from these perspectives. The frame-
work was introduced to not only keep the software development processes
aligned with continuous use, trust and run-time monitoring but also align them
with business processes such as continuous planning and budgeting. The
framework enables continuous business process modelling as well as continu-
ous requirements engineering. According to Fitzgerald and Stol (2014) these

business processes are dynamic open-ended artifacts that develop with the
changes to business environment. This is the main reason why integration be-
tween business processes and software development is needed as they require
tighter integration in-between. With the alignment of business strategies, soft-
ware development and operational tasks organizations can create a sustaining
loop which stimulates continuous innovation and improvement. The figure be-
low strives to simplify the differences between DevOps and BizDev and how
they benefit each other in the BizDevOps framework.

FIGURE 2 BizDevOps framework (Fitzgerald & Stol, 2014)

By combining these two different methods organizations can ensure that their
business strategy is in alignment with development and operations. This way
continuous improvement is created, and the framework ultimately leads to con-
tinuous innovation. However, as stated previously there are very little empiri-
cal studies of adopting DevOps. This could be due to the factors that DevOps
itself is a complex process which an organization can execute in small steps. It
can also be the fact that aligning business strategies with software development
and operations processes can be a large, time consuming project especially for

20

bigger organizations. Building an operating model based on the DevOps
framework can be done in several steps which makes it more difficult to study.
Another possibility for the minimal research might also be the factor that organ-
izations think they are utilizing DevOps framework while there still are major
inconveniences regarding the respective operating model. That is why in this
thesis empirical knowledge is described in its own sub-section. (Fitzgerald &
Stol, 2014.)

2.1.5 DevOps adoption

This sub-section is focused on adoption of DevOps. The framework has been
defined in previous sections as a change to organizational processes as well as
organizational culture. Organizations can use the set of principles provided by
DevOps in implementation, but they must decide how are they going to adapt
DevOps and with what technologies amongst themselves. (Virmani, 2015.) For
these reasons understanding the needed phases and overall benefits are crucial
for organizations seeking to implement this framework in their business model
and organizational structure. This study is focused on IT management’s view-
point which makes it even more crucial for an organization to thrive.

DevOps introduces a set of principles for software delivery that the organ-
izations need to follow for a successful adaptation. These principles are contin-
uous planning, continuous integration, continuous deployment, continuous
testing, and continuous monitoring. (Virmani, 2015.) Continuous planning can
be defined as agile and lean business plans which can react to changes needed.
By getting feedback, reacting to it and adjusting business plans correctly organ-
izations can plan their processes to support continuous product life cycle. Con-
tinuous integration from IT management’s viewpoint concentrates on continu-
ous processes to achieve automation in changes of the current build. By doing
so organizations can be sure that the version of the software is always up to
date. One consistent definition point of DevOps is automatization of specific
tasks and assignments. By automatizing deployment companies can reduce
their deployment time drastically which facilitates the work of both parties:

software development team and IT operations. (Callanan & Spillane, 2016.) Au-
tomatizing testing is a requirement for continuous testing. This means the au-
tomatization of every test that needs to be ran on a continuous basis. Tests
should be running on different builds automatically which reduces the ultimate
deployment time. This research will process test automation in the later chap-
ters more closely since it is the goal of the target organization. Continuous mon-
itoring follows these dimensions of approaches and can be followed with varie-
ty of different parameters. By observing these aspects IT management can react
to changes if needed, follow the evolution of the project, and get continuous
feedback regarding the system.

One main aspect and core capability of adapting DevOps is merging the
two traditionally siloed departments of software development team and IT op-
erations and bridging the gap between them. Not only is this a change for or-

21

ganizational processes but the organizational culture too. This is one of the
main definitions of the framework and it is critical for a successful adaptation.
Automatization of specific tasks is one component of bridging the gap but there
are several other techniques and practices to help this matter. Depending of the
technologies and tools used IT management will have to establish clear guide-
lines of which technologies, languages and methods will be used. Because of the
short release cycles technical and non-technical challenges should be dealt with
extreme precision. The above-mentioned challenges could be solved by unify-
ing working habits and technologies used, platforms such as cloud services,

and deployment models. Other ways of bridging the gap are merging teams of
developers and operations people to manage possible miscommunication or
even establishing new specific roles for people working on bridging the gap
between development and operations (Wettinger, Breitenbücher & Leymann,
2014).

By addressing these above-mentioned dimensions with fitting business
needs organizations can benefit greatly from adapting DevOps. Automatizing
tasks saves resources such as time and ultimately money which creates more
possibilities for revenues. The resources needed for two traditionally different
teams can be shared which also reduces the costs of resources. Since cloud ser-
vices and other infrastructure services have become more frequent there is no
need for organizations to invest on hardware. This can reduce costs but also
enhance the communication within since technologies and methods are the
same for all parties. While automatizing every possible task, deployment be-
comes a repeatable process while errors and faults are minimized. Not only
does this make deployment substantially more reliable but also more efficient
for all parties as they get constant feedback on tasks done. Repeatable deploy-
ment also helps with possible fixes since test are ran continuously. From IT
management’s view adapting DevOps is about adaptation to change and sus-
taining highest possible quality with the lowest possible cost. These are factors
that every business area concentrates on whether it is about a software devel-
opment organization or not. (Virmani, 2015; Bass, 2017.)

2.1.6 Empirical knowledge of DevOps

It was argued in the previous sub-section that the empirical study of the actual
implementation of DevOps has been unsubstantial until the last few years. This
can be explained with the fact that there are many phases regarding DevOps
which organizations need to acknowledge and prepare for. Not only there are
many challenges regarding organizational shift, adjustments in the processes
and ways of working and changes in the organizational structure and strategy
but also possibilities to implement only parts of the framework. This sub-
section concentrates on how DevOps implementation appears in the existing
literature and if there are possible gaps in the research already done.

Lwakatare, Kuvaja and Oivo (2016) argued that agile software develop-
ment practices are required for successful implementation of DevOps and lean

22

software development practices can guide DevOps implementation. DevOps is
also acquired quicker by the organizations already utilizing agile and lean
software development methods. This is because DevOps as a framework is
based on continuous delivery and lead time which partly matches these men-
tioned methods. Minimizing changing technologies and methods as implement-
ing DevOps can reduce resistance to change and uncertainty. From the existing
literature benefits have been found in increased frequency of quality deploy-
ments and prolific collaboration between the two traditionally siloed teams.
Actual benefits can also be found from the social actors. High autonomy, con-

tinuous collaboration and feeling valued are boosting factors for team morale.
However, two things appear critical in many studies for successful implementa-
tion of DevOps: creating an automation pipeline and crossing functional organ-
izational structures. These factors enable the benefits DevOps framework was
designed for and are critical for a successful implementation (Senapathi, Buch-
an & Osman, 2018).

Even though the benefits of implementing DevOps have been proven to
exist there are gaps in the existing literature. Lwakatare, Kuvaja and Oivo (2016)
argue that the use of mostly used metrics such as deployment rate and lead
time are inadequate to elect whether the effects are caused by implementation
of DevOps or other similar agile software engineering approaches. The effects
are quick software releasing ability, frequent software releasing ability and im-
proved software quality. These same effects are benefits of other agile software
engineering methods which makes the actual benefits hard to distinguish. This
is explained with the deficiency of empirical research. While DevOps is widely
seen as intriguing software engineering method most of the research concen-
trates more on informal discussions and less on the actual empirical study.
Riungu-Kalliosaari et al. (2016) argued that DevOps might not be fitting for all
industries. The cultural aspects of changing communication and working meth-
ods can be challenging especially for bigger organizations while smaller com-
panies might be able to handle the change easier. This way communication
might be lacking critical information which can ultimately lead to defects in the
process. From IT managements’ perspective these aspects are critical since they
have effect on the whole development process. The vague, non-universal defini-
tion of DevOps is also an aspect which can lead to a false belief of utilizing the
framework. Adoption of DevOps becomes difficult when companies might not
know which methods to implement. The future research of DevOps should
concentrate on clarifying the definition to a universal level and concentrating
focus on empirical research instead of informal contributions.

2.2 Software test Automation

Test automation is one part of the DevOps framework, but it has been a part of
software development long before the said framework was invented and intro-
duced. This section describes how definition of test automation is formed, in-

23

troduces different types of software test automation and how it can be used to
enhance software development and organizational processes. The first sub-
section concentrates on the actual definition of test automation in software de-
velopment. The second sub-section is about different types of software testing.
Third sub-section concentrates on how the implementation of test automation
can be organized and which tools organizations need to utilize these frame-
works. The fourth and fifth sub-sections discusses the benefits and limitations
of test automation frameworks.

2.2.1 Definition of test automation

According to Karhu, Repo, Taipale and Smolander (2009) software testing can
be divided to automated and manual testing. Manual software testing can be
applied when automating specific tests is not cost effective. Nevertheless, au-
tomated testing is often desired for efficient allocating of resources and enabling
potent software development. In this case automated testing is automation of
different activities such as development and execution of test scripts, confirma-
tion of different testing requirements and usage of automated testing tools and
methods. Automated software testing was originally created to lower costs,
minimizing the amount of manual labour, and increasing efficiency and quality
of software development. Software test automation can be roughly divided to
two different approaches: user interface testing and API driven testing. Where
user interface testing concentrates more on the interface of the software and its
functions such as mouse clicks or typing, API driven software testing focuses
on the programming interface. This sub-section concentrates on the definition
of automated software development as a method and possible benefits and dis-
advantages of the framework. (Karhu et al., 2009.)

The definition of release test automation and automated testing is to pre-
sent a framework which includes a standard design for test scripts and the
framework should also include a support for the test driver (Ammann & Offutt,
2016). Different frameworks of test automation exist in lot of different contexts,
but the main definition of test driver and test scripts apply to most of them. The

test driver runs a set of tests by executing the software repeatedly and in differ-
ent possible ways. This is done by automated scripts which can test a specific
part or the entirety of the program. The test driver should also ultimately com-
pare the results to the expected results of the test case and finally report these
results back to the tester. Tester can then compare this feedback to the expected
results and monitor how this specific part of the program conducts under dif-
ferent tests. By automating software testing organizations can reduce software
costs. Kit (1995) estimated in his research that more than 50 percent of software
development costs come from software testing. Therefore, by enabling effective
methods of test automation organizations can greatly reduce costs and make
software development process more effective since developers are able to con-
centrate on multiple processes.

24

Test automation was originally created to solve problems such as manual
software testing being time consuming and automating software testing in-
creasing development efficiency especially in regression testing (Karhu et al.,
2009). Regression testing in software development is defined as specific tests
which try to prove regression in the software. Regression occurs as the opera-
tional part of the program is intentionally terminated. Usually regression ap-
pears unintentionally while developing the software. Regression tests are exe-
cuted after modifications are made to the program. A typical way of regression
testing is to run tests which are made for the previous releases and see if the

issues arise again. This is because in regression testing test cases are actualized
iteratively after making desired changes to the software. (Yoo & Harman, 2012.)
By enabling constant automated tests organizations can detect possible flaws in
the program faster which helps with future releases and fixes. By automating
constant tests, the functionality of the program can be ensured since specific
parts are under constant testing. In addition of using automated testing scripts
test automation also consists of verification of testing requirements and the use
of automated test tools (Collins, Dias-Neto & de Lucena Jr, 2012). By carefully
considering the aspects, quality attributes and validation requirements testing
requirements can be planned and used throughout the life cycle of the service.
Software test automation is planned to be iterative processes which can be re-
peated constantly. Creating test cases and verification of testing requirements
are responsibilities of the testers. Software test automation as a framework was
designed to minimize waste which is why the testers need to plan testing re-
quirements carefully. Testers should not be automating tests that will take
longer automatized thus not being cost-effective.

Choosing and using the right automated tools can also be crucial for effi-
cient software test automation. These problems can arise if the tools are too
complicated or have limited usability. Complicated tools will create problems
skill-wise as they are often complex mechanisms that need elaborate technical
skills to fully utilize them. That is why the test requirement should be done be-
fore selecting automated tools. The other significant dimension to consider is
different commercial applications and their possible limited usability. These
tools need to have preferences needed which is also possible to plan with prop-
er test requirement verification. By properly evaluating the needed tools, im-
plementing the tools, and giving efficient training organizations can ensure that
they have the right tools for the specific project. (Wiklund, Eldh, Sundmark &
Lundqvist, 2012.)

2.2.2 Different types of software testing

Software testing and automation can be done on different levels and methods.
There are multiple different automated test tools, but a few definitions remain
the same between all of them. Software testing is mostly concentrated on inte-
gration testing, system testing and/or unit testing. These tests are executed on
different levels of the software interface and are a critical part of software de-

25

velopment. By testing the software developers can be sure that different parts of
the program work as intended and required. Software testing also ensures that
the parts of already made software works normally. Software testing can also
be useful for finding possible flaws when used iteratively. This aspect helps
with bug fixes and can ultimately speed up the deployment rate of the software
drastically. (Karhu et al., 2009.)

In unit testing the word unit is usually defined as a basic component of the
program. Unit testing of the software means testing each basic component (unit)
of the software. It is used for verification that the detailed design for the said

unit is accurately implemented (Zhao, 2003). Because the testing itself is done
after implementing different components to the software unit testing is an effi-
cient way of inspecting possible flaws and errors in the software. By doing so
the developers can influence on the software at the earliest possible stages of
the software’s life cycle. The most common ways of software unit testing are
specification-based unit testing which is often referred as black-box-testing and
program-based unit testing, also known as white-box testing. The differences of
these two methods can be found from their names. Where specification-based
testing concentrates on verification of functions of the software components per
an external view, program-based testing is more about the internal logic struc-
tures of the software. In both cases test results can be used to verify the efficient
functionality of the software or finding possible flaws and changes needed. The
limitations of unit testing are that the developer cannot possibly test every pos-
sible execution path in all the software applications. This way all bugs might
not be realized and detected. That is why the program needs to be tested on a
higher level. (Zhao, 2003.)

According to Leung and White (1990) integration testing is executed after
the individual components and modules are combined to a working software.
Unlike unit testing, integration testing is done on the module level and not in
the statement level. The actual emphasis of the testing is more on interactions
and their interfaces rather than on specific components and their ingredients.
There are many different methods regarding software integration testing, and
they can be divided to incremental and non-incremental methods. The differ-
ence between these two strategies is that incremental strategies tests one mod-
ule at a time where non-incremental strategies gather the modules together and
test them as a group. As well as unit testing integration testing can ultimately
effect on different phases of software development. By proper testing develop-
ers can notice flaws as well as issues regarding module specifications. By ena-
bling efficient integration testing interface can be properly tested and changes
are still relatively straightforward to apply. Integration testing is limited to test-

ing different modules and might not show the actualized results in the interface
level. There can also be different flaws regarding specification issues which can
slow down the development process. (Leung & White, 1990.)

System testing is applied on a complete and integrated system. System
testing is used to evaluate the whole system compliance and how it meets the
specified requirements. After integration testing is applied successfully the

26

modules can be transferred for system testing. According to Freeman (2002)
system testing provides a sort of verification process of the objectives and sys-
tem requirements. System testing should be approached from the user-friendly
perspective since the end-user is not concerned with how the system works or
responses but rather in the proper function of the system. System testing is exe-
cuted to test design, behaviour, functionality and believed expectations of the
user. Nevertheless, much like the previous testing strategies and methods sys-
tem testing might not illustrate all possible flaws in the system since there are
too many possible functionalities and execution paths. System testing can also

be very time consuming and heavy to execute since it is applied to a whole in-
tegrated system.

There are a lot of different approaches regarding software testing and this
sub-chapter was about introducing the most used. Automating specific tests can
appear as a challenging task but it also brings different benefits. Organizations
need to realize that systems and services are constantly evolving products
which makes planning and execution of test automation even more critical. Or-
ganizations also need to realize which test should and should not be automated.
Testing and test automation were designed for efficient use of time and re-
sources. This means that not every test or task should be automated, only those
which automation has real impact on. By carefully planning test cases and test
automation companies can minimize waste as well as improve the overall life
cycle of the product.

2.2.3 Implementing test automation

For a successful implementation of test automation there are few critical aspects
that organizations need to consider. Test automation can fail as a project which
is why companies need to plan it carefully. The planning includes software ar-
chitecture, needed tools, test automation plan and clear objective planning.
Adopting test automation can be a very demanding effort which is why com-
panies need to build it around their IT and budget strategy. Planning must also
include clear phases of the upkeep since test automation tools and expertise can

be expensive. For these reasons test automation plan needs to be thorough and
transparent for all parties and needs to be complied with as much as possible.
This section summarizes which aspects organizations need to consider about
implementing a test automation framework and which resources and expertise
are needed.

To start implementing test automation in their strategy organizations must
acknowledge the fact that it will have costs and can occasionally be very expen-
sive. Costs must be accounted for the whole life cycle of the service since soft-
ware systems are constantly evolving. By implementing test automation in their
IT strategy organizations also need to think about transparency. According to
Kasurinen, Taipale and Smolander (2010) test automation frameworks may
vary between different business units which makes the planning phase even
more crucial. Test automation may also greatly vary between different products

27

and, projects and services within one organization unit. By implementing test
automation in their strategy organizations also need to plan which kind of tests
are needed for the software project. Unit tests and regression testing are among
others which are often present in software projects can be all automated to
some extent. By deciding which test to automate and which not is important for
the overall strategy because of the resource usage. (Kasurinen, Taipale & Smo-
lander, 2010.)

By including test automation in software architecture organizations can
ensure increasing control and reducing risks. The knowledge of test automation

documentation and tasks enable minimum cost and maximum coverage net-
work which can be utilized early and often (Amaricai & Constantinescu, 2014).
This is important especially for larger scale services in which different units
must be tested from the very beginning to the end of the product’s life cycle. By
adding test automation to the software architecture developers can keep up
with the requirements and specifications easier while the system is under con-
stant testing. Getting feedback of the tests then help developers make the
changes needed which simplifies the developing process towards the end. By
identifying the exact test case, test script, test data and test locators, developers
can track the exact test case from the code to the desired action which helps de-
bugging the actual product. Including test automation in software architecture
ultimately needs to be documented, planned, and executed the same way the
traditional software architecture: thorough and efficient. This way organiza-
tions can constantly check whether actions are executed the way they are
planned to and have a proactive way of resolving different problems.
(Kasurinen, Taipale & Smolander, 2010.)

There are variety of test automation tools which test automation frame-
works can be built on. Like already discussed in the previous sub-section, or-
ganizations need to plan the tools to be efficient on their usability and not too
complex for the developers to handle. These tools can be created within the or-
ganization or obtained from different vendors. However, since the tools have
already been processed in previous sections this section will be more about
tools having impact on different levels of test automation frameworks. By defin-
ing testing and test automation in previous chapters it can now be said that
tests can be made in different levels of software development. Tests can be
made under different interfaces such as coding interface or customer interface.
The main difference between these two dimensions would be testing methods
among the software protocol level and user interface level. Software tests can
also be made to specific units or the whole system. By this definition, the tools
can vary greatly where testers and IT management need to carefully design

which tools to use. The tools may ultimately form the actual framework since
they can be used to boost one another. Tools used in test automation need to be
specific for every software project. This means that IT management needs to
plan the tools used to match the requirements and specifications of the IT pro-
ject. (Wang & Du, 2012.)

28

Test automation plan and objective planning require not only expertise
from the testers but also commitment from IT management. Deciding the best
methods and tools, planning test cases, creating the framework or choosing
from existing ones and documenting and disseminating the expertise are usual-
ly time consuming, substantial expense projects. The management process of
testing is described in the figure below.

FIGURE 3 Test management processes and activities (Garousi & Elberzhager, 2017)

The figure above describes the phases of test automation plan. While most of
the tasks described in the figure have manual labour in them most of them
could also be partially or fully automatized. Testers and IT management will
have to plan everything from test-case design to test evaluation and results to
different test environment setups. Not every minor task should be automatized
since test automation takes resources in the form of skills, manpower and assets.
The plan described in the figure could be further continued to the end of the

service’s life cycle but the main idea for this section is to describe the process of
implementing test automation and objective planning. Test automation plan
strives to eliminate unnecessary tasks while automating these actions (Garousi
& Elberzhager, 2017). IT management and testers need to design which pro-
cesses and activities need automatizing while minor tasks which would take
more resources automatized should be left as they are. By doing so they can
ensure the most efficient way of utilizing automation in their software devel-
opment processes.

2.2.4 Benefits of test automation frameworks

Test automation frameworks come with many benefits, but it also has some lim-
itations to it. While offering a high-powered and beneficial framework for dif-
ferent types of automated tasks it is still a method that some organizations
choose to opt out from. While offering many benefits such as repeatability, low-
er software development costs, reduced effort, and efficient usage of resources
some organizations still turn to manual testing. In their research Kasurinen,
Taipale and Smolander (2010) argued that companies drift away from test au-
tomation because it is time-consuming and, in most cases, expensive to create.

29

Because of these reasons’ organizations should set suitable test cases to confirm
functional properties in test cases which have the minimal number of changes
per development cycle. This way test automation can obtain different benefits
for change management and avoid different defects such as compatibility issues
between different interfaces. This section concentrates on benefits and limita-
tions of test automation frameworks and how organizations should utilize these
dimensions.

Garousi and Elberzhager (2017) argued that test automation would benefit
companies in lower costs and repeatability in software development which ul-

timately leads to reduced effort. Even though the investment to test automation
can be rather significant resources such as time, effort and manpower can be
saved after successful and efficient implementation of a test automation frame-
work. Trends such as agile development and continuous integration require
quick responses. Requests and specifications should be met in minimal possible
time while providing best possible quality at the lowest possible cost. From the
business point of view test automation should be implemented to tasks which
can be proven to enhance continuous deployment and integration times. By
eliminating unnecessary waste organizations can improve the products’ time to
market with test repeatability and enhance the products’ return on investment
by automating tasks.

According to Wang and Du (2012) tests ran manually are almost always
prone to human errors. Applying test automation for these tasks improve
product quality since automated tests can be repeated with the exact same spec-
ifications. By removing human errors continuous quality can be ensured with
minimal risk factors regarding human actions. Improving product quality will
also ultimately lead to faster and more cost-efficient outcome since malfunction-
ing services and errors cause more expenses. By applying test automation
framework organizations and testers can also ensure faster response to changes
needed. By getting constant feedback from monitoring the tests customer re-
quirements and specifications can be confirmed which ultimately leads to better
customer satisfaction (Stolberg, 2009). By repeating tests constantly customer
expectations are more likely to be fulfilled, as well as ensuring the functionality
of the service.

By applying and implementing an efficient test automation framework or-
ganization can achieve benefits on economic and organizational performance
level. An efficient test automation method improves service quality, enhances
the product time to market and eliminates waste. Replacing specific manual
testing activities should be planned to substitute actions with high repeatability
and unnecessary usage of manual labour. This way organizations can maximize

the benefits gained from test automation frameworks. The figure below simpli-
fies the benefits of test automation frameworks and which outcomes the organ-
izations will eventually receive.

30

TABLE 2 Benefits of implementing test automation framework

Benefits Outcome Reference

Repeatability
Constant execution of

automated tests,
quicker response

Garousi & Elberzhager, 2017

Reducing unneces-
sary manual tasks

Lowering costs Garousi & Elberzhager, 2017

Reduced effort on
manual testing

Allocating resources
elsewhere

Garousi & Elberzhager, 2017

Enhanced software
quality

Faster time to market,
improved product life

cycle
Wang & Du, 2012

Quicker response to
changes needed

Improved customer
satisfaction

Stolberg, 2009

By adapting a test automation framework, the organization will have to commit
to it in a strategical level. To achieve the benefits mentioned in previous section
and in the above table are only possible to achieve if the test automation
framework is transparent, scaled for specified usability and efficiently used on
everyday software development.

2.2.5 Limitations of test automation in software development

Even though test automation and its different frameworks have many benefits
in them organizations also must think about limitations regarding these aspects.
By automating different testing phases organizations must consider resource
consumption in the form of time, manpower and money. Test automation
frameworks also should not be built just for automation’s sake but to benefit
different development and business processes regarding product development.
If done indifferently consumption of financial and other tangible and intangible
resources might increase to the point in which implementing test automation
framework is not cost-effective.

 Rafi, Moses, Petersen and Mäntylä (2012) argued in their research that
there are few limitations which prevent organizations of adopting test automa-
tion frameworks. These dimensions include high initial costs of designing the
test cases, acquiring test automation tools, and acquiring the expertise to effi-
ciently use and manage these systems. In addition, IT management must con-
sider maintenance of these test automation tools and which resources their up-

31

keep requires. Many test automation tools offer high risk-high reward ap-
proaches with substantial acquisition costs with very little proof of their actual
benefits for specific organizations and actions. These tools are often difficult to
configure and are not fitted to different software development environments.
By electing to implement a test automation framework organization exposes
itself to these risks which might ultimately have negative effect on business
processes and organizational culture.

As was the case with designing the test suites, finding a tool with a precise
and specific fit for current needs may require a great effort from the organiza-

tion. Roughly half of current practitioners think that the current test automation
tools fit poorly in their requirements and the systems are unfitting to be tailored
for specific needs of testing (Garousi & Mäntylä, 2016). As does technology it-
self, also test automation tools evolve constantly. Instead of trying to cover eve-
ry aspect of different levels in test automation organizations should look for
tools that fit their specific requirements. The decision of when and what to au-
tomate is critical when considering success of the whole process. A lot of cur-
rent test automation tools are not developed to cover a specific area of this do-
main but to offer as much general coverage of the matter as possible. This may
not suit organizational specifications which makes implementation of these
tools more difficult and sometimes vain.

Test automation frameworks are complex entireties which eventually lead
to even more complex tools. Still, testers are needed to deliver functionalities
and specification verifications as fast as possible. This can be problematic if the
testers need to build up their own test suites and create and document the test-
ing process. This creates a paradox of not finding the defects in the system on
time as the service is developed (Gandhi & Pillai, 2014). Test automation
frameworks should improve the quality of the developed service which might
not eventually be the case if the testers cannot keep up with development. Test-
ing is critical for assuring the software quality and it should not be compro-
mised with delays in the processes. This puts even more pressure on testers
which makes testing prone to errors.

Applying and implementing a test automation framework has its limita-
tions. Organizations need to invest resources such as money, knowledge, man-
power and time to a practice which can eventually prove to be even more bur-
densome than manual testing. Pressure on continuous integration and deploy-
ment requires constant outputs from the testers which should not be delayed by
methods or tools. By efficiently researching and designing their development
processes IT management can decide the best practices, tools and change man-
agement to properly implement these methods. Testing should not be automat-

ed just because of automation but to enhance internal processes and improve
the overall quality of the product.

32

2.3 Summary

This chapter has been about defining the core capabilities of DevOps frame-
work, different test automation types, frameworks, requirements, benefits, and
limitations. Even though clear benefits of these frameworks can be found in
software development area there are some barriers which organizations and
their IT management need to consider. Benefits such as quality improvement,
saving time and economic factors can develop in to disadvantages if test auto-
mation plan is poorly executed. This sub-section is a rehearsal of defining the
core capabilities of DevOps framework, defining main points of the test auto-
mation dimensions mentioned above, and how the target organization should
utilize them in their test automation strategy.

It was argued in section 2.1.3 that the core capabilities for DevOps frame-
work are agile software development principles, test automation, monitoring,
combination of software development and IT operations, frequent software re-
leases and the cultural movement within organization. These capabilities were
extracted from the existing literature as focal points of the DevOps framework.
DevOps was also recognized as an operating model which can be separated to
specific parts. Organizations implementing DevOps can either adapt these ca-
pabilities separately or implement only specific parts of the framework. The
problem of researching frameworks like DevOps is that organizations might
already be utilizing some parts of the model unknowingly or implementation of
only specific parts and not the entirety of the model.

By defining different types of testing and testing models from existing lit-
erature it is possible to examine definition of test automation more closely. In
this research software test automation is defined as automation of different ac-

tivities such as development and execution of test scripts, confirmation of dif-
ferent testing requirements and usage of automated testing tools and methods
(Karhu et al., 2009). Test automation in software development can be at least
partially applied to different types of testing such as integration testing, unit
testing and system testing and within them to regression testing. By testing
functionalities testers and developers can ensure that the service works as in-
tended and minimize the number of defects in the system. This benefits the
whole life cycle of the service as continuous deployment is enabled. By doing so
customer requirements and specifications can be easier to achieve and possible
defects in the system can be seen quicker.

More benefits from the organizational point of view can be seen from dif-
ferent resources such as cost savings, time saving and faster time to market
times. Resources previously used for software testing can also be allocated
elsewhere which can enable multiple simultaneous projects. All these dimen-
sions are tangible resources which can be measured and implied in the organi-
zational strategy. Nevertheless, if test automation plan is poorly executed some
disadvantages can arise from test automation frameworks. These disadvantages
include aspects like high obtaining and maintenance costs of test automation

33

tools, insufficient knowledge of the system and poor usability for specific or-
ganizational tasks.

As a summary, test automation can greatly benefit software development
teams when done properly. Test automation should include every aspect from
test-case design to test results and choosing the right tools of working. At its
best test automation will upgrade many different organizational activities, tasks,
and resources. Manual labour can never be entirely withdrawn, and test auto-
mation should not drive for it. The purpose of these set of actions are to find
test cases which are most repetitive, not to automate every task within software

testing. By doing so software development teams can save critical resources and
at the same time improve their service quality and minimize the amount of
manual labour.

34

3 RESEARCH MODEL FOR TEST AUTOMATION
STRATEGY IN DEVOPS ENVIRONMENT

Even though test automation and continuous testing is a part of the DevOps
framework there are many regularities organizations need to consider from
both entireties. This chapter introduces a reconstructed BizDevOps-model from
Fitzgerald and Stol (2014) with emphasis being on business strategy, develop-
ment, operations, cultural and organizational changes, and continuous software
engineering methods. The first sub-chapter introduces the framework, while the
following sub-chapters are descriptions of the specific areas of the theory. Sec-
ond chapter describes business strategy as a guideline in building the test au-
tomation strategy in DevOps environment, where the third chapter concen-
trates on DevOps and recaps the main aspects of the framework. Fourth sub-
chapter describes the test automation strategy implementation with its essential

sections. Fifth and final sub-chapter summarizes the framework and describes
which benefits it brings to software developing organizations.

3.1 Research model

The model itself was reconstructed from different, already established continu-
ous software development and test automation models. Even though traditional
DevOps research usually does not include business strategies and different
business development methods in the framework. Nevertheless, it can be ar-
gued that the similar connection as there is between development and opera-
tions is also needed between development and business strategy (Fitzgerald &
Stol, 2017). Implementing test automation strategy in DevOps environment
needs to be implemented by agile methods but also recognize aspects of moni-
toring efficiency, value delivery and change management in business processes.
For these reasons, organizations need to consider business strategies and their
aspects of change management, business process management and continuous
planning in the theoretical and practical implementation of the framework.

35

FIGURE 4 Implementation of test automation strategy in DevOps environment (derived
from Fitzgerald & Stol, 2014)

This figure visually simplifies the requirements for functioning and effec-
tive test automation strategy in DevOps environment. The rationale of why
these aspects are needed for efficient implementation are argued in the follow-
ing sub-sections. By implementing business strategies in their test automation
strategy organizations can predict budgeting more accurately and plan their
test automation in alignment with business processes. DevOps relies on full
automation from building the product to testing it which makes lead times
shorter. Thus, automated processes need to be planned on both levels: business
and development. This ensures automation of correct processes as well as en-
hancing business process development.

3.2 Business strategy in DevOps planning

With the implementation of business strategy to DevOps framework software
developing organizations can ensure the correct processes are automated. Or-
ganizations need to understand the current delivery capabilities. Improvement
of this aspect must be done by measuring business metrics such as revenue. By

36

measuring test coverage and deployment times organizations can see the bene-
fits or possible disadvantages of these tasks (Fitzgerald & Stol, 2017). When test
automation strategy is properly planned, documented, and executed business
processes and their management will eventually change too. Since business
process management is a methodology which strives to increase profitability by
modeling, automating and optimizing the business processes it can be argued
to have direct impact on test automation planning (Scott, 2007).

By aligning traditionally siloed departments of development and IT opera-
tions to one entirety organizations need to update their change management

processes and business process management which ultimately enhances con-
tinuous planning. Regarding change management in the context of test automa-
tion strategy, the most important aspects for managers are understanding that
each software process improvement is unique and the understanding of the el-
ements in change involved (Mathiassen, Ngwenyama & Aaen, 2005). Since
DevOps as a framework requires organizations to alter their organizational
structure and culture change management processes can be critical for success-
ful implementation of these methods. New technologies themselves will not
change practices. Organizations and managers need to change process defini-
tions, technologies, and practices effectively which might require a great deal of
effort. For effective change management in the software interface organizations
need to consider creating vision, committing to change, planning specific initia-
tives, operating agile and improving monitoring. While test automation can
help with these objectives, managers need to figure out the most appropriate
aspects of methods in leading change management. (Mathiassen, Ngwenyama
& Aaen, 2005.)

Continuous planning is an entirety which includes organizational, strate-
gic, and business planning (Suomalainen, Kuusela & Tihinen, 2015). To effec-
tively adopt continuous planning, organizations need to plan their approaches
around each section. By properly implementing continuous planning in their
test automation strategy organizations can gain benefits in leadership en-
hancement, transparency throughout organizational context and competency
development. Organizations seeking to develop their continuous planning
should acknowledge each of the aspects mentioned before as all of them influ-
ence organizational structure and culture. By properly leading change man-
agement, optimizing business processes regarding automation and effectively
planning organizational strategies automation processes can be designed and
executed effectively. By doing so organizations can remove unnecessary manu-
al tasks and enhance quality by removing humanly errors.

3.3 DevOps framework in the model

While test automation is included in the main capabilities a DevOps framework
(see chapter 2) there are dimensions which organizations need to consider while
planning their test automation approaches. The main DevOps capabilities men-

37

tioned in chapter 2 can be implemented separately but any of these changes will
have an effect at least on organizational culture. Implementing new technolo-
gies, approaches and methods will affect organizational culture with ways of
working and changing habits. Support factors such as transparent communica-
tion and trust are needed for organizations to succeed in DevOps environment.
Test automation is one section of the DevOps entirety and it needs to be proper-
ly executed in the complex ensemble of DevOps framework. (Senapathi, Buch-
an & Osman, 2018.)

While being only one section of the framework efficient test automation

still at least partly affects every capability of DevOps. By automating software
testing the quality of software can be improved, number of errors in testing can
be minimized, tests can be easily repeated, time used for testing can be allocat-
ed elsewhere and the actual functionality of the service can be ensured faster.
Other than test automation, core capabilities of DevOps were defined as agile
software development methods, continuous monitoring, combination of soft-
ware development and IT operations, frequent software releases and cultural
movement within organization. All these dimensions are facilitated by efficient
test automation strategy and can enhance provisioning business processes. Ul-
timately DevOps strives for end-to-end automation, where test automation
strategy is a critical piece of the entirety. (Smeds, Nybom & Porres, 2015.)

DevOps framework was probably originated from continuous software
delivery method. According to Ebert et al. (2016) business strategy is tradition-
ally seen as a separated dimension but it can be argued that an efficient imple-
mentation of DevOps takes business strategy into account. For example, merg-
ing two traditionally very isolated departments is a strategy-level decision
which needs to be carefully planned. Same thing can be said about continuous
and automated monitoring which can help organizations identify possible de-
fects before they affect critical business processes. For these reasons business
strategy needs to be aligned with DevOps implementation.

3.4 Test automation strategy

Organizations can have very different approaches regarding test automation
strategy. Like mentioned before in chapter 3 testing can be divided to API test-
ing and user interface testing which are two very different methods. Neverthe-
less, an efficient test automation strategy always should include at least docu-
mentation, resources, automated test scripts and test data. By also considering

business process development, change management processes, continuous
planning and other DevOps capabilities organizations can create a fully func-
tioning test automation framework which enables automated testing for the
most critical, repetitive, and cost-efficient tasks. By combining business strategy
and process planning it can also be ensured that the most critical processes are
automated. Poor planning and conduction of test automation strategy can ulti-

38

mately be less cost-effective than manual testing. (Amannejad, Garousi, Irving
& Sahaf, 2014.)

 The essential aspects of a test automation strategy were defined in chapter
3. To establish an efficient test automation framework, organizations need to
define resources, documentation, automated test scripts and test data. Re-
sources can be defined as economic factors as well as abstract resources such as
know-how and skills. By combining test automation strategy with DevOps
framework, the resources can also be distributed on organizational level within
traditionally siloed departments. Organizations might need to invest on test

automation tools which makes strategical planning of the test automation tasks
critical for business processes (Ramler & Wolfmaier, 2006). Documentation of
test automation is essential for continuous delivery and development. By thor-
oughly documenting software test automation phases organizations can ensure
transparency throughout the product life cycle. Proper documentation can also
help organizations solve possible complications on later stages of the product
development. This documentation can be stored in test automation tools which
makes inspecting and utilizing it easier and more efficient (Collins & de Lucena,
2012). Automated test scripts are made with test drivers for autonomous soft-
ware test automation. Test scripts are made from test data, which is gathered
from test documentation. Test cases are built based on the data, and they are
later formed to test scripts which are ultimately automated. This method can be
used to share steps with other forms of test automation (API and UI testing)
which makes it a clear guideline to follow in planning test automation strategy.
(Wang & Du, 2012.)

Even though test automation strategy can enhance different aspects of
software development organizations need to carefully plan their test data, driv-
ers, and test cases especially in user interface testing. User interfaces are usually
non-static interfaces which are made to be operated by humans and not ma-
chines. This means changes in functionalities, changes in usability and changing
contexts (Vos, Kruse, Condori-Fernández, Bauersfeld & Wegener, 2015). This
creates challenges for organizations as to whether test user interfaces manually
or automate tests regarding graphical user interface. This is especially a difficult
task if the software is developed somewhere else. Organizations need to pre-
sume that the structure of the interface remains the same which sometimes
might be a false assumption. By combining methods with business strategy or-
ganizations can ensure continuous development by automating specific pro-
cesses.

3.5 Summary

Even though software development teams, operations teams and business
strategy has been traditionally seen as very different departments and entities
merging them as one makes sense. By doing so organizations can harness re-
sources and enable effective communication for typically cross-organizational

39

business units while striving for agile development methods. By constructing
and enabling a test automation strategy companies can create guidelines which
to follow in continuous testing and monitoring. Test automation as a method is
only a part of DevOps framework but other DevOps capabilities as well as or-
ganizational business strategy should be considered while planning test auto-
mation strategy. (Kasurinen, Taipale & Smolander, 2010.)

Implementing an efficient software test automation strategy can bring
benefits such as improved service quality, reducing unnecessary manual tasks,
quicker responses to changes and functionalities needed and constant repeata-

bility of the test suites. By combining DevOps, test automation strategy and
business strategy organizations can enhance their business processes and ena-
ble continuous planning regarding organizational, strategic, and business plan-
ning. These dimensions can simplify existing processes or create new process
builds. However, organizations need to consider the life cycle of test automa-
tion suites especially in graphical user interface testing. Maintaining and updat-
ing existing test suites can demand lots of resources if functionalities or usabil-
ity of the interface changes. By this definition organizations need to ensure criti-
cal processes which can be constantly repeated without jeopardy of user inter-
face changes. (Wang & Du, 2012.)

Testing is a critical part of software development and one of its biggest
expenditures. When done properly, test automation strategy can be cost-
effective while enabling organizations to allocate critical resources elsewhere.
Even though DevOps strives for full end-to-end automation not every task of
testing should be automated. Organizations need to carefully plan their test au-
tomation strategy for the most critical processes which can be constantly exe-
cuted and can be ensured to remain static. If done poorly, test automation strat-
egy can occur as an expensive and unnecessary expenditure where test suites
are still executed manually. By carefully planning, defining, and executing test
automation strategy organizations can gain the highest return on investment
while automating unnecessary manual tasks. This will also simplify continuous
software development and delivery with the certainty of a functional software.
(Amannejad et al., 2014.)

40

4 RESEARCH DESIGN

This section concentrates on the collection and analysis of empirical material of
the thesis. On a more specific level this section is about how interview research
and its different methods were used to find answers to the research question of
the thesis. The following sub-sections describes the aim and goals of a research
interview, semi-structured interview as a research method, the foundations
which led to selection of this method and analysing the data gathered by inter-
views. This research was done as a commission for Vaisala in which the re-
searcher worked at the time the research was done. This research was done to
produce recommendations and guidelines of adopting DevOps framework and
creating an efficient software test automation strategy.

4.1 Goals of an empirical research

Software test automation research has been increasing during the last years and
organizations are trending towards automating unnecessary manual tasks. By
automatizing software test automation organizations can gain benefits in the
aspects of quality, effectiveness and performance which affect change manage-
ment processes and business processes altogether. The purpose of this research
is to create a guideline which organizations can follow while planning a test
automation strategy in different DevOps environments. While DevOps itself
remains as an unstable concept this research indicates six main characteristics
for DevOps. By doing so organizational performance and characteristics of cur-
rent ways of working can be measured and compared to the defined concept.
With the combination of business strategy to DevOps organizations can deter-
mine the correct business processes which need automatizing and proactively
react to needed alterations in change management processes. DevOps itself is a
rather new concept which was created to respond to challenges of continuous
integration and deployment by automating every possible task. While doing so,

41

DevOps is a way of reacting to constant change by streamlining software de-
velopment, version control and operations. (Virmani, 2015.)

Whether DevOps is inspected from the scientific, practical, or industrial
point of view it still is a rather new and unexplored framework to build soft-
ware development on. The changes in organizational culture by DevOps and
the benefits they bring have been the most researched topics of DevOps re-
searches during the last few years. The purpose of this research is to combine
business strategy with DevOps in the form of recognizing the change manage-
ment processes needed to change and the business processes which automatiza-

tion benefits. This is done by creating a test automation strategy which recog-
nizes these aspects and takes them in to consideration while engineering the
automatized test instances. Consequently, the research question of this research
is defined as:

• How to implement test automation strategy in DevOps environ-

ment?

The outcome is a guideline which organizations can follow while planning

their test automation strategy. Goals of this research is to highlight the most
important factors which organizations need to prepare for when creating the
strategy as well as pointing out the most critical business and change manage-
ment processes affected by test automation framework.

4.2 Choice of the research method

The framework of DevOps which was introduced in previous chapters has been
described as a model which quickens and streamlines the software develop-
ment process and enhances the quality of the service produced. These goals are
achieved via specific practices such as combining development and operations
teams, automating all available and unnecessary manual tasks and monitoring
service quality and efficiency. The defining characteristics were described in
chapter two and they are the core characteristics in which this research is based
on. Test automation was introduced in chapter three and the main characteris-
tics of an efficient test automation strategy were combined from many different
models and theories. The actual framework was derived from Fitzgerald and
Stol (2014) who combined the framework of DevOps with business strategy.

Fitzgerald and Stol (2014) argued that software development teams and
operations’ team’s strategy should also be combined with business strategy.
This way this combination of traditionally separated business units can com-
municate easier and more transparently while working in the most efficient
way regarding business processes. While requiring tighter connection between
development and planning it also integrates continuous planning as part of the
framework. By this definition plans between business and software functions

are dynamic and open-ended artefacts that evolve in response to changes. By

42

utilizing this framework organizations can efficiently define the business pro-
cesses in need of automation and how it can affect certain responsibilities such
as development and operations processes. Even though there have been re-
searches regarding DevOps during the last decade the scientific research seems
to concentrate on the entirety of the framework, especially to the development
aspect. Empirical research has also been minimal since adopting this kind of
framework takes time and resources which makes the research intractable.

Software test automation is generally seen as a critical part of DevOps
framework (Hüttermann, 2012). This kind of test automation was done long

before DevOps framework was introduced. Nevertheless, it still is a logical part
of a framework which concentrates on automating tasks and streamlining soft-
ware development efficiency. Test automation and its benefits and disad-
vantages have been researched a lot but the research regarding DevOps and
business processes are minimal. For this reason, it is more meaningful to re-
search test automation strategy in DevOps and business strategy environments
to reveal the true benefits and possible disadvantages of the method.

DevOps and its relations with different fields such as business strategy
could be researched as a longitudinal study which means collecting quantitative
information from DevOps adoption and its effects on business processes and
practices. This method would require possibly years of study since DevOps can
be adopted in phases and all the core characteristics might not be what an or-
ganization seeks or even tries to adopt. This is not an option because of the limi-
tations of a Master’s Thesis. Qualitative research is also more reliable than
quantitative when researching a new phenomenon where the definition re-
mains blurred and all variables of the framework cannot be defined.

With the help of research and literature introduced in the previous chap-
ters it can be said that DevOps as a concept remains unstable and vague. There
is no universal definition for the framework except the main characteristics
which are defined in mostly used theories. Because of the minimal empirical
research of DevOps, the relationship between DevOps and test automation and
combining these two with business strategy qualitative research is the correct
choice. According to Hirsjärvi, Remes, and Sajavaara (2009) qualitative research
is more suitable than quantitative research especially when there is very little
information about the phenomenon researched. With this definition it is more
meaningful to use qualitative methods as a research method while inspecting
the combination of DevOps and business strategy and building a test automa-
tion strategy around these frameworks. Qualitative research is also a more ef-
fective way to find crucial information for future research.

4.3 Semi-structured interview as method of gathering data

As it was mentioned in the previous chapters, DevOps and its definition re-
mains unclear, especially in the scientific community. The possibility of utiliz-
ing the framework in various ways and already having specific parts of DevOps

43

framework adopted impede the scientific research (Riungu-Kalliosaari et al.,
2016). Because the framework can be adopted in various ways and phases this
research was conducted by semi-structured interview where the conversation is
not steered to specific literature. The main point of this type of research is that
the existing literature represents only a part of the desired research where some
aspects might remain undefined or vague. Qualitative research in this research
strives for finding new strategical aspects, ways of impacting current and future
business processes and possible benefits and disadvantages of creating a test
automation strategy.

This research was done by gathering data via interviews. The interviewees
were assigned by the organization and are all professionals in different fields of
IT. The synthesis was to research individual perceptions of DevOps as a model
and how test automation strategy could enhance business processes and strate-
gical organizational decision making. Qualitative research helps addressing
specific limitations in scientific software engineering research by drawing single
studies together and making them larger, more applicable theories (Cruzes &
Dyba, 2011). This way the results are more likely to be applicable for various
organizations and other specific stakeholders. Combining multiple theories is
important for this research since DevOps is defined vaguely and executed in
various ways. According to Qu and Dumay (2011) qualitative research, and
more specifically interviews, are the most efficient ways of research when there
is very little research from a specific scientific area. Since empirical DevOps re-
search is unsubstantial, the framework can be implemented and adopted in
numerous ways and the actual definition remains unclear, qualitative research
is the best option.

Since the interview was done as semi-structured the conversation can be
steered to what seems to be the most essential elements for the research. The
interview itself is interactive and the interviewer can address the answers
which seem to be crucial for the research and process the answers more thor-
oughly. Interviews can also be more effective as the interviewees can be reached
out after the interview to clarify certain aspects. By keeping the interview in
themes, the interviewees can share their thoughts, ideas, and opinions freely
without the need of leaning to the existing literature. This way the current state
of these dimensions is based on experience of the interviewees. The conversa-
tion remains free but is guided with certain themes that are described in the
later sub-sections. For these reasons semi-structured interview was chosen as a
method of gathering data. (Hirsjärvi et al., 2009.)

4.4 Themes of the interview and choosing the interviewees

As for this research the themes were divided in three different cores. The
themes were created from the current state of capabilities in the organization,
framework of DevOps and its core capabilities and test automation. In addition,
the interviewees were asked of their background and current job description.

44

The interviews were done in Finnish and the whole interview and its themes
can be found at the end of this research in attachment 1. The interview is ex-
plained visually below in figure 5 where questions and themes can be visual-
ized. The conversation was free, and specific questions were only asked if the
interviewee did not have any opinions or experiences of the said matter.

FIGURE 5 Interview themes

The first theme of the interview was about the current state of capabilities
in the organization. This section processes the current work the interviewee
does, how long has he or she done the mentioned work, and which are the most
critical challenges that the interviewee would like to solve regarding current
ways of working. These themes were addressed to gain a better understanding
of the interviewees background and what kind of challenges they might have
regarding organizational capabilities. The themes were later continued to un-
derstand if the interviewee has facts to back up their views or if they are just
opinions. By gathering background information and current challenges the fu-
ture themes can be altered by the interviewer and the actual problematic areas
can be addressed.

The second theme of the interview concentrated on DevOps and its core
capabilities. This section was about the core capabilities of DevOps and how
they are present in the interviewees current work. The second section concen-
trated on if and how these capabilities defined in the existing literature arises

45

and how the organization could enhance possible problem areas. The theme
was also introduced to find out about the interviewees attitude regarding
DevOps and its core capabilities. The capabilities defined from the literature are
used to set a common ground for the interview, but the interviewees can also
give new perspectives which can be useful for the research and the whole scien-
tific community. This also helps with understanding the framework in practice
where the interviewees give examples of the organizational operating model.

The last theme of the interview was software test automation. Like the
theme of DevOps, the main characteristics were also defined in the existing lit-

erature and used as a combination of many definitions. The purpose of this sec-
tion was to figure out if test automation is already visible inside the organiza-
tion, how it can be seen and if it affects organizational processes. Not all inter-
viewees knew about how it is utilized in the organization so the conversation
were then steered to how they think it should be utilized. These comments and
perspectives were later used to set ground rules for test automation strategy
and how it should be accounted in business processes and change management
practices.

As this research was done as a commission the target organization got to
decide which employees they wanted to include in the interviews. All inter-
viewees work within the same organization. According to Qu and Dumay (2011)
it is crucial that the interviewees are carefully picked for a successful qualitative
research. The study assumes that the interviewees are competent and have as
much possible knowledge of the matter as possible. While test automation and
DevOps are only partly implemented in the target organization the results of
this study should be applicable for organizations planning their test automation
strategy. The research question and answers provided can be applied to smaller
and bigger organizations while scaling the results with the size of the organiza-
tion. The researcher was working with the organization at the time and inter-
viewees were provided by the organization. First interview was tested with
time left before the second interview. Ultimately, no changes were needed, and
all interviews were executed with the same core.

4.5 Analysing the data

To simplify later stages of analysing the data gathered the interviews were rec-
orded by the researcher. Duration of the interviews varied between 40 and 60
minutes depending on how much the interviewee had knowledge and experi-

ence on specific frameworks. Specific questions were asked from the interview-
ees if the conversation stopped. These questions can be seen from the interview
core from attachment 1. Interviews were recorded so they could be transcribed
later. Transcribing was done in two phases: first phase was to write down a
transcript from the interview. This was done by simply writing down every-
thing that was said during the interviews. The second phase of transcribing the

46

interviews was to divide answers gathered to specific themes. This was done to
simplify answers gathered and to ease later analysation of the gathered data.

FIGURE 6 Interviews and gathered data

By dividing the answers to specific themes, the results could be handled
easier. Every theme had answers from different interviewees so these dimen-
sions could be examined from multiple angles. This was also done to combine
results in more coherent way. Gathering of the data was done with semi-
structured interviews which means that the answers might not be as consistent
as desired. The data gathered was also used later in the research to create tables
to visualize certain parts of DevOps and test automation capabilities, organiza-
tional operating models, and possible impact on strategical business processes.
The two-phase transcribing was also useful since the interviewees had different
amount of knowledge on specific processes, frameworks, and operating models.
Thus, certain features emerged during different parts of the interview. Some
interviewees also had to be asked specific questions when the interview was
more structured and guided. These questions were added to gain better
knowledge of existing status of organizational capabilities and hence answering
the research question.

4.5.1 Case Company Description

As mentioned in previous sub-chapters this research was done as a commission
for an organization named Vaisala. At the time of the research Vaisala was the
global leader in environmental and industrial measurement (Vaisala.com, 2020).
This means that the business is conducted by two different business areas: in-
dustrial measurements and weather and environment. The organization pro-

47

vides solutions that combine services, products, and applications. Researcher
and all interviewees worked for the organization at the time the research was
done. The researcher had interviewees and research question given by the IT
management of the organization. In addition, the researcher had to create a
model of implementing test automation strategy in DevOps environment since
the organizational shift towards DevOps implementation was still ongoing.
Even though the organization had already implemented some parts of DevOps
capabilities such as agile software development methods the process was still
unfinished. Guidelines and capabilities within the organization were researched

to understand the bigger picture of current organizational capabilities and op-
erating models.

DevOps framework as an operating model and specific tools enabling key
capabilities such as software development version control was still an ongoing
process within the organization. By conducting the research, the organization
listed specific requirements of which test automation could enhance and im-
prove. These requirements included such aspects as change management pro-
cesses, business processes and cultural changes in the organization. In addition,
the research was conducted by researching core capabilities of DevOps and
comparing those to the current state of the organization. The interviewees were
also given themes of future development. The answers varied between different
interviewees which is natural when all interviewees had different job descrip-
tions. This could be marked as a positive outcome in the results since impacts of
software test automation and DevOps framework could be inspected from dif-
ferent angles.

The purpose of this research from the organizational point of view was to
better understand the current state of organizational culture, how it could be
enhanced with DevOps and software automation and what effects will these
have on business processes. For this the researcher had to study current pro-
cesses and how they are executed. By analysing the processes and automating
specific tasks repeatedly the analysis of changes needed and possible outcomes
of implementing software test automation were realized. Based on this analysis
the conclusions were made and they answer the research question of the empir-
ical study.

4.6 Interviewees and individual theme interviews

While the case organization was described in the previous chapter (see sub-

section 4.5.1) the interviewees are processed in this sub-chapter. The interview-
ees were selected by the case organization. The interviews were done personal-
ly and were recorded in one session each. Interviews were done personally to
get the best possible description of the current state in the organization. The
interviews and conversations were all done in December 2019 and were done
on the case organization’s premises. Summary of the interviewees and their
background are described in table 3.

48

TABLE 3 Summary of the interviewees

Person Role Job description
Experience
in current

organization

P1

Solution owner,
Master Data
Management

Development 10 years

P2
IT Project Man-

ager
Project management. Planning,

reporting and monitoring
2 years

P3
Business Solution

Owner, CRM
Software development and ar-

chitecture
1 year

P4

Business Solution
Manager, Sales &

Collaboration

Leading development projects
and small development

4 years

P5
CIO, Chief In-

formation Officer

Broad responsibility of systems,
supporting business processes

and IT strategy
4 years

P6

Head of Business
Solution Devel-

opment

Prioritizing and scheduling,
roadmap agenda with different

business units
4 years

P7
Development

Specialist

Acquisition of information sys-
tems, requirements analysis, de-

velopment
7 years

The themes mentioned in figure 5 (see sub-chapter 4.4) were discussed in detail
in the interviews. The expertise of different areas of DevOps varied which was
ultimately one purpose of the research: to get knowledge and best practices to
implement the method in practice. The researcher got information of current
state and future ambitions from multiple viewpoints. DevOps was more famil-
iar with the employees working in development as it was with employees
working on different tasks within the organization.

First theme of the interview was a free conversation of current tasks and
possible challenges regarding those. This way the researcher could pin out spe-
cific challenges and inspect these with more attention. The second theme of the
interview was DevOps and its core capabilities. The description was formed
from existing literature and was compared to the current state of the organiza-
tion. Third and final theme was software test automation and the possible bene-

fits or disadvantages it brings to the organization. The purpose of these themes
was to create a model which functions as a guideline for implementing software
test automation strategy, how it affects business processes and what benefits it
can bring for the organization.

49

5 EMPIRICAL RESULTS

The semi-structured interview and the results gathered are reviewed in this
chapter. Adapting new operating models and methods always require changes
in the organization. This can be implied via new technologies and methods, but
they almost always require changes in the organizational level. From the litera-
ture used in this research it seems that when adopting DevOps methodologies
organizations need to align business strategy activities accordingly (Fitzgerald
& Stol, 2017). Even though DevOps can be implemented in sections the change
needs to be carefully planned and executed. Changes can bring significant
changes in the organizational level which are discussed in the later sub-sections.

This research concentrates on test automation strategy in DevOps envi-
ronment and the alteration it brings to change management and business pro-
cesses. The subject is approached by utilizing the existing literature and defin-
ing core DevOps capabilities. Recent studies have argued that organizations
need to align their business models within the operating model for best possible
results. The first sub-chapter describes the core capabilities of DevOps and how
they are currently implemented in the organization. The second sub-chapter
concentrates on software test automation by analysing existing literature and
results from the interviews and the third sub-chapter describes the possible
modifications in change management processes. Fourth and final sub-chapter
discusses the overall model created by existing literature and the results of pri-
mary empirical conclusions. This chapter will present the empirical results (EC)
as well as the primary empirical results (PEC) gathered from the interviews.
Empirical results are presented according to the model created in previous sec-
tions (see figure 4).

5.1 DevOps core capabilities

The theme regarding DevOps and its core capabilities was started by asking the
interviewees their vision and knowledge about the method. These questions

50

were made to see if their vision matches the core capabilities defined by the ex-
isting literature. The theme was also used to get proper description of the cur-
rent state of the organization and whether specific sections are already imple-
mented in the organization. Even though some interviewees had more
knowledge of specific aspects than others the overall knowledge of the theory
and its core capabilities were recognized.

The core capabilities of DevOps which were combined from the existing
literature are agile software development methods, test automation, continuous
monitoring, combination of software development and operations, frequent

releases, and cultural movement within organization. All the capabilities were
discussed with the interviewees. Because of various roles and types of tasks
handled the interviews were guided to the area of expertise which led to more
specific answers about certain dimensions. In general, all interviewees defined
specific areas of DevOps in the same way it is defined in the existing literature
with some interviewees having more competence on specific perspectives than
others. The interviewees themselves brought up aspects of agile methods, cul-
tural change, monitoring and test automation. Nevertheless, the actual defini-
tion of DevOps remained unclear to some employees even though specific areas
of it are already implemented within the organization.

The general opinion of DevOps within interviewees was that they saw the
potential in the framework, even if the definition was vague for specific dimen-
sions. Employees who worked closely on software development saw the poten-
tial in version control and streamlining the actual development process. Version
control enables multiple developers on the same project and releases can be eas-
ily rolled back if needed. On the other hand, the same interviewees questioned
the growth of the role that DevOps brings along. Using resources such as time
and skills must be carefully planned so that developers can utilize their time in
needed development processes. From business and management side the inter-
viewees saw the potential in eliminating unnecessary manual tasks and saving
resources and allocating them elsewhere. Next sections describe the core capa-
bilities of DevOps, how they appear in the organization and how the interview-
ees see these aspects in practice.

5.1.1 Agile software development principles

As it was defined in the existing literature earlier in previous chapters (see
chapter 2) agile software development methods are iterative phases in software
development which are followed by continuous delivery (Highsmith & Cock-
burn, 2001). Unlike traditional waterfall methods, the phases are iterative and
give more control to the customer. In DevOps this also means implementing
continuous feedback in software development. Agile methods were discussed
with all interviewees. The benefits mentioned in the interviews were similar of
what have been found from existing literature. The interviewees summarised
agile methods in the organization the following way.

51

“We have adopted agile as way of working and we have some tools to surround it.
The few projects that I have been a part of have had tools such as Kanban and Scrum
to ease the development process. It also has a part in small development processes.
As we are still in the process of adapting specific agile methods management could

advance these methods even more.” - Respondent P3

“These aspects should be approached case-by-case. For example, agile is not always
the best way if the requirements are very specific and the project is very small. We
should implement agile within waterfall” – Respondent P7

“By implementing agile software development methods, we need to have commit-
ment from all different parties involved” – Respondent P2

The interviewees said that the implementation process of agile methods is still
ongoing, but the effects can already be seen to some level. By doing develop-
ment in small phases the releases can be easily rolled back and modified if
needed. Nevertheless, some disadvantages were also seen.

EC1: Agile software development methods might not always be the best and only
way to approach software engineering and its supporting functionalities.

By doing so the development team can work on multiple projects at the same
time while getting continuous feedback on the service provided. By adopting
new operating models such as agile methods the organizations need to fully
commit to it. Implementing the method must be specific and conciliated for
specific needs. By doing so organizations can ensure continuous delivery while
maintaining or even enhancing the product quality. Thus, agile methods in
software development can bring benefits for not only the developer but also for
the customers.

EC2: By implementing agile development methods the quality of the service is en-
sured by releasing more often.

From the managerial point of view interviewees P5 and P6 both mentioned bet-
ter quality and increased performance as outcome of agile methods. By ena-
bling these methods, the organization can build a cross-functional agile frame-
work which affects different business units. This could also help employees in
sorting of their daily tasks. By adopting a cross-organizational framework or-
ganizations could enhance their effectiveness by enabling similar organizing for
all the parties involved. This would also mean change in the organizational cul-
ture which is inspected more thoroughly in the upcoming sections.

EC3: Committing all parties across the organizational borders is critical for successful
agile implementation.

By utilizing the answers given in the interviews the primary empirical conclu-
sion was formed. There was a total of three empirical conclusions from agile
software development methods and their implementation. Based on these em-

52

pirical conclusions, primary empirical conclusion PEC1 was formed as follow-
ing.

By examining projects carefully organizations can ensure the best possible way
of developing methods. Adapting agile software development methods within
different models can be used while maintaining the best possible performance
regarding to specific projects.

5.1.2 Software test automation

DevOps as a framework strives for automating all possible manual tasks re-
garding software development. One of these tasks is software test automation.
Even though software test automation could concentrate on either API or GUI
the effects and benefits of it remains virtually same. According to Karhu et al.
(2009) software testing is a critical part of a successful software development
and automation is about only reducing the manual tasks needed. It can be ar-
gued that without effective testing software development can face many differ-
ent issues such as unfunctional service or unwanted functionalities. Successful
software test automation automatizes testing and improves the quality of test-
ing by reducing human errors. Testing in the organization was summarized in
the upcoming way.

“Especially a few bigger projects that we work on right now we are testing the same
features constantly. Since we have just begun systematic testing it is still a process we
need to develop. In this case basic regression testing and iterative testing which can
be utilized to test the same features is needed. And I feel like this is the part where

automation helps the most and makes the process easier.” – Respondent P1

“Test automation requires enough resources and know-how. The problem is that we
can’t test everything since sometimes the service might come from a different suppli-
er” – Respondent P2

“Automated testing reduces lead times” – Respondent P3

Test automation was also talked in every interview. The benefits of software
test automation found in existing literature were defined in the previous chap-
ters as repeatability, reducing unnecessary manual tasks, reduced effort on
manual testing, enhanced software quality and quicker response time to chang-
es.

PEC1: Improving and implementing agile and other development methods ease
developers’ work when properly planned and utilized according to project

53

EC4: Automated software testing ensures quality of the product by constantly testing
the service

The interviewees who worked on the development interface saw the biggest
benefits in managing the payload and reducing manual work while allocating
the time elsewhere. Continuous feedback and quicker response time to needed
changes were mentioned in the interviews and were essential benefits for test
automation framework.

EC5: When utilizing suppliers in software development testing should be included in
the requirement phase to understand testing possibilities

According to one interviewee organizations need to ensure the quality of
testing. This includes aspects such as competence of the tester, quality of the
tools used and integrity of the actual tests. If these conditions remain unfilled
the software test automation framework can end up as a failed product which
only increases workload. Organizations need to remember that software might
be constantly changing which means adapting test automation to the software
tested.

EC6: Regression testing and iterative automated tests are needed for successful agile
method implementation

Managers saw the potential in software test automation frameworks as elimi-
nating waste, enhancing quality and effectiveness, and improving the product
life cycle. Many interviewees saw the process from development to testing often
too slow and perceived test automation as a working resolution for the problem.
From the empirical conclusions of the interviews the primary empirical conclu-

sion was formed.

Software test automation can bring organizations benefits such as shortened
lead times and enhanced product quality. The data gathered from the inter-
views were utilized in the primary empirical conclusion from software test au-
tomation.

5.1.3 Continuous monitoring

Continuous monitoring is one of the critical aspects of continuous feedback
which DevOps strives to enhance. By running monitoring and automated test-
ing developers get real-time feedback on their work possible defects can be no-

PEC2: Automated software testing reduces lead times and it requires careful
planning, resources, and know-how.

54

ticed easier. Continuous monitoring can be used to observe defects in the sys-
tem but also inspecting the behaviour of the users. This way organizations can
gather data for further development as well as enhance the quality of the soft-
ware. In DevOps context continuous monitoring encompasses the whole soft-
ware development process from continuous integration to continuous delivery.
The purpose of continuous monitoring is to increase knowledge among the de-
velopment team and improve the quality of software via automated reporting.
(Virmani, 2015.)

Continuous monitoring as a theme came up in two interviews (P1 and P6).

While both interviewees saw the importance of monitoring it was clear that
continuous monitoring is not something that was done on a regular basis.

“Continuous monitoring is critical for continuous development. This can be enabled
by continuous software testing” – Respondent P6

The actual capability of continuous monitoring was perceived the same
way as in the existing literature: monitoring is and should be used to create au-
tomated reports of highlighted items. This report can be used to detect flaws
during different phases of development, release, and production.

EC7: Continuous monitoring is enabled by continuous testing

These reports can also work proactively as some flaws and defects can be
detected from the reports during the development phase. Continuous monitor-
ing can be done on different levels such as physical devices or database layers
(Soni, 2015). These levels can track physical usage of the system or for example
logs written by execution of different applications.

“We have made many reports where we highlight certain errors in product data. We
consider this as monitoring because we can make specific setups and see if the prod-

uct data is intact or if we forgot something or made a mistake” – Respondent P1

By creating automated reports, the alerts and feedback can be made available
for the whole development team. Monitoring also enables tracking of errors

created in the system and how it has evolved. It was also said by an interviewee
that monitoring has been done for a long time.

EC8: Analysing the reports carried out by continuous monitoring enhances the quali-
ty of the software

This implies that monitoring is not a practice created with the framework of
DevOps, but more of a procedure adapted from older software development
models. As a trending software development method DevOps might have
brought more interest to continuous monitoring which can be good for future
software development. Both interviewees that brought up monitoring agreed
that it is essential for development process. By the empirical conclusions made

55

from the interviews the primary empirical conclusion was formed in the follow-
ing way.

With an efficient monitoring, organizations can ensure the desired require-

ments of the service. By constantly testing the features the development team
can get feedback of the functionalities and possible defects or suggestions for
refining.

5.1.4 Combination of software development and IT operations

One of the six core capabilities of DevOps can be visualized from its name –
combining software development and operations teams. By combining these
traditionally siloed departments organizations can make the product life cycle
more transparent while enhancing communication between the teams. Accord-
ing to Mohamed (2015) there are four critical keys to bridge the gap between
these teams which are quality, automation, collaboration, and governance.
These aspects require transparent communication within the teams as well as
managerial procedures of blending these teams to a functioning entirety. The
aspect of unifying policies and procedures were discussed with all interviewees
with no exceptions.

“We should concentrate on continuous development even more. At least we could be
even more agile which requires commitment from all parties. All communication
should be transparent between these parties which makes development flexible. I’m
not saying that implementing agile methods is the only possible way, but commit-
ment and transparency should be implemented by all parties involved” – Respond-

ent P2

All interviewees agreed on one thing: integrating a way of working which is
standardized and can be applied for everyone. This helps with organizing tasks
and brings all parties of the development process to the same level.

EC9: Development process is made more flexible when enabling transparent com-
munication within the organization

While organizational tools can help bridging this gap the commitment needs to
come from managerial level. By adopting an operating model which enables
transparent planning and communication within different business units the
organization can enhance their effectiveness and performance. Three interview-
ees (P2, P3 and P7) saw that communication between different business units
and service providers has been problematic and it is something that has been

PEC3: Continuous monitoring is enabled by continuous software testing, but it
ensures the quality of the product as well as verifies the requirements desired.

56

under improvement lately. By improving communication and technologies be-
hind it, organizations can ensure continuous development within the project
and enable the best possible working conditions. Interviewees put current state
of operating model the following way.

“Communication transparently and implementing the method requires commitment.
Otherwise it might be waste of time. Everyone also needs to realize what it requires.”
– Respondent P3

By enabling transparent communication and unifying working methods devel-
opment can be made more flexible and effective. Two interviewees saw prob-
lems in combining the two teams. As many employees work in projects, com-
bining these two departments and making organizational changes to ways of
working their workload might become unmanageable.

EC10: Implementation of DevOps framework needs commitment from the managers
as well as the employees

By enabling transparent communication and operating models across the or-
ganizational boundaries managers and employees need to commit to the
change made. By utilizing the same operating model across different business
units, the operative activity becomes more transparent as the operating model is
unified.

“The main point is to utilize the same operating models in operative units as well dif-
ferent business units.” – Respondent P7

“The cycle and handover from dev-side to operations needs to work seamlessly. By
continuous deployment and risk assessment we can reduce errors as well as enhance

quality” – Respondent P6

“DevOps and agile development methods are utilized in cycles. We must make sure

developers have the time for these projects” – Respondent P1

By adapting DevOps model organization needs to commit to its working ways.
Even though DevOps itself can be modified to organizational needs there are
specific requirements for successful implementation of the framework. Com-
mitment from all organizational levels and transparent communication seem to
be the most critical requirements. DevOps as a framework also requires more
responsibility from developers. Unmanageable workload can be solved by the
managerial staff by careful planning of current and future development projects.

EC11: Adapting DevOps model the tasks carried out by developers might change
and increase the workload

By adapting DevOps and agile software development methods the managers
also need to ensure that the developers have the correct amount of time for each
project. By increased workload developers might not be able to do all tasks allo-

57

cated for them in time which could decrease the quality and lead times of the
project. By extracting the empirical conclusions from the interviews, the prima-
ry empirical conclusion was formed.

Adaptation of DevOps framework requires unified ways of working and trans-
parent communication throughout the organization. Having different operating
models within the organization creates barriers such as scheduling problems as
well as decreasing performance quality. By adapting to the model, the continu-
ous loop of deployment, integration and delivery is enabled which can benefit
organizations in many different ways.

5.1.5 Frequent software releasing

Frequent releasing and version control were talked with the interviewees that
work in development interface (P1, P3 and P7). By frequently releasing and uti-
lizing version control organizations can minimize risks with deployment and
easily roll back features if needed. Version control also enables developers to
work on multiple instances at the same time which makes developing process
more productive and efficient. Fitzgerald and Stol (2014) argued that frequent
releasing can help organizations with continuous improvement with enhanced
quality. This can also help with minimizing waste, which was mentioned in
many interviews (P2, P4, P5 and P6).

“We are looking at the different tools to enable efficient version control. This would
help us with rolling back features and finding specific modifications if needed, espe-
cially on projects with multiple developers. Now we have developers that work on
the same code and there is not a way that we could do this which ensures quality and

efficiency. That is something we are working on right now.” – Respondent P3

“DevOps-based tools help with automated testing features” – Respondent P1

By enabling agile development tools, the developers are enabled to carry out
specific tasks. DevOps as a framework concentrates on automating specific
tasks which allow developers to inspect feedback and changes easier.

EC12: Agile development tools such as version control help developers see the
changes made and release more often

Enabling specific software development related tools such as version control
can enhance organizational performance. By enabling this method multiple de-

PEC4: DevOps framework enhances communication between business units, re-
quires commitment and increases the quality of the overall development process.

58

velopers can work on same code while ensuring quality and efficiency. All
three interviewees agreed with existing theories that by releasing frequently
more data can be gathered of modifications made which results in more feed-
back. While doing so, tools like version control help minimizing tasks as it can
be fully automated.

“By frequent releasing we could minimize waste in development processes” Re-
spondent P4

While tools were also discussed with these interviewees, all of them agreed on
using specific development methods for specific needs. One interviewee men-
tioned that there are times that development might be done for three months
without testing. According to the interviewee this is does not fall into category
of agile software development methods and needs better planning as many de-
velopers work on multiple projects at the same time.

EC13: Frequent releasing eliminates unnecessary waste

By frequently releasing the development team can get information on defects
and requirements. Frequent releasing helps with future development processes
with more frequent feedback. While implementing continuous planning organ-
izations can ensure that employees have time for different projects and can plan
their future work accordingly. Of the empirical conclusions formed from the
interviews the primary empirical conclusion was formed the following way.

Enabling specific DevOps based tools such as version control helps developers
with seeing the made changes, rolling back the releases if needed and enabling
multiple developers on a same project. Frequent releasing also ensured that the
requirements of the service are met as well as gives developers feedback. This
eliminates unnecessary waste since developers can work on development pro-
cesses which are required and defined earlier in the process.

5.1.6 Cultural movement within organization

While organizational culture is hard to define since it contains everything that
happens within the boundaries of the organization. Senapathi, Buchanan and
Osman (2018) argued that there are four key dimensions which enable cultural
shift in organizations. These dimensions are open communication, incentive
and responsibility alignment, respect, and trust. If frameworks like DevOps are
desired to be implemented these aspects need to be embraced by management

PEC5: Frequent releasing with correct tools help developers see changes made,
react to possible alterations, and eliminate unnecessary waste.

59

and staff. Fully committing to the organizational change and its surrounding
aspects organizations can achieve benefits such as increased performance and
well-being of employees. Organizational culture and its changes were discussed
with three different interviewees (P2, P3 and P5) and one of the interviewees
described current organizational culture the following way.

“We have a relatively small organization. Nevertheless, we are missing tools of en-
hancing productiveness. The problem is that we still see the organizational culture as
someone accountable for developing and someone accountable for operative side.
This is something we must work on, and we must include different business units in
our operating model and daily work. That requires changes in the organizational
structure too.” – Respondent P5

“DevOps requires organizational change in habits and policies” – Respondent P3

Even though open and transparent communication can ease the cultural shift
the changes need to be executed by management. Increased respect and trust
can arise in the form of allowing different working methods and empowering
the employees. Still, the initiative needs to come from management and the
methods need to be substantiated for employees, starting from refining organi-
zational structures if needed.

EC14: Unifying the operating model increases productiveness.

This way managers can create trust within the teams and organizational culture
can be changed. Organizational innovation and performance can also be en-
hanced by empowering employees. (Senapathi, Buchanan & Osman, 2018.) All
interviewees agreed on the aspect of adopting frameworks like DevOps a shift
in organizational culture is required.

“Our clients are usually inside our organization and this requires commitment from
all parties. This doesn’t always happen, and it usually shows as a stretched schedule”
– Respondent P2

One interviewee pointed out that at least in one project the resources are scat-
tered within different teams. This deteriorates communication and might have
negative effects on the performance of the project. All interviewees agreed with
existing literature on the fact that the business units and different roles need to
be combined as a working entirety in which transparent communication and
common operating models are shared and used. By doing so organizations can
improve the continuous planning and employee well-being while increasing
productiveness.

EC15: Unifying the operating model enhances transparent communication

By adapting to unified operating model across the organization development
teams enable specific benefits. Cultural and organizational change needs to be
justified from management and employees need to see the benefits regarding

60

the change. From the empirical conclusions the primary empirical conclusion
was formed.

By setting policies and altering the organizational structure the movement in

organizational culture can be structured. By enabling supporting software en-
gineering capabilities such as trust managers can ensure that the shift in habits
and procedures are made as easy as possible. Organizational culture always
varies, and managers need to find the best practices of implementing the struc-
tural change.

5.2 Test automation strategy

Even though test automation has been a part of software development longer
than DevOps as a framework has existed it still is a crucial part of the model.
Existing literature introduces DevOps as a model where every possible manual
task is automated regarding software development, which includes software
test automation (Fitzgerald & Stol, 2014; Ebert et al., 2016). By utilizing test au-
tomation organizations can gain benefits such as increased productivity and
improved cost-efficiency. With a proper test automation framework organiza-
tion can ensure continuous software testing and minimize errors in testing. The
framework also helps with monitoring with automated feedback of the devel-
opment process.

The case organization has had some test automation executed within dif-
ferent business units it is not used within IT development. All interviewees
working in development interface mentioned that software testing is something
that has been just recently systematically started. These interviewees also men-
tioned that all testing is currently done manually which might take a lot of time
and can include errors at times. In addition to automated test scripts test auto-
mation strategy was argued to include test data, resources, and test documenta-
tion. Test documentation defines use cases while test data can be argued to in-
clude both documentation and the logs after test execution. Resources are de-
fined as economical resources and skills. By acknowledging these dimensions

organizations can set up a functioning guideline for test automation strategy.
(Wang & Du, 2012; Collins & de Lucena, 2012.)

The interviewees mostly agreed with existing literature about test automa-
tion strategy and creation.

“If we take for example Salesforce. We already have the materials which can be uti-
lized to create standardized flows which can be automated. These are something that

PEC6: Cultural movement towards DevOps within organization enhances
productivity and unifies the way of working.

61

need to be done continuously at least 3 or 4 times a year (automated Salesforce re-

lease cycle) or maybe even more.” – Respondent P1

“We have talked about this within the organization and we should create good
enough tests during the project phase that they could be utilized later as automation
for regression testing. Of course, our service providers have created these types of
test for their unit, system and integration testing but that is done out of sight from
our point of view.” - Respondent P2

By these definitions it could be argued that software testing does not currently
have defined guidelines to follow. These definitions can also vary regarding the
type of testing is done.

EC16: Test automation strategy and test suites should be included in the requirement
phase

By doing so the developing team could inspect the tests needed. This is espe-
cially important if the software is also developed outside the organization. The
main difference between API and GUI testing is that user interfaces are often
non-static interfaces where changes are made in functionalities, usability, and
contexts (Vos et al., 2015). Salesforce is a cloud-based software service which
provides customer-relationship management (CRM) services. Challenges in
testing a software like Salesforce is that it is developed elsewhere, and the or-
ganization must presume that the interface remains the same. If the service
provider decides to alter functionalities of the system, the automated tests can
ultimately fail.

Resources regarding test automation strategy can be extracted to economi-
cal resources and skills. Tools which enable software test automation might be
expensive which requires careful planning of business processes and tests to
automate.

“The resources we have right now - which are skills, people and time – we possibly
can’t implement test automation everywhere. We need to acknowledge who it con-
cerns and who is responsible for it. Defining test cases is a big project and we need to

decide who is responsible for it” – Respondent P2

By enabling needed resources and defining responsibilities organizations can
create transparency throughout the development process. All interviewees
agreed on the fact that test documentation is critical for successful test automa-
tion strategy.

EC17: For an efficient test automation strategy, organizations need to identify the
most critical processes to automate

By creating effective test cases during the requirement process organizations
can already start planning their test automation strategy and test suites. This
also enables effective use of test data since data for test cases can be extracted
from test documentation. From managerial point of view one interviewee men-

62

tioned that metrics of tests created, time used in testing and other relevant indi-
cators need to be measured while planning test automation strategy. By allocat-
ing resources, creating effective test documentation which ultimately leads to
competent use of test data, organizations can create automated test scripts
which are defined in the requirement phase and remain the same throughout
the life cycle of the system.

EC18: Allocating economical resources, manpower and skills are critical in creating
an efficient test automation strategy

Organizations also need to realize the constant evolution of the software which
requires careful software test automation planning. By proactive planning or-
ganizations can plan test cases which are more likely to stay static and require
minimal changes in actual tests. The focal point is to create tests which are cru-
cial for business processes and stay intact so they can be repeated time after
time. The primary empirical conclusion was formed the following way.

By following the steps mentioned before organizations can create a strategy
which includes the most critical processes while maintaining maximum cost-
efficiency and performance. Even though the process might differ depending
on the size of the project and organization included these steps help organiza-
tions in creating a strategical framework of software test automation.

5.3 Business strategy as part of the framework

Implementing an effective test automation strategy will induce changes in
change management processes. Todnem By (2005) defined change management
in organizations to be critical in order to survive in constantly changing envi-
ronments. Even though change management processes can vary between dif-
ferent organizations the processes should be bound to organizational strategy
and vice versa. Organizations can and should plan their change management
processes accordingly but the need for change can often be unpredictable. By
effectively implementing test automation strategy in organizational change
management processes companies can proactively design automation of cur-
rently manual business processes.

Organizational change management processes were discussed with all in-
terviewees. The interviewees saw testing and more precisely test automation as

PEC7: Software test automation strategy should include the requirement phase,
include most critical processes, and be a strategical guideline of allocated re-
sources, manpower, and skills.

63

a process which could impact change management processes in various ways.
One interviewee mentioned that in projects requirement phase is done in ad-
vance, so it resembles more traditional developing methods than agile. The
changes are later managed with change management processes if needed. If test
automation is implemented in the requirement phase as creating functionalities
and test suites the actual process can remain the same.

“For change management processes it’s essential that test automation helps with
shortening lead time. It can also help with improving quality since tests are automat-
ic, repetitive, and deducted from human errors. Of course, it can also backfire if test
cases are poorly planned. This is something we need to integrate in our tools. If re-
quirements are created carefully, they can be easily transferred to test cases.” – Re-
spondent P2

By shortening lead time organizations can improve their cost-efficiency and
improve commitment to the project. The most critical tests can be automated
while reducing manual work and allocating time in other projects.

EC19: Business processes and change management can be affected by software test
automation

From managerial point of view one interviewee mentioned that if test cases and
suites are created in the requirement phase testing could occur throughout the
project, and not only at the end of the project. This would ensure proper testing
throughout the product life cycle and enhance quality of the service provided.
The same interviewee also mentioned that with current resources manual test-
ing throughout all these phases is not possible since the organization lacks re-
sources to do so. By these definitions it could be argued that implementing a
proper test automation framework would ensure product quality in planning
and designing phase and enable continuous delivery by constantly testing de-
sired functionalities.

“It is critical part of change management and quality control. Currently we are test-
ing software manually. Usually test resources are the main challenge regarding test-
ing. In our case it means that the more we can automatize testing, the more we are
testing. So, you could say that it is a very critical part of our change management
process, so we can make changes and see the possible defects as soon as possible.” –
Respondent P3

The effect of allocating resources can also affect change management processes.
Allocating resources to create efficient test cases in requirement phase can re-
duce manual work, allocate time and effort elsewhere and enable continuous
software testing. This could also be defined as continuous planning.

EC20: Continuous planning is a logical part of a DevOps framework

One interviewee mentioned that DevOps based tools such as version control
would bring transparency and control to developing work. This way organiza-

64

tion can ensure overlapping development process and create test cases more
effectively. This would need a clear definition of processes that need testing and
the affect it will have on other processes.

Generalization of test automation and its effects on change management is
difficult because the practices might vary. Both test automation and change
management can be done differently depending on organizational context, hab-
its, and the actual product. Organizational change management is bound to or-
ganizational strategy and it also includes management of different business
processes. Utilizing the empirical conclusions from the interview the primary

empirical conclusion was formed.

The purpose of this section was to highlight change management processes in
the target organization and see which the employees saw most important. Since
adapting methods like agile development is still an ongoing process in the or-
ganization the true effects of test automation strategy regarding change man-
agement processes are still speculation. Organizations also need to remember
that poor planning in test automation strategy might ultimately inflict more
costs than manual testing, which is why it is especially important in organiza-
tions where software is also developed elsewhere. (Vos et al., 2015).

5.4 Summary of primary empirical conclusions

Combining the development process within business units and enhancing
transparency and communication between these units is essential for effective
software development within the boundaries of changing technologies. Soft-
ware test automation strategy can help organizations enhance their develop-
ment processes and business processes with increasing quality and efficiency.
Nevertheless, companies need to plan the most effective ways of utilizing soft-
ware test automation especially if the software is also developed elsewhere. The
same can be applied to GUI testing, where interfaces are planned to be used by
humans. The interview data was first used to form empirical conclusions (EC)

and afterwards primary empirical conclusions (PEC) of the current knowledge.
Ultimately there were eight specific primary empirical conclusions extracted
from the interview which are visualized in this section.

The eight primary empirical conclusions from the interviews are visual-
ized in the below table. These conclusions can be applied to the framework of
creating a test automation strategy in DevOps environment from the perspec-
tive of the target organization. Even though changes in current operating mod-

PEC8: Business strategy, change management processes and continuous planning
should not be separated from the DevOps framework.

65

els might always be required within organizational level, organizations might
already have resources of DevOps and automation aligned. As stated in the ex-
isting literature DevOps as a framework can also be implemented in small
phases by adopting different pieces at different times.

TABLE 4 Primary empirical conclusions

PEC No. Primary empirical conclusion

1

Improving and implementing agile and other development
methods ease developers’ work when properly planned and

utilized according to project.

2
Automated software testing reduces lead times, but it requires

careful planning, resources, and know-how.

3

Continuous monitoring is enabled by continuous software test-
ing and it ensures the quality of the product as well as re-

quirements desired.

4

DevOps framework enhances communication between busi-
ness units, requires commitment, and increases the quality of

the overall development process.

5

Frequent releasing with correct tools helps developers see
changes made, react to possible alterations, and eliminate un-

necessary waste.

6
Cultural movement towards DevOps within organization en-

hances productivity and unifies the way of working.

7

Software test automation strategy is an entirety which should
be included in the requirement phase, include most critical

processes, and be a strategical guideline of allocated resources,
manpower, and skills.

8

Business strategy, change management processes, and contin-
uous planning should not be separated from the DevOps

framework.

Table above illustrates the primary empirical conclusions of DevOps core capa-
bilities, software test automation strategy, and combining business strategy
with the model. These conclusions were made from the interviews in the target
organization by analysing the data given by the employees. DevOps itself is a

large entirety and the target organization is implementing the framework in

66

smaller steps. This is visualized in the target organization in the form of agile
development methods which are currently in the implementation phase. While
software test automation enhances quality and monitoring it also allows organ-
izations to allocate resources elsewhere. On the other hand, automation in tar-
get organization is still a future process which this research offers foundations
on. With the adoption of other DevOps capabilities organizations can enable
continuous integration, delivery, and planning. Business strategy can also be
argued to have a critical role in adopting DevOps environment since business
and change management processes might be affected by automation.

67

6 DISCUSSION

DevOps as a framework is still in its infancy and the actual definitions of the
framework vary. Nevertheless, there are still benefits from the framework that
can be measured. This section describes the results gathered from existing liter-
ature and the semi-structured theme interview and compares the results to the
theoretical synthesis. This chapter concentrates on theoretical and practical im-
plications of implementing a test automation strategy in DevOps environment.
DevOps as a framework requires changes in organizational culture, skills, roles,
and tasks handled. Core DevOps capabilities were defined from the existing
literature. From the automation point of view this research concentrated more
precisely on software test automation and provides strategical dimensions of
implementing a framework for the target organization and companies alike.
Primary empirical conclusions (PEC) defined in the previous chapter are used
in this chapter to form theoretical and practical implications of the research.
These conclusions can be visualized from table 4 (see sub-section 5.4).

6.1 Theoretical implications

Even though actual empirical study of DevOps and implementation of the
framework is minimal this research provides benefits and challenges regarding
implementation of test automation strategy in DevOps environment. The syn-
thesis this research was built on was derived from Fitzgerald and Stol (2014)
and the foundation was to define core capabilities of DevOps and argue that
business strategy needs to be aligned with the framework to create an efficient
software test automation strategy. Connections between different business units
might be required to create an efficient test automation framework. This is vis-
ualized by changes in business and change management processes. By induct-
ing a DevOps framework, organizations can enable continuous integration and
delivery where the cycle of releases can be adjusted. Existing literature has ar-
gued that DevOps framework is dysfunctional with traditional software devel-

68

opment methods because of its continuous nature. Thus, organizations need to
implement agile or lean software development methods to build their software
development on for efficient test automation strategy. Nevertheless, from the
empirical conclusions (PEC1) of this study we could argue that organizations
can make so called hybrid models where agile development methods are in-
cluded within traditional methods. When planned and implemented correctly
traditional software development methods can be used for requirement phase,
especially if the project is very small and specific. This way the project itself
stays intact throughout the process. By utilizing agile methods in the actual de-

velopment work the continuous nature of the project preserves while having
static requirements throughout.

In their current operating model, the target organization has been imple-
menting agile software development methods, but software testing is still man-
ual. Implementing agile software methods is crucial for a functioning test au-
tomation framework for continuous monitoring and delivery. By adapting these
methods software development teams can ensure fast enough release cycle to
match the definition of requirements (Lwakatare et al., 2016). In target organiza-
tion customer satisfaction can often be measured within the company which
makes inspecting metrics more convenient. DevOps practices are designed to
enable production of quality components regarding software development. By
building an effective software test automation strategy the target organization
can gain benefits in many different business areas while streamlining their own
business processes and change management. The empirical conclusion (PEC2)
extracted from the interviews was that building a test automation strategy can
cost the target organization a lot of resources if planned poorly. The actual
model should be derived to include the most important business processes and
build the framework from simpler processes up. By planning test management
processes carefully organizations can ensure streamlining and transparency of
the process while documenting the process thoroughly (Garousi & Elberzhager,
2017). This helps organizations in cases of changes in employments since all
processes are documented transparently.

To modify their operating model to one fitting the description of DevOps
procedures the target organization needs to concentrate on implementing the
model on a more practical level. While a test automation framework can pro-
vide many benefits, not all procedures and process should be fully automatized.
Organizations need to consider which processes they should fully automate,
and which processes need to have automated scripts but are used as semi-
automated for regression testing. This means running the automated test scripts
manually. This can be especially helpful in GUI testing where changes in the

interface are not as frequent as they might be in the API interfaces. With this
definition, the target organization needs to have a strategic plan for test auto-
mation framework and processes in need of automation. This can be prepared
by following the test management processes and decision making in the strate-
gical level.

69

As existing literature describes, DevOps is a rather new framework which
affects organizational structures. The operating model effects on skills, roles,
tasks, and the organizational structure itself (Virmani, 2015). This change re-
quires commitment from not only employees but the whole managerial and
organizational level. While automation plays a big part in a framework such as
DevOps this research found no reasons from the existing literature why devel-
opment and operations teams should be separated from each other. By commit-
ting employees to work towards mutual goal organizations enhance communi-
cation within. Nevertheless, the traditional role of developers and operations

change along the framework. These departments and their employees are now
expected to have technical and practical skills as well as good communication
and social skills. An empirical conclusion (PEC4) can be used to argue that the
implementation requires changes in the actual structure of the organization as
well as habits within. This can increase the workload of developers especially in
the project natured operating model which the target organization utilizes. The
allocation of resources of manpower needs to be examined and allocated so that
developers have the time allocated for different projects. While development
and operations teams traditionally have had their sights on different goals the
strategical leadership is needed to change organizational culture and commit-
ting employees to the operating model.

Even though DevOps framework can be accumulated piece by piece or-
ganizations need to strategically plan the starting points. Traditional software
development models are unfitting to a framework like DevOps, but exceptions
can be made. Smaller projects might have clear requirements and steps which
makes adding agile methods unreasonable. However, in these cases organiza-
tions should plan their test automation processes from the requirement phase.
This way the strategy can be planned during the life cycle and the actual soft-
ware can be tested throughout. This requires pervasive understanding of the
processes and products to recognize the possible defects and indicate them to
the correct direction. The framework requires untraditional thinking when it
comes to software development, skills, and organizational ability to change and
learn. (Ebert et al., 2016.)

The theoretical synthesis provided in this research is founded on one tar-
get organization and its endeavour to implement a functioning DevOps and test
automation strategy. The framework build should be possible to implement in
organizations in need of DevOps and software test automation framework to
build their operating model on. As it was stated before, DevOps operating
model can be applied in different ways which makes it unique in every organi-
zation. The implementation of the model requires supporting software engi-

neering capabilities. The primary conclusion (PEC6) can be extracted for theo-
retical implication in a way that for enhancing productivity and effectiveness
within the organization supporting capabilities such as trust and responsibility
alignment need to be enabled. This can also require modification in habits and
policies. Enabling unified ways of working can be critical for companies like the
target organization where software is also developed outside the organizational

70

boundaries. In these cases, the emphasis should focus on considering the effect
of agile software development methods, inspection of processes in need of au-
tomation and streamlining the manual tasks needed in services provided. How-
ever, roles, skills and organizational structure can vary greatly between differ-
ent organizations which might make the results of this research un-applicable
for every organization.

6.2 Practical implications

A software test case was built to be a practical part of this research. The test case
was done as an automated test script which the researcher executed manually
to see if there are any defects or exceptions during or after the test. The test case
was built using software UIpath and was conducted in Salesforce test environ-
ment. Accesses to both resources were provided by the target organization. This
test was built as a GUI test which tested a process that can be seen in attach-
ment 2. The process was simply to create a new account in Salesforce CRM and
afterwards ensure that the data was migrated to the enterprise resource plan-
ning system used by the target organization. The process was executed 50 times
to see how the service handles the script and to get a bigger sample of data to
verify the observations. This sub-section also includes the practical implications
made from the primary empirical conclusions.

The actual use case of the test created is visualized in attachment 2. The
use case consists of logging in to the service, navigating to new accounts, creat-
ing a new account with specified and mandatory information, adding an ad-
dress, saving new account, and closing the application. The use case scenario
describes the actual action which is required to create a new account in the ser-
vice. After executing the use case scenario, the script also verified that the ac-
count was made, and the new account was migrated to the ERP test environ-
ment by confirming the reference number. This way the actual creation of the
new account and the data transfer can be confirmed which can be used as a cri-
terion for a successful account creation.

This test was executed 50 times as a semi-automated process in which the
researcher executed the automated test scripts manually. The results can be ex-
amined in attachment 3. The test failed three times and when examining the
reasons, the script failed because of some add-in dysfunctionalities which are
needed to run the web-based service. Tests were executed in a web browser
(Google Chrome) since the service is web-based. These errors could be evaded

by adding exception handling or specific try catch blocks. However, this was
not done to get a clear picture of the success percentage of executed tests and
the possible reasons for failed tests. in 47 successful tests the new account crea-
tion worked normally and the migration to ERP system in test environment was
successful. If fully automated, exception handling could be added to the script
to handle errors such as add-in problems by restarting the process. In this case
it would probably have enhanced the overall success rate of the process. Never-

71

theless, the success rate of the test script was 94 percent which is a good result
even without any exception handling.

The practical section of this research was done as a graphical user interface
testing. This means that the test followed the path of an actual human user and
repeated the steps that a user would go through. A practical part of the research
was also to do the same test manually 10 times and compare these execution
times to the ones the scripts take. While done manually, the steps required for a
successful process took 82 to 86 seconds which included all phases mentioned
above. While executed with automated scripts the tests took 8 to 10 seconds de-

pending on how fast the migration went through. With this result it could be
argued that the test took only 10 percent of the time which manual process re-
quires. With this argument and practical implications extracted from the empir-
ical conclusions (PEC5) it could be argued that with an efficient test automation
planning and execution the developing process converts to more efficient. This
might also make the developers’ work easier as feedback from the tests can be
used to evaluate the process. Even though this was only a very small process to
automate the benefits are already visible in the results. This process could also
be combined with different automated processes to construct entire process
builders. The information could be further processed with modifying the cus-
tomer or examining a customer offering or incident pipeline. The organization
needs to focus on the most important processes which are static and more likely
to stay intact. This way the success rate of the test scripts is maximized, tests can
be repeated, and the test scripts are more likely to succeed.

Even though there are clear benefits in GUI testing, organizations need to
remember that the functionalities of applications and services can and probably
will change. The test suites need to be planned the way that they are easy to
modify and can react to changes made in the user interface. By this definition,
continuous monitoring needs to be executed for the maximum benefit of test
automation. The data extracted from primary empirical conclusion (PEC3) indi-
cates that for effective continuous monitoring software testing needs to be done.
Logically if automated, testing can be repeated more and with higher precision.
The changes made in functionalities are usually noticed in API testing which
might be a different case in GUI testing. This especially important in cases
where the software is also developed elsewhere (eg. Salesforce). Test suites also
should be planned with change management processes in mind. If a specific
process includes various automated test suites change management regarding
process management can become challenging. By extracting data from the em-
pirical section of this research (PEC8) it could be argued that business strategy,
change management processes, and continuous planning should be included in

the target organizations DevOps framework. By changing the preferences or
features in the service, the test suites also need to be updated. This requires re-
sources such as skills and time. When done properly, the changes can be easily
modified while streamlining the actual service and iterating continuous plan-
ning as a part of the framework.

72

If these conditions occur software test automation can benefit organiza-
tions greatly. This research had a practical section of GUI testing and the results
might not be directly comparable to API testing. Nevertheless, there are similar
attributes in both testing activities. The future research of GUI testing could fo-
cus on building more complex process builders and compare the times between
manual and automated testing. Implied results of the theoretical synthesis seem
to follow the guidelines constituted earlier in the research while it was put in
practice. The metrics of saving time, resources and improving quality can all be
measured from the practical example. While this practical example was done

outside of the service developing timeframe the same test scenarios can be used
as regression testing to see that the previously defined requirements are ful-
filled. A practical implication can be extracted from the empirical data (PEC7)
as software test automation strategy needs to be carefully planned and executed
to be effective. When poorly planned, automated tests can take more time and
be less cost-efficient than manual software testing. Theoretical framework of
planning a test automation strategy and measuring its benefits can thus be real-
ized and argued to have positive effects on business processes.

73

7 CONCLUSIONS

Constantly changing services and technologies require quick reactions and
preferably proactive actions from organizations. Business environments and
markets change constantly, and organizations need to modify their operating
models to get competitive advantage. The core capabilities are needed for quick
reaction to possible defects as well as continuous development and delivery.
Modifying organizational structure to support these capabilities is required for
successful framework implementation. If organizational structure and culture
are enabled to streamline supporting software development features the organ-
ization is more likely to succeed. These capabilities also help with administra-
tion of the services, maintain stability, quality, reliability and enhance transpar-
ency throughout the organization. Even though software test automation is on-
ly a part of the DevOps framework it can help organizations enhance their ser-
vice quality as well as saving and re-allocating resources. This section utilizes
the primary empirical conclusions (PEC) from this research as answers to the
research question.

7.1 Answers to research question

This research concentrated on building an effective software test automation
strategy in DevOps environment. Target organization operates on weather
technology and industrial measurement businesses. However, these business
areas were not specified in any part of this research to give more focused re-
search model for organizations alike. This research defines the core capabilities
of DevOps, how these capabilities can be implemented, and which require-
ments should organizations consider when implementing a software test auto-
mation strategy. The purpose of this research is to build a research model of
implementing a successful software test automation strategy in a specific envi-
ronment. To research this topic the research question was composed the follow-
ing way:

74

• How to implement test automation strategy in DevOps environ-
ment?

Research question and its composition is described more accurately in chapters
2, 3, 4 and 5. This is done by reviewing existing literature and defining the core
capabilities in DevOps framework and software test automation. The phenom-
enon of DevOps and software test automation strategy were researched via
building a research synthesis using existing literature and conducting an empir-
ical study. DevOps was described as a framework while defining the six core
capabilities of an effective framework (see sub-section 2.1.3). The actual theoret-
ical synthesis that this research is based on was derived from Fitzgerald and
Stol (2014) and their BizDevOps-based model. The model was modified with
the six core capabilities defined before, test automation strategy and its core
features and combining business strategy with these dimensions. Interviews

and primary empirical conclusions were based on this model (see figure 4). The
framework of DevOps and the core capabilities were introduced through many
different frameworks to get the most accurate and current description of the
operating model. Even though DevOps as a framework was built to automatize
all unnecessary manual tasks this research concentrates more on software test
automation point of view.

Continuous deployment, delivery and integration are the outcomes where
DevOps aims to. With continuous software monitoring organizations enable
collecting feedback of the software performance. It could be argued that moni-
toring speeds up the development process as test automation can be executed
after every release which gives proper feedback on work done. By enabling this
organizations can provide software developers with constant input which also
helps with enhancing communication between different organizational units.
By enabling continuous monitoring faster response time is enabled which ulti-
mately can lead to quicker fixes regarding the software. As software develop-
ment and IT operations are traditionally siloed business units continuous moni-
toring enhances the communication within and helps with merging the units.
Continuous monitoring was extracted from the interview data as PEC3 as ena-
bled by continuous testing. While software monitoring has been done longer
than DevOps itself has existed, creating automated reports and alerts that are
available for the whole development team enhances efficiency within the pro-
ject. This information has existed on theoretical and practical level before which
can be said to verify the existing research. However, an organization like the
target organization in this research needs to apply testing because all changes
made in the developing organization might not always be visible. Monitoring
can also be used as tracking the software evolution. While traditionally seen as
a task done by IT operations continuous monitoring is essential for successful
software development. By merging development teams and IT operations this
data is shared within the project team which helps organizations also with de-
ployment and release dimensions. The research also revealed that the data

75

gathered from continuous monitoring can be used later to enhance different
aspects of the developed software.

Agile software development methods are defined by Highsmith and
Cockburn (2001) as iterative phases which are followed by continuous delivery
of the service. They are also a critical part of DevOps framework because of
their continuous nature. Existing DevOps research is based on continuous de-
ployment which makes traditional software development models (e.g. waterfall
development methods) incompatible. Nevertheless, it can be argued that in
small, very strictly defined projects agile software development methods might

complicate the development process. A primary empirical conclusion (PEC1)
extracts information that organizations can create hybrid development models
which might include aspects of both trends. This can be classified as new in-
formation since current DevOps research argue that only agile software devel-
opment methods can be utilized. If the project and its requirements are simple
and static traditional software development methods can be used for the fastest
and most efficient possible completion. By utilizing these models, other dimen-
sions of DevOps such as continuous monitoring can still be combined with the
development processes. Organizations need to find the best software develop-
ment methods regarding complexity, size, and nature of the project.

By frequently releasing the software the risks regarding the actual soft-
ware deployment can be minimized. Combining frequent releasing with con-
tinuous software monitoring the project team can gain knowledge in changes
made in the software and its different setups and environments. This was also
confirmed by this research as PEC5 confirmed the added value of seeing the
changes made, reacting to alterations, and eliminating unnecessary waste. This
information already existed and was backed up by this research. Frequent re-
leases also empower the customer where the actual results of the development
process can be visualized in short cycles. By frequently releasing the project
team can track requirements with the customer while adding or removing de-
sired preferences. Frequent releases are especially important when there are
many developers working the same development phase. By enabling methods
such as version control which support agile software development methods
organizations can ensure the quality and efficiency of the development process.
As version control can be fully automated it ensures that desired requirements
of the service are met and constantly monitored. This also enables rolling re-
leases back if necessary, which leads to minimized risks in final deployment.

As DevOps aims to combine two different departments the change also
requires cultural movement within organizations. As combining these depart-
ments require constant learning from the employees as new tasks arise the initi-

ative for change must come from the strategical management level. Managers
also need to argue why change is needed and vindicate actions to do so. Even
though transparency between different teams enhances efficiency the workload
of specific employees might ascend. This requires careful resource planning
from the management as well as recognizing available resources and their pos-
sible utilization. While the change has effect on organizational structure it also

76

concerns organizational culture. To adopt DevOps as a framework, organiza-
tions need to embrace specific supporting software engineering capabilities.
These capabilities include dimensions such as open communication, incentive
and responsibility alignment, respect, and trust. This information was con-
firmed in this research by two different primary empirical conclusions (PEC4
and PEC6). DevOps as a framework requires changes in organizational struc-
ture but also supporting capabilities for an effective implementation. Tradition-
ally the two research branches of technical, more concrete aspects and abstract
dimensions such as trust and responsibility alignment have been researched as

different dimensions. In the light of these findings it can be said that all tech-
nical, structural, and abstract aspects of the framework need to be realized for a
successful implementation. These dimensions are required for a successful
change in organizational culture and structure. Learning new methods and
technologies as well as feeling valued and higher level of autonomy is proven
to have positive influence on engagement to the project. These social aspects
can be optimized with proper team combinations as well as empowering the
employees. This also boosts team morale within certain projects which ultimate-
ly can lead to increased team performance. (Callanan & Spillane, 2016.)

Even though DevOps aims to automatize every unnecessary manual task
this research concentrated on test automation and its implementation strategy.
As can implementation strategies of DevOps vary, software test automation
strategy should remain intact throughout the process. By creating sufficient
documentation, careful planning of the resources needed and utilized, creating
automated test scripts, and utilizing test data to enhance processes organiza-
tions can create an efficient test automation strategy which can be modified
with the processes. This was confirmed by a primary empirical conclusion
(PEC2) as automated testing reducing lead times but requiring a carefully
planned test automation strategy. By carefully planning processes to concern
automated testing the benefits can be measured in increasing software quality,
repeatability of testing, reducing unnecessary manual tasks and effort on man-
ual testing and ultimately quicker responses to the changes needed. All these
aspects help organizations achieve benefits regarding software testing which
might not be achievable by manual testing. DevOps as a framework is based on
automating all possible manual tasks from version control to software testing.
For that reason alone, software test automation strategy in a DevOps environ-
ment is a critical factor of a successful software development and should always
be included in DevOps planning processes. This data already existed and was
backed up by this research.

While software test automation can bring many benefits to software de-

velopment teams there are also disadvantages that should be considered when
planning the strategy. DevOps framework can increase the workload of specific
employees especially the ones working with software testing. Implementing a
strategy requires resources since the processes desired for automation should
be thoroughly inspected. The aspects limiting organizations from test automa-
tion strategy also include dimensions such as acquiring test automation tools

77

and expertise and the upkeep of these assets. Selecting tools which can be
scaled to DevOps environment is critical for constant releasing defined by con-
tinuous deployment. This aspect requires a lot from the testers since they need
to keep up with developers. By planning the test scenarios in the requirement
phase organizations can prevent and minimalize these problematic scenarios.
By investing resources such as skills to software testing and its automation or-
ganizations ensure that the workload of testers remains efficient throughout the
DevOps development team. While planning test automation strategy, organiza-
tions need to ensure the release cycles so that software test automation upholds

the position regarding software development. The problem of testing keeping
up with development can especially be seen with technologies that require con-
stant releasing. The creation of a software test automation strategy was com-
pressed by PEC7 as a guideline which includes the requirement phase, include
most critical processes, and the allocation of different resources. Even though
most of this conclusion is backed up by existing research the implication of in-
cluding test automation strategy in the requirement phase might be critical for
companies such as the target organization. This way if the software is also de-
veloped elsewhere defects and changes needed can be found on time and quali-
ty of the software and the processes automated is increased.

Software test automation comes with its benefits and challenges which
slightly differ regarding API and GUI testing. Still, a lot of these aspects can be
reflected on each of these software testing branches. As it was demonstrated
earlier in this research (see sub-section 6.2) by automating GUI testing time
used on a simple account creation process could be decreased to 10 percent of
the original time. Naturally, this decrease can be even more exponential when
combined to bigger process builders. However, especially with GUI test auto-
mation impact on change management and business processes should not be
overlooked. This argument was backed up by PEC8 as a claim that business
strategy, change management processes and continuous planning should not be
separated from DevOps framework. Even though continuous planning was al-
ready inducted by Fitzgerald and Stol (2014) as a part of the framework, includ-
ing change management processes increase transparency throughout the busi-
ness units involved. Creating test automation suites for processes can impact
change management processes on multiple different ways. By improving quali-
ty and lead times organizations can enhance their development process and
include unnecessary manual tasks in their test automation strategy. Neverthe-
less, processes can become dependent on test suites which means pauses on
process development. By creating thorough documentation and requirement
analysis organizations can minimize the risk of stoppage in change manage-

ment and process development cycles. This can be extracted as new information
regarding combination of DevOps and business strategy.

DevOps has very little empirical studies around it partly because of the
vague definition, the magnitude of the entirety and short time the actual
framework has existed. Still, for an effective implementation of test automation
and DevOps strategy it can be argued that business strategy needs to be im-

78

plemented in the process planning phase. It gives organizations clear picture of
the current state where processes go as well as provides viewpoints that soft-
ware development models usually lack. By combining DevOps model with
business strategy, a clear model of process planning can be executed with min-
imal risks. DevOps itself is an operating model for IT organizations which in-
creases the performance of software development with effective internal com-
munication. By including continuous monitoring from requirement phase
through the whole product life cycle DevOps also includes tasks traditionally
seen falling to IT operations. Even though DevOps itself is defined as a concept

many organizations unwittingly utilize different models and phases of DevOps.
To create an efficient DevOps and software test automation strategy, organiza-
tions need to recognize different approaches of agile software development
methods, strategy, and dependencies (Bucena & Kirikova, 2017). It also widely
used by operatives which need to release often (e.g. cloud and web services).

This research was done to better understand core capabilities of DevOps
and implementing an efficient software test automation strategy in these kinds
of environments. One point of the study was also to argue whether business
strategy needs to be involved in DevOps process development and what affects
does it have on the actual framework. By inspecting references and require-
ments it can be said that the research question can be approached and answered
adequately. The results outline the core capabilities of DevOps with clear defi-
nition of business process involvement and software test automation definition.
The research was done the way as originally planned. Future possibilities for
DevOps and test automation studies could be researching the process of im-
plementing the actual framework to an organization having a different operat-
ing model currently.

7.2 Limitations of the research

The limitations of this study be divided to three different areas. As this research
was done as a Master’s thesis the study is limited to a certain point. While con-
templating on aspects like organizational culture and performance the actual
outcome in this research is based on existing literature and studies. While re-
searching these kinds of dimensions would need a stronger representation of
the current state of the organization and how changes is these environments
would ultimately affect the organizational state and performance. This study
was conducted as a two-part research where the first part examines and creates

the theoretical framework for the research and the second part illustrates the
empirical study of the current state in the target organization. This way the
most accurate research can be conducted and examined in the given limits of a
Master’s thesis.

In this research there is only one organization addressed and the outcome
is formed by interviewing the employees of this organization. As this study was
done as a commission for the target organization it was natural to examine the

79

prevalent state of the organization. This means that the results of this research
might not be applicable to every organization straightforward. However, it
should be remembered that DevOps has been presented as a unique framework
where every organization adapting it as an operating model would need to
carefully plan their implementation processes. By the high scalability of the
framework the implementation process can be modified for specific needs or
even obtained partially.

Limitations could also be measured in the theoretical framework created
and if it would be applicable in practice. Qualitative research helps addressing

specific limitations in scientific software engineering research by drawing stud-
ies together and making them larger and more applicable theories. This method
was used in this research since the framework of DevOps has very little empiri-
cal studies around it. By conducting this research organizations can have more
precise description of the core DevOps capabilities as well as guidelines and
recommendations of building an effective software test automation strategy.
This research is not a detailed instruction of benefits gained before and after
implementation of a software test automation framework but more of a guide-
line for organizations in search for assistance in adapting the procedure.

7.3 Future research opportunities

DevOps as a framework is still a rather new concept and needs to have more
empirical studies around it to ensure the proper definition and application of
the model. By its definition DevOps is a software development framework
which includes the aspects of agile software development methods while re-
forming organizational structure and culture. Some organizations might have
already implemented parts of DevOps framework without realizing it which
makes the research of the implementation process more difficult. While utiliz-
ing agile software development methods by releasing many times a day the fu-
ture research should concentrate on how software testing can keep up with
constant releasing of the service. For DevOps framework it is also crucial that
employees in charge of specific stages of the service do their tasks in time for
continuous deployment and delivery. This can be especially difficult for em-
ployees in organizations who have multiple projects ongoing.

From software test automation viewpoint future studies could concentrate
on building bigger process builders and measuring the process of developing
functioning test automation suites and comparing these to manual comparisons.

More detailed information could also be researched after a test automation
strategy has been defined and implemented in this type of environment to see
what kind of affects it has on specific business processes. DevOps can be seen
differently because of the multi-dimensional nature of the framework. While
adapting models such as agile software development methods organizations
need to realize that projects should be seen as individual and unique entireties
which should be formed the best way applicable. DevOps is a logical choice in

80

concepts such as web and cloud-based services where the need of releasing is
constant. However, the framework should also be examined in smaller envi-
ronments where requirements can be very strict and specific. In the light of this
research these are the reasons it is important that the framework of DevOps will
be researched more and in different environments in the future.

81

REFERENCES

Amannejad, Y., Garousi, V., Irving, R., & Sahaf, Z. (2014). A search-based
approach for cost-effective software test automation decision support and
an industrial case study. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops (pp. 302-311). IEEE.

Amaricai, S., & Constantinescu, R. (2014). Designing a Software Test
Automation Framework. Informatica Economica, 18(1).

Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge
University Press.

Bass, L. (2017). The software architect and DevOps. IEEE Software, 35(1), 8-10.

Bucena, I., & Kirikova, M. (2017). Simplifying the DevOps Adoption Process.
In BIR Workshops.

Callanan, M., & Spillane, A. (2016). DevOps: making it easy to do the right
thing. IEEE Software, 33(3), 53-59.

Cois, C. A., Yankel, J., & Connell, A. (2014). Modern DevOps: Optimizing
software development through effective system interactions. In 2014 IEEE
International Professional Communication Conference (IPCC) (pp. 1-7). IEEE.

Collins, E. F., & de Lucena, V. F. (2012). Software test automation practices in
agile development environment: An industry experience report. In 2012
7th International Workshop on Automation of Software Test (AST) (pp. 57-63).
IEEE.

Collins, E., Dias-Neto, A., & de Lucena Jr, V. F. (2012). Strategies for agile
software testing automation: An industrial experience. In 2012 IEEE 36th
Annual Computer Software and Applications Conference Workshops (pp. 440-
445). IEEE.

Cruzes, D. S., & Dyba, T. (2011). Recommended steps for thematic synthesis in
software engineering. In 2011 international symposium on empirical software

engineering and measurement (pp. 275-284). IEEE.

Diel, E., Marczak, S., & Cruzes, D. S. (2016). Communication challenges and
strategies in distributed devops. In 2016 IEEE 11th International Conference
on Global Software Engineering (ICGSE) (pp. 24-28). IEEE.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE
Software, 33(3), 94-100.

82

Fitzgerald, B., & Stol, K. J. (2014). Continuous software engineering and beyond:
trends and challenges. In Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering (pp. 1-9). ACM.

Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123, 176-189.

Forbrig, P. (2018). BizDevOps and the Role of S-BPM. In Proceedings of the 10th
International Conference on Subject-Oriented Business Process Management.
ACM.

Freeman, H. (2002). Software testing. IEEE instrumentation & measurement

magazine, 5(3), 48-50.

Gandhi, G. M. D., & Pillai, A. S. (2014). Challenges in gui test
automation. International Journal of Computer Theory and Engineering, 6(2),
192.

Garousi, V., & Elberzhager, F. (2017). Test automation: not just for test
execution. IEEE Software, 34(2), 90-96.

Garousi, V., & Mäntylä, M. V. (2016). When and what to automate in software

testing? A multi-vocal literature review. Information and Software
Technology, 76, 92-117.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The
business of innovation. Computer, 34(9), 120-127.

Hirsjärvi, S., Remes, P., & Sajavaara, P. (2009). Tutki ja kirjoita. 15.
painos. Helsinki: Tammi, 202-204.

Hüttermann, M. (2012). DevOps for developers. Apress.

Karhu, K., Repo, T., Taipale, O., & Smolander, K. (2009). Empirical observations
on software testing automation. In 2009 International Conference on Software
Testing Verification and Validation (pp. 201-209). IEEE.

Kasurinen, J., Taipale, O., & Smolander, K. (2010). Software test automation in
practice: empirical observations. Advances in Software Engineering, 2010.

Kit, E. (1995). Software testing in the real world: improving the process. Addison-
wesley.

Leung, H. K., & White, L. (1990). A study of integration testing and software
regression at the integration level. In Proceedings. Conference on Software
Maintenance 1990 (pp. 290-301). IEEE.

83

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J.,
& Oivo, M. (2016). Towards devops in the embedded systems domain:
Why is it so hard?. In 2016 49th Hawaii International Conference on System
Sciences (HICSS) (pp. 5437-5446). IEEE.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015). Dimensions of devops.
In International conference on agile software development (pp. 212-217).
Springer, Cham.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016). Relationship of DevOps to agile,
lean and continuous deployment. In International Conference on Product-

Focused Software Process Improvement (pp. 399-415). Springer, Cham.

Mathiassen, L., Ngwenyama, O. K., & Aaen, I. (2005). Managing change in
software process improvement. IEEE software, 22(6), 84-91.

Mohamed, S. I. (2015). DevOps shifting software engineering strategy-value
based perspective. International Journal of Computer Engineering, 17(2), 51-57.

Qu, S. Q., & Dumay, J. (2011). The qualitative research interview. Qualitative
research in accounting & management.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. V. (2012). Benefits and
limitations of automated software testing: Systematic literature review and
practitioner survey. In Proceedings of the 7th International Workshop on
Automation of Software Test (pp. 36-42). IEEE Press.

Ramler, R., & Wolfmaier, K. (2006). Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost.
In Proceedings of the 2006 international workshop on Automation of software
test (pp. 85-91).

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö,
T. (2016). DevOps adoption benefits and challenges in practice: a case
study. In International Conference on Product-Focused Software Process
Improvement (pp. 590-597). Springer, Cham.

Scott, J. E. (2007). Mobility, business process management, software sourcing,
and maturity model trends: propositions for the IS organization of the
future. Information Systems Management, 24(2), 139-145.

Senapathi, M., Buchan, J., & Osman, H. (2018). DevOps capabilities, practices,
and challenges: Insights from a case study. In Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering
2018 (pp. 57-67). ACM.

84

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access, 5, 3909-3943.

Smeds, J., Nybom, K., & Porres, I. (2015, May). DevOps: a definition and
perceived adoption impediments. In International Conference on Agile
Software Development (pp. 166-177). Springer, Cham.

Soni, M. (2015). End to end automation on cloud with build pipeline: the case
for DevOps in insurance industry, continuous integration, continuous
testing, and continuous delivery. In 2015 IEEE International Conference on

Cloud Computing in Emerging Markets (CCEM) (pp. 85-89). IEEE.

Stillwell, M., & Coutinho, J. G. (2015). A DevOps approach to integration of
software components in an EU research project. In Proceedings of the 1st
International Workshop on Quality-Aware DevOps (pp. 1-6). ACM.

Stolberg, S. (2009). Enabling agile testing through continuous integration.
In 2009 Agile Conference (pp. 369-374). IEEE.

Suomalainen, T., Kuusela, R., & Tihinen, M. (2015). Continuous planning: an
important aspect of agile and lean development. International Journal of
Agile Systems and Management, 8(2), 132-162.

Todnem By, R. (2005). Organisational change management: A critical
review. Journal of change management, 5(4), 369-380.

Vaisala.com. (3/2020). Retrieved from www.vaisala.com on 1.3.2020.

Virmani, M. (2015). Understanding DevOps & bridging the gap from
continuous integration to continuous delivery. In Fifth International
Conference on the Innovative Computing Technology (INTECH 2015) (pp. 78-
82). IEEE.

Vos, T. E., Kruse, P. M., Condori-Fernández, N., Bauersfeld, S., & Wegener, J.
(2015). Testar: Tool support for test automation at the user interface
level. International Journal of Information System Modeling and Design
(IJISMD), 6(3), 46-83.

Wang, F., & Du, W. (2012). A test automation framework based on WEB.
In 2012 IEEE/ACIS 11th International Conference on Computer and Information

Science (pp. 683-687). IEEE.

Wettinger, J., Breitenbücher, U., & Leymann, F. (2014). Devopslang–bridging
the gap between development and operations. In European Conference on
Service-Oriented and Cloud Computing (pp. 108-122). Springer, Berlin,
Heidelberg.

85

Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist, K. (2012). Technical debt in
test automation. In 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (pp. 887-892). IEEE.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability, 22(2),
67-120.

Zhao, J. (2003). Data-flow-based unit testing of aspect-oriented programs.
In Proceedings 27th Annual International Computer Software and Applications
Conference. COMPAC 2003 (pp. 188-197). IEEE.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and its practices. IEEE
Software, 33(3), 32-34.

86

ATTACHMENT 1 THEMES AND INTERVIEW QUESTIONS

87

ATTACHMENT 2 NEW ACCOUNT PROCESS

88

ATTACHMENT 3 SCRIPT RESULTS

