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Malliavin smoothness on the Lévy space with Holder
continuous or BV functionals

Eija Laukkarinen

University of Jyvaskyld, Department of Mathematics and Statistics, P.O. Box 35 (MaD)
FI-40014 University of Jyvaskyld, Finland

Abstract

We consider Malliavin smoothness of random variables f(X; ), where X is a pure
jump Lévy process and the function f is either bounded and Holder continuous
or of bounded variation. We show that Malliavin differentiability and fractional
differentiability of f(X7) depend both on the regularity of f and the Blumenthal-
Getoor index of the Lévy measure.
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2010 MSC: 60G51, 60H07

1. Introduction

Consider a Lévy process ¥ and the according Malliavin Sobolev space D o
based on the It6 chaos decomposition on the Lévy space of square integrable
random variables. We recall the space D o in Section 2.1. We are interested in
the ways that Malliavin differentiability of f(Y1) depends on the properties of
f and the properties of Y.

The process Y consists of three components

Y1‘,:'7t+UBt+Xt7

where 7,0 € R, B is a standard Brownian motion and X is a pure jump
process. For the Brownian motion we have that f(B;) € Dy if and only if
[ € WH2(R;Pg,) (see, for instance, Nualart [23, Exercise 1.2.8]). We also ex-
amine fractional differentiability which is determined by the real interpolation
spaces (La(IP),ID1,2)p,q4 between Lo(IP) and Dy 5 (see Section 2.2). The frac-
tional smoothness of f(B;) means that f is in a weighted Besov space (see S.
Geiss and Hujo [15], for example). In this paper we focus on the pure jump
Lévy process with v = 0 and ¢ = 0. We search for properties of the function f
and the Lévy measure v of X, which are related to the smoothness of f(X7). It
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turns out that Malliavin smoothness is in connection to the Blumenthal-Getoor
index

B =inf{{ >0:m¢ < oo}, where mg:= / (Jz[* A1) v(dz).
R

We show that the smaller the index § is, the higher smoothness of f(X;) we
have for a given f which is Holder continuous or of bounded variation.

So far little is known about the question for which f and for which v one has
f(X1) € Dyg or f(X1) € (L2(IP),Dy,2)g,q- The note [22] enlightens the case
where v(R) < co: Then

f(X1) €Dy ifandonly if E[f*(X1)(N((0,1] x R) +1)] < o0
and
f(X1) € (L2(P),D1,2)g2 if and only if E [f%(X1)(N((0,1] x R)?+1)] < oo,

where N is the Poisson random measure associated with X (see Section 2).
A Lévy measure v always satisfies the property mo < oo, and from Solé,
Utzet and Vives [26] we know that

IF XD, = 1 ()3 ) + /R E[(f(X1 +2) = f(X1))*| v(da).

Since my < oo, it follows that f(X;) € Dy for any f that is Lipschitz con-
tinuous and bounded. On the other hand, if the Lévy measure v is finite, then
it is sufficient that f is bounded to have f(X;) € D; 5. In Section 3 we shall
examine intermediate cases, namely that f is bounded and Holder continuous,
that is, in C}'. In Theorem 3 we prove that

f(X1) €Dy forall feCy ifand only if ma, < o0,

where the necessity of the condition ms, < oo holds under assumption (AZ2)
given in Section 2.3. For fractional smoothness we obtain in Theorem 5 for
0<a<6 <1, that

f(Xl) S (LQ(IP),]D1,2)97OO for all f S Céx if mga/g < 00,
and under assumption (A3), that
J(X1) € (L2(IP),D12)p,00 for all f € C  only if maq 94 < 00

for all € > 0. In Section 5.1 we see that if the process X is strictly stable and
symmetric and 2a/6 is equal to the Blumenthal-Getoor index 3, then f(X;) €
(L2(P), D1 2)p,c for all f € Cp' eventhough my, 9 = mpg = oo.

We also consider normalized functions of bounded variation (NBV, see Sec-
tion 4). In Theorem 6 we prove that under assumptions (A1) and (A2) it holds
that

f(X1) € Dy forall f € NBV if and only if m; < oo.



In [11, Section 4.2] it was shown that 1k oo)(Y1) € (L2(IP),D12)1/2,00, When
Y1 has a bounded density. We obtain a sharper smoothness index for the pure
jump process: Theorem 7 states that under assumption (A1) it holds that

f(Xl) S (LQ(IP),]DLQ)&OO fOI‘ all f € NBV if ml/g < oo,
and under assumption (A3) it holds that
J(X1) € (L2(P),D12)p,00 for all f € NBV  only if my/p,. < 00

for all € > 0. In Section 5.1 we see that if the process X is strictly stable
and symmetric and 1/6 = 3, then f(X;) € (L2(PP),D1,2)p,00 for all f € NBV
eventhough m, /9y = mg = 0.

The method in Section 5 is based on a characterization of fractional smooth-
ness which was introduced for the Brownian motion by S. Geiss and Hujo [15],
and which we translate for jump processes in Lemma 9.

1.1. Motivation
Malliavin smoothness and fractional smoothness play a role for example in
discrete approximation of stochastic integrals and in the investigation of prop-
erties of backward stochastic differential equations (BSDEs): Consider the or-
thogonal Galtchouk-Kunita-Watanabe decomposition of f(Y7), that is,
1

0

Then the convergence rate of the equidistant Riemann-approximation of the
integral depends on the smoothness parameter of f(Y7). On the other hand, if
f(Y1) admits fractional smoothness, then it is possible to adjust the discretiza-
tion points to obtain the best possible convergence rate. (See Geiss et al. [11].)
The L,-variation of the solution of certain BSDEs depends on the Malliavin
fractional smoothness of the terminal condition f(Y7). This was shown with
more general terminal conditions for the Brownian motion by C. Geiss, S. Geiss
and Gobet [10] and S. Geiss and Ylinen [17] and for p = 2 for general Ly-Lévy
processes by C. Geiss and Steinicke [13].

2. Preliminaries

Consider a pure jump Lévy process X = (X;);>o with cadlag paths on a
complete probability space (2, F,P) where F is the completion of the sigma-
algebra generated by X. The Lévy-It6 decomposition of a pure jump Lévy
process is

Xi = // xN(ds,dz) + // N (ds, dz),
(0,8]x {|=|>1} (0,¢]x{0<]z|<1}

where N is a Poisson random measure on B([0,00) x R) and N(ds,dz) =
N(ds,dz) — dsv(dz) is the compensated Poisson random measure. The mea-
sure v : B(R) — [0,00] is the Lévy measure of X satisfying v({0}) = 0,
Jr(@* AT)p(dz) < oo and v(B) = E[N((0,1] x B)].



2.1. It chaos decomposition and the Malliavin Sobolev space

Denote R4 := [0,00). We consider the following measure m: B(R4 x R) —

[0, 00] defined as
(/A xN(dt,dx))Z] .

Forn =1,2,... we write La(m®") := Ly (R4+ x R)", B(R4 x R)®", m®") and
set Lo(m®") := R. A function f, : (R4 x R)™ — R is said to be symmetric, if
it coincides with its symmetrization f,,

m(A) := /szdtu(dx) =E

where the sum is taken over all permutations 7 : {1,...,n} = {1,...,n}.

We consider It&’s multiple stochastic integral I,, : La(m®") — La(P) of
order n with respect to the measure 2N (dt, dz). According to [19, Theorem 2]
it holds that

[ee]
La(P) = R® @ {In(fa) ¢ fu € La(m®)}.
n=1
The functions f,, in the representation ' = > I,(f,) in Lo(P) are unique

when they are chosen to be symmetric, which is always possible since I,,(f,,) =
I.(fn). Moreover, we have

0, ifn#k
E[I,(fu)I = . .
[ (f ) k(gk)] {n!(fn7gn)L2(m®") ifn==%
and
> ~ 2
F? = n!’ n .
1E]7, ) nz:% f La(men)

In this paper we focus on random variables of the form f(X;), where f :
R — R is a Borel function. We will take advantage of the following lemma in
Sections 3 and 5.

Lemma 1. Let f(X1) = >.0° I.(fn) € Lo(P) and let (Fy)i>o be the aug-
mented natural filtration of X. Then

(a) there are functions g, € Ly ((2?v(dx))®™) such that

Faltr,21), o (tns n)) = ga(@1, - @) Lo apen (tr, - s )

for m®"-a.e. ((t1,21),---, (tn,Tn)) € Ry x R)*™ and

() B[BUOD)IAP] = St nlllful, o



Proof. (a) Follows from [3, Remark 6.7]. (b) By analogous argumentation to
(23, Lemma 1.2.4] we see that B [f(X1)|F] = >0~ In(gnljogx»). The claim

follows from ||fn||L2(m®n) = Hgn|lL2((x2u(dw))®")' ]

We define the Malliavin Sobolev space using 1t6’s chaos decomposition (as
(24, 8, 26, 27, 1, 12] and many others). We denote by Dj 5 the space of all
F =3 I.(fn) € Lo(IP) such that

2
fn

Lo (m®™)

f

o0 2 o0
Fl%4. = ||F|? + nn!‘ = n+1!‘ < 0.
L RO DU VA HED DRSS

Let us write Lo(m ® P) := Lo(Ry X R x Q,B(Ry x R) ® F,m ® IP). The
Malliavin derivative D : Dy 3 — La(m ® PP) is defined for F' € Dy o by

DioF = nly1(fu( (7)) in Ly(m @ P).

n=1

From [26, Proposition 5.4] we have in the canonical probability space that

17,

_ 2 A (fC ) — FEDN]
S+ [ B (L )] (@1, da)
= 1) ey + [ B[00 ) = £0¥0)*] i), 1)

and when f(X;) € Dy 2, then
f(Xa+a) — f(X1)

x

Dy f(X1) = Lo, xr\fo} (£, 2) m ® P-a.e. (2)

The result was converted to the general probability space in [14, Lemma 3.2].
For the Brownian motion B, the space DD 5 is defined in an analogous way
by a chaos decomposition, but the property (1) can not be formulated (see [23]).

2.2. Interpolation and Malliavin fractional smoothness

The interpolation space (Ag, A1)g,q is a Banach space, intermediate between
two Banach spaces Ay and A; which are a compatible couple, that is, they are
continuously embedded into a Hausdorff topological vector space.

When (Ag, A1) is a compatible couple, the K-functional of a € Ay + A; is
the mapping K (a,-; Ao, A1) : (0,00) — [0,00) defined by

K(a,t; Ao, A1) := inf{]|ao|| 4, + t||la1]la, : @ =ao + a1, ap € Ao, a1 € A1}.

Let 6 € (0,1) and g € [1,00]. The real interpolation space (Ao, A1)g,q consists
ofalla € Ag+ Ay :={ap + a1 : ap € Ap, a1 € A1} such that the norm

[/ (t_gK(aJ;Ao,Al))q% ' , q€[l,00)
0

supt_eK(&,t;AoaAl)a q=00
t>0

Ha”(AmAl)S,q -



is finite. If A; C Ag with continuous embedding, then
Ay C (Ao, A1)o,q € (Ao, A1)np C (Ao, A1)ng € Ao (3)

for0<n<f<landl<p<qg<oo.
From the Reiteration Theorem we know that for 7,6 € (0,1) and ¢ € [1, o0]
one has

(A07 (A07 A1)7I700)97(1 = (A07 Al)n07q (4)
with
Ha”(Ao,Al)ne,oo < ||aH(AOy(AO;A1)n,oo)6,oo < 3||a’||(AO;A1>779.r>c (5)
for all @ € (Ao, A1)no,00 = (Ao, (Ao, A1)y,00)p o~ In the literature the Reiter-
ation Theorem is usually given in a more general context and the constants 1
and 3 in the norm equivalence (5) are not computed explicitely. Therefore we
verify (5) in Lemma 16. For further properties of interpolation spaces, see for
instance [4], [5] or [30].
We say that a random variable admits fractional smoothness of order (6, q)
if it belongs to the interpolation space

(L2(P), D1 2)

6,q°

where 6 € (0,1) and ¢ € [1, c0].

2.3. Assumptions about a density

Some of the assertions in this paper rest on the following assumptions:
(A1) X; has a bounded density p;.

(A2) X; has a density p; and there exist a,b,c € R with ¢ >0 and b—a > 0
such that pi(x) > ¢ for all « € [a, b].

(A3) There exist tg € (0,1) and a,b,c € R with ¢ > 0 and b — a > 0 such
that for all ¢ € [tg, 1], the random variable X; has a density p; such that
pi(x) > c for all = € [a, b].

Note that the conditions (A1), (A2) and (A3) are satisfied, for example, when
the condition L
O 1o Jg sin® (uz)v(dz) 1
|u| o0 log |u] 2

of Hartman and Wintner [18] holds. We formulate the argumentation in a
lemma as it will be used later.

Lemma 2. Assume that £ > 1/2. Then (A1), (A2) and (A8) are satisfied.

Proof. By [18, Section 13, statement II], X; has a bounded and continuous
density for all ¢ > 3. The conditions (A1) and (A2) follow immediately. Let



us prove (A3). Let r > 0. Due to stochastic continuity of Lévy processes, there

is tg € (2%, 1) such that

P(|X;_y| <) >1/2 for all ¢ € [to, 1].

Since ¢ > 1/2, [25, Theorem 24.10] implies that either the support of X, is
a half line [k, 00) (or (—o0, k]) for some k € R, or the support of X, is R for
all s > 0. The continuous density py,, if supported on a half line, is strictly
positive on the open half line (k, 00) (or (—oo, k)) by [28, Chapter IV, Theorem
8.6]. If X, has a bounded and continuous density supported on the whole real
line for i < s < tp, then [28, Chapter IV, Theorem 8.6] implies that py, is
strictly positive. In any case p;, is continuous and strictly positive on at least
a half line, so that we find K € R and ¢ > 0 such that p; (z) > ¢ for all

x€[K—2r,K+2r]. Forany z € [K —r, K +r] and t € [to, 1] it holds that

P = [l vPx @)z [ e nPx, @

> P(|Xi—to| <7) > /2.

3. Holder continuous functions and Malliavin smoothness

For a € (0, 1], the spaces B(R), C“ and C{* are spaces of Borel measurable
functions f such that

[fllc = sup [f(z)|, [ f]
z€R

<wﬁ?#%%HMIWq:M%HWm
TFY

respectively, is finite. We frequently use the notation Lip := C}. Note that
(B(R), || - [loo) and (C, || - loe) are Banach spaces and || - [|ca is a seminorm.
Recall the notation

Moe = / (|x|2a A 1) v(dx).
R

3.1. Smoothness of first order

Theorem 3. Let a € (0,1) and A := [0,1] x {z : |z| > 1} and assume that
f(X1) € Ly(P).

(a) If f € C* and [, |z|**v(dz) < oo, then f(X1) € Dy, and
DB, . < LG oy + I | JoPov(ao)

(b) If f € C% myq < 0o and E [f2(X1)N(A)] < oo, then f(X1) € Dy and

IF(XD)ID,
< [[FllZamaa + B [f2(X)N(A)] + 1 (X)7, @) (1 +v({lz] > 1})).



(c) If f € Cf and maq < 00, then f(X1) € D1y and

IF XD, , < A+ dmaa) [I£IIE,- (6)

(d) Assume that (A2) holds and choose ¢ € {0,1,2,...} such that there exist
k € Z and ¢ > 0 with p1(z) > ¢ for all x € [k27% (k+1)27‘]. Then

for the function g®*(x) = iZ_‘md(T‘x, Z) from Lemma 4 it holds that
g@t e Cg, and "
ga’e(Xl) €Dis onlyif ma, < 0.
Proof. (a) The claim follows from [26, Proposition 5.4] (see (1)) and the a-

Holder continuity.
(¢) The claim follows from ||f(X1)H2L2(]P) < Hf”%vgx and (1), since

| E (1706 +2) = 0P e

R

< 2|z v(dz) + 412 v (de

_/{lxl<1}|f||c|| (dz) /{W} 112 v(de)
2., . x> v(dz).

< -4 [ (e A1) v(aa)

(b) Consider the chaos expansion f(X1) = > ", I,(f,) and recall that

e 2
Loy T Dl
n=1

fa

IF XD, . = £(X)]

La(m®n)

‘We show first that

oo
E nn!
n=1

fa

2
L3 (m®n) - ‘/[1711 E Uf(Xl + I) - f(X1)|2] I/(dx)

o0
+Znn!

2

(7)

ntL(IRer]R)X(”—l)xAH

— Ly(m®n)
In fact, it holds that
X, +2)— f(X 2
/ E 'f( ! )= 1)11[0,1]x{0<\m\§1}(t79€) :|m(dt7dx)
Ry xR\{0} x
- /[ B +2) - S wlde) < ] / Iofv(d) <
—1,1 —1,1

(8)



so that there is a chaos representation

f(Xa+z) - f(Xh)

xT

Ljo.1)x fo<|z|<1} (8, ) = Z[ hnt1(s, (¢, ) in Loy(meP)

where h,, 1 € Ly(m®(+1) is symmetric in the first n pairs of variables (see [23,
Lemma 1.3.1] or [24, Section 4]). Let ¢ = —k V (f A k) so that ¢, € Cf and

¢r(X1) € Dy by (c). Consider the chaos expansion ¢, (X1) = In(fT(Lk)).
Then f¥ — f, in Ly (m®"), since pr(X1) — f(X;) in Ly(P). It also holds
that

/ E ‘@k(Xl +2) — (X)) f(X+a) - f(X) [
[0,1]x{0<|z|<1} xr x

] m(dt, dzx)

converges to 0 as k — oo by dominated convergence, since |or(X1 + z) —
er(X1)| < |f(X1+2) — f(X71)|. From (2) we have that

or (X1 + ) —pp(X1)

Lio,1xr\{0} (t;7) = Dy oor(X1) Zn—[nlf(k) (8, 2)),

in Ly(m ® P), which gives
ho = im0 fi 0 g <m0 % (0,1 0< el <1})
= nfu LR xR * 1) x([0,1] % {0<]a] <1})
in Ly(m®") for n = 1,2, ... Therefore

f(Xa+z) - f(X)

xT

= Zn-[n 1 fn 5 )) [0,1 ><{0<|x|<1}(t JJ))

Lio,17x fo<|z|<1} (t; )

in Ly(m ® P). This together with Lemma 1(a) proves equation (7). For the
second term on the right hand side of (7) we have by [22, Proposition 3.4] that

Z”"'Hf”]l(mxm“" ”xAH E [f2(X1)N(A)] +E[f2(X1)]E[N(A4)].

Lo (m®”)

Thus, from (7), (8) and the above inequality we get that

Znn"

Noting that E[N(A)] = v({|z| > 1}), we obtain the claim.

»

La(men) = £ [emea + B [f2(X1)N(A)] + EIf*(X1)]E[N (A)].



(d) We have g*¢ € C¢ by Lemma 4 below. If g¢*‘(X;) € Dy 2, then by (1)
and Lemma 4 it holds that

00 > /]R]E [(ga’e(Xl +z)— ga’f(Xl))z} v(dx)
> /MNS [c/k(kﬂ)w (9(y + ) —g(y))2dy] v(dz)

2—¢

> 02_4280‘_10/ |lz[2*v(dx).
|z|<2-¢-3

Hence it must be mo, < oco. ]
The idea for the construction of the function ¢®¢ below is based on the

decomposition of Ciesielski [7].

Lemma 4. Let £ € {0,1,2...} and g*‘(z) = Z 27" g, (x), where

n=~{
gn(z) =d(2"2,Z) = inf{|2"x — 2| : z € Z}.
Then g** € C, and for all k € Z and |x| < 2772 it holds that
(k+1)27* )
/ Z [ga,l(y + x) _ g”’é(y)} dy > 2_£28a_10|1“2a.
k2-

Proof. Since |g,(z)| < 1/2 for all € R, it is clear that ||g**||e < oc. Since we
also have that |g, () — g»(y)| < 2"|z —y| for all z,y € R, we get for any m > ¢
and 271 < |z —y| <27™ that

9% (@) = g™ ()] < D27 |gn(@) — gn(v))|

n=>~{
m [e'S)
—anonog—m —an
< E 2 22 + E 2
n=0 n=m-+1

< 2(2—m—1)a (Q—m—l)a
= 2lta_1 T 1-2a

= ((21a - 1;(1 - za)> |z —y|*

Thus g*¢ € .
The function g, is periodic with period length 27" for all m > n, so that

10



via dominated convergence we get that

(k+1)27* 5
/ (9" (y+ ) — g™ (y)] dy
k2t

0o 2-"
=Yz [ gty o) - ono)dy
n=~{ 0

+2 Y gnrtralnim) / 90y + ) = 90 (V)] [gm (¥ + ) — gm(y)] dy.

m>n>/{ 0

n—1

Let m > n > {. Since g,, is periodic with period length 2~ and

005+ )~ 0u) = — (g y+ 277 +2) — guly £27 )

for all z,y € R, we have that
/O [9n (Y +2) = gn (V)] [gm(y +2) — g (y)] dy
g—n—1
= /0 [9n(y +2) = 90 (V)] [9m(y +2) — gm(y)] dy

27"7/
[ ol ) = 000 lan (o + ) — g ()] dy
2—n—1
=0.
Let 0 < |z| < 273 and m > £ such that 27™" % < |z| < 2773, Since

19m (y +2) — gm (y)| = 2™ |2| when both y+x € (0,27™71) and y € (0,27™7}),
we obtain that

2-m 3.9—m—3
/ [9m(y + ) — gm(y)]Q dy > / [2m|xH2 dy = gm=2,2
0

2—m—3

Since 2m—2x2 > 2m—2(27mf4)2—2a|$|2a — 2—m+20¢m—i—80¢—10|‘Z,|2oz7 we get

[e'e] 27"
22717272(171/ [(J'n (y + .Z‘) _ gn(y)f dy > gm—{—2amg—m+2am+8a—10
n=~{ 0
> 27@28&710|x|20.
O]
Remark 1. The function g®* in Theorem 3(d) and Lemma 4 is irregular on
the whole real line. If a CP-function is "more smooth”, then Theorem 3(d)

does not necessarily give the best condition: Take for example f(z) = |z|* A 1,
which is Cf' but not Cp* for any o’ > «, and assume that (A1) holds. Then for

11



0 < |z| <1 we have that
B [(1X: 4l A1— |Xaf* £ 1)7]

2
2
< Ip1]l / Iy + 21 — |y dy
)

2
Tl
— Il [ (

[]

xa Oé2d
Z+ — 2| z

< lIpallocl***! { [ owrar [ el 1)%*@]
|2]<2 2<|zl<
o llaclaf? 1 4+ 2] fof a < 4
<< prllsslzl? {4—0— 2log %} , fora =4 .
P llolol?+ [4+ 222 0] =20] - for o> L

Since E [(|X1 + 2| Al —|X1]*A 1)2} < 1, we get from (1) that [X1|* A1 €
D, o, if one of the following three conditions holds: 1. 0 < a < 1/2 and
Moq+1 < 00, 2. o = 1/2 and f{0<lrl<1} 22log(1/|z|)v(dz) < co or 3. a > 1/2.
Note that for the Brownian motion B we have |[B1|* A1 € Dy 5 if and only if
a > 1/2. This can be easily seen using [23, Example 1.2.8].

3.2. Fractional smoothness

To find fractional smoothness for f(X;) with f € Cf in Corollary 5 below,
we take advantage of the fact that Cff = (B(R), Lip)a,co With

- llee <30 liB@w).Lip)a.w <6l - llce (9)
(see Lemma 17 and also [30, Theorem 2.7.2/1] in a slightly different setting).
Theorem 5. Let 0 < oo < 6 < 1.

a) If f € CF and mogy 9 < 00, then
b /

f(X1) € (L2(P), Di2)y o

and

£ (XD (Lo (P) D12, . < 18T+ dmaayol fllcp-

(b) Assume that (A3) holds and choose ty € (0,1) and £ € {0,1,2,...} such
that there exist k € Z and ¢ > 0 with p,(x) > ¢ for all t € [to, 1] and all
z € [(k—1)27% (k+2)27%. For the function g** € C® of Lemma / it
holds that

g (X)) € (L2(P),D12)y o, only if maqjgie < 00 for all e > 0.

12



Proof. (a) One finds for every t > 0 and € > 0 a function f; € Cf/a such that

(17 = filloe + el ill oo ) < K(F,t5 BOR),CH/) +e.
Using inequality (6) for f;(X;) we get
K(f(X1), 6 La(P), D) < (= ) (X0 [ ae) + LX)
< 1f = folloo + tlill oo o/ TF Atz
< T+ A (K(f, 6 BR), C5/%) + <)

so that

||f(X1)H(L2(]P)7ID1,2)9,oo < V 1+ 4m2a/9HfH(B(]R),C;‘/e)g,OO

Using the first inequality of (9), (5), and the second inequality of (9), we obtain
that

£ mmy,coroy . < Il BER).BOR) Lip)aso o0

< fllBR).Lip)aso
< 18|/ flleg

and this finishes the proof of (a). The proof of assertion (b) is given in Section
5. O

Remark 2. Assertion (a) of Theorem 5 implies that f(X1) € (L2(P),D1.2)a,00
for all f € C} for any pure jump Lévy process X. Also for the Brownian motion
B we obtain the smoothness of level (&, 00) for f(By) for any f € Cf': choose
f+ € C} = Lip like in the proof of Theorem 5 and use the fact that

[f:(B)lID > < ell fellip

from [29, Lemma A.5], where ¢ > 0 is a constant not depending on f;.

4. Functions of bounded variation and smoothness

Let us first recall the space of normalized functions of bounded variation, the
space NBV. The variation function of f is given by

Ty () = sup {i [f(zi) = fzic1)] : —c0o<a0 <21 <+ <Tp =2, B> 1}
i=1

and the total variation of f is V(f) = limg_,o T¢(x). The space of functions of
bounded variation is

2V = {7 R R oy = lmsup|£(2)] + V() < oo

13



Note that when V(f) < oo, then the limit f(—o0) := lim,_,_ f(z) exists ([9,
Theorem 3.27(c)]) and for f € BV we may write ||f|lgy = |f(—o00)| + V().
Furthermore,

1flloc < [IfllBv-

We denote by NBV the space of normalized functions of bounded variation,
that is, the space of all f € BV such that f is right continuous and f(—o0) = 0.
When f € NBV, then by [9, Theorem 3.29] there exists a finite signed measure
py such that

1) = [ 1o @nsdn) = [ Lo @pnsldn) = [ Logoo)le = wns(au)
R R R

(10)

for all z € R. Furthermore, /1y admits the Jordan decomposition 1 = M}L — g

where pf and p; are nonnegative finite measures. We write || = u}“ +py so
that [uf|(R) = [|f]|Bv-

4.1. Smoothness of first order
Theorem 6 ([21, Example 3.1]). For normalized functions of bounded variation
we have the following.

(a) Assume that (A1) holds. If f € NBV and my < oo, then f(X1) € Do
and

17 (XD 2 = V1@V [Ipllsc)mall fllsv-

(b) Suppose that X1 satisfies (A2) and let K € R be such that there isr >0
and ¢ > 0 such that the density p1 of X1 satisfies p1(x) > ¢ for all x €
[K —r, K +7]. Then Ijx ) (X1) € Dy only if my < oo.

Proof. (a) Let f € NBV and puy be the according signed measure from (10).
We use Holder’s inequality to get

[0+ o) - 7000y wiao)
R

:/RE [(/R (Lo (X1 + 2) — Ly 00y (X1)) Mf(du)>2] v(dx)

< l®) [ B (1 (%1 +2) = Ty (50))7] sl ()
< 1sl@) [ [ (alclel A1) @

<10 (1 ) [ (1] A (o).

Hence from (1) we obtain that

IF&XD)ID, , = IIf(X1)\Iiz(p>+AE[(f(X1 +x) = f(X1))?| v(dz)

<y + 1y 1V Ip1llc)ma.

14



(b) Let 7 > 0 and ¢ > 0 be such that p;(z) > c for all z € [K —r, K + r]. Let
J =1k o). Then f € NBV and

| E[l#0x+ ) - 160 viaa)

= / E [H[K,Kfz)(Xl)} l/(d.Z') +/ E []l[Kfz,K)(Xl)] V(d.”],’)
(=00,0)

(0,00)
> C/ |x|v(dz).
o< |z|<r

By (1) it holds that m; < oo, if f(X;) € D1 2. O

4.2. Fractional smoothness

If m; < oo does not hold, it is still possible to attain fractional smoothness
with functions in NBV. In [11, Example 4.2(a)] it is verified that 1 (g )(X1) €
(L2(P),D1,2)1/2,00- Note that in [11, Example 4.2(a)] it is assumed a small ball
estimate for the distribution and this assumption is equivalent with (A1) (one
can easily see this by using the steps of the proof of [2, Theorem 2.4(iii)]).
In the following theorem we show that the smoothness level increases as the
Blumenthal-Getoor index decreases.

Theorem 7. Let 1/2 <6 < 1.
(a) Assume that (A1) holds. If f € NBV and mq,9 < oo, then
[(X1) € (L2(PP), D1 2)y

and

1D 101200 S (VP + /142 (lplloe V D mago ) 1 ]5v-

Especially, f(X1) € (L2(P),D12)1  for any Lévy measure v.
PR
(b) Assume that (A8) holds and let to € (0,1) and K € R be such that there
exist r > 0 and ¢ > 0 with pi(x) > ¢ for all x € [K — 2r, K 4+ 2r] and all
t € [to,1]. Then

Ik ,00)(X1) € (LZ(IP),IDM)QQ<> only if mi/94. < 0o for alle > 0.

Proof. (a) Let f € NBV and py be the according signed measure from (10).
For t € (0,1) we define

0, <0
ale) = Qbob, 0<o < and i) = [ oo - ),
1 x> 120 R

)

15



Then
E [(ft(Xl +z) — ft(Xl))z}
N /nz (/IR [9:(y + 2 —w) — gey — w)] uf(dU)> p(y)dy
< gl e [ [ (@nty-+a = 0) = ety =) gl

= 1127/ (R)? pl] oo /R (01(5 +2) — go(2))? dz.

Note that g;(- 4+ ) — g; is nonzero only on an interval of length #*? 4 |z| and

z+x 1
20t

’LL271971 1(0,1‘,29) (u)du

l0u(z+ ) — gu(2)| = \/

lel 1,
< —— 20 Mg 420y (u)du
/0 201 S |
= gi(lz]) <1

for all z, 2 € R, since 55 — 1 < 0. When |z| = t*°, then
/m (9¢(z + @) = g1(2))” dz < 2far| = 2620~ V|2~ < 22 V]1/0,
When |z| < 2%, then
/IR (90 + @) = g0(2))" d= < 2677 (|]) = 2%~ V] /7.
On the other hand,
E [(f:(X1 +2) = fi(X1))’]

=E

( [0+ -z - w) uf(dU)ﬂ

< Jps*(R),

so that
B[00 +0) - £x0))?] wido)
R

< [ s @2 (e v 1) (2207012 A1) (o)

< g |(R)? (1plloo Vv 1) 262 Vimy 4
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since 0 < t < 1, and therefore f;(X7) € Dy 2. It also holds, by (10), that
2
I(f = XD,y = /]R </]R [L10,00) (¥ — u) = iy — )] Mf(du)> Px, (dy)

< g (R) 1ol oo /R (Ljo.00) () — 96(1))* dy

< Jpsl(R)?[[pll o t™

and

1fe(XD) Loy < lip|(R).
We obtain for t € (0,1) that

0 (I = FOEDzae) + 1 DI, ) + IDFXDIE, (mor))
<t? < Iplloo e | (R)E” + t\/|uf\(11{)2 1R (Iple v 1) 2t2(9—1>m1/9)

< (Vplloe + /1 + 2 Uplloe v 1) g6 ) L ().
Thus

||f(X1)H(L2(]P),]D1,2)9,oo
- 3ugt_9 lnf{||yb||L2(1P) + t”Yl”]Dl,z Yo+ Y = f(Xl)}
>

< suwp ¢ (17 = 2 XDlzaey + I EDIE, o) + IDLEDIE, )

VALF(X0) |z, ey
< (VIplloo + /1 +2 (Ipllos V Dy g0 ) 1 v

The proof of assertion (b) is given in Section 5. O

5. Sharpness of the connection between the smoothness index and
the Blumenthal-Getoor index

In Lemma 9 below, we adapt the characterisation for fractional smoothness
from [15, Corollary 2.3], where it is written for the Brownian motion.

Definition 1. For a sequence of Banach spaces F = (F,)2, with E, # {0}

n=0

we let ¢5(E) and dy »(E) be the Banach spaces of all a = (a, )52 € E such that

llalle, ) = (Z ”anHZEn) and |alla, ,(p) = (Z(er)lanll%n)

n=0 n=0

1
2

respectively, are finite. For a € E we let Ta : [0,1] — R be defined by

(Ta)(t) = llanllF, ¢

n=0

17



We use the notation A ~. B for %B < A < ¢B, where A, B € [0,00] and ¢ > 1.

Lemma 8 ([15, Theorem 2.2]). For 6 € (0,1), ¢ € [1,00] and a € ¢5(E) one
has

lalles (). 2(E))o.q

1—6
~ec 1—t) =2 Ta) (t ‘
lallescmy + |1 = )% VTa) (@ om0

~e lallem + |1 =0V T) (1) = Ta) @)

La((0,1),5(0,1), %)’
where ¢ > 1 depends only on (0,q), and the expressions may be infinite.

We will apply this theorem to the It6 chaos decomposition. Let (F¢)i>0 be
the augmented natural filtration of X. Throughout this section we let X be
an independent copy of X on (Q, F,P). We will use the notation |E for the
expectation with respect to the measure IP.

Lemma 9. For 6 € (0,1), g € [1,00] and f(X1) € L2(IP) one has

£ (XD (L2(P). D1 2)e
~e [F (XD Loy +

(1=~ 51 £(X0) = B [FXD)IF )|

Lq((0,1),B(0,1),14%)

(1—-1)%

150 — £+ Xy o

= ||f(X =+
[1£( 1)||L2(]P)+\/§ Lo (P) Lq(%)’

where ¢ > 1 depends only on (6,q) and the expressions may be infinite.

Proof. Let f(X1) = Yoo oln(fn) € La(P), E = (Ly(m®")) —, and a =

(o]

(m fn) . By orthogonality the equality
0

n=

Z L,(fn) = Z L(gn) + Z In(hy)

holds in Ly (PP) if and only if fn =gn + h,, holds m®"-a.e. Therefore
K(f(X1),t; La(P), D1 2)

[ee] (o]
= _inf _ Z”!Hg~n||%2(m®n)+t Z(n‘f'l)!”hn”%z(m@n)
fn=gnthn n=0 n=0

= K(a,t;02(F),d12(E))

and Lemma 1(b) gives

1£05) ~ B KDIFL @) = B [/(X1)?] - B [E[f(X)|17]
= (Ta)(1) — (Ta)(t).
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The equivalence follows now from Lemma 8. To conclude with the equality
below, we use the facts that E [f(X1)|F] = E [f(X; + X1-;)] as. and X; +

X2 X to get that

I (X1) = E [f(X0)I 7, @)

=E [f(X1)(f(X1) - E[f(X1)|F])]

=EE [f(X1)(f(X1) = (X + X1-4))]

= —EE [f(X; + X1-0)(f(X1) = f(X; + X14))]

SEE [(F00) - 7%+ X))

where the last line is obtained as the average of the two previous lines. O

Lemma 10. Let X be a pure jump Lévy process with cadlag paths on some
probability space (Q, F,IP). Let U be its Lévy measure and B be its Blumenthal-
Getoor index. Let ty > 0 and define a constant k by letting

o {f{lrlq}xﬁ(daj), if fqj<ay [2lP(de) < 00
0, if f{\w\él} |z|7(da) = oo.

(a) For all 5’ > B it holds that

o [|1X dt
P M>c — < oo forallc>0.
0 t1/8 ¢

(b) For any 8" < B there exists ¢ > 0 such that

g -
07N |Xt+Ht| ’ dt o
/0 ]P<t1/ﬂ” >c 7—00
(¢) It holds that
= dt
/ ]P(\Xt\>c)—<oo for all ¢ > 0.
0 t
Proof. By [6, Theorems 3.1 and 3.3] it holds for all 3 < 8 < 8 that
Xt—l‘fit |Xt+/€t| _

}E% SF = 0 a.s. and lirtnj(l)lp VED

a.s.

By a result of Khintchine [20, Section 2], we have that if u : (0,tp) — (0,00) is
non-decreasing and tlir% u(t) = 0, then for any Lévy process Y it holds that
—

Y, fo Y, dt
lim —— =0as. ifand only if / P u >c| — < oo forall ¢ > 0.
t—0 u(t) 0 u(t) t
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The claims (a) and (b) follow by choosing Y; = X; + st and u(t) = t*/7 in (a)
and u(t) = t/%" in (b).
(c) Let u(t) = t'/3 A 1. Then

. Xt . |Xt + Iit‘ |Iit|
< - —_— =
8w S —am Tam =0

by (a) so that [20, Section 2] implies that
to _ _ to _ v
/ IP(|Xt|>c>%§/ P @>c g<oo for all ¢ > 0.
0 t 0 uft) t
O

Lemma 11. Assume that (A3) holds and let R > 0, a < b, t; € (0,1) and
c1 > 0 be such that pi(x) > ¢1 for all x € [a — R,b+ R] and t € [to,1]. If
f R — R is Borel measurable and there exist v > 0, ca > 0 and n > 0 such
that

b
/ Fly+ ) — f@)Pdy > ealal”  for all |z <, (11)

then
f(Xl) S (LQ(IP),IDLQ)QQC OTlly Yf mn/9+5 < o0
for alle > 0.

Proof. The assumptions (A3) and (11) yield for ¢ € [tg, 1] that

[FE RIS ] P

Il
=i

B[ 6+ - %)= 10 +X1t>)2pt(y)dy}
R

Il
Sl

I / (f(y+X1tXlt)f(y))zpt(y)_(lt)dy}
R

v

b
EE / (f(y+X1t_Xlt)_f(y)>2cldy]l{X1tSR}:|

> ClCQIEIE [|X1_t v Xl_t‘T]]]'{‘Xl—t_)_(l—t,‘§T7|X1—t|SR}i| . (12)

Since X and X are independent, the process X = X — X with X,(w,@) =
Xi(w) — X¢(@) is a Lévy process on (2 x Q, F @ F,P ® P) with Lévy measure
v(B) = v(B) + v(—B), and its Blumenthal-Getoor index is the same f as for
X. Let 0 < ¢ < 0 and ¢ > 0 and set c3 = cicac¢”. Then (12) has the lower
bound

[X1- = Xi]?

es(1—1)" (P.® P) ( (1—t)en

> 1, X—— Xaoe < | X < R)

> es(1— 1)

- X_ - o
P ((1|_1t);|/n > c) ~P (|X1_t| > r) ~P(IX,_| > R)
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If f(Xl) S (LQ(IP),IDLQ)Q’OO, then f(Xl) c (LQ(]P),IDLQ)QIQ by (3) USIHg
Lemma 8 we get that

! L _ 2 dt
OO>/ (-0~ HHf(Xl)_f(Xt+X1—t)|’L2(]P)‘L2(]13) 1—t
(X - _ dt
>c / < ‘ 1);/|/7] >C> —]P(|X1_t| >7"> —IP(|X1_,5’ >R) m
X dt to dt W, dt
[ (le,;n >c> AR i (AR
where

oS LY A dt
0 0 g

by Lemma 10(c). Hence

to . [|X dt
/ P(lf)’/tl> >t<oo for all ¢ > 0 and for all 0 < 0" < 6.
0

Since U is symmetric, the constant x of Lemma 10 is zero and Lemma 10(b)
implies 3 < /6 for all 0 < 6’ < 6, so that 5 < n/6. O

Proof of Theorem 5(b). By Lemma 4, the function g satisfies (11) with [a, b]

k274 (K + 1)274, r = 27673, ¢y = 27125710 and n = 2a. If g™(X)) €
(L2(P),IDq 2)p,00, then by Lemma 11 it holds that 8 < 2«a/6. O
Proof of Theorem 7(b). We have that
K+r 9
| oy +0) = b () dy
K—r
K+r
= [ (o 00200 @) + s ()L e (@) dy
= |z| (13)

for all [x] < 7, so that 1k ) satisfies (11) with [a,b] = [K —r, K +r]. Choosing
R = r it now follows from Lemma 11, that if 15 )(X1) € (L2(P),D12)0,00
then 8 < 1/6. O

Remark 3. (a) If mg < co and (A3) holds, then we get for 0 < a <60 <1
from Theorem 5 the ”if and only if”-condition

M2a/6 <00 < f(Xl) S (LQ(IP),Dl’Q)Q’OO Vf S C?
and if also (A1) holds, then Theorem 7 implies for 1/2 <6 < 1 that

mi/6 <00 < f(Xl) S (LQ(IP)’]])172)97OO Vf c NBV.
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Note that mg < oo is indeed possible: choose for example

b

= |x|1+5(log2x ) dz for some b >0

v(dx)

for 8 € (0,2]. Using Lemma 2 we see that this process satisfies (A1)-(A3).

(b) If mg = oo, then Theorems 5 and 7 do not give an ”if and only if”-result
in general: In Theorems 13-15 in Section 5.1 we consider the symmetric
strictly stable process with

b
v(dz) = de for some b > 0 and § € (0, 1),

and the process satisfies (A1)-(A3) by Lemma 2. Theorems 13 and 14
show that when 0 < o < 6 < 1, then

f(X1) € (L2(P),Dq,2)p,00 Vf € Cf  for 2a/0 = 3,
and that for % < 6 < 1 it holds that
f(Xl) € (LQ(IP),]DLQ)Q,OO Vf c NBV for 1/9 = ﬂ,

eventhough mg = oo. However, we obtain for 0 < a < § < 1 from

Theorem 13, that

Maq/p < 00 <= [(X1) € (L2(P), Dy 2),,Vf € Cy for some ¢ € [1,00)
< f(X1) € (L2(P), D1 2)g,q Vf € Cp for all g € [1,00).

Theorems 14 and 15 imply for 0 < § < 1 that

myp < 00 <= f(X1) € (La(IP),D1,2)9,4Vf € NBV for some ¢ € [1,00)
— f(X1) € (L2(P), Dy 2)0,4Vf € NBV for all ¢ € [1,00).

5.1. Symmetric strictly stable process

We consider the symmetric strictly stable process which has the characteris-
tic function ¢(u) = =" for some ¢ > 0 and B € (0,2] ([25, Theorem 14.14]).
If 3 = 2, then the process is the Brownian motion v/2¢B, and otherwise it is a
pure jump Lévy process X with Lévy measure

v(dx) = b|x|_6_1dx for some b > 0,

where [ is the Blumenthal-Getoor index of the process. We will later take
advantage of the property that X, L /ey 1, which follows from

E [eiuX,,] — eftc\uva — efclutl/ﬁv3 - F {eiutl/ﬂXl} )

Using Lemma 2 one can easily check that assumptions (A1), (A2) and (A3)
are satisfied. For the rest of this section we assume that X is the symmetric
and strictly stable process of index 8 € (0,2).
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Lemma 12. Let a < b and to € (0,1). If f : R — R is Borel measurable and
there exist v > 0, c3 > 0 and > 0 such that (11) holds, then there exists ¢ > 0
such that

(7SS o] A

Proof. Let R > 0. Since X; has the support R by [25, Theorem 24.10(ii)], then
p1 is strictly positive and continuous on IR by the proof of Lemma 2. Hence we
find ¢; > 0 such that p;(z) > ¢; for all —|a — R|tal/ﬁ <z< |b+R|tam. Using
the fact that X, 4 t1/8 X, we obtain for any x € [a — R, b+ R] that

>c(1—t)"P  for all t € [to, 1].

pe(z) =t Pp (7 P2) > pr (7 P2) > ¢

for all ¢ € [tg,1]. Using (12) we get that
_ 2
[ECEFIE oS ]

> c16EE {\XH - XH|"1{|XH—X17t|gr,\f<l,,,\g1—'c}}
= c1e2(1 = )" PBE [|X1 — X1|"L{|x, - %, | <r(1—0)-1/7,| %1 |<RO—6)-1/7})
> 6162(1 — t)n/ﬁIEIE [|X1 — Xl‘n]]‘{\Xl—XﬂS’l',\XﬂSR}]
> c(1—t)"/P
for some ¢ > 0, where we used the fact that since X7 — X is strictly stable with
Lévy measure 2v, it must be that EE [|X; — X1|1{|X17)_(1\§T,|X1|§R}] is strictly
positive.
Theorem 13. Let 0 < oo < § < 1 and assume that f € C}'.
(a) It holds that f(X1) € (L2(IP),D1.2)0,00, if B < 2a/8.
(b) Let ¢ € [1,00) and £ € {0,1,2,...}. For the function g** € C from
Lemma 4 we have that
(i) y _ ‘
gY(X1) € (La(P),D1,2)g,q if and only if B < 20/0
and
(i)
g (X)) € (La(P),D12)oe  if and only if B < 2a/6.

Proof. (a) 1If § < 2a, then my, /9 < oo and the claim follows from Theorem
5(a). Assume now that g > 2a. We have

_ 2 _ _
HHf(Xl) — f(Xe+ Xl—t)HLz(lP)HL (P) < 2EE “Xl—t - Xl—t|2a||f‘ 20,;*}
2

< 9B [|(1— )Y (X1 — X0) 712 ]
< 2(1 - 0)%/%) f|2BE [|1X, - % [*].
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Since the process X — X on Q x  has the Lévy measure 2v and 8 > 2a, we
get that

/ |z|?*2v(dz) = 2/ |22~ 1dz < oo,
{lz[>1} {lz[>1}

which implies EE [|X; — X;[?**] < oo by [25, Theorem 25.3]. Thus
2
X1) = f(X;+ X1 | <ca-p
HHf( )= FXe+ X)) Lo(P) — S

for all ¢ € (0,1) for some C € (0,00) and the claim (a) follows from Lemma 9.
The ”if”-parts of (b) follow from (a) and (3). By Lemma 4, the function g**
satisfies (11) with [a,b] = [k27¢, (k + 1)27], r = 27673, ¢y = 271282710 apd
1 = 2a.. Thus, Lemma 12 implies that

— 2
HHf(Xl) A +XH)HL2<P>HL2<H’>> 2 (1 =1y

for some ¢ > 0, and with the use of Lemma 9 this proves the ”only if”-parts of
(b). O

Theorem 14. Let f € NBV.
(a) If B <1, then f(X1) € Dy .
(b) If B =1, then f(X1) € (L2(P), D1 2)p,q for all 6 € (0,1) and g € [1,00].
(c) Let 6 € (0,1). If 5 < 1/8, then f(X;1) € (L2(P),D12)p,00-

Proof. (a) The claim follows from Theorem 6(a).
(b) The claim follows from Theorem 7 and (3).
(c) If p <1, then the claim follows from (b). Assume that 8 > 1. We have

2

e -s0x 5 o

=EE

</R Liuso0) (K1) = Bu,oo) (X + Xl_t),“f(du)> 2]

< sl(R) [ BB L, ot s (X0)] 17 (d0)
< s PR pel [ BE [|X1—r — X1—4]

= g PR P BE [(1 - "/71%0 = X

< (1= 0)YP|usPR)E r | BB [ 51— X

Since the process X — X has the Lévy measure 2v and

/ |z|2v(dx) = 2/ |z|Pdz < oo,
{lz|>1} {lz|>1}

24



for B> 1, we get EE [|X1 - Xlﬂ < oo from [25, Theorem 25.3]. Thus

_ 2
HHf(Xl) - f(X +X1—t)HL2(1P>HL2<1?) -0

for all t € (1/2,1) for some C' € (0,00). When ¢ € (0,1/2], then

_ 2 )
7000 = £t i oy oy < 171 < WAIBY2Y 2007

and the claim follows from Lemma 9. O
Theorem 15. Let K € R.
(a) It holds that 1k )(X1) € D12 if and only if B < 1.

(b) It holds that 1k ) (X1) € (L2(IP),ID1,2)g,q for all 0 € (0,1) and q € [1, o0]
if and only if B < 1.

(c) Let 6 € (0,1) and g € [1,00). Then
(i) Lk 00)(X1) € (L2(P),D12)o,q if and only if B < 1/6 and
(i) Lix ,00)(X1) € (L2(P),D1,2)g,00 if and only if B < 1/6.
(d) Let 6 € (0,1) and q € [1,00). For the Brownian motion B we have that

(1) Lk 00)(B1) € (L2(P),D12)0, if and only if 2 < 1/6 and
(1) Lk 00)(B1) € (L2(P),D12)g,00 if and only if 2 < 1/6.

Proof. (a) The claim follows from Theorem 6(a) and the proof of Theorem 6(b),
since by [25, Theorem 24.10(ii)] the continuous density of X; is strictly positive
on the whole real line.

(b) The "if” follows from Theorem 14 and the "only if” follows from (c), since
B <1/6 for all 6 € (0,1).

(¢) The ”if”-parts of (i) and (ii) follow from Theorem 14(c) and (3).

Fix r > 0 and to € (0,1). By (13), the function L[k ) satisties (11) with
[a,b] = [K —r,K +7r], ¢ =1 and n = 1. Thus, Lemma 12 implies that

_ 2
HHf(Xl) — X+ Xl*t)Hh(P)HLz@) > c(1- )7

for some ¢ > 0. The ”only if”-parts of (c) follow now from Lemma 9.

(d) We choose E and a like in the proof of Lemma 9 on the corresponding
Wiener chaos. The claim follows from Lemma 8 and the proof in [16, Example
4.7), where it is shown that (Ta)’(t) ~ (1 —t)~1/2. O
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Appendix A.

The reiteration theorem states that (Ao, A1)ne,q = (Ao, (Ao, A1)y,00)0.q for
all n,6 € (0,1) and ¢q € [1, 00] with equivalent norms. In the following lemma
we compute the explicit constants for the equivalence of the norms for ¢ = cc.

Lemma 16. Let (Ao, A1) be a compatible couple and 1,0 € (0,1). Then

||fH(AOsAl)7]9,oo < Hf||(AOy(A07A1)T/,Oo)9,oo < 3||f||(A07A1)n0,oc
for all f € (Ao, A1)yo,00 = (Ao, (Ao, A1)y,00)g o0 -

Proof. First inequality: Let ¢ > 0 and € > 0. There exist fo,g0 € Ag, g €
(Ao, A1)y,00 and g1 € Aq such that f = fo+g= fo+ g0+ g1 and

9

K(f,1"; Ao, (Ao, A)nco) 2 Il follao + 27 9llca0,41), 0 = 5

— 9 e
> [l follao + " (llgollao + tlgrlla, = 5) = 5

> [lfo+ gollag + tllgilla, —
> K(f,t; A0, A1) — &

Thus
£l A0 (A0, A1) 00)0.00 = fgg(t")_gK(f, t"; Ao, (Ao, A1)n,00)
> supt™ K (f,t; Ag, A1)

t>0

= 1Fllcao, 41)n6,00

Second inequality: Let f € (Ao, A1)po,c0 and € > 0. For all ¢ > 0 we find
gi € Ag and h; € Ay such that f = g, + h; and

£
oy + lalas < K (£t Ao, ) + S0
Then
£
K(gt, 840, A1) < |lgellag < K(f,t; Ao, A1) + itne and

K (he.si Ao Ay) < slihalla, < 3 [ K(f.8 Ao, Ar) + 57

for all s € (0,00). These inequalities give, keeping in mind that hy = f — g,
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that

tn”h’t”(Ao-,Al)n,oo = t’7 Sl>11(:)) S_HK(hta S A07 Al)

< (o, )" s [t 50])

0<s<t

<sup (j)_” (K (f, 53 Ao, A1) + K (g1, 5; Ao, Alﬂ)

s>t

< (K (£t Ao, A1) + S077) v

<Sup (;)717 {K(f,s; Ao, A1) + K(f,t; Ao, Ay) + ;tné‘D

s>t

—nb
< K(f.t: Ao, Ar) + 5t +sup (T) K (fos: Ap, Av).

s>t

We obtain
£ 1 (An,( A0, A1) 100 )6.00
= sup (0 K (f,17; Ao, (Ao, A1) g.0)
t>

< iugf”a (lgellao + "1 hell (A0, A1), )
>

, s\ —nf
< supt~" (2K(f,t; Ao, Ar) + et sup (2) 7 K (£, 51 Ao, A1>)
>0 s>t N\

< 3sups K (f,s;Ag, A1) + €
s>0

= 3||f||(A07A1)n9,oo +e.

Lemma 17. Let o € (0,1). Then C¢ = (B(R), Lip)a,co with
-

Proof. First inequality: Let f € (B(R), Lip)a,co and € > 0. For all ¢ > 0 we
find f; € Lip such that

cp <3l lB®).Lipaw <6l - llog-

U = felloo +tfellin) < Il BR), Lip)a + -
Let x #y € R and ¢t = |z — y| > 0. By the triangle inequality we have

W <o -y (17 (@) — L@+ 1FW) — L) + o) - fuw))

<t QIS = felloo + tll fellLip)
<2 (Il (B®), Lipya.e +€) -
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It also holds that

[fllso < If = fillo + ([ filloo < I fll(B®),Lip)a.oe T €
so that

f(x) = f ()]

|| ]
|z —yl®

cg = |[flloc + sup < 3Ifll(B®R), Lip)a.o-

zAY
Second inequality: Let f € Cf and ¢ > 0 and define f; so that f,(kt) = f(kt)
for k € Z and f; is linear on each interval [kt,(k + 1)t], ¥ € Z. Then for
x € [kt, (k4 1)t] there is s € [0,1] such that fi(x) = sf(kt) + (1 —s)f((k+ 1)t)
and we get that

If = fillo =sup  sup [f(z) = fi(z)|

kEZ xekt,(k+1)t]

<sup  sup ](S\f(z)—f(kt)|+(1—8)|f(l“)—f((k+1)t)\)

kEZ zekt,(k+1)t

< sup [f(x) = f(y)l

lz—y| <t
<t flleg-

For the function f; it holds for 0 < ¢ < 1 that

I fellip = [ felloo + sup M
TH£Y

[z — 1yl
<l + sup Lk = ft((k +1)1)|
keZ
1f(z) = F)l

< Flls + 7" sup
T#Y ‘xfy‘a

<t flleg-

Hence we obtain that

[ lB®) Lip)an < | sup 7% (If = filloo +tl fellip) | Vsupt™ [ fllo
0<t<1 t>1

<2|fllcg-
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