
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Weighted norm inequalities in a bounded domain by the sparse domination method

© The Authors 2020

Published version

Kurki, Emma-Karoliina; Vähäkangas, Antti V.

Kurki, E.-K., & Vähäkangas, A. V. (2021). Weighted norm inequalities in a bounded domain by
the sparse domination method. Revista Matemática Complutense, 34(2), 435-467.
https://doi.org/10.1007/s13163-020-00358-8

2021



Revista Matemática Complutense
https://doi.org/10.1007/s13163-020-00358-8

Weighted norm inequalities in a bounded domain by the
sparse domination method

Emma-Karoliina Kurki1 · Antti V. Vähäkangas2

Received: 15 October 2019 / Accepted: 20 April 2020
© The Author(s) 2020

Abstract
We prove a local two-weight Poincaré inequality for cubes using the sparse domi-
nation method that has been influential in harmonic analysis. The proof involves a
localized version of the Fefferman–Stein inequality for the sharp maximal function.
By establishing a local-to-global result in a bounded domain satisfying a Boman chain
condition, we show a two-weight p-Poincaré inequality in such domains. As an appli-
cation we show that certain nonnegative supersolutions of the p-Laplace equation and
distance weights are p-admissible in a bounded domain, in the sense that they support
versions of the p-Poincaré inequality.

Mathematics Subject Classification 35A23 · 42B25 · 42B37

1 Introduction

Poincaré inequalities are useful tools in analysis, especially so in the theory of partial
differential equations (PDEs). The present paper stems from the question whether it
is possible to establish a weighted Poincaré inequality with respect to weights defined
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on a bounded domain only. This setting is natural from the viewpoint of analysis of
PDEs and calls for a localized argument, which we borrow from harmonic analysis.

To begin with, we provide sufficient conditions for a general two-weight Sobolev–
Poincaré inequality

(∫
Q0

∣∣u(x) − uQ0

∣∣q w(x)dx

) 1
q ≤ C

(∫
Q0

|∇u(x)|p v(x)dx

) 1
p

(1)

to hold for every u ∈ Lip(Q0)with 1 < p ≤ q < ∞. This result is Theorem5.4 below,
which is applied to show that (3) holds in cubes Q0 with 4Q0 ⊂ � and 2n

n+1 < p < ∞,
including the case p = 2 of the classical Laplacian. Weighted norm inequalities such
as the above are relevant to the study of nonlinear PDEs and so-called p-admissible
weights; for instance, see Chapter 20 in [11]. Furthermore, the proof quite naturally
yields a local variant of the Fefferman–Stein inequality for the so-called sharpmaximal
function (Theorem 4.2).

Having established the local inequality (1), we extend it to domains satisfying a
Boman chain condition. The geometry of Boman domains allows us to propagate the
estimate from single Whitney cubes to the entire domain adapting an idea of Iwaniec
and Nolder [14]; see also Chua [5]. As a result, in Theorem 7.1 we present the two-
weight inequality

(
inf
c∈Rn

∫
�

|u(x) − c|q w(x)dx

) 1
q ≤ C

(∫
�

|∇u(x)|p v(x)dx

) 1
p

(2)

under the assumption that the weights w and σ = v−1/(p−1) satisfy suitable local
doubling and A∞ conditions, as well as a Muckenhoupt-type compatibility condition
in dilated Whitney cubes and their dyadic subcubes Q∗ ⊂ �:

(
1

|Q∗|1−1/n

)p

w(Q∗)
p
q σ(Q∗)p−1 ≤ K .

For the sake of demonstration, we present two applications to distance weights, as
well as one for nonnegative supersolutions to the p-Laplace equation. Namely, we
establish the weighted Poincaré inequality

∫
Q0

∣∣u(x) − uQ0

∣∣p w(x)dx ≤ Cl(Q0)
p
∫
Q0

|∇u(x)|p w(x)dx, (3)

where u ∈ Lip(Q0), and C = C(n, p,�) > 0. This inequality is known to hold for
all cubes Q0 ⊂ R

n whenever w ∈ W 1,p
loc (Rn) is a nonnegative weak supersolution

to the p-Laplace equation in R
n and 2n

n+1 < p < ∞; see [11, p. 74]. We show a

corresponding local variant of this result. We assume that the weight w ∈ W 1,p
loc (�)

is a nonnegative weak supersolution of the p-Laplace equation in a bounded domain
� ⊂ R

n , and prove (3) in cubes Q0 ⊂ � such that 4Q0 ⊂ �.
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Weighted norm inequalities in a bounded domain by the…

A key new feature of Theorem 5.4 is that the assumptions concerning the weights
v and w are localized to the fixed cube Q0, which is indeed necessary in order
to establish the local version of (3) in Theorem 7.7. This distinguishes our main
result (2) (Theorem 7.1) from other two-weight inequalities in the same vein. In
particular, our result provides a more strictly localized variant of a theorem due
to Chua [5, Theorem 2.14]. We only assume the weight w to be doubling in �,
which is a weaker notion than the global doubling required by Chua. The down-
side of our approach are the ensuing supplementary A∞ conditions. These can
be seen as an artefact of the method, which will be discussed next. Other suffi-
cient conditions for two-weight inequalities are given by Chanillo and Wheeden [4],
and Turesson [25, Theorem 2.6.1]. Maz’ya [19, Section 3.8] presents a necessary
and sufficient capacitary condition for fractional Sobolev spaces. See also Dyda et
al. [6], Hurri and Hurri–Syrjänen [12,13], and Muckenhoupt–Wheeden’s early paper
[20].

In order to prove (1), we proceed in two stages. Both are based on the idea of sparse
domination, in which one first provides a pointwise inequality in terms of a sparse
dyadic operator. Consequently, the problem is reduced to showing a uniformweighted
norm inequality for a significantly simpler class of sparse dyadic operators. In the first
stage, we follow the idea in [17] and show the pointwise inequality

∣∣ f (x) − fQ0

∣∣ ≤ C
∑
Q∈S

XQ(x)−
∫
Q

∣∣ f (y) − fQ
∣∣ dy, (4)

where the collection S of dyadic cubes inside Q0 depends on f , and is sparse in the
sense that there are pairwise disjoint, measurable subsets ES ⊂ S ∈ S incorporating
a sufficiently large part of S in terms of weighted measure. Moreover, the constant C
is independent of f , and therefore sharp maximal functions can be used to control the
sparse dyadic operator on the right-hand side of (4). The Poincaré inequality, followed
by another pointwise sparse domination argument pertaining to the fractional maximal
function and due to Pérez [22], allows us to conclude the proof of (1).

To the authors’ knowledge, the application of the sparse domination method
to Poincaré inequalities is new, and the present work could also be consid-
ered a demonstration of its scope of application. The method has been very
influential in harmonic analysis, in which several weighted inequalities for singu-
lar integrals and potential operators have been established by using the idea of
pointwise dyadic domination, including the celebrated A2 theorem. For a selec-
tion of recent examples and developments, we refer to Pereyra’s lecture notes
[21]. Particularly influential works for our purposes include those of Lerner, such
as [17] (with Ombrosi and Rivera-Ríos) and [16]. Compared to state-of-the-art
instances of the sparse domination argument, our version is vastly simpler, yet
perfectly sufficient for its purpose and with the further advantage of being local-
ized.
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2 Setup

A cube in R
n is a half-open set of the form

Q = [a1, b1) × · · · × [an, bn) ,

with b1 − a1 = · · · = bn − an . For our purposes, a cube Q = Q(xQ, rQ) is most
conveniently determined by its midpoint xQ and side length 2rQ = b1−a1.We denote
the side length of a given cube Q by l(Q). If N > 0, we also adopt the shorthand
notation NQ = Q(xQ, NrQ).

We denote the characteristic function of a set E ⊂ X by XE , that is, XE (x) = 1 if
x ∈ E and XE (x) = 0 if x ∈ X\E .

Any open, nontrivial, proper subset � ⊂ R
n admits a Whitney decomposition,

which we denote by W = W(�). The standard construction can be found e. g.
in [10, Appendix J]. Choosing cubes to be half-open, the Whitney cubes are disjoint.
Furthermore, they cover the open set�:∪Q∈WQ = �. For a cube Q = Q(x, r) ∈ W ,
the corresponding dilated cube is denoted by Q∗ = 9

8Q = Q(x, 9
8r). Such dilated

cubes have bounded overlap, which means that
∑

Q∈W XQ∗ ≤ C(n). Moreover, since
the side length of a dilated Whitney cube Q∗ is comparable to its distance from the
boundary of the set, there exists a constant C = C(n) such that

l(Q∗)
C(n)

≤ d(Q∗, ∂�) ≤ C(n)l(Q∗). (5)

The family of Lipschitz continuous functions on a set � is denoted Lip(�). Local
classes of functions mean that the property in question holds for every compact set
K ⊂ �; these are indicated with a subscript, such as Liploc(�) for the set of locally
Lipschitz continuous functions on �.

For a cube Q0 ⊂ R
n , the collection of its dyadic children, denoted chD(Q0), are

the 2n cubes with side length l(Q)/2 obtained by bisecting each edge. Continuing
this process recursively, we obtain the infinite collection D(Q0) of dyadic subcubes
that consists of Q0 and its dyadic descendants in any generation. We will be routinely
making use of the fact that these cubes are nested: if Q, Q′ ∈ D(Q0), then either one is
contained in the other or the cubes are disjoint. Thanks to the nestedness property, each
cube inD(Q0)\{Q0} has a unique dyadic parent, denoted πQ: the cube Q′ ∈ D(Q0)

such that Q ∈ chD(Q′).
With respect to a generic collection E ⊂ D(Q0) of cubes with Q0 ∈ E , the E-parent

πEQ of any dyadic cube Q ⊂ Q0 is the minimal cube in E that contains Q. Notice
that Q is not necessarily in E to begin with, and the inclusion need not be strict, so
πEQ = Q whenever Q ∈ E . Analogously to the dyadic case, The E-children chE (Q)

of a cube Q ∈ E are the maximal cubes in E strictly contained in Q.
In the following, subcubes that are constructed beginning with a fixed cube Q0 will

be referred to as “dyadic cubes”. In other words, all “dyadic cubes” are Q0-dyadic,
whether or not this is spelled out. In the first part, we will be operating inside a cube
Q0 ⊂ R

n ; in the proof of the local-to-global result, Q0 will turn out to be a dilatation
of a cube Q ⊂ W(�) of the Whitney decomposition.
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Weighted norm inequalities in a bounded domain by the…

We say that a locally integrable functionw is aweight in an open set�, ifw(x) > 0
for almost every x ∈ �. The weighted measure (or “weight”) of a measurable set
E ⊂ �, in our case typically a cube, with respect to w is

w(E) =
∫
E

w(x)dx .

The integral average of a function f ∈ L1(E) over a measurable set E ⊂ � is written
fE for short, and the corresponding average with respect to a weight w is indicated
by adding another subscript:

fw;E = 1

w(E)

∫
E
f (x)w(x)dx .

Throughout the proof of the local result, we are dealing with Muckenhoupt A∞
weights in the cube Q0. In fact, we only need to assume the A∞ property in dyadic
cubes, as will be detailed shortly.

Definition 2.1 Aweightw in a cube Q0 belongs to the dyadicMuckenhoupt A∞ class,
denoted w ∈ Ad∞(Q0), if there exist constants Cw and δw in (0,∞) such that for all
dyadic cubes Q ⊂ Q0 and all measurable subsets E ⊂ Q we have

w(E)

w(Q)
≤ Cw

( |E |
|Q|

)δw

.

Wewill need to make intermediate estimates in terms of certain maximal functions,
which are introduced next.

Definition 2.2 For a cube Q0, 0 ≤ α < n and f ∈ L1(Q0), we define the dyadic
fractional maximal function

Md
α,Q0

f (x) = sup
Q⊂Q0
Q
 x

1

|Q|1−α/n

∫
Q

| f (y)| dy,

where the supremum is taken over all dyadic cubes Q ⊂ Q0 such that x ∈ Q.

Definition 2.3 Let Q0 be a cube, w a weight in Q0, and f ∈ L1(Q0;wdx). We define
the weighted dyadic maximal function

Md,w
Q0

f (x) = sup
Q⊂Q0
Q
 x

1

w(Q)

∫
Q

| f (y)| w(y)dy,

again taking the supremum over all dyadic cubes Q ⊂ Q0 such that x ∈ Q.

The following standard lemma shows that the weighted dyadic maximal function
is bounded in L p(Q0;wdx).
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Lemma 2.4 Let Q0 ⊂ R
n a cube, 1 < p < ∞, and w a weight in Q0. Then there is

a constant C = C(p) > 0 such that for all f ∈ L p(Q0;wdx)

∫
Q0

(
Md,w

Q0
f (x)

)p
w(x)dx ≤ C

∫
Q0

| f (x)|p w(x)dx .

Proof The statement for 1 < p < ∞ is proven by interpolation. To begin with, we
immediately observe that ‖Md,w

Q0
f ‖L∞(Q0;wdx) ≤ ‖ f ‖L∞(Q0;wdx). It remains to verify

that the maximal operator is of weak type (1, 1). To this end, let f ∈ L1(Q0;wdx)
and t > 0. We claim that

w
(
{x ∈ Q0 : Md,w

Q0
f (x) > t}

)
≤ 1

t

∫
Q0

| f (x)| w(x)dx . (6)

For brevity, denote Et = {x ∈ Q0 : Md,w
Q0

f (x) > t}. To see (6), fix t > 0 and consider
the collection of all dyadic cubes Q ⊂ Q0 satisfying

1

w(Q)

∫
Q

| f (y)| w(y)dy > t . (7)

If the collection is empty, we have Md,w
Q0

f (x) ≤ t almost everywhere in Q0 and
w(Et ) = 0. Otherwise, we fix a collection of maximal cubes {Qi } satisfying (7). In
particular, these cubes are pairwise disjoint. We have Et = ⋃∞

i=1 Qi , and

w(Et ) ≤ w

( ∞⋃
i=1

Qi

)
=

∞∑
i=1

w(Qi )

≤ 1

t

∞∑
i=1

∫
Qi

| f (x)| w(x)dx = 1

t

∫
Et

| f (x)| w(x)dx

≤ 1

t

∫
Q0

| f (x)| w(x)dx,

which proves (6). Applying the Marcinkiewicz interpolation theorem [10, Theorem
1.3.2], we obtain for 1 < p < ∞

∥∥∥Md,w
Q0

f
∥∥∥p

L p(Q0;wdx)
≤ p2p

p − 1
‖ f ‖p

L p(Q0;wdx) .

�

3 Sparse domination I

Themain result in this section is the sparse domination Lemma 3.2, a weighted variant
of Lemma 5.1 in [17]. The auxiliary Lemma 3.1will provide uswith a sparse collection
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of cubes that appears in the sparse domination lemma.More specifically, the condition
(9) means that the S-children of any S ∈ S only occupy a controlled fraction of the
w-measure of S. In Lemma 3.2, this property will be used to build a pairwise disjoint
collection of sets ES ⊂ S, each of which has a large w-measure compared to that of
S ∈ S, controlled by a parameter η > 0 depending on the A∞ constants of w. This is
what is meant by saying that S is a sparse collection of cubes.

In the sparse domination Lemma 3.2, sparse collections provided by the auxiliary
lemma are used to define dyadic sparse operators of the form

∑
Q∈S

XQ(x)−
∫
Q

∣∣ f (y) − fQ
∣∣ dy.

Ultimately due to the inequality (8), these dyadic sparse operators can be used to
dominate the quantity | f (x) − fQ0 | pointwise. On the other hand, the dyadic sparse
operators can be easily controlled by duality and maximal function arguments due to
existence of the disjoint sets ES . This also reflects the general principles behind the
sparse domination paradigm.

Lemma 3.1 Let Q0 be a cube inR
n, and f ∈ L1(Q0). Letw ∈ Ad∞(Q0)with Cw > 0

and δw > 0. There exists a collection S of dyadic cubes such that each cube S ∈ S
satisfies

(a) If Q ⊂ Q0 is dyadic cube such that πSQ = S, then

−
∫
Q

| f (x) − fS| dx ≤ ρ−
∫
S
| f (x) − fS| dx . (8)

(b) There is a constant ρ = ρ(Cw, δw) > 1 such that

∑
S′∈chS (S)

w(S′) ≤ Cwρ−δww(S) < w(S). (9)

Proof We will construct the collection S by a stopping-time argument. To begin with,
fix a function f ∈ L1(Q0) and a constant ρ = ρ(Cw, δw) > 1 such that Cwρ−δw <

1. We may assume that −
∫
Q0

∣∣ f (x) − fQ0

∣∣ dx > 0; otherwise, f is constant at the
Lebesgue points of Q0 and we can take S = {Q0}. First, we place Q0 inside S and
proceed recursively: for each Q0-dyadic cube S ∈ S, we add to S the maximal dyadic
cubes S′ ⊂ S that satisfy the stopping condition

−
∫
S′

| f (x) − fS| dx > ρ−
∫
S
| f (x) − fS| dx . (10)

This process is iterated ad infinitum if necessary. As a result, we obtain a collection S
of dyadic cubes in Q0. Claim (a) is an immediate consequence of the stopping-time
construction. Namely, let S ∈ S. Recall that if Q ⊂ Q0 is a cube, πSQ is the minimal
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cube in S that contains Q. If Q ⊂ Q0 is a dyadic cube such that πSQ = S, then

−
∫
Q

| f (x) − fS| dx ≤ ρ−
∫
S
| f (x) − fS| dx .

As for (b), fix S ∈ S and recall that chS(S) are the maximal cubes in S that are
strictly contained in S. In particular, we notice that this collection is disjoint. As per
the stopping condition (10), for every S′ ∈ chS(S) it holds that

−
∫
S′

| f (x) − fS| dx > ρ−
∫
S
| f (x) − fS| dx .

Since the collection chS(S) is disjoint, the Ad∞(Q0) condition of w implies that for
all S ∈ S
∑

S′∈chS (S) w(S′)
w(S)

≤ Cw

(∑
S′∈chS (S)

∣∣S′∣∣
|S|

)δw

≤ Cwρ−δw

⎛
⎝ ∑

S′∈chS (S)

∫
S′ | f (x) − fS| dx∫
S | f (x) − fS| dx

⎞
⎠

δw

≤ Cwρ−δw < 1.

�
With our sparse collection of cubes at hand, we are now set to show the existence

of the pairwise disjoint sets EQ and to estimate | f (x)− fQ0 | pointwise with a dyadic
operator involving a sum of mean oscillations taken over the sparse collection.

Lemma 3.2 Let Q0 be a cube inR
n,w ∈ Ad∞(Q0)with constants Cw > 0 and δw > 0,

and f ∈ L1(Q0). Then there is a collection S of dyadic cubes in Q0 satisfying the
following conditions:

(a) There is a constantη = η(Cw, δw) > 0 anda collection
{
EQ : Q ∈ S}

of pairwise
disjoint sets such that for every Q ∈ S, EQ is a measurable subset of Q with
w(EQ) ≥ ηw(Q).

(b) For every Lebesgue point x ∈ Q0 of f , we have

∣∣ f (x) − fQ0

∣∣ ≤ C
∑
Q∈S

XQ(x)−
∫
Q

∣∣ f (y) − fQ
∣∣ dy (11)

with C = C(n,Cw, δw) > 0.

Remark 3.3 Condition (a) means that S is a sparse collection of cubes with respect to
the weight w. In (b), recall that almost every point of Q0 is a Lebesgue point of f .

Proof Lemma 3.1 provides us with a collectionS ⊂ D(Q0).We are going to construct
the family {EQ : Q ∈ S} by removing selected parts of the cubes S ∈ S, namely their
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S-children. For every S ∈ S, let

ES = S\
⋃

S′∈chS (S)

S′. (12)

We show that {ES : S ∈ S} is the collection of pairwise disjoint sets postulated by (a).
To prove disjointness, fix S, R ∈ S such that S �= R. If, S ∩ R = ∅, then clearly
ES ∩ ER = ∅. If, say, R ⊂ S, there is a cube S′ ∈ chS(S) such that R ⊂ S′ and
therefore ER ∩ ES ⊂ S′ ∩ ES = ∅. Hence {ES : S ∈ S} is a collection of pairwise
disjoint sets.

We still need to show that w(ES) ≥ ηw(S) for a fixed S ∈ S. By (9), it holds that
∑

S′∈chS (S)

w(S′) ≤ Cwρ−δww(S).

Furthermore, the collection chS(S) is pairwise disjoint, so we have

w(ES) = w(S) −
∑

S′∈chS (S)

w(S′) ≥ ηw(S),

where η = 1 − Cwρ−δw > 0 (recall that Cwρ−δw < 1). This completes the proof of
condition (a).

To prove that condition (b) holds, we introduce the following “dyadic difference”
operator:


Q f (x) =
∑

Q′∈chD(Q)

XQ′(x)( fQ′ − fQ),

where Q is a Q0-dyadic cube and chD(Q) the collection of its 2n dyadic children. To
begin with, we fix a Lebesgue point x ∈ Q0 of f to estimate the left-hand side of (11)
by telescoping in terms of these dyadic differences:

∣∣ f (x) − fQ0

∣∣XQ0(x) =
∣∣∣∣∣∣

∑
Q∈D(Q0)


Q f (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
S∈S

∑
Q: πSQ=S


Q f (x)

∣∣∣∣∣∣

≤
∑
S∈S

∣∣∣∣∣∣
∑

Q: πSQ=S


Q f (x)

∣∣∣∣∣∣ . (13)

Fix now a S ∈ S and split the innermost sum with respect to the set ES defined by
(12):

∑
Q: πSQ=S


Q f (x) = XS\ES (x)
∑

Q: πSQ=S


Q f (x) + XES (x)
∑

Q: πSQ=S


Q f (x).
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We estimate each sum separately; the aim is to control each in terms of κ(S) =
−
∫
S | f (x) − fS| dx . Beginning with the first one, we obtain by telescoping

XS\ES (x)
∑

Q: πSQ=S


Q f (x) =
∑

S′∈chS (S)

∑
Q: πSQ=S

XS′(x)
Q f (x)

=
∑

S′∈chS (S)

∑
Q: πSQ=S

∑
Q′∈chD(Q)

XS′(x)XQ′(x)
(
fQ′ − fQ

)
.

Here, the first step follows by the fact that S\ES = ∪S′∈chS (S)S′. Depending on x ∈ S
there is a unique “tower” of cubes, beginning from S and down to the dyadic parent of
S′, which is the unique S-child of S such that x ∈ S′. As a result, the ensuing double
sum is a telescope, resulting in

XS\ES (x)
∑

Q: πSQ=S


Q f (x) =
∑

S′∈chS (S)

XS′(x)( fS′ − fS).

Fix S′ ∈ chS(S) and let π S′ denote the dyadic parent of S′. Notice that πS(π S′) =
S ∈ S, so we may use the property (8) to estimate

| fS′ − fS| =
∣∣∣∣ −
∫
S′

( f (x) − fS) dx

∣∣∣∣ ≤ −
∫
S′

| f (x) − fS| dx

≤ 2n−
∫

π S′
| f (x) − fS| dx

≤ ρ2n−
∫
S
| f (x) − fS| dx = ρ2nκ(S). (14)

As for the second sum, fix x ∈ ES and let (Qk)k∈N be a sequence of dyadic cubes
such that x ∈ Qk ⊂ S for all k ∈ N, and |Qk | → 0 as k → ∞. Thus (Qk)k∈N shrinks
nicely to x . Since x is a Lebesgue point of f , we may telescope

XES (x)
∑

Q: πSQ=S


Q f (x) = XES (x)( f (x) − fS) = lim
k→∞( fQk − fS).

Since x ∈ Qk ∩ ES and Qk ⊂ S, we have πS(Qk) = S for every k ∈ N. Hence, by
the property (8),

∣∣ fQk − fS
∣∣ =

∣∣∣∣−
∫
Qk

( f (x) − fS) dx

∣∣∣∣ ≤ −
∫
Qk

| f (x) − fS| dx

≤ ρ−
∫
S
| f (x) − fS| dx = ρκ(S).

Since this estimate is uniform with respect to k, we conclude that

| f (x) − fS| ≤ ρκ(S). (15)
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Collecting the estimates (13)–(15), we find that

∣∣ f (x) − fQ0

∣∣XQ0 ≤
∑
S∈S

∣∣∣∣∣∣
∑

Q: πSQ=S


Q f (x)

∣∣∣∣∣∣

=
∑
S∈S

⎛
⎝ ∑

S′∈chS (S)

XS′(x)ρ2nκ(S) + XES (x)ρκ(S)

⎞
⎠

≤ ρ2n
∑
S∈S

XS(x)κ(S),

which concludes the proof. �

4 Local Fefferman–Stein inequality

The first sparse domination lemma and a duality argument lead to a result for the
dyadic sharp maximal function, which is a variant of the Fefferman–Stein inequality
(see [24, Chapter III]). This result is of independent interest.

Definition 4.1 For a cube Q0 and f ∈ L1(Q0), we define the dyadic sharp maximal
function by

Md,�
Q0

f (x) = sup
Q⊂Q0
x
Q

−
∫
Q

∣∣ f (y) − fQ
∣∣ dy,

where the supremum is taken over all dyadic cubes Q ⊂ Q0 such that x ∈ Q.

The following is a localized andweighted variant of the Fefferman–Stein inequality
[7]; see also Theorem III.3 in [24]. The proof relies on the fact that dyadic sparse oper-
ators can be controlled by duality and maximal function arguments due to existence
of the disjoint sets {ES : S ∈ S} associated with the sparse collection of cubes S.
Theorem 4.2 Let Q0 ⊂ R

n a cube, 1 < p < ∞, w ∈ Ad∞(Q0), and f ∈ L1(Q0).
Then ∫

Q0

∣∣ f (x) − fQ0

∣∣p w(x)dx ≤ C
∫
Q0

(
Md,�

Q0
f (x)

)p
w(x)dx,

where C = C(n, p,Cw, δw) > 0. Here Cw and δw are the Ad∞(Q0) constants for w.

Proof Fix a f ∈ L1(Q0) and let S be the associated collection of cubes given by the
sparse domination Lemma 3.2. On Q0, define the function

f̃ (x) =
∑
Q∈S

XQ(x)−
∫
Q

∣∣ f (y) − fQ
∣∣ dy.

By the sparse domination Lemma 3.2, we have

∫
Q0

∣∣ f (x) − fQ0

∣∣p w(x)dx ≤ C(n, p,Cw, δw)

∫
Q0

f̃ (x)pw(x)dx .
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We estimate the pth root of the last integral by duality. Namely, it is enough to show
that there is a constant C = C(η, p) such that

∣∣∣∣
∫
Q0

f̃ (x)g(x)w(x)dx

∣∣∣∣ ≤ C

(∫
Q0

(
Md,�

Q0
f (x)

)p
w(x)dx

) 1
p

for every bounded measurable function g in Q0 with ‖g‖Lq (Q0;wdx) = 1 and 1/p +
1/q = 1. Fix such a function g; we have

∣∣∣∣
∫
Q0

f̃ (x)g(x)w(x)dx

∣∣∣∣ =
∑
Q∈S

−
∫
Q

∣∣ f (y) − fQ
∣∣ dy

∣∣∣∣
∫
Q0

XQ(x)g(x)w(x)dx

∣∣∣∣ . (16)

Again thanks to the sparse domination Lemma 3.2 (a), we may estimate for each
Q ∈ S

∣∣∣∣
∫
Q0

XQ(x)g(x)w(x)dx

∣∣∣∣ =
∣∣∣∣
∫
Q
g(x)w(x)dx

∣∣∣∣
≤ w(Q) · 1

w(Q)

∫
Q

|g(x)|w(x)dx

≤ η−1w(EQ) · 1

w(Q)

∫
Q
|g(x)|w(x)dx . (17)

Combine (16) and (17), and apply Lemma 2.4:

∣∣∣∣
∫
Q0

f̃ (x)g(x)w(x)dx

∣∣∣∣
≤ η−1

∑
Q∈S

w(EQ)−
∫
Q

∣∣ f (y) − fQ
∣∣ dy · 1

w(Q)

∫
Q
|g(x)|w(x)dx

≤ C(η)
∑
Q∈S

∫
EQ

Md,�
Q0

f (x)Md,w
Q0

g(x)w(x)dx

≤ C
∫
Q0

Md,�
Q0

f (x)Md,w
Q0

g(x)w(x)dx

≤ C
∥∥∥Md,�

Q0
f
∥∥∥
L p(Q0;wdx)

∥∥∥Md,w
Q0

g
∥∥∥
Lq (Q0;wdx)

≤ C(η, p) ‖g‖Lq (Q0;wdx) ·
(∫

Q0

(
Md,�

Q0
f (x)

)p
w(x)dx

) 1
p

,

which, recalling that ‖g‖Lq (Q0;wdx) = 1, is the desired result. �
In the proof of the two-weight inequality (Theorem 5.4), we need to estimate the

dyadic sharp maximal function in terms of the dyadic fractional maximal function of
the gradient. To this end, we apply the following (q, p)-Poincaré inequality on cubes,
which we state without proof. See [9, p. 164], for details.
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Lemma 4.3 Let Q ⊂ R
n be a cube and 1 ≤ p < ∞. Let 1 ≤ q ≤ np

n−p for 1 ≤ p < n,
and 1 ≤ q < ∞ for n ≤ p < ∞. Then there is a constant C = C(n, p, q) such that
for all u ∈ Lip(Q)

(
−
∫
Q

∣∣u(x) − uQ
∣∣q dx

) 1
q ≤ Cl(Q)

(
−
∫
Q

|∇u(x)|p dx
) 1

p

.

�
Lemma 4.4 Let Q0 ⊂ R

n a cube and u ∈ Lip(Q0). Then for all x ∈ Q0

Md,�
Q0

u(x) ≤ C(n)Md
1,Q0

|∇u(x)| .

Proof Fix a x ∈ Q0 and a dyadic cube Q ⊂ Q0 containing x . By the (1, 1)-Poincaré
inequality on cubes (Lemma 4.3)

−
∫
Q

∣∣u(y) − uQ
∣∣ dy ≤ C(n)l(Q)−

∫
Q

|∇u(x)| dx

= C(n)
|Q|1/n
|Q|

∫
Q

|∇u(x)| dx

= C(n)
1

|Q|1−1/n

∫
Q

|∇u(x)| dx

≤ C(n)Md
1,Q0

|∇u(x)| .

The final inequality follows since the choice of Q is arbitrary. �

5 Sparse domination II

The following lemma is the other of the two sparse domination results we need. The
idea is from Pérez; see the proof of Theorem 1.1 in [22].

Lemma 5.1 Let 0 ≤ α < n, Q0 be a cube in R
n, and σ ∈ Ad∞(Q0) with constants

Cσ > 0, δσ > 0. For every f ∈ L1(Q0, ), there is a collection S of Q0-dyadic cubes
satisfying the following conditions:

(a) There is a constant η = η(Cσ , δσ ) > 0 and a collection
{
EQ : Q ∈ S}

of pairwise
disjoint sets such that for every Q ∈ S, EQ is a measurable subset of Q with
σ(EQ) ≥ ησ(Q).

(b) For almost every x ∈ Q0 and every 1 ≤ p < ∞, we have

(
Md

α,Q0
f (x)

)p ≤ C
∑
Q∈S

XQ(x)

(
1

|Q|1−α/n

∫
Q

| f (y)| dy
)p

with C = C(n, p,Cσ , δσ ) > 0.
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Proof For simplicity, we take f to be nonnegative. To beginwith, fix a constant a > 2n

such that

Cσ

(
2n

a

)δσ

< 1.

Analogously with the proof of Lemma 3.2, let us denote ρ = a · 2−n > 1. We may
assume that

1

|Q0|1−α/n

∫
Q0

f (y)dy > 0.

If this is not the case, then f = 0 almost everywhere in Q0,which impliesMd
α,Q0

f = 0
everywhere in Q0. Hence there is nothing to estimate and we may choose S = {Q0}
and EQ0 = Q0.

Let k0 be the smallest integer satisfying

1

|Q0|1−α/n

∫
Q0

f (y)dy ≤ ak0 . (18)

For each k > k0, denote

Sk = {x ∈ Q0 : ak < Md
α,Q0

f (x)}.

LetSk0 = {Q0} and, for k > k0, we letSk denote the collection of maximal Q0-dyadic
cubes Q ⊂ Q0 satisfying

ak <
1

|Q|1−α/n

∫
Q

f (y)dy. (19)

Since k > k0, we find that each maximal cube is strictly contained in Q0. Observe
also that Sk = ∪Q∈Sk Q if k > k0. By the nestedness of the dyadic structure and the
construction above, for each k ≥ k0 and R ∈ Sk+1, there exists a unique Q ∈ Sk such
that R ⊂ Q. For each k ≥ k0 and Q ∈ Sk , let

Ek,Q = Q\
⋃

R∈Sk+1

R = Q\
⋃

R∈Sk+1
R⊂Q

R. (20)

To verify (a), we need to prove that the inequality

σ(Ek,Q) ≥ (1 − Cσ ρ−δσ )σ (Q) (21)

holds for all Q ∈ Sk and k ≥ k0. Fix k ≥ k0 and Q ∈ Sk . By (20), the collection{
Ek,Q : k ≥ k0, Q ∈ Sk

}
is pairwise disjoint. To begin with, let k > k0. Recall that

πQ denotes the dyadic parent of Q. It follows from the stopping construction that

1

|πQ|1−α/n

∫
πQ

f (y)dy ≤ ak,
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because the collection Sk is maximal with respect to the stopping rule (19). Using this
and the fact that α ≥ 0, we obtain

∑
R∈Sk+1
R⊂Q

|R| ≤
∑

R∈Sk+1
R⊂Q

|R|α/n

ak+1

∫
R
f (y)dy ≤ |Q|α/n

ak+1

∑
R∈Sk+1
R⊂Q

∫
R
f (y)dy

≤ |Q|α/n

ak+1

∫
Q

f (y)dy ≤ |Q|
ak+1 · (2n)1−α/n

|πQ|1−α/n

∫
πQ

f (y)dy

≤ 2n

a
|Q| . (22)

As for the case k = k0, recall that k0 was chosen as the smallest integer such
that (18) holds, and Sk0 = {Q0}. Again applying the stopping rule (19) in the first
inequality below, we have

∑
R∈Sk0+1
R⊂Q0

|R| ≤
∑

R∈Sk0+1
R⊂Q0

|R|α/n

ak0+1

∫
R
f (y)dy ≤ |Q0|α/n

ak0+1

∑
R∈Sk0+1
R⊂Q0

∫
R
f (y)dy

≤ |Q0|α/n

ak0+1

∫
Q0

f (y)dy ≤ |Q0|
a

· 1

ak0
· 1

|Q0|1−α/n

∫
Q0

f (y)dy

≤ 1

a
|Q0| . (23)

Combining the Ad∞(Q0) property of σ with the estimates (22) and (23), we obtain

σ

⎛
⎜⎜⎝

⋃
R∈Sk+1
R⊂Q

R

⎞
⎟⎟⎠ σ(Q)−1 ≤ Cσ

⎛
⎜⎜⎝

∣∣∣∣
⋃

R∈Sk+1
R⊂Q

R

∣∣∣∣ |Q|−1

⎞
⎟⎟⎠

δσ

≤ Cσ

(
2n

a

)δσ

= Cσ ρ−δσ .

This lets us conclude that the inequality (21) holds:

σ(Ek,Q) ≥ σ(Q) − Cσ ρ−δσ σ (Q) = (1 − Cσ ρ−δσ )σ (Q).

Looking back at the measure estimates (22) and (23), we notice that

∑
R∈Sk+1
R⊂Q

|R| ≤ 2n

a
|Q| < |Q| .

In other words, each R ∈ Sk+1 that is contained in Q ∈ Sk is strictly smaller than
Q itself. Each Q ∈ S belongs to a unique collection Sk , and we may define another
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collection of cubes S = ∪k≥k0Sk without including duplicates as well as identify
EQ = Ek,Q . Then, the condition (a) holds with η = 1 − Cσ ρ−δσ > 0.

It remains to prove (b). Consider for k > k0 the sets

Dk = {x ∈ Q0 : ak < Md
α,Q0

f (x) ≤ ak+1}.

We note that

Q0\
⋃
k>k0

Dk =
{
x ∈ Q0 : Md

α,Q0
f (x) = ∞

} ⋃ {
x ∈ Q0 : Md

α,Q0
f (x) ≤ ak0+1

}
.

The first set on the right-hand side is of zero measure, since Md
α,Q0

f (x) ≤
l(Q0)

α
n Md,1

Q0
f (x) for every x ∈ Q0. Thus, inequality (6) in Lemma 2.4 shows that

Md
α,Q0

f (x) < ∞ for almost every x ∈ Q0. Furthermore, k0 was chosen as the smallest
integer such that (18) holds, which means that

ak0+1 = a2 · ak0−1 < a2 · 1

|Q0|1−α/n

∫
Q0

f (y)dy.

Also, recall the stopping condition (19): Sk0 = {Q0}, and for k > k0, Sk is the
collection of maximal Q0-dyadic cubes Q ⊂ Q0 satisfying

ak <
1

|Q|1−α/n

∫
Q

f (y)dy.

Now fix a x ∈ Q0\{x ∈ Q0 : Md
α,Q0

f (x) = ∞}. With the preceding remarks, we
have that

(
Md

α,Q0
f (x)

)p =
(
Md

α,Q0
f (x)

)p XQ0\∪k Dk (x) +
∑
k>k0

(
Md

α,Q0
f (x)

)p XDk (x)

≤ a(k0+1)pXQ0\∪k Dk (x) + a p
∑
k>k0

akpXSk (x)

≤ a2p
(

1

|Q0|1−α/n

∫
Q0

f (y)dy

)p

XQ0(x)

+ a p
∑
k>k0

∑
Q∈Sk

(
1

|Q|1−α/n

∫
Q

f (y)dy

)p

XQ(x)

≤ a2p
∑
k≥k0

∑
Q∈Sk

(
1

|Q|1−α/n

∫
Q

f (y)dy

)p

XQ(x)

= a2p
∑
Q∈S

(
1

|Q|1−α/n

∫
Q

f (y)dy

)p

XQ(x).

This concludes the proof of the lemma. �
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The following two-weight inequality for the fractional maximal function is a local-
ized variant of a result due to Pérez [22, Theorem 1.1].

Theorem 5.2 Let Q0 ⊂ R
n be a cube. Furthermore, let 0 ≤ α < n, 1 < p ≤ q < ∞,

and (v,w) a pair of weights in Q0 such that σ = v−1/(p−1) ∈ Ad∞(Q0). The following
conditions are equivalent:

(a) There is a C > 0 such that, for all f ∈ L1(Q0),

(∫
Q0

(
Md

α,Q0
f (x)

)q
w(x)dx

) 1
q ≤ C

(∫
Q0

| f (x)|p v(x)dx

) 1
p

.

(b) There exists a K > 0 such that, for all dyadic cubes Q ⊂ Q0,

(
1

|Q|1−α/n

)p

w(Q)
p
q σ(Q)p−1 ≤ K .

In the implication from (b) to (a), the constant C is of the form C(n, p,Cσ , δσ , K ).
Here Cσ and δσ are the Ad∞(Q0) constants for σ .

Proof First we show that (a) implies (b). Fix a dyadic cube Q ⊂ Q0 and let f =
v−1/(p−1)XQ . As per the definition of the dyadic fractional maximal function, we
clearly have

1

|Q|1−α/n

∫
Q

v(y)−
1

p−1 dy ≤ Md
α,Q0

f (x) for every x ∈ Q.

Now

|Q|−
(
1− α

n
)
q

∫
Q

w(x)dx

(∫
Q

v(y)
− 1

p−1 dy

)q
=

∫
Q

w(x)dx

(
1

|Q|1−α/n

∫
Q

v(y)
− 1

p−1 dy

)q

≤
∫
Q0

(
Md

α,Q0
f (x)

)q
w(x)dx ≤ Cq

(∫
Q0

| f (x)|p v(x)dx

) q
p

= Cq
(∫

Q
v(x)

− 1
p−1 dx

) q
p

, (24)

where the second inequality on line (24) follows from (a). From here, we conclude
that

|Q|−(1− α
n )q

(∫
Q

w(x)dx

) p
q

(∫
Q

v(y)−
1

p−1 dy

)p−1

≤ C p,

that is, |Q|−(1−α/n)p w(Q)p/qσ(Q)p−1 ≤ C p.
Next we show that (b) implies (a). For a fixed f ∈ L1(Q0) and σ ∈ Ad∞(Q0), let

S be the associated collection of cubes given by the sparse domination Lemma 5.1.
Then, we have

(∫
Q0

(
Md

α,Q0
f (x)

)q
w(x)dx

) p
q =

∥∥∥(
Md

α,Q0
f
)p∥∥∥

Lq/p(Q0;wdx)
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≤ C(n, p,Cσ , δσ )

∥∥∥∥∥∥
∑
Q∈S

XQ

(
1

|Q|1−α/n

∫
Q

| f (y)| dy
)p

∥∥∥∥∥∥
Lq/p(Q0;wdx)

≤ C
∑
Q∈S

∥∥∥∥XQ

(
1

|Q|1−α/n

∫
Q

| f (y)| dy
)p∥∥∥∥

Lq/p(Q0;wdx)

= C
∑
Q∈S

(
1

|Q|1−α/n

∫
Q

| f (y)| dy
)p

w(Q)
p
q , (25)

where (25) follows from Lemma 5.1. On the other hand, by (b) we have that

∑
Q∈S

(
1

|Q|1−α/n

∫
Q

| f (y)| dy
)p

w(Q)
p
q

=
∑
Q∈S

(
1

|Q|1−α/n

)p

w(Q)
p
q σ(Q)p−1

(
1

σ(Q)

∫
Q

| f (y)| σ(y)−1σ(y)dy

)p

σ(Q)

≤ K
∑
Q∈S

(
1

σ(Q)

∫
Q

| f (y)| σ(y)−1σ(y)dy

)p

σ(Q).

Recall from Lemma 5.1 (a) that for Q ∈ S, we have σ(EQ) ≥ ησ(Q). Furthermore,
Lemma 5.1 states that

{
EQ

}
Q∈S is a collection of pairwise disjoint sets. Hence we

may continue estimating

K
∑
Q∈S

(
1

σ(Q)

∫
Q

| f (y)| σ(y)−1σ(y)dy

)p

σ(Q)

≤ K

η

∑
Q∈S

(
1

σ(Q)

∫
Q

| f (y)| σ(y)−1σ(y)dy

)p

σ(EQ)

= K

η

∑
Q∈S

∫
EQ

(
Md,σ

Q0

(
f σ−1

)
(x)

)p
σ(x)dx

≤ K

η

∫
Q0

(
Md,σ

Q0

(
f σ−1

)
(x)

)p
σ(x)dx (26)

≤ C(p)
K

η

∫
Q0

∣∣∣ f (x)σ (x)−1
∣∣∣p σ(x)dx . (27)

In (26), we applied disjointness, while (27) follows from the boundedness of Md,σ
Q0

(Lemma 2.4). This concludes the proof, since v(x) = σ(x)−(p−1) for every x ∈ Q0.
�
Remark 5.3 The assumption σ = v

− 1
p−1 ∈ Ad∞(Q0) is needed in the implication

from (b) to (a) in Theorem 5.2. In [23] certain testing conditions are used in the case
α = 0 to characterize a closely related boundedness result under weaker assumptions
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on the weight σ . Moreover, the special case α = 0 of Theorem 5.2 is closely related
to Theorem 1.15 in [23].

Our main local result is the following two-weight Poincaré inequality in Q0,
provided that the weights involved satisfy suitable A∞ conditions and the dyadic
compatibility condition (28). The theorem echoes an earlier result by Chua [5], while
being more strictly localized.

Theorem 5.4 Let Q0 be a cube inR
n. Furthermore, let 1 < p ≤ q < ∞, (v,w) a pair

of weights in Q0 such that w ∈ Ad∞(Q0), and σ = v−1/(p−1) ∈ Ad∞(Q0). Suppose
that there exists a constant K > 0 such that

(
1

|Q|1−1/n

)p

w(Q)
p
q σ(Q)p−1 ≤ K (28)

for all Q0-dyadic cubes Q ⊂ Q0. Then, the inequality

(∫
Q0

∣∣u(x) − uQ0

∣∣q w(x)dx

) 1
q ≤ C

(∫
Q0

|∇u(x)|p v(x)dx

) 1
p

holds for every u ∈ Lip(Q0) with

C = C(n, p, q, K ,Cw,Cσ , δw, δσ ) > 0,

where Cw, δw, and Cσ , δσ are the Ad∞(Q0) constants for w and σ , respectively.

Proof Let u ∈ Lip(Q0) and (v,w) as assumed. We first apply Theorem 4.2 and
Lemma 4.4, then Theorem 5.2:

(∫
Q0

∣∣u(x) − uQ0

∣∣q w(x)dx

) 1
q ≤ C

(∫
Q0

(
Md,�

Q0
u(x)

)q
w(x)dx

) 1
q

≤ C

(∫
Q0

(
Md

1,Q0
|∇u(x)|

)q
w(x)dx

) 1
q

≤ C

(∫
Q0

|∇u(x)|p v(x)dx

) 1
p

.

�

6 From local to global

We proceed to provide conditions for domains � such that there is a constant C =
C(n, p,�) satisfying

inf
c∈R

∫
�

| f (x) − c|pdx ≤ C
∑

Q∈W(�)

∫
Q∗

| f (x) − fQ∗ |pdx (29)
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for every f ∈ L1
loc(�). Theorem 6.9 provides aweighted variant of this local-to-global

inequality under the assumption that� is a Boman domain. This class of domains was
introduced by Boman [2]. It is known that a Euclidean domain � is a Boman domain
if and only if it is a John domain [3]. John domains are a more general class than
Lipschitz domains, since they can have twisting cones. These classes of domains have
been used extensively, for instance, in connection with Poincaré inequalities. Their
relevance is covered in [3].

The inequality (29) provides a mechanism to bootstrap inequalities starting from
corresponding inequalities on cubes inside the domain.Theproof is basedon a chaining
argument, and we adapt the rather well known argument developed in [14]; see also
[5]. For this purpose, we need to define chains.

Definition 6.1 Let � be a bounded domain in R
n and consider Whitney cubes Q ∈

W(�). We say that
C(Q) = (Q0, . . . , Qk) ⊂ W(�)

is a chain in � joining Q0 to Q = Qk , if Qi �= Q j whenever i �= j , and for each
j ∈ {1, . . . , k} there exists a cube R ⊂ Q∗

j ∩ Q∗
j−1 for which

l(R) ≥ C(n)max
{
l(Q∗

j ), l(Q
∗
j−1)

}
.

The collection {C(Q) : Q ∈ W(�)} is called a chain decomposition of �, with
a fixed Whitney cube Q0 as the common starting point for all chains. The shadow
of a Whitney cube R ∈ W(�) is the set S(R) = {Q ∈ W(�) : R ∈ C(Q)}. Worth
noticing is the duality of the concepts of chain and shadow: R ∈ C(Q) if and only if
Q ∈ S(R).

We will assume throughout that� is a Boman domain, which means that it satisfies
the following chain condition.

Definition 6.2 A domain � ⊂ R
n is said to satisfy the Boman chain condition with

constant N ≥ 1 if there exists a chain decomposition of � such that for all R =
Q(xR, rR) ∈ W(�) ⋃

Q∈S(R)

Q ⊂ N R = Q(xR, NrR). (30)

Open cubes, balls, and bounded Lipschitz domains are Boman domains inR
n .More

generally, so-called bounded John domains are examples of Boman domains; we refer
to [3] for details.

Finally, we require the weight w to be doubling in the following sense.

Definition 6.3 A weight w in an open set � is called doubling in � with constant D
if there exists a constant D = D(n, w) such that whenever Q = Q(xQ, rQ) ⊂ R

n is
any cube with its midpoint xQ in � we have

w
(
� ∩ Q(xQ, 2rQ)

) ≤ Dw
(
� ∩ Q(xQ, rQ)

)
.

Next we show that doublingweights inR
n are doublingweights on Boman domains

as well.
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Lemma 6.4 Let w be a doubling weight in R
n with constant D1, and � a

Boman domain with constant N ≥ 1. Then, w is doubling in � with constant
D(n, N ,�, Q0, D1).

Proof Fix a cube Q = Q(xQ, rQ) with its midpoint xQ in �. If l(Q) > 2 diam(�),
then

w(� ∩ 2Q) = w(�) = w(� ∩ Q).

Hence, in the following we may assume that l(Q) ≤ 2 diam(�). It suffices to prove
that there is a constant λ = λ(n, N , Q0,�) and another cube R ⊂ Q ∩ � such that
l(Q) ≤ λl(R). Here Q0 is the fixed cube in the chain decomposition of �. Indeed,
using this and the global doubling property of w, we estimate

w(� ∩ 2Q) ≤ w(2Q) ≤ D1w(Q) ≤ C(D1, λ)w(R) ≤ C(D1, λ)w(� ∩ Q).

It now suffices to prove that the cube R exists. Let ρ = ρ(N , n) be such that
ρ(1 + N )

√
n < 1

2 . Fix a Whitney cube P ∈ W(�) such that xQ ∈ P . There
are two cases to consider: either l(P) > ρl(Q) or not. In the first case, we take
R = Q(xQ,min{rQ, d(xQ, ∂�)/(2

√
n)}) ⊂ Q ∩ �. Observe that xQ ∈ P ∈ W(�),

and thus

d(xQ, ∂�)/(2
√
n) ≥ d(P, ∂�)/(2

√
n) ≥ l(P)/2 > ρl(Q)/2.

Therefore l(R) ≥ C(ρ)l(Q).
Next assume that l(P) ≤ ρl(Q). Consider the chain C = (Q0, . . . , Qk), where

Qk = P . Denote by i0 the smallest index i ∈ {0, . . . , k} for which l(Qi ) ≤ ρl(Q)

and denote R = Qi0 . If i0 = 0, then

l(Q) ≤ 2 diam(�) ≤ C(�, Q0) diam(Q0) = C(n,�, Q0)l(R).

On the other hand, if i0 > 0, then

l(Q) < ρ−1l(Qi0−1) ≤ C(n, ρ)l(Qi0) = C(n, ρ)l(R).

Here we also used the fact that adjacent cubes in the chain have comparable side
lengths. Furthermore, we claim that R ⊂ Q ∩ �. Recall that P ∈ S(R) and thus
xQ ∈ P ⊂ N R by the Boman chain condition (30). Fix a x ∈ R. Then

∣∣x − xQ
∣∣ ≤ |x − xR | + ∣∣xR − xQ

∣∣ ≤ diam(R) + diam(N R)

= (1 + N )
√
nl(R) ≤ ρ(1 + N )

√
nl(Q) < l(Q)/2.

Hence
∣∣x − xQ

∣∣ < l(Q)/2 and thus x ∈ Q. Since R is a Whitney cube, it follows that
R ⊂ Q ∩ �, as claimed. �
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Definition 6.5 Let � be an open set and let w be a doubling weight in �. We define
the non-centered maximal function for f ∈ L1(�;wdx) by

M̃w f (x) = sup
Q
x

1

w(� ∩ Q)

∫
�∩Q

| f (y)| w(y)dy,

where x ∈ � and the supremum is taken over cubes Q ⊂ R
n such that xQ ∈ � and

Q 
 x .

We will make use of the fact that the maximal function M̃w is bounded on
L p(�;wdx). For one instance of the proof, see Theorem 3.13 in [1].

Lemma 6.6 Let 1 < p < ∞, w a doubling weight in an open set �, and f ∈
L p(�;wdx). Then, M̃w f ∈ L p(�;wdx) and there is a constant C = C(n, p, w)

such that ∥∥M̃w f
∥∥
L p(�;wdx) ≤ C ‖ f ‖L p(�;wdx) .

To use the following lemma is an idea of Iwaniec and Nolder’s [14, Lemma 4].

Lemma 6.7 Let � be a Boman domain with constant N ≥ 1, w a doubling weight in
� with a constant D, and 1 ≤ p < ∞. Furthermore, let

{
aQ : Q ∈ W(�)

}
be a set

of nonnegative real numbers. Then, there is a constant C = C (p, D, N ) for which

∥∥∥∥∥∥
∑

Q∈W(�)

aQX�∩NQ

∥∥∥∥∥∥
L p(�;wdx)

≤ C

∥∥∥∥∥∥
∑

Q∈W(�)

aQXQ

∥∥∥∥∥∥
L p(�;wdx)

.

Proof The case p = 1 follows from the fact that the weightw is doubling in�; we will
assume that 1 < p < ∞. By duality and the fact that bounded measurable functions
are dense in L p′

(�;wdx), where p′ = p/(p − 1), it is enough to show that

∣∣∣∣∣∣
∫

�

∑
Q∈W(�)

aQX�∩NQ(x)ψ(x)w(x)dx

∣∣∣∣∣∣ ≤ C

∥∥∥∥∥∥
∑

Q∈W(�)

aQXQ

∥∥∥∥∥∥
L p(�;wdx)

for every bounded measurable function ψ satisfying ‖ψ‖L p′ (�;wdx) = 1. Let ψ be
such a function and Q ∈ W(�). Then, for every x ∈ � ∩ NQ,

∫
�∩NQ

|ψ(y)| w(y)dy ≤ w(� ∩ NQ)M̃wψ(x).

Averaging this inequality over Q ⊂ � ∩ NQ with respect to the measure wdx and
using the fact that w is doubling in �, we obtain

∫
�∩NQ

|ψ(y)| w(y)dy ≤ w(� ∩ NQ)

w(Q)

∫
Q
M̃wψ(x)w(x)dx

≤ C(D, N )

∫
Q
M̃wψ(x)w(x)dx . (31)
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Using the triangle inequality and the estimate (31), we obtain

∣∣∣∣∣∣
∫

�

∑
Q∈W(�)

aQX�∩NQ(x)ψ(x)w(x)dx

∣∣∣∣∣∣ ≤
∑

Q∈W(�)

aQ

∫
�∩NQ

|ψ(x)| w(x)dx

≤ C(D, N )
∑

Q∈W(�)

aQ

∫
Q
M̃wψ(x)w(x)dx .

(32)

Next, we rearrange (32) and apply Hölder’s inequality:

C
∑

Q∈W(�)

aQ

∫
Q
M̃wψ(x)w(x)dx = C

∫
�

∑
Q∈W(�)

aQXQ(x)M̃wψ(x)w(x)dx

≤ C

∥∥∥∥∥∥
∑

Q∈W(�)

aQXQ

∥∥∥∥∥∥
L p(�;wdx)

∥∥M̃wψ
∥∥
L p′ (�;wdx) .

The desired result follows by the boundedness of the maximal function M̃w

(Lemma 6.6) and the fact that ‖ψ‖L p′ (�;wdx) = 1. �
Recall that uw;Q = w(Q)−1

∫
Q u(x)w(x)dx .

Lemma 6.8 Let � be a Boman domain, w a doubling weight in � with a constant D,
and C(Q) = (Q0, . . . , Qk) a chain joining the cube Q0 to Qk = Q ∈ W(�), with k
depending on Q. Then, for all u ∈ L1

loc(�;wdx),

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣ ≤ C(n, D)
∑

R∈C(Q)

1

w(R∗)

∫
R∗

∣∣u(x) − uw;R∗
∣∣w(x)dx .

Proof Fix a u ∈ L1
loc(�;wdx). Then

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣ =
∣∣∣∣∣

k∑
i=1

uw;Q∗
i
− uw;Q∗

i−1

∣∣∣∣∣ ≤
k∑

i=1

∣∣∣uw;Q∗
i
− uw;Q∗

i−1

∣∣∣

≤
k∑

i=1

∣∣∣uw;Q∗
i
− uw;Q∗

i ∩Q∗
i−1

∣∣∣ +
∣∣∣uw;Q∗

i ∩Q∗
i−1

− uw;Q∗
i−1

∣∣∣ . (33)

Let us fix i = 1, 2, . . . , k. By the definition of a chain (Definition 6.1), there exists a
cube Q̃ ⊂ Q∗

i ∩ Q∗
i−1 such that w(Q̃) > 0; likewise there is λ, depending only on the

dimension n, such that Q∗
i−1 ∪ Q∗

i ⊂ λQ̃. Since the weight w is doubling in �, we
obtain the estimate

w(Q∗
i ) ≤ w(Q∗

i−1 ∪ Q∗
i ) ≤ w(λQ̃) ≤ C(λ, D)w(Q̃) ≤ C(λ, D)w(Q∗

i ∩ Q∗
i−1).

(34)
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The exact same estimate holds for w(Q∗
i−1). We may estimate both parts of the sum

(33) as follows. For the sake of demonstration, choose the first one:

∣∣∣uw;Q∗
i
− uw;Q∗

i ∩Q∗
i−1

∣∣∣ =
∣∣∣∣∣

1

w(Q∗
i ∩ Q∗

i−1)

∫
Q∗
i ∩Q∗

i−1

(
u(x) − uw;Q∗

i

)
w(x)dx

∣∣∣∣∣
≤ 1

w(Q∗
i ∩ Q∗

i−1)

∫
Q∗
i ∩Q∗

i−1

∣∣∣u(x) − uw;Q∗
i

∣∣∣w(x)dx

≤ C(λ, D)

w(Q∗
i )

∫
Q∗
i

∣∣∣u(x) − uw;Q∗
i

∣∣∣w(x)dx . (35)

In (35), we applied the doubling property of w through the estimate (34). Estimating
the second part of (33) in like manner and taking all indices into account, we have

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣ ≤ C(λ, D)
∑

R∈C(Q)

1

w(R∗)

∫
R∗

∣∣u(x) − uw;R∗
∣∣w(x)dx,

which is the desired estimate, since λ only depends on n. �
Finally, the following theorem connects the global scale and the cubewise estimates.

Theorem 6.9 Let � be a Boman domain with a constant N ≥ 1 and w a doubling
weight in � with a constant D. If u ∈ L1

loc(�;wdx) and 1 ≤ p < ∞, then

∫
�

∣∣∣u(x) − uw;Q∗
0

∣∣∣p w(x)dx ≤ C(n, p, D, N )
∑

Q∈W(�)

∫
Q∗

∣∣u(x) − uw;Q∗
∣∣p w(x)dx .

Proof Let Q0 be the fixed central cube in the chain decomposition of�. By the triangle
inequality for each x ∈ �, we may write

∣∣∣u(x) − uw;Q∗
0

∣∣∣ ≤
∣∣∣∣∣∣u(x) −

∑
Q∈W(�)

uw;Q∗XQ(x)

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∑
Q∈W(�)

uw;Q∗XQ(x) − uw;Q∗
0

∣∣∣∣∣∣
= g1(x) + g2(x).

Hence, it holds that
∫

�

∣∣∣u(y) − uw;Q∗
0

∣∣∣p w(x)dx ≤ 2p
∫

�

g1(x)
pw(x)dx + 2p

∫
�

g2(x)
pw(x)dx .

We will estimate each integral on the right-hand side separately, beginning with the
first one. Recalling that the Whitney cubes cover � and are disjoint, we have

∫
�

g1(x)
pw(x)dx =

∫
�

∣∣∣∣∣∣
∑

Q∈W(�)

u(x)XQ(x) −
∑

Q∈W(�)

uw;Q∗XQ(x)

∣∣∣∣∣∣
p

w(x)dx

123



Weighted norm inequalities in a bounded domain by the…

=
∑

Q∈W(�)

∫
Q

∣∣u(x) − uw;Q∗
∣∣p w(x)dx

≤
∑

Q∈W(�)

∫
Q∗

∣∣u(x) − uw;Q∗
∣∣p w(x)dx,

which is of the required form. The integral associated with g2 is estimated by using
chains. We begin by

∫
�

g2(x)
pw(x)dx =

∫
�

∣∣∣∣∣∣
∑

Q∈W(�)

(
uw;Q∗ − uw;Q∗

0

)
XQ(x)

∣∣∣∣∣∣
p

w(x)dx

≤
∫

�

⎛
⎝ ∑

Q∈W(�)

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣XQ(x)

⎞
⎠

p

w(x)dx . (36)

Applying Lemma 6.8 and Hölder’s inequality, we obtain for every Q ∈ W(�)

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣XQ ≤ C(n, D)
∑

R∈C(Q)

aRXQ, (37)

where for every R ∈ C(Q)

aR =
(

1

w(R∗)

∫
R∗

∣∣u(x) − uw;R∗
∣∣p w(x)dx

) 1
p ≥ 0.

Summing the estimates (37) and using the shadow–chain duality, we obtain

∑
Q∈W(�)

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣XQ ≤ C(n, D)
∑

Q∈W(�)

∑
R∈C(Q)

aRXQ

= C
∑

R∈W(�)

aR
∑

Q∈S(R)

XQ .

By the Boman chain condition (30), we have
∑

Q∈S(R) XQ ≤ XN R , and

∑
Q∈W(�)

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣XQ =
⎛
⎝ ∑

Q∈W(�)

∣∣∣uw;Q∗ − uw;Q∗
0

∣∣∣XQ

⎞
⎠X�

≤ C(n, D)

⎛
⎝ ∑

R∈W(�)

aRXN R

⎞
⎠ · X� = C(n, D)

⎛
⎝ ∑

R∈W(�)

aRX�∩N R

⎞
⎠ .

We substitute this back into (36), and respectively apply Lemma 6.7, Hölder’s inequal-
ity for sums recalling that Whitney cubes are disjoint, and the doubling property of
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the weight w:

∫
�

g2(x)
pw(x)dx ≤ C(n, p, D)

∫
�

⎛
⎝ ∑

R∈W(�)

aRX�∩N R(x)

⎞
⎠

p

w(x)dx

≤ C(n, p, D, N )

∫
�

⎛
⎝ ∑

R∈W(�)

aRXR(x)

⎞
⎠

p

w(x)dx

= C
∑

R∈W(�)

a p
R

∫
�

XR(x)w(x)dx

= C
∑

R∈W(�)

w(R)

w(R∗)

∫
R∗

∣∣u(x) − uw;R∗
∣∣p w(x)dx

≤ C
∑

R∈W(�)

∫
R∗

∣∣u(x) − uw;R∗
∣∣p w(x)dx .

�

7 Conclusion, applications to distance weights, and the p-Laplacian

We are now ready to combine the local and local-to-global theorems into our main
result.

Theorem 7.1 Let � ⊂ R
n be a Boman domain with a constant N ≥ 1, 1 < p ≤

q < ∞, and (v,w) a pair of weights in �, w doubling in � with a constant D, and
σ = v−1/(p−1). Suppose that there exist strictly positive constants Cw and δw such
that for every cube Q ∈ W(�) it holds that

w(E)

w(R)
≤ Cw

( |E |
|R|

)δw

for all Q∗-dyadic cubes R ⊂ Q∗ and all measurable sets E ⊂ R, and that there exist
similar constants Cσ and δσ for the weight σ . Furthermore, suppose that there exists
a constant K > 0 such that for every cube Q ∈ W(�), we have

(
1

|R|1−1/n

)p

w(R)
p
q σ(R)p−1 ≤ K (38)

for all Q∗-dyadic cubes R ⊂ Q∗. Then, for any u ∈ Liploc(�)

(
inf
c∈Rn

∫
�

|u(x) − c|q w(x)dx

) 1
q ≤ C

(∫
�

|∇u(x)|p v(x)dx

) 1
p

,

where the constant C = C(n, p, q, N , D, K ,Cw,Cσ , δ(w), δ(σ )) > 0.
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Proof Begin by applying Theorem 6.9:

inf
c∈Rn

∫
�

|u(x) − c|q w(x)dx ≤ C
∑

Q∈W(�)

∫
Q∗

∣∣u(x) − uw;Q∗
∣∣q w(x)dx

≤ C
∑

Q∈W(�)

2q−1
(∫

Q∗

∣∣u(x) − uQ∗
∣∣q w(x)dx + w(Q∗)

∣∣uQ∗ − uw;Q∗
∣∣q) .

(39)

The second term can estimated using Hölder’s inequality and absorbed into the first:

w(Q∗)
∣∣uQ∗ − uw;Q∗

∣∣q = w(Q∗)
∣∣∣∣ 1

w(Q∗)

∫
Q∗

(
uQ∗ − u(x)

)
w(x)dx

∣∣∣∣
q

≤ w(Q∗)
(

1

w(Q∗)

∫
Q∗

∣∣u(x) − uQ∗
∣∣q w(x)dx

)
=

∫
Q∗

∣∣u(x) − uQ∗
∣∣q w(x)dx .

Continuing from (39), we apply Theorem 5.4, the fact that q ≥ p, and that the Q∗
have bounded overlap:

∑
Q∈W XQ∗ ≤ C(n). This yields

C
∑

Q∈W(�)

2q
∫
Q∗

∣∣u(x) − uQ∗
∣∣q w(x)dx ≤ C

∑
Q∈W(�)

(∫
Q∗

|∇u(x)|p v(x)dx

) q
p

≤ C

⎛
⎝ ∑

Q∈W(�)

∫
Q∗

|∇u(x)|p v(x)dx

⎞
⎠

q
p

≤ C

(∫
�

|∇u(x)|p v(x)dx

) q
p

.

Taking qth roots completes the proof. �

It remains to say something about what pairs of weights fulfill the requirements of
Theorem 7.1. The following two theorems give two applications to distance weights,
provided that the Aikawa (or, indeed, Assouad; see [15]) dimension of the set from
which the distance is measured is “small enough”. The integral condition (40) below
expresses exactly this, even if we will say no more about either Aikawa or Assouad.
This being the case, it can be proven (see [6]) that the distance function raised to a
suitable power is in the class A∞, and we are able to apply the results at hand.

The following result provides a localized variant of [6, Theorem 6.1].

Theorem 7.2 Let 1 < p ≤ q ≤ np
n−p < ∞, and E ⊂ R

n a nonempty closed set
satisfying

−
∫
R(xR ,r)

d(x, E)
−n+ q

p (n−p)dx ≤ C1r
−n+ q

p (n−p) (40)

for every cube R with its midpoint xR in E and r > 0 with a constant C1 =
C1(n, p, q, E). Let Q ⊂ R

n be a cube and u ∈ Lip(Q). Then there exists another
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constant C = C(n, p, q,C1) such that

(∫
Q

∣∣u(x) − uQ
∣∣q d(x, E)

−n+ q
p (n−p)dx

) 1
q ≤ C

(∫
Q

|∇u(x)|p dx
) 1

p

.

Proof Let w(x) = d(x, E)
−n+ q

p (n−p) and v(x) = 1 = σ(x) for x ∈ R
n . Because we

have assumed condition (40), Corollary 3.8 in [6] tells that the weightw belongs to the
global Muckenhoupt classes A1(R

n) ⊂ A∞(Rn), whence in particular w ∈ Ad∞(Q0)

with constants Cw and δw depending on n, p, q and C1 only. It is enough to show that
there is a constant K = K (n, p, q,C1) such that (28) holds for all cubes Q ∈ D(Q0);
if so, the result follows from Theorem 5.4.

To this end, fix a dyadic cube Q = Q(xQ, rQ) ∈ D(Q0). Assume first that
Q(xQ, 2rQ) ∩ E �= ∅. Then there is a z ∈ E such that Q ⊂ Q(z, 3rQ). As we
have assumed that E satisfies the condition (40), we may estimate

w(Q)
p
q ≤

(∫
Q(z,3rQ)

d(x, E)
−n+ q

p (n−p)dx

) p
q

≤ C(n, p, q,C1) ·
(
r

q
p (n−p)

Q

) p
q

= Crn−p
Q = C |Q|1− p

n .

Since σ(Q)p−1 = |Q|p−1, we calculate

(
1

|Q|1− 1
n

)p

w(Q)
p
q σ(Q)p−1 ≤ C |Q|−p+ p

n +1− p
n +p−1 = C,

which proves (28) in the case Q(xQ, 2rQ)∩ E �= ∅. Assume next that Q(xQ, 2rQ)∩
E = ∅. In this case, we have for every x ∈ Q = Q(xQ, rQ)

C(n)d(x, E) ≤ d(Q, E) ≤ d(x, E).

Hence

w(Q)
p
q σ(Q)p−1 ≤ C(n, p, q) |Q| p

q d(Q, E)
− np

q +n−p |Q|p−1

= C(n, p, q) |Q| p
q +p−1 d(Q, E)

− np
q +n−p

.

By assumption n − p − np
q ≤ 0 and d(Q, E) ≥ rQ , and thus

(
1

|Q|1− 1
n

)p

w(Q)
p
q σ(Q)p−1 ≤ C(n, p, q) |Q|−p+ p

n + p
q +p−1 d(Q, E)

− np
q +n−p

≤ C |Q| p
n + p

q −1 |Q| 1n (− np
q +n−p) = C,
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which completes the proof. �
Theorem 7.3 Let 1 < p ≤ q ≤ np

n−p < ∞, β = n− q
p (n− p), and � ⊂ R

n a Boman

domain with constant N ≥ 1 such that w(x) = d(x, ∂�)−β is doubling in � with
constant D. Then there is a constant C = C(n, p, q, D, N ) such that

inf
c∈R

(∫
�

|u(x) − c|q d(x, ∂�)
−n+ q

p (n−p)dx

) 1
q ≤ C

(∫
�

|∇u(x)|p dx
) 1

p

for every u ∈ Liploc(�).

Proof We can apply Theorem 6.9, and then pass from uw;Q∗ to uQ∗ as in the proof of
Theorem 7.1:

inf
c∈R

∫
�

|u(x) − c|q w(x)dx

≤ C(n, q, D, N )
∑

Q∈W(�)

∫
Q∗

∣∣u(x) − uw;Q∗
∣∣q w(x)dx

≤ C
∑

Q∈W(�)

∫
Q∗

∣∣u(x) − uQ∗
∣∣q w(x)dx

≤ C
∑

Q∈W(�)

l(Q∗)−β

∫
Q∗

∣∣u(x) − uQ∗
∣∣q dx, (41)

where C = C(n, p, q, D, N ). The final inequality (41) follows from (5), that is, the
side length of a dilatedWhitney cube Q∗ is comparable to its distance from the domain
boundary.

To continue, fix a cube Q ∈ W(�). The (q, p)-Poincaré inequality of Lemma 4.3
implies

∫
Q∗

∣∣u(x) − uQ∗
∣∣q dx ≤ C(n, p, q)l(Q∗)q

∣∣Q∗∣∣1− q
p

(∫
Q∗

|∇u(x)|p dx
) q

p

≤ Cl(Q∗)β
(∫

Q∗
|∇u(x)|p dx

) q
p

,

since q + n − nq
p = β. Substituting this estimate back into (41), keeping in mind that

q ≥ p and that the dilated Whitney cubes Q∗ have a bounded overlap, we have

inf
c∈R

∫
�

|u(x) − c|q w(x)dx ≤ C
∑

Q∈W(�)

(∫
Q∗

|∇u(x)|p dx
) q

p

≤ C

⎛
⎝ ∑

Q∈W(�)

∫
Q∗

|∇u(x)|p dx
⎞
⎠

q
p

≤ C

(∫
�

|∇u(x)|p dx
) q

p

,
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with C = C(n, p, q, D, N ), whereby the proof is complete. �
Remark 7.4 As an alternative to the doubling assumption onw, we could have assumed
� to be such that its boundary satisfies the Aikawa condition

−
∫
R(xR ,r)

d(x, ∂�)
−n+ q

p (n−p)dx ≤ C1r
−n+ q

p (n−p) (42)

for every cube R with its midpoint xR on ∂� and r > 0 with a constant C1 =
C1(n, p, q,�). In this case, as in the proof of Theorem 7.2, we conclude that w ∈
A∞(Rn), and hence w is doubling in R

n . Lemma 6.4 now implies that w is doubling
in � with constant D = D(n, p, q, Q0,�).

Finally, let us take a look into the p-Laplace equation


pu = ∇ ·
(
|∇u|p−2 ∇u

)
= 0. (43)

More specifically, we consider weak supersolutions of the p-Laplace equation. Recall
that W 1,p

loc (�) is the Sobolev space of all f ∈ L p
loc(�) whose distributional first

derivatives belong to L p
loc(�).

Definition 7.5 Let � ⊂ R
n be an open set and 1 < p < ∞. We call u ∈ W 1,p

loc (�)

a weak supersolution of the p-Laplace equation (43) in � if for all nonnegative η ∈
C∞
0 (�) ∫

�

|∇u(x)|p−2 ∇u(x) · ∇η(x)dx ≥ 0.

For instance, the first eigenfunction of the p-Laplacian is a nonnegative weak super-
solution of the original equation. For an introduction to the eigenvalue problem, see
[18].

As per regularity theory, weak supersolutions could be said to satisfy half of the
Harnack inequality. The following theorem is Theorem 3.59 in [11] formulated for
cubes.

Theorem 7.6 Let 1 < p < ∞, � ⊂ R
n be an open set, and let u ∈ W 1,p

loc (�) be
a nonnegative weak supersolution of the p-Laplace equation in �. Then, for each
0 < β < ∞ with β(n − p) < n(p − 1) there is a constant C = C(n, p, β) such that

(
−
∫
Q
u(x)βdx

) 1
β ≤ C ess inf

x∈Q u(x) (44)

for all cubes Q ⊂ � such that 4Q ⊂ �.

This settingmotivates yet another simple application. Namely, using the local result
(Theorem 5.4), it is possible to obtain a single-weighted Poincaré inequality in cubes
lying “well inside” � when the weight is a suitable supersolution to the p-Laplace
equation. Observe that we can always choose p = 2 below, which leads to the classical
Laplace equation.
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Theorem 7.7 Let � be a bounded domain, and 2n
n+1 < p < ∞. Furthermore, let

w ∈ W 1,p
loc (�) be a weak supersolution of the p-Laplace equation in � such that

w(x) > 0 for almost every x ∈ �, and Q0 ⊂ � a cube such that 4Q0 ⊂ �. The
weighted Poincaré inequality

∫
Q0

∣∣u(x) − uQ0

∣∣p w(x)dx ≤ Cl(Q0)
p
∫
Q0

|∇u(x)|p w(x)dx

holds for every u ∈ Lip(Q0) with C = C(n, p) > 0.

Proof We will check the assumptions of Theorem 5.4 for v = |Q0| p
n w, p = q, and

Q0 such that 4Q0 ⊂ �; such cubes will be referred to as admissible. Whenever Q0 is
admissible, all dyadic subcubes Q ∈ D(Q0) are naturally so as well. We remark that
v is also a weak supersolution to the p-Laplace equation in � such that v(x) > 0 for
almost every x ∈ �. Write σ = v−1/(p−1).

Fix an admissible cube Q0 and Q ∈ D(Q0). Being a nonnegative supersolution,
w satisfies the inequality (44) in Q. In particular, letting 1 ≤ β = β(n, p) < ∞ with
β(n − p) < n(p − 1), we obtain a reverse Hölder inequality

0 <

(
−
∫
Q

w(x)βdx

) 1
β ≤ C(n, p) ess inf

x∈Q w(x) ≤ C(n, p)−
∫
Q

w(x)dx . (45)

Let E ⊂ Q be a measurable set. By using first Hölder’s inequality and then the reverse
Hölder inequality (45) with β > 1, which is possible since p > 2n

n+1 , we obtain

w(E) ≤ |E | β−1
β

(∫
Q

w(x)βdx

) 1
β

≤ C(n, p)|E | β−1
β |Q| 1β −

∫
Q

w(x)dx

= C(n, p)

( |E |
|Q|

) β−1
β

w(Q).

Thus w ∈ Ad∞(Q0) with constants δw = β−1
β

> 0 and Cw = C(n, p). On the other
hand, by Hölder’s inequality,

1 = −
∫
Q

v(x)−
1
p v(x)

1
p dx ≤

(
−
∫
Q

v(x)−
1

p−1 dx

) p−1
p

(
−
∫
Q

v(x)dx

) 1
p

.

Recall that v(x) > 0 for almost every x ∈ �. Hence, applying inequality (44) with
u = v and β = 1, we obtain

(
−
∫
Q

v(x)−
1

p−1 dx

)−(p−1)

≤ −
∫
Q

v(x)dx ≤ C(n, p) ess inf
x∈Q v(x).
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Raising both sides to the negative power − 1
p−1 yields

ess sup
x∈Q

σ(x) = ess sup
x∈Q

v(x)−
1

p−1 =
(
ess inf
x∈Q v(x)

)− 1
p−1

≤ C(n, p)−
∫
Q

v(x)−
1

p−1 dx = C(n, p)−
∫
Q

σ(x)dx .

As a consequence, we obtain for all measurable sets E ⊂ Q that

σ(E) ≤ |E | ess sup
x∈Q

σ(x)

≤ C(n, p)|E |
(

−
∫
Q

σ(x)dx

)
= C(n, p)

|E |
|Q|σ(Q).

Thus σ ∈ Ad∞(Q0) with constants δσ = 1 and Cσ = C(n, p).
The condition (28) is verified next. Fix a cube Q ∈ D(Q0), recall that − 1

p−1 < 0

and v = |Q0| p
n w, and apply (45):

(
1

|Q|1−1/n

)p

·
∫
Q

w(x)dx ·
(∫

Q
v(x)−

1
p−1 dx

)p−1

≤ C(n, p)

(
1

|Q|1−1/n

)p

· |Q| ess inf
x∈Q w(x) · |Q|p−1 |Q0|− p

n

(
ess inf
x∈Q w(x)

)−1

= C(n, p) |Q| p
n |Q0|− p

n ≤ C(n, p).

The result then follows from Theorem 5.4. �
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