
Jarno Kiesiläinen

Predicting aircraft arrival times with machine learning

Master’s thesis in Information Technology

May 11, 2020

University of Jyväskylä

Faculty of Information Technology

Author: Jarno Kiesiläinen

Contact information: jarno.e.kiesilainen@student.jyu.fi

Supervisors: Ilkka Pölönen, and Hannu-Heikki Puupponen

Title: Predicting aircraft arrival times with machine learning

Työn nimi: Ilma-alusten saapumisaikojen ennustaminen koneoppimismenetelmin

Project: Master’s thesis

Study line: Computational sciences

Page count: 58+2

Abstract: This Master’s Thesis studies the viability of using aircraft flight, flight plan and

weather data with machine learning to predict aircraft travel time.

Keywords: machine learning, time prediction, air travel data, weather data, open data, boost-

ing, neural network, random forest, support-vectors, regression

Suomenkielinen tiivistelmä: Tässä Pro Gradu -tutkielmassa tutkitaan lentokoneiden matka-

ajan ennustamista lentodatan, lentosuunnitelmien, säädatan ja koneoppimisen avulla.

Avainsanat: koneoppiminen, ajan ennustus, ilmailu data, säädata, avoin data, boosting, neu-

roverkot, satunnaiset metsät, tukivektori, regressio

i

Preface

At first I would like to thank my supervisors for their patience and assistance during this

project, while the research questions had to be adapted against the availability of usable data

sets. Further, I would like to extend my gratitude to the three data sources that were utilized

in the thesis. Especially, ADS-B Exchange for allowing me to use their data free of charge.

And finally, I would like to thank my family and friends for their help and motivation while

I was working on this thesis.

Jyväskylä May 11, 2020

Jarno Kiesiläinen

ii

Glossary

AI Artificial intelligence.

ANN Artificial neural network

API Application programming interface.

Flight plan Proposed route plan for aircraft flight.

FMI Finnish Meteorological Institute.

JSON JavaScript Object Notation.

MAE Mean absolute error.

ReLU Rectified linear unit. Type of activation function used in artifi-

cial neural networks.

SVM Support-vector machine.

SVR Support-vector regression.

WGS 84 World Geodetic System 1984, standard earth centric coordi-

nate system and coordinate system used by GPS.

iii

List of Figures
Figure 1. A simplified diagram of a neuron with four inputs and a single output connection. 8
Figure 2. A graph of an artificial neural network with seven inputs, three hidden layers

with five neurons each and one output. 8
Figure 3. An example of a decision tree for classifying an animal. 12
Figure 4. A JSON sample of one aircraft observation from ADS-B Exchange. 19
Figure 5. A sample flight plan search from the Flight Plan Database API. The query

returns a lot of values of which many are not of interest for us. 21
Figure 6. A sample composite image of multiple radar precipitation maps from the

FMI Open Data API. The image covers Finland completely. 22
Figure 7. A visualization of flight plan selection for a flight from Amsterdam Airport

Schiphol to Helsinki-Vantaa airport. Red polyline is formed from the flight ob-
servations. Green polylines are flight plans with the same departure airport and
destination airport as the flight data has and the circles are flight plan waypoints.
The selected flight plan is colored blue. 26

Figure 8. Distribution of dataset target values. 31
Figure 9. Distribution of dataset feature values. 32
Figure 10. A heat map of time to the next waypoint in the horizontal axis and distance

to the next waypoint in the vertical axis. 32
Figure 11. Flowchart of the flight plan selection algorithm. 53

List of Tables
Table 1. One data element from the dataset. 25
Table 2. Description of the final dataset features. 30
Table 3. Parameters for the polynomial regression model search. 35
Table 4. The polynomial regression model search results. 36
Table 5. Parameters for the random forest model search. 36
Table 6. The random forest model search results.. 37
Table 7. Parameters for the boosting model search. 37
Table 8. Results of the boosting model search. 38
Table 9. Parameters used in the SVR model search. 38
Table 10. Results of the SVR model search. 39
Table 11. Parameters used in the ANN model search. 40
Table 12. Results of the artificial neural network model search. 40
Table 13. A summary of the model search results.. 41

iv

Contents
1 INTRODUCTION . 1

1.1 Research problem and questions . 1
1.2 Structure of the thesis . 2

2 MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE . 3
2.1 Types of machine learning . 5
2.2 Regression . 6
2.3 Machine learning methods . 7

2.3.1 Artificial neural networks . 7
2.3.2 Boosting . 11
2.3.3 Random forests . 12
2.3.4 Support-vector regression . 14

2.4 Challenges in machine learning . 15
2.4.1 Curse of dimensionality . 15
2.4.2 Hyper-parameters . 16
2.4.3 Overfitting . 16

3 THE RESEARCH DATASET . 18
3.1 The open data sources . 18

3.1.1 ADS-B Exchange . 19
3.1.2 Flightplan database . 20
3.1.3 Finnish Meteorological Institute . 22
3.1.4 Data collection . 23

3.2 Data generation . 23
3.2.1 Selecting flights from observations . 26
3.2.2 Flight plan association . 26
3.2.3 Kinematic features . 27
3.2.4 Haversine formula . 27
3.2.5 Weather features . 28
3.2.6 Bresenham algorithm . 28
3.2.7 Delta encoding . 30

3.3 Resulting dataset . 30

4 MODEL SEARCH PARAMETERS AND RESULTS. 33
4.1 Grid search and random search . 34
4.2 Polynomial and linear regression models . 35
4.3 Random forest . 36
4.4 Boosting . 37
4.5 Support-vector regression . 38
4.6 ANN . 39

5 DISCUSSION. 41
5.1 Data preprocessing . 42

v

5.2 Practical notes . 43
5.3 Improvements and future research. 44

6 CONCLUSION . 46

BIBLIOGRAPHY . 47

APPENDICES . 52
A Flight plan selection algorithm . 52

vi

1 Introduction

Ability to predict air traffic patterns is important for air traffic control and air space surveil-

lance. Air traffic control is interested in making air traffic as efficient and safe as possible and

air space surveillance is looking for unusual activity in the surveyed air space. Improved air-

craft traffic prediction would allow airspace surveillance to better focus on interesting events,

expending less effort on regular and normal traffic, therefore, increasing safety.

The growing amounts of available data have driven the rise of machine learning and artificial

intelligence. Machine learning can be a very useful tool for many problems like data mining,

automation, outlier detection and analytics. It is used in multiple applications, like for ex-

ample web searches, drug discovery, advertising, manufacturing and many others. Machine

learning has therefore become a part of many information systems (Witten and Frank 2005;

Domingos 2012).

Machine learning has been applied to many aviation tasks like trajectory and aircraft climb

prediction (Leege, Paassen, and Mulder 2013; Alligier, Gianazza, and Durand 2015) and

Finnish defense forces technology strategy concludes that information systems have a very

central role or even the most important role in the defensive capabilities of the armed forces.

Systems for decision making and data mining are included in the most critical technologies

to be developed by the Finnish Defense Forces (Puolustusvoimat 2012). Could machine

learning and historical data be used to make better aircraft travel time predictions?

1.1 Research problem and questions

The novel work done in the course of this thesis are the feature extraction from the selected

data sources and the use of this data to estimate aircraft travel times. The feature extraction

is interesting because multiple data sources are used in combination to produce features such

as weather along the aircraft travel route. Also the travel times are estimated to other route

waypoints than just the final destination. The work is split into three parts, data collection,

feature extraction and evaluation of the four machine learning methods for the travel time

estimation. Following research questions have been identified as the most relevant for this

1

thesis:

1. Can aircraft travel times be reliably predicted from the available information?

2. How to preprocess and combine very different kinds of data from multiple sources?

3. How to vectorize the data for machine learning methods and what features to select?

4. Which machine learning methods could work best for this type of problem?

1.2 Structure of the thesis

The first chapter contains an introduction to the application area of this thesis and the moti-

vation for the work. The main research questions are also found in this chapter.

Chapter 2 introduces machine learning in general. It contains an overview of different ap-

proaches and uses of machine learning methods, common problems faced in machine learn-

ing and a short history of artificial intelligence and research in this field. The chapter also

describes the details of the machine learning methods used in the empirical part of the thesis.

Chapter 3 is about the dataset that was created for this thesis. The first part of the chapter is

about the open data sources and the data collection process. The second part describes, how

the preprocessing steps were used for the collected data to transform and combine it to be

used by the machine learning methods to make predictions.

The 4th chapter has a description of the model search method and the model comparison

methods. Also the model search parameters and results of the four methods, boosting, SVR,

ANN and random forest method are presented in this chapter.

The last chapter has discussion and reflection on the work done in this thesis. An inter-

pretation of the model search results and details about the practical implementation of the

empirical research task are included. Concluding, remarks about future research ideas and

improvements for the work done in this thesis are discussed.

2

2 Machine learning and artificial intelligence

Artificial intelligence (AI) is tightly tied to machine learning. Most AI-systems use one or

multiple machine learning methods as parts of their implementation (Bini 2018). There is not

a single clear-cut definition of artificial intelligence but generally artificial intelligence tries

to build entities that can understand and manipulate an environment that is more complicated

than the entities themselves are.

Artificial intelligence is often measured by comparing it to human intelligence when per-

forming specific tasks. Arguably the most famous test of machine intelligence is the Turing

test invented by Alan Turing in the 1950s. The test’s idea is very simple: a human questioner

asks questions in written form and the machine answers them in text. After questioning the

machine passes the test if the human cannot tell whether the respondent is human or a ma-

chine. This test is not interested in how artificial intelligence works internally but just if its

behavior is sufficiently close to human behavior and that it can fool the human. Another way

of approaching AI is to mimic the way humans think but it would require us to understand

how the brain works or at least how humans think. The third approach is through rationality

with rational rules that are set to achieve the best result in the task (Russell and Norvig 2009).

The first actual limited work on artificial intelligence was done in the 1940s like Donald

Hebb’s rule for updating and modifying connections between neurons nowadays called Heb-

bian learning and McCulloh’s and Pitts’ work ”A Logical Calculus of the Ideas Immanent

in Nervous Activity”. Research on artificial intelligence started more prominently in the

1950s with the influential figures like John McCarthy and Alan Turing. A single consider-

able step in AI was when Arthur Samuel wrote a checkers program that was able to learn

and improve its gameplay by playing against human and machine opponents. AI research

continued to develop gradually as applications like stock price prediction and playing poker

emerged. Some applications like machine language translation stayed elusive targets and in

the late 1980’s skepticism and lack of merits of artificial intelligence resulted in significantly

less research funding in AI. This period of slower research was called the AI Winter. Two

things can be generally be seen after the 1980s in successful AI methods: solid mathematical

theory behind the method and an increasing amount of data to create robust models (Russell

3

and Norvig 2009; Buchanan 2006; McCordyck 2004).

In the late 90s interest in AI increased with the growth of computing power and AI found

use in narrow applications like data mining and Web bots. With the renewed interest in AI

researchers started to look again into more general intelligence. This resulted in a realiza-

tion that AI sub-fields like speech or image recognition in themselves are not enough but

a multidisciplinary approach that can take uncertainties to account is required. One long-

standing goal of AI research is Human-level AI which is inspired by Herbert Simon’s words:

”machines that think, that learn and that create” (Simon and Newell 1958). Another goal

or research sub-field of AI is Artificial General Intelligence (AGI). The target of the AGI

research is to find a universal agent or algorithm that can learn any task in any environment.

Artificial General Intelligence is related closely to Human-level AI as ”any task in any en-

vironment” can be thought to be any task that a human can learn. Still, most research and

application of AI are in narrow applications like autonomous driving cars or drug discovery

(Russell and Norvig 2009; McCordyck 2004).

Especially now that most AI systems use machine learning methods, the quality and amount

of the input data is very important. Most of AI and machine learning research history the

focus has been in the algorithms and methods but it has been shown that a good algorithm

with a modest amount of data will perform worse than a mediocre algorithm with a lot of

data (Domingos 2012; Russell and Norvig 2009; Buchanan 2006; McCordyck 2004).

In machine learning the goal is to find a model based on available data that generalizes the

studied phenomena so that the model can be used to make predictions with new samples of

data. Witten and Frank (2005) describe learning in the machine learning context as: ”Things

learn when they change their behavior in a way that makes them perform better in the fu-

ture”. This definition is not based on knowledge like learning is usually understood but in

performance which is more appropriate in the computing context. Most machine learning

methods are based on an iterative automatic process of improving the model’s performance

where different performance metrics can be used to measure the model’s learning progres-

sion. This automatic model generation phase of machine learning and data mining is usually

referred as ”training” the model. Training is probably a more accurate description of what

happens in these methods as it implies a repetitive process that does not necessarily include

4

thinking like learning does.

2.1 Types of machine learning

Machine learning can be divided into three groups by their learning type: supervised, unsu-

pervised and reinforcement learning. The goal of supervised learning is to create a model

that can produce input-output pairs based on known examples. Generally this task is called

classification if the outputs are discrete values like labels or classes and regression if at least

one of the output values is continuous (Bishop 2006). These training values are used to

train a model to make predictions for input values with unknown outputs. Four supervised

methods selected to be tested in the thesis are described in more detail in section 2.3.

Ensemble methods (sometimes called committees) are a subset of supervised methods. In

ensemble methods multiple different learners are combined to make predictions that are

much better than the learners could make on their own. The results are often aggregated

by some method to produce one prediction. A common example of an ensemble method is

boosting, where a collection of weak predictions is improved with new weak predictions in

iterations called boosts (Bishop 2006; Liaw and Wiener 2002; Drucker 1997; Polikar 2012).

In unsupervised learning the correct labels for input values are unknown and the learning

algorithm is used to discover hopefully useful classes from the dataset. An example of

unsupervised learning is clustering methods where the idea is to partition the data points to

nonempty disjoint clusters which are taken to be the classes of the dataset. Since the sample’s

location in the feature space relative to other samples is the only information available, the

distance metric that is used is a very important parameter in clustering methods. Clustering

methods are often used in data exploration and data discovery to gain insights into how the

data is structured (Zaki and Wagner Meira 2014).

In the third kind of learning, reinforcement learning, the model is trained by reinforcement

signals given by an outside system. This usually done by a system that measures the learner’s

performance and it is up to the learner to discover how to produce better results. Instead of

looking for correct input-output pairs the focus is on the performance of the model. Generally

there are two different approaches. Some search techniques and genetic models search the

5

model space to find models or individuals that perform better. The other approach is to use

statistics and dynamic programming techniques to evaluate the utility of actions that can be

taken to improve the model. An important concept of reinforcement learning is ”exploration

vs. exploitation”. As model evaluation is often expensive it can be thought of as the cost of

the learning process. This means that the algorithm has to decide if to ”explore” and find

new solutions or to ”exploit” and improve current solutions (Kaelbling, Littman, and Moore

1996; Kotsiantis 2007).

2.2 Regression

In this thesis the objective of the machine learning system is to predict the time an aircraft

will take to reach its next waypoint. This means that the machine learning problem is a

regression problem and not a classification problem as the targets are not discrete values.

Regression analysis is part of statistical modeling and an important tool in many applica-

tions for estimating relationships within data. By creating a regression model one can use

regression for prediction and this is exactly what some machine learning methods do.

Simplest kind of regression model is a linear regression model. The simple linear regression

model is a line that has the form of β0+β1x = y where β0 and β1 are the estimator variables.

The line represents the relationship between the variables x and y. In a two-dimensional case

if one knows a sample value of x and not the value of y the model can be used to estimate

the value of y. The estimator variables β0 and β1 are found by minimizing a cost function

with known xi,yi pairs. Probably the most popular type of cost function is the ordinary

least-squares:

min
β0,β1

n

∑
i=1

[yi− (β0 +β1xi)]
2 . (2.1)

Geometrically in two dimensions, this means that the regressions residuals yi− (β0 +β1xi)

i.e. the vertical distances from the regression line to the actual y-values are minimized (Weis-

berg 2005; Bishop 2006).

Since most parameters have a more complicated relationship than can be linearly modeled,

the obvious next step is to move to polynomial and other non-linear models. The nth degree

two-dimensional polynomial model is y = β0 +β1x+β2x2 + . . .+βnxn. Polynomial regres-

6

sion can model much more complicated relationships in the data and a polynomial model

with a high enough degree can fit perfectly to all training data. This means that polynomial

regression is prone to overfitting especially if one uses higher-order polynomials (Weisberg

2005).

2.3 Machine learning methods

Four different popular machine learning methods were selected to be tested in this thesis: ar-

tificial neural networks, support vector regression and two ensemble methods called random

forests and boosting. In this section the basic principles of the chosen methods are detailed.

The following notation is used in the descriptions of the machine learning methods. y or

yi refers to the target value belonging to the input data element x or xi. f or fi is the predicted

value produced by a prediction model where the target value was y or yi. Vector variables

are marked with bold typeface like x, compared to scalars with normal typeface like x.

2.3.1 Artificial neural networks

Original inspiration for neural networks comes from the structure of our brains. Our brains

are a network of interconnected neurons that have the ability to organize so that they can

perform computations. Current artificial neural networks (ANN) are magnitudes of simpler

than the network in our brain but some key concepts remain the same. ANNs are constructed

with artificial neurons and the simplest and most popular (artificial) neuron has inputs, out-

put, sum junction and an activation function. The inputs are collected to a single value with

the sum junction which is usually a weighted sum. The summed input is then given to the ac-

tivation function which is the output of the neuron. An overview of this structure is displayed

in figure 1. When choosing an activation function one has to make sure that its derivative is

available since it is required in the network training. The simplest type of activation func-

tion is of course the identity function but rectified linear unit (ReLU) and sigmoid functions

are generally seen to perform better in practice (Glorot, Bordes, and Bengio 2011; Haykin

2009).

Commonly neurons are organized to layers where the neuron’s inputs are only connected to

7

+
Summation junction Activation function Output

In
p

u
ts

Figure 1. A simplified diagram of a neuron with four inputs and a single output connection.

the outputs of the previous layer. A layer is said to be fully connected if all neurons in a

layer are connected to all neurons of the adjacent layers and partially connected if some of

the connections are missing. A graph of a fully connected neural network is portrayed in

figure 2. One type of ANN is the feed-forward network where layers are connected to one

direction so that none of the connections form loops. Opposed to feed-forward networks in

concurrent neural networks layers can form loops that allow the network to have a ”memory”

so temporal relations existing between the inputs can be accounted like for example with

audio or video data (Haykin 2009).

Figure 2. A graph of an artificial neural network with seven inputs, three hidden layers with

five neurons each and one output.

8

Training neural networks is done by an algorithm called backpropagation. The idea of back-

propagation is to first do a forward pass with a training data sample to find the error of the

network for that sample. Then, using the error gradient the weights of the neurons can be

adjusted toward correct values in reverse order. This is called the backward pass and these

two passes are executed multiple times to train the network.

Defining a single neuron the input of neuron j in layer l is:

v(l)j (n) = ∑
i

w(l)
ji (n) f (l−1)

i (n), (2.2)

where w(l)
ji (n) is the weight corresponding to output of ith neuron in layer l−1, f (l−1)

i (n) is

the output of neuron i in layer l−1 and n is the iteration number. Note that the first layer is

the input layer where f (1)i (n) = x j
i , where x j

i is the ith value of the training data element x j.

The final output of the neuron j then is:

f (l)j (n) = ϕ j(v j(n)), (2.3)

where ϕ is the activation function of the neuron. Since the outputs of neurons of the previous

layer are required for calculating the neuron’s output, the output values of the neurons have

to be computed a layer at the time from the first hidden layer to final network output layer.

This is called the forward pass of the network.

In the backwards pass the weights of the neurons are adjusted with gradient descent. Weights

are updated with the delta rule:

w(l)
ji (n+1) = w(l)

ji (n)+α

[
∆w(l)

ji (n−1)
]
+ηδ

(l)
j (n) f (l−1)

i (n), (2.4)

in which l is the layer number, j the neuron number, i the neuron number of the previous

layer, δ
(l)
j (n) are the local error gradients of the network, α is momentum constant and

η is the learning-rate. Momentum constant is usually a positive value used to control the

feed-back loop of the weight change. Learning rate is used to slow the gradient descent

and limit oscillation. Small learning rate makes the training steady and predictable but also

raises the computation cost since more iterations are required for the network to converge

(Haykin 2009). For the output layer the gradient can be calculated with the error signal and

the derivative of the activation function:

δ
(L)
j (n) = e(L)j (n)ϕ ′

(
v(L)j (n)

)
, (2.5)

9

where e(L)j (n) = y j− f (L)j (n) in which the y j is the target output and for the hidden layers the

local gradients of the next layer are required:

δ
(l)
j (n) = ϕ

′
j

(
v(l)j (n)

)
∑
k

δ
(l+1)
k (n)w(l+1)

k j (n). (2.6)

This leads to the backward pass as the new weights have to be calculated in the direction

from the last layer to the first layer. Steps of the training for a single training data element

are listed in the algorithm 1. The steps of the algorithm should be repeated for all of the

training data (Haykin 2009).

Algorithm 1 Steps of backpropagation training for one training data element xi without

dropout.

1. Calculate the network output fi for the data element xi with the equations 2.2 and 2.3.

2. Calculate the gradient for the output layer with equation 2.5.

3. Update the weights of the output layer with the equation 2.4.

4. For each of the hidden layers:

(a) Calculate the gradient with equation 2.6.

(b) Update the weights with equation 2.4.

Dropout is a technique that can be applied to a neural network in the training phase. The

idea of the dropout is to disable a neuron randomly with a configurable probability during

a training iteration. This has been shown to increase the network performance because in

essence it makes the network structure change for every iteration. Thus the final network is

an ensemble of many different learners (Ba and Frey 2013).

Artificial neural networks have an exceptionally high number of hyper-parameters. The

structure of the network is one parameter that has an infinite number of possible structures

in the number of layers and neurons. This is made even more difficult by the fact that many

of the parameters can be different for each layer or neuron. Each neuron could in principle

have a different activation function or dropout probability.

10

2.3.2 Boosting

Boosting is an ensemble method. In boosting the classification or regression is based on an

ensemble of weak learners that are trained one by one consecutively. The boosting algorithm

used in this thesis is a modified version of the AdaBoost algorithm introduced by Freund and

Schapire (1997). In every iteration training data is weighted so that training of new learners

is prioritized to the data elements that had the largest error with the previous learners. The

training data is selected with replacement meaning that some of the data elements can appear

multiple times or not at all in a training set for a learner. Weak learners can be any type of

regression machines but the usual choices are regression decision trees and neural networks

(Friedman 2001). New learners are trained until the loss value of the latest learner trained

is over a threshold. Then predictions can be made for new unknown data with the ensemble

regression machine. To make a prediction each weak learner gives its prediction for the data

element. Then a weighted median of the predictions is chosen as the result (Drucker 1997;

Bishop 2006).

The regression boosting algorithm defined by Drucker (1997) is as follows:

1. Assign initial weights wi = 1 for the data samples.

2. Repeat steps 3 to 7 until L̄ > 1
2 (L̄ defined in equation 2.8).

3. Select n samples where each sample has probability pi =
wi

∑
N
i=1 wi

of being selected.

4. Grow a regression decision tree with the selected training data.

5. Make predictions f̂i with the regression tree for all of the training data.

6. Calculate measure of confidence for the new tree

βt =
L̄

1− L̄
, (2.7)

where the average loss is

L̄ =
n

∑
i=1

Li pi (2.8)

and loss for single data sample is

Li =
| f̂i− yi|2

supi∈{1...N} | f̂i− yi|2
. (2.9)

7. Update weights wi = wiβ
1−Li
t for the training data.

11

Additional learning rate parameter can also be introduced during the training phase. This

parameter scales the contribution of each new learner. The algorithm results in T regression

machines. To make a cumulative prediction fi with the ensemble calculate the weighted

median

fi = inf

 f̂t : ∑
i: f̂i≤ f̂t

log
(

1
βi

)
≥ 1

2

T

∑
i=1

log
(

1
βi

) . (2.10)

To interpret the weighted median sort the predicted values f̂i from smallest to largest. Then

sum the items log
(

1
βi

)
in the order of the ŷis until the inequality is satisfied. Then f̂t is the

weighted median fi that is the output of the model. Note that the weighted median is the

regular median if the weights βi are all equal in the equation 2.10 (Drucker 1997).

2.3.3 Random forests

Is it hairy?

Yes

Does it walk on two legs?

Yes

Ape

No

Feline

No

Does it crawl?

Yes

Reptile

No

Fish

Figure 3. An example of a decision tree for classifying an animal.

Random forest is an ensemble learning method that combines multiple simpler learners.

The learners are decision trees (hence the name forest) that are constructed with the help

of training data. Decision trees are a tree structure used to recursively partition data based

on hierarchical rules. Data is split on every node until it reaches a leaf node that represents

the class label of the value (see figure 3 for a simple example). Every internal node has at

least two child nodes and a split rule that splits the input value to one of the child nodes.

Even though decision trees can be created by hand with knowledge of the application area,

12

automatic generation or automatic rule induction is used in machine learning. Decision trees

can also be used for regression by replacing the class label with a constant value which in

essence partitions the input space to discrete output values.

The ensemble tree learners are trained with a training algorithm called bagging (bootstrap

aggregation). In bagging the training dataset is split randomly and the subsets are used to

generate regression trees. Random forest augments this algorithm by adding another layer of

randomness by selecting a random subset of features in every tree node rule induction. The

steps of the algorithm are

1. Select ntree subsets from the training data.

2. For each subset grow a regression tree with m features used for rule induction in every

node. Special case is when m is same as the number of features. Then the algorithm is

the standard bagging algorithm.

3. To predict values of unknown data, average of the ntree trees predictions is taken.

To estimate the error of the random forest the training data elements that were not used for a

single tree can be used to measure its error. The errors can be aggregated in the same way as

the regression result to gain error rate for the random forest (Liaw and Wiener 2002; Breiman

2001).

To grow the decision trees in the random forest method CART algorithm is used (Breiman

et al. 1984). The root node of the tree contains the training data subset and a binary split is

always used in the nodes. In the original CART algorithm the tree is grown without stopping

rule until no more splits can be made but some implementations have a max depth stopping

rule. For selecting the splitting rule in a regression tree node the least-squares cost function

can be used.

After the tree has been grown to maximum depth pruning can be performed. Pruning is

done with a test dataset by minimizing the tree misclassification cost and the number of tree

leaves. The objective function in pruning is

Ra(T) = R(T)+a|T |, (2.11)

where R(T) is the training data misclassification cost and |T | is the number of leaf nodes in

13

the tree. The variable a can be chosen and it is used to control if to prioritize in misclassifi-

cation cost or the size of the tree. Leaves are pruned from the tree one by one as long as the

pruning objective improves (Steinberg 2009).

2.3.4 Support-vector regression

Support-vector regression (SVR) is based on Support-vector machines (SVM) (Cortes and

Vapnik 1995; Drucker et al. 1996). Support-vector machines are a binary classification

method and SVR is an extension to the SVM that allows it to be used for regression. The

principal idea of SVM is to find a hyperplane that maximally separates the two classes. A

subset of data points from the training data is used to construct such a hyperplane. These

points are called support-vectors giving the method its name. The original SVM finds a lin-

ear hyperplane to separate the classes but as it is not always possible to separate the classes

linearly a soft error margin is introduced to allow some training samples to remain on the

wrong side of the plane and kernel method can be used to transform the input space so that

the classes become separable.

SVR takes this idea and applies it to regression. The objective function of SVR is

U
N

∑
j=1

L
[
y j−F(x j,w)

]
+‖w‖2, (2.12)

where x js are the training sample vectors and y js their target values, L is the loss function

and F is the representation of the SVR parametrized by vector w. The regularization term

‖w‖2 is added to the objective function to get better generalization since it promotes the use

of all of the features. The constant term U is used to control the focus of the minimization to

the loss function or the regularization term. The function f is usually defined as

F(x,w) =
N

∑
i=1

(α∗i −αi)K(x,w)+b, (2.13)

where N is the number of training samples, α∗i ,αi and b are values to choose.

A method called ”kernel trick” is often applied in support vector machines. It is useful when

the data points are not linearly separable in the classification case or when linear regression

can not approximate the data well enough. The idea of the kernel method is to transform

14

the input data to a feature space in which the input data is linearly separable. In practice the

actual input-feature space mapping is not required since solving the support-vector problem

requires only the dot-product of the input vectors in the feature space. Therefore only a kernel

function calculating the dot-product is required which is the function K in the equation 2.13

(Hofmann 2006). Generally four variations for the kernel function are used:

Klinear(x,w) = xtw, (2.14)

Kpolynomial(x,w) = (xtw+1)d, (2.15)

KRBF(x,w) = exp
(
−‖x−w‖2

σ2

)
, (2.16)

Kneural(x,w) = tanh(κxtw+θ), (2.17)

where σ , κ and θ are constants that can be chosen, (·)t signifies transpose and d is a poly-

nomial exponent (Suykens and Vandewalle 1999).

The function L in equation 2.12 is the ε-error margin loss function that is used to define the

soft-margin

L =

0 if |yi−F(xi,w)|< ε

|yi−F(xi,w)|− ε otherwise.
(2.18)

In essence the loss function creates a band around the target values where the loss is zero.

The problem is a quadratic programming problem and it ends in a solution where either or

both of the αi,α
∗
i variable pair from the equation 2.13 are zero. The training samples xi

corresponding to non-zero αi or α∗i are called the support-vectors (Drucker et al. 1996).

2.4 Challenges in machine learning

2.4.1 Curse of dimensionality

Many classification and regression tasks can be seen as a curve-fitting problem. This means

that the learner’s good generalization of input-output pairs is just a good interpolation of

the training data. To find a good decision boundary or an interpolation, a dense sample of

the data is needed. In high dimensional data this is a problem as the number of dimensions

increases, the volume of the space increases exponentially. Therefore more data is required

15

for a dense training dataset. The three-dimensional intuition that we humans have does not

work in higher dimensions. Phenomena like the ”mass” of multivariate Gaussian distribution

is increasingly more in a shell around the mean and not close to the mean like one is used to

in lower dimensions. These effects mean that finding a good interpolation becomes difficult

in high dimensions as any similarity-based reasoning does not work in the same fashion as

they do in a lower-dimensional space. This phenomenon is called the curse of dimensionality

and it is the main reason why one should try to limit the number of features, as finding good

generalizations in lower dimensions is usually easier. Thankfully, in many applications the

data is spread in the space non-uniformly, meaning that the data is close to some lower-

dimensional manifold that can be taken advantage of when designing the learner (Domingos

2012; Haykin 2009; Kanevski, Pozdnoukhov, and Timonin 2009).

2.4.2 Hyper-parameters

The performance of many machine learning methods depend on parameters that have to be

chosen by a human before training the model. For example the number of trees in the random

forest or the kernel of the SVM method. These parameters are sometimes called hyper-

parameters. Selecting these parameters is often a difficult problem in itself since using grid

search is often infeasible because training an individual classifier might take a significant

amount of time and in methods with multiple hyper-parameters one might end up with a

large number of combinations. Therefore many heuristics and methods have been devised

for hyper-parameter selection. In this thesis the random grid search is used to find good

hyper-parameters (Klein et al. 2016; Kanevski, Pozdnoukhov, and Timonin 2009; Bergstra

and Bengio 2012).

2.4.3 Overfitting

A major problem with many supervised machine learning methods is overfitting. Overfit-

ting happens when the model is fitted too close to the training data and the model performs

exceptionally well when tested against the training data but much worse with samples out-

side the training set. This behavior is easiest to see with polynomial curve fitting. Fitting

a lower order polynomial to a set of observations produces a simple predictor with some

16

error. Higher-order polynomial will allow the predictor to have a smaller error but will cause

the curve to oscillate between the observations which usually does not reflect the underlying

phenomenon being modeled. The problem boils down to selecting the number of parame-

ters in the model. Increasing the number of parameters increases the fit of the model but

Occam’s razor suggests that you should use only what is necessary. The opposite of over-

fitting is underfitting. This is when the model fails to capture some of the effects that were

supported by the data (Burnham and Anderson 2002; Bishop 2006; Haykin 2009; Kanevski,

Pozdnoukhov, and Timonin 2009).

A useful tool borrowed from statistics that can be used in the model selection is called cross-

validation. The idea of cross-validation is to randomly split the sample dataset into multiple

parts: training datasets and validation datasets. The idea behind this split is to train or gener-

ate the model with the training set and then validate the model with data that was not used in

the training. If the model starts to overfit we notice this by much better prediction accuracy

in the training set compared to the validation set. If the training is iterated multiple times it

is possible that the model starts to overfit to the validation set too and then a third test set can

also be kept aside to test the final model (Haykin 2009; Bishop 2006).

17

3 The research dataset

The ideal dataset for this study would be one that has features generated only from data that

would also be available for an air traffic surveillance system. This way the features could

be calculated from the data live by the system and predictions could be made as soon as the

data becomes available. The dataset produced for this thesis tries to follow this principle

and the most significant deviation is the flight plan data, since no official flight plan data was

available at the time of this thesis. A real surveillance system would of course have an access

to official flight plans, but since such a source is not available, a service primarily intended

to provide flight plans for flight simulators was used. This also leads to a need to associate

flight plans with the flights. Association is not as reliable of a system as using the flight

identification information which would be possible with official flight plan data.

An interesting direction also chosen for this thesis is the use of weather radar images along

with the other flight information, even though forecasts and other more processed weather

information would be available. The radar images were chosen as a data source because it is

a relatively novel approach in this application and as such data could also be available in a

real surveillance system.

3.1 The open data sources

Three data sources are used in this thesis: ADS-B Exchange, Flight Plan Database and

Finnish Meteorological Institute’s open data API. All three data sources can be queried with

HTTP (Hypertext Transfer Protocol) GET-method (Fielding et al. 1999) with request URI

that consists of the server name, a resource path and additional parameters like authenti-

cation. For example a request URI could be https://api.flightplandatabase.

com/nav/airport/EFHK which would request server api.flightplandatabase.com for re-

source nav/airport/EFHK i.e. information about Helsinki-Vantaa international airport. Finnish

Meteorological Institute’s API works without any authentication, ADS-B Exchange API re-

quires an API key for all request and Flight Plan Database requires authentication for some

special requests.

18

https://api.flightplandatabase.com/nav/airport/EFHK
https://api.flightplandatabase.com/nav/airport/EFHK

3.1.1 ADS-B Exchange

{

"postime": "1573733981595", "icao": "4614A3",

"reg": "OH-HVF", "type": "AS32", "wtc": "2",

"spd": "80.8", "altt": "0", "alt": "750",

"galt": "476", "talt": "", "lat": "60.27063",

"lon": "24.975807", "vsit": "0", "vsi": "0",

"trkh": "0", "ttrk": "", "trak": "192.1",

"sqk": "0012", "call": "FNG200", "gnd": "0",

"trt": "4", "pos": "1", "mlat": "0", "tisb": "0",

"sat": "0", "opicao": "", "cou": "Finland",

"mil": "0", "interested": "0", "dst": "6.15"

}

Figure 4. A JSON sample of one aircraft observation from ADS-B Exchange.

The ADS-B Exchange service (https://adsbexchange.com/) is used as an aircraft

flight information data source. ADS-B Exchange uses a community of people that host feed-

ers with ADS-B receivers that listen to the SSR (secondary surveillance radar) reply pulses

from aircraft and send them to ADS-B Exchange servers. Then on the server multilateration

(Zhou, Jun Li, and Lamont 2012) is used to calculate the position of the aircraft. The aircraft

location along with other auxiliary information is then published on the website.

Aircraft data can be accessed through JSON API from the ADS-B Exchange web service.

Data is requested with an HTTP GET -request. Multiple types of requests can be made to

the service. For example one can request all aircraft known to the service, find all aircraft

from a geographic location or search aircraft by tag like ’military’. Returned data is a single

JSON object which has a list of aircraft information corresponding to the query. There are

altogether 32 different features that might not all be present. The fields that are of interest in

this thesis are of course the aircraft location fields: lat (latitude coordinate), lon (longitude

coordinate) and alt (aircraft altitude). Other important fields are the reg-field which is the

aircraft tail number (i.e. the ICAO unique identifier), postime (time at which the plane

was observed at the aforementioned coordinates) and the to and from fields which are the

19

https://adsbexchange.com/

departure and arrival airports and their ICAO codes. Latitude and longitude coordinates are

in the WGS 84 (EPSG:4326) coordinate system and altitude is in feet. See a sample of the

data in figure 4.

3.1.2 Flightplan database

Flight plan is a document that indicates a proposed flight time and route for an aircraft.

Flight plans are usually submitted to air traffic services well before the aircraft departs and

they contain relevant information for the air traffic service authorities. For example aircraft

identification, route, cruising speed and level, fuel endurance and others (International Civil

Aviation Organization 2005). Flight plans provide an initial guess for the timetable of the

flight but since flight plans are often submitted hours before the actual flight departs and as

weather, traffic and other causes affect the progress of the flight, flight plans are not reliable.

Flight Plan Database (https://flightplandatabase.com/) has a large collection

of flight plans meant primarily for flight simulation use. For this reason most of the plans do

not have any flight identification or time information. This presents a problem since one can

not simply associate a flight plan to a flight with any unique identifier.

Flight Plan Database includes a JSON API. The API has multiple functions like submitting

and editing flight plans but for this thesis the most useful function of the API is the flight

plan search. The search has multiple parameters but here only two are needed: ”toICAO”

and ”fromICAO”. When looking for a flight plan for a flight we get the flight’s departure and

arrival airport’s ICAOs and use those to search for flight plans. The results usually contain

many flight plans but most of them are duplicates. Luckily the result JSON contains an

”encodedPolyline” field which represents encoded polyline for the flight plan route. Because

the route is the same for any duplicate plans present, also the ”encodedPolyline” will be the

same, so it can be used filter out the duplicates. Figure 5 has a sample of a single flight plan

returned from the API search query.

20

https://flightplandatabase.com/

{

"createdAt": "2019-09-11T20:35:38.000Z",

"cycle": {"id": 19, "ident": "FPD1909", "release": 9, "year": 19},

"distance": 219.547516013406, "user": None, "waypoints": 5,

"downloads": 3, "flightNumber": None,

"encodedPolyline": "oucoJssjwC~tu@vazLf{a@rpbGjsi@v{aHzyv@n{xJ",

"fromICAO": "EFHK", "fromName": "Helsinki Vantaa Intl",

"id": 2202730, "likes": 0, "tags": ["generated"],

"maxAltitude": 24900, "popularity": 1568752538,

"toICAO": "ESSB", "toName": "BROMMA",

"updatedAt": "2019-09-11T20:35:38.000Z",

"route": {"nodes": [

{"ident": "EFHK", "name": "Helsinki Vantaa Intl",

"lat": 60.3172, "lon": 24.9633, "alt": 0,

"type": "APT", "via": None},

{"ident": "UMUGI", "name": None,

"lat": 60.0372, "lon": 22.6947, "alt": 24900,

"type": "FIX", "via": None},

{"ident": "USITU", "name": None,

"lat": 59.8586, "lon": 21.3658,"alt": 23200,

"type": "FIX", "via": {"ident": "Y360", "type": "AWY-HI"}},

{"ident": "LUPET", "name": None,

"lat": 59.6403, "lon": 19.8764, "alt": 13100,

"type": "FIX", "via": {"ident": "Y360", "type": "AWY-HI"}},

{"ident": "ESSB", "name": "BROMMA",

"lat": 59.3544, "lon": 17.9416,

"alt": 0, "type": "APT", "via": None}

]}

}

Figure 5. A sample flight plan search from the Flight Plan Database API. The query returns

a lot of values of which many are not of interest for us.

21

3.1.3 Finnish Meteorological Institute

Finnish Meteorological Institute (FMI) is a government facility responsible for producing

weather services in Finland. FMI website provides an open data API (https://en.

ilmatieteenlaitos.fi/open-data) with a lot of different services like current

weather data and data provided by weather prediction models. In this thesis we are inter-

ested in the wind and precipitation data.

The API includes access to radar GeoTIFF images. There are images for radar reflectivity,

rainfall intensity, precipitation, rain classification, cloud top height and radial velocity. For

us the most interesting are the precipitation and radial velocity images. Radial velocity

is a measure of wind towards the radar. Since velocity is measured from reflected radar

pulses only radial movement of particles can be detected and orthogonal movement can not

be measured. This also means that velocity can only be measured reliably when there are

enough particles in the air like snow. There are multiple precipitation accumulation images

for different time periods.

Figure 6. A sample composite image of multiple radar precipitation maps from the FMI

Open Data API. The image covers Finland completely.

22

https://en.ilmatieteenlaitos.fi/open-data
https://en.ilmatieteenlaitos.fi/open-data

3.1.4 Data collection

The data is collected with a Python script in intervals of 30 seconds. Aircraft data is requested

from the ADS-B Exchange API and weather radar data from the Finnish Meteorological

Institute’s open data API. Aircraft data is requested from inside a circle around Southern

Finland and appended to a JSON file. Because ADS-B Exchange does not directly track the

aircraft but relies on user observations of the aircraft SSR reply pulses, the API can only

provide the latest data that it has available. This means that even though the data is sampled

at even intervals the actual observations are usually not from that exact moment.

The weather data is radar images from the Finnish Meteorological Institute’s open data API.

The radar data is also requested every 30 seconds. The radar images are not updated every

30 seconds and therefore the images are hashed with the sha256 hash algorithm. The hashes

are used to check if two consecutive images from the same radar are the same image. If so

the image is not stored to save the device disk space. Flight plans are not yet included at this

point because the flight plans are assigned with a heuristic that is easier to apply after all the

flight data has been collected.

3.2 Data generation

After all of the ADS-B Exchange -aircraft data and the weather images have been collected,

the aircraft observation data is processed to flight objects. The flight objects contain multiple

consecutive observations of an aircraft. Then based on the flight objects, flight plans are

searched from the Flight Plan Database API and assigned to the flight objects.

The dataset generation is a relatively complex process and takes a lot of processor time.

Therefore as soon as it can be deduced that a flight object cannot be processed to a dataset

element it should be skipped. This means that flights that do not have a flight plan or if

the flight does not reach any of the waypoints given in its plan it will be skipped. Also all

observations that are far away from any of the radar maps are skipped since then no weather

features could be generated.

The flight objects are split into sets of four consecutive observation samples. Each of these

23

sets of four are used to generate one dataset element. The general steps for generating a

dataset element are the following:

1. Find the next waypoint that the aircraft will reach and calculate the time and distance

to that waypoint.

2. Find radar maps that are the latest for the observation time.

3. Calculate precipitation and wind velocity value for the data element.

4. Calculate the median velocity for the aircraft during those four observations.

5. Calculate the time of day value (seconds since midnight).

6. Delta-encode the samples (for a description of delta encoding see 3.2.7).

The input data for one data element includes a series of four observations from ADS-B Ex-

change, the locations of the waypoints of the selected flight plan and a list of radar images.

Processing the weather data results in arrays of radar image pixel values. Sometimes mul-

tiple pixel arrays can result if the flight crosses multiple radar images. These values are

converted to precipitation and wind values with the color map method (described in 3.2.5).

For precipitation the sum of the array values is given as the final result and for wind values

their mean is used. The values of one random data element from the final dataset are listed

in the table 1.

24

Description value

Time (ms) to the next waypoint (target value) 1349681

Distance (km) to the next waypoint 146.8259520486311

Time of day in hours 21.3167

Mean of the wind speed along the route 2.001

Sum of the precipitation values 0.0

Mean velocity of the aircraft 0.203512

Wake turbulence class 2

Longitude 26.31015

Latitude 58.907822

Altitude 34075.0

Milliseconds since January 1st 1970 1581189476062

Longitude delta 1 -0.065896

Latitude delta 1 0.050494

Altitude delta 1 -1150

Time delta 1 32815

Longitude delta 2 -0.057867

Latitude delta 2 0.044132

Altitude delta 2 -1025

Time delta 2 28503

Longitude delta 3 -0.051144

Latitude delta 3 0.038778

Altitude delta 3 -900

Time delta 3 26654

Table 1. One data element from the dataset.

25

3.2.1 Selecting flights from observations

ADS-B Exchange API queries return a list of latest aircraft observations. To be useful in this

research we need a time series of aircraft locations. This means that the list of observations

has to be combined to form a time series. Since the ADS-B data contains the aircraft’s unique

tail number it is the easiest property to use to group the observations of the aircraft. If the

recording covers a longer time the same aircraft can have easily flown multiple flights so

further splitting by departure and destination has to be done. Even further some aircraft fly

the same route often so the flight data has to be split if there is a long enough time between

the observations meaning that they belong to different flight instances.

3.2.2 Flight plan association

Figure 7. A visualization of flight plan selection for a flight from Amsterdam Airport

Schiphol to Helsinki-Vantaa airport. Red polyline is formed from the flight observations.

Green polylines are flight plans with the same departure airport and destination airport as the

flight data has and the circles are flight plan waypoints. The selected flight plan is colored

blue.

When flight plans are submitted to the aviation authorities they have the aircraft’s ”tail num-

ber” i.e. the ICAO registration number included for connecting the actual aircraft and the

proposed flight plan so that air traffic control does not have to guess which aircraft a flight

plan is assigned to. Flight Plan Database does not have any identification information as-

26

signed to the flight plans even though the plans are real-world flight plans. This is because

the data is supposed to be used for flight simulation and not for real aviation purposes so any

real-time information is removed to discourage their use in real aviation. Therefore some

heuristic has to be used to select a plausible flight plan for a flight from many possible plans.

The heuristic selected in this thesis is to find the flight plan that is geometrically ”closest” to

the flight path. Closeness is measured by calculating the distance of the flight observations

from the polyline defined by the flight plan.

The flight plan finding heuristic is defined in the algorithm 3 (appendix A). In the algorithm,

in equation 6.1 the log of the distance is taken because aircraft do not always follow the line

segments defined by the flight plan especially close to airports. Using the distance directly

excessively punishes any aircraft departing too far away from the planned route. Without

the log operation flight plan crossing the aircraft flight path gets selected over a plan running

parallel to the flight path. Flight plan selection is illustrated in figure 7.

3.2.3 Kinematic features

Multiple features are extracted from the aircraft observations and flight plans. The simplest

feature is the distance from the aircraft’s position to the next flight plan waypoint. The

distance is calculated with the Haversine formula (see 3.2.4). Another feature is the mean

velocity of the plane for the last four observations. The mean velocity is calculated by

summing the distances between the observations and dividing them with the total time. The

distances are again calculated with the Haversine formula.

The third feature generated from the data is delta encoding (see subsection 3.2.7) of the last

four observations. Fourth feature, wake turbulence class, is taken directly from the ADS-B

Exchange data. The wake turbulence class is a rough measure of how much air the aircraft

displaces in its wake which is an indication of the aircraft’s size.

3.2.4 Haversine formula

Haversine formula is an important equation used originally in naval navigation to find one’s

position. If two positions on a sphere are known the formula can be used to calculate the

27

great circle distance of the two points. The great circle means the circle that is found with

the cross-section of a sphere and a plane that goes through the center point of the sphere.

This is useful because calculating the norm of the difference of two polar coordinates does

not produce a distance on the sphere surface like it does on a flat surface.

The derived Haversine formula for distance is as follows:

d = 2r arcsin

(√
sin2

(
ϕ2−ϕ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2−λ1

2

))
, (3.1)

where λ1,λ2, ϕ1,ϕ2 are longitude and latitude of the two points, d is the distance and r is the

radius of the sphere which is the mean radius of the earth in this thesis (Alam et al. 2016;

Chopde and Nichat 2013; Brummelen 2013).

3.2.5 Weather features

The GeoTIFF format images retrieved from the Finnish Meteorological Institute are not

directly available as the values that the radar measured but a color mapped image so the

values have to be converted to real floating-point values. The image data is a 768× 768

array of color map index values. The color values can be matched with the color bar index

provided with the API giving one the actual value for any of the index values. The radial

data has a range of negative 48 m/s to positive 48 m/s of radial velocity and the precipitation

map has values ranging from 0 mm of rainfall to 250 mm of rainfall.

Wind velocity and precipitation are selected from the radar images with a line algorithm. The

aircraft observation location and the next waypoint location are connected with a line. This

line is then rasterized to the radar image coordinates with the Bresenham algorithm to gain

a list of radar image indexes. If any of the points are within bounds of the radar image the

values at the points are stored. Then a sum or a mean of those values is used as the feature.

3.2.6 Bresenham algorithm

An algorithm is needed for selecting values from weather radar images. A line rendering

algorithm called the Bresenham algorithm is selected for this task because it is a simple way

to get grid points connecting the aircraft and the next waypoint. The algorithm works in two-

28

Algorithm 2 The Bresenham algorithm to draw a line from (x0,y0) to (x1,y1).

1. Calculate the deltas: dx = x1− x0 and dy = y1− y0.

2. Set yi = 1

3. If dy < 0: Set yi =−1 and dy =−dy.

4. Set D = 2dy−dx and y = y0

5. Let P = /0 be a set containing the pixel coordinates.

6. For x from x0 to x1 do:

7. Add (x,y) to P.

8. If D > 0: Set y = y+ yi and D = D−2dx.

9. Set D = D+2dy.

10. Return List of pixel coordinates P.

dimensional integer space by stepping values over one axis and deciding if to move along

the axis or diagonally to the next pixel. Depending on the slope of the line either x- or the

y-axis is stepped (Pitteway and Watkinson 1980; Wright 1990).

The Bresenham algorithm is described in algorithm 2. The default version of the algorithm

only handles gradients between -1 and 1 but if one swaps the x and y all gradients are possible.

Vertical and horizontal gradients should also be checked before as in those cases the pixel

array is easy to generate.

The algorithm has a single deficiency in this application. Since the coordinates are sphere

surface coordinates a line between two points is not always the shortest route. The shortest

route is always along a great circle of the sphere and the error between a Cartesian line and

a great circle line is bigger closer to the poles of the sphere. This error presents itself in this

thesis in that ”wrong” indices might be selected from the radar images. But since we are

interested in the weather close to the aircraft and its destination location this error is thought

to be small enough to be ignored.

29

3.2.7 Delta encoding

The four time-position coordinates of the aircraft are converted to a delta list. In delta encod-

ing the actual values are not used but the difference of the values. Delta encoding of a series

of data {v1,v2, . . . ,vn} can be calculated with the formula 3.2.

v̂i =

vi, if i = 1

vi− vi−1, otherwise.
(3.2)

For example the list [4,5,7,8,5] would be converted to [4,1,2,1,−3]. Delta encoding is

used to compress data when the changes of the values in a series contain less information to

store than the complete values (Smith 1997). In this thesis the delta encoding is not used to

compress the data but to extract the movement of the aircraft from the time-location series.

Even though the aircraft observation location relative to the earth is important the way the

aircraft moves is even more important and this is why delta encoding is used. When the

observations are delta encoded only the first coordinate and time is left to the dataset and the

rest of the observations are converted to deltas which represent the movement of the aircraft.

3.3 Resulting dataset

Description

1 Distance to next waypoint in kilometers

2 Time of day in hours

3 Wind speed on the route

4 Precipitation on the route

5 Mean velocity of the aircraft

6 Wake turbulence class of the aircraft

7-22 Delta encoding of the last four observations time positions

Table 2. Description of the final dataset features.

The input data for the data generation consist of 49099 radar images, 13147 flight plans and

2610993 ADS-B observations that result in 2976 flight objects between the 29th of December

2019 and the sixth of March 2020. After processing the input data the result is 14258 data

30

elements which each have 22 features and a target value. 338 of the elements have target

values that are over 2 hours or a mean velocity that is over 1200 km/h. Those elements are

considered outliers and are removed leaving 13920 elements to the final dataset.

Figure 8. Distribution of dataset target values.

Histogram of the target values can be seen in figure 8. From the figure can be seen that

smaller values (aircraft reaching next waypoint sooner) are more common. The 22 features

are described in table 2 and an example data element is given in table 1. A more comprehen-

sive description of how the values were generated can be found in section 3.2. Histograms

of the features (excluding the delta feature) are plotted in figure 9.

As seen from figure 9 the most common precipitation and wind velocity values are close to

zero with only a fraction of the elements having larger values. Bad weather should increase

the flight time as the aircraft speed should be lower. The wake turbulence has 4 possible

values: none, light, medium and heavy. No data elements correspond to the light class, most

aircraft being in the medium or heavy class with some having no classification. Heat map of

the distance and time values of the dataset is plotted in figure 10. From the figure a diagonal

trend can be seen which indicates that the distance feature is probably a good predictor of

the travel time left. This is reasonable because as the aircraft gets closer to the waypoint the

travel time should also decrease.

31

Figure 9. Distribution of dataset feature values.

Figure 10. A heat map of time to the next waypoint in the horizontal axis and distance to the

next waypoint in the vertical axis.

32

4 Model search parameters and results

Three datasets are derived from the complete data for testing: all of the data, data without

the precipitation and wind speed features and data without the delta feature. The different

datasets are used to gain insight if the features actually contribute to the models having better

predicting ability. 5% of the dataset (696 of 13920 samples) was set aside for testing and

was not used in the model training.

Two metrics are used to measure the models’ performance: the mean absolute error (MAE)

and the r2-score. Mean absolute error is defined as

∑
N
i=1 |yi− fi|

N
, (4.1)

where yi is the target value, fi is the value predicted by the model and N is the number of

samples. Mean absolute error is an interesting metric because it is often easy to interpret.

As the target values are in seconds the absolute error of the model for that element is also

in seconds. Therefore the mean absolute error tells how many seconds did the model err on

average.

The r2 is also called the coefficient of determination. It is defined as

r2 = 1− ∑
N
i=1(yi− fi)

2

∑
N
i=1(yi− ȳ)2

, (4.2)

where yi, fi and N are the same as in equation 4.1 and ȳ is the mean of the yi. It is often used

as a measure of goodness of the fit of a linear model and can be interpreted to estimate the

percentage of the variance of the target values explained by the feature variables (Renaud

and Victoria-Feser 2010; Barrett 1974).

Before the dataset is used in the model training it is scaled. Scaling the features often im-

proves the performance of the machine learning methods and some methods like support-

vector methods actually require scaling because the method is not scale-invariant. Scaling is

done so that the training data mean is moved to zero and then the features are divided by the

feature’s standard deviation. Features are scaled with the following formula:

k′i =
ki− k̄

sk
, (4.3)

33

where ki is the kth feature of the ith data element, k̄ is the mean of the kth feature and sk the

standard deviation of the kth feature for the training set. An unfortunate side effect of the

scaling is that all input values have to be scaled before they can be used by the model (Bring

1994).

The testing environment selected for the thesis is the Python-programming environment be-

cause of the number of ready-made libraries and implementations. An important Python

module used in this thesis is the Jupyter notebook module. It allows easy testing and visual-

ization of different models and data exploration. For the machine learning methods tested in

this thesis the scikit-learn library was used except for the artificial neural networks for which

the Keras library was used.

4.1 Grid search and random search

Grid search is a brute force approach to the hyper-parameter problem (see 2.4.2). It has

multiple advantages that keep it relevant after years of research in alternative ways of finding

good hyper-parameters. Its key advantages are that it is easy to understand and easy to

implement in any programming environment and since the machine learning instances are

independent of each other parallelization is usually trivial. The idea of the grid search is

to select a set of parameter values for each of the hyper-parameters that one wants to try

and then run the machine learning training with every combination of those selected values.

This means that also grid search optimization suffers from the curse of dimensionality which

is the method’s greatest weakness. If
(

L(1),L(2) . . .L(K)
)

is the set of selected values for

parameters 1,2 . . .K the number of variables in the grid search optimization is ΠK
k=1|L(k)|.

The number of combinations grows quickly when the number of parameters K is increased

making the problem difficult (Bergstra and Bengio 2012).

A natural extension to grid search is the random search. The parameter values are selected

randomly from a distribution of values instead from a grid. Even though the random values

are not distributed as evenly as in a grid the random search seems to perform better in practice

than the grid search. One can select how many times the parameters are sampled from

the distribution to control the number of models tried. This becomes very advantageous

34

especially when the number of possible combinations in grid search is large and it is not

feasible to try them all with limited resources (Bergstra and Bengio 2012).

In this thesis the random search is favored to the grid search. The implementation that is

used is the scikit-learn library’s implementation called ”RandomizedSearchCV”. The library

is given a trainable model and a list of parameter distributions to be tried. Then the library

deals with calling all the required functions for selecting the parameters and also training

and evaluating the models.

The library uses cross-validation in the training of the models. Cross-validation works by

splitting the training dataset to S different subsets. The model is trained with S− 1 number

of the subsets and then validated with the subset that was left out. Then a different subset is

left out and the process is repeated until all subsets are left out once resulting in S iterations.

Finally mean of the validations scores is taken as the final model performance score (Bishop

2006; Haykin 2009).

4.2 Polynomial and linear regression models

Parameter Values

Degree {2,3,4,5}

Bias yes / no

Table 3. Parameters for the polynomial regression model search.

Polynomial regression is used as a baseline model that the other models can be compared

to. 24 different polynomial models and a simple linear model was tested. The linear model

with only the distance feature used had a mean absolute error of 243.5 seconds and r2-score

of 0.7915. The parameters of polynomial models are in table 3. Performing grid search

yields eight different combinations of the parameters to be used in the three datasets so

random search is not necessary in this case. The degree refers to the maximum degree of the

polynomial model and bias selects if the bias term is used in the model.

The results are in table 4. The best result was achieved with no delta features with MAE of

about three minutes. The dataset without the delta feature has the lowest number of features

35

All features No weather No delta

MAE 201.2 s 207.4 s 183.4 s

r2-score 0.5159 0.4877 0.6981

degree 2 2 5

bias yes yes no

Table 4. The polynomial regression model search results.

in total and it seems that the polynomial models suffer from a high number of features so the

best model was found with the lowest number of features.

4.3 Random forest

Parameter Values

Number of estimators
{

2i : i = 3,4, . . .9
}

α Uniformly sampled from range [0,2]

Maximum depth of the tree {8,9,10,11, . . . ,100} or no limit

Maximum number of features All, square root of the number of features or

used for a split logarithm of the number of features

Table 5. Parameters for the random forest model search.

Parameters used in the random forest model search are listed in table 5. The number of

estimators refers to the number of trees generated and the maximum depth is the stopping

rule for the tree growing. The parameter α is the pruning parameter that controls the pruning

process where zero value means no pruning. The maximum number of features sets the

number of features used in the splitting. 250 candidates for each dataset were considered

totaling 750 candidates.

Parameters and results of the best models found are in table 6. With all of the features the

mean absolute error is a bit over one and half minutes. Without the weather feature the MAE

was 2.6 % worse and without the delta feature 16.6 % worse.

36

All features No weather No delta

MAE 94.0 s 96.4 s 109.6 s

r2-score 0.9511 0.9501 0.9433

α 0.6251 0.4991 0.2407

of est. 512 512 256

Max feat. all all sqrt

Max depth 95 41 39

Table 6. The random forest model search results.

4.4 Boosting

Parameter Values

Number of estimators
{

2i, i ∈ 3 . . .8
}

Loss function linear, squared or exponential

Learning rate uniformly sampled from range [0.01,1.0]

Tree depth and alpha1 {(10,0.0),(20,0.1),(40,0.5),(50,1.0)}

Table 7. Parameters for the boosting model search.

The parameters used in the boosting model search are in table 7. The number of estimators

is the number of trees used for model creation. The loss function is the function used to

measure the model error when updating the weights. The learning rate is used to control

the contribution of new regressors to limit overfitting. Tree depth and alpha are parameters

for the decision tree growth similar to the random forest method. 500 different models were

evaluated for each dataset totaling 1500 candidates. The results for the model search can be

found in table 8. The best model using all of the features had a 4.27 % better score than

without the weather features and 28.39 % better score than without the delta features.

37

All features No weather No delta

MAE 39.8 s 41.5 s 51.1 s

r2-score 0.9940 0.9933 0.9858

of est. 256 256 256

Loss function squared squared linear

Learning rate 0.5765 0.4694 0.8329

Tree depth and α 20 and 0.1 50 and 1.0 20 and 0.1

Table 8. Results of the boosting model search.

4.5 Support-vector regression

Parameter Values

Kernel RBF: Kr(x,x′) = exp(−γ‖x− x′‖2)

Sigmoid: Ks(x,x′) = tanh(γ 〈x,x′〉+ r)

Polynomial: Kp(x,x′) = (γ 〈x,x′〉+ r)d

ε uniformly sampled from range [0.1,60.0]

C uniformly sampled from range [0.1,10.0]

d {2,3,4,5}

γ uniformly sampled from range [0.1,1.0]

r 0.0

Table 9. Parameters used in the SVR model search.

Parameters for the support-vector regression model search are in table 9. The kernel param-

eter is the K-function used in the equation 2.13. The ε is the error margin that the regressor

is not punished for. d,γ and r are parameters of the kernel functions. d is used only for

the polynomial kernel as it is the maximum polynomial power. γ is a coefficient used for

scaling the input in the kernels. The r-parameter is an independent term used in the kernel.

Parameter C controls the optimization to prefer either the estimation or the regularization.

The results and parameters of the best models are listed in table 10. Using all of the features

produced a 2.1 % better model when measuring with the MAE than without the weather

feature and 5.2 % than without the delta feature. The results are not very good since the best

polynomial model has a performance very similar to the best SVR models found.

38

All features No weather No delta

MAE 183.9 s 187.8 s 193.5 s

r2-score 0.7983 0.8246 0.8140

Kernel poly poly poly

C 7.948 3.060 6.116

d 2 2 4

r 1.714 1.727 1.701

γ 0.353 0.631 0.382

ε 5.65 19.28 17.43

Table 10. Results of the SVR model search.

4.6 ANN

Parameters for the artificial neural network search are in table 11. The dropout parameter

is the dropout probability of neurons in the training phase. Layers define the network’s

structure where each number represents a layer with that number of neurons in the layer.

The learning rate is the η parameter of the back-propagation algorithm (see 2.3.1). The

activation function is the activation function used in the neurons. The epoch controls the

number of training iterations for the network. For each dataset 150 different models were

tried totaling 450 different models. Parameters and error scores of the model search are in

table 12. Using all features produced 30.2 % better mean absolute error than without the

weather features and 11.0 % better error score than without the delta features.

39

Parameter Values

Dropout probability {0.0,0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4}

Learning rate {0.01,0.05,0.1,0.15,0.2,0.25}

Activation function ReLU = ϕ(x) =

x, x > 0

0, otherwise

linear = ϕ(x) = x

sigmoid = ϕ(x) = 1
1+e−x

Layers {30,20,10} or

{100,100,100} or

{30,35,20,15,10} or

{50,50,50,20,20,10} or

{30,40,50,40,30,10,5} or

{100,100,100,100,100,100}

Table 11. Parameters used in the ANN model search.

All features No weather No delta

MAE 112.4 s 146.4 s 124.8 s

r2-score 0.9180 0.9129 0.9009

Activation sigmoid ReLU ReLU

Drop out 0.2 0.01 0.0

Epochs 206 263 326

Learning rate 0.025 0.05 0.025

Layers {100,100,100} {50,50,50,20,20,10} {30,35,20,15,10}

Table 12. Results of the artificial neural network model search.

40

5 Discussion

The research questions posed in this thesis were:

1. Can aircraft travel times be reliably predicted from the available information?

2. How to preprocess and combine very different kinds of data from multiple sources?

3. How to vectorize the data for machine learning methods and what features to select?

4. Which machine learning methods could work best for this type of problem?

With the polynomial model the mean absolute error was around three minutes and with a

simple linear model about four minutes setting the baseline results. Three minutes is not an

impressive result as the mean for the target values is around 900 seconds and the median

bit under 800 seconds. The machine learning regression model search results are promising

and indicate that it is possible to predict the travel times with such an accuracy using these

methods to give a positive answer to the question 1.

All features No weather No delta

MAE r2 MAE r2 MAE r2

Polynomial 201.2 s 0.5159 207.4 s 0.4877 183.4 s 0.6981

Boosting 39.8 s 0.9940 41.5 s 0.9933 51.1 s 0.9858

Random forest 94.0 s 0.9511 96.4 s 0.9501 109.6 s 0.9433

SVR 183.9 s 0.7983 187.8 s 0.8246 193.5 s 0.8140

ANN 112.4 s 0.9180 146.4 s 0.9129 124.8 s 0.9009

Table 13. A summary of the model search results.

Looking at the question 4 the best model was a boosting model with a test set mean absolute

error of well under one minute. If the model could make predictions of this accuracy in prac-

tice the model performance would be sufficient for real-world usage. Interestingly boosting

performed much better than the random forests method even though both methods are based

on the same regression tree learner. This may be attributed to the boosting methods ability

to focus on the ”difficult” data. The best random forest model had a mean absolute error of

about one and half minutes and the artificial neural networks performed a bit worse with an

41

MAE of about two minutes. Support-vector regression performed the worst of the four with

an error of about 3 minutes making perform about as good as the polynomial model. The

summary of the results can be found in the table 13.

5.1 Data preprocessing

Another objective of the thesis was to find how to prepare the data from multiple sources

for the machine learning methods. Answering the research questions 2 and 3 required a

considerable amount of effort and multiple heuristics were created to convert the separate

data so that it could be used by the machine learning methods. Both combining the ADS-B

data with the flight plan data and weather radar images consisted of multiple steps.

Flight plans were required to know when an aircraft has reached its waypoints. Since no

official flight plan source was available an alternative source with identification information

missing had to be used. This meant that there was no direct way to know which plan belongs

to a flight if any. An algorithm had to be developed to select plans that fit the flight data in a

realistic fashion.

The weather data was utilized to see if it would increase the prediction accuracy as the

prevailing weather should affect air traffic. The input data used was weather radar images

of radial wind velocity towards the radar and one hour precipitation detected by the radar.

There were two problems to be solved with using the weather images. The first one was

that the data was color mapped images without the original observation values. Thankfully a

legend for the color map was provided which could be used to convert the color values back

to the values measured by the radar. The second problem was how to combine the values of

the images with the flight data. The selected solution was to use a line connecting the aircraft

and the target waypoint to sample the data from the radar image.

The delta and weather features improved the regression with all of the methods except with

the polynomial model which performed best with the lowest number of features. It seems

clear that the delta feature is very important as it often improved the result significantly.

The weather feature was also beneficial for the regression problem improving the result

moderately compared to the delta feature.

42

5.2 Practical notes

Even though the goal of this thesis was not to evaluate these methods technically a small

evaluation of the machine learning implementations and tools available was done before

selecting the methods. This was done so that the effort required to test the methods would

not be overwhelming since trying and comparing the methods was the goal. The scikit-learn-

library provided a great set of tools for testing and using different kinds of machine learning

methods and processes. Implementations for all of the methods except the artificial neural

network were available in the library which made testing them much more effortless.

A few problems were countered while testing the methods. The non-linear support-vector

regression with polynomial kernel seemed to often not to converge or it converged really

slowly. Therefore iteration cap of 500 000 iterations was set for the method. None of the

other SVR kernels had this problem. Another problem was with using the artificial neural

networks with the random search method. When concurrently testing multiple models, the

search would run into concurrency error that would make the whole search fail. The prob-

lem seemed to be operating system-related because when the search was run on a Windows

system it failed and with a Linux system it succeeded.

Of the three data APIs used the ADS-B Exchange API required the most effort. The API is

available to anyone freely if one hosts an ADS-B feeder for the service and does not use the

data for commercial purposes. Hosting a feeder requires a small computer like Raspberry Pi

with an ADS-B antenna that is capable of listening for the aircraft SSR-pulses. After acquir-

ing permission to use the API, its use is quite straight forward. The Flight Plan Database

API is completely free except for a daily limit on some requests. Also the API was doc-

umented very clearly with examples of all of its capabilities. The Finnish Meteorological

Institute API is also free and open for anyone. The problem with the data API was that it

has a lot of data available with all kinds of different types of requests. There exists some

documentation of the API online on the FMI website in Finnish and English with the content

sometimes differing between the languages. The documentation is split to multiple pages

with some of the documentation being integrated in the data queries itself making the use of

the API a bit confusing at times.

43

5.3 Improvements and future research

A possible deficiency in the dataset produced in this thesis might lay in the recording of the

data. The time of day, season of the year and many other factors affect the amount and type

of air traffic. Recording for short periods might not capture all kinds of aviation as widely

as one would hope, were the recording period longer. To give one example, no observations

for the summer period are present in the dataset. This might affect the prediction quality

during summer, since most of recreational aviation with small aircraft takes place during

the summer when the flying weather is better. Thankfully the data was recorded before the

COVID-19 crisis, which halted much of the civil air traffic.

Another obvious problem in this thesis was the lack of access to complete flight plan data.

There was no comprehensive analysis of how well the flight plan association heuristic worked.

It was just assumed that the easy cases were captured and more difficult associations were

lost. Improving the research in this front would require either contacting the authorities hav-

ing control of the complete flight plan data or improving the flight plan association algorithm.

This was left out of this thesis because of time constraints and because an alternative source

was available.

If the research was continued improvements and chances to the data features could be made.

More weather features like thunderstorms or cloud cover could be easily derived from the

available Finnish Meteorological Institute data which could improve the results even more.

In addition to weather features, also new kinematic features could be developed like aircraft

flight level or difference of aircraft travel direction and direction to the next waypoint. Also

the possibility of other, additional data sources could be explored.

To find better prediction models, firstly new types of models could be researched and tried.

Moreover each of the methods selected in this thesis could be explored more closely. Even

the methods that did not perform optimally could be given a second change because trans-

formations of the input data and better hyper-parameters could improve the performance of

the models. Artificial neural networks would have especially many options to explore as the

network structures tried in this work were relatively simple and not too many training iter-

ations of the networks were executed. But this was out of the scope of this thesis since the

44

goal was to test the viability of this kind of system to gain insight into what works, if any-

thing. Randomized grid search was used to search for the models, which is a well tested and

established method to find hyper-parameters for the models. A next step in improving the

model search would be to try genetic methods briefly mentioned in the section on machine

learning to optimize the hyper-parameters. Also a more formal approach to the number of

models could be used as now the amount of models tried was loosely based on the time it

took to execute the search.

Instead of estimating the remaining travel time the data could be also used to make travel

delay predictions. The overall traffic amount and the data that was used in this thesis could

be used to estimate the change in travel time compared to average. Estimating the delay or

arrival ahead of time could be more useful than knowing the remaining flight time in some

applications.

Finally a prototype of the prediction system could be built. The prototype should be made in

a way that it is possible to change the machine learning model. This prototype would be fed

data as it becomes available and predictions would be made. Later when the aircraft reaches

their waypoints the predictions could be checked.

45

6 Conclusion

Air traffic control and air space surveillance are time-consuming and important tasks. Better

predictability of air traffic would allow resources to be directed better. Historical flight data

and weather data could be used to estimate future aircraft flight durations.

Machine learning methods can be used to create regression models that can estimate re-

lationships between variables. Many different methods exist that have their strengths and

weaknesses and selecting the best method for the required task can be difficult.

In this thesis data from three different sources for aircraft flight data, aircraft flight plans

and weather data were combined to create a dataset for predicting aircraft flight durations.

Then the data was used to generate regression models with four different machine learning

methods: support vector regression, boosting, random forests and artificial neural networks.

The different methods’ performance in the flight duration estimation was evaluated. Also the

effects of a weather- and a delta feature were evaluated.

Based on the regression model evaluation results it is possible to use these methods and data

to estimate aircraft travel time with a reasonable accuracy. The results also show that the

weather- and the delta feature improved the estimation accuracy. The improvement was sub-

stantial enough that it can be concluded that these features are beneficial for the estimation

task.

46

Bibliography

ADS-B Exchange. https://adsbexchange.com/.

Alam, C. N., K. Manaf, A. R. Atmadja, and D. K. Aurum. 2016. “Implementation of haver-

sine formula for counting event visitor in the radius based on Android application”. In 2016

4th International Conference on Cyber and IT Service Management, 1–6. doi:10.1109/

CITSM.2016.7577575.

Alligier, R., D. Gianazza, and N. Durand. 2015. “Machine Learning and Mass Estimation

Methods for Ground-Based Aircraft Climb Prediction”. IEEE Transactions on Intelligent

Transportation Systems 16, number 6 (): 3138–3149. ISSN: 1558-0016. doi:10.1109/

TITS.2015.2437452.

Ba, Jimmy, and Brendan Frey. 2013. “Adaptive dropout for training deep neural networks”.

In Advances in Neural Information Processing Systems 26, edited by C. J. C. Burges, L.

Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 3084–3092. Curran Associates,

Inc. http://papers.nips.cc/paper/5032-adaptive-dropout-for-

training-deep-neural-networks.pdf.

Barrett, James P. 1974. “The Coefficient of Determination - Some Limitations”. The Amer-

ican Statistician 28 (1): 19–20. doi:10.1080/00031305.1974.10479056. eprint:

https://doi.org/10.1080/00031305.1974.10479056. https://doi.

org/10.1080/00031305.1974.10479056.

Bergstra, James, and Yoshua Bengio. 2012. “Random Search for Hyper-Parameter Optimiza-

tion”. J. Mach. Learn. Res. 13, number 1 (): 281–305. ISSN: 1532-4435.

Bini, Stefano A. 2018. “Artificial Intelligence, Machine Learning, Deep Learning, and Cog-

nitive Computing: What Do These Terms Mean and How Will They Impact Health Care?”

The Journal of Arthroplasty 33 (8): 2358–2361. ISSN: 0883-5403. doi:https://doi.

org/10.1016/j.arth.2018.02.067. http://www.sciencedirect.com/

science/article/pii/S0883540318302158.

47

https://adsbexchange.com/
http://dx.doi.org/10.1109/CITSM.2016.7577575
http://dx.doi.org/10.1109/CITSM.2016.7577575
http://dx.doi.org/10.1109/TITS.2015.2437452
http://dx.doi.org/10.1109/TITS.2015.2437452
http://papers.nips.cc/paper/5032-adaptive-dropout-for-training-deep-neural-networks.pdf
http://papers.nips.cc/paper/5032-adaptive-dropout-for-training-deep-neural-networks.pdf
http://dx.doi.org/10.1080/00031305.1974.10479056
https://doi.org/10.1080/00031305.1974.10479056
https://doi.org/10.1080/00031305.1974.10479056
https://doi.org/10.1080/00031305.1974.10479056
http://dx.doi.org/https://doi.org/10.1016/j.arth.2018.02.067
http://dx.doi.org/https://doi.org/10.1016/j.arth.2018.02.067
http://www.sciencedirect.com/science/article/pii/S0883540318302158
http://www.sciencedirect.com/science/article/pii/S0883540318302158

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer-Verlag. ISBN:

0387310738.

Breiman, Leo. 2001. “Random Forests”. Machine Learning 45 (): 5–32.

Breiman, Leo, Jerome Friedman, Charles J. Stone, and R.A. Olshen. 1984. Classification

and Regression Trees.

Bring, Johan. 1994. “How to standardize Regression Coefficients”. The American Statisti-

cian 38 (3). doi:10.1080/00031305.1994.10476059.

Brummelen, Glen Van. 2013. Heavenly Mathematics: The Forgotten Art of Spherical Trigonom-

etry. Princeton University Press. ISBN: 9780691148922. http://www.jstor.org/

stable/j.ctt1r2fvb.

Buchanan, B. 2006. “A (Very) Brief History of Artificial Intelligence”. AI Magazine 26 (4).

Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multinmodal Inference.

Springer-Verlag. ISBN: 978-0-387-22456-5.

Chopde, Prof. Nitin R., and Mr. Mangesh K. Nichat. 2013. “Landmark Based Shortest Path

Detection by Using A* and Haversine Formula”. International Journal of Innovative Re-

search in Computer and Communication Engineering 1, number 2 ().

Cortes, C., and V. Vapnik. 1995. “Support-vector networks”. Machine Learning 20, number

3 (): 273–297. ISSN: 1573-0565. doi:10.1007/BF00994018.

Domingos, P. 2012. “A Few Useful Things to Know About Machine Learning”. Commun.

ACM (New York, NY, USA) 55, number 10 (): 78–87. ISSN: 0001-0782. doi:10.1145/

2347736.2347755.

Drucker, Harris. 1997. “Improving Regressors using Boosting Techniques”.

Drucker, Harris, Chris J.C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.

1996. “Support Vector Regression Machines”. Advances in Neural Information Processing

Systems. ISSN: 1049-5258.

48

http://dx.doi.org/10.1080/00031305.1994.10476059
http://www.jstor.org/stable/j.ctt1r2fvb
http://www.jstor.org/stable/j.ctt1r2fvb
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/2347736.2347755
http://dx.doi.org/10.1145/2347736.2347755

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

1999. Hypertext Transfer Protocol – HTTP/1.1. RFC. https://tools.ietf.org/

html/rfc2616.

Finnish Meteorological Institute. https://en.ilmatieteenlaitos.fi/open-

data.

Flight Plan Database. https://flightplandatabase.com/.

Freund, Y., and R. E. Schapire. 1997. “A Decision-Theoretic Generalization of On-Line

Learning”. Journal of Computer and System Sciences 55 (1): 119–139. ISSN: 0022-0000.

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Ma-

chine”. The Annals of Statistics 29 (5): 1189–1232. ISSN: 00905364. http://www.

jstor.org/stable/2699986.

Glorot, X., A. Bordes, and Y. Bengio. 2011. “Deep Sparse Rectifier Neural Networks”.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistic

(AISTATS).

Haykin, Simon. 2009. Neural Networks and Learning Machines: Third Edition.

Hofmann, Martin. 2006. “Support Vector Machines — Kernels and the Kernel Trick An

elaboration for the Hauptseminar “ Reading Club : Support Vector Machines ””.

International Civil Aviation Organization. 2005. Rules of the air.

Jupyter notebook. https://jupyter.org/.

Kaelbling, L., M. Littman, and A. Moore. 1996. “Reinforcement Learning: A Survey”. Jour-

nal of Artificial Intelligence Research 4:237–285.

Kanevski, Mikhail, Alexei Pozdnoukhov, and Vadim Timonin. 2009. Machine learning for

spatial environmental data. Theory, applications and software. 1st. 368. EPFL Press. ISBN:

978-2-940222-24-7.

Keras. https://keras.io/.

Klein, A., S. Falkner, S. Bartels, P. Hennig, and F. Hutter. 2016. “Fast Bayesian Optimization

of Machine Learning Hyperparameters on Large Datasets”. CoRR.

49

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://en.ilmatieteenlaitos.fi/open-data
https://en.ilmatieteenlaitos.fi/open-data
https://flightplandatabase.com/
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://jupyter.org/
https://keras.io/

Kotsiantis, S. B. 2007. “Supervised Machine Learning: A Review of Classification Tech-

niques”. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence Appli-

cations in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI,

Information Retrieval and Pervasive Technologies, 3–24. IOS Press.

Leege, Arjen de, Marinus van Paassen, and Max Mulder. 2013. “A Machine Learning Ap-

proach to Trajectory Prediction”. In AIAA Guidance, Navigation, and Control (GNC) Con-

ference. doi:10.2514/6.2013-4782. eprint: https://arc.aiaa.org/doi/

pdf/10.2514/6.2013-4782. https://arc.aiaa.org/doi/abs/10.2514/

6.2013-4782.

Liaw, Andy, and Matthew Wiener. 2002. “Classification and Regression by randomForest”.

2 (). ISSN: 1609-3631.

McCordyck, P. 2004. Machines who think: A personal inquiry into the history and prospects

of artificial intelligence. 2nd. ISBN: 9780429258985.

Pitteway, M. L. V., and D. J. Watkinson. 1980. “Bresenham’s Algorithm with Grey Scale”.

Commun. ACM (New York, NY, USA) 23, number 11 (): 625–626. ISSN: 0001-0782. doi:1

0.1145/359024.359027.

Polikar, Robi. 2012. “Ensemble Learning”. Chapter 1 in Ensemble Machine Learning, edited

by Cha Zhang and Yungian Ma, 1–34. ISBN: 978-1-4419-9326-7.

Puolustusvoimat, Suomen. 2012. Puolustusvoimien teknologiastrategia. https://puolu

stusvoimat.fi/asiointi/aineistot/julkaisut-ja-esitteet.

Python. https://python.org/.

Renaud, Olivier, and Maria-Pia Victoria-Feser. 2010. “A robust coefficient of determination

for regression”. Journal of Statistical Planning and Inference 140 (7): 1852–1862. ISSN:

0378-3758. doi:https://doi.org/10.1016/j.jspi.2010.01.008. http://

www.sciencedirect.com/science/article/pii/S0378375810000194.

Russell, Stuart, and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach. 3rd.

Upper Saddle River, NJ, USA: Prentice Hall Press. ISBN: 0136042597, 9780136042594.

scikit-learn. https://scikit-learn.org/.

50

http://dx.doi.org/10.2514/6.2013-4782
https://arc.aiaa.org/doi/pdf/10.2514/6.2013-4782
https://arc.aiaa.org/doi/pdf/10.2514/6.2013-4782
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4782
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4782
http://dx.doi.org/10.1145/359024.359027
http://dx.doi.org/10.1145/359024.359027
https://puolustusvoimat.fi/asiointi/aineistot/julkaisut-ja-esitteet
https://puolustusvoimat.fi/asiointi/aineistot/julkaisut-ja-esitteet
https://python.org/
http://dx.doi.org/https://doi.org/10.1016/j.jspi.2010.01.008
http://www.sciencedirect.com/science/article/pii/S0378375810000194
http://www.sciencedirect.com/science/article/pii/S0378375810000194
https://scikit-learn.org/

Simon, Herbert A., and Allen Newell. 1958. “Heuristic Problem Solving: The Next Advance

in Operations Research”. Operations Research 6 (1): 1–10. ISSN: 0030364X, 15265463.

http://www.jstor.org/stable/167397.

Smith, Steven W. 1997. The Scientist and Engineer’s Guide to Digital Signal Processing.

www.DSPguide.com.

Steinberg, Dan. 2009. “CART: Classification and Regression Trees” (): 179–201.

Suykens, J.A.K., and J. Vandewalle. 1999. “Least Squares Support Vector Machine Clas-

sifiers”. Neural Processing Letters 9, number 3 (): 293–300. ISSN: 1573-773X. doi:10.

1023/A:1018628609742.

Weisberg, Sanford. 2005. Applied Linear Regression. Third edition. ISBN: 0-471-66379-4.

Witten, I. H., and E. Frank. 2005. Data Mining: Practical Machine Learning Tools and

Tecchniques. Second Edition. ISBN: 0-12-088407-0.

Wright, W. E. 1990. “Parallelization of Bresenham’s line and circle algorithms”. IEEE Com-

puter Graphics and Applications 10, number 5 (): 60–67. ISSN: 1558-1756. doi:10.1109/

38.59038.

Zaki, Mohammed J., and Jr. Wagner Meira. 2014. Data Mining and Analysis: Fundamental

Concepts and Algorithms. Cambridge University Press. ISBN: 9780521766333.

Zhou, Y., Jun Li, and L. Lamont. 2012. “Multilateration localization in the presence of anchor

location uncertainties”. In 2012 IEEE Global Communications Conference (GLOBECOM),

309–314. doi:10.1109/GLOCOM.2012.6503131.

51

http://www.jstor.org/stable/167397
www.DSPguide.com
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1109/38.59038
http://dx.doi.org/10.1109/38.59038
http://dx.doi.org/10.1109/GLOCOM.2012.6503131

Appendices

A Flight plan selection algorithm

Algorithm 3 Heuristic for finding the ”closest” flight plan from flight plans F for an aircraft

flight path P.

1. Let D = /0 be the set of distances from flight path to the flight plans.

2. For each flight plan fi in F do:

3. Let di = 0 be the total distance for the flight plan fi.

4. For observation o j in flight path P do:

5. Let e= /0 be the set of distance from observation o j to the flight plan line segments.

6. For Segment sl in fi do:

7. Find the distance t between the observation o j and the line segment sl with the

algorithm 4. Take logarithm of the distance:

el = log(1+ t) (6.1)

Add the distance to the list of segment distances e = e∪{el}.

8. Add the shortest segment-observation distance to the total flight path-flight plan

distance di = di +min(e).

9. Add the flight plan fi’s distance to the set of distances D = D∪{di}.

10. Return the flight plan fi that corresponds to shortest distance mindi∈D di.

52

Start

Flight plans left

Select flight plan
with the shortest

total distance

no

end

Observations left
yes

Return sum of
the distances

no

Segments left
yes

Return shortest length
of the observation
segment lengths

no

Calculate the distance
from the observation

to the segment
Store the distance

yes

Figure 11. Flowchart of the flight plan selection algorithm.

Algorithm 4 Algorithm for shortest distance from point p to a line segment defined by two

points v and w.

1. Project p to the line defined by the two points v and w:

t = 〈p− v,w−b〉 (6.2)

2. Project to the line segment capped by the points:

t ′ = min(max(0, t),1) (6.3)

3. Return the length of the difference vector of the original point p and the projected

point t ′:

‖p− v+ t ′(w− v)‖ (6.4)

where ‖ · ‖ is the L2-norm.

53

	1 Introduction
	1.1 Research problem and questions
	1.2 Structure of the thesis

	2 Machine learning and artificial intelligence
	2.1 Types of machine learning
	2.2 Regression
	2.3 Machine learning methods
	2.3.1 Artificial neural networks
	2.3.2 Boosting
	2.3.3 Random forests
	2.3.4 Support-vector regression

	2.4 Challenges in machine learning
	2.4.1 Curse of dimensionality
	2.4.2 Hyper-parameters
	2.4.3 Overfitting

	3 The research dataset
	3.1 The open data sources
	3.1.1 ADS-B Exchange
	3.1.2 Flightplan database
	3.1.3 Finnish Meteorological Institute
	3.1.4 Data collection

	3.2 Data generation
	3.2.1 Selecting flights from observations
	3.2.2 Flight plan association
	3.2.3 Kinematic features
	3.2.4 Haversine formula
	3.2.5 Weather features
	3.2.6 Bresenham algorithm
	3.2.7 Delta encoding

	3.3 Resulting dataset

	4 Model search parameters and results
	4.1 Grid search and random search
	4.2 Polynomial and linear regression models
	4.3 Random forest
	4.4 Boosting
	4.5 Support-vector regression
	4.6 ANN

	5 Discussion
	5.1 Data preprocessing
	5.2 Practical notes
	5.3 Improvements and future research

	6 Conclusion
	Bibliography
	Appendices
	A Flight plan selection algorithm

