
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Managing sensor data streams in a smart home application

© 2020 Inderscience Publishers

Accepted version (Final draft)

Jansson, Johan; Hakala, Ismo

Jansson, J., & Hakala, I. (2020). Managing sensor data streams in a smart home application.
International Journal of Sensor Networks, 32(4), 247-258.
https://doi.org/10.1504/IJSNET.2020.106603

2020



Managing Sensor Data Streams in a
Smart Home Application

Johan Jansson, Ismo Hakala
University of Jyväskylä / Kokkola University Consortium Chydenius

P.O.Box 567, FI-67701, Kokkola, Finland
Email: firstname.lastname@chydenius.fi

Abstract—A challenge in developing an ambient activity recog-
nition system for use in elder care is finding a balance between the
sophistication of the system and a cost structure that fits within
the budgets of public and private sector healthcare organisations.
Much activity recognition research in the context of elder care is
based on dense networks of sensors and advanced methods, such
as supervised machine learning algorithms. This paper presents
the data processing aspects of an activity recognition system
based on a simpler, knowledge-based unsupervised approach,
designed for a sparse network of sensors. By structuring sensor
data management as a streaming system, we provide a simple
programming model for the application logic, which facilitates
building a fault-tolerant system with the potential for distributed
data management within the sensor network. The system, eval-
uated by a public sector healthcare organisation, constitutes an
example of a system that is useful and has a sustainable cost
structure.

Index Terms—activity recognition; healthcare; home care;
passive infrared sensor; PIR; sensor data; sensor data manage-
ment; sensor data processing; sensor data streams; smart home;
wireless sensor network; WSN.

I. INTRODUCTION

The population is ageing in many countries of the world,
putting pressure on the healthcare sector (Andueza Robustillo
et al., 2015; United Nations, Department of Economic and
Social Affairs, Population Division, 2015). To cope with this
demographic challenge, different smart home technologies
have been proposed as a means of increasing the efficiency
of elder care and supporting ageing-in-place (Liu et al., 2016;
Rashidi and Mihailidis, 2013). Activity monitoring systems in
the homes of elders is a proposed solution with the potential
to detect health issues early and assist healthcare professionals
in estimating the care needs of seniors (Klemets et al., 2017;
Peetoom et al., 2015).

This paper presents the data processing aspects of a smart
home system that uses wireless sensor network/IoT-based
technology for activity recognition in the homes of elderly
people. The system was developed in collaboration with home
care nurses to provide activity information that assists them
in making decisions about care and nursing resources. Dur-
ing this project, nurses identified seniors who have memory
impairment and live alone, as the main target group of the
system. Bathroom visits, time spent in the bedroom, wandering
behaviour, and time spent outdoors during the night were
identified as activities that could help the nurse get a better
understanding of how the senior is doing (Klemets et al.,

TABLE I
HEALTH ISSUES MAPPED TO SYSTEM OUTCOMES

Issue Room Outside Wan- Room
(Klemets et al., 2017) visit dering motion

Raise attention

Urinary tract infection bathroom
Digestion bathroom
Depression X X
Wandering behaviour change* X X
Pain X bedroom
Memory impairment change* X X

Provide insight

Tiredness and fatigue bedroom
Functional ability X X all rooms
Pressure ulcer X X
Hypnotic drug effect X all rooms
Nutrition kitchen

2019). Table I lists issues identified by nurses and related
activities that can be recognised by the system. To recognise
these activities based on sensor data, a data processing system
was developed to refine raw sensor data into information about
the activities that can be visualised for nurses in a graphical
user interface. The system was deployed for evaluation in 12
different elderly persons’ apartments in collaboration with the
home care services of the city of Kokkola in Finland.

Wireless sensor networks like the one used in this project
inherently provide streams of sensor data that need to be
continuously processed, monitored, and responded to based
on given conditions. This makes them a good fit for data
stream management systems (Golab and Özsu, 2003), where
the sensor data can be managed as a continuous data stream,
as described by Abadi et al. (2003) and Babcock et al. (2002).
Structuring sensor data management as a data stream pipeline
brings benefits such as being able to provide a simple pro-
gramming model for the application logic; thus it is possible to
build a more fault-tolerant, distributed, parallelised system by
running the same application logic on an advanced streaming
framework, as described by Akidau et al. (2013).

The contribution of this paper is a modular system design
for a sensor data streaming pipeline in a smart home system
designed specifically for the needs of elderly people living



alone. In homes with two or more residents, the other residents
may provide nurses with information on daily activities; hence,
our focus on single-person homes. The system is described
in detail to illustrate the modular design, as well as specified
inputs and outputs for each processing stage of the pipeline.
This approach facilitates the verification and evaluation of
the design, especially the system’s correctness and whether
it produces information that meets the users’ needs. The de-
tailed description also highlights the individual data processing
steps’ low space and computational complexity, which make it
possible to distribute data processing to resource-constrained
devices in wireless sensor networks.

II. BACKGROUND AND RELATED WORK

There are several aspects of activity recognition using sen-
sors that monitor the living environment, as well as processing
sensor data streams. Peetoom et al. (2015) present different
groups of monitoring technologies and the aim for using those
technologies in activity recognition. Rashidi and Mihailidis
(2013) summarise aspects of ambient-assisted living tools:
technologies, algorithms, applications, design issues, and so-
cial and ethical issues. Krishnan and Cook (2014) discuss
different approaches to processing streaming data and propose
a sliding window-based data processing method. Zhuang et al.
(2005) present different sensor data stream engines. In the
following section, we examine some aspects that are of interest
in this project.

1) Sensor technology: Different kinds of sensor technology
are used for active recognition sensors. These can be divided
into the following main groups: passive infrared (PIR) motion
sensors, wearable sensors, video monitoring, pressure sensors,
and sound recognition (Peetoom et al., 2015). Wearable sen-
sors include beacons, accelerometers, gyroscopes, and GPS
positioning (Rashidi and Mihailidis, 2013). Interactions with
objects, such as dishwashers or phones, can be used for activity
recognition (Krishnan and Cook, 2014). The system described
in this paper uses a minimal set of PIR sensors and door
switches for activity recognition. The system can be extended
with other sensors, depending on the needs of the users of the
system.

2) Number of sensors: Activity monitoring studies are
usually based on dense networks of sensors where a smart
home deployment has tens of sensors (Cook, 2012). From
an economical and practical standpoint, we chose to deploy
a sparse network of sensors in this project, typically with
one sensor per room (i.e. 5–6 sensors per apartment in a
service home setting). While a dense sensor network can
produce enormous amounts of data, there is not necessarily
a correlation between the number of sensors and the system’s
performance. Accuracy can be achieved by carefully position-
ing a smaller number of sensors (van Kasteren and Kröse,
2007). The system described in this paper is an example of
performing activity recognition by deploying a sparse network,
carefully positioning the sensors, and evaluating the sensor
positions with a test protocol, as described in Section VI.

3) Algorithms: Activity recognition can be performed using
machine learning algorithms, such as naive Bayes classifiers,
hidden Markov models, and conditional random fields (Cook,
2012). Rashidi and Mihailidis (2013) mention that supervised
algorithms are common in ambient sensor systems, but su-
pervised methods might not scale in real-world deployments.
Unsupervised activity discovery methods, such as mining for
frequent sensor sequences or discontinuous activity patterns,
can be used (Krishnan and Cook, 2014). Krishnan and Cook
(2014) present a sliding window-based approach on streams
of sensor events for activity recognition. Similar to the system
presented in this paper, they use binary (i.e. on/off) passive
infrared sensors installed in the houses of volunteers. The al-
gorithms can also be divided into a) data-driven methods based
on probabilistic and statistical models and b) knowledge-
driven methods that utilise prior domain knowledge and formal
logic reasoning (Chen et al., 2012).

This paper presents an unsupervised knowledge-driven ap-
proach to activity recognition that identifies discontinuous
activity patterns. This approach is well suited for the sparse
network of sensors used in this project (Chen et al., 2012).

4) Data processing: Wireless sensor networks, such as
those used in this project, provide streams of sensor data that
need to be continuously processed, monitored, and responded
to based on given conditions. This makes them a good fit
for data stream management systems (Golab and Özsu, 2003),
where sensor data can be managed as a continuous data stream
(Abadi et al., 2003; Babcock et al., 2002).

Three common approaches to processing sensor data
streams are explicit segmentation, time-based windowing, and
sensor event-based windowing (Krishnan and Cook, 2014). In
this project, we use the time-based windowing approach, as
described in later sections.

Structuring sensor data management as a streaming system
has benefits, such as being able to provide a simple program-
ming model for the application logic; thus it is possible to
build a more fault-tolerant, distributed, parallelised system by
running the same application logic on an advanced streaming
framework, as described by Akidau et al. (2013). This paper
describes the sensor data management of this project as an
example of a data streaming system.

5) Data stream management in sensor networks: Zhuang
et al. (2005) divide WSN data stream engines into (1)
workflow-based, such as Aurora (Abadi et al., 2003), Borealis
(Abadi et al., 2005), and TelegraphCQ (Chandrasekaran et al.,
2003); (2) relation-based, such as STREAM, as described
by Motwani et al. (2003), and TinyDB, as described by
Madden et al. (2005); and (3) object-based, such as Cougar,
as described by Demers et al. (2003). These papers describe
frameworks for query processing of sensor data streams, and
many of them provide SQL-like query languages. The system
presented in this paper is a data stream processing pipeline
constructed as a directed acyclic graph of processing steps.
This pipeline is built around a single primitive: a data process-
ing step that processes tuples (called sensor samples or data
intervals in this paper), outputting zero or more tuples for each



input tuple. This resembles the tuple processing structure of
the Aurora model presented by Abadi et al. (2003). Our system
does not use a query language, but common query operations,
such as map, filter, and time-windows, are implemented in
low-level steps of the processing pipeline. Diallo et al. (2012)
present a survey of real-time data management in WSNs,
where most of the presented solutions are based on simulation
results. In contrast, this paper presents a system with actual
wireless sensor networks deployed to 12 apartments of elderly
persons and used by nurses in their day job.

The contribution of this paper is a low complexity ap-
proach to performing the data processing for a smart home
activity recognition system for elderly people living alone,
deployed to 12 service home, single-person apartments and
used by nurses in the provision of home care. The chosen
sensor technology, number of sensors, algorithms, and data
processing and streaming pipeline all serve the purpose of
building a system with low complexity.

III. REQUIREMENTS AND DESIGN CHALLENGES

The activity recognition system is based on a wireless
sensor network. The use of a wireless sensor network adds
the following requirements to the system:

Hardware/physical requirements

1) Sensor selection: To recognise the activities listed by
the nurses while maintaining the clients’ privacy, the system
needs to locate and track the client in the apartment in a non-
intrusive way. This can be achieved using PIR motion sensors
and front-door mechanical switches. Data from these sensors
need to be integrated to acquire information on the location
and activity of the client.

2) Energy efficiency: High energy efficiency is a require-
ment for the sensor network to keep system maintenance costs
at a sustainable level. To keep energy efficiency at a sufficient
level, the battery-powered sensors need to operate in a duty
cycle where the sensor node sleeps most of the time, as
described in Section IV.

3) Number of sensor nodes: By limiting the number of
sensors, we can keep installation, hardware, and maintenance
costs low. The data processing algorithm needs to be designed
to work for a relatively small number of sensors per apartment,
also taking sensors’ duty cycle into account.

Data processing requirements

4) Data clean-up: The raw data produced by the sensor
nodes will need to be cleaned up prior to further processing.
There might be clock drift between sensor nodes in the
designed system, and this drift needs to be taken into account
by synchronising time of different sensors. Additionally the
motion sensors might be positioned so that multiple sensors
sense motion in the same room, or one sensor senses motion
in multiple rooms. The designed system handles these room
overlaps and cleans the raw data into room-specific data.

Fig. 1. Example sensor layout in an apartment. Black dots depict PIR sensors,
and the grey arcs indicate sensing direction. The black square depicts a door
sensor.

5) Data integration: The designed system needs to inte-
grate motion data from different sensors in the apartment to
generate information about the client’s location. To identify
motion patterns involving multiple sensors, data aggregation
can not be performed on the sensor node level. Thus, data
from individual sensors must be integrated on network level,
such as in the network sink, gateway, or server.

6) Missing data: There might be time windows when no
data are received from one or more sensors, for example due
to wireless interference or a low battery level. This creates
a challenge for designing sensor synchronisation and data
processing in a robust way that can compensate for occasional
missing sensor data. Since the nurses’ need for data is on a
hourly or daily level, missing a few minutes of data has very
small impact on the end result. However, the data processing
needs to cope with this situation in a robust way.

7) Activities: As described in Table I, the following kinds
of activities were identified to be of importance to the nurses:
time spent in different rooms, time spent outside, wandering
behaviour, and motion in different rooms.

8) Detect if multiple persons are present: The system was
designed based on the assumption that only one person is
present in the apartment, as the apartments participating in
this project are single-person.

IV. SYSTEM ARCHITECTURE

The system described in this paper is used to monitor
the activity of home care clients in their homes in a non-
intrusive way. In each monitored apartment, there is a wireless
sensor network (WSN) deployed to monitor the activity of
the resident using motion sensors — one in each room —
and reed switches on the apartment’s front door. The WSNs
send the gathered sensor data to a server. The data are then
processed on the server and presented in a web-based data-
visualisation user interface for the home care personnel, the
resident, and close relatives with the resident’s consent. The
WSNs are built on the CiNet platform. The CiNet wireless
sensor nodes use the Atmel ATZB-24-B0 2.4GHz ZigBit
module, which integrates an ATmega1281 microcontroller and
an AT86RF230 RF transceiver (Atmel, 2013). The CiNet
sensor nodes used in the SmartHome4E project are equipped



with either a Panasonic EKMB1103111 pyroelectric infrared
(PIR) motion sensor or a AMS-38 Mechanical Surface Mount
Contact reed switch.

In each monitored apartment, the WSN nodes are arranged
in a star topology (i.e. all sensor nodes communicate directly
with the sink node), using the IEEE 802.15.4 wireless commu-
nication standard. The sink node is connected via a serial port
to the gateway, a small single-board Raspberry Pi computer
running Linux. The gateway uses the internet connection of
the apartment to forward the data from the sink to the server
over HTTP.

In the monitored apartments, we installed a reed switch sen-
sor node to detect the opening and closing of the apartment’s
front door. These nodes send the door event data (‘open’ and
‘close’) in real-time to the sink node. In each room we installed
a motion sensor node. Each motion sensor node runs the fol-
lowing duty cycle: the PIR sensor senses motion continuously
and sends interrupts to the microcontroller when it detects
motion. The microcontroller stores a one-bit sample every 5
seconds (0 = no motion, 1 = motion), i.e. the microcontroller
wakes up only for the first PIR interrupt of each 5 second
sample. Every 10 minutes, the motion sensor node sends a bit
array (0, 1, 0, . . . 0) with 10 minutes of data (120 samples) to
the sink node.

The motion sensor sample size of 5 seconds is a trade-
off between battery life, and the granularity of the collected
data. A shorter sample size would provide more detailed data
but imply shorter battery life as the sensor duty cycle would
increase. Since we are designing a system that needs to have
low maintenance cost (i.e., the labour cost of exchanging the
sensor’s battery is high relative to the hardware cost), and we
are able to identify resident activity at this sample size, we
chose the sample size to be 5 seconds in this project.

Each motion sensor in the system produces, in theory, 17
568 samples per day. In the deployments where we tested
the system, the sensors of a single apartment produced, on
average, 79 745 samples per day, and the system as a whole
produced an average of 675 228 sensor data samples per
day. For example, to inspect one month’s activity for an
apartment, the system needs to process the equivalent of
2.4 million raw sensor samples. This amount of data puts
emphasis on the performance of data processing, as well as
the compression/aggregation of data.

V. DATA PROCESSING ALGORITHM

Below, we describe the data analysis process for a sin-
gle apartment, occupied by an elderly resident living alone.
The data analysis process is described as a pipeline where
sensor data is streamed through different data processing
stages. Each stage refines the data to a higher abstraction
level (see Figure 2). The first two stages—sensor node and
sensor network—are typical for WSNs, processing data on
the sensor level and integrating different sensors’ data into
sensor network-level data. The room motion stage performs
data processing that is more specific for this application; sensor
data is refined to room-specific motion. The location stage

Input:
Sensor data

Stage 1:
Sensor
node

Stage 4:
Location

Stage 2:
Sensor
network

Stage 3:
Room
motion

Stage 5:
Activity

recognition

Output:
Resident status

Fig. 2. Data analysis pipeline. Each stage refines the abstraction level of the
data.

Sensor
raw data

Split into
samples

Identify
missing data

Convert to
time interval

Clean up
time overlaps

Merge adjacent
intervals

Sensor
node data

Fig. 3. Stage 1: Sensor node

checks whether more than one person is in the apartment. If
only one person is present, it classifies the person’s location.
The final stage performs the actual activity recognition by
identifying wandering, time spent in different rooms, and time
spent outside the apartment.

These stages represent data as a stream of time intervals
of variable lengths; each time interval describes a value (e.g.,
sensor measurement, motion in the room, location) for a part
of the time line such that tstart ≤ t < tend. The value does
not change within the time interval. The time intervals are
ordered by time and, except for the sensor node stage, the
time intervals in the data streams do not overlap in time.
We define the data structures for the input and output time-
intervals of each stage in the following sections and describe
the processing steps of each stage.

Stage 1: Sensor node

The first stage, illustrated in Figure 3, refines raw sensor
data into time intervals to be processed as a data stream. This
stage is run separately for each sensor; it consumes raw data
samples and produces sensor node time-intervals. The sensor
data is cleaned up for time overlaps, merged, and scanned
for time periods with missing sensor data. The input and
output data structures are described in Table II. This stage
is performed on the server in this project, but it would be
possible to implement this stage in the sensor network sink
or gateway. Below, we describe the processing steps of this
stage:

1) Split into samples: When sensor data arrives, the gate-
way assigns a time stamp to the data. The motion sensor
nodes send 120 bits of motion data every 10 minutes. Each
bit represents the physical motion sensed during a 5-second
sample. We convert this data into 120 individual samples
using the gateway’s time stamp for the first sample, and



TABLE II
SENSOR NODE STAGE DATA REPRESENTATION

Input: sensor sample Output: sensor node
time interval

Motion sensor

sensorID string sensorID string
timestamp datetime start datetime
motion bit end datetime

motion true/false

Door sensor

sensorID string sensorID string
timestamp datetime start datetime
door event open/close end datetime

door state open/close

Missing data

sensorID string
start datetime
end datetime
missing true

time

output ∆ta−1 ∆ta′ ∆tab ∆tb′ ∆tb+1

input
∆ta−1 ∆ta

∆tb ∆tb+1

(a) Clean up time overlaps

time

output ∆ta ∆tmissing ∆tb

input ∆ta ∆tb

(b) Identify missing data

time

output ∆ta′

input ∆ta ∆tb

(c) Merge adjacent intervals

Fig. 4. Sensor data clean-up steps

increment 5 seconds per element. These samples are then
processed in the next step as individual samples, ordered by
time stamp. Door sensor nodes send ‘open’ and ‘close’ event
data. Incoming door sensor data are converted to a single
sample and processed further in the next step. The motion and
door sample data structures are described in the input column
of Table II.

2) Convert to time interval: The sensor samples need to be
converted into time intervals, which is the data structure used
for the remainder of the data stream. Each motion sample
is converted to an interval that starts at the sample’s time
stamp and ends 5 second later. The stream of door samples is
converted to time intervals such that each interval spans the
time between two door samples. The first door sample initiates
the interval and sets the door state for the interval, and the next
door sample’s time stamp sets the end of the interval and also
defines the start and door state of the following interval. The
motion and door interval data structures are described in the
output column of Table II.

3) Clean up time overlaps: The gateway’s timestamps for
motion data arrays will not always be exactly 10 minutes
apart due to possible clock drift between the sensor node and
gateway. We have observed time shifts of 0− 1 seconds. This
means that the last motion sample from one motion data array,
∆ta, might overlap with the first sample of the next motion
data array, ∆tb. These overlaps need to be cleaned up so that
there is one and only one sensor value for each point in time.
We do this by splitting up overlapping time-intervals ∆ta and

Sensor nodes
(network 1)

Sensor nodes
(network n)

Integrate
sensors

Integrate
sensors

Integrate sensor
networks

Sensor
network data

Fig. 5. Stage 2: Sensor network

∆tb into time intervals ∆ta′ , ∆tab, and ∆tb′ as described in
Figure 4a. Interval ∆tab will be shorter than the sample size
(i.e., 5 seconds), and it will be marked as having motion if
∆ta or ∆tb indicates motion. This can be described with the
following equations:

∆ta′ = ∆ta \∆tb

∆tab = ∆ta ∩∆tb

∆tb′ = ∆tb \∆ta

4) Identify missing sensor data: Due to clock drift, there
might also be short time periods without any data between
two consecutive motion data arrays. There are also other
potential reasons for time periods without any available data
for a sensor (e.g., low battery level or radio interference). In
these cases, we insert a time interval for missing data, as
illustrated in Figure 4b. These missing intervals are used to
notify system maintainers that there are potential problems
in the sensor network. In subsequent stages of the activity
recognition algorithm, the missing intervals are processed as
if the motion sensor senses no motion.

5) Merge adjacent intervals: If a time interval ∆ta ends
where time interval ∆tb starts, and both time intervals have
identical door or motion values, then we can compress data by
merging these adjacent time-intervals to a single time interval.
This is effective because motion and door sensors produce
binary data and the sensed data will likely be unchanged
for long periods of time (e.g., time intervals between door
openings can be many hours). This process is effectively
performing a run-length encoding of the sensor time-intervals,
illustrated in Figure 4c. This can be described by the following
equation: ∆ta′ = ∆ta ∪∆tb

After performing these steps, the each sensor’s raw data
have been transformed into a data stream of disjointed time-
intervals on the sensor node level.

Stage 2: Integrate sensors into sensor network

The second stage, illustrated in Figure 5, reads sensor node
intervals from all the sensors of an apartment. Data streams
from different sensors are integrated into a single data stream
for the apartment, consisting of sensor network intervals. The
data representation for input and output time-intervals is listed
in Table III. This stage contains the following steps:



time

Network
(sensors integrated)

- A A,B B - C C,A A -

Sensor A- motion - - motion -

Sensor B - motion - - -

Sensor C - - - motion -

Fig. 6. Integrated intervals from all sensors to sensor network intervals

TABLE III
SENSOR NETWORK TIME-INTERVAL DATA REPRESENTATION

Input: sensor intervals Output: network interval
sensorID string networkID string
start datetime start datetime
end datetime end datetime
Value (only one of these): hasMotion [ordered list of sensor ids]
- motion true/false isOpen [list of door sensor ids]
- door open/close
- missing true

Sensor
network data

Anti-aliasing
filter

Convert sensors
to rooms

Clean up
overlaps

Room
motion data

Fig. 7. Stage 3: Room motion

1) Integrate sensors: The time intervals of individual sen-
sor nodes have motion or door data, which can have the values
true/false or open/close, respectively. The time intervals where
missing is true are converted so that motion is set to false.
The input data streams from all sensor nodes are ordered by
time. The start and end timestamps of all sensor time intervals
are marked on a common time line, and this time line is
then processed into sensor network time intervals so that a
new sensor network time interval is created for each point in
time when there are sensor value changes. This algorithm is
described in Figure 6.

2) Integrate sensor networks: In larger or multi-floor apart-
ments, multiple multiple sensor networks might be deployed
in each apartment. In this case, we would need to integrate the
data from these sensor networks into a single stream, similar
to how individual sensors were integrated into a network in the
previous step. This multi-network integration step is, however,
skipped in this project since each apartment only has a single
sensor network.

Stage 3: Room motion

In the third stage, described in Figure 7, sensor network
data are read and transformed into room motion data for the
apartment.

motion before
filter

motion after
filter

t(s)

∆ta
∆tb

∆ta′
∆tb′

Fig. 8. Anti-aliasing filtering of motion data. The overlapping motion intervals
are extended to avoid aliasing.

TABLE IV
ROOM MOTION DATA REPRESENTATION

Input: network interval Output: room interval
networkID string apartmentID string
start datetime start datetime
end datetime end datetime
hasMotion [ordered list hasMotion [ordered list

of sensor ids] of room ids]
isOpen [list of sensor ids] isOpen [list of door ids]

1) Anti-aliasing filter: If a sensor sample shows motion,
the sensed motion could have happened anytime during the
5-second sample. This can lead to aliasing when consider-
ing multiple sensors; the motion time-intervals might have
a different order than the actual order of motion observed
in the apartment. We can avoid aliasing by extending the
temporally overlapping motion time-intervals by up to one
sample length. The anti-aliasing filter is illustrated in Figure 8;
motion samples from sensors a and b overlap in time. Since
we do not know in which order the motion actually occurred
within these samples, we extend the time intervals to avoid
aliasing.

2) Clean-up sensor overlaps: Two or more sensors might
sense motion partly in the same physical area. Information
about overlapping sensors is configured into the system man-
ually at time of installation. Only one sensor is the primary
sensor in each room, and other sensors detecting motion in
the same area are secondary sensors of that area. When the
primary sensor and one or more secondary sensors sense
motion simultaneously, all secondary sensors are ignored. This
is done by transforming the sensor network data stream so
that secondary sensors are removed from the hasMotion list
if their primary sensor is present in hasMotion.

3) Convert sensor motion to room motion: After processing
the sensor network data, the final step of this processing stage
converts the sensor data to room data. The data representation
of the room motion data is described in Table IV. Each sensor
is located in a certain room r, so we replace the sensor
identifiers with room identifiers in the hasMotion list and
replace sensor identifiers with door identifiers in the isOpen
list. By having the room list hasMotion ordered by start
of motion, we can use the order in later stages to infer the
room sequence when the resident is moving from one room
to another.

Stage 4: Location classification

The fourth stage, described in Figure 9, transforms the room
motion data into data indicating the resident’s location. Each



Room
motion data

Classify
multiple persons

Classify
implicit transfer

Classify motion Classify
idle

Merge adjacent
intervals

Resident
location data

Fig. 9. Stage 4: Resident location classification

TABLE V
CLASSIFY MOTION INTO LOCATION

hasMotion(∆t), isOpen(∆t) ⇒ Location(∆t)

any value not empty Outdoors
empty empty Unknown
[ri] empty In room ri
[ri, . . . , rk] empty Transfer [ri, . . . , rk]

time interval is classified as one of the following location
classes:

• In room: the person is staying in a specific room;
• Transfer: the person is moving between rooms;
• Outdoors: the person is outside the apartment;
• Unknown: the location could not be determined.
We classify the location in the following steps.
1) Classify motion: The room motion data stream is trans-

formed into a resident location data stream. In this step,
we classify time intervals with an open door to ‘Outdoors’.
Time intervals with room motion are classified to either ‘In
room’ or ‘Transfer’, as listed in Table V. In this context,
‘Transfer’ means that the person is moving between rooms
in the apartment. Time intervals with no motion are initialised
to ‘Unknown’ and then classified in subsequent steps. The
resident location data representation is defined in Table VI.

2) Classify idle time-intervals: The idle time-intervals (lo-
cation: ‘Unknown’) are classified based on the time intervals
before and after the idle time-intervals. In certain cases,
such as the door/hall transfers, we need to make special
considerations for the classification. But in general, we can
follow the model listed in Table VII.

3) Classify implicit transfer: Until this point, the location
‘Transfer’ covers time intervals where there are motion in

TABLE VI
RESIDENT LOCATION DATA REPRESENTATION

Input: room interval Output: location interval
apartmentID string apartmentID string
start datetime start datetime
end datetime end datetime
hasMotion [ordered location ‘unknown’/‘inroom’/

list of ‘transfer’/‘outdoors’/
room ids] rooms [ordered list of ids]

isOpen [list of value of rooms is based on location:
door ids] ‘unknown’ ⇒ empty list

‘inroom’ ⇒ single room id
‘transfer’ ⇒ ordered list of room ids
‘outdoors’ ⇒ door id

TABLE VII
CLASSIFICATION OF ‘UNKNOWN’ LOCATION, BASED ON TIME INTERVALS

BEFORE AND AFTER

Location Location ⇒ Location(∆t)
(∆tbefore) (∆tafter)

Outdoors Outdoors Outdoors
Outdoors In room r In room r
In room r Outdoors In room r
Outdoors Transfer [r, . . .] In room r
Transfer [. . . , r] Outdoors In room r
In room r In room r In room r
In room r Transfer [. . .] In room r
Transfer [. . .] In room r In room r
In room ri In room rj Split ∆t in half:

In room ri for first half
In room rj for second half

Transfer: Transfer: Depending on length of ∆t
[ri, . . .] [rj , . . .] Transfer [ri, . . . , rj , . . .]

if ∆t < 1minute
[. . .] [. . .] Unknown, if ∆t ≥ 1minute

time

After classification In room ri Transfer [ri, rj ] In room rj

Before classification In room ri In room rj

Fig. 10. Classifying implicit transfer: insertion of a transfer interval between
‘In room ri’, and ‘In room rj ’ when the resident changes room. The inserted
transfer interval is one sample length (i.e., 5 seconds) long.

multiple rooms. In cases where ‘In room ri’ is succeeded by
‘In room rj’, we insert an implicit transfer time interval of
one sample size.

We identify these implicit transfers using a sliding time win-
dow W (∆t) with the size of one sample (i.e., 5 seconds). For
each ∆t where W (∆t) contains ‘In room’ for multiple rooms
ri, . . . , rk: classify Location(∆t) = Transfer[ri, . . . , rk],
and keep the order of the rooms according to the order within
W (∆t). This process is illustrated in Figure 10.

4) Merge adjacent time-intervals: Since the location classi-
fication happens in multiple steps, there may be adjacent time-
intervals with the same location state. In order to correctly
classify activities and duration of room visits, we need to
merge these adjacent resident location time-intervals when the
location does not change. This is done in a similar way as
described in Figure 4c.

Stage 5: Activity recognition

The final stage, described in Figure 11, classifies resident
activities based on the resident’s location data. In this context,
an activity describes what the resident is doing, such as
the resident wandering around the apartment, being in the
bedroom during the night, or being outside the apartment.

1) Identify wandering: There is no precise definition of
wandering, but it can be described as a cognitively impaired
person moving around aimlessly (Lai and Arthur, 2003). In
the context of this project, we expect a wandering resident to
walk around the apartment and change rooms frequently. To
identify this behaviour, we analyse the transfer time-intervals



Identify
wandering

Wandering
data

Identify
room visits

Room
visit data

Outside
apartment data

Resident
status data

Fig. 11. Stage 5: Activity recognition

TABLE VIII
ACTIVITY DATA REPRESENTATION

Name Type Activity classification

apartmentID string
start datetime
end datetime
Value (only one of these):
wandering true/false wandering
room room id room visit
outside true/false outside the apartment

since the resident is expected to transfer between rooms while
wandering. We do not focus on motion within a single room,
since there are many different physical activities, in addition to
wandering, that could trigger motion measurements in a room.
We need to identify the following indications of wandering:

• Frequent transfers between rooms indicate wandering
behaviour;

• Short time-intervals in rooms between room transfers
indicate wandering behaviour;

• Low frequency transfers between rooms do not indicate
wandering behaviour.

To achieve this, we define the following wandering indicator
based on a sliding time window W (∆t):

wander(∆t) =
total time of Transfer during W (∆t)

window size ∆t
We can now define wandering as the time intervals where

the wandering indicator exceeds a certain threshold:

Wandering(∆t) =

{
true, wander(∆t) ≥ threshold
false, wander(∆t) < threshold

By running the sliding time window on the resident location
data stream we produce wandering time-intervals for the
activity data stream; see the data representation in Table VIII.
For the wandering indicator, we use the following heuristics:
window size ∆t = 1 minute, threshold = 0.5.

2) Identify room visits: For each time interval ∆ti where
Location(∆ti) = ‘In room r’:

• Classify ∆ti as a room visit in room r;
• If r is a door, classify ∆ti as time outside the apartment

instead of room visit.
Data for room visits and time spent outside the apartment

are represented as described in Table VIII.

TABLE IX
DATA PROCESSING STAGE OUTPUTS USED FOR SYSTEM VERIFICATION

Data processing stage System check

Stage 1: Sensor node Sensors & network operational
Stage 2: Sensor network Synchronisation between sensors
Stage 3: Room motion Room overlaps & antialiasing
Stage 4: Location Location and transfer classification
Stage 5: Activity recognition Wandering & outside classification

VI. EVALUATION

The system design is evaluated in this paper through the im-
plementation and deployment of the system design described
above. To verify the data processing system’s functionality and
correctness, we set up a test protocol of predefined and timed
motion-patterns:

1) Moving around in one room at a time;
2) Standing still in one room at a time;
3) Moving in and between rooms in a predefined pattern;
4) Going outside and returning to the apartment.

This test protocol, lasting 15–30 minutes depending on the
apartment layout, is performed and documented by the tester.
The outputs of the data processing stages during the test proto-
col are then checked against the motion patterns documented
in the test protocol to verify the system operates as expected;
see Table IX.

By performing the test protocol for each apartment, when
deploying the system, we could verify that the data processing
performed as intended. The algorithm was able to identify
the activities as performed by the test person as the sensors’
data matched the test person’s motion patterns. To evaluate the
relevance of the data produced by the system, we consider the
user needs in Table I and compare them with the outcomes
of the data processing stages. As we can see in Table X, the
user needs can be directly mapped to the data produced by
data processing stages 3–5.

Collecting feedback from the target group of the system—
elderly people with memory impairment caused by, for exam-
ple, Alzheimer’s disease—present its own challenges, depend-
ing on the level of cognitive impairment. Hence, the usefulness
of this system design was evaluated by meeting with and
collecting feedback from the nurses who used this system. A
case study of this deployed system by Klemets et al. (2019)
shows that the activity data helped nurses better understand
their clients’ daily rhythms and make well-informed decisions.
In two cases, routine night visits by home care nurses could
be cancelled as a consequence of deploying this system. The
activity data helped the nurses make the decision that one
client needed to be moved to a care home, and there were three
clients for whom the activity data helped nurses establish that
they could continue living in their apartment instead of moving
to a care home. The cost savings of cancelled care home
applications and cancelled night-time home care visits cover
the hardware and maintenance costs of the smart home activity
recognition system by a wide margin. Helping nurses identify
clients in need of being moved from independent living to



TABLE X
USER REQUIREMENTS MAPPED TO DATA PROCESSING STAGES

Issue Data processing stage
(Klemets et al., 2017)

Raise attention

Urinary tract infection Stage 5: Room visit (bathroom)
Digestion Stage 5: Room visit (bathroom)
Depression Stage 5: Outside, Wandering
Wandering behaviour Stage 5: Room visits, Outside, Wandering
Pain Stages 3 & 5: Room motion (bedroom),

Wandering
Memory impairment Stage 5: Room visits, Outside, Wandering

Provide insight

Tiredness and fatigue Stage 5: Room visit (bedroom)
Functional ability Stages 3 & 5: Room motion (all rooms),

Outside, Wandering
Pressure ulcer Stages 3 & 5: Room motion, Room visit
Hypnotic drug effect Stages 3 & 5: Room motion (all rooms),

Wandering
Nutrition Stage 5: Room visit (kitchen)

a care home improves the cost efficiency of both home care
as well as care home services, as the elderly care resources
are better targeted (Weissert et al., 2003). The usefulness of
the system is also confirmed by the fact that the home care
services are extending the deployments of this system as part
of a follow-up project.

VII. DISCUSSION

The contribution of this paper is a sensor data streaming
pipeline for a low complexity smart home activity recognition
system, designed for elderly persons living alone. The system
was designed in collaboration with home care nurses, with
the focus on meeting the user’s needs. The focus on user
needs drive the emphasis on low complexity for the whole
system, it has benefits such as low costs (i.e., hardware, power
consumption, and maintenance) and facilitates a robust and
modular system design. The system uses a wireless sensor
network with motion and door sensors to monitor activity in
the homes of elderly people.

The individual steps of the data processing pipeline process
data as a stream and can be implemented using fixed-point
arithmetic. This results in low computational complexity and
low space complexity within the capacity of the microcon-
troller used in the WSN nodes. The detailed description of
the data processing stages in Section V illustrates the level
of complexity in each stage of the data processing algorithm.
The modular system design, with documented data streams as
interfaces between data processing stages, makes it easy to
reason about the system and evaluate the correctness of the
system.

The system was deployed in service home apartments for
elderly people, providing nurses with information about their
clients’ daily pattern of activity. The evaluation, deployment,
and collected user feedback from the real-world deployment

confirm the usefulness of this system (Klemets et al., 2019).
The low complexity of the data processing, combined with a
sparse sensor network, keep the system costs at a sustainable
level, suitable for healthcare organisations. This is also con-
firmed by an extended follow-up project with deployment in up
to 40 apartments, funded in part by a public-sector healthcare
organisation.

There are examples in the literature of smart home systems
with dense sensor networks (Cook, 2012), and supervised
machine learning algorithms for activity recognition are preva-
lent (Rashidi and Mihailidis, 2013). The system described
in this paper is an example of a low-complexity design
of a smart home system with a sparse network of sensors
and an unsupervised knowledge-driven activity recognition
approach. In this project, we primarily used PIR motion
sensors, which are commonly used in this type of research
(Peetoom et al., 2015), although many other type of sensors
have been used by other researchers (Krishnan and Cook,
2014; Rashidi and Mihailidis, 2013). In the context where this
system was deployed—helping nurses understand how seniors
with memory impairment cope living alone in an apartment—
the activities recognised by the system were selected based
on discussions with the nurses using the system. Based on
user feedback from the deployment, the scope of activity
recognition could have been reduced from what we have
presented in this paper. The pattern of room visits and going
outside the apartment were the main activities that the nurses
found useful during this project. Thus, there is still room to
reduce the complexity of the system.

The current design is based on the assumption that only
one person lives in the apartment. We are relying on the user
to know or find out when there have been multiple persons
in the apartment and disregard the activity classification for
these periods of time. As the system has been deployed in
a service home setting, and the nurses have mainly used the
system to monitor how the resident copes by herself/himself
during the night, we were able to cope with this shortcoming.
In future work, we intend to detect when multiple persons are
present in the apartment and disable the single-person activity
recognition for these time intervals, informing users that
there are multiple persons present. To detect when multiple
persons are present, we propose using a door sensor with two
infrared beams that sense people entering or exiting through
the apartment door. Based on the door sensor data and the
apartment’s motion data, the system will classify each time
interval between apartment entry/exit events as ‘empty apart-
ment’, ‘single person’, ‘multiple persons’. Another limitation
of the system is that it handles missing sensor data packets
as if the sensor was not sensing any motion. This approach
increases the system’s robustness, enabling data processing
when there are temporary sensor or network malfunctions. The
loss of a single packet means 10 minutes of data loss, which
is not critical for the nurses using this system. However, this
method will give odd results when there is a longer sensor
outage. This issue has been mitigated by using a monitoring
system to notify IT personnel of data loss, low battery levels,



poor wireless connectivity, and other network-related issues.
We propose an improvement to visualise explicitly, in the UI,
when sensor data packets are missing. This would reduce the
risk of the user misinterpreting data during a sensor or network
failure.

In addition to the proposed improvements listed above, we
propose the following in future work:

Anomaly detection: By comparing activity patterns with
earlier activity data, the system can detect anomalies and
inform care personnel about changes in activity patterns and,
thus, a potential change in the client health status.

Detect sensor overlaps automatically: Instead of manually
configuring information about multiple sensors overlapping the
same area, it could be possible to detect the overlapping areas
automatically by, for example, including it in the apartment
installation test protocol. In addition, an alternative approach
to handle overlapping areas would be to define these areas
as virtual rooms, and take them into account in the data
processing algorithm.

Distribute data processing across WSN: We propose dis-
tributing the data processing pipeline across the constrained
devices of the WSN. The specified input and output data
streams between data processing stages suggest that the inter-
stage data streams can be transported over the network, and
the low complexity requirements per stage suggest that data
processing can be performed on the constrained devices of the
WSN. This would move data processing closer to the edge of
the network, which could improve efficiency, as well as data
security and privacy (Shi et al., 2016).

Scalability: In the current setting, the typical monitored
home is a one bedroom apartment, which is monitored by
fewer than 10 sensors. Due to the low computational and
space complexity of the system, the data transfer speed is
the limiting factor when it comes to scalability. To scale up
the system to a larger apartment with a greater number of
sensors per apartment, we can extend the number of gateways
to multiple gateways per apartment. Distributing the data
processing across the WSN, as mentioned above, improves
scalability in terms of deploying the system to a larger number
of apartments.

VIII. CONCLUSION

In this paper, we presented a data processing pipeline
for a stream of sensor data in a motion sensor-based smart
home system. The data processing pipeline is split into five
processing stages, where each stage’s interface is specified as
input and output streams and their data structures. Each stage
refines the sensor data to a higher abstraction level: stage 1
processes raw sensor data and cleans it up; stage 2 integrates
data from multiple sensors into network level data; stage 3
refines sensor network data into motion per room; stage 4
classifies the location of the person; stage 5 performs activity
recognition. The detailed description of the data processing
pipeline illustrates the modularity of the design and facilitates
the evaluation of the system, as well as the feasibility of
distributing the data processing into the constrained devices of

the wireless sensor network. The correctness and suitability for
meeting the needs of users of this data processing pipeline was
evaluated with a server-based implementation, processing the
data generated by WSNs used for motion and door sensors
installed in 12 elderly persons’ apartments. A protocol was
used to test the sensor network in the apartments. In future
work, we intend to add the detection of multiple persons in
the apartment and visualisation of data loss. We also propose
anomaly detection, improved sensor overlap handling, and
distributing the data processing across the wireless sensor
network.

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U.,
Cherniack, M., Hwang, J.-H., Lindner, W., Maskey, A.,
Rasin, A., Ryvkina, E., et al. (2005). The design of the
borealis stream processing engine. In Cidr, volume 5, pages
277–289.

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Con-
vey, C., Lee, S., Stonebraker, M., Tatbul, N., and Zdonik,
S. (2003). Aurora: A new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139.

Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haber-
man, J., Lax, R., McVeety, S., Mills, D., Nordstrom, P.,
and Whittle, S. (2013). Millwheel: fault-tolerant stream
processing at internet scale. Proceedings of the VLDB
Endowment, 6(11):1033–1044.

Andueza Robustillo, S., Corsini, V., Juchno, P., and Marcu,
M. (2015). Demography report. Publications Office of the
European Union.

Atmel (2013). ZigBit 2.4GHz Wireless Modules
ATZB-24-A2/B0 Datasheet. Atmel Corporation. 8226C-
AVR-07/2013.

Babcock, B., Babu, S., Datar, M., Motwani, R., and
Widom, J. (2002). Models and issues in data stream
systems. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’02, pages 1–16, New York, NY,
USA. ACM.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy, S.,
Madden, S., Raman, V., Reiss, F., et al. (2003). Telegraphcq:
Continuous dataflow processing for an uncertain world. In
Cidr, volume 2, page 4.

Chen, L., Nugent, C. D., and Wang, H. (2012). A knowledge-
driven approach to activity recognition in smart homes.
IEEE Transactions on Knowledge and Data Engineering,
24(6):961–974.

Cook, D. J. (2012). Learning setting-generalized activity mod-
els for smart spaces. IEEE intelligent systems, 27(1):32–38.

Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., and Yao,
Y. (2003). The cougar project: a work-in-progress report.
ACM Sigmod Record, 32(4):53–59.

Diallo, O., Rodrigues, J. J., and Sene, M. (2012). Real-
time data management on wireless sensor networks: A



survey. Journal of Network and Computer Applications,
35(3):1013–1021.

Golab, L. and Özsu, M. T. (2003). Issues in data stream
management. SIGMOD Rec., 32(2):5–14.

Klemets, J., Määttälä, J., and Hakala, I. (2019). Integration
of an in-home monitoring system into home care nurses’
workflow: A case study. International journal of medical
informatics, 123:29–36.

Klemets, J., Määttälä, J., Jansson, J., and Hakala, I. (2017).
Nurses’ perspectives on in-home monitoring of elder-
lies’s motion pattern. Studies in Health Technology and
Informatics; 235.

Krishnan, N. C. and Cook, D. J. (2014). Activity recognition
on streaming sensor data. Pervasive and mobile computing,
10:138–154.

Lai, C. K. and Arthur, D. G. (2003). Wandering behaviour
in people with dementia. Journal of advanced nursing,
44(2):173–182.

Liu, L., Stroulia, E., Nikolaidis, I., Miguel-Cruz, A., and
Rincon, A. R. (2016). Smart homes and home health mon-
itoring technologies for older adults: A systematic review.
International journal of medical informatics, 91:44–59.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong,
W. (2005). Tinydb: an acquisitional query processing system
for sensor networks. ACM Transactions on database systems
(TODS), 30(1):122–173.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,
Datar, M., Manku, G., Olston, C., Rosenstein, J., and Varma,
R. (2003). Query processing, resource management, and
approximation in a data stream management system. In
Proceedings of the 2003 CIDR Conference. CIDR.

Peetoom, K. K., Lexis, M. A., Joore, M., Dirksen, C. D., and
De Witte, L. P. (2015). Literature review on monitoring
technologies and their outcomes in independently living
elderly people. Disability and Rehabilitation: Assistive
Technology, 10(4):271–294.

Rashidi, P. and Mihailidis, A. (2013). A survey on ambient-
assisted living tools for older adults. IEEE journal of
biomedical and health informatics, 17(3):579–590.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of Things
Journal, 3(5):637–646.

United Nations, Department of Economic and Social Affairs,
Population Division (2015). Technical report.

van Kasteren, T. and Kröse, B. (2007). Bayesian activity
recognition in residence for elders. In editor, editor, 3rd
IET International Conference on Intelligent Environments
(IE 07), pages 209–212. IET.

Weissert, W., Chernew, M., and Hirth, R. (2003). Titrating
versus targeting home care services to frail elderly clients:
An application of agency theory and cost-benefit analysis
to home care policy. Journal of aging and health, 15(1):99–
123.

Zhuang, L. Q., Zhang, J. B., Zhang, D. H., and Zhao, Y. Z.
(2005). Data management for wireless sensor networks:
research issues and challenges. In 2005 International

Conference on Control and Automation, volume 1, pages
208–213. IEEE.


