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Abstract: Gait variability observed in step duration is predictive of impending adverse health 
outcomes among apparently healthy older adults and could potentially be evaluated using wearable 
sensors (inertial measurement units, IMU). The purpose of the present study was to establish the 
reliability and concurrent validity of gait variability and complexity evaluated with a waist and an 
ankle-worn IMU. Seventeen women (age 74.8 (SD 44) years) and 10 men (73.7 (4.1) years) attended 
two laboratory measurement sessions a week apart. Their stride duration variability was 
concurrently evaluated based on a continuous 3 min walk using a force plate and a waist- and an 
ankle-worn IMU. Their gait complexity (multiscale sample entropy) was evaluated from the waist-
worn IMU. The force plate indicated excellent stride duration variability reliability (intra-class 
correlation coefficient, ICC = 0.90), whereas fair to good reliability (ICC = 0.47 to 0.66) was observed 
from the IMUs. The IMUs exhibited poor to excellent concurrent validity in stride duration 
variability compared to the force plate (ICC = 0.22 to 0.93). A good to excellent reliability was 
observed for gait complexity in most coarseness scales (ICC = 0.60 to 0.82). A reasonable congruence 
with the force plate-measured stride duration variability was observed on many coarseness scales 
(correlation coefficient = 0.38 to 0.83). In conclusion, waist-worn IMU entropy estimates may 
provide a feasible indicator of gait variability among community-dwelling ambulatory older adults. 

Keywords: wearable; gait; accelerometer; dynamics; non-linear 
 

1. Introduction 

Gait variability refers to the phenomenon that each step/stride differs slightly from the next  
one [1]. The quantification of gait variability can be operationalised by measuring the variation in 
spatiotemporal step-to-step or stride-to-stride gait characteristics or more holistically as gait 
rhythmicity, complexity or smoothness [1,2]. Gait variability tends to increase with age [1] with 
worsening cognitive abilities [3,4], and has been shown to predict impending adverse health 
outcomes among initially healthy older individuals [5–9]. Typically, gait variability is captured in a 
laboratory environment using force plates or pressure-sensitive walkways; however, there has been 
a concerted effort to enable capturing gait variability using wearable sensors, such as inertial 
measurement units (IMU) [10–16]. Wearable sensors, in addition to the affordability, enable 
assessments in the habitual environment rather than in a laboratory, potentially improving the 
ecological validity of gait data while also prolonging the potential for sample duration [5,7,17]. 

While the practical utility of waist-worn sensors has already been established [5,7,17], the 
reliability and concurrent validity of wearable sensors for gait variability assessments is still unsure 
to date. That is, the concurrent validity [10–16] and reliability of a mean step or stride characteristics 
assessment using waist-, ankle- and foot-worn IMUs has been convincingly established [10,11,18,19]. 
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On the other hand, only a few studies have investigated the quantification of gait variability measures 
based on IMUs [20,21]. Riva and colleagues showed that holistic measures, which consider the whole 
time series of the sampled signal (e.g., multiscale sample entropy) as opposed to discretizing the 
measurement into particular events (e.g., heel-strikes), required fewer strides to be sampled to 
produce reliable values within testing session [2]. However, estimates of the day-to-day reliability of 
IMU-assessed gait variability, whether discretized or holistic, are scarce for community-dwelling 
older adults. 

As explained in detail by Ihlen and colleagues [5] , entropy is a measure of complexity, and to 
capture physiologically interesting phenomena occurring at different temporal scales, entropy can be 
evaluated using multiple temporal scales. Of the various options that provide a holistic measure of 
signal dynamics potentially descriptive of gait variability, multiscale sample entropy is one of the 
most established in that it has been shown to differ between fallers and non-fallers in a cross-sectional 
setting [22], and to be predictive of prospective falls among community-dwelling older  
individuals [5,7]. Therefore, the purpose of the present study was to establish the session-to-session 
reliability of waist-worn IMU-based multiscale sample entropy and ankle-worn IMU-based stride 
duration variability among older adults 70 years of age and older. In addition, the concurrent validity 
compared to force plate-derived stride duration variability was evaluated. 

2. Materials and Methods 

Twenty-seven healthy men (n = 10) and women (n = 17) volunteered to participate in the present 
study. We have previously reported some results from this dataset [21], but briefly, the inclusion 
criteria included being aged 70 years of age or older and the ability to walk continuously for three 
minutes without assistive devices. People with acute or chronic unstable cardio-vascular diseases 
were excluded. The study was approved by the ethical committee of the University of Jyväskylä (5 
April 2018), was conducted in agreement with the Helsinki declaration, and informed written consent 
was obtained from all participants. 

The participants attended two measurement sessions a week apart at the University of Jyväskylä 
biomechanics laboratory. The protocol was explained to the participant and the participant was 
prepared for the testing session by asking the participant to wear two inertial measurement units (the 
3-dimensional accelerations were ±16 g, the rotations were ±2000°/s and the magnetic field was ±1300 
μT recorded at 400 Hz; 400 Hz and 20 Hz sample rates, respectively. NGIMU, x-io Technologies, 
Bristol, UK). One on the right leg was strapped on with an elastic Velcro belt just above the lateral 
malleolus, and another on the waist just below the iliac crest in the mid-line of the back around the 
L4 level was also strapped on with an elastic Velcro belt. After instrumentation, the participants were 
asked to walk up and back a 14 m track continuously for three minutes at their preferred pace. The 
central 10 m of the track was covered by a custom-made force platform (total of 16 force platforms 
arranged in two adjacent rows back to back to form a 2 by 8 array. The surface dimensions were  
1.25 × 0.60 m, the natural frequency was 180 ± 10 Hz in the vertical direction and 130 ± 10 Hz in the 
horizontal direction, the linearity was ≤1%, cross-talk ≤2%; Raute Precision, Finland [23]) with the  
3-dimensional forces recorded using an analog-to-digital board (Vicon T40, Oxford, UK) at a 1000 Hz 
sampling rate. The inertial signals and the force signal were recorded concurrently during the 
continuous 3 min walk. The signals were synchronized with a 1.5 V square pulse applied 
concurrently to the auxiliary channel of the respective recording devices at the end of the recording. 
The waist-worn IMU recording failed on the second measurement session on one participant, and 
therefore n = 26 for the waist-worn IMU reliability analyses. 

To avoid targeting behaviors, the participants were not asked to walk on any particular portion 
of the force plates and the signals from the whole 10 m force plate array were recorded as the sum of 
the three directions from all of the individual force plates. Due to both feet being on the force plate 
array simultaneously, we did not attempt to divide the stride cycle into stance and swing phases. 
Rather, the stride durations were identified from the recorded signal with the following approach. 
Heel-strike instants were first identified (Figure 1). All continuous peaks of at least 2.5 ms above 1.1 
times body weight were identified from the vertical force. Then, a 50 ms search window was defined 
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backwards from the timing of the peak value of each identified continuous force peak, and the peak 
positive jerk (first time derivative of force) within the window was defined as a heel-strike candidate. 
False heel-strikes were then removed by removing all candidates where the maximum jerk was less 
than 0.3 times the value of the 50 highest candidate values. The remaining heel-strike candidates were 
then divided into right and left foot heel-strikes based on the horizontal forces subsequent to the 
candidate heel-strike instant. Only the right foot heel-strike candidates were considered further. 
Subsequent heel-strike candidates were considered a stride, and all strides with a duration within 
1.25 ratio of the median duration of all candidate strides were included as strides reported in the 
present study. This approach resulted in identifying all heel-strikes based on visual inspection and 
led to identifying between 66 and 103 (mean 84.3) right leg strides from the continuous 3 min walking 
trial. The mean stride duration and standard deviation of the stride durations are reported as the 
outcomes. The standard deviation of the stride durations was used to indicate the stride variability. 
The percent coefficient of variation (standard deviation of stride durations divided by the mean stride 
duration multiplied by 100) is also reported as an indicator of variability. 

 
Figure 1. Visualization of the heel-strikes detected based on concurrently recorded ground reaction 
forces (vertical ground reaction—force black solid line), waist-worn inertial measurement unit (IMU) 
vertical acceleration (lightest grey solid line) and waist-worn IMU sagittal plane angular velocity 
(dark grey solid line). Dashed black vertical line indicates right foot heel-strike based on ground 
reaction forces. Black square indicates heel-strike based on the waist-worn IMU. Black circle indicates 
heel-strike based on the ankle-worn IMU recording. Dotted gray line shows the fitted parabola used 
to define heel-strike events based on the ankle-worn IMU recording. 

The approach reported in our previous study from this dataset based on sagittal plane angular 
velocity was used to identify heel-strike and toe-off instances from the ankle-worn inertial 
measurement unit [21] (Figure 1). The heel-strike and toe-off instances were merged and sorted and 
then any heel-strikes not followed by a toe-off or toe-offs not followed by a heel-strike were filtered 
out. Subsequently, any strides defined as heel-strike to the next heel-strike with a duration not within 
1.25 of the median of all identified strides duration were removed. This approach resulted in 
identifying 117 to 199 strides (mean 158.6) from the 3 min walking trial, of which between 66 to 103 
(83.7) were matched within 0.2 s with force plate-measured stride initiations, and the results of these 
matched strides are reported. 

The gradient descent algorithm approach developed by Madwick and colleagues (2011) [24] was 
used to calculate the vertical acceleration from the waist-worn IMU-sampled accelerations and 
gyrations. Heel-strikes were identified by convolving the vertical acceleration with a 16 Hz Ricker 
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wavelet (except for one participant where an 8 Hz Ricker wavelet was used instead) and then low-
pass filtering the convolved signal with a 4th order zero-lag 6 Hz low-pass Butterworth filter (Figure 
1). Local maxima with a prominence more than 0.5 times the 80th percentile of all the local maxima 
values were then identified and used to indicate heel-strikes. The heel-strikes that fell within 0.2 s of 
the force plate-based heel-strikes were considered as potential strides. The stride duration was 
defined as the difference between the current and current + 2 heel-strike. The potential stride 
durations were examined and those with stride duration within 1.25 of the median were included 
and are reported. The approach resulted in 222 to 332 steps (mean 290.0) identified from the 3 min 
walking trial, of which between 54 and 97 strides (mean 78.5) were matched to the force plate and 
included in the final sample. 

We followed the approach reported by Ihlen and colleagues. The gait bouts from each day were 
divided into non-overlapping 1 min epochs, with the remainder not constituting a full 1 min 
discarded. The resultant accelerations corresponding to the identified full minutes were then 
evaluated for refined composite multiscale entropy (RCME) and refined multiscale permutation 
entropy (RMPE) [5]. In specifics, the entropy was calculated based on mean values with coarseness 
scales τ = 1 to 80 (= non-overlapping means from 1 to 80 samples averaged as a pre-processing step. 
The entropy was then calculated for each scale independently, resulting in one entropy value per 
scale). The length of the template (m) for entropy evaluation was set at m = 4 for all coarseness scales, 
and the tolerance (R) for RCME was set at R = 0.3 times the resultant standard deviation (SD) of the 
bout for all coarseness scales [5]. Of note, we have deviated from the approach outlined by Ihlen and 
colleagues in two notable ways. Firstly, we used the bout-resultant standard deviation to calculate 
the tolerance as opposed to the using the standard deviation of the pooled bout samples. This was 
done in an attempt to allow for variations in acceleration magnitudes between individuals. Secondly, 
we implemented the entropy analysis in java to reduce the computational time (available from 
https://github.com/tjrantal/javaMSE) instead of using the Matlab implementation published by Ihlen 
and colleagues [5]. The means over all of the epochs from a testing session (either 2 or 3 one minute 
epochs per session were identified) are reported as the outcomes. That is, 80 results each for RMPE, 
and for RCME, one result per each of the 80 coarseness scale. 

Means (SD) are reported where applicable. As explained in the first publication from this  
dataset [21], the sample size of n = 27 was deemed appropriate based on the analysis by Glüer and 
colleagues [25]. The concurrent validity of the IMU-derived stride duration characteristics were 
evaluated based on the first measurement session by using force plate-derived characteristics as the 
comparison. The mean differences (bias), evaluated with a paired t-test, 95% limits of agreement (95% 
LoA), Pearson correlation coefficient (r) and intra-class correlation coefficient (calculated for absolute 
agreement, ICC), are reported to indicate validity. ICCs were used to indicate whether the agreement 
was poor (<0.40), fair (0.40 to <0.60), good (0.60 to 0.75) or excellent (≥0.75) [26]. Bland Altman plots 
were used to visualize the agreement between the methods and the reliability of repeated  
measures [27]. The reliability was evaluated using paired t-tests, Pearson correlation and ICC. The 
congruence between the force plate-derived stride duration variability and the IMU-derived 
multiscale entropy estimates were evaluated with a Pearson correlation. A statistical analysis was 
conducted using project R (version 2018-12-18 r75863, https://www.R-project.org/), and the 
significance level was set at p ≤0.05. 

3. Results 

The mean age, height and body masses of the participating women (n = 17) were 74.8 (SD 44) 
years, 160 (6) cm and 68.8 (9.5) kg. The corresponding values for men (n = 10) were 73.7 (4.1) years, 
176 (7) cm and 84.2 (9.4) kg. The mean values of the stride duration and stride duration variability 
measured with all methods and in both measurement sessions are given in Table 1. All the methods 
indicated an excellent session-to-session reliability for the mean stride duration (force plate  
ICC = 0.95, 95% confidence interval [CI]; ankle-worn inertial measurement unit ICC = 0.95, 95% CI 
0.90 to 0.98; waist-worn inertial measurement unit ICC = 0.95, 95% CI 0.91 to 0.98). The force plate 
indicated an excellent reliability for stride duration variability (SD ICC = 0.90, 95% CI 0.79 to 0.95; 
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coefficient of variation ICC = 0.86, 95% CI 0.75 to 0.93), whereas the waist-worn IMU indicated a good 
reliability (SD ICC = 0.66, 95% CI 0.43 to 0.81; coefficient of variation ICC = 0.58, 95% CI 0.32 to 0.76) 
and the ankle-worn IMU indicated a fair reliability (SD ICC = 0.47, 95% CI 0.18 to 0.68; coefficient of 
variation ICC = 0.41, 95% CI 0.12 to 0.64) (Figure 2). 

A significant difference (mean bias) was observed between the force plate and both the waist-
worn and the ankle-worn IMU-derived stride durations (from −1.5 to −1.7 ms), stride duration SDs 
(from −1.8 to −6.8 ms) and stride duration coefficients of variation (from −0.18% to −0.66%) (all  
p < 0.001). An excellent agreement was observed with both IMU wear-locations for the mean stride 
duration (ICC = 1.00). For stride duration SD and the coefficient of variation, an excellent agreement 
was observed with the waist-worn IMU (ICC = 0.89 to 0.93), whereas a poor agreement was observed 
with the ankle-worn IMU (ICC = 0.10 to 0.22) (Tables 2 and 3). 

Table 1. Stride characteristics measured from n = 27 (waist-worn inertial measurement unit n = 26) 
participants in the first and the second measurement session a week apart with the two methods. 
Reliability values are given in the text. 

 Stride Duration [ms] Stride Duration SD [ms] Stride Duration  
Coefficient of Variation [%] 

Force plate    
Session 1 1040 (100) 19.6 (7.5) 1.86 (0.6) 
Session 2 1030 (100) 18.4 (7) 1.76 (0.55) 

difference (95% CI) 10 (0 to 20) 1.2 (0 to 2.5) * 0.1 (from −0.01 to 0.22) 
Ankle-worn inertial measurement unit   

Session 1 1040 (100) 26.4 (9.4) 2.52 (0.87) 
Session 2 1030 (100) 24.8 (9.4) 2.39 (0.83) 

difference (95% CI) 10 (0 to 20) 1.5 (from −2.3 to 5.4) 0.13 (from −0.24 to 0.5) 
Waist-worn inertial measurement unit   

Session 1 1050 (100) 21.5 (7.5) 2.04 (0.61) 
Session 2 1040 (100) 23.1 (10) 2.23 (0.95) 

difference (95% CI) 10 (0 to 20) −1.6 (from −4.6 to 1.3) −0.18 (from −0.48 to 0.11) 
CI = confidence interval; SD = standard deviation; * p < 0.05. 
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Table 2. Concurrent validity of the stride characteristics measured with a force plate and an ankle-worn inertial measurement unit (session 1). 

 Force Plate Ankle-Worn 
Inertial Measurement Unit 

Bias (95% CI) CV%RMS ICC (95% CI) r2 

Stride duration (ms) 1040 (100) 1040 (100) 0 (0 to 0) *** 0.1 1.00 (1.00–1.00) 1.00 
Stride duration SD [ms) 19.6 (7.5) 26.4 (9.4) −6.8 (from −10.3 to −3.3) *** 30.5 0.26 (−0.12–0.58) 0.22 

Stride duration coefficient of variation 
[%] 

1.86 (0.6) 2.52 (0.87) −0.66 (from −1.01 to −0.31) *** 30.4 0.10 (−0.22–0.40) 0.10 

CI = confidence interval; CV%RMS = root-mean-squared coefficient of variation percentages. ICC = intra-class correlation coefficient calculated for absolute agreement; 
SD = standard deviation; *** p < 0.001. 

Table 3. Concurrent validity of stride characteristics measured with a force plate and a waist-worn inertial measurement unit (session 1). 

 Force Plate Waist-Worn Inertial 
Measurement Unit Bias (95% CI) CV%RMS ICC (95% CI) r2 

Stride duration [ms] 1040 (100) 1040 (100) 0 (0 to 0) *** 0.2 1.00 (1.00–1.00) 1.00 
Stride duration SD [ms] 19.6 (7.3) 21.4 (7.4) −1.8 (from −2.7 to −0.9) *** 11.6 0.93 (0.86–0.96) 0.91 

Stride duration coefficient 
of variation [%] 

1.86 (0.59) 2.04 (0.6) −0.18 (from −0.27 to −0.09) *** 11.5 0.89 (0.80–0.94) 0.86 

CI = confidence interval; CV%RMS = root-mean-squared coefficient of variation percentage. ICC = intra-class correlation coefficient calculated for absolute agreement; 
SD = standard deviation; *** p < 0.001. 
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Figure 2. Bland-Altman plots of stride duration and stride duration variability assessed a week apart 
with a force plate and a wait-worn and ankle-worn inertial measurement unit (IMU). ICC = intra-class 
correlation coefficient. 

For RCME, the waist-worn IMU indicated a good to excellent reliability up to coarseness scale 
63 with ICCs ranging from 0.60 to 0.82, whereas coarseness scales of 64–80 indicated a fair to good 
reliability (ICC = 0.45–0.66). Most coarseness scales from 35 upwards indicated significantly lower 
entropy (4.7%–6.9%) on the second week compared to the first. The coefficients of variations varied 
from 7.3% to 13.3% along the scales. RMPE indicated a good to excellent reliability (ICC = 0.60–0.80) 
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apart from scales 54 to 55, which indicated a fair reliability (ICC = 0.58–0.59). No difference between 
measurement weeks was observed on any coarseness scale. The coefficients of variations ranged from 
1.3% to 5.4% (see supplement for the RCME and RMPE values). 

Correlation analyses between the waist-worn IMU multiscale entropy analyses and force plate-
based stride duration variability indicated a significant positive association between the two for 
RCME from scale 20 upwards (except scale 64) (r = 0.40–0.83; p < 0.05) and for RMPE from scale 35 
upwards (except scale 49) (r = 0.38 to 0.69; p < 0.05) (Figure 3). 

 
Figure 3. Pearson correlation coefficient calculated between the force plate-measured stride duration 
standard deviation and the waist-worn inertial measurement unit (IMU)-measured resultant 
acceleration-based multiscale sample entropy calculated with coarseness scales from 1 to 80. Solid 
line indicates a p < 0.05. The IMU sampling rate was 400 Hz, and the template length was 4 samples. 
RCME = refined composite multiscale entropy. RMPE = refined multiscale permutation entropy. 

4. Discussion 

The primary findings of the present study were (1), that the waist-worn IMU multiscale sample 
entropy estimates exhibit a fair to excellent week-to-week reliability and reasonable congruency with 
the force plate-estimated stride duration variability and (2), ankle-worn IMU-based stride duration 
variability has a poor concurrent validity compared to the force plate-assessed stride duration 
variability and exhibits a fair reliability. Furthermore, the waist-worn IMU exhibited an excellent 
concurrent validity on the stride duration SD with the force plate and a good week-to-week 
reliability. Taken together, the findings indicate that the multiscale entropy estimates based on waist-
worn IMU recordings provide a reasonable and reliable indication of gait variability among older 
ambulatory community-dwelling men and women in a laboratory setting. 

The mean and variation values reported in the present study were well aligned with values 
reported from comparable populations. That is, a reference value of around 1100 ms has been 
reported for 65 to 74 year-olds [28], and the present mean fell within 60 ms of that. Similarly, the 
stride duration coefficient of variation fell within 0.3% of the 2.1% reference value [28]. No 
population-based reference values are available for RCME or RMPE, but the present results were 
very closely aligned with the ones reported by Ihlen and colleagues [5]. Given that the present 
population had a shorter stride duration and a lower stride duration variability than the reference, it 
is likely that the present sample was relatively healthier than the global population mean, which is 
typical of a sample of people opting to take part in laboratory measurements [29]. 

Out of the two entropy estimates—RCME and RMPE—used in the present study, RCME seems 
to be a more sensitive indicator of gait variability. Firstly, more RCME scales were positively 
associated with the force plate-measured stride duration variability, more so than the RMPE scales, 
with the correlation coefficients between the coarseness scales 20 to 50 consistently higher for RCME 
compared to RMPE. Secondly, the force plate-measured stride duration variability indicated a lower 
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variability on the second measurement week compared to the first, which was also indicated by 
RCME but not by RMPE. On the other hand, overall, RMPE indicated a better week-to-week 
reliability than RCME. Both the RMPE and the RCME have been reported to be able to discriminate 
between older individuals with a history of falls (two or more falls in the preceding year) and those 
with no history of falls [5]. Therefore, calculating both the RMPE and RCME may be prudent until 
the pragmatic value of each of the entropy estimates is better established. 

The ankle-worn IMU-based stride duration variability exhibited a fair reliability and poor 
concurrent validity compared to the respective force plate-based estimates. This was likely caused by 
the difficulty in identifying heel-strike events consistently based on the IMU signals. Pacini 
Panebianco and colleagues [30] provided a rather comprehensive review of various heel-strike event-
detection algorithms, and we also tested the peak identification-based method (data not shown) on 
the vertical and horizontal accelerations, which resulted in similar findings to what Pacini Panebianco 
and colleagues reported. That is, a marginally better concurrent validity but poorer reliability. The 
fundamental issue seems to be the discretization of the signal, which leads to discarding large 
swathes of the recorded signal while simultaneously introducing discretization error. This issue is 
overcome by the entropy estimates, which consider all data points of the recorded signa and require 
no discretization or event detection. Taken together, these results indicate that entropy (or other 
methods that do not require event detection, such as utilizing a sliding window to extract descriptive 
features [31]) estimates may provide a more reasonable approach to gait variability estimation 
compared to event detection-based approaches. This is, at least, when waist-worn recorded IMU 
signals from ambulatory older adults are considered. Although there was an excellent concurrent 
validity to force plate-defined values with the waist-worn IMU, the analysis relied on the concurrent 
force plate analyses to identify strides, which removed false heel-strike detections from further 
analyses. This was seen in the rather poorer week-to-week reliability compared to what would have 
been expected based on the excellent concurrent validity findings. Considering all of the evidence, it 
appears that similar methodological issues related to the discretization of the signal that applied to 
the ankle-worn device also apply to the waist-worn device, despite the apparently excellent 
concurrent validity and good reliability. 

The primary limitations of the present study pertain to generalizability. Firstly, only Caucasian 
healthy community-dwelling older adults were included. It is well established that ethnicity is 
associated with preferred gait speed and cadence [32] and, hence, whether the results can be 
generalized to other populations remains to be shown. Moreover, we did not screen for the presence 
of common confounders such as osteoarthritis, mild cognitive decline or Parkinson’s disease. 
Secondly, our exploration of the event-based gait variability estimates was far less than exhaustive, 
and we used only two (waist and ankle) sensor locations. A foot-worn sensor may well provide a 
more accurate event detection compared to the ankle-worn (distal lower leg just above the malloeli) 
location used in the present study. This may possibly enable an event-based variability estimate using 
a wearable IMU [30]. However, we did explore more than one event detection algorithm and are 
fairly confident that it is challenging to conceive of an event detection algorithm that matches force 
plate-based heel-strike event detection based on a waist-worn or ankle-worn IMU. Thirdly, we did 
not use a dedicated device (e.g., an instrumented walkway) to capture heel-strike events but rather 
utilized a force platform and developed a novel algorithm for heel-strike event detection, which was 
subsequently used as the “golden standard” for the concurrent criterion validity evaluation. The force 
platform method did produce reliable results, and the mean stride duration SD is well aligned with 
the reference values reported by Beauchet and colleagues [28]. Fourthly, we utilized the minimal 
feasible sample size of two repeated measurements and 27 participants to evaluate the reliability of 
the methods. Increasing the number of participants and/or the number of repeated testing sessions 
could have been used to narrow the confidence intervals of the reliability estimates [25]. Finally, the 
gait dynamics pertaining to variability may be evaluated using various techniques without 
discretizing the signal (e.g., [31]). We explored only multiscale entropy in the present study and only 
two analytical approaches. Future studies would be needed to identify the most appropriate metrics 
for specific applications (e.g., screening for cognitive decline versus increased falls risk). We chose to 
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use RCME and RMPE because these analyses have been successfully applied in free-living recordings 
in the literature [5,22]. 

In conclusion, we found that multiscale entropy based on waist-worn IMU recordings provides 
a reasonably reliable gait variability estimate which is reasonably congruent with force plate-based 
stride duration variability estimates among community-dwelling ambulatory older adults. Entropy 
estimates may provide a preferable method of gait variability assessment compared to gait event 
detection-based estimates when wearable IMUs are used to record the gait. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/20/10/2858/s1, Table 
S1: Session to session reliability of refined composite multiscale entropy (sheet RCME) and refined multiscale 
permutation entropy (sheet RMPE) at the 80 temporal coarseness scales. 
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