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Abstract
This note is concernedwith the geometric classification of connected Lie groups of dimension
three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling
results from the literature, we give a review of the complete classification of such groups up
to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz
classification. On the other hand, we study the problem whether two quasi-isometrically
equivalent Lie groups may be made isometric if equipped with suitable left-invariant Rie-
mannian metrics. We show that this is the case for three-dimensional simply connected
groups, but it is not true in general for multiply connected groups. The counterexample also
demonstrates that ‘may be made isometric’ is not a transitive relation.
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1 Introduction

1.1 List of groups of dimension at most three

Following the Bianchi classification (see e.g. Theorems 1.4 and 1.5 in [12, Chapter 7]), we
start by listing the connected real Lie groups of dimension at most three:

Lie groups of dimension one R, T
1.

Lie groups of dimension two R
2, R × T

1, T
2, Aff+(R).

Lie groups of dimension three R
3, R

2 × T
1, R × T

2, T
3, N3(R), N∗

3(R), SU(2),
SO(3), ˜SL(2), {PSL(2)k : k ∈ N}, ˜SE(2), {SE(2)k : k ∈ N}, J, {Dλ : 0 < |λ| ≤ 1},
{Cλ : λ > 0}, Aff+(R) × R, Aff+(R) × T

1.

Many of these groups are well known: the k-dimensional Euclidean group R
k , the k-

dimensional torus T
k = (R/Z)k and direct products of these groups. Nilpotent but

non-Abelian groups are the Heisenberg group N3(R) and its quotient N∗
3(R) modulo the

group of integer points in the center, when N3(R) is seen as upper triangular matrix group.
Among the solvable but not nilpotent groups there are Aff+(R) (the group of orientation-
preserving affine maps of the real line) and products thereof with R and T

1, as well as ˜SE(2)
[the universal cover of the group SE(2) of orientation preserving isometries of the Euclidean
plane] and SE(2)k [the k-fold cover of SE(2)]. Well-known simple groups are SU(2) (the
special unitary group), SO(3) (the special orthogonal group), ˜SL(2) (the universal cover of
the special linear group), and PSL(2)k [the k-fold cover of the projective special linear group
PSL(2)].

Apart from ˜SL(2) and SU(2), all the simply connected groups listed in the previous
paragraph are isomorphic to semidirect products R

2
�A R, where R acts on R

2 by a matrix
A ∈ Mat(2 × 2, R) such that the Lie group product is given by the following expression:

(x, y, z) ∗A (x ′, y′, z′) :=
((

x
y

)

+ ez A
(

x ′
y′

)

, z + z′
)

. (1.1)

One can find a basis {E1, E2, E3} for the Lie algebra of R
2

�A R whose structure constants

are given by

A =
(

c113 c123
c213 c223

)

, (1.2)

and ck
i j = 0 for all other cases where i ≤ j and k ∈ {1, 2, 3}, see for instance [26, §2.2]. The

connected 3-dimensional Lie groups which we have not yet introduced are all solvable and

also of the form R
2

�A R. For A =
(

1 1
0 1

)

[respectively

(

1 0
0 λ

)

, respectively

(

λ 1
− 1 λ

)

],

we obtain J (respectively Dλ, respectively Cλ).
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1.2 Classification results

Standing assumption. All distances considered are left-invariant Riemannian distances.
A (not necessarily continuous) map � : (X , d) → (X ′, d ′) between metric spaces is a

quasi-isometry if there exist constants 0 ≤ C < ∞ and 1 ≤ L < ∞ such that

(i) L−1d(x, y) − C ≤ d ′(�(x),�(y)) ≤ Ld(x, y) + C for all x, y ∈ X ,
(ii) for all x ′ ∈ X ′ there is x ∈ X such that d ′(�(x), x ′) ≤ C .

If (i) and (ii) hold with C = 0, the map � is said to be bi-Lipschitz, and if moreover
L = 1, then � is an isometry. If X and X ′ are manifolds and if the distances d and d ′ are
induced by Riemannian metrics g and g, respectively, then according to a well-known result
by Myers and Steenrod [28], the map � is an isometry exactly if it is a diffeomorphism
such that �∗g′ = g, see also [32, Theorem 5.6.15]. Since any two left-invariant Riemannian
distances on a Lie group are bi-Lipschitz equivalent, we can discuss the quasi-isometric and
bi-Lipschitz classification of such groups without specifying a metric. On the other hand,
the existence of isometries between two groups depends on the choice of metrics. As we are
interested in the geometric classification of groups, rather than the classification of groups
endowed with a specific metric, we study the following property.

Definition 1.1 We say that two connected Lie groups G and H may be made isometric if
there exist left-invariant Riemannian distances dG and dH on G and H , respectively, such
that (G, dG) and (H , dH ) are isometric.

Definition 1.1 goes back to [5, §1.2], but differs slightly from the original definition, which
was formulated for arbitrary topological groups andwhich required only the existence of left-
invariant distances that induce the manifold topology. By [23, Proposition 2.4] isometries
between connected Lie groups endowed with such distances are actually isometries for some
left-invariant Riemannian distances, and hence Definition 1.1 agrees with the definition of
[5] in the case of connected Lie groups.

It is easy to show that two Lie groups G and H may be made isometric if and only if
there exists a Riemannian manifold M on which both G and H act simply transitively by
isometries, see Proposition 2.1.

If X is a fixed model space with a standard distance dX , for instance Euclidean space or
the hyperbolic plane, we will also say that “G may be made isometric to X” if there exists a
left-invariant Riemannian distance dG on G such that (G, dG) and (X , dX ) are isometric.

In Sect. 2, we discuss relations between connected Lie groups of dimension at most three
in descending order of strength, that is, we list pairs consisting of groups that

(a) may be made isometric (Proposition 2.2)
(b) are bi-Lipschitz (Proposition 2.11)
(c) are quasi-isometrically homeomorphic (Proposition 2.14)
(d) are quasi-isometric (Proposition 2.15).

To conclude the quasi-isometric classification given in Theorem 1.2 below, we show that
the pairs not appearing in the list (a)–(d) consist of groups that are not quasi-isometrically
equivalent.

Classification problems for Lie groups have a long history that dates back to Bianchi’s
[2] isomorphic classification of 3-dimensional Lie algebras. This note is concerned with
the geometric classification of Lie groups that are additionally equipped with left-invariant
Riemannian distances. Gromov [14] in his address to the ICM in 1983 promoted a program to
study finitely generated groups with word metrics up to quasi-isometries. This classification
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problem is related to the quasi-isometric classification of Riemannian manifolds, as the
fundamental group of a compact connected Riemannian manifold M is a finitely generated
group quasi-isometrically equivalent to the universal Riemannian cover ˜M according to the
Švarc-Milnor lemma.

In the first part of this note, we recall the quasi-isometric classification of connected Lie
groups up to dimension three. This is the work of several authors who have studied various
aspects of the quasi-isometric classification, for instance for solvable groups of a specific
form, or under curvature constraints. We list some of these results: Guivarc’h and Jenkins’
[17,19] characterization of connected Lie groups with polynomial growth, Heintze’s [18]
work on solvable Lie groups and homogeneous manifolds of negative curvature, Milnor’s
[27] study of the curvature properties of left-invariant Riemannian metrics on Lie groups,
the study of 3-dimensional model geometries and Dehn functions in the work of Epstein
et al. [8] on automatic group, Pansu’s [30,31] work on L p cohomology, de Cornulier’s [6]
computation of the covering dimension of asymptotic cones of connected Lie groups, the
study of quasi-isometries of certain solvable Lie groups by Eskin et al. [9], and Xie’s [36]
quasi-isometric classification of negatively curved solvable Lie groups of the form R

n
� R.

Depending on the case to be treated, different tools are used in the classification problem,
such as volume growth, Dehn functions, curvature and asymptotic cones of Riemannian
manifolds.

Theorem 1.2 (Various authors) All connected real Lie groups of dimension at most three are
classified up to quasi-isometries according to the following table:

Class Representatives

(1) T
1, T

2, T
3, SU(2), SO(3)

(2) R, R × T
1, R × T

2

(3) R
2, R

2 × T
1, N∗

3(R), {SE(2)k : k ∈ N}
(4) R

3, ˜SE(2)
(5) N3(R)

(6) ˜SL(2), Aff+(R) × R

(7λ) for λ ∈ [−1, 0) Dλ

(8) Aff+(R), Aff+(R) × T
1, {PSL(2)k : k ∈ N}

(9) J
(10) D1, {Cλ : λ > 0}
(11λ) for λ ∈ (0, 1) Dλ

We stress that the classes (7λ) are distinct for different values of λ, and the same holds for
(11λ). In Sect. 3 we will explain how the above mentioned results by various authors can be
combined to prove Theorem 1.2.

According to Theorem 1.2, two simply connected 3-dimensional Lie groups G and H
(that are not isomorphic) are quasi-isometric to each other if and only if one of the following
holds:

(1) G, H ∈ {R3, ˜SE(2)}
(2) G, H ∈ {˜SL(2),Aff+(R) × R}
(3) G, H ∈ {D1} ∪ {Cλ : λ > 0}.
In Proposition 2.2 we shall show that in all these cases, the two groups G and H may in fact
be made isometric. By Proposition 2.1, this means that there exists a Riemannian manifold
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M on which both G and H act simply transitively by isometries. In fact, M may be taken
equal to a Riemannian manifold that corresponds to one of the eight 3-dimensional model
geometries by Thurston [35]:

• the Euclidean geometry in (1),
• the geometry of ˜SL(2) in (2),
• the hyperbolic geometry in (3),

see the discussion in Sect. 2.1, and in particular Remark 2.8 for (2). Thus we obtain the
following result.

Theorem 1.3 If two non-isomorphic simply connected 3-dimensional Lie groups are quasi-
isometric, then they may be made isometric to one of the eight Thurston geometries.

In Proposition 2.11 we shall show that without the assumption “simply connected”, it is
not true in general that two connected, quasi-isometric Lie groups may be made isometric.
Moreover, since the groups PSL(2)k , for different values of k ∈ N, may all be made iso-
metric to Aff+(R) × T

1, but cannot be made isometric to each other, we have the following
consequence.

Proposition 1.4 The relation “may be made isometric” is not transitive.

2 Relations between groups

2.1 Groups that may bemade isometric

We begin the section with a basic observation about Lie groups that may be made isometric
and carry on with a list of 3-dimensional Lie groups that may be made isometric.

Proposition 2.1 Two Lie groups G and H may be made isometric if and only if there exists
a Riemannian manifold M on which both G and H act simply transitively by isometries.

Proof Assume first that G and H possess Riemannian distances dG and dH , respectively, for
which there exists an isometry � : (G, dG) → (H , dH ). Take M = H equipped with the
Riemannianmetric g that induces dH . Clearly, H acts on M simply transitively by isometries,
and the same is true for G with the action given by

G × M → M, (g, m) 	→ � ◦ Lg ◦ �−1(m),

where Lg denotes left translation by g ∈ G.
Conversely, assume thatG and H act simply transitively on amanifold M withRiemannian

distance d . Fix x0 ∈ M and define

dG(g, g′) := d(g.x0, g′.x0), g, g′ ∈ G

and

dH (h, h′) := d(h.x0, h′.x0), h, h′ ∈ H .

Since by assumption the actions of G and H on M are free, the above definition yields
distance functions on G and H . From the compatibility of group actions and the fact that G
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and H act by isometries, we easily deduce that dG and dH are left-invariant. For instance,
for G, we find for

dG(g0g, g0g′) = d(g0.(gx0), g0.(g
′x0)) = d(g.x0, g′.x0) = dG(g, g′).

Since the given actions by G and H on M are also transitive, for every g ∈ G we find
h(g) ∈ H such that g.x0 = h(g).x0. This defines a map (G, dG) → (H , dH ), g 	→ h(g),
which is easily seen to be an isometry. ��
Proposition 2.2 Each of the following pairs consists of groups that may be made isometric:

(1) (R3, ˜SE(2))
(2) (R2 × T

1,SE(2)k) for every k ∈ N

(3) (SE(2)k,SE(2)k′) for all k, k′ ∈ N

(4) (˜SL(2),Aff+(R) × R)

(5) (Aff+(R) × T
1,PSL(2)k) for every k ∈ N

(6) (D1, Cλ) for every λ > 0
(7) (Cλ, Cλ′) for all λ, λ′ > 0.

Proof It is well known that R
3 and ˜SE(2) may be made isometric, see for instance [27,

Corollary 4.8], [26, Theorem 2.14, (1-b)], and [23, §4]; or read the discussion later in this
section. The statement that SE(2)k may be made isometric to R

2 × T
1 is Proposition 2.3. As

a corollary, the groups SE(2)k and SE(2)k′ for arbitrary k, k′ ∈ N may be made isometric.
Proposition 2.5 shows that ˜SL(2) and Aff+(R) × R may be made isometric. By Proposition
2.10, Aff+(R) × T

1 may be made isometric to PSL(2)k for every value of k ∈ N.
The items (6) and (7) in Proposition 2.2 follow by curvature considerations. On the (simply

connected) groups D1 and on Cλ, λ > 0, one can find a left-invariant Riemannian distance
with constant negative sectional curvature: for D1, this follows from Special Example 1.7
in Milnor’s article [27], for Cλ, λ > 0, it is a consequence of [27, Theorem 4.11]; see also
[26, Lemma 2.13 and Theorem 2.14, (1-a)] and [36, Introduction]. It is well known that
every simply connected and complete Riemannian manifold with negative constant sectional
curvature K is isometric to hyperbolic space in the respective dimension with sectional
curvature K , hence all the groups D1 and Cλ, λ > 0 may be made isometric to hyperbolic
3-space, and thus also to each other. ��

We now provide the details for the results that have been used in the proof of Proposition
2.2 and for which no other reference has been given. The groups to be considered are ˜SE(2),
˜SL(2), and quotients thereof. The simply connected Lie group ˜SE(2) is isomorphic to (R3, ∗),
where

(x, y, θ) ∗ (x ′, y′, θ ′) =
((

x
y

)

+
(

cos θ − sin θ

sin θ cos θ

)(

x ′
y′

)

, θ + θ ′
)

= (x + x ′ cos θ − y′ sin θ, y + x ′ sin θ + y′ cos θ, θ + θ ′).

Adirect computation shows that the Euclidean distance dE onR
3 is left-invariant with respect

to ∗, and henceR
3 and ˜SE(2)may be made isometric. It is easy to verify that the sets (Nk, ∗),

k ∈ N, given by

Nk = {(0, 0, 2πkm) : m ∈ Z},
are exactly the discrete normal subgroups of ˜SE(2). Every k ∈ N gives thus rise to a multiply
connected Lie group

SE(2)k := ˜SE(2)/Nk .
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The center of SE(2)k contains exactly k elements, which shows that SE(2)k is not isomorphic
to SE(2)l for k = l. Moreover, SE(2)k is isomorphic to (R2 × (R/2πkZ), ∗k), where

(x, y, θ) ∗k (x ′, y′, θ ′) = (x + x ′ cos θ − y′ sin θ, y + x ′ sin θ + y′ cos θ, θ + θ ′).

Proposition 2.3 For every k ∈ N, the group SE(2)k may be made isometric to the standard
round cylinder R

2 × R/Z.

Proof We construct a left-invariant distance on SE(2)k , by setting

dSE(2)k ((x, y, θ), (x ′, y′, θ ′)) :=
√

‖(x, y) − (x ′, y′)‖2 + ((2πk)−1dR/2πkZ(θ, θ ′))2
(2.1)

for (x, y, θ) and (x ′, y′, θ ′) in R
2 × (R/2πkZ). Here

dR/2πkZ(θ, θ ′) := min
m∈Z{|2πkm − (θ − θ ′)|},

Then the map � : R
2 × R/Z → R

2 × (R/2πkZ) given by

�(x, y, θ) = (x, y, 2πkθ)

provides an isometry between R
2 × R/Z and SE(2)k . ��

We now turn our attention to ˜SL(2) and its quotients. Since ˜SL(2) is a simple Lie group,
[5, Corollary 3.11] is useful.

Theorem 2.4 (Cowling et al.) Let G be a connected semisimple Lie group and let G = AN K
be its Iwasawa decomposition. Write K as V × K ′, where V is a vector group and K ′ is
compact. Then G may be made isometric to the direct product AN × V × K ′.

If K is compact, then G may be made isometric to AN × K . A condition which ensures
the compactness of K for a given semisimple Lie group is that G has finite center, see [12,
p.160 in Chapter 4]. A connected semisimple Lie group that is linear has finite center, see
for instance [12, Chapter 1, §5].

The Iwasawa decomposition of ˜SL(2) is AN K , where A and N are the following matrix
groups

A =
{(

et 0
0 e−t

)

: t ∈ R

}

, N =
{(

1 x
0 1

)

: x ∈ R

}

,

and K is isomorphic to R. More precisely, the Iwasawa decomposition is given by the
diffeomorphism

φ : R
3 → ˜SL(2)

so that φ(0, 0, 0) = I and

(π ◦ φ)(t, x, θ) =
(

et 0
0 e−t

) (

1 x
0 1

) (

cos θ sin θ

− sin θ cos θ

)

,

where π : ˜SL(2) → SL(2) is the universal covering projection. Note that AN is isomorphic
to the orientation-preserving affine maps of the real line, that is, to Aff+(R).

Theorem 2.4 applied to the Iwasawa decomposition of ˜SL(2) yields the following state-
ment.

Proposition 2.5 The groups ˜SL(2) and Aff+(R) × R may be made isometric.
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Remark 2.6 The group Aff+(R) admits a left-invariant metric of constant negative sectional
curvature (see for instance [27, Special Example 1.7]) and hence, by the same reasoning as
in the proof of Proposition 2.2, it may be made isometric to the hyperbolic plane H

2. The
quasi-isometric, or even bi-Lipschitz, equivalence of H

2 × R and ˜SL(2) was proved earlier
by Rieffel [33] in her Ph.D. thesis. The idea of the construction is explained in [22, §2].
To set the stage, we follow [34, p. 462] and observe that the standard Riemannian metric
on H

2 induces a natural Riemannian metric on T H
2 in such a way that for every isometry

f : H
2 → H

2, the differential d f : T H
2 → T H

2 is an isometry as well. Since the unit
tangent bundle U T H

2 is a submanifold of T H
2, it inherits a Riemannian metric from T H

2,

and as U T (H2) may be identified with PSL(2), this metric lifts to S̃L(2). One can show that

the thus obtained Riemannian metric on S̃L(2) is left-invariant, see [34, p. 464].
To prove the bi-Lipschitz equivalence of H

2 × R and ˜SL(2), one constructs a map

f : U T (H2) → H
2 × S

1, f (v) := (x, φ(v)),

as follows: first, one fixes a point p0 ∈ H
2, then, for v ∈ U Tx (H

2), the vector φ(v) ∈
U Tp0(H

2) is obtained by parallel transporting v along the geodesic segment [xp0]. One then
proves that f is bi-Lipschitz; see [21, Proposition 3.10], and [7, IV.48] for more details. Since
f lifts to a bi-Lipschitz map between universal covers, see Proposition 2.13, this reasoning
shows thatH2×R and ˜SL(2) are bi-Lipschitz equivalent, and in particular quasi-isometrically
equivalent.

Remark 2.7 By Proposition 2.5, the group ˜SL(2) may be made isometric to Aff+(R) × R.
Moreover, according to Remark 2.6, the groupAff+(R)×Rmay bemade isometric toH

2×R

with the standard metric. However, this does not imply that ˜SL(2) can be made isometric to
the standard H

2 × R, and indeed this is not the case: An isometry between the H
2 × R and

˜SL(2) with a left-invariant distance would induce a free transitive isometric action of ˜SL(2)
on H

2 × R. Notice that every isometry f of H
2 × R sends a set of the form H

2 × {p} to
the set H

2 × { f (p)}, since these sets are the leaves of the foliation integrating the planes of
sectional curvature −1. Thus, if ˜SL(2) acts by isometry on H

2 × R, then the induced action
on R would be by translations, since ˜SL(2) is connected. At the same time, the action would
have to be trivial since the Lie algebra of ˜SL(2) is simple, so it could not act transitively on
H

2 × R. See also [34, Section 5].

Since the groups ˜SL(2) and Aff+(R) × R may be made isometric, one might wonder
if there is a “standard” Riemannian manifold to which they may both be made isometric.
According to Remark 2.7, this manifold cannot be the standard H

2 × R, but it turns out that
˜SL(2) endowed with the metric corresponding to one of the Thurston geometries has the
desired property; see Remark 2.8 below.

Consider the left-invariant Riemannian metric g
˜SL(2) on X := ˜SL(2) that arises from the

identification of PSL(2) with the unit tangent bundle U T (H2) as described in Remark 2.6
and let G := Isome(˜SL(2)) be the corresponding isometry group. Then (X , G) is one of the
eight three-dimensional model geometries of Thurston [35, Theorem 3.8.4]. Clearly, ˜SL(2)
acts transitively by isometries on (X , g

˜SL(2)). The following remark shows that the same is
true for Aff+(R) × R. According to Proposition 2.1, this also provides another proof for
Proposition 2.5.

Remark 2.8 The group Aff+(R) × R acts simply transitively by isometries on X endowed
with the Riemannian metric that corresponds to Thurston’s model geometry on ˜SL(2). To
see this, consider the group G := Isome(˜SL(2)), which has been discussed in [34, p. 464 ff].
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It has been shown that G consists of two components, say � and �′. The identity component
� is a 4-dimensional Lie group generated by the actions of R and ˜SL(2) on X . The action

of S̃L(2) is immediate, and according to the Iwasawa decomposition, it yields in particular
an action of Aff+(R) on X . To explain the action of R, it is useful to see X as a line bundle
over H

2. The center of ˜SL(2), which is isomorphic to the additive group Z, acts on X by
preserving the line bundle structure and covering the identity map of H

2. This action extends
to an action of R on X by translation of the vertical fibers [this action arises as an action of
S1 on U T (H2) which covers the identity of H

2 and rotates each fibre by the same angle].
Since the action of R commutes with the action of ˜SL(2) [and thus of Aff+(R)], we obtain
that Aff+(R) × R acts by isometries on X . Moreover, since Aff+(R) × R acts transitively
on the base manifold H

2 of X , and R acts by translation on the vertical fibers, we see that
Aff+(R) × R acts transitively on X . Finally, we argue that the action is free. Assume that
(g, s).x = x for some g ∈ Aff+(R), s ∈ R and x ∈ X . Then, since the action ofR covers the
identity map of H

2, it follows that g.x and x must lie in the same vertical fibre of X . As the
action of Aff+(R) on X is induced by a free action of Aff+(R) on H

2, it follows that g = e,
as desired. Moreover, s = 0 since the action of R is free. This shows that Aff+(R) × R acts
simply transitively by isometries on (X , g

˜SL(2)).

Remark 2.9 As the classification in Theorem 1.2 shows, already in dimension 3 the property
of admitting a lattice (i.e., a discrete subgroup of cofinite volume) is not a quasi-isometric
invariant. For example, the group Aff+(R) × T

1 is not unimodular by [27, Lemma 6.3] and
hence cannot have lattices (see [27, Section 6] or [1, Proposition 2.4.2]), yet it is quasi-
isometrically equivalent to SL(2) = SL(2, R), which admits the lattice SL(2, Z).

For k ∈ N, the Iwasawa decomposition of PSL(2)k is

PSL(2)k = AN Kk,

where Kk is the k-fold cover of the projective special orthogonal group PSO(2).
Theorem2.4 applied to the Iwasawa decomposition of PSL(2)k yields the following result.

Proposition 2.10 For every k ∈ N, the group PSL(2)k may be made isometric to Aff+(R)×
T
1.

2.2 Bi-Lipschitz groups

Proposition 2.11 The groups PSL(2)k and PSL(2)k′ for different values of k, k′ ∈ N are
bi-Lipschitz equivalent, but cannot be made isometric.

The bi-Lipschitz equivalence of PSL(2)k and PSL(2)k′ follows easily from Proposition
2.10, but to show that these groups cannot be made isometric, we use [13, Theorem 2.2] by
Gordon, which we restate here for the reader’s convenience.

Assume that A is a connected Lie group with a connected subgroup G. Choose Levi
factors Gs and As of G and A, respectively, such that Gs ⊂ As , and denote by gs and as the
Lie algebras of Gs and As . By definition, the Lie algebras gs and as are semisimple and thus
a direct sum of simple Lie algebras, some of which may be compact and others not. This
leads to the direct sum decomposition

gs = gnc ⊕ gc,

where gc is the direct sum of all compact simple ideals of gs and gnc is the direct sum of the
remaining simple ideals. In the same way, one decomposes as = anc ⊕ ac. By Gnc and Anc

we denote the connected subgroups of A with Lie algebras gnc and anc, respectively.
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Theorem 2.12 (Gordon) Assume that A is a connected Lie group with a connected subgroup
G whose radical is nilpotent. Suppose further that there exists a compact subgroup K of A
such that A = G K . Then Anc = Gnc.

With this theorem at hand, we can prove Proposition 2.11.

Proof of Proposition 2.11 By Proposition 2.10, both PSL(2)k and PSL(2)k′ may be made
isometric to Aff+(R) × T

1. Thus there exist left-invariant Riemannian distances, say dk and
dk′ on Aff+(R) × T

1, as well as d on PSL(2)k and d ′ on PSL(2)k′ such that (PSL(2)k, d) is
isometric to (Aff+(R)×T

1, dk) and (PSL(2)k′ , d ′) is isometric to (Aff+(R)×T
1, dk′). Since

dk and dk′ are bi-Lipschitz equivalent, it follows that PSL(2)k and PSL(2)k′ are bi-Lipschitz
equivalent.

Next we show that PSL(2)k and PSL(2)k′ cannot be made isometric. For k ∈ N, we fix
a left-invariant Riemannian distance dG on G := PSL(2)k and we let A be the isometry
group of (G, dG). Then A = G K as in Theorem 2.12, with K = Stab(e)∩ A, where Stab(e)
denotes the stabilizer of the identity in G. Since G is simple, its radical is trivial and hence
nilpotent and moreover, Gnc = G. It follows by Theorem 2.12 that G = Gnc = Anc. The
same reasoning applies for k′ instead of k, so that we obtain G ′ = A′

nc for G ′ = PSL(2)k′
and A′ the isometry group of (G ′, dG ′). Now if (G, dG) and (G ′, dG ′) were isometric, then
A would be isomorphic to A′ with an isomorphism given by conjugation via the isometry
between (G, dG) and (G ′, dG ′). This would imply that PSL(2)k = Anc is isomorphic to
A′

nc = PSL(2)k′ , which is possible only if k = k′ [otherwise the centers of PSL(2)k and
PSL(2)k′ have different cardinality and hence the groups cannot be isomorphic]. ��

2.3 Quasi-isometrically homeomorphic groups

We now consider multiply connected groups that are homeomorphic via a quasi-isometry
but not bi-Lipschitz equivalent. The latter fact will be proved by contradiction: if there
existed a bi-Lipschitz homeomorphism between the groups it would lift to a bi-Lipschitz
homeomorphism of the universal covers according to Proposition 2.13. We first recall some
basics from covering theory.

Assume that G is a simply connected Lie group equipped with a left-invariant Riemannian
metric g. If N is a discrete normal subgroup of G, then G/N is a connected Lie group which
admits a unique left-invariant Riemannian metric gG/N so that π : (G, g) → (G/N , gG/N )

becomes a Riemannian covering, that is, a covering map which is locally isometric.

Proposition 2.13 For i ∈ {1, 2}, let Gi be a simply connected Lie group endowed with a left-
invariant Riemannian distance and let πi : (Gi , gi ) → (Gi/Ni , gGi /Ni ) be a Riemannian
covering as above. Then every bi-Lipschitz homeomorphism f : G1/N1 → G2/N2 lifts to a
bi-Lipschitz homeomorphism ˜f : G1 → G2, where ‘bi-Lipschitz’ refers to the Riemannian
distances induced by the respective Riemannian metrics.

Proof Let f : G1/N1 → G2/N2 be bi-Lipschitz. Since f is a homeomorphism and G1 is
simply connected, the composition f ◦π1 : G1 → G2/N2 is a universal cover of G2/N2, as
is the map π2 : G2 → G2/N2. It follows from the uniqueness theorem for universal covers,
see for instance [10, Corollary 13.6] or [24, I, §11], that there exists a homeomorphism
˜f : G1 → G2 with π2 ◦ ˜f = f ◦π1. Since f is bi-Lipschitz and π1, π2 are local isometries,
the map ˜f is uniformly locally bi-Lipschitz, as is its inverse. Finally, since G1 and G2 are
geodesic, ˜f is bi-Lipschitz as claimed. ��
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Proposition 2.14 Each of the following pairs consists of quasi-isometrically homeomorphic
groups that are not bi-Lipschitz equivalent:

(1) (R2 × T
1,N∗

3(R))

(2) (SE(2)k,N∗
3(R)), for every k ∈ N.

Proof Once we know that R
2 × T

1 and N∗
3(R) are equivalent via a quasi-isometric but

not a bi-Lipschitz homeomorphism, the same statements follow for SE(2)k and N∗
3(R) by

Proposition 2.2, (2). Thus it suffices to prove Part (1) of Proposition 2.14.
In order to show that the groups N∗

3(R) and R
2 ×T

1 are quasi-isometric via a homeomor-
phism, it is convenient to choose, as we may, coordinates (x, y, z) on N3(R) so that for all
(x, y, z) and (x ′, y′, z′), we have

(x, y, z) · (x ′, y′, z′) = (x + x ′, y + y′, z + z′ + 2yx ′ − 2x y′).

Without loss of generality we may assume that N∗
3(R) is the quotient of N3(R) by the cyclic

group generated by the element Z = (0, 0, 1). The Lie group N3(R)/〈Z〉 is diffeomorphic
to R

2 × T
1. We see that Z

2 can be identified with a subgroup of the groups N3(R)/〈Z〉 and
R
2 × T

1, respectively, which in both cases acts co-compactly. Moreover, for these particular
models, the identity map of R

2 × T
1 provides a quasi-isometric homeomorphism between

N∗
3(R) and R

2 × T
1.

Assume towards a contradiction that there exists a biLipschitzmap f : R
2×T

1 → N∗
3(R).

It follows from Proposition 2.13 that there would exists a bi-Lipschitz homeomorphism
˜f : R

3 → N3(R). This is known to be false, for instance because R
3 has volume growth

of order 3, whereas the volume of balls in N3(R) grows with order 4 at large. We have thus
proven that N∗

3(R) is not bi-Lipschitz equivalent to R
2 × T

1. ��

2.4 Quasi-isometric groups

Proposition 2.15 Each of the following pairs consists of quasi-isometrically equivalent
groups that are not equivalent via a quasi-isometric homeomorphism:

(1) (G, H) for distinct G, H ∈ {T1, T
2, T

3,SU(2),SO(3)}
(2) (G, H) for distinct G, H ∈ {R, R × T

1, R × T
2}

(3) (R2, R
2 × T

1)

(4) (Aff+(R),Aff+(R) × T
1)

(5) (R2,N∗
3(R))

(6) (R2,SE(2)k), for every k ∈ N

(7) (Aff+(R),PSL(2)k), for every k ∈ N.

Proof The groups appearing on the same line in Proposition 2.15 are topologically distinct
and hence cannot be equivalent via a quasi-isometric homeomorphism. Indeed, denoting by
“�” equivalence via a diffeomorphism of manifolds, we have:

(1) T
1 � S

1, T
2 � S

1 × S
1, T

3 � S
1 × S

1 × S
1, SU(2) � S

3, SO(3) � PR
3

(2) R, R × T
1 � R × S

1, R × T
2 � R × S

1 × S
1

(3) R
2 and R

2 × T
1 � R

2 × S
1

(4) Aff+(R) � R
2 and Aff+(R) × T

1 � R
2 × S

1

(5) R
2 and N∗

3(R) � R
2 × S

1

(6) R
2 and SE(2)k � R

2 × S
1

(7) Aff+(R) � R
2 and PSL(2)k � R

2 × S
1.

123



Geometriae Dedicata

It remains to show that groups appearing on the same line are quasi-isometrically equiva-
lent, even if they are not homeomorphic. First, the groups T

1, T2, T3, SU(2), and SO(3) are
trivially quasi-isometrically equivalent because they are compact.

Second, the groups R, R × T
1, and R × T

2 are clearly quasi-isometrically equivalent.
More generally, R × K is quasi-isometric to R × K ′ for arbitrary compact Lie groups K and
K ′, as one can see by arguing componentwise. For the same reason, R

2 and R
2 × T

1 are
quasi-isometrically equivalent, and so areAff+(R) andAff+(R)×T

1. Having established the
quasi-isometric equivalence in the cases (1)–(4), the remaining cases follow by transitivity.
Indeed, the information from Propositions 2.14, 2.2, and 2.10 can be used to deduce that the
groups in (5), (6), and (7) are quasi-isometrically equivalent, once this has been established
for the groups in (3) and (4). ��

3 Conclusion of the quasi-isometric classification

In Sect. 2 we have identified pairs of Riemannian Lie groups that are quasi-isometrically
equivalent. In this section we show that all remaining pairs of at most three-dimensional
connected Lie groups are quasi-isometrically distinct, thus establishing Theorem 1.2. The
proof uses the following quasi-isometric invariants of connected Riemannian Lie groups:

• degree of polynomial volume growth
• polynomial volume growth (or equivalently by [17,19]: type R)
• Gromov hyperbolicity [15], see also e.g. [29, Theorem 3.1.11]
• covering dimension of asymptotic cones [6].

Besides these general quasi-isometry invariants, we also rely on quasi-isometric classifi-
cation results for connected Riemannian Lie groups of a specific form:

• for Gromov hyperbolic connected Riemannian Lie groups (which are proper metric
spaces): topology of the boundary [15], see also e.g. [20, Proposition 2.20]

• for simply connected Riemannian manifolds of negative or zero curvature: L p cohomol-
ogy [16]

• [30, Corollaire 1] and [36, Corollary 1.3] for R
n

�A R with A ∈ Mat(n × n) having only
eigenvalues with positive real parts
(in our notation this applies to: J , Dλ for 0 < λ ≤ 1, Cλ for λ > 0)

• [9, Theorem1.3] for Sol(m, n), the solvableLie groupsR
2
�R,whereR acts by z·(x, y) =

(emz x, e−nz y), for m > n > 0 using coarse differentiation
(in our notation: Sol(1,−λ) = Dλ for −1 < λ < 0)

Proof of Theorem 1.2 We first discuss why the listed classes are quasi-isometrically distinct.
The groups in classes (1)–(5) are the only groups of type R, as can be seen from an explicit

description of the Bianchi classification of Lie algebras, as given for instance in [12, Chapter
7, §1.1]. The individual classes are divided according to the degree d ∈ {0, 1, 2, 3, 4} of
polynomial volume growth.

The groups in classes (6) and (7λ) have exponential growth but are notGromovhyperbolic:
for the groups in class (6) this is easy to see since Aff+(R) × R can be endowed with a left-
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invariant Riemannian metric such that it contains an isometrically embedded copy of R
2.

The proof that Dλ is not hyperbolic for λ < 0 is given below in Proposition 3.1.
We now show that (6) and (7λ) are distinct classes. The group Aff+(R) × R is not quasi-

isometrically equivalent to any Dλ since the covering dimension of the asymptotic cone of
Dλ is 1 for every λ, while Aff+(R) × R has cone dimension 2 by [6, Theorem 1.1].

To distinguish the classes (7λ) for different values ofλ ∈ [−1, 0), take−1 ≤ λ1 < λ2 < 0.
If λ1 = −1, then Dλ1 is not quasi-isometric to Dλ2 by [9, Theorem 1.3]. If λ1 = −1, then
Dλ1 = D−1 is the Lie group of the Solv geometry, which by [25, Section 2] and [3, Section
3] admits a cocompact lattice of the form Z � Z

2, while there does not exist any finitely
generated group quasi-isometric to Dλ2 by [9, Theorem 1.2].

The groups in classes (8)–(11λ) are Gromov hyperbolic: since Aff+(R), J , and Dλ for
λ ∈ (0, 1] are all of the form R

n
�A R for a matrix A whose eigenvalues all have positive

real parts, it follows from [18, Theorem 3] that each of these groups admits a left-invariant
Riemannian metric with negative sectional curvature bounded away from zero. Finally, a
simply connected complete Riemannian manifold with negative curvature bounded away
from zero is Gromov hyperbolic, see for instance [11, p. 52, Corollaire 10]. While the groups
in (8) have S

1 as visual boundary, the groups in (9)-(11λ) have S
2.

All groups J , Dλ (λ ∈ (0, 1]) are of the form R
2
�A R with A equal to

(

1 1
0 1

)

or

(

1 0
0 λ

)

,

λ ∈ (0, 1]. It is a special case of [30, Corollaire 1], proved by means of L p cohomology, that
two groups in the family Dλ, Dλ′ , λ, λ′ ∈ (0, 1] are quasi-isometrically equivalent if and
only if they are isomorphic, that is, if and only if λ = λ′. The quasi-isometric classification of
all negatively curved R

n
� R has been completed in [36]. As a special case of [36, Corollary

1.3], if A and B are 2 × 2 matrices whose eigenvalues all have positive real parts, then the
two groups R

2
�A R and R

2
�B R are quasi-isometric if and only if there exists s > 0 such

that A and s B have same real part Jordan form. This shows in particular that J cannot be
quasi-isometric to any Dλ, λ ∈ (0, 1], and Dλ is quasi-isometric to Dλ′ only if λ = λ′. The
previous discussion also covers the groups {Cλ : λ > 0}, which are quasi-isometric to D1.

Except for (7λ) and (11λ), which represent uncountably many different classes, all the
groups listed on one line in the table in Theorem 1.2 are quasi-isometrically equivalent: this
follows from Propositions 2.2, 2.11, 2.14, and 2.15. ��

We now discuss the proof of one result which has been used in the quasi-isometric clas-
sification.

Proposition 3.1 The Lie groups Dλ, λ ∈ [−1, 0), are not Gromov hyperbolic.

There are different proofs available for this fact. One can show for instance that the Dehn
function of Dλ, λ ∈ [−1, 0), is exponential (the argument for D−1 is outlined in [37]), and
then use a result by Gromov [15] to deduce that Dλ, λ ∈ [−1, 0) is not Gromov-hyperbolic
since the Dehn function is not linear. Another possibility would be to consider the asymptotic
cone of Dλ, λ ∈ [−1, 0); see [4] and references therein. A proof for Proposition 3.1 is also
contained in [9, §3.1], where it was observed that points in Dλ, λ ∈ [−1, 0), which are not
contained in the same hyperbolic plane can be joined by quasi-geodesics that do not lie close
to each other. We recall the argument below. It is convenient to think of the hyperbolic plane
H

2 not as the upper half plane {(u, v) : v > 0} with the metric given by

ds2 = 1

v2
(du2 + dv2),

but rather to apply a coordinate transform (x, z) = (u, log v). Then H
2 can be seen as R

2

equipped with the metric given by ds2 = e−2z dx2 + dz2. It turns out that the groups Dλ,
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λ ∈ [−1, 0), are all foliated by isometrically embedded copies of H
2. Perpendicular to these

planes, there is another family of homothetically embedded ‘upside down’ versions of H
2.

Proof of Proposition 3.1 following [9] Recall that Dλ is R
3 with the group law

(x, y, z) ∗ (x ′, y′, z′) = (x + ez x ′, y + eλz y′, z + z′).

Let gλ be the metric on Dλ which makes the following left-invariant frame orthonormal:

E1 = ez∂x , E2 = eλz∂y, E3 = −∂z .

[Note that {E1, E2, E3} has structure constants as described in (1.2).] The associated length
element is given by

ds2 = e−2z dx2 + e−2λz dy2 + dz2.

It follows that the planes {y = const} are isometrically embedded copies of H
2, whereas the

planes {x = const} are homothetically embedded copies of the reflected hyperbolic plane.
Consider two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2) in Dλ with x1 = x2 and

y1 = y2.Wewill construct two quasi-geodesics γa and γb which connect p1 and p2 but do not
lie close to each other. First, we let γa,1 be the geodesic segment between p1 and (x2, y1, z2)
inside the hyperbolic plane {y = y1}. Then we let γa,2 be the geodesic segment in {x = x2}
connecting the endpoint of γa,1 to p2, and we denote by γa the concatenation of γa,1 and
γa,2. The curve γb is obtained in an analogous way, by first connecting p1 to (x1, y2, z2) by
a geodesic segment in the plane {x = x1}, and then connecting the point (x1, y2, z2) to p2
by a geodesic in the hyperbolic plane {y = y2}. Observe that the map

Dλ → H
2 × H

2, (x, y, z) 	→ ((x, z), (y, z))

is a quasi-isometric embedding with constants depending only on the parameter λ if Dλ is
endowed with the distance induced by gλ and H

2 × H
2 is equipped with a product metric

of dH2 , where dH2 is induced by a metric of constant sectional curvature equal to −1. It
follows that both γa and γb are (L, C)-quasi-geodesics, for constants L = L(λ) ≥ 1 and
C = C(λ) ≥ 0 independent of a and b. By applying this construction to a sequence of
points p1,n = (x1,n, y1,n, z) and p2,n = (x2,n, y2,n, z), with z ∈ R, |x1,n − x2,n| → ∞ and
|y1,n − y2,n | → ∞ as n → ∞, we see that there does not exist a constant δ > 0 such that
for every n, the curve γa connecting p1,n to p2,n is contained in the δ-neighborhood of γb.
This proves that (Dλ, gλ) is not Gromov hyperbolic. ��
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