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Abstract
We investigate the Calderón problem for the fractional Schrödinger equation with drift,
proving that the unknown drift and potential in a bounded domain can be determined simul-
taneously and uniquely by an infinite number of exterior measurements. In particular, in
contrast to its local analogue, this nonlocal problem does not enjoy a gauge invariance. The
uniqueness result is complemented by an associated logarithmic stability estimate under
suitable apriori assumptions. Also uniqueness under finitely many generic measurements
is discussed. Here the genericity is obtained through singularity theory which might also
be interesting in the context of hybrid inverse problems. Combined with the results from
Ghosh et al. (Uniqueness and reconstruction for the fractional Calderón problem with a
single easurement, 2018. arXiv:1801.04449), this yields a finite measurements constructive
reconstruction algorithm for the fractional Calderón problem with drift. The inverse problem
is formulated as a partial data type nonlocal problem and it is considered in any dimension
n ≥ 1.
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1 Introduction

In this article, we consider an inverse problem for a nonlocal Schrödinger equation with drift.
Here we seek to study the uniqueness, stability and reconstruction properties in analogy to its
local counterpart, which is a type ofmagnetic Schrödinger equation and had been investigated
in Nakamura et al. [34]. As one of our main results, we prove that: In contrast to its local
counterpart, for the fractionalCalderón problemwith drift there isno gauge invariance present
(see Theorem 1.1). In particular, this poses an obstruction in possibly extracting information
from the nonlocal inverse problem for its local analogue (as s → 1). As our second main
result, we prove a generic, finitemeasurements reconstruction, whichmight also be of interest
in the context of hybrid inverse problems (see Theorem 1.4 and the following discussions).
As a key tool for this, we rely on singularity theory from Whitney [53].

The classical Calderón problem with drift. Before turning to the nonlocal problem, let
us recall its local analogue and the known results on this: In the classical Calderón problem
for the magnetic Schrödinger equation, the objective is to determine the drift and potential
coefficients simultaneously. More precisely, for n ≥ 3, let � ⊂ R

n be a bounded Lipschitz
domain, then consider the following Dirichlet boundary value problem

(−� + b · ∇ + c)u = 0 in �,

u = f on ∂�,
(1.1)

where b and c are sufficiently smooth functions which vanish on ∂�. Assuming the well-
posedness of the boundary value problem (1.1), one can define boundarymeasurements given
by the Dirichlet-to-Neumann map (abbreviated as the DN map in the rest of this paper)

�b,c : H1/2(∂�) → H−1/2(∂�) with �b,c : f �→ ∂u

∂ν
,
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where u ∈ H1(�) is the unique solution to (1.1) and ν is the unit outer normal on ∂�.
The Calderón problem for (1.1) consists of trying to recover the unknown coefficients b,

c (which are assumed to be in appropriate function spaces) by the information encoded in the
boundary measurement operator �b,c on ∂�. In the case of the local magnetic Schrödinger
equation, there is however an intrinsic obstruction to the unique identification of these coef-
ficients. To observe this, consider the substitution v = eφu which results in an equation for
v which is of a similar form as (1.1):

−�v + (b + 2∇φ) · ∇v + (c + �φ − b · ∇φ − |∇φ|2)v = 0 in �,

v = eφ f on ∂�.
(1.2)

If now φ = 0, ∂νφ = 0 on ∂�, then the DN maps for the old and the new equations (1.1)
and (1.2) coincide; there is a hidden gauge invariance. As a consequence, one cannot expect
to be able to recover the full information on the coefficients b and c from the knowledge of
the Dirichlet-to-Neumann map �b,c on ∂�.

As a matter of fact, one can at most hope to recover b and c up to the described gauge
invariance for the inverse boundary value problem with respect to (1.1). This is indeed the
case (c.f. [28, Theorem 5.4.1]): If b j and c j are compactly supported in a simply connected
domain for j = 1, 2, and if their DNmaps coincide on the boundary ∂�, then one can obtain
uniqueness up to the described gauge invariance:

curlb1 = curlb2 and 4c1 + b1 · b1 − 2divb1 = 4c2 + b2 · b2 − 2divb2 in �. (1.3)

We again emphasize that this does not allow us to recover the full fields b, c but only allows
one to obtain information up to the above gauge invariance.

Variants of this inverse boundary value problem have also been studied in [43,48,49] for
the symmetric magnetic Schrödinger operator, in [25,30] for the low regularity setting and in
[16] for the setting in which only partial data are available. The setting of flexible geometries
was studied in [8,31]. The case of systems was considered in [13] and Yang–Mills potentials
with arbitrary geometry in [9]. Stability results can be found in [29,50] and reconstruction
results are given in [44]. For more detailed discussions of inverse problems for the magnetic
Schrödinger equation, we refer to the book [28, Chapter 5] as well as to the articles [45,51]
and their bibliographies.

The fractional Calderón problem with drift.Keeping the situation of the local problem
with s = 1 in the back of our minds, we turn to the Calderón problem for the analogous
fractional Schrödinger equation with drift, which is a nonlocal inverse problem. This inverse
problem should be regarded as a generalization of the fractional Calderón problem, which
had first been introduced and investigated in Ghosh et al. [20]. In the sequel, we describe this
problem more precisely.

Assume that � ⊂ R
n is a bounded Lipschitz domain for n ≥ 1 and let 1

2 < s < 1 (so that
the fractional nonlocal operator is dominant). Given a drift b ∈ W 1−s,∞(�)n and a potential
c ∈ L∞(�), we consider the following fractional exterior value problem

((−�)s + b · ∇ + c)u = 0 in �,

u = f in �e := R
n\�,

(1.4)

with some suitable exterior datum f (we will present a rigorous mathematical formulation
of this in Sect. 2, c.f. also Remark 2.10). Here the fractional Laplacian (−�)s is given by

(−�)su := F−1 {|ξ |2s û(ξ)
}
, for u ∈ Hs(Rn),
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where û = Fu denotes the Fourier transform of u. We assume that this problem and its
“adjoint problem” are well-posed, which is guaranteed by imposing the eigenvalue condition
that

If w ∈ Hs(Rn) is a solution of (−�)sw + b · ∇w + cw = 0 in � with w = 0 in �e,

then we have w ≡ 0.
(1.5)

In the sequel, we will always suppose that this condition is satisfied. As in the clas-
sical Calderón problem with drift, we are interested in recovering the drift coefficient
b ∈ W 1−s,∞(�)n and the potential c ∈ L∞(�) simultaneously from the associated DN
map. With slight abuse of notation (for a precise definition we refer to Sect. 2), the DN map
associated with the nonlocal problem can be thought of as the mapping

�b,c : H̃ s(�e) → (H̃ s(�e))
∗, f �→ (−�)su|�e , (1.6)

where u is the solution to (1.4) with exterior data f . Here H̃ s(�e) denotes the completion of
C∞
c (�e)with respect to a fractional Sobolev norm.We refer to (2.1) for the precise definition.
The aim of this work is to prove the global uniqueness and stability of the drift coefficient

and the potential for this nonlocal inverse problem. This is in strong contrast to the local case,
i.e., the case s = 1, as in the nonlocal setting the gauge invariance (1.3) which presented an
obstruction to global uniqueness in the local case disappears.

1.1 Themain results

Let us formulate our main results. As a first property we obtain the global uniqueness of the
drift coefficient and the potential for the nonlocal fractional Calderón problem with drift:

Theorem 1.1 (Global uniqueness) For n ≥ 1, let � ⊂ R
n be a bounded, open, non-empty

Lipschitz domain, and let 1
2 < s < 1. Let b j ∈ W 1−s,∞(�)n be two drift fields, and

c j ∈ L∞(�) be potentials for j = 1, 2. Given arbitrary open, non-empty sets W1,W2 ⊂ �e,
suppose that the DN maps for the equations

((−�)s + b j · ∇ + c j )u j = 0 in �

satisfy

�b1,c1 f |W2 = �b2,c2 f |W2 , for any f ∈ C∞
c (W1).

Then b1 = b2 and c1 = c2 in �.

Theorem 1.1 can be regarded as a partial data result for our nonlocal inverse problem.
Different from the local case, i.e., s = 1, there is no gauge invariance and thus no intrinsic
obstruction to uniqueness in this nonlocal Calderón problem. We expect that it is possible
to improve the regularity assumptions on the drift coefficient and the potential. As our main
focus in the present article is however on the striking differences between the local and the
nonlocal problems in terms of the existence/absence of a gauge, we do not elaborate on this
here but postpone this to a future work.

As in previous results on the fractionalCalderónproblem (c.f. [20]), in thiswork,we are not
using complex geometrical optics solutions. Instead, we rely on the following approximation
property.

Theorem 1.2 (Runge approximation) For n ≥ 1 and 1
2 < s < 1, let � ⊂ R

n be a bounded
open, non-empty Lipschitz set and �1 ⊂ R

n be an arbitrary open set such that �1\� �= ∅.

123



The Calderón problem for the fractional Schrödinger equation… Page 5 of 46    91 

(a) Let b ∈ W 1−s,∞(�)n and c ∈ L∞(�). Then, for any g ∈ L2(�) and ε > 0, one can
find a solution uε ∈ Hs(Rn) of

(
(−�)s + b · ∇ + c

)
uε = 0 in �, with supp(uε) ⊂ �1

such that

‖uε − g‖L2(�) < ε.

(b) If we further assume that � has a C∞-smooth boundary, b ∈ C∞
c (�)n and c ∈ C∞

c (�)

with supp(b), supp(c) � �, given any g ∈ C∞(�), ε > 0 and k ∈ N, then there exists
a solution uε ∈ Hs(Rn) of

(
(−�)s + b · ∇ + c

)
uε = 0 in �, with supp(uε) ⊂ �1

such that

‖d−s(x)uε − g‖Ck (�) ≤ ε.

The function d(x) is any C∞-smooth function defined in � such that d > 0 in � and
d(x) = dist(x, ∂�) whenever x is near ∂�.

A more quantitative Runge approximation for the fractional Schrödinger equation with
drift will be discussed in Sect. 5 in the context of stability estimates.

Remark 1.1 The qualitative Runge approximation property as a key tool for studying frac-
tional Schrödinger type inverse problems had been introduced in [20]. In order to infer
such a result, the authors of [20] built on the unique continuation property for fractional
Schrödinger equations in the form of Carleman estimates which had been derived in [35],
c.f. also [14,15,19,36,47,54] for related unique continuation results for fractional Schrödinger
equations. For variable coefficient fractional Schrödinger operators, the authors of [18] uti-
lized Almgren’s frequency function to derive such a property. In the context of nonlocal
elliptic equations, this had earlier been employed by [15,54], c.f. also Section 7 in [35] for
the derivation of unique continuation properties with variable coefficients.

Let us put these results into the context of the literature on the fractional Calderón problem:
The problemwas first introduced by [20], where the authors treated the casewith c ∈ L∞(�),
b = 0 and s ∈ (0, 1), and proved a global uniqueness result for c. For more general nonlocal
variable coefficient Schrödinger operators, the fractional Calderón problem was studied in
[18]. The techniques based on Runge approximation are strong enough to deal with the
case of semilinear equations [32] and low regularity, almost critical function spaces for
the potential [38]. Even single measurement results are possible [19] (c.f. the discussion
below). Moreover, these techniques have been extended to other nonlocal problems [7,39] in
a slightly different context. Also, for positive and general potentials, monotonicity inversion
formulas have been successfully discovered in [26,27]. Very recently and independently
from our work, uniqueness results have been obtained for equations with nonlocal lower
order contributions [4].

In addition to uniqueness, stability is of central importance in inverse problems. Stability
results for the fractional Calderón problem were first obtained in [38,40], where optimal
logarithmic stability estimates had been derived (c.f. also [41] for improvements of this if
structural apriori conditions like the finiteness of the underlying function space are satisfied).
It is possible to extend the logarithmic estimates to the setting of the fractional Calderón
problem with drift. Here we obtain the following result:

123



   91 Page 6 of 46 M. Ceki´ c et al.

Theorem 1.3 (Logarithmic stability) Let s ∈ ( 12 , 1), � ⊂ R
n, n ≥ 1 be a bounded open,

non-empty smooth domain. Let W1,W2 be open, non-empty sets with W 1,W 2 ⊂ �e. Assume
that for some constants M > 0, δ > 0

‖b j‖W 1−s+δ,∞(�) + ‖c j‖Hs (�) + ‖c j‖W 1,n+δ(�) ≤ M,

and that supp(b j ), supp(c j ) � � for j = 1, 2. Then for some constants μ > 0 and C > 0
which depend on �,W1,W2, n, s, M, δ, we have

‖c1 − c2‖H−s (�) + ‖b1 − b2‖H−s (�) ≤ C
∣∣log(‖�b1,c1 − �b2,c2‖∗)

∣∣−μ
,

if ‖�b1,c1−�b2,c2‖∗ ≤ 1, where ‖A‖∗ := sup{(A f1, f2)W2 : f1 ∈ H̃ s(W1), f2 ∈ H̃ s(W2)}.
As in [38] this relies on quantitative Runge approximation arguments, which are derived

from quantitative unique continuation properties. We adapt the arguments from [38] to infer
these results for the fractional Schrödinger equation with drift.

Last but not least, based on the higher order Runge approximation property (Theorem
1.2 (b)), we can deduce finite measurements uniqueness results for the fractional Calderón
problem with drift.

Theorem 1.4 (Finite measurements uniqueness) Let � ⊂ R
n be a bounded, non-empty

domain with a C∞-smooth boundary. Let W ⊂ �e be an open, non-empty smooth set
such that W ∩ � = ∅. Let s ∈ ( 12 , 1) and assume that b j ∈ C∞

c (�)n, c j ∈ C∞
c (�)

satisfy (1.5) with supp(b j ), supp(c j ) � � for j = 1, 2. There exist n + 1 exterior data
f1, . . . , fn+1 ∈ C∞

c (W ) such that if

�b1,c1( fl) = �b2,c2( fl) for l ∈ {1, . . . , n + 1},
then b1 = b2 and c1 = c2. Moreover, the set of exterior data f1, . . . , fn+1, which satisfies
this property forms an open and dense subset in C∞

c (W ).

This is analogous to the single measurement results in [19] for the fractional Schrödinger
equation, c.f. also [6] for a single measurement result on the detection of an embedded
obstacle. However, compared to [19] a word of caution is needed here: In contrast to the
result from [19] it is not possible to work with an arbitrary nontrivial set of measurements
f1, . . . , fn+1. The data f1, . . . , fn+1 have to be chosen appropriately from a set which
depends on the unknowns b, c. This is similar to results on hybrid inverse problems, c.f. [1,2].

While the dependence of the admissible exterior data on the unknown drift field and
potential seems like a serious restriction at first sight, we emphasise that by proving that
the data f1, . . . , fn+1 can be chosen in an open and dense set in C∞

c (W ), we show that
the set of admissible exterior data is very large: Given a (random) exterior measurement
f1, . . . , fn+1 ∈ C∞

c (W ), our result states that an arbitrarily small perturbation of this yields
an admissible exterior datum from which we can reconstruct the drift field b and potential c.
This might also be of interest in the setting of hybrid inverse problems for which we could not
find a statement on an open and dense set of admissible measurements. We plan to address
this in future research.

For an overview about the fractional Calderón problem, we refer to the surveys [37,46].

1.2 Outline of the remaining article

The paper is organized as follows. In Sect. 2, we review the notion of a weak solutions of
the fractional Schrödinger equation with drift. With this at hand, we define the DN map
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rigorously. Section 3 demonstrates the L2-Runge approximation property, which proves
Theorem 1.2(a). We will prove the global uniqueness result of Theorem 1.1 in Sect. 4, which
shows that the nonlocal Calderón problem does not enjoy a gauge invariance in contrast to its
local analogue. In Sect. 5, we also prove the stability result of Theorem 1.3 for the fractional
Calderón problem with drift and potential with respect to the associated DNmaps. In Sect. 6,
in the end of this work, we present the proof of Theorem 1.4, wherewe prove several points on
the reconstruction from finitely many exterior measurements. In addition, we study generic
unique determination results via singularity theory in the “Appendix”, which is useful to
construct the open and dense subset for the exterior data stated in Theorem 1.4.

2 The fractional Schrödinger equation with drift

In this section, we recall the relevant function spaces, prove the well-posedness of the
fractional Schrödinger equationwith drift and introduce and derive properties of theDirichlet-
to-Neumann map associated with (1.4).

2.1 Preliminaries

We begin by recalling the relevant fractional Sobolev spaces on (bounded) domains. We
define the L2-based fractional Sobolev spaces as follows: for 0 < s < 1, we consider the
fractional Sobolev spaces Hs(Rn) = Ws,2(Rn) with the norm

‖u‖Hs (Rn) := ∥∥F−1 {〈ξ 〉s û}∥∥
L2(Rn)

,

where 〈ξ 〉 = (1 + |ξ |2) 1
2 . Let O ⊂ R

n be an arbitrary non-empty open set and 0 < s < 1,
then we define:

Hs(O) := {u|O; u ∈ Hs(Rn)},
H̃ s(O) := closure of C∞

c (O) in Hs(Rn),

Hs
0 (O) := closure of C∞

c (O) in Hs(O),

(2.1)

and

Hs
O := {u ∈ Hs(Rn); with supp(u) ⊂ O}.

The norm of Hs(O) is denoted by

‖u‖Hs (O) := inf
{‖v‖Hs (Rn); v ∈ Hs(Rn) and v|O = u

}
.

It is known that H̃ s(O) ⊆ Hs
0 (O), and that Hs

O is a closed subspace of Hs(Rn). Further we
have for arbitrary non-empty open sets O

(
Hs(O)

)∗ = H̃−s(O) and
(
H̃ s(O)

)∗ = H−s(O).

Remark 2.1 When O ⊂ R
n is a bounded Lipschitz domain, we have that for any s ∈ R,

H̃ s(O) = Hs
O � Hs

0 (O).

If s > − 1
2 and s /∈ { 12 , 3

2 , . . .} the last inclusion also becomes an equality.
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We further denote the homogeneous fractional Sobolev spaces as Ḣ s(Rn), where

Ḣ s(Rn) := {u : R
n → R; ‖F−1{|ξ |s û}‖L2(Rn) < ∞}.

We define the associated semi-norm as

‖u‖Ḣ s (Rn) := ‖F−1{|ξ |s û}‖L2(Rn).

Note that the norm ‖ · ‖Hs (Rn) is equivalent to the norm ‖ · ‖L2(Rn) + ‖ · ‖Ḣ s (Rn). For a more
detailed introduction to fractional Sobolev spaces and related results, we refer the readers to
[12,33].

Since we will use this for our drift fields, we also recall the L p based fractional
Sobolev spaces: we set ‖u‖Ws,p(Rn) := ‖〈D〉su‖L p(Rn), where 〈ξ 〉 = (1 + |ξ |2)1/2 and
m(D)u = F−1{m(ξ )̂u(ξ)} for m ∈ C∞(Rn) such that m and all its derivatives are polyno-
mially bounded, and u is a tempered distribution. For a non-empty open set O ⊂ R

n and
p > 1, we then define the space Ws,p(O) by

Ws,p(O) = {u|O; u ∈ Ws,p(Rn)}.

This is equipped with the associated norm

‖u‖Ws,p(O) = inf{‖w‖Ws,p(Rn); w ∈ Ws,p(Rn), w|O = u}.

We also define

Ws,p
0 (O) := closure of C∞

c (O) in Ws,p(O).

In the sequel, we will only use these more general Ws,p function spaces to quantify the size
of the drift field b.

We conclude this section by recalling a fractional Poincaré type inequality:

Lemma 2.2 Let n ≥ 1 and let s ∈ (0, 1). Assume that � ⊂ R
n is non-empty, open and

bounded. Then, there exists a constant C > 0 such that

‖v‖L2(�) ≤ C(diam(�))s‖(−�)s/2v‖L2(Rn) for v ∈ H̃ s(�),

where diam(�) denotes the diameter of �.

We present the proof for self-containedness but follow the idea from the appendix in [42].

Proof of Lemma 2.2 We first assume that v ∈ C∞
c (�). The result will then follow by density

of C∞
c (�) in H̃ s(�). Let x ∈ � be arbitrary and let x ′ = x + 2 diam(�) x

|x | . Let further ṽ be
the Caffarelli-Silvestre [5] extension of v, i.e. let ṽ be the solution of

∇ · x1−2s
n+1 ∇ṽ = 0 in R

n+1+ ,

ṽ = v on R
n × {0}.

Then the fundamental theorem of calculus and the support condition for v imply that for any
r ∈ (diam(�),∞)
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|v(x)| = |̃v(x, 0)| ≤ |̃v(x, r)| +
r∫

0

|∂n+1ṽ(x, t)|dt

≤ |̃v(x ′, r)| +
1∫

0

|∇′ṽ(t x + (1 − t)x ′, r)||x − x ′|dt +
r∫

0

|∂n+1ṽ(x, t)|dt

≤
r∫

0

|∂n+1ṽ(x ′, t)| +
r∫

0

|∂n+1ṽ(x, t)|dt +
1∫

0

|∇′ṽ(t x + (1 − t)x ′, r)||x − x ′|dt .

Next we insert the weights t
1−2s
2 , apply Hölder’s inequality, estimate |x ′ − x | ≤ Cr and fix

r ∈ (r0, 2r0), where r0 = diam(�):

|v(x)| ≤
r∫

0

t
2s−1
2 t

1−2s
2 |∂n+1ṽ(x ′, t)|dt +

r∫

0

t
2s−1
2 t

1−2s
2 |∂n+1ṽ(x, t)|dt

+
1∫

0

r
1−2s
2 |∇′ṽ(t x + (1 − t)x ′, r)||x − x ′|r 2s−1

2 dt

≤ Crs

⎛

⎜
⎝

⎛

⎝
r∫

0

x1−2s
n+1 |∂n+1ṽ(x ′, xn+1)|2dxn+1

⎞

⎠

1
2

+
⎛

⎝
r∫

0

x1−2s
n+1 |∂n+1ṽ(x, xn+1)|2dxn+1

⎞

⎠

1
2

+r
1
2

⎛

⎝
1∫

0

r1−2s |∇′ṽ(t x + (1 − t)x ′, r)|2dt
⎞

⎠

1
2

⎞

⎟⎟
⎠

≤ Crs0

⎛

⎜⎜
⎝

⎛

⎝
2r0∫

0

x1−2s
n+1 |∂n+1ṽ(x ′, xn+1)|2dxn+1

⎞

⎠

1
2

+
⎛

⎝
2r0∫

0

x1−2s
n+1 |∂n+1ṽ(x, xn+1)|2dxn+1

⎞

⎠

1
2

+r
1
2
0

⎛

⎝
1∫

0

r1−2s |∇′ṽ(t x + (1 − t)x ′, r)|2dt
⎞

⎠

1
2

⎞

⎟⎟
⎠ .

Here the constant C > 0 in particular depends on s. Next we square the estimate and
integrate it in the normal direction in the interval r ∈ (r0/2, 2r0). This yields

|v(x)|2 ≤ Cr2s0

⎛

⎝
2r0∫

0

x1−2s
n+1 |∂n+1ṽ(x ′, xn+1)|2dxn+1 +

2r0∫

0

x1−2s
n+1 |∂n+1ṽ(x, xn+1)|2dxn+1

+
1∫

0

2r0∫

0

x1−2s
n+1 |∇′ṽ(t x + (1 − t)x ′, xn+1)|2dtdxn+1

⎞

⎠ .
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Finally, integrating in tangential directions and using the support condition for v, we obtain

‖v‖2L2(�)
≤ Cr2s0 ‖x

1−2s
2

n+1 ∇ṽ‖2
L2(Rn+1+ )

.

Since by the work of Caffarelli-Silvestre [5] we have

‖x
1−2s
2

n+1 ∇ṽ‖2
L2(Rn+1+ )

= ‖v‖Ḣ s (Rn),

and since for v ∈ C∞
c (�) we have (in the sense of norm equivalences)

‖(−�)s/2v‖L2(Rn) ∼ ‖v‖Ḣ s (�),

this concludes the proof.

2.2 Well-posedness

In this section we discuss the well-posedness of the Eq. (1.4) and its dual equation.
To this end, let � ⊂ R

n be a non-empty bounded domain (open and connected), b ∈
W 1−s,∞(�)n be a drift coefficient, c ∈ L∞(�) a potential and let 1

2 < s < 1 be a constant.
For F ∈ (H̃ s(�))∗ (the dual space of Hs(�)), f ∈ Hs(Rn), let us consider the following
Dirichlet problem

((−�)s + b · ∇ + c)u = F in �,

u − f ∈ H̃ s(�).
(2.2)

Given an arbitrary non-empty open set O ⊂ R
n and v,w ∈ L2(O), we use the notation

(v,w)O :=
∫

O
vwdx .

For v,w ∈ C∞
c (Rn) we define the bilinear form Bb,c(·, ·) by

Bb,c(v,w) := ((−�)s/2v, (−�)s/2w)Rn + (b · ∇v,w)� + (cv,w)�. (2.3)

Notice that the bilinear form Bb,c(·, ·) is not symmetric, so we also introduce the adjoint
bilinear form as

B∗
b,c(v

∗, w∗) := ((−�)s/2v∗, (−�)s/2w∗)Rn + (bv∗,∇w∗)� + (cv∗, w∗)�, (2.4)

for v∗, w∗ ∈ C∞
c (Rn).

We remark that the term “adjoint” is used with a slight abuse of notation here, e.g. as we
did not specify the underlying function spaces. We however think of the adjoint bilinear form
(2.4), as the bilinear form associated with the adjoint exterior value problem

(−�)su∗ − ∇ · (bu∗) + cu∗ = F∗ in �,

u∗ − f ∗ ∈ H̃ s(�),
(2.5)

for some suitable source F∗ and exterior datum f ∗.

Remark 2.3 We further stress that there is a slight discrepancy between the bilinear form (2.4)
and the adjoint Dirichlet problem (2.5) in that we have ignored the boundary contribution
originating from the integration by parts of (2.5) in the definition of the bilinear form (2.3). In
the sequel, this will for instance be reflected in the (symmetry) properties of the operator�∗

b,c,
c.f. Lemma 2.13. More precisely, the DN map associated with the Eq. (2.5) would contain a
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boundary contribution on ∂� if b (or u∗) does not vanish there. This is a consequence of an
integration by parts which is used to obtain the weak form of the DN map associated with
the Eq. (2.5). For the operator�∗

b,c which is defined through the “adjoint bilinear form” (2.4)
this contribution is not present, as the integration by parts has already been carried out.

Before continuing in our discussion, we observe that under our regularity assumptions the
bilinear forms (2.3), (2.4) are well-defined on Hs(Rn), for 1

2 < s < 1.

Lemma 2.4 (Boundedness of bilinear forms) For n ≥ 1, let � ⊂ R
n be a bounded Lipschitz

domain and 1
2 < s < 1. Assume that b ∈ W 1−s,∞(�)n, c ∈ L∞(�). Let Bb,c(·, ·) and

B∗
b,c(·, ·) be the bilinear and the adjoint bilinear form defined by (2.3) and (2.4), respectively.

Then, Bb,c(·, ·) and B∗
b,c(·, ·) extend as bounded bilinear forms on Hs(Rn) × Hs(Rn).

Proof. It suffices to discuss the extension of Bb,c(·, ·) as the argument for B∗
b,c(·, ·) is analo-

gous. First, we directly have
∣∣((−�)s/2v, (−�)s/2w)Rn

∣∣ + |(cv,w)�|
≤ C(1 + ‖c‖L∞(�))

(
‖v‖Ḣ s (Rn)‖w‖Ḣ s (Rn) + ‖v‖L2(�)‖w‖L2(�)

)

≤ C(1 + ‖c‖L∞(�))‖v‖Hs (Rn)‖w‖Hs (Rn), (2.6)

for some constant C > 0 independent of v,w. It remains to discuss the contribution of
the drift term. For this we note that as 1 − s ∈ (0, 1

2 ) and as � is a Lipschitz domain,
we have H̃1−s(�) = H1−s(�) and ‖w‖H̃1−s (�) ≤ C‖w‖H1−s (Rn). Next, we choose B ∈
W 1−s,∞(Rn) such that

B|� = b, ‖B‖W 1−s,∞(Rn) ≤ 2‖b‖W 1−s,∞(�).

and estimate
∣∣∣∣

∫

�

w(b · ∇v)dx

∣∣∣∣ ≤ ‖bw‖H̃1−s (�)‖∇v‖Hs−1(�)

≤ C‖Bw‖H1−s (Rn)‖∇v‖Hs−1(Rn)

≤ C‖w‖H1−s (Rn)‖b‖W 1−s,∞(�)‖∇v‖Hs−1(Rn)

≤ C‖w‖H1−s (Rn)‖b‖W 1−s,∞(�)‖v‖Hs (Rn)

≤ C‖w‖Hs (Rn)‖b‖W 1−s,∞(�)‖v‖Hs (Rn).

(2.7)

Here we used the Kato-Ponce inequality [22] in order to obtain a suitable multiplier estimate

‖Bw‖H1−s (Rn) ≤ C‖J 1−s(Bw)‖L2(Rn)

≤ C
(‖B‖L∞(Rn)‖J 1−sw‖L2(Rn) + ‖J 1−s B‖L∞(Rn)‖w‖L2(Rn)

)

≤ C‖B‖W 1−s,∞(Rn)‖w‖H1−s (Rn)

≤ 2C‖b‖W 1−s,∞(�)‖w‖H1−s (Rn)

≤ 2C‖b‖W 1−s,∞(�)‖w‖Hs (Rn),

(2.8)

where J 1−s := (� − 1)
1−s
2 and 0 < 1 − s < 1

2 . Finally, combining (2.6), (2.7) and (2.8),
one has the desired result

∣∣Bb,c(v,w)
∣∣ ≤ C‖v‖Hs (Rn)‖w‖Hs (Rn), (2.9)
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for 1
2 < s < 1 and for some constant C > 0 independent of v,w. A similar argument also

yields the boundedness for the adjoint bilinear form, which reads
∣∣B∗

b,c(v
∗, w∗)

∣∣ ≤ C‖v∗‖Hs (Rn)‖w∗‖Hs (Rn). (2.10)

Remark 2.5 For the above well-definedness argument, we point out the following observa-
tions:

(a) The requirement that � is a bounded Lipschitz domain only entered in the identity
H̃1−s(�) = H1−s(�). If this identity holds for a less regular domain � (e.g. if ∂�

is Hölder continuous with sufficiently high Hölder exponent depending on s) the well-
definedness of the bilinear forms (2.3), (2.4) persists for this domain. In order to avoid
technicalities, we do not address this issue in the sequel, but will always assume that �
is Lipschitz. Nevertheless, we phrase our results (e.g. the Dirichlet-to-Neumann map in
Definition 2.11) such that they remain valid for a more general class of domains which
satisfy the condition H̃1−s(�) = H1−s(�).

(b) As an alternative condition to imposing Lipschitz regularity, we might also have asked
for b ∈ W 1−s,∞

0 (�)n . As the drift field b however is one of the main objects of interest
in our argument, we opted for rather imposing regularity on � than on restricting the
class of admissible drift fields.

We in particular notice that by the above definitions, (2.3), (2.4) and the estimates (2.9)
and (2.10), we obtain

Bb,c(u, w) = B∗
b,c(w, u), for any u, w ∈ Hs(Rn). (2.11)

With these bilinear forms at hand, we define u ∈ Hs(Rn) with u − f ∈ H̃ s(�) to be
a solution of (2.2) if for all w ∈ H̃ s(Rn) we have Bb,c(u, w) = F(w). A solution to the
adjoint problem is defined analogously using B∗

b,c(·, ·).
Relying on energy estimates, we can prove the existence and uniqueness of solutions to

(2.2) and (2.5), outside of a discrete set of eigenvalues:

Proposition 2.6 Let� ⊂ R
n, n ≥ 1, be a bounded Lipschitz domain and 1

2 < s < 1. Assume
that b ∈ W 1−s,∞(�)n, c ∈ L∞(�). Let Bb,c(·, ·) and B∗

b,c(·, ·) be the bilinear and the adjoint
bilinear form defined by (2.3) and (2.4), respectively. Then the following properties hold:

(a) There exists a countable set � = {λ j }∞j=1 ⊂ R with λ1 ≤ λ2 ≤ · · · → ∞ such that

if λ ∈ R\�, for any f ∈ Hs(Rn) and F ∈ (H̃ s(�))∗ there exists a unique function
u ∈ Hs(Rn) such that

Bb,c(u, w) − λ(u, w)� = F(w) for all w ∈ H̃ s(�) and u − f ∈ H̃ s(�).

We then have

‖u‖Hs (Rn) ≤ C(‖ f ‖Hs (Rn) + ‖F‖(Hs (Rn))∗),

where the constant C > 0 depends on n, s, ‖b‖W 1−s,∞(�), ‖c‖L∞(�), λ. Moreover, � ⊂
(−‖c‖L∞(�) − C‖b‖W 1−s,∞(�),∞) where the constant C > 0 is sufficiently large and
only depends on s, n.

(b) Similarly, for the adjoint bilinear form (2.4), there exists a countable set �∗ ⊂ R such
that if λ∗ ∈ R\�∗, for all f ∗ ∈ Hs(Rn) there is a unique u∗ ∈ Hs(Rn) with

B∗
b,c(u

∗, w∗) − λ∗(u∗, w∗)� = F∗(w∗), for all w∗ ∈ H̃ s(�) and u∗ − f ∗ ∈ H̃ s(�).
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Remark 2.7 We point out that the regularity of b ∈ W 1−s,∞(�)n is determined by the prop-
erties of multipliers in the function space H1−s(�) for s ∈ ( 12 , 1) (through the application
of the Kato-Ponce inequality, c.f. the proof of the well-posedness result below and [22]).
This is consistent with the fact that for s = 1 it is easily seen that b ∈ L∞(�) is a sufficient
condition for the well-posedness of the problem from Proposition 2.6.

Remark 2.8 For � Lipschitz, we recall that H̃ s(�) = Hs
�
. In particular the above well-

posedness theory then also transfers to these functions spaces immediately.

Remark 2.9 Weemphasize that we did not attempt to optimize the function spaces for the drift
and the potential contributions here. It is an interesting question which we plan to investigate
in future work under which regularity conditions the properties of the inverse problem under
investigation persist.

Proof of Proposition 2.6 We first give the proof of (a); it will follow from the spectral theorem
for compact operators. Indeed, we first assume that f = 0, which can always be achieved by
considering v = u − f ∈ H̃ s(�). Arguing similarly as in (2.8) for the resulting drift term,
we note that this yields an appropriately modified functional F̃ ∈ (H̃ s(�))∗. In the sequel,
we only consider the function v. Since the boundedness of the bilinear form was already
proven by Lemma 2.4, we only need to prove the coercivity of Bb,c(·, ·).

To this end, we first note that for φ ∈ C∞
c (Rn) the following interpolation estimate holds

‖φ‖H1−s (Rn) ≤ C‖φ‖
2s−1
s

L2(Rn)
‖φ‖

1−s
s

Hs (Rn)
for

1

2
< s < 1. (2.12)

By virtue of Remark 2.1 and the interpolation estimate (2.12), one has for φ, v ∈ C∞
c (Rn),

∣∣∣∣

∫

�

φ(∇v · b)dx
∣∣∣∣ ≤ ‖bφ‖H̃1−s (�)‖∇v‖Hs−1(�)

≤ C‖bφ‖H1−s (Rn)‖∇v‖Hs−1(Rn)

≤ C‖φ‖H1−s (Rn)‖b‖W 1−s,∞(�)‖∇v‖Hs−1(Rn)

≤ C‖φ‖H1−s (Rn)‖b‖W 1−s,∞(�)‖v‖Hs (Rn)

≤ C‖v‖Hs (Rn)‖b‖W 1−s,∞(�)‖φ‖
2s−1
s

L2(Rn)
‖φ‖

1−s
s

Hs (Rn)

≤ Cε‖b‖W 1−s,∞(�)‖v‖Hs (Rn)‖φ‖L2(Rn) + ε‖v‖Hs (Rn)‖φ‖Hs (Rn),

(2.13)

which holds for any ε > 0 and for (generic) constants C,Cε > 0 which are independent of
v and φ. Here we have utilized Young’s inequality in the last line; and used the Kato-Ponce
inequality as in (2.7). Notice that by the density of C∞

c (�) in H̃ s(�), the estimate (2.13)
also extends to v, φ ∈ H̃ s(�). A matching coercivity estimate follows from the Poincaré
inequality (c.f. Lemma 2.2)

‖v‖L2(Rn) ≤ C‖(−�)s/2v‖L2(Rn), v ∈ H̃ s(�),
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in combination with (2.13) and Young’s inequality:

Bb,c(v, v) ≥ ‖(−�)s/2v‖2L2(Rn)
− ‖c‖L∞(Rn)‖v‖2L2(Rn)

−
∣∣∣∣∣∣

∫

�

v(∇v · b)dx
∣∣∣∣∣∣

≥ ‖(−�)s/2v‖2L2(Rn)
− ‖c‖L∞(Rn)‖v‖2L2(Rn)

− Cε‖b‖W 1−s,∞(�)‖v‖2L2(Rn)
− ε‖v‖2Hs (Rn)

≥ c0(‖(−�)s/2v‖2L2(Rn)
+ ‖v‖2L2(Rn)

) − ‖c‖L∞(Rn)‖v‖2L2(Rn)

− Cε‖b‖W 1−s,∞(�)‖v‖2L2(Rn)
− ε‖v‖2Hs (Rn)

≥ c0
2

‖v‖2Hs (Rn) − ‖c‖L∞(Rn)‖v‖2L2(Rn)
− Cc0‖b‖W 1−s,∞(�)‖v‖2L2(Rn)

,

for some constant c0 > 0 and C > 0 independent of v. Here we have chosen ε = c0
2 in the

above calculation.
As a consequence, for μ = Cc0‖b‖W 1−s,∞(�) + ‖c‖L∞(�) ≥ 0 we have

Bb,c(v, v) + μ(v, v)L2(Rn) ≥ c0
2

‖v‖2Hs (Rn), for any v ∈ H̃ s(�).

Thus, for μ as above, Bb,c(·, ·) + μ(·, ·)L2(�) is a scalar product on H̃ s(�). Applying the
Riesz representation theorem,we then infer that for all F̃ ∈ (H̃ s(�))∗ there exists v ∈ H̃ s(�)

such that

Bb,c(v, φ) + μ(v, φ)L2(�) = F̃(φ) for all φ ∈ H̃ s(�).

In fact, wemaywrite v = Gμ(F̃), whereGμ is a bounded, linear operator from (H̃ s(�))∗ →
H̃ s(�). By the compact Sobolev embedding of H̃ s(�) ↪→ L2(�) the operator Gμ is a
compact operator, if interpreted as a map from L2(�) to L2(�).

Since the equation

Bb,c(v, ·) − λ(v, ·) = F̃(·) on H̃ s(�) (2.14)

is equivalent to the equation v = Gμ((μ + λ)v + F̃), we may now invoke the spectral
theorem for compact operators to infer that there exists a countable, decreasing sequence
{γ j }∞j=1 ⊂ [0,∞) with γ j → 0 such that if γ /∈ {γ j }∞j=1 the operator G − γ I d is invertible.

In particular, we may rewrite γ j = (λ j + μ)−1 for a countable, increasing sequence with
λ j → ∞. Recalling that (2.14) can be written as a corresponding operator equation, then
concludes the proof of the solvability result for Bb,c(·, ·).

For (b), the proof is similar to (a). As in the previous arguments, one only needs to check
the boundedness of

∣∣∫
�
bv∗ · ∇φ∗dx

∣∣, where v∗ = u∗ − f ∗ ∈ H̃ s(�) and φ∗ ∈ H̃ s(�)

is an arbitrary test function. Here u∗ and f ∗ are the functions which appeared in the Eq.
(2.5). In particular, by using the Kato-Ponce inequality, the interpolation inequality (2.12)
and Young’s inequality again, for any ε > 0, we have
∣∣∣∣

∫

�

bv∗ · ∇φ∗dx
∣∣∣∣ ≤ Cε‖b‖W 1−s,∞(�)‖φ∗‖Hs (Rn)‖v∗‖L2(Rn) + ε‖φ∗‖Hs (Rn)‖v∗‖Hs (Rn),

for some positive constantsCε independent of v∗ and φ∗. The remainder of the proof follows
along the same lines as the proof of (a). This completes the proof of the proposition.
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Remark 2.10 We point out that:

(a) Relying on our assumption (1.5), and combining this with the results of Proposition 2.6
and the Fredholm alternative, then implies the well-posedness of our problem (1.4). In
particular, the Fredholm alternative also yields that (1.5) is equivalent to the following
condition (for example, see [33, Theorem 2.27] or [21, Chapter 5.3])

w∗ ∈Hs(Rn) is a solution of (−�)sw∗−∇ · (bw∗) + cw∗ = 0 in � with w∗ =0 in �e,

then we have w∗ ≡ 0.

(b) The proofs of Lemma 2.4 and Proposition 2.6 relied on the fact that the fractional
Laplacian was the leading order operator of our equations which was ensured by the
condition 1

2 < s < 1. In particular, the above arguments and results do not persist in the
regime 0 < s ≤ 1

2 .

Now, let � ⊂ R
n be a bounded, non-empty open set and 1

2 < s < 1. We consider the
Dirichlet problem (2.2) with a zero source function, i.e.,

((−�)s + b · ∇ + c)u = 0 in �,

u − f ∈ H̃ s(�),
(2.15)

for some f ∈ Hs(�e). Recall that the eigenvalue condition (1.5) in combination with Propo-
sition 2.6 shows that there exists a unique solution u ∈ Hs(Rn) of (2.15). We would like to
point out that the solution u here depends only on f modulo H̃ s(�). In effect, we emphasize
that the solution of the Dirichlet problem (2.15) is only affected by the exterior datum.

Therefore, following [18,20], we introduce the quotient space

X = Hs(Rn)/H̃ s(�).

We will denote the equivalence class of f ∈ Hs(Rn) by [ f ]. We also recall that for � a
bounded, non-empty open Lipschitz set, we have X = Hs(�e) by Remark 2.1. Based on the
well-posedness of (1.4), one can define the DN map rigorously as follows.

Definition 2.11 (DNmap) Let� ⊂ R
n , n ≥ 1, be a bounded Lipschitz domain, let s ∈ ( 12 , 1)

and let b ∈ W 1−s,∞(�)n , c ∈ L∞(�). Let Bb,c(·, ·) be given as (2.3). Then we define the
Dirichlet-to-Neumann operator associated with the Eq. (1.4) as

�b,c : X → X
∗, (�b,c[ f ], [g]) = Bb,c(u f , g),

where f , g ∈ Hs(Rn) and u f is the weak solution to (1.4) with exterior datum f .

We first remark that this is well-defined, since by the definition of a solution to (1.4) we
have Bb,c(u f , g̃) = Bb,c(u f , g̃+ψ) for anyψ ∈ H̃ s(�). Also Bb,c(u f +ϕ, g) = Bb,c(u f , g)
for ϕ ∈ H̃ s(�), since u f +ϕ = u f (by the uniqueness of solutions). Finally, the boundedness
of the DN map �b,c : X → X

∗ follows easily, once we have the multiplier estimate (2.8)
and part (a) of Proposition 2.6.

Remark 2.12 Furthermore, we remark that a formal calculation using Definition 2.11 yields

(�b,c[ f ], [g]) = Bb,c(u f , g)

=
∫

Rn
(−�)s/2u f (−�)s/2gdx +

∫

�

b · ∇u f gdx +
∫

�

cu f gdx

=
∫

�e

g(−�)su f dx, (2.16)
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where u f is the weak solution to (1.4) with exterior datum f . Then from (2.16), one can
formally obtain that

�b,c[ f ] = (−�)su f
∣∣
�e

,

which gives evidence of (1.6). We remark that in order to make this calculation rigorous,
higher regularity assumptions have to be imposed. We refer to Section 3, Lemma 3.1, in [20]
for details on this.

We may also consider the adjoint problem with a zero source term:

(−�)su∗ − ∇ · (bu∗) + cu∗ = 0 in �,

u∗ − f ∈ H̃ s(�),
(2.17)

Then by using the eigenvalue condition (1.5) together with Proposition 2.6, this problem has
a unique solution u∗. With slight abuse of notation, one can analogously define the DN map
�∗

b,c of the adjoint bilinear form (2.4), i.e.,

�∗
b,c : X → X

∗, (�∗
b,c[ f ], [g]) = B∗

b,c(u
∗
f , g).

Here u∗
f ∈ Hs(R)n is a weak solution of (2.17) with exterior data f .

Next, let �′
b,c : X → X

∗ be the adjoint operator with respect to the DN map �b,c, i.e.,
the adjoint DN map �′

b,c is defined via

(�b,c f , g) = ( f ,�′
b,cg), for f , g ∈ Hs(Rn).

Then we further observe the following relation between the DN map associated with (1.4)
and the DN map of the adjoint bilinear form, which states that the adjoint DN map �′

b,c and
the DN map �∗

b,c with respect to the adjoint equation coincide. In order to simplify notation,
here and in the sequel, we drop the brackets [·] for the elements of X.

Lemma 2.13 Let � ⊂ R
n, n ≥ 1, be a bounded, non-empty open Lipschitz set, s ∈ ( 12 , 1),

b ∈ W 1−s,∞(�)n, c ∈ L∞(�) and assume that (1.5) holds. Let Bb,c(·, ·), B∗
b,c(·, ·) and

�b,c,�
∗
b,c be given as above. Then, for all f , g ∈ X

(�b,c f , g) = ( f ,�∗
b,cg). (2.18)

Proof. The claim follows from the independence of the DN map and the adjoint DN map of
the extension of g into � in the duality pairing from Definition 2.11. Let u f be a solution to
(2.2) with exterior data f ∈ X and let u∗

g be a solution of the adjoint equation (2.17) with
exterior data g ∈ X. Then, by (2.11) and the definition of �b,c, �∗

b,c

(�b,c f , g) = Bb,c(u f , u
∗
g) = B∗

b,c(u
∗
g, u f ) = (�∗

b,cg, f ) = ( f ,�∗
b,cg).

With this at hand, we seek to derive a corresponding Alessandrini type identity. It will
play a key role in our uniqueness and stability arguments.

Lemma 2.14 (Alessandrini identity) Let� ⊂ R
n, n ≥ 1, be a bounded Lipschitz domain and

1
2 < s < 1. Let b j ∈ W 1−s,∞(�)n and c j ∈ L∞(�) be such that (1.5) holds for j = 1, 2.
For any f1, f2 ∈ X, we have

(
(�b1,c1 − �b2,c2) f1, f2

)
X∗×X

= ((b1 − b2) · ∇u1, u
∗
2)� + ((c1 − c2)u1, u

∗
2)�, (2.19)

where u1 ∈ Hs(Rn) is the solution to ((−�)s + b1 · ∇ + c1)u1 = 0 in � and u∗
2 ∈ Hs(Rn)

is the solution to (−�)su∗
2 − ∇ · (b2u∗

2) + c2u∗
2 = 0 in � with u1 − f1 ∈ H̃ s(�) and

u2 − f2 ∈ H̃ s(�).
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Proof. By (2.18), one has

((�b1,c1 − �b2,c2) f1, f2) = (�b1,c1 f1, f2) − ( f1,�
∗
b2,c2 f2)

= Bb1,c1(u1, u
∗
2) − B∗

b2,c2(u
∗
2, u1)

= ((b1 − b2) · ∇u1, u
∗
2)� + ((c1 − c2)u1, u

∗
2)�.

Last but not least, we define the Poisson operator associated with the Eq. (1.4):

Definition 2.15 Let � ⊂ R
n , n ≥ 1, be a bounded, non-empty open Lipschitz set. Let

s ∈ ( 12 , 1) and assume that (1.5) holds. Then, the Poisson operator Pb,c associated with (1.4)
is defined as

Pb,c : X → Hs(Rn), f �→ u f , (2.20)

where u f ∈ Hs(Rn) with u f − f ∈ H̃ s(�) denotes the unique solution to (1.4).

3 Approximation property

In this section we discuss the Runge approximation property for solutions to (1.4). To this
end, we first recall the strong uniqueness property for the fractional Laplacian, which was
proved in [20, Theorem 1.2].

Proposition 3.1 (Global weak unique continuation) Let n ≥ 1, s ∈ (0, 1) and u ∈ H−r (Rn)

for some r ∈ R. Assume that for some non-empty open set W ⊂ R
n we have

u = (−�)su = 0 in W .

Then u ≡ 0 in R
n.

By using the above strong uniqueness property and a duality argument, one can derive the
following Runge approximation [(which then immediately entails Theorem 1.2 (a)].

Lemma 3.2 For n ≥ 1 and 1
2 < s < 1, let � ⊂ R

n be a bounded, non-empty open Lipschitz
set, b ∈ W 1−s,∞(�)n and c ∈ L∞(�) and let Pb,c denote the Poisson operator from
Definition 2.15. Further let W ⊂ �e be an arbitrary non-empty open set. Let

D := {
Pb,c f − f : f ∈ C∞

c (W )
}
.

Then we have the following results:

(a) The set D is dense in L2(�).
(b) The set D is dense in H̃ s(�).

Proof. The proofs of (a) and (b) are similar and follow from a duality argument. Hence, we
only need to prove the case (b). First, it is easy to see thatD ⊂ H̃ s(�). By the Hahn-Banach
theorem, it suffices to show that for any F ∈ (H̃ s(�))∗ such that F(v) = 0 for any v ∈ D,
we must have F ≡ 0. Since F(v) = 0 for any v ∈ D, we have

F(Pb,c f − f ) = 0 for f ∈ C∞
c (W ). (3.1)

Next, we claim that

F(Pb,c f − f ) = −Bb,c( f , ϕ), for f ∈ C∞
c (W ), (3.2)
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where ϕ ∈ H̃ s(�) is the unique solution of

(−�)sϕ − ∇ · (bϕ) + cϕ = F in � with ϕ = 0 in �e.

We remark that by Proposition 2.6 and the assumption (1.5) this problem is well-posed. In
its weak form, it becomes

B∗
b,c(ϕ,w) = F(w) for w ∈ H̃ s(�).

We next address the proof of (3.2). Let f ∈ C∞
c (W ) and u f := Pb,c f ∈ Hs(Rn), then

u f − f ∈ H̃ s(�) and

F(Pb,c f − f ) = B∗
b,c(ϕ, u f − f ) = Bb,c(u f − f , ϕ) = −Bb,c( f , ϕ),

where we have utilized (2.11) and the fact that u f is a solution to (1.4) and ϕ ∈ H̃ s(�). By
means of the relations (3.1) and (3.2), we hence conclude that

Bb,c( f , ϕ) = 0 for f ∈ C∞
c (W ).

Since f = 0 in R
n\W and ϕ ∈ H̃ s(�), Bb,c( f , ϕ) = 0 implies that

0 = ((−�)s/2ϕ, (−�)s/2 f )Rn = ((−�)sϕ, f )Rn , for f ∈ C∞
c (W ).

In particular, ϕ ∈ Hs(Rn) satisfies

ϕ = (−�)sϕ = 0 in W .

By invoking Proposition 3.1, this implies ϕ ≡ 0 in R
n and therefore F ≡ 0 as well.

The above lemma proves Theorem 1.2 (a). The proof of Theorem 1.2 (b) is postponed to
the last section of this paper. Without major modifications of the above argument, we also
obtain the Runge approximation for the adjoint equation.

Corollary 3.3 For n ≥ 1 and 1
2 < s < 1, let� ⊂ R

n be a bounded, non-empty open Lipschitz
set, b ∈ W 1−s,∞(�)n and c ∈ L∞(�) and let P∗

b,c denote the Poisson operator for the Eq.
(2.5), i.e. let

P∗
b,c : X → Hs(Rn), f ∗ �→ u∗

f ∗ ,

where u∗
f ∗ ∈ Hs(Rn) is the solution of the adjoint equation

(−�)su∗
f ∗ − ∇ · (bu∗

f ∗) + cu∗
f ∗ = 0 in � with u∗

f ∗ = f ∗ in �e.

Let W ⊂ �e be an arbitrary non-empty open set. Then the setsD∗ :=
{
P∗
b,c f

∗ − f ∗ : f ∗ ∈
C∞
c (W )

}
is dense in L2(�) and H̃ s(�).

4 Global uniqueness

In this section, we prove the global uniqueness result from Theorem 1.1 which follows from
the knowledge of the DN map �b,c and its adjoint.
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Proof of Theorem 1.1 Since �b1,c1 f |W2 = �b2,c2 f |W2 for any f ∈ C∞
c (W1), where W1,W2

are arbitrary, but fixed non-empty open sets in �e, by using the Alessandrini identity (2.19),
we have

∫

�

(
(b1 − b2) · ∇u1u

∗
2 + (c1 − c2)u1u

∗
2

)
dx = 0, (4.1)

whereu1 ∈ Hs(Rn) is the solution to ((−�)s+b1·∇+c1)u1 = 0 in� andu∗
2 ∈ Hs(Rn) is the

solution to (−�)su∗
2 −∇ · (b2u∗

2)+c2u∗
2 = 0 in�with exterior data u1|�e = f1 ∈ C∞

c (W1)

and u∗
2|�e = f ∗

2 ∈ C∞
c (W2). In the sequel, we seek to recover the potential and the drift

coefficients separately.
Step 1: Recovery of the potential c. Let ψ2 ∈ C∞

c (�) be arbitrary. Then choose ψ1 ∈
C∞
c (�) such that ψ1 = 1 on the set supp(ψ2) � �. By the Runge approximation of

(−�)s + b · ∇ + c and its adjoint (see Lemma 3.2 and Corollary 3.3), there exist sequences
of solutions {u1j }∞j=1 and {u2,∗j }∞j=1 in Hs(Rn) such that

((−�)s + b1 · ∇ + c1)u
1
j = (−�)su2,∗j − ∇ · (b2u

2,∗
j ) + c2u

2,∗
j = 0 in �,

supp(u1j ) ⊂ �1 and supp(u
2,∗
j ) ⊂ �2,

u1j |� = ψ1 + r1j and u
2,∗
j |� = ψ2 + r2,∗j ,

(4.2)

where �1,�2 are non-empty open sets in R
n containing �, and r1j , r

2,∗
j → 0 strongly in

H̃ s(�) as j → ∞.
With these solutions at hand, we observe that as r1j , r

2,∗
j ∈ H̃ s(�)

∣∣∣∣∣∣

∫

�

(b1 − b2) · ∇u1j u
2,∗
j dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∫

�

(b1 − b2) · ∇r1j r
2,∗
j dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

�

(b1 − b2) · ∇r1jψ2dx

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

�

(b1 − b2) · ∇ψ1ψ2dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

�

(b1 − b2) · ∇ψ1r
2,∗
j dx

∣∣∣∣∣∣

≤ ‖∇r1j ‖Hs−1(�)‖(b1 − b2)r
2,∗
j ‖H̃1−s (�)

+ ‖∇r1j ‖Hs−1(�)‖(b1 − b2)ψ2‖H̃1−s (�)

+ ‖∇ψ1‖Hs−1(�)‖(b1 − b2)r
2,∗
j ‖H̃1−s (�)

≤ C‖b1 − b2‖W 1−s,∞(�)‖∇r1j ‖Hs−1(�)‖r2,∗j ‖H̃1−s (�)

+ C‖b1 − b2‖W 1−s,∞(�)‖∇r1j ‖Hs−1(�)‖ψ2‖H̃1−s (�)

+ C‖b1 − b2‖W 1−s,∞(�)‖r2,∗j ‖H̃1−s (�)‖∇ψ1‖Hs−1(�)

≤ C‖b1 − b2‖W 1−s,∞(�)

(
‖r1j ‖H̃ s (�)‖r2,∗j ‖H̃ s (�)

+ ‖r1j ‖H̃ s (�)‖ψ2‖H̃1−s (�) + ‖r2,∗j ‖H̃ s (�)‖ψ1‖H̃ s (�)

)

→ 0, as j → ∞.

(4.3)

Here we have used that b1 − b2 ∈ W 1−s,∞(�) is a bounded multiplier from H̃1−s(�)

into itself (which follows from the same argument as in the proof of Proposition 2.6) and
the estimate ‖u‖H̃1−s (�) ≤ C‖u‖H̃ s (�) for s ∈ ( 12 , 1). Further, we made strong use of the
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support assumptions for ψ1 and ψ2, which in particular allow us to drop the third term in the
first estimate in (4.3).

Inserting these solutions {u1j }, {u2,∗j } and the estimate (4.3) into (4.1) and taking j → ∞,
together with the assumptions on ψ1 and ψ2, we derive

∫

�

(c1 − c2)ψ2dx = 0.

Since ψ2 ∈ C∞
c (�) was arbitrary, by density of C∞

c (�) in L2(�) and the previous identity,
we obtain that c1 = c2 in �.

Step 2: Recovery of the drift b. Since we have c1 = c2 in �, (4.1) becomes
∫

�

(b1 − b2) · ∇u1u
∗
2dx = 0. (4.4)

Fix an arbitrary ψ2 ∈ C∞
c (�). Then choose ψxk ∈ C∞

c (�) equal xk on supp(ψ2) � �,
where for k = 1, 2, . . . , n the function xk denotes the restriction to the k-th component of
x . By using the Runge approximation again as in (4.2), we can find sequences of solutions
u1j = ψxk + r1j and u2,∗j = ψ2 + r2,∗j , with r1j , r

2,∗
j → 0 strongly in H̃ s(�) as j → ∞.

Plugging the Runge approximations of the functions ψxk and ψ2 into (4.4), we obtain
∫

�

(b1 − b2)kψ2dx +
∫

�

(b1 − b2) · ∇r1jψ2dx +
∫

�

(b1 − b2) · ∇r1j r
2,∗
j dx

+
∫

�

(b1 − b2) · ∇ψxk r
2,∗
j dx = 0,

for k = 1, 2, . . . , n, where (b1 − b2)k denotes the k-th component of the vector valued
function b1 − b2. By arguing similarly as in (4.3), in the limit j → ∞ we arrive at

∫

�

(b1 − b2)kψ2dx = 0 for k = 1, 2, . . . , n.

Since ψ2 ∈ C∞
c (�) is arbitrary and as C∞

c (�) is dense in L2(�), we also conclude that
(b1 − b2)k = 0 for all k = 1, 2, . . . , n. Therefore, b1 = b2, which completes the proof.

5 Stability

In this section, we study the stability result for the fractional Schrödinger equation with drift.

5.1 Auxiliary results

We begin by proving several auxiliary results, which will be used in deducing a quantitative
Runge approximation result in the next section. To this end, we will mainly be studying the
dual equation to (1.4)

(−�)sw − ∇ · (bw) + cw = v in �,

w = 0 in �e.
(5.1)

Throughout this section, we assume that the drift field b and the potential c satisfy (1.5).
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Lemma 5.1 Let � ⊂ R
n be an open, non-empty bounded Lipschitz domain. Let s ∈ ( 12 , 1),

b ∈ W 1−s,∞(�)n, c ∈ L∞(�), v ∈ H−s(�) and assume that w ∈ Hs
�
is the solution to

(5.1). Then there exists a constant C > 1 independent of v,w such that

C−1‖v‖H−s (�) ≤ ‖w‖Hs
�

≤ C‖v‖H−s (�).

Proof. The upper bound follows from the well-posedness result of Proposition 2.6 and the
assumption (1.5). It hence remains to discuss the lower bound. To this end, we use the triangle
inequality and the equation (5.1), which lead to

‖v‖H−s (�) ≤ ‖(−�)sw‖H−s (�) + ‖∇ · (bw)‖H−s (�) + ‖cw‖H−s (�)

≤ ‖(−�)sw‖H−s (Rn) + ‖∇ · (bw)‖H−s (�) + ‖cw‖H−s (�)

≤ ‖w‖Hs
�

+ ‖∇ · (bw)‖H−s (�) + ‖cw‖H−s (�).

(5.2)

We estimate the terms with the drift and the potential separately. On the one hand, by inte-
gration by parts, we observe that for the drift, we can find a constant C > 0 independent of
b and w such that

‖∇ · (bw)‖H−s (�) = sup
‖φ‖H̃s (�)=1

|(∇ · (bw), φ)�|

≤ sup
‖φ‖H̃s (�)=1

‖bw‖H̃1−s (�)‖∇φ‖Hs−1(�)

≤ C‖w‖H̃1−s (�)‖b‖W 1−s,∞(�) sup
‖φ‖H̃s (�)=1

‖φ‖H̃ s (�)

≤ C‖w‖Hs
�
‖b‖W 1−s,∞(�),

where we used that for s ∈ (1/2, 1) it holds that ‖w‖H̃1−s (�) ≤ C‖w‖H̃ s
�

.

On the other hand, in order to estimate the potential c, we use Hölder’s and Poincaré’s
inequalities to observe

‖cw‖H−s (�) = sup
‖φ‖Hs

�
=1

|(cw,φ)�|

= sup
‖φ‖Hs

�
=1

‖c‖L∞(�)‖w‖L2(�)‖φ‖L2(�) ≤ C‖c‖L∞(�)‖w‖Hs
�
.

Inserting the estimates for the contributions involving b, c into (5.2) then concludes the proof
of Lemma 5.1.

Next, we prove Vishik–Eskin type estimates for the fractional Schrödinger equation with
drift, c.f. [52] and also [23, Section 3].

Lemma 5.2 (Vishik–Eskin) Let δ ∈ (− 1
2 ,

1
2 ). Let � ⊂ R

n be an open, non-empty bounded
Lipschitz domain. Let s ∈ ( 12 , 1), b ∈ W 1−s+δ,∞(�)n, c ∈ L∞(�) satisfy (1.5), v ∈ H−s(�)

and assume that w ∈ Hs
�
is the solution to (5.1). Then there exists a constant C > 1 such

that

‖w‖Hs+δ

�

≤ C‖v‖H−s+δ(�).

The argument for this follows from a perturbation of the original estimates due to Vishik
and Eskin [52].
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Proof. We rewrite the Eq. (5.1) as

(−�)sw = G in �,

w = 0 in �e,

where G = ∇ · (bw) − cw + v. Then the estimates of Vishik and Eskin (see [24, Theorem
3.1]) yield that

‖w‖Hs+δ

�

≤ C‖G‖H−s+δ(�) ≤ C(‖cw‖H−s+δ(�) + ‖∇ · (bw)‖H−s+δ(�) + ‖v‖H−s+δ(�)).

(5.3)

We estimate the drift and the potential contributions separately: for δ ∈ (0,min{2s − 1, 1
2 })

by integration by parts and duality

‖∇ · (bw)‖H−s+δ(�) = sup
‖φ‖H̃s−δ (�)

=1

∣∣(∇ · (bw), φ)L2(�)

∣∣

= sup
‖φ‖H̃s−δ (�)

=1

∣∣(bw,∇φ)L2(�)

∣∣

≤ sup
‖φ‖H̃s−δ (�)

=1
‖bw‖H̃1−s+δ(�)‖∇φ‖Hs−1−δ(�)

≤ sup
‖φ‖H̃s−δ (�)

=1
‖b‖W 1−s+δ,∞(�)‖w‖H̃1−s+δ(�)‖φ‖H̃ s−δ(�)

≤ C‖b‖W 1−s+δ,∞(�)‖w‖Hs
�
.

The potential term is estimated by Hölder’s and Poincaré’s inequalities

‖cw‖H−s+δ(�) = sup
‖φ‖Hs

�
=1

|(cw,φ)�|

= sup
‖φ‖

Hs−δ

�

=1
‖c‖L∞(�)‖w‖L2(�)‖φ‖L2(�)

≤ C‖c‖L∞(�)‖w‖Hs
�
.

Combining these bounds with the estimate ‖w‖Hs
�

≤ C‖v‖H−s (�), which follows from the
well-posedness result of Proposition 2.6 and returning to (5.3) concludes the argument.

5.2 A quantitative approximation result

As a final preparation for the stability proof, in this section we deduce a quantitative Runge
approximation result for fractional Schrödinger equations with drift terms:

Proposition 5.3 For n ≥ 1, let� ⊂ R
n be a bounded, non-empty open set with a C∞-smooth

boundary and s ∈ ( 12 , 1). Let W � �e be non-empty and open such that�∩W = ∅. Further
suppose that δ ∈ (0, 2s−1

2 ) and that b ∈ W 1−s+δ,∞(�)n, c ∈ L∞(�). Then, for each ε > 0
and for each v ∈ Hs

�
there exists fε ∈ Hs

W
such that the following approximation estimates

hold true

‖Pb,c fε − fε − v‖Hs−δ

�

≤ ε‖v‖Hs
�
, ‖ fε‖Hs

W
≤ CeCε−μ(δ)‖v‖Hs−δ

�

.

As in [38] the approximation property follows from a quantitative unique continuation
result:
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Proposition 5.4 For n ≥ 1, let� ⊂ R
n be a bounded, non-empty open set with a C∞-smooth

boundary and s ∈ ( 12 , 1). Let W � �e be non-empty and open such that�∩W = ∅. Further
suppose that δ ∈ (0, 2s−1

2 ) and that b ∈ W 1−s+δ,∞(�)n, c ∈ L∞(�).

Assume that for each v ∈ Hs−δ

�
it holds that

‖v‖Hs−2δ
�

≤ C
∣∣∣∣∣
log

(

C
‖v‖

Hs−δ

�‖(−�)sw‖H−s (�)

)∣∣∣∣∣

σ(δ)
‖v‖Hs−δ

�

, (5.4)

where w ∈ Hs
�
is the solution of (5.1). Then, for each ε > 0 and for each v ∈ Hs

�
there

exists fε ∈ Hs
W

such that the following approximation estimate holds true

‖Pb,c fε − fε − v‖Hs−δ

�

≤ ε‖v‖Hs
�
, ‖ fε‖Hs

W
≤ CeCε−μ(δ)‖v‖Hs−δ

�

.

This statement is the exact analogue of Lemma 8.2 in [38] with the argument for Proposi-
tion 5.4 following verbatim as in the proof of Lemma 8.2 in [38]: Indeed, the only property of
the Eq. (5.1) which is used, is its mapping property. By virtue of the regularity assumptions
on b, c and the well-posedness results of Proposition 2.6, solutions to (5.4) also enjoy exactly
the same regularity and compactness estimates as the ones from [38].

Proof of Proposition 5.4 We consider the operator

A : Hs
W

→ Hs
�

↪→ Hs−δ

�
, f �→ j(Pb,c( f ) − f ),

where j : Hs
�

↪→ Hs−δ

�
is a compact embedding. Thus, A is a compact, injective operator.

Here injectivity follows from the strong uniqueness result of Proposition 3.1. In addition, by (a
slight adaptation of) Lemma3.2, it has a dense range. Thus,wemay apply the spectral theorem
for compact operators and obtain sequences {μ j }∞j=1 ⊂ R+ decreasing, and {w j }∞j=1 ⊂ Hs

W
such that A∗Aw j = μ jw j .

The set {w j }∞j=1 forms an orthonormal basis with respect to the Hs
W
scalar product. By the

density of the range of A, it also follows that the set {ϕ j }∞j=1 :=
{

1
σ j

Aw j

}∞
j=1

with σ j := μ
1
2
j

is an orthonormal basis of Hs−δ

�
. As a consequence,

{
(σ j , w j , ϕ j )

}∞
j=1 ⊂ R+ ×Hs

W
×Hs−δ

�

is the singular value decomposition of A. By the characterization of A∗, the assumption (5.4)
can be rephrased as the estimate

‖v‖Hs−2δ
�

≤ C
∣∣∣∣∣
log

(

C
‖v‖

Hs−δ

�‖A∗v‖Hs
W

)∣∣∣∣∣

σ(δ)
‖v‖Hs−δ

�

. (5.5)

Using this and the singular value decomposition from above, we deduce the approximation
property along the same lines as in [38, Lemma 8.2]: Let v̄ ∈ Hs

�
. For α ∈ (0, 1), let

rα := ∑
σ j≤α(v̄, w j )w j ∈ Hs−δ

�
and Rαv̄ := ∑

σ j>α

σ−1
j (v̄, w j )ϕ j ∈ Hs

W
.

Therefore, on the one hand, we have

‖Rα(v̄)‖Hs
W

≤ C

α
‖v̄‖Hs−δ

�

. (5.6)
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On the other hand,

‖v̄ − ARα(v̄)‖2
Hs−δ

�

=
∑

σ j≤α

|(v̄, w j )Hs−δ

�

|2 ≤ (v̄, rα)Hs−δ

�

= (v̄, rα)Hs−δ(Rn) ≤ ‖v̄‖Hs (Rn)‖rα‖Hs−2δ(Rn) = ‖v̄‖Hs
�
‖rα‖Hs−2δ

�

≤ ‖v̄‖Hs
�

C
∣∣∣∣∣
log

(

C
‖rα‖

Hs−δ

�‖A∗rα‖Hs
W

)∣∣∣∣∣

σ(δ)
‖rα‖Hs−δ

�

≤ ‖v̄‖Hs
�

C
∣∣log

(
C 1

α

)∣∣σ(δ)
‖rα‖Hs−δ

�

.

(5.7)

Optimizing (5.6), (5.7) in α then implies the claim.

As a second main ingredient in the proof of Proposition 5.3, we rely on Theorem 5.1 from
[38]. This is a propagation of smallness estimate from the boundary into the bulk for the
Caffarelli–Silvestre extension of a general function. It does not use the specific equation at
hand. For completeness, we recall the statement:

Proposition 5.5 ([38], Proposition 5.1) For n ≥ 1, let � ⊂ R
n be an open, non-empty

bounded and smooth domain. Let W � �e be open, non-empty bounded and Lipschitz with
� ∩ W = ∅. Suppose that s ∈ (0, 1) and that w̃ is a solution to

∇ · x1−2s
n+1 ∇w̃ = 0 in R

n+1+ ,

w̃ = w on R
n × {0}, (5.8)

where w ∈ Hs(Rn) is a function which vanishes in an open neighbourhood of W. Assume
further that for some constants C1 > 0 and δ > 0 one has the a priori bounds

∥∥∥x1−2s
n+1 ∂n+1w̃

∥∥∥
H−s (W )

≤ η,

∥∥∥∥x
1−2s
2

n+1 w̃

∥∥∥∥
L2(Rn×[0,C1])

+
∥∥∥∥x

1−2s
2

n+1 ∇w̃

∥∥∥∥
L2(Rn+1+ )

+
∥∥∥∥x

1−2s
2 −δ

n+1 ∇w̃

∥∥∥∥
L2(Rn+1+ )

≤ E,

for some constants η, E with E
η

> 1. Then, there exist constants C > 1,μ > 0 which depend
on n, s,C1, δ,�,W such that

∥∥∥∥x
1−2s
2

n+1 w̃

∥∥∥∥
L2(2�×[0,1])

+ ‖x
1−2s
2

n+1 ∇w̃‖L2(2�×[0,1]) ≤ C
E

∣∣∣log
(
C E

‖(−�)sw‖H−s (W )

)∣∣∣
μ .

Here 2� := {x ∈ R
n : dist(x,�) ≤ min{ 12 dist(W ,�), 2}}.

We remark that although Proposition 5.1 in [38] is formulated for the Caffarelli–Silvestre
extension of the solution to the fractional Schrödinger equation which is studied there (in
[38] the situation b = 0 is considered), only the vanishing of w in a neighbourhood of W is
used in the argument which leads to Proposition 5.1. We thus do not present the proof of this
result, but refer the reader to Section 5 in [38]. We will apply it to solutions to (5.1) in the
sequel.

With Propositions 5.4 and 5.5 at hand, we address the proof of the approximation result
of Proposition 5.3:
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Proof of Proposition 5.3 By Proposition 5.4, it suffices to argue that (5.4) holds true.
Step 1: Reduction. As in [38] the estimate (5.4) is derived by interpolation from the

following quantitative unique continuation result

‖v‖H−s (�) ≤ C
∣∣∣log

(
CE

‖(−�)sw‖H−s (W )

)∣∣∣
σ E, (5.9)

where E ≥ ‖v‖L2(�). We recall the argument that (5.9) implies (5.4) (c.f. Step 1 in the proof
of Theorem 1.2 in [38]): For θ ∈ (0, 1) such that 0 ≤ sθ < 1

2 we first interpolate (5.9) with
some E ≥ ‖v‖L2(�). This yields

‖v‖H−θs (�) ≤ Cθ 1
∣∣∣log

(
CE

‖(−�)sw‖H−s (W )

)∣∣∣
σ(δ)

E .

Using that H−θs(�) = H−θs
�

for 0 < θs < 1
2 , we then interpolate once more with the trivial

bound ‖v‖Hs−δ

�

≤ ‖v‖Hs−δ

�

. Choosing E ≥ ‖v‖Hs−δ

�

≥ ‖v‖L2(�) then yields

‖v‖H−s+2δ
�

≤ C
∣∣∣log

(
CE

‖(−�)sw‖H−s (W )

)∣∣∣
σ̃ (δ)

E .

We again emphasize that this reduction does not rely on any properties of the Eq. (5.1) but
only follows from general interpolation arguments.

Step 2: Proof of (5.9). Also in the proof of (5.9) only three ingredients involving the
solution of (5.1) are exploited:

(i) It is used that ‖w‖Hs (Rn) ≤ C‖v‖L2(�),
(ii) that ‖w‖Hs+δ̃ (Rn)

≤ C‖v‖H−s+δ̃ (�)
≤ C‖v‖L2(�) for some δ̃ ∈ (0, 1/2),

(iii) and that ‖v‖H−s (�) ≤ C‖w‖Hs
�
.

Indeed, choosing a constant E > 0 such that ‖v‖L2(�) ≤ E and assuming that (i), (ii) hold,
the properties of the Caffarelli–Silvestre extension yield

(i’)

∥∥∥∥x
1−2s
2

n+1 w̃

∥∥∥∥
L2(Rn×[0,C1])

+ ‖x
1−2s
2

n+1 ∇w̃‖L2(Rn+1+ )
≤ CE ,

(ii’)

∥∥∥∥x
1−2s
2 −δ

n+1 w̃

∥∥∥∥
L2(Rn+1+ )

≤ CE .

Here w̃ denotes the Caffarelli–Silvestre extension of w; for the details of the estimates
we refer to the proof of Theorem 1.3 in [38]. If (i’), (ii’) are available and setting η =
C‖(−�)sw‖H−s (W ) (so that by the properties of the Caffarelli–Silvestre extension [5], also
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s (W ) ≤ η), Theorem 5.1 in [38] is applicable and results in

∥∥∥∥x
1−2s
2

n+1 w̃

∥∥∥∥
L2(2�×[0,1])

+ ‖x
1−2s
2

n+1 ∇w̃‖L2(2�×[0,1]) ≤ C
E

∣∣∣log
(
C E

‖(−�)sw‖H−s (W )

)∣∣∣
μ .

Recalling localized trace estimates (c.f. Lemma 4.4 in [38]) then gives

‖w‖Hs
�

≤ C
E

∣∣∣log
(
C E

‖(−�)sw‖H−s (W )

)∣∣∣
μ .
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Finally, applying (iii), we can further bound ‖w‖Hs
�
from below and obtain

‖v‖H−s (�) ≤ C
E

∣∣∣log
(
C E

‖(−�)sw‖H−s (W )

)∣∣∣
μ .

Since Lemmas 5.1, 5.2 imply the conditions (i), (ii), (iii), this concludes the proof of Propo-
sition 5.3.

5.3 Proof of Theorem 1.3

With the approximation result of Proposition 5.3 at hand, we present the proof of the stability
estimate from Theorem 1.3.

Proof of Theorem 1.3 As in the uniqueness proof we argue in two steps:
Step 1: Stability estimate for c. First, we seek to obtain an estimate on ‖c1 − c2‖H−s (�).

Let ψ1 be a smooth function which is compactly supported in � and which satisfies ψ1 = 1
in supp(c1), supp(c2), supp(b1), supp(b2). Let further g ∈ H̃ s(�) be arbitrary. Using the
quantitative Runge approximation result from Proposition 5.3 and considering approximate
solutions

u1j = ψ1 + r1j , u2,∗j = g + r2j ,

with associated exterior data f 1j , f 2j , we infer from Alessandrini’s identity

((c1 − c2), g)� = ((�b1,c1 − �b2,c2) f
1
j , f 2j )W2 − ((c1 − c2)r

1
j , g)�

− ((c1 − c2)r
1
j , r

2
j )� − ((b1 − b2) · ∇r j

1 , u2,∗j )�.
(5.10)

We estimate the terms involving the drift and the potential as follows

|((b1 − b2) · ∇r1j , u
2,∗
j )�| ≤ ‖∇r1j ‖Hs−1−δ(�)‖(b1 − b2)u

2,∗
j ‖H̃1−s+δ(�)

≤ C‖r1j ‖Hs−δ(�)‖b1 − b2‖W 1−s+δ,∞(�)‖u2,∗j ‖H̃1−s+δ(�)

≤ CM‖r1j ‖Hs−δ(�)‖u2,∗j ‖H̃ s−δ(�),

(5.11)

where we used that s ∈ ( 12 , 1) and chose δ ∈ (0, 2s−1
2 ) sufficiently small, and

|((c1 − c2)r
1
j , ψ1)�| ≤ ‖c1 − c2‖L∞(�)‖r1j ‖L2(�)‖ψ1‖L2(�)

≤ CM‖r1j ‖H̃ s−δ(�)‖ψ1‖L2(�).
(5.12)

Applying the bounds from Proposition 5.3 and combining the bounds from (5.11), (5.12)
with (5.10), we therefore infer

|((c1 − c2), g)�| ≤ C(‖�b1,c1 − �b2,c2‖∗eCε−μ + εM)‖ψ1‖Hs
�
‖g‖Hs

�
.
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Optimizing in ε > 0 by choosing ε = ∣∣log(‖�b1,c2 − �b2,c2‖∗)
∣∣−ν for some ν > 0 then

implies the estimate

‖c1 − c2‖H−s (�) ≤ sup
‖g‖Hs

�
=1

|((c1 − c2), g)�|

≤ sup
‖g‖Hs

�
=1

C
∣∣log(‖�b1,c2 − �b2,c2‖∗)

∣∣−ν ‖ψ1‖Hs
�
‖g‖Hs

�

≤ C
∣∣log(‖�b1,c2 − �b2,c2‖∗)

∣∣−ν ‖ψ1‖Hs
�
.

Since ψ1 is fixed, we arrive at the estimate for ‖c1 − c2‖H−s (�).
Step 2: Stability estimate for b. As a preparation for the stability estimate for b, we next

note that by interpolation, for δ̃ > 0 and some θ ∈ (0, 1), which only depends on n, s, δ̃, we
have

‖c1 − c2‖L n
2s +δ̃

(�)

≤ C‖c1 − c2‖θ
L2(�)

‖c1 − c2‖1−θ
L∞(�)

≤ C‖c1 − c2‖θ
L2(�)

‖c1 − c2‖1−θ

W 1,n+δ(�)

≤ C‖c1 − c2‖
θ
2
H−s (�)

‖c1 − c2‖
θ
2

H̃ s (�)
‖c1 − c2‖1−θ

W 1,n+δ(�)

≤ C
(∣∣log(‖�b1,c2 − �b2,c2‖∗)

∣∣−ν ‖ψ1‖Hs
�

) θ
2 ‖c1 − c2‖

θ
2

H̃ s (�)
‖c1 − c2‖1−θ

W 1,n+δ(�)
.

(5.13)

With this estimate at hand, for k ∈ {1, . . . , n} we again consider approximate solutions

u1j = ψ1xk + r1j , u2,∗j = g + r2j ,

with corresponding exterior data f 1j , f 2,∗j . Here ψ1 is chosen as above, i.e. in particular such

that ψ1 = 1 on the support of the functions b1, b2, c1, c2. The solutions u1j , u
2,∗
j are chosen

such that the estimates of Proposition 5.3 hold.
As before, we exploit Alessandrini’s identity. Now we have to treat the full term involving

((c1 − c2)u1j , u
2,∗
j )� as an error: For all k ∈ {1, . . . , n}

((b1 − b2)k, g)� = ((�b1,c1 − �b2,c2) f
1
j , f 2j )W2

− ((c1 − c2)u
1
j , u

2,∗
j )� − ((b1 − b2) · ∇r j

1 , u j,∗
2 )�. (5.14)

The terms involving the DN map and the drift term on the right hand side are estimated
as in (5.11), (5.12). For the term involving the difference of the potentials, we invoke the
interpolation estimate from above; we estimate it as follows

|((c1 − c2)u
1
j , u

2,∗
j )�|

≤ ‖c1 − c2‖L n
2s +δ̃

(�)
‖u1j‖L2�−δ̃ (�)

‖u2,∗j ‖L2�−δ̃ (�)

≤ C‖c1 − c2‖
θ
2
H−s (�)

‖c1 − c2‖
θ
2

H̃ s (�)
‖c1 − c2‖1−θ

W 1,n+δ(�)
‖u1j‖H̃ s−δ(�)‖u2,∗j ‖H̃ s−δ(�)

≤ C
∣∣log(‖�b1,c1 −�b2,c2‖∗)

∣∣−ν θ
2 ‖c1−c2‖

θ
2

H̃ s (�)
‖c1−c2‖1−θ

W 1,n+δ(�)
‖u1j‖H̃ s−δ(�)‖u2,∗j ‖H̃ s−δ(�).
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Here 2� = 2n
n−2s denotes the corresponding (fractional) Sobolev embedding exponent and

δ̃ > 0 is sufficiently small. Inserting this into (5.14) and using the bounds from Proposition
5.3, we infer

|((b1 − b2)k, g)�|
≤ C(1 + M)

(
‖�b1,c1 − �b2,c2‖∗eCε−μ

+ ∣∣log(‖�b1,c1 − �b2,c2‖∗)
∣∣−ν θ

2 + ε

)
‖ψ1xk‖Hs

�
‖g‖Hs

�
.

for any k ∈ {1, . . . , n}. Optimizing once more in ε and taking the supremum over g ∈ H̃ s(�)

with ‖g‖H̃ s (�) = 1 and over k ∈ {1, . . . , n}, hence also leads to the desired logarithmic
stability estimate for the difference of the drifts. This concludes the proof of the stability
estimate.

6 Reconstruction and finite measurements uniqueness

Last but not least, we present a few results on reconstruction procedures and finite measure-
ment statements for the fractional Calderón problem with drift. More precisely, we show that
uniqueness for the fractional Calderón problemwithC∞

c drift and potential can be guaranteed
from n + 1 measurements only.

6.1 Higher order approximation

Before addressing the finite measurement results, we recall the higher order Runge approxi-
mation property and present the proof of Theorem 1.2 (b). The structure of the proof for the
higher order Runge approximation is similar as the arguments presented in Sect. 3. However,
since we seek to approximate solutions in high regularity function spaces, by using a duality
argument, we need to consider the corresponding Dirichlet problem in Sobolev spaces of
negative orders. The argument for this follows along the same lines as the proofs in [20, Sec-
tion 7], which in the sequel we recall for self-containedness for the fractional Schrödinger
equation with drift.

Let us consider the fractional Laplacian (−�)s with s ∈ ( 12 , 1). Let� ⊂ R
n be a bounded

domain with aC∞-smooth boundary, b ∈ C∞
c (�)n , c ∈ C∞

c (�)with supp(b), supp(c) � �

satisfy (1.5). Here we impose the described compact support as well as the high regularity
conditions for b and c in order to satisfy the assumptions from the theory which is presented
in [24]. In the sequel, we consider the function space

Es(�) := e�d(x)sC∞(�),

where e� denotes extension by zero from � to R
n , and d = d(x) is a C∞ function in � with

d(x) > 0 for x ∈ � and d(x) = dist(x, ∂�) near ∂�.
Further for μ > s − 1

2 we work in the Banach space Hs(μ)(�) which is the space which
is introduced in [24] as the Banach space tailored for solutions u solving the problem

r�((−�)s + b · ∇ + c)u ∈ Hμ−2s(�) with u = 0 in �e,

where r� is the restriction map from R
n to � such that r�u = u|�.
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In order to deduce the desired higher order approximation property, we recall the follow-
ing result from [24], which was also used in [20, Lemma 7.1] for deducing higher order
approximation for the fractional Schrödinger equation.

Proposition 6.1 (Lemma 7.1 in [20]) Forμ > s− 1
2 and a smooth bounded domain� ⊂ R

n,
there exists a Banach space Hs(μ)(�) with the following properties:

(a) Hs(μ)(�) ⊂ H
s− 1

2

�
with a continuous inclusion;

(b) Hs(μ)(�) = Hμ

�
for μ ∈ (s − 1

2 , s + 1
2 );

(c) r�((−�)s + b · ∇ + c) is a homeomorphism from Hs(μ)(�) onto Hμ−2s(�);
(d) Hμ

�
⊂ Hs(μ)(�) ⊂ Hμ

loc(�) with continuous inclusions, or the multiplication by any

smooth cut-off χ ∈ C∞
c (�) is bounded from Hs(μ)(�) to Hμ(�);

(e) Es(�) = ∩μ>s− 1
2
Hs(μ)(�) and the set Es(�) is dense in Hs(μ)(�).

For the proof of this result we refer to [20,23,24]. We remark that equipped with the
topology induced by {‖ · ‖Hs(k)}∞k=1, the space Es(�) is a Fréchet space.

Building on these properties of the spaces Hs(μ)(�), following the argument of [20], we
prove a higher order approximation property for solutions to (1.4) in Es(�). The following
result was proved by [20, Lemma 7.2 ] for the case b = 0.

Lemma 6.2 Let � ⊂ R
n be a bounded domain with a C∞-smooth boundary, and 1

2 <

s < 1. Let W ⊂ �e be a non-empty, open set, and let b ∈ C∞
c (�)n, c ∈ C∞

c (�) with
supp(b), supp(c) � � be such that (1.5) holds. Let Pb,c be the Poisson operator given by
(2.20) and

D := {e�(r�Pb,c f ) : f ∈ C∞
c (W )}.

Then the setD is dense in the Fréchet space Es(�)with the topology induced by {‖·‖Hs(k)}∞k=1.

Proof. We follow the argument of [20, Lemma 7.2]. First, notice that for any f ∈ C∞
c (W ),

by the definition of the Poisson operator (2.20), one has Pb,c f = f + v, where v ∈ H̃ s(�)

satisfies

r�((−�)s + b · ∇ + c)v ∈ C∞(�).

By Proposition 6.1, we have v ∈ Es(�), which implies that D ⊂ Es(�). Next, let L be a
continuous linear functional defined on Es(�) satisfying

L(e�(r�Pb,c f )) = 0, for all f ∈ C∞
c (W ).

By the Hahn-Banach theorem, it suffices to show that L ≡ 0. By using the definition of the
topology of the Fréchet space Es(�), one can find an integer � so that

|L(u)| ≤ C
�∑

m=1

‖u‖Hs(m)(�) ≤ C‖u‖Hs(�)(�), for u ∈ Es(�),

for some constant C > 0 which is independent of u. By virtue of Proposition 6.1 (e), Es(�)

is dense in Hs(�)(�). Thus, L has a unique bounded extension L̃ ∈ (Hs(�)(�))∗.
Let us consider the same homeomorphism in Proposition 6.1 (c),

T = r�((−�)s + b · ∇ + c) : Hs(�)(�) → H �−2s(�).
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The adjoint of T is a bounded map between the dual Banach spaces with

T ∗ : (H �−2s(�))∗ → (Hs(�)(�))∗.

Note that the adjoint map T ∗ is also homeomorphism with the inverse (T −1)∗. Moreover,
by Remark 2.1, we have (H �−2s(�))∗ = H−�+2s

�
such that

T ∗v(w) = (v, T w)H−�+2s
�

×H�−2s (�)
, for v ∈ H−�+2s

�
and w ∈ Hs(�)(�).

Let v ∈ H−�+2s
�

be the unique function satisfying T ∗v = L̃ and choose a sequence

{vk}k∈N ⊂ C∞
c (�) with vk → v in H−�+2s(�) as k → ∞. Now, let f ∈ C∞

c (W ), recalling
that e�(r�Pb,c f ) = Pb,c f − f , then we have

0 = L(e�(r�Pb,c f )) = L̃(Pb,c f − f ) = T ∗v(Pb,c f − f )

= (v, T (Pb,c f − f )) = −(v, T f ) = lim
k→∞(vk, ((−�)s + b · ∇ + c) f )

= − lim
k→∞((−�)svk − ∇ · (bvk) + cvk, f ), (6.1)

where we have utilized that T Pb,c f = 0 and vk ∈ C∞
c (�). Finally, since f ∈ C∞

c (W ) with
W ∩ � = ∅, then the last equation of (6.1) reads

((−�)sv, f ) = lim
k→∞((−�)svk, f ) = 0, for f ∈ C∞

c (W ).

Thus, we obtain that v ∈ H−�+2s(Rn) satisfies

v|W = (−�)sv|W = 0,

and the strong uniqueness (Proposition 3.1) implies that v ≡ 0 in R
n . Therefore, we obtain

L̃ = 0 and hence L = 0, which completes the proof.

Now, we are ready to prove the higher regularity Runge approximation property.

Proof of Theorem 1.2 (b) As � � �1 with int(�1\�) �= ∅, it is possible to find a small
ball W with W ⊂ �1\�. Let g ∈ C∞(�) and h := e�d(x)s g ∈ Es(�), then Lemma 6.2
shows that one can find a sequence of solutions {u j } ⊂ Hs(Rn) satisfying

((−�)s + b · ∇ + c)u j = 0 in � with supp(u j ) ⊂ �1,

so that e�r�u j ∈ Es(�) and

e�r�u j → h in Es(�) as j → ∞.

The higher order approximation will hold if we can show that

M : C∞(�) → Es(�) with Mg = e�d(x)s g

is a homeomorphism, as it is then possible to apply M−1 = d(x)−sr�. This then gives

d(x)−sr�u j → g in C∞(�).

Note that the map M is a bijective linear map between Fréchet spaces and has a closed
graph, i.e., if g j → g in C∞ and Mg j → h in Es , then also Mg j → Mg in L∞. Then
by the uniqueness of the limit, one obtains that Mg = h as distributional limits. Hence, M
is a homeomorphism by the closed graph and the open mapping theorems. This finishes the
proof.
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6.2 Finite measurements reconstruction without openness

In this section, we discuss a first result towards the proof of Theorem 1.4 by using higher
order Runge approximation [Theorem 1.2 (b)]. However, before proving the full result of
Theorem 1.4, we prove a weaker (but technically considerably easier) result, which still
proves finite measurement reconstruction but only asserts that the set of measurement data
contains a non-empty open set (a priori this argument does not prove the density of the set
of good data). The technically more involved statement on the openness and density of the
set of good data will be proved in the subsequent sections.

Proof of Theorem 1.4 without the density result We show that for any drift b ∈ C∞
c (�)n

and any potential c ∈ C∞
c (�) with supp(b), supp(c) � �, there exist exterior Dirichlet data

f1, . . . , fn+1 such that the b and c can be uniquely reconstructed from the knowledge of
f1, . . . , fn+1 and �b,c( f1), . . . , �b,c( fn+1).
By Runge approximation in Ck spaces [see Theorem 1.2 (b)], we have that for any g ∈

C∞(�) there exists a sequence of solutions {u j } j∈N to the fractional Schrödinger equation
(1.4) with drift (and compactly supported coefficients) such that for any k ∈ N

‖g − d−su j‖Ck (�) → 0 as j → ∞,

where d(x) = dist(x, ∂�) if x ∈ � is sufficiently close to the boundary of � and d(x) is
extended to a positive function smoothly into the interior of�. Next, we choose n+1 smooth
functions g1, . . . , gn+1 defined in � with the property that

h(g1, g2, . . . , gn+1)(x) := det

⎛

⎜⎜⎜
⎝

∂1g1 . . . ∂ng1 g1
...

...
...

...

∂1gn . . . ∂ngn gn
∂1gn+1 . . . ∂ngn+1 gn+1

⎞

⎟⎟⎟
⎠

(x) �= 0. (6.2)

An example for this would be the functions g j = x j for j ∈ {1, . . . , n} and gn+1 = 1. We
further set g̃l = d−s(χgl), where χ ∈ C∞

c (�) and χ = 1 on K , for l ∈ {1, . . . , n + 1} and
apply Theorem 1.2 (b). As a consequence, for each l ∈ {1, . . . , n + 1}, and in any compact
subset K � � there exists a sequence of solutions {ulj,K } j∈N such that for any k ∈ N

‖d−s(gl − ulj,K )‖Ck (K ) → 0 as j → ∞.

As K ⊂ � and as d(x) > 0 in K , we then also have

‖gl − ulj,K ‖Ck (K ) → 0 as j → ∞.

Hence, choosing j ≥ j0 large enough and K such that supp(b)∪ supp(c) � K , we obtain
that

h(u1j,K , . . . , un+1
j,K )(x) = det

⎛

⎜⎜⎜⎜⎜
⎝

∂1u1j,K . . . ∂nu1j,K u1j,K
...

...
...

...

∂1unj,K . . . ∂nunj,K unj,K

∂1u
n+1
j,K . . . ∂nu

n+1
j,K un+1

j,K

⎞

⎟⎟⎟⎟⎟
⎠

(x) �= 0. (6.3)
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As a consequence, for these values of ulj,K the (linear) system for b1, . . . , bn and c

⎛

⎜⎜⎜⎜
⎝

∂1u1j,K . . . ∂nu1j,K u1j,K
...

...
...

...

∂1unj,K . . . ∂nunj,K unj,K
∂1u

n+1
j,K . . . ∂nu

n+1
j,K un+1

j,K

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

b1
...

bn
c

⎞

⎟⎟⎟
⎠

= −

⎛

⎜⎜⎜⎜
⎝

(−�)su1j,K
...

(−�)sunj,K

(−�)sun+1
j,K

⎞

⎟⎟⎟⎟
⎠

(6.4)

is solvable (since the (n + 1) × (n + 1) matrix in the left hand side of (6.4) is invertible).
Thus, from the knowledge of ulj,K , l ∈ {1, . . . , n + 1} for some j ≥ j0, it is possible to
uniquely recover the drift and the potential simultaneously.

As by the global (nonlocal) unique continuation arguments in [19] (c.f. also Proposition
3.1 from above) it is possible to recover ulj,K given the measurements f lj,K and �b,c( f lj,K )

we infer the finite measurement recovery statement.
Finally, in order to infer the openness of the set of possible exterior data, we note that for

any ε > 0 there exists δ > 0 such that for any f = ( f 1, . . . , f n+1) ∈ C∞
c (W )n+1 with

‖ f − f j,K ‖Ck
c (W ) < δ, k ∈ N,

we have by boundedness of the mapping Ck
c (W )n+1 � f �→ u ∈ Ck(K )

‖u − u j,K ‖Ck (K ) < ε.

Here f j,K := ( f 1j,K , . . . , f n+1
j,K ) ∈ C∞

c (W )n+1 are the exterior data from above,

u = (u1, . . . , un+1) are the solutions to (1.4) corresponding to the data f and
u j,K := (u1j,K , . . . , un+1

j,K ) are the solutions to (1.4) corresponding to the data f j,K =
( f 1j,K , . . . , f n+1

j,K ). In particular, assuming that

det

⎛

⎜⎜⎜⎜⎜
⎝

∂1u1j,K . . . ∂nu1j,K u1j,K
...

...
...

...

∂1unj,K . . . ∂nunj,K unj,K

∂1u
n+1
j,K . . . ∂nu

n+1
j,K un+1

j,K

⎞

⎟⎟⎟⎟⎟
⎠

≥ c > 0 in K ,

the triangle inequality implies that if ε > 0 (and correspondingly δ) is chosen sufficiently
small, also

det

⎛

⎜⎜⎜
⎝

∂1u1 . . . ∂nu1 u1

...
...

...
...

∂1un . . . ∂nun un

∂1un+1 . . . ∂nun+1 un+1

⎞

⎟⎟⎟
⎠

> 0 in K .

This concludes the argument.

Remark 6.3 We conclude this section by some comments on the assumptions of the theorem:

(a) The compact support condition for the functions b j , c j , j = 1, 2, is assumed here in
order to be able to apply the theory of Grubb [24].

(b) In order to obtain our result we in principle do not need the full strength of the Ck ,
k ∈ N, approximation result from [20]. It would for instance be sufficient to use a C1

approximation result for which only lower regularity on the coefficients is needed. Since
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the theory of Grubb is however formulated in the smooth set-up, we do not optimize the
regularity dependences here.

(c) We again emphasize that although the variant of Theorem 1.4 which is proved in this
section is interesting from a theoretical point of view, a word of caution is needed
as follows: In contrast to the single measurement result from [19], the exterior data
f1, . . . , fn+1 are not arbitrary. In general the specific choice of these data depends on
b1, b2, c1, c2 and hence the explicit choice of the functions f1, . . . , fn+1 is not known
in general. This has a similar background (see the following proof) as many results on
hybrid inverse problems, where it is important that constraints are satisfied, see [1,2].
The result from this section will be improved considerably in the argument leading to
the proof of Theorem 1.4.

(d) In addition to the previous point, there are examples of matrices with entries satisfying
elliptic equations, for which the determinant vanishes on an open set, see [10]. This
indicates that the zero set of the determinant (6.3) can indeed be large.

6.3 Variations and extensions of the reconstruction result

We discuss a slight variation of the reconstruction result from Sect. 6.2 by relaxing the
condition that the fields b, c are compactly supported in�. Recall that aC∞-smooth function
f is vanishing to infinite order at a point x0 provided that ∂α f (x0) = 0 holds for any multi-
index α = (α1, . . . , αn) ∈ (N ∪ {0})n .
Proposition 6.4 Let � ⊂ R

n be a bounded domain with a C∞-smooth boundary. Let W ⊂
�e be a non-empty open, smooth domain containing an open neighbourhood of ∂�. Let
1
2 < s < 1 and assume that b j ∈ C∞(�)n, c j ∈ C∞(�) satisfy (1.5) and

b1 − b2, c1 − c2 vanish to infinite order on ∂�.

Then, there exist n + 1 exterior Dirichlet data f1, . . . , fn+1 ∈ C∞
c (W ) such that if

�b1,c1( fl) = �b2,c2( fl) for l ∈ {1, . . . , n + 1},
then b1 = b2 and c1 = c2 in�. Moreover, for any k ∈ N the set of exterior data f1, . . . , fn+1,
which satisfies this property forms an open subset in Ck

c (W ).

This follows from an auxiliary result, which states that under geometric restrictions on the
set where we measure the Dirichlet data, we may enlarge our domain and that the DN map
on the larger domain is determined by the DN map on the smaller set. This is well-known in
the study of local inverse problems – see e.g. [43, Lemma 4.2].

In what follows, we denote by rX H̃ s(Y ) the set of all restrictions f |X of functions f ∈
H̃ s(Y ) for open X , Y ⊂ R

n .

Lemma 6.5 Assume that � and �′ with � ⊂ �′ are bounded domains with Lipschitz bound-
aries andW1,W2 ⊂ R

n are two non-empty open sets, such that�′\� � W1 (so, in particular,
W1∩�′

e is non-empty). Then let b1, b2 ∈ W 1−s,∞(�′) and c1, c2 ∈ L∞(�′), and 1
2 < s < 1,

and assume c1 = c2 and b1 = b2 in �′\�.
Additionally, assume that the coefficients satisfy the eigenvalue condition (1.5) both on

�′ and on �. Assume the equality of DN maps �b j ,c j with respect to �

�b1,c1 f |W2 = �b2,c2 f |W2 for all f ∈ rW1∩�e H̃
s(W1),
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Then we have the equality of DN maps �′
b j ,c j

with respect to �′:

�′
b1,c1 f |W2 = �′

b2,c2 f |W2 for all f ∈ rW1∩�′
e
H̃ s(W1).

Proof. Assume u′
1 ∈ Hs(Rn) solves the Dirichlet problem for f ∈ H̃ s(W1 ∩ �′

e)

((−�)s + b1 · ∇ + c1)u
′
1 = 0 in �′,

u′
1|�′

e
= f |�′

e
.

Then solve the analogous Dirichlet problem with respect to the smaller domain �:

((−�)s + b2 · ∇ + c2)u2 = 0 in �,

u2|�e = u′
1|�e .

By using the computation from Remark 2.12 for φ ∈ C∞
c (�e ∩ W2) (we need the support

condition here) and the hypothesis of equality of the DN maps, we get:

�b1,c1 f |W2∩�e = �b2,c2 f |W2∩�e ,

�⇒ B1(u
′
1, φ) = B2(u2, φ),

�⇒
∫

Rn
φ(−�)su′

1dx =
∫

Rn
φ(−�)su2dx,

�⇒ (−�)su′
1 ≡ (−�)su2 on W2 ∩ �e.

Here, for convenience, we have used the abbreviation Bj (·, ·) = Bbj ,c j (·, ·) for j ∈ {1, 2}.
Furthermore, note that here we also use that u′

1|�e ∈ r�e∩W1 H̃
s(W1), since �′\� � W1.

Therefore, we have the following relations:

(−�)s(u′
1 − u2) = 0 on W2 ∩ �e and u′

1 − u2 = 0 on W2 ∩ �e. (6.5)

By the strong uniqueness Proposition from 3.1, we conclude u′
1 ≡ u2 on the whole of R

n .
Nowwe proceed to compare the DNmaps on the domain�′. We have the following chain

of equalities for w ∈ C∞
c (W2 ∪ �) and u′

1, u2 as above:

B ′
2(u2, w) =

∫

Rn
(−�)

s
2 u2 · (−�)

s
2 wdx +

∫

�′
b2 · ∇u2wdx +

∫

�′
c2u2wdx

= B2(u2, w) +
∫

�′\�
b2 · ∇u2wdx +

∫

�′\�
c2u2w

= B1(u
′
1, w) +

∫

�′\�
b1 · ∇u′

1wdx +
∫

�′\�
c1u

′
1w

= B ′
1(u

′
1, w).

Here we split the integrals over � and �′\�, used the notation B ′
1, B

′
2 for the bilinear form

associated to the equation on �′, the definition of the DN map (see Definition 2.11), the fact
that u2 = u′

1, and b1 = b2 and c1 = c2 on �′\�.
We conclude that u2 solves (−�)su2 + b2 · ∇u2 + c2u2 = 0 in �′, with u2|�′

e
= f |�′

e
.

Also, we conclude that for all w as above

(�′
b2,c2 f , w) = B ′

2(u2, w) = B ′
1(u

′
1, w) = (�′

b1,c1 f , w).

Here we use �′ notation for the DN map on �′. The main claim follows by observing that
we may pick arbitrary w ∈ C∞

c (W2). Note that we need to assume that the operators satisfy
condition (1.5) on the bigger set �′ to assume well-definedness of the DN maps.
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Sketch of the argument for Proposition 6.4 The proof of Proposition 6.4 is similar to
Section 6.2, so we only sketch the arguments here. With the auxiliary result of Lemma 6.5
at hand, we deduce the claim of Proposition 6.4 by extending � to �′ suitably such that the
geometric conditions on the domains are satisfied. As our operator is not self-adjoint, in the
extended domain �′ we might possibly work with Cauchy data, as we could catch a finite
number of Dirichlet eigenvalues (c.f. Remark 6.6 below on how to avoid this in some cases).
However, using arguments as in [41], it is possible to deduce analogous results.

Remark 6.6 (Domain monotonicity) We remark that when the drift term b = 0, then it is
possible to avoid dealing with Cauchy data by using perturbation of domain arguments.
Indeed, for the fractional Laplacian (and self-adjoint fractional Schrödinger operators), it is
possible to characterize the Dirichlet spectrum through min-max formulations [17] (see also
[11] for similar settings for the classical Laplacian). Relying on the weak unique continuation
property, it is possible to show the monotonicity of eigenvalues

λk(�1) > λk(�2) for �1 � �2 and k ∈ N,

where λk is the k-th Dirichlet eigenvalue of the fractional Laplacian. Thus, perturbing the
domain suitably and only considering a finite number of eigenvalues in the case of self-adjoint
fractional Schrödinger operators, onemight workwith the DNmap instead of having to resort
to Cauchy data.

6.4 Proof of Theorem 1.4 and generic properties of determinants via singularity
theory

In this section, we prove the full result of Theorem 1.4, i.e. we show that the set of exterior
data from which we can choose n + 1 measurements in order to recover the coefficients on a
compact set K as in previous sections is open and dense. This significantly improves the result
from Sect. 6.2 in that the data still depend on the unknown potentials b, c, but in a precise
sense they form a large set, i.e. given (random) exterior data, we know that an arbitrarily
small perturbation of them will render them admissible in our reconstruction scheme.

The main idea of our argument is to relax the condition that for admissible exterior data
f1, . . . , fn+1 ∈ C∞

c (W ) we require

h(Pb,c( f1), . . . , Pb,c( fn+1)) �= 0 in K ⊂ �,

where h was the function from (6.2). Instead, we consider data f1, . . . , fn+1 ∈ C∞
c (W ) such

that h(Pb,c( f1), . . . , Pb,c( fn+1)) is only allowed to vanish to a finite (dimension-dependent)
order. Then, by known results from [3, Lemma 3], it follows that the set

{
x ∈ K ; h(Pb,c( f1), . . . , Pb,c( fn+1))(x) = 0

}

is of measure zero in K � �.1 As a consequence, due to the continuity of b, c, it is then
possible to reconstruct both coefficients (see Lemma 6.8). Simultaneously, the set of exterior
data f1, . . . , fn+1 ∈ C∞

c (W ) for which h(Pb,c( f1), . . . , Pb,c( fn+1)) vanishes only of finite
(dimension-dependent) order immediately by definition is open in C∞

c (W )n+1. The density
of such data will be obtained via small perturbations, relying on ideas of Whitney’s work
[53], which had been developed in the context of singularity theory. Technically, this is the
most involved part of our arguments.

Let us introduce the set of our admissible exterior conditions.

1 More specifically, it is countably-C∞-rectifiable, i.e. covered by a countable union of hypersurfaces.
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Definition 6.7 Let b, c satisfy the conditions in Theorem 1.4. Let n ∈ N and k(n) =⌈√
n + 1

⌉
∈ N (i.e. k(n) is the smallest positive integer greater or equal to

√
n + 1). Let

� ⊂ R
n be as in Theorem 1.4 and K � � be a compact set as in Sect. 6.2. Then, we define

the set F ⊂ C∞
c (W )n+1 to be the set of exterior data, such that ( f1, . . . , fn+1) ∈ F , if

h(Pb,c f1, . . . , Pb,c fn+1) has at most order of vanishing k(n) − 2 at each point of K � �.

We claim that the set F yields the desired set of exterior data for the proof of Theorem
1.4. To this end, we first show that given exterior data ( f1, . . . , fn+1) ∈ F , it is possible to
recover b and c:

Lemma 6.8 Assume that the conditions of Theorem 1.4 hold. Let ( f1, . . . , fn+1) ∈ F . Then
it is possible reconstruct b, c from the exterior measurements of fl and �b,c( fl), for l ∈
{1, . . . , n + 1}.
Proof. We first recall that the zero set of a smooth function not vanishing to infinite order
is contained in a countable union of codimension one submanifolds (see e.g. [3, Lemma
3]). In particular, by definition of the set F , we thus infer that h(Pb,c( f1), . . . , Pb,c( fn+1))

vanishes only on a set of Lebesgue measure zero. Let us denote this measure zero set by
B ⊂ K . Therefore, the argument in (6.4) goes through on the set K\B. But b, c satisfy
supp(b) ∪ supp(c) � K and are smooth, so have unique continuous extensions to K , which
can be determined from b|K\B and c|K\B . This concludes the argument for the reconstruction
of b, c from fl and �b,c( fl) for l ∈ {1, . . . , n + 1}.

Hence, it remains to prove the openness and density of the set F ⊂ C∞
0 (W )n+1. While

the openness is a direct consequence of the definition of the set F , the density of the set F
requires careful arguments. This will be the content of the remaining subsections.

6.4.1 Generic properties of determinants via singularity theory

In order to deduce the density of the set F , we seek to argue by perturbation: The main idea
is that for an m-tuple of functions f = ( f1, . . . , fm) on R

n , and some differential relation
P(x, D)( f )(x) = 0 on R

n , we may generate a parametric family fα , in such a way that on
a compact set, near any α0 there is an α arbitrarily close, such that P(x, D)( fα) �= 0 on K .
Here α ∈ R

N for some (large) N ∈ N and fα is given by adding a polynomial of degree r
(related to N ) to each of the entries fi of f , with coefficients given by reading off indices of
α in a suitable order.

A famous example, due to Morse, of this fact is just a C2 function f : R
n → R. Then by

looking at fα(x) = f (x) + 〈α, x〉, where 〈·, ·〉 is the inner product and α ∈ R
n , by Sard’s

theorem the set of α for which fα has a degenerate critical point is of measure zero. These
ideas were generalised by Whitney [53] and others in the area of singularity theory to study
generic maps R

n → R
m .

In our case, the idea is that by adding generic polynomials of degree k(n) ∈ N with small
coefficients to Pb,c f1, . . . , Pb,c fn+1, we may obtain perturbations such that the determinant
function h from (6.2) only vanishes of order at most k(n) − 2. Here k(n) ∈ N is the constant
from Definition 6.7. Since the perturbation is just by polynomials of order k(n), i.e. by a
linear combination of one of

N0 =
k(n)∑

j=0

(
n + j − 1

j

)
=

(
n + k(n)

k(n)

)
(6.6)
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linearly independent polynomials of the form 1, xi , xi x j , ..., by Runge approximation we
may approximate these by Pb,c( fi,m) for i ∈ {1, . . . , N0} arbitrarily close, for some suitable
exterior data

{
fi,m

}
’s. By adding a linear combination of fi,m with coefficients α to the

exterior data, one can obtain an arbitrary close measurement for which the zero set of h is
“good”, i.e. is just given by a stratification of smooth hypersurfaces (see Propositions 6.10
and 6.14 below). In the sequel, we present the details of this argument.

6.4.2 Preliminaries

We need to import some (old) technology from [53, Parts A and B], which allows us to
modify functions in a favorable way by simply applying dimension-counting arguments. We
consider a mapping f = ( f1, . . . , fm) : R

n → R
m . We consider derivatives of order up to

r ∈ N of f and a map f̄ : R
n → R

N given by arranging the partial derivatives of f in some
fixed order. Then there is a “bad” set S ⊂ R

N that we would like to avoid. In general, the
space S is stratified, i.e. there is a splitting S = ∪i≤μSi , where Si are smooth manifolds of
dimension dim Si for i ∈ {1, . . . , μ}. More precisely, we say S is a manifold collection of
defect δ, if ∪i≤ j Si is closed for all j ∈ {1, . . . , μ} and codim Si ≤ δ for all i .

We alter f by adding to it a polynomial of degree ≤ r whose coefficients form a set α of
very small numbers. If fα is the resultingmappingR

n → R
N , wemay prove that for compact

subsets K ⊂ R
n and T ⊂ S there exists α arbitrarily small such that fα(K ) ∩ T = ∅. If we

fix K , by taking f̄ (K ) ⊂ BL ⊂ R
N for some large L , we prove that for any K , there is an

α such that fα(K ) ∩ S = ∅.
Let N ∈ N be the number given as above. Assume that we have a smooth map for

(p, α) ∈ � × R1 ⊂ R
n × R

N

F(p, α) = fα(p) = f ∗
p (α)

into R
N . The family fα is called an N-parameter family of mappings of � into R

N if the
matrix ∇α f ∗

p (α) has full rank for all p ∈ �.
Next, we say a subset Q of a Euclidean space is of finite μ-extent if there is a number A

with the following property. For any integer κ , there are sets Q1, . . . , Qa such that

Q = Q1 ∪ . . . ∪ Qa, diam(Q j ) < 1/2κ (for all j), a ≤ 2μκ A. (6.7)

Lemma 6.9 (Lemma 9a in [53]) Let the fα form an N-parameter family of mappings of
� ⊂ R

n into R
N and let �1 ⊂ � and Q be compact subsets of R

n and of R
N of finite

ω-extent and of finite q-extent, respectively, and suppose ω + q < N. Then for any α0 ∈ R
N

and for any ε > 0 there exists α with |α − α0| < ε such that

fα(�1) ∩ Q = 0.

By [53, Section 10], the family of functions fα given by adding polynomials of order ≤ r
is an N -parameter family of mapping of R

n into R
N . We call δ := N − q the defect of S in

R
N , so the condition in Lemma 6.9 can be restated as simply δ > ω. It can be easily seen

that the conclusion of the above lemma holds if Q is a manifold collection of defect δ > ω.

6.4.3 Density argument

Let F ⊂ C∞
c (W )n+1 be the set, which contains exterior measurements from Definition 6.7.

By Lemma 6.8, wemay reconstruct the drift b and potential c for such exteriormeasurements.
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Notice that F is an open set, since the set of all functions g with finite order of vanishing
at each point is open and the operator Pb,c is continuous in given topologies. In the sequel,
we seek to prove that F is also dense.

We first illustrate the argument for the case n = 1 in which case it is rather transparent.
We will then present the proof for the general case below.

Proposition 6.10 Assume n = 1. Then F ⊂ C∞
c (W )2 is open and dense.

Proof. Take f = ( f1, f2) ∈ C∞
c (W )2 to be any exterior data and consider gi := Pb,c fi ∈

C∞(K ) for i = 1, 2. Write g = (g1, g2). We will construct an approximation of ( f1, f2) in
the topology of C∞

c (W )2 lying in F . In one dimension, we have

h(g1, g2) =
(
g′
1 g1

g′
2 g2

)
= g′

1g2 − g1g
′
2. (6.8)

In other words, h is the Wronskian of g1 and g2. Now, in this case, we have

ḡ(x) = (
g1(x), g2(x), g

′
1(x), g

′
2(x), g

′′
1 (x), g

′′
2 (x)

)

and N = 2N0 = 6 [where N0 was defined in (6.6)]. We consider perturbations of the form

gα(x) = g(x) + (α1 + α′
1x + α′′

1 x
2)e1 + (α2 + α′

2x + α′′
2 x

2)e2 ∈ R
2,

where e1, e2 are the canonical coordinate vectors in R
2.

We compute the defect of the bad set given by h = 0 and ∇h = 0, i.e.

S := {J1 = α′
1α2 − α1α

′
2 = 0} ∩ {J2 = α′′

1α2 − α1α
′′
2 = 0} ⊂ R

6.

We need to show that the defect δ = 6 − q , where q is the extent of S, is bigger that n = 1
to apply Lemma 6.9. To this end, we compute the gradients

∇ J̄1 = (−α′
2, α

′
1, α2,−α1, 0, 0),

∇ J̄2 = (−α′′
2 , α

′′
1 , 0, 0, α2,−α1).

These are clearly linearly independent for α1 �= 0 or α2 �= 0 or det

(
α′
1 α′

2
α′′
1 α′′

2

)
�= 0, so S is

a manifold collection of defect δ = 2. So we apply Lemma 6.9 to obtain arbitrarily small
values of α = (α1, α

′
1, α

′′
1 , α2, α

′
2, α

′′
2 ) such that gα satisfies the property that h(gα) has an

empty critical zero set on K ⊂ �.
Next, by Runge approximation (see Lemma 6.2), there exists f0,m, f1,m, f2,m ∈ C∞

c (W )

with Pb,c fi,m → xi in C∞(K ) for i = 0, 1, 2 and as m → ∞. Therefore, we define

fα,m = f + (α1 f0,m + α′
1 f1,m + α′′

1 f2,m)e1 + (α2 f0,m + α′
2 f1,m + α′′

2 f2,m)e2 ∈ R
2.

Now fix m large enough, so Pb,c fi,m is close to xi , such that the perturbation by elements
fi,m of f makes a 6-parameter family of mappings �′ → R

6, for α ∈ B1(0) ⊂ R
6 in the

unit ball (say), where K ⊂ �′ � �, by compactness. Then we again apply Lemma 6.9
and get that gα,m := Pb,c fα,m → g in C∞(K ) on a sequence of α converging to zero. By
construction fα,m ∈ F , so this finishes the proof.

Remark 6.11 Toprove thedesiredgenericity property,weneed to approximate Pb,c f byeither
polynomials or other nice functions (analytic, generic etc.), by use of a linear approximation
operator Tm f , but such that

Tm Pb,c f = Pb,cTm f and lim
m→∞ Tm f = f .
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This is the reason why the usual approximation operators, such is the Bernstein polynomials
operator, or the general Weierstrass approximation theorem approach are not good for this
purpose. The above approximation argument however proves the existence of such Tm , which
is obtained by adding a finite linear combination of suitable functions with coefficients going
to zero as m → ∞.

Remark 6.12 There is an alternative proof by hand of the above statement for n = 1, not
using the Whitney machinery, but only the genericity of Morse functions.

We seek to extend the previous argument to dimension n = 2 and higher. Unfortunately,
in this context, it does not suffice to consider the critical zero set of h, i.e. the set h = 0 and
∇h = 0. The computations below show that we have to include higher order derivatives of
h to obtain genericity in the sense of the previous proposition.

Let N = (n + 1) × (n+k(n)
k(n)

)
be the number of polynomials of degree ≤ k(n) with which

we perturb (we multiply by n + 1 as this is our number of functions). Then we consider the
map ḡ : R

n → R
N (see previous subsection) of evaluating the derivatives of order ≤ k(n)

at each point. We define the bad set to be S = Sk(n) ⊂ R
N consisting of points given by

the condition that h and its derivatives up to order k(n) − 1 vanish. For a given function
g = (g1, . . . , gn+1), we denote this set by Z0(g) = h−1(0), Z1(g) = Z0 ∩ (∇h)−1(0), and
inductively we define Z j (g) = Z j−1(g) ∩ (∇ j h)−1(0).

Similarly as in one dimension, we then also have the following lemma, which we prove
in the “Appendix”:

Lemma 6.13 (Determinant genericity) The bad set Sk(n) ⊂ R
N is a manifold collection of

defect n + 1. In particular, there are arbitrarily small perturbations gα with α ∈ R
N , such

that Zk(n)−1(gα) = ∅ on an arbitrary compact set.

As a corollary, we deduce the main result.

Proposition 6.14 For any n ∈ N, the set F ⊂ C∞
c (W )n+1 is open and dense.

Proof. The proof is an immediate corollary of Lemma 6.13 and the method of proof of
Proposition 6.10. Indeed, openness again follows from the definition of the set F . In order to
infer the density ofF , we argue along the lines of Proposition 6.10: Let f = ( f1, . . . , fn+1) ∈
C∞
c (W )n+1 be arbitrary but fixed. By Runge approximation (see Theorem 1.2 (b)), for each

β ∈ N
n with |β| ≤ �√n + 1

⌉
there exists fβ,m ∈ C∞

c (W ) such that

Pb,c( fβ,m) → xβ in C∞(K ).

As the set of polynomials up to degree |β| ≤
⌈√

n + 1
⌉
forms a ν-parameter family with

ν = N0 and N0 as in (6.6), for m ≥ m0 sufficiently large, also the set Pb,c( fβ,m) with

|β| ≤
⌈√

n + 1
⌉
forms a N0-parameter family. As a result, Lemma 6.9 can be applied to

Pb,c( fα) := Pb,c( f ) +
n+1∑

j=1

∑

β∈Nn , |β|≤
⌈√

n+1

⌉
αβ j Pb,c( fβ,m)e j ,

where {e1, . . . , en+1} denotes the canonical basis of R
n+1, αβ j ∈ R and xβ := ∏n

�=1 x
β�

� .
Thus, for any ε > 0 there exists αε ∈ R

N0(n+1) with |αε | ≤ ε such that Zk(n)−1(Pb,c( fαε )) =
∅ on K ⊂ �. By construction, we have fαε ∈ F . This concludes the density proof.
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Combining Lemma 6.8 and Propositions 6.10, 6.14 then implies the result of
Theorem 1.4.

Remark 6.15 We remark that Theorem 1.4 together with the results from [19] also yields a
constructive reconstruction algorithm for the fractional Calderón problem with drift.

Remark 6.16 Last but not least, we point out that similar openness and density results can
also be obtained for the Jacobian by arguing along the same lines as in the “Appendix”. More
specifically, genericity results in Lemma 6.13 can be shown to hold with the same critical
index k(n)−1, if instead of the determinant in Eq. (6.2) we consider the Jacobian determinant
of n functions, which might be of independent interest.
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Appendix A. Genericity of determinants

The aim of this appendix is to prove Lemma 6.13. In order to determine the conditions which
are imposed by the sets Zi from above, we first rewrite the condition ∇h = 0 in closed
form. Using that ∂ det(M)

∂Mi j
= Cof(M)i j for a matrix M , where Cof(M) denotes the matrix of

cofactors, we obtain

∂x j h(g1, . . . , gn+1) = ∂h(M)

∂Mkl

∂Mkl

∂x j
= Cof(M)kl

∂Mkl

∂x j
,

where we use summation convention of repeated indices, and

M = M(g1, . . . , gn+1) =

⎛

⎜⎜
⎝

∂g1
∂x1

. . .
∂g1
∂xn

g1
... . . .

...
...

∂gn+1
∂x1

. . .
∂gn+1
∂xn

gn+1

⎞

⎟⎟
⎠

abbreviates the entries of h. Hence, by the column-wise expansion of the determinant the
condition ∂ j h = 0 can be reformulated as

n+1∑

l=1

det(M̃ j
l ) = 0 for j ∈ {1, . . . , n}, (A.1)
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where

M̃ j
l = M

(
g1, . . . , gl−1,

∂gl
∂x j

, gl+1, . . . , gn+1

)
.

Higher order derivatives can be computed analogously (see “Appendix A.2”).
Hence, in the formal variables α ∈ R

N0 the two constraints associated with Z1 turn into
the formal constraints

det(M(α)) = 0, (A.2)

n+1∑

l=1

det(M̃ j
l (α)) = 0 for j = 1, . . . , n, (A.3)

where α ∈ R
N0 denotes the vector of the component mapping and

M(α) =

⎛

⎜⎜⎜
⎝

α1
1 α1

2 . . . α1
n α1

α2
1 α2

2 . . . α2
n α2

...
...

...
...

...

αn+1
1 αn+1

2 . . . αn+1
n αn+1

⎞

⎟⎟⎟
⎠

.

Here we have used the convention that in the arrangement of the derivatives defining α ∈ R
N0

in (6.6) we have set α j to correspond to the function g j , j ∈ {1, . . . , n + 1}, and α
j
k

corresponding to the partial derivatives
∂g j
∂xk

, j ∈ {1, . . . , n + 1}, k ∈ {1, . . . , n}.
As already indicated above, we note that in general the conditions imposed by Z1 do not

suffice to apply Lemma 6.9: Indeed, in order to apply Lemma 6.9 we have to prove that the
bad set is of co-dimension n+1.When n ≥ 4 the set of matrices with co-rank equal to two for
instance is non-negligible (i.e. it has larger co-dimension than n+1; where we recall that the
set ofm1 ×m2 matrices of rank r is a manifold of co-dimension equal to (m1 − r)(m2 − r)).
However, if codim M(α) = 2, then the equations in (A.3) are void, i.e. are automatically
implied by the corank condition (by definition of the cofactor matrix). Thus, in order to arrive
at a stratification of the bad set with a sufficiently large co-dimension, for n ≥ 4 we must
include higher order derivatives of the determinant h; these are encoded in the sets Zi .

The proof of Lemma 6.13 will be an induction on the corank of M(α), which we discuss
in the next three sections.

A.1 Corank one case

We analyse the case when the corank of the matrix M(α) is equal to one and prove a stratifi-
cation into a collection of codimension at least n + 1 submanifolds in that case. We will use
the notation αi to represent the parameter corresponding to the function fi . The derivatives
∂ jk fi correspond to αi

jk = αi
k j etc. Assume corank M(α) = 1.

Step 1. Assume Cof(M)11 �= 0. By the expansion in (A.3) for j = 1 and the Laplace
expansion of the determinant, we get an equation for α1

11. Since this is the unique equation
for α1

11 (the relations (A.3) for j = 2, . . . , n do not contain information on α1
11), it is

automatically linearly independent of any other relation. We denote the gradient of equation
(A.3) for j = 1 by G1. Denote by G j the gradient of equation (A.3) applied to j . We claim
that the gradients G1, . . . ,Gn are linearly independent.

From (A.3) for j = 2, we get an equation for α1
12 (as Cof(M)11 �= 0). The gradient G2

of this equation is linearly independent from G1 since this equation doesn’t contain α1
11.
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Similarly, from (A.3) for j = 3, we get an equation for α1
13 (as Cof(M)11 �= 0). The

gradient G3 of this equation is linearly independent of G1 and G2, since G1 is the only one
containing a non-zero component at the place of α1

11. Then, the component ofG2 correspond-
ing to α1

13 is zero, so we obtain the claimed independence.
Iteratively, we obtain that for any j = 1, . . . , n, we can extract α1

1 j from (A.3) applied to
j , and the so obtained gradient G j is linearly independent from G1, . . . ,G j−1 by a similar
argument as in previous two paragraphs.

It is left to observe that the gradientG of the equation (A.2) is independent ofG1, . . . ,Gn ,
since (A.2) doesn’t contain information about α1

1 j for any j = 1, . . . , n. Therefore, we are
contained in a codimension n + 1 set.

Step 2.AssumeCof(M)11 = 0, but Cof(M)12 �= 0. Similarly as before, by (A.3) for j = 1
and the Laplace expansion of the determinant, we get an equation for α1

12 (as Cof(M)12 �= 0).
Denote the gradient of this equation by G1. Also, denote by G j the gradient of (A.3) for j .
We claim that G1, . . . ,Gn are linearly independent.

From (A.3) for j = 2, we get an equation for α1
22 (as Cof(M)12 �= 0). The gradient G2 of

this equation is linearly independent of G1, since the component of G1 at the place of α1
22 is

equal to zero. Similarly, from (A.3) for j = 3, we get an equation for α1
23 (as Cof(M)12 �= 0).

The gradient G3 of this equation is linearly independent of G1 and G2. This is because G1

and G3 do not contain information about α1
22; then because the equation corresponding to

G1 contains no information about α1
32.

Iterating (as before) we obtain linearly independent gradients G1, . . . ,Gn . It is left to
observe that the gradient G of equation (A.2) is independent of G1, . . . ,Gn , since (A.2)
does not contain information about α1

2, j for any j = 1, . . . , n, by looking at the entry α1
2.

Therefore, we are contained in a codimension n + 1 set.
Step 3. We assume Cof(M)i j = 0 for i = 1, . . . , n + 1 and j = 1, . . . , n (otherwise

the arguments are reduced to previous two steps). Then without loss of generality (w.l.o.g.),
assume Cof(M)1,n+1 �= 0 (we know that Cof(M) has rank equal to 1 by the condition
corank(M) = 1). Then from (A.3), we get n independent relations by looking at the coef-
ficient next to α1

j for j = 1, . . . , n, i.e. the gradients G1, . . . ,Gn of these equations are
linearly independent.

Now we are just left to observe that the components of the gradient G of (A.2) corre-
sponding to α1

i are equal to zero by the cofactor condition. Thus G is linearly independent
of G1, . . . ,Gn , by looking at the coefficient of α1.

A.2 Corank two case

Assume now corank(M) = 2.We need to include the second order derivatives, unless n < 4.
This is because matrices of corank M = 2 have codimension 4, and the equations (A.3) are
automatically satisfied in the co-rank two case. The equations for the second order derivatives
read

n+1∑

k,l=1

det
(
M̃i j

kl (α)
) = 0, for each i, j = 1, . . . , n. (A.4)

Here we write M̃i j
kl (α) for the matrix

M̃i j
kl = M

(
g1, . . . , gk−1,

∂gk
∂xi

, gk+1, . . . , gl−1,
∂gl
∂x j

, gl+1, . . . , gn+1

)
.

123



The Calderón problem for the fractional Schrödinger equation… Page 43 of 46    91 

Here w.l.o.g. we may assume k < l. If k = l, then we get

M̃i j
kk = M

(
g1, . . . , gk−1,

∂2gk
∂xi∂x j

, gk+1, . . . , gn+1

)
.

Since corank M(α) = 2, it is easy to see that det M̃i j
kk(α) = 0 andwe only need to consider

matrices with first order derivatives (even in the higher corank case) in the Eq. (A.4).
Main argument. W.l.o.g., we assume that the matrix M0 is obtained by erasing the first

row and the first column of M(α) has corank equal to one (other cases are dealt with similarly
as in Step 2 above). Consider Eq. (A.4) for i = 1 and j = 2, . . . , n. By the standard cofactor
expansion of the determinant, the coefficient next to α1

11 is equal to

C j =
n+1∑

k=2

det M̃ j
1,k(α). (A.5)

Here the matrix M̃ j
1,k(α) is obtained by erasing the first row, i.e.

M̃ j
1,k = M

(
g2, . . . , gk−1,

∂gk
∂x j

, gk+1, . . . , gn+1

)
.

Case 1. Assume we have C j = 0 for each j = 2, . . . , n. In this case the n equations
in (A.5) together with the condition that det(M0) = 0 are exactly of the form as in the
corank one case, which had been discussed in the previous section. Hence, by the inductive
hypothesis (i.e. by the corank M(α) = 1 case), we have that gradients of C j , together with
the gradient of det M0 span an n-dimensional space.

Now putting the first row and column of M(α) back to M0, by the corank condition on
M(α), we get additionally at least one more independent relation and so this totals to n + 1
independent gradients. This means that the co-dimension of the bad set is at least n + 1.

Case 2. Assume w.l.o.g. C2 �= 0. Similarly to Steps 1 and 2 above, we consider the
gradients of the Eq. (A.4) for a range of indices i = 1, . . . , n and j = 2. Denote these
gradients by G1, . . . ,Gn . We claim that G1, . . . ,Gn are linearly independent. Now the
gradient Gn is non-zero at the component of α1

n1, with the coefficients C2. Note that the
component of α1

n1 in G2, . . . ,Gn−1 is equal to zero. Also, the component of α1
11 is equal to

zero in G2, . . . ,Gn and so Gn is linearly independent of G1, . . . ,Gn−1.
Similarly, for each k = 1, . . . , n, the component of α1

k1 in Gk is equal to C2 and the
gradients G2, . . . ,Gk−1 have the component of α1

k1 equal to zero. But the component of
α1
11 in G2, . . . ,Gk is equal to zero. We therefore inductively conclude that Gk is linearly

independent of G1, . . . ,Gk−1. This proves the claim.
As a consequence, we obtain n linearly independent conditions from the gradients

G1, . . . ,Gn which put constraints on the components α1
j1 with j = 1, . . . , n. Combined

with the condition from det(M(α)) = 0 (which does not involve any component of α with
two indeces) this yields that the bad set is at least of co-dimension n + 1.

A.3 Corank at least three

The argument from the corank two case is now easy to generalise. For the case that corank
of M is equal to k, we need to include k derivatives of det M . The extra equations obtained
are analogous to (A.4) and now we have a similar equation for each k-tuple of integers 1 ≤
i1, i2, . . . , ik ≤ n. Again these extra equations only involve αi

jk (and not α’s corresponding
to higher derivatives), due to the corank condition on M(α).
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The cases 1 and 2 above are then obtained in a similar fashion. The case 1 always uses the
induction hypothesis in the setting of n − 1 variables and k − 1 (first order) derivatives [the
equation for Zk always involves k first order derivatives of g1, . . . , gn+1 of which we always
delete one of the rows with one of the first order derivatives defining quantities analogous
to C j from (A.5)]. Thus, the fact that the bad set is of co-dimension at least one is always
a consequence of the co-dimension estimate which follows from the setting with n − 1
variables and k−1 (first order) derivatives (which was proved in the step before) and yields n
co-dimensions. Adding the co-dimension from the deletion of the additional row thus gives
n + 1 co-dimensions as desired.

The case 2 is the induction step and is carried out in a very similar way as outlined above,
i.e. we use the condition obtained from Zk involving k first order derivatives of g j . Arguing
in this way yields at least n+ 1 independent relations. We can see that, under the assumption
corank M(α) = k, the co-dimension of the bad set should be roughly n + k2, but this is not
important for the main argument, as long as we have co-dimension at least n + 1.

This concludes the argument for the estimate on the co-dimension of the bad set if one
considers Z1, . . . , Zk with

k =
⌈√

n + 1
⌉

− 1,

as for corank M(α) ≥
⌈√

n + 1
⌉
already by the linear dependence relations we obtain the

desired co-dimension n + 1 condition.
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