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Physicists have a talent for
producing equations that

they are quite unable to solve.
— Fabio Finocchi1

1On the notes Density Functional Theory for Beginners, 2011.
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Abstract

This doctoral thesis covers the different aspects of the development of nuclear en-
ergy density functionals (EDFs). The nuclear EDFs are still the only microscopic 
models that can be applied along the whole nuclear chart. Despite their versatile 
applicability to predict various properties of experimentally unknown nuclei, the 
shortcomings of present state-of-the-art EDFs have become apparent. The deficien-
cies of these models must be studied, and this gained knowledge must be used to 
create better novel approaches.

In this thesis an uncertainty analysis of the UNEDF models is carried out. 
Since nuclear EDFs contain a set of parameters that must be fitted to experimental 
data, they carry statistical uncertainty that propagates into theoretical predictions. 
Even though error estimates are important by themselves, the uncertainty analysis 
may also bring additional information as to where the deficiencies of the studied 
model lie. Thereby the uncertainty propagation of the UNEDF models is studied 
in detail in the thesis with emphasis regarding the contributions to the errors given 
by different model parameters.

The optimization processes of nuclear EDFs are discussed by explaining differ-
ent optimization strategies but also by demonstrating the difficulties of the task. 
Since the fitting data often includes properties of both single nuclei and infinite 
nuclear matter (INM), analytical formulas of INM properties are derived from a 
novel interaction, namely from the regularized finite-range pseudopotential.

 



Tiivistelmä

Tämä väitöskirja käsittelee ytimen energiatiheysfunktionaalien kehittämistä eri nä-
kökulmista. Ytimen energiatiheysfunktionaalit ovat yhä ainoita mikroskooppisia 
malleja, joita voidaan soveltaa läpi koko ydinkartan. Vaikka nämä mallit soveltu-
vat monipuolisesti eri kokeellisesti tuntemattomien ytimien ominaisuuksien ennus-
tamiseen, myös viimeisimpien mallien puutteet ovat tulleet ilmi. Käytössä olevien 
mallien puutteita täytyy tutkia, ja kertynyttä ymmärrystä tulee käyttää uusien 
parempien menetelmien luomiseksi.

Tässä väitöskirjassa on toteutettu UNEDF-mallien epävarmuusanalyysi. Koska 
ytimen energiatiheysfunktionaalit sisältävät joukon parametreja, jotka täytyy so-
vittaa kokeelliseen dataan, nämä mallit kantavat tilastollista virhettä, joka puo-
lestaan kantautuu annettuihin ennusteisiin. Vaikka virhearviot ovat tärkeitä jo  
niiden itsensä takia, voi epävarmuusanalyysi tuottaa lisätietoa siitä, missä mallin 
heikkoudet piilevät. Siksi tässä työssä UNEDF-mallien virheiden etenemistä tutki-
taan yksityiskohtaisesti huomioiden virheen kertyminen eri mallien parametreista.

Energiatiheysfunktionaalien optimointiprosesseja käsitellään esittelemällä eri op-
timointistrategioita, mutta myös havainnollistamalla tehtävän haastavuutta. Koska 
parametrien sovittamiseen käytetty data sisältää usein niin yksittäisten ytimien 
kuin äärettömän ydinmaterian (INM) ominaisuuksia, tässä väitöskirjassa on johdet-
tu myös muutamia INM-ominaisuuksia uutta äärellisen kantaman vuorovaikutusta 
käyttäen.
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Chapter 1

Introduction

There is no standard model in nuclear physics. The large variety of nuclear phe-
nomena, the disparity of nuclear systems and the limits of computational resources
have resulted in the absence of such a model [1]. Understanding the atomic nucleus
is still a fundamental research problem, despite the research continued more than
half a century.

Before the discovery of the nucleus itself, there were many epoch-making dis-
coveries that changed the understanding of the atom, the nucleus and the related
mechanisms. Henri Becquerel’s discovery of radioactivity in the end of 19th cen-
tury [2], soon followed by Joseph John Thomson’s discovery of the electron [3],
shed light on the existence of the internal structure of the atom. In the forthcom-
ing years, alpha [4], beta [4] and gamma [5] radiation were discovered. The plum
pudding model supported by Thomson had to give way to Rutherford’s model [6],
after the famous measurements of alpha particles and their scattering out of the
foil [7, 8, 9, 10]. By analyzing the data of scattered alpha particles, Rutherford
found out that there must be a tiny, very dense nucleus inside the atom, instead of
negatively-charged plums in a positive-charged pudding.

The passionate studies of nuclei carried on. Already at that time, in 1911,
Rutherford’s model was correct in many ways but it was still lacking some revo-
lutionary concepts. Nuclear processes were linked to the evolution of stars for the
first time in 1920, when Arthur Stanley Eddington speculated that the fusion of
hydrogen into helium could be the source of the stellar energy [11]. It was known
that matter can convert into energy according to the mass-energy equivalence pro-
posed by Albert Einstein [12], but fusion reactions and matter composition of stars
had not yet been discovered – thus Eddington’s reasoning was quite exceptional.
Around ten years later, in 1932, James Chadwick discovered the neutron [13] while
identifying the unknown particle of radiation studies [14, 15]. During the same
year Dmitri Iwanenko updated Rutherford’s model and suggested that there are no
electrons in nuclei, but protons and Chadwick’s neutrons instead [16].

1
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The modern simple view of the atom and its nucleus was almost ready in the
early 30s. There was only one big open question, namely what makes the nucleus
a bound system. The first major step in solving the puzzle was taken by Hideki
Yukawa in 1935, when he proposed a theory for describing the strong force [17]. He
explained that there must be an attractive force between all nucleons, and this force
is mediated by a virtual particle (later named as a meson). The existence of the
strong force explained how the nucleons can cohere despite the repulsive Coulomb
force.

Not only the structure of the nucleus was studied but the related phenomena as
well. Some properties of nuclei could be approximated surprisingly well via classical
reasoning, for example nuclear binding energy could be described roughly in terms
of the liquid drop model [18]. Even though classical approximations worked in
some specific occasions, nuclei were understood to be quantum mechanical objects.
Nucleons were not wandering around the nucleus randomly, but the structure of
the nucleus could be described through different energy levels, shell structures and
magic numbers, as it was proposed first by E. Gapon and D. Iwanenko [19], and
later by M. Goeppert Mayer and J. H. D. Jensen et al. [20, 21] The different forms
of nuclear decay were studied further [22, 23, 24, 25], and the possibilities of fusion
and fission processes were brought to bear.

The number of theories and models kept increasing. Various models and theo-
ries were created to understand and predict all the versatile phenomena. Separate
classes of models were built on different principles and points of view. In the field
of nuclear structure, the shell model was created to describe nuclei via energy levels
filled by nucleons, starting from the lowest level [26]. Ab initio methods aimed to
provide a more fundamental approach by starting from nucleons and inter-nucleon
forces and solving the corresponding Schrödinger equation without empirical param-
eters [27, 28]. The other extreme of nuclear models were microscopic-macroscopic
(mic-mac) methods which are vastly phenomenological but equipped with great
predictive power [29]. The nuclear density functional theory (DFT) lied somewhere
between mic-mac and ab initio methods, together with the shell model. In DFT,
nuclei were studied through nucleonic densities and self-consistently determined
mean-fields, while the effective interactions were phenomenological and had fitted
parameters [30].

Thus a great number of theories and methods came into being, not to mention
plentiful specific models or parametrizations. There is no nuclear standard model,
even the description of nuclear structure is challenging. The reasons are manifold:

1. There are not enough nucleons in nuclei that they could be treated by us-
ing statistical methods. However, there are far too many nuclei so that the
Schrödinger equation of the system could be solved directly.

2. Ab initio treatment of all nuclei and their excited states is presently infeasible.
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Figure 1.1: The main steps in the development of a model.

Even though the used interaction is usually acquired from an effective theory,
retaining the low-energy symmetries of the quantum chromodynamics, the
nuclear many-body problem is too challenging to solve in ab initio framework
in general due to the computational costs.

3. There is evidence that three nucleon interaction is significant in nuclei. This
naturally increases the complexity of the problem.

4. The variety of all the nuclear phenomena and properties is vast.

Evidently, there is a compulsive need to use models and approximations in nu-
clear physics. In DFT, the unknown component is the effective interaction describ-
ing the force between nucleons. There are three main types of effective interactions:
finite-range, zero-range and relativistic interactions. All the different types include
even dozens of models that differ in the constituting terms. What is more, some
models do have different parametrizations – those differ only in the fitted model pa-
rameters. Different models have been designed for particular applications, or they
were aimed to be improvements of previously formulated ones.

The development of a model is a multi-step process illustrated in Figure 1.1.
All the work starts from the mathematical, analytical formulation of the model.
In this ”pen & paper” step not only the effective interaction is formulated but all
the necessary interaction-dependent equations are derived as well. An example of a
necessary equation is binding energy per nucleon in infinite nuclear matter, which
is often used in optimization.

The second step in the model development is the optimization of the model
parameters. As long as the model parameters cannot be derived from the underlying
theory or any other piece of knowledge, they are most often optimized on a selected
data set. This holds for effective interactions and energy density functionals, even
for machine learning models in general. Depending on the chosen data set, the
formulated optimization problem and the complexity of the model, the optimization
process can be performed in a blink of an eye, or it may turn out to be a task far
from trivial.
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When the model parameters have been successfully optimized, the model must
be tested by applying the obtained model. Naturally, the model should be tested
on data that was not used in the optimization process. The model is used to give
predictions, which are compared to the experimental values. Various statistical
estimates can be computed, such as mean squared error (MSE) and coefficient of
determination (R2). These measures give a rough estimate of the goodness-of-fit.
For instance, if MSE is far too great or the value of R2 implies that the model is
not able to reproduce experimental results, the analytical formulation of the model
and the implementation of the optimization process must be re-examined.

All models are wrong [31]. However, a model can still be useful. To estimate
the usefulness, the uncertainties of the predictions are estimated in the final step
of the model development. Every model having fitted parameters will carry the
uncertainty of the model parameters into the obtained predictions. There are tools
for tracking this uncertainty, and they are more deeply discussed in Chapter 5. As
we will notice later, the uncertainty estimation can give us valuable information as
to where the model uncertainties originate and what are the shortcomings of the
model. It may help us to find missing imporant features and to reformulate the
model – and this way we end up from the last step to the first one.

The steps seen in Figure 1.1 are not high-tech. However, many of them are
relatively new concepts in the field of nuclear structure. During many decades, the
model parameters were tuned by hand, instead of determining the coefficient via
a well defined optimization process. A hand-tuned parameterization may produce
reasonable results, but the information on the prediction power is more or less
lost. This is one of the reasons why there are error bars missing from scientific
papers: Many of the most used models were hand-tuned. It was not feasible to
reproduce the models by optimizing them and as a consequence, statistical errors
will be beyond one’s reach. The other reasons for the lack of uncertainty analysis
were the limited computational resources and faint requirements of the scientific
journals. Most often uncertainty estimates are computationally demanding and
the increased availability of supecomputers has enabled the work. In addition,
as weird as it may sound, the requirements for error bars have not been strict
in scientific journals among this field. The editors of Physical Review A wrote an
article to discuss the importance of uncertainty estimates as recently as in 2011 [32].
Soon several workshops were organized (e.q. Information and Statistics in Nuclear
Experiment and Theory, ISNET), guides were written and the general interest grew
up rapidly [33, 34].

This thesis is a cross-section of the steps in Figure 1.1. The main theoretical
tools, namely the Hartree-Fock-Bogoluybov theory and density functional theory
are described in Chapters 2 and 3 respectively, not forgetting the introduction of the
most used effective interactions. The optimization methods and some obtained re-
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sults are outlined in Chapter 4. The main steps in uncertainty analysis are wrapped
up in Chapter 5 with the uncertainty estimates of the UNEDF models. The con-
clusions and the outlook of this work are provided in Chapter 6.
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Chapter 2

The Hartree-Fock-Bogolyubov
Method

In this chapter the some of the key concepts of Hartree-Fock-Bogolyubov (HFB)
method are introduced: A more detailed introduction can be found e.g. in Ref. [35].
The HFB method is a mean-field method starting from the definition of quasi-
particles and ending up in the set of iteratively solvable equations. Generally in
mean-field theories one facilitates the original complex problem by one or several
approximations. The interacting nucleons are seen as independent particles in an
external potential, namely in a mean-field. In contrast to the simpler Hartree-Fock
(HF) method, the HFB method takes into account pairing correlations that are cru-
cial for most of nuclei and for many nuclear phenomena. The importance of pairing
effects can be seen in the bulk properties such as in binding energies, particularly
in pairing gaps – in those binding energy differences of even-even and odd-A nuclei.

2.1 Bogolyubov transformation
As it was mentioned earlier, the Bogolyubov transformation is introduced in order to
include pairing correlations into the theory. In the Bogolyubov transformation, the
complex system of interacting nucleons is seen as a simple collection of independent
quasiparticles moving in an external field. Thus, instead of trying to describe the
complex motion of a nucleon while the motion is disturbed by all the possible
interactions, it is approximated that the nucleon is more or less like a nucleon with
a different mass and moves without any disturbation in free space. The ”different
mass” is called an effective mass, resulting from the underlying nucleon-nucleon
interaction.

Naturally, the Bogolyubov transformation is the connection between the single-
particle and quasiparticle states. Bogolyubov quasi-particle operators (βμ, β†

μ) are

7



8 CHAPTER 2. THE HARTREE-FOCK-BOGOLYUBOV METHOD

linked to particle operators cμ, c†
μ through the unitary transformation [35]

βμ =
∑

i

U∗
iμci + V ∗

iμc†
i (2.1)

β†
μ =

∑
i

Viμci + Uiμc†
i . (2.2)

In matrix form the equations are written as
(

β
β†

)
=

(
U † V †

V T UT

) (
c
c†

)
. (2.3)

The matrices U and V and their matrix elementes are not known in the beginning,
they must be solved. Since the quasiparticles must obey the same anticommutation
rules as the original particles, the transformation must be unitary and it fulfills the
relationships

U †U + V †V = 1, UU † + V ∗V T = 1, (2.4)
UT V + V T U = 0 and UV † + V ∗UT = 0. (2.5)

The ground state |φ〉 is the state having the lowest energy. In the HFB the-
ory, the ground state of the many-body system is also defined as the quasiparticle
vacuum, that is

βk|φ〉 = 0 for all k = 1, ..., M, (2.6)

where M denotes the size of the configuration space. The quasiparticle state can
be expressed in a compact way by nucleonic densities. The normal and pairing
one-body densities are defined in configuration space as

ρnn′ = 〈φ|c†
n′cn|φ〉 = (V ∗V T )nn′ , (2.7)

κnn′ = 〈φ|cn′cn|φ〉 = (V ∗UT )nn′ , (2.8)

and they can be expressed in coordinate space so that

ρ(x, x′) = 〈φ|c†
x′cx|φ〉 =

∑
n

φV
n (x)φ(V )∗

n (x′), (2.9)

κ(x, x′) = 〈φ|cx′cx|φ〉 =
∑

n

φU
n (x)φ(V )∗

n (x′). (2.10)

However, the definition of the ground state as a vacuum does not provide a tool
for finding it. In the HFB method, the ground state is obtained by minimizing the
total energy

E = 〈ψ|Ĥ|ψ〉 = E[ρ, κ, κ∗], (2.11)
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and as Equation (2.11) implies, the total energy can be expressed as a pure function
of one-body densities. This holds for any expectation value of an operator related
to a HFB state. While minimizing the energy, constraints on proton and neutron
number must be used, since a particle number is not a good quantum number in
the HFB theory. That is why – in practice – one minimizes the Routhian, which is
defined as

Eλ = E − ∑
q=n,p

λq〈ψ|N̂q|ψ〉, (2.12)

where N̂q is the particle number operator and λq are the corresponding Lagrange
multipliers so that

λ = dE

dNq

. (2.13)

The minimization of the Routhian practically means that the energy Eλ is min-
imized while keeping the neutron and proton number fixed, that is applying the
constraints Np = Z and Nn = N . However, the particle number is no longer a good
quantum number of HFB states – this can be avoided by projecting on the particle
number. The minimization leads us to the HFB equations,

H
(

Un

Vn

)
= en

(
Un

Vn

)
where H =

(
h − λ Δ
−Δ∗ −h∗ + λ

)
. (2.14)

The mean field and pairing field matrix elements are the variations of energy with
respect to the one-body densities, formulated as

hij = δE

δρji

= h∗
ji and Δij = δE

δκ∗
ij

= −Δji. (2.15)

If the used Hamiltonian is a general two-body Hamiltonian of a fermionic system,

Ĥ = T̂ + V̂ (2.16)

=
∑
n1n2

Tn1n2c†
n1cn2 + 1

4
∑

n1n2n3n4

Vn1n2n3n4c†
n1c†

n2cn4cn3 , (2.17)

where c and c† are annihilation and creation operators so that c†
α creates a particle in

state |α〉 and cα deletes a particle from state |α〉, and the antisymmetrized two-body
interaction matrix elements are

Vn1n2n3n4 = 〈n1n2|V̂ |n3n4 − n4n3〉 = V̂n1n2n3n4 − V̂n1n2n4n3 , (2.18)

then the matrices h and Δ of Equation (2.15) become

hij = Tij +
∑
kl

Vijklρlk and Δij = 1
2

∑
kl

Vijklκkl. (2.19)
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Figure 2.1: The quasiparticle spectrum of the HFB method. Every quasiparticle
state with the energy ei there is a state with the energy −ei. Bound HFB states
have the energy λ ≤ E ≤ −λ, where the chemical potential λ is negative.

2.2 HFB solutions and constraints

The full quasiparticle HFB spectrum {en} is unbound in both directions, above and
below, as it is illustrated in Figure 2.1. If time-reversal symmetry is assumed, there
is always an opposite eigenvalue −ei for an eigenvalue ei, and only one of these
is needed for getting all the information related to these states. Since only a half
of the states is relevant, one is free to choose which half of the states is used. A
common choice is to pick the states having the positive eigenvalues.

The energies range of bound states is limited by the Lagrangian multiplier λ,
referred to as the chemical potential. The chemical potential λ is negative for a
particle system, and thus the bound HFB states have the energy ei ≤ −λ.

If the HFB calculation is only constrained by proton and neutron particle num-
bers, the obtained solution corresponds to a local or global minimum depending on
the starting point. If there are no other constraints than the particle number, the
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calculation is most often called an unconstrained HFB calculation. It is not usually
guaranteed by a HFB solver that the obtained unconstrained calculation finds the
global minimum. This is because the basic minimization algorithms determine the
minimum by exploring the vicinity of the minimum candidate, they do not compare
multiple solutions. It would be possible to implement a HFB solver that gives the
global minimum as an outcome with a good probability, but the global minimum
is often discovered in the following way.

In order to determine the global minimum, namely the theoretical ground state,
several constrained calculations are performed. In the constrained calculation a
constraint is put on the deformation parameter that describes the shape of the
nucleus, and this constraint is handled with the help of a Lagrangian multiplier in
similar manner as it was done for the particle number constraint. If axial quadrupole
deformation is assumed, the nucleus can be spherical, oblate or prolate, and which
correspond to zero, negative and positive values of the deformation parameter β,
respectively. When compared to the spherical deformation, a prolate nucleus is
elongated at the poles (an American football), and the oblate one is flattened at
the poles (a pancake). After performing multiple constrained calculations, it can
be seen how the energy varies as a function of nuclear deformation in general and
the stablest deformation between an oblate and prolate deformation can be spotted
(Figure 2.2). This plot visualizing binding energy as a function of deformation
is often called the deformation energy surface. It provides additional support for
the choice of starting point of the HFB calculation, and next the unconstrained
calculation can be confidently performed to determine the exact theoretical ground
state.

Figure 2.2 demonstrates two different deformation energy surfaces as well. The
binding energy of 148Dy has only one minimum and it corresponds to the spherical
shape. In this case the initial deformation βi of the unconstrained HFB calculation
can be anything in the interval [−0.5, 0.5], and the ground state will be determined.
The better the initial guess is, the faster the final solution is found. However, the
deformation energy surface of 172Dy requires quite a good starting point for the
unconstrained HFB calculation, since there are two local minima.

2.3 Solving the HFB equations in practice
In practice, the HFB method is an iterative method. Like any iterative method,
the HFB equations require an initial guess and termination criteria. The initial
guess is needed to generate a sequence of improving approximate solutions, and the
termination criteria dictate when the iterative process stops: On one hand, they
define when the solution is eligible, and on the other hand, they fix the maximum
number of iterations that will be used in the quest for the solution. If the solution
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Figure 2.2: Binding energies of 148Dy and 172Dy nuclei as a function of a deformation
parameter β. There can be one or multiple local minima in the binding energy
corresponding to different deformations. Calculations performed using UNEDF0.

satisfies the convergence criteria, the HFB calculation is converged.
The iterative process of the HFB method is illustrated in Figure 2.3. The process

gets started by an initial guess for the mean-field h and the pairing field Δ. In the
following, the matrices U and V defining the Bogolyubov transformation are solved
(Equation (2.14)), and when U and V are known, the normal density ρ and the
pairing density κ can determined via Equations (2.7) and (2.8). Finally the energy
of the system is solved, since it can be expressed as a function of densities.

Before running the HFB method, one has defined the convergence criteria. In
addition to the maximum number of the HFB iterations, various different criteria
are used to determine if the solution candidate is satisfactory. One of the simplest
options is to check if the difference in energy is small enough between two latest
iterations. Alternatively, one may require that the solution is converged if the
matrix elements of h and Δ change less than a given constant when continuing
from one iteration to the following. In principle, these two convergence criteria
are equivalent when approaching the variational minimum. In practice, however,
monitoring convergence of all matrix elements leads to a more stringent condition
when some finite convergence criteria is used. Despite the implementation of the
criteria, one checks if the convergence criteria were fulfilled, and if they were, one
obtained a nonconverged or converged solution. Otherwise the next HFB iteration
is started and one may solve the fields h and Δ by applying the one-body densities
ρ and κ of the previous iteration.

There are various HFB solvers available, and they differ in the assumptions on
the solutions and the practical implementation of the method. There are two main
classes of implementations: Implementations on a basis of orthogonal functions and
implementations in a coordinate space mesh. If the basis functions are used, the
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Start

Finish

Figure 2.3: The iterative process of the HFB method. The iterations start from the
initial guesses for the fields h and Δ, and the equations are solved iteratively till
the maximum number of iterations is reached or the solution meets the convergence
criteria.

typical choice is the harmonic oscillator basis. Even though this approach is effi-
cient, the harmonic oscillator wave functions may hide the correct fine aspects of
the system, such as some asymptotic behaviors. The implementations in a mesh are
free from those challenges, but they involve a set of integro-differential equations
that are computationally heavy to solve. As a consequence, coordinate space im-
plementations are mainly applied for the simple zero-range forces, since the integro-
differential equations become a set of simpler differential equations. The zero-range
and finite-range interactions are discussed more in detail in Chapter 3.

All the used HFB solvers have not been published, and that makes it challenging
to wrap up what kind of implementations already exist. The program HFBRAD
solves the HFB equations in the coordinate space representation and assumes the
nucleus to obey spherical symmetry [36]. The latest version of HFBTHO allows
to use finite-range interaction in addition to the zero-range force in deformed har-
monic oscillator basis [37]. Similarly, the code HFODD uses the Cartesian deformed
harmonic oscillator basis [38] and in the latest version both a zero-range and a
finite-range interaction have been implemented in the code. Nowadays there is an
interface between HFBTHO and HFODD, which allows to constrain HFODD cal-
culations on multiple moments, for instance. The template code HFBTEMP aims
to be a modular HFB program allowing the usage of various interactions and bases
(axial, cartesian, 3D) [39].
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Chapter 3

Density Functional Theory

Density Functional Theory (DFT) is a computational modelling method, that al-
lows us to predict properties of a many-nucleon or many-electron system by using
functionals. A functional is a function of one or several other functions – in nuclear
DFT, those other functions are nucleonic densities.

DFT was originally created for studying many-electron systems. In 1964 Walter
Kohn and Pierre Hohenberg published two theorems that were restricted to non-
degenerate ground states without an interacting magnetic field. The theorems, later
named as Hohenberg-Kohn (H-K) theorems, state that [40]

I The ground state properties of a many-electron system are uniquely deter-
mined by an electron density

II There exists an energy functional for the system and the ground state electron
density gives the minimum energy.

Despite the limitations of the original H-K theorems (a nearly constant and slowly
varying electron density was assumed, and an external potential was needed), the
work of Hohenberg and Kohn gave a start for the long-lasting development of DFT.
H-K theorems implied that there is a way to transform the original, highly complex,
problem of N electrons with 3N spatial coordinates to a simper problem of one
function and three spatial coordinates. The paper proved that the total energy of
the system can be written as a functional and, indeed, that the functional exists,
but despite the great importance of the paper, it did not give any tools to build the
functional.

The H-K theorems were studied further by Walter Kohn himself together with Lu
Jeu Sham [41]. They created a framework (later denominated Kohn-Sham DFT,
KS-DFT) in which the interacting electrons in a static external potential were
transformed into noninteracting particles in an effective potential. The effective
potential was a concept piecing together the original external potential and the

15
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effects of mutual interaction, namely the effects of the Coulomb interaction. As an
outcome, the problem was computationally less demanding, since the wavefunctions
of noninteracting fermions could be written as single Slater determinants. Already
in the mid-60s, Kohn and Sham noticed that the approximations lead to equations
analogous to the Hartree-Fock equations [41].

The DFT formalism was created to study many electron systems, but it was
found to be a relevant tool to describe nuclear structure analogously. However,
the many-nucleon and the many-electron systems have some significant differences.
First of all, electrons of an atom move in an external potential created by a nucleus.
The nuclei in an atomic nucleus do not sense external potential but form a self-
bound system, instead. Additionally, a two-body interaction is complicated enough
to describe the many-electron systems, but three-body interactions are relevant for
nuclei and even the four-body interactions may be noticeable [42].

3.1 Densities

One-body densities ρ and κ defined in Equations (2.7) and (2.8) are the building
blocks of the nuclear DFT. In addition to these two fundamental variables, some of
their derivatives are needed as well.

Normal densities are scalars and spin densities are vectors, in addition they can
be isoscalar or isovector. The scalar-isoscalar density ρ0, the scalar-isovector density
ρ1, the vector-isoscalar density s0 and the vector-isovector density s1 are expressed
as

ρ0 = ρn↑ + ρn↓ + ρp↑ + ρp↓ = ρn + ρp (3.1)
ρ1 = ρn↑ + ρn↓ − ρp↑ − ρp↓ = ρn − ρp (3.2)

s0 = ρn↑ − ρn↓ + ρp↑ − ρp↓ = sn + sp (3.3)
s1 = ρn↑ − ρn↓ − ρp↑ + ρp↓ = sn − sp (3.4)

Since the three Pauli matrices and the unit matrix form a complete basis, we
can expand the density matrix ρ(
x, 
x′),

ρ(
rστ, 
r′σ′τ ′) = 1
4 [ρ0(
r, 
r′)δσσ′δττ ′ + s0(
r, 
r′)
σδττ ′ + ρ1δσσ′
τ + s1(
r, 
r′)
σ
τ ] (3.5)

where we assume pure proton and neutron states. We can express these four densi-
ties and some of their derivatives as a function of the full density matrix. The local
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forms can be written as

ρ0(
r) = ρ0(
r, 
r) =
∑
στ

ρ(
rστ, 
rστ), (3.6)

ρ1(
r) = ρ1(
r, 
r) =
∑
στ

ρ(
rστ, 
rστ)τ, (3.7)


s0(
r) = 
s0(
r, 
r) =
∑
σσ′τ

ρ(
rστ, 
rσ′τ)
σσ′σ, (3.8)


s1(
r) = 
s1(
r, 
r) =
∑
σσ′τ

ρ(
rστ, 
rσ′τ)
σσ′στ, (3.9)


jT (
r) = i

2(∇′ − ∇)ρT (
r, 
r′)
∣∣∣∣
�r−�r′

, (3.10)

J(
r) = i

2(∇ − ∇′) ⊗ 
sT (
r, 
r′)
∣∣∣∣
�r=�r′

(3.11)

τT (
r) = ∇ · ∇′ρT (
r, 
r′)|�r=�r′ (3.12)

TT (
r) = ∇ · ∇′
sT (
r, 
r′)|�r=�r′ (3.13)

that are called the density, spin density, spin-current tensor, kinetic density and
kinetic spin density in the literature [30].

3.2 Gogny interaction
One of the first attemps to find a finite-range phenomenological two-body nucleon-
nucleon interaction was made by D. M. Brink and E. Boecker in 1967 [43]. They
implemented an interaction that was a sum of two Gaussian potentials and used the
novel interaction in Hartree-Fock calculations, but the obtained theoretical binding
energies were not compatible with the experimental results. The work was continued
by J. Dechargé and D. Gogny, who proposed two additional terms to the interaction,
one describing spin-orbit interaction and one having a density dependence [44], and
the interaction got the form

VGogny(
r1, 
r2) =
2∑

j=1
e

|�r1−�r2|2
μ2

j (Wj + BjP̂
σ − HjP̂

τ − MjP̂
σP̂ τ )

+ t3(1 + x0P̂
σ)δ(
r1 − 
r2)ρα

(

r1 + 
r2

2

)

+ iWso(
σ1 + 
σ2) · 
k† × δ(
r1 − 
r2)
k, (3.14)

where P̂ σ = 1
2(1 + 
σ1 · 
σ2) is the spin-exchange operator and P̂ τ = 1

2(1 + 
τ1 · 
τ2)
is the corresponding isospin-exchange operator. The relative momentum operator
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is defined as 
k = − i
2

(

∇1 − 
∇2

)
, and it is acting on the right, while the adjoint

operator 
k† is acting on the left.
The interaction of Equation (3.14) is known as the Gogny force. The first term

having the Gaussians and the exchange operators is more or less the original force
proposed by Brink and Boecker. Two Gaussian functions create the finite-range
effect with the ranges μj. The exchange terms P̂ σ, P̂ τ and P̂ σP̂ τ are needed to
ensure nuclear saturation, the measured fact that the binding energies of nuclei
are proportional to the number of nucleons A, apart from the few lightest nuclei,
and consequently the average binding energy per nucleon is pretty much constant
in nuclei. If the exchange operators do not exist in the interaction, the repulsion
originating from the simpler interaction is not strong enough to compete against the
attraction. When the exchange terms P̂ σ, P̂ τ and P̂ σP̂ τ are included, they increase
repulsion and the saturation is possible. [1]

The second term is density dependent, and the density dependence has been
proven to be an essential ingredient to reproduce a reasonable value for the effective
mass [45]. However, the density dependent term has its own shortcomings: It is
conceptually dangerous, since it is not derived from an underlying Hamiltonian, and
in addition, it introduces problems in particle number restoration and in restoration
of broken symmetries in general, which will be discussed later [46, 47, 48].

The last term of the Gogny interaction is the spin-orbit term. The spin-orbit
interaction splits the states having the same orbital angular momentum quantum
number l into two separate states with total angular momenta j = l ± 1/2. The
nuclear spin-orbit interaction is different from the well-understood electromagnetic
spin-orbit interaction seen at the atomic level, and phenomenological models must
be used. The spin-orbit interaction is relatively weaker in the atomic fine structure:
In this case the impact of the spin-orbit interaction is of the order of meV’s whereas
the energy differences in level structures are eV’s. The nuclear spin-orbit splitting
is more significant, since it is of the same energy scale as the differences of single-
particle energies [26]. The spin-orbit term is a zero-range term for the sake of
computational simplicity.

Altogether the general Gogny interaction has 14 parameters to be fixed, namely
μj, Wj, Bj, Hj, Mj, t3, x0, α and Wso with the indeces j = {1, 2}. The original
parametrization D1 by J. Dechargé and D. Gogny is shown in Table 3.2. [44]

3.3 Skyrme interaction
One of two main classes of non-relativistic interactions used in nuclear DFT is
the Skyrme interaction. The Skyrme interaction is a zero-range force but mim-
ics finite-range effects by applying relative momentum operators, which makes the
calculations faster than the actual finite-range calculations. T. H. R. Skyrme pro-
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j μj [fm] Wj [MeV] Bj [MeV] Hj [MeV] Mj [MeV]
1 0.7 -402.4 -100.0 -496.2 -23.56
2 1.2 -21.30 -11.77 37.27 -68.81

α x0 t3 [MeV fm4] Wso [MeV fm5]
1/3 1 1350 115

Table 3.1: An example of the parameters of Gogny interaction, namely the D1
parametrization by J. Dechargé and D. Gogny [44].

posed an effective zero-range force in the 50s in which he combined a two-body and
a three-body force [49]. The interaction was formulated as

V̂ =
∑
i<j

V̂ (i, j) +
∑

i<j<k

V̂ (i, j, k), (3.15)

where the two-body force was an expansion in the momentum space,

V̂ (1, 2) = t0(1 + x0P̂
σ)δ(
r1 − 
r2)

+1
2t1

(

k†2δ(
r1 − 
r2) + δ(
r1 − 
r2)
k2

)
+ t2
k

† · δ(
r1 − 
r2)
k
+ iWso(
σ1 + 
σ2) · 
k† × δ(
r1 − 
r2)
k, (3.16)

where the relative momentum is defined as 
k = 1
2i

(∇1 − ∇2). The three-body
interaction was assumed to be the simplest possible, namely a zero-range interaction
formulated as

V̂ (1, 2, 3) =t3δ(
r1 − 
r2)δ(
r2 − 
r3). (3.17)

The first term, t0-term, is a pure zero-range force together with a spin-exchange.
The finite-range effects are simulated by the t1- and t2-terms, and the Wso-term is
the spin-orbit interaction.

The original Skyrme force included six parameters to be adjusted, namely t0,
t1, t2, t3, x0 and Wso. Different parametrizations are obtained when the parameters
are fitted to different data. One example of those parametrizations is SIII whose
parameters are gathered in Table 3.3 [50].

After the 70s the two-body Skyrme interaction has been tuned. The spin-
exchange operator has been incorporated in each term, which increases the flex-
ibility of the model but the number of the free parameters as well. Most of the
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t0 [MeV fm3] t1 [MeV fm5] t2 [MeV fm5] t3 [MeV fm6] x0 Wso [MeV fm5]
-1128.75 395.0 -95.0 14000.0 0.45 120

Table 3.2: Parameters of the Skyrme force SIII by M. Beiner et al. [50]

Skyrme models can be more or less formulated as [1]

VSkyrme(
r1, 
r2) = t0(1 + x0P̂
σ)δ(
r1 − 
r2)

+1
2t1(1 + x1P̂

σ)
(

k†2δ(
r1 − 
r2) + δ(
r1 − 
r2)
k2

)
+t2(1 + x2P̂

σ)
k† · δ(
r1 − 
r2)
k

+1
6t3(1 + x3P̂

σ)δ(
r1 − 
r2)ρα

(

r1 + 
r2

2

)

+ iWso(
σ1 + 
σ2) · 
k† × δ(
r1 − 
r2)
k, (3.18)

where the new parameters x1, x2 and x3 correspond to the spin-exchange terms.
The t3-term is the additional density dependent term, which has a connection

to the three-body force. When α = 1, the density-dependent term is equivalent
to the zero-range three-body force of Equation (3.17) in a time-even functional
1. The zero-range three-body interaction was used in SI, SII [51] and SIII [50],
but the next generation of Skyrme forces have generalized the exponent α, since
the exponent α = 1 results in too large an incompressibility of the infinite nuclear
matter (K∞) [52]. The density-dependent term with a fractional power was found to
be essential to produce effective masses and properties of infinite nuclear matter [52].
Various other generalizations have been implemented and tested (See Ref. [30], but
this simple generalization of α has been the most efficient.

Despite the vast usefulness of the density-dependent term, it has its own short-
comings as well. As it was mentioned earlier, the term is conceptually dangerous,
since it does not correspond to any underlying Hamiltonian when a fractional α
is used. The density-dependent term has been discovered to lead to unconvergent
calculations and anomalies illustrated in Figure 3.1 [53]. M. Bender et al. demon-
strated in Ref. [53] that when a density-dependent functional is used (e.g. SLy4)
in particle-number-restored multi-reference calculations, localized divergences are
spotted in the deformation energy surface of 18O when a single-particle level crosses
the Fermi energy. When the calculation is performed with a more moderate com-
monly used precision, the anomalies are not visible. They can be spotted when the
precision is increased well beyond the one used in practical calculations.

The Skyrme interaction is often used as a generator for energy density functional
(EDF). Originally the Skyrme EDF was derived as an expectation value from the

1Time-even functional is a functional made of time-even densities.
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effective Hamiltonian, but many of the recent models do not consider the Hamil-
tonian as the starting point any longer. The work is begun by defining a suitable
EDF that models the system. Density dependencies are applied, different effective
interactions are used to describe the particle-hole and pairing parts, and some com-
putationally expensive (exchange) terms are omitted, approximated or modified.
The arguments in favor of these actions are diverse ranging from phenomenological
reasons to savings in computational costs. However, the price for the sloppiness
will be paid in the end: In addition to the aforementioned anomalies, the EDFs
result in non-physical phenomena such as self-interaction and self-pairing. Clearly
these phenomena are non-physical, since the nucleons should not gain energy by
interacting with themselves. Self-interaction and self-pairing are not present if the
energy is calculated directly as an expectation value of the Hamiltonian [30, 53, 54].

One series of Skyrme functionals that was created starting from the functional,
not from the Hamiltonian, was the UNEDF models [55, 56, 57] which are discussed
in detail later in Chapter 5. The total energy of the UNEDF models is a sum of
kinetic energy and the energy of two-body Skyrme interaction and the Coulomb
force, namely

E(
r) =
∫

d3
r H(
r)

=
∫

d3
r
[
EKin(
r) + ESkyrme(
r) + ECoul(
r)

]
. (3.19)

The total energy is a function of one-body densities, E(
r) = E[ρ, ρ̃], since the energy
densities E i are functions of the normal and pairing densities. The Skyrme energy
density is divided into particle-hole (χ0(
r), χ1(
r)) and pairing (χ̃(
r)) densities so
that

ESkyrme(
r) = χ0(
r) + χ1(
r) + χ̃(
r), (3.20)

where the densities are modelled as

χt(
r) = Cρρ
t ρ2

t + Cρτ
t ρtτt + CJJ

t

∑
μν

Jμν,tJμν,t + CρΔρ
t ρtΔρt + Cρ∇J

t ρt

∇ · 
Jt (3.21)

χ̃(
r) =
∑

q=n,p

V q
0

2

[
1 − 1

2
ρ0(
r)

ρc

]
ρ̃2(
r). (3.22)

with the index t = {0, 1} denoting isoscalar and isovector densities, respectively.
The zero-range pairing term results in a pairing channel which needs to be regular-
ized in a way or another, and most often this is done by applying a pairing window
. The quasiparticle states up to a certain cut-off energy Ecut are taken into account,
that is, a quasiparticle states within the energy range 0 < ei < Ecut are considered.
The saturation density ρc is fixed to the generally accepted value 0.16 fm−3. The



22 CHAPTER 3. DENSITY FUNCTIONAL THEORY

Coulomb term ECoul is divided into two pieces, of which the direct term is computed
exactly but the exchange term is approximated due to the computational costs:

ECoul= ECoul
Dir + ECoul

Exc , where (3.23)

ECoul
Exc ≈ −3

4e2
( 3

π

)1/3
ρ4/3

p , (3.24)

and the energy coming from the direct Coulomb term is

ECoul
Dir = e2

2

∫
d3
r d3
r′ ρp(
r)ρp(
r′)


r − 
r′ . (3.25)

The parameters Ci
t are real numbers, the only exception being

Cρρ
t = Cρρ

t0 + Cρρ
tDργ

0 (3.26)

that is density-dependent. Thus Skyrme energy density contains 13 parameters
from the particle-hole part and two from pairing, namely

Cρρ
t0 , Cρρ

tD, CρΔρ
t , Cρτ

t , CJ2

t , Cρ∇J
t , γ, V p

0 and V n
0 (3.27)

with t = {0, 1}. When a Skyrme ED is derived directly from the Skyrme interac-
tion, the parameters Ci

t can be related to the original Skyrme parameters ti and
xi [58]. However, neither the (t, x)- nor the C-representation is directly connected
to physical observables. In order to estimate the range of the parameter values,
some of them can be related to the properties of infinite nuclear matter which have
known or approximated range of value [55].

3.4 Finite-range pseudopotential
As we have seen, the most used non-relativistic EDFs cannot avoid the usage of the
”dangerous” density-dependent term. Since this term causes problems in beyond
mean field calculations (Section 3.5), the classic Skyrme and Gogny EDFs had to
be abandoned and novel models were created 2. The formalism for contact and
finite-range pseudopotentials was developed, and the first parametrizations were
published in the last few years [59, 60, 61, 62, 63].

The finite-range pseudopotential involves concepts that are already familiar,
and it can be seen as a generalization of Skyrme and Gogny interactions. The
pseudopotential has all the different spin and isospin exchange terms and the Gaus-
sian finite-range regulator, analogously to the Gogny force. On the other hand,

2The SVT interaction has been applied surprisingly well in multireference calculations. It is a
Skyrme force with the tensor EDF terms [48].
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the pseudopotential is built on different orders of relative momenta 
k. The total
pseudopotential is expressed as

V (
r1, 
r2;
r3, 
r4) =
∑
n,j

V(n)
j (
r1, 
r2;
r3, 
r4) , (3.28)

where the different orders n of the pseudopotential are written as

V(n)
j (
r1, 
r2;
r3, 
r4) =

(
W

(n)
j 1̂σ1̂τ + B

(n)
j 1̂τ P̂ σ − H

(n)
j 1̂σP̂ τ − M

(n)
j P̂ σP̂ τ

)
× Ô

(n)
j

(

k12, 
k34

)
δ(
r13)δ(
r24)ga(
r12).

The exchange operators P̂ σ, P̂ τ and the relative momentum operator 
k are the ones
defined earlier. The relative position is written as 
rij = 
ri −
rj and W

(n)
j , B

(n)
j , H

(n)
j

and M
(n)
j are constants. The finite-range regulator ga(
r) has a Gaussian form,

ga(
r) = 1
(a

√
π)3 e− �r2

a2 (3.29)

with a fixed range a = 1.15 fm in Article III. The orders p denoting the pseu-
dopotential order NpLO are connected to the orders of differential operators of the
corresponding terms. The operators Ô

(n)
j

(

k12, 
k34

)
are scalars that are built out of

relative momenta at the order n = 2p. The index j tallies different scalars of the
order n. At the leading order (LO), when n = 2p = 0, there is only one operator

Ô0
1(
k12, 
k34) = 1̂, (3.30)

which gives the local (momentum independent) pseudopotential

V(0)
1 (
r1, 
r2;
r3, 
r4) =

(
W

(0)
1 1̂σ1̂τ + B

(0)
1 1̂τ P̂ σ − H

(0)
1 1̂σP̂ τ − M

(0)
1 P̂ σP̂ τ

)
×δ(
r13)δ(
r24)ga(
r12). (3.31)

When going higher in the orders of the pseudopotential, there are two operators at
the next-to-leading order (NLO), namely

Ô1
1(
k12, 
k34) = 1

2(
k∗2
12 + 
k2

34) and (3.32)

Ô1
2(
k12, 
k34) = 
k∗

12 · 
k34, (3.33)

which define the corresponding non-local (momentum dependent) pseudopotential
terms V(1)

1 (
r1, 
r2;
r3, 
r4) and V(1)
2 (
r1, 
r2;
r3, 
r4). The complete derivation of the non-

local functional up to N3LO can be found in Ref. [62]. Apart from the lowest order,
the pseudopotential is local only when the operators fulfill the condition

Ô
(n)
j (
k34 + 
k12) = Ô

(n)
j (
k34 − 
k∗

12), (3.34)
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which results in the following relationships between the coefficients of NLO pseu-
dopotential:

W
(1)
2 = −W

(1)
1 , B

(1)
2 = −B

(1)
1 , H

(1)
2 = −H

(1)
1 , and M

(1)
2 = −M

(1)
1 . (3.35)

In order to describe the nucleus, the spin-orbit and the Coulomb terms must be
included as well. However, at the present implementations, that deal only with a
local version of NLO interaction (e.g. Ref. [63], Article III), included the zero-range
term also found in the Skyrme interaction

Vδ(
r1, 
r2;
r3, 
r4) = t0

(
1 + x0P̂

σ
)

δ(
r13)δ(
r24)δ(
r12) (3.36)

as well, with x0 = 1 and t0 = 1000 MeV fm3. It was discovered in the preliminary
studies that without any additional terms, the pairing is too strong at the nuclear
surface and leads to too large pairing energies and average pairing gaps of neutron
rich nuclei. The zero-range term of Equation (3.36) is not density-dependent but
may still be problematic in beyond-mean-field calculations discussed in Section 3.5.
To avoid the troubles, the term may be replaced by a similar term but with a short
finite-range, but no studies have been published so far.

In the present implementations, due to the choice of x0, the term of Equa-
tion (3.36) is active only in the particle-hole channel and counteracts the strong at-
traction from the finite-range term, so that the pairing interaction is strong enough
in the bulk. In the end, there were nine free parameters at local NLO because of
the relationships in Equation (3.35) and the spin-orbit interaction. The more gen-
eral non-local pseudopotential has four additional parameters resulting in 13 free
parameters.

Order n W n
1 Bn

1 Hn
1 Mn

1 Wso

0 41.68 -1405.79 202.88 -2460.68 177.07
2 -79.75 73.11 -681.30 -48.16

Table 3.3: Parameters of the local NLO pseudopotential by K. Bennaceur et al.
rounded to two decimals [63]. The general pseudopotential up to NLO has 13 free
parameters, but the requirement of locality decreases the amount. See Ref. [63] for
the more precise values and the statistical uncertainties.

3.5 Beyond Mean Field
The traditional DFT with a static mean-field allows us to study the bulk proper-
ties of ground states through the whole nuclear chart by handling only one time-
independent mean-field state. The bulk properties are properties such as binding
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energies and proton rms radii. On the contrary, the beyond mean field methods refer
to the methods including more than one mean-field state and symmetry restoration
such as exact particle number restoration and time evolution of states – thus these
methods go ”beyond” the traditional mean field methods. For example, for the
calculation of excitation spectra and transition rates between states, one should use
proper symmetry restored states. Since these states are now a linear combination
of multiple mean-field states, the role of correlations becomes important.

There are justified tools for handling the correlations in DFT, despite the con-
ceptual puzzle: The EDFs are built by assuming that the multi-nucleonic effects are
included in quasiparticles and the corresponding wave functions. Thus it is concep-
tually dangerous to build correlations on top of these particles and wave functions,
since the correlations could be taken into account twice. Fortunately, the procedure
works for the zero and low energy states that are influenced vastly by the nuclear
shell effects. Since the shell effects are sharp in a sense, the EDFs are too smooth
to grasp the effects and the double counting is not a real concern in low energy part
of nuclear spectra, but at high energies it is an issue [30].

There are several concepts beyond the original static mean-field methods: con-
figuration mixing (e.g. generator coordinate method, GCM), symmetry restoration
and time dependent mean-field approaches (e.g. Time-Dependent Hartree-Fock
theory, TDHF) [30]. The GCM was one of the first methods trying to combine
both the single-particle and the collective aspects of nuclear physics. In GCM
multiple configurations are mixed, which means that the superposition of multiple
mean-field states is handled resulting in theoretical excitation spectra and transi-
tion matrix elements. TDHF and TDHFB are generalizations of HF and HFB, so
that the one-body density matrix ρ̂(t) is assumed to be time-dependent, and the
time-evolution is described through the time-dependent Schrödinger equation. The
TDHF and TDHFB methods have a lot of applications, they are used for example
to describe fission and fusion processes. However, the GCM and TDHFB schemes
are beyond the work described in this thesis, but more information can be found
e.g. in Ref. [35].

Symmetry restoration is a real puzzle in theoretical nuclear physics. We desire
to describe the nuclear system by simple wave functions for example by approx-
imating the strongly interacting nucleons as independently moving quasiparticles
whose wave functions could be written as product states. We would also desire to
take into account both the symmetries and the correlations between the nucleons.
However, we are not capable of fulfilling all the requirements: The nucleon-nucleon
interaction should be translationally invariant, but the only translationally invariant
product wave functions are products of plane waves. Unfortunately, it is obvious
that plane waves cannot describe the strong correlations that cause the nucleons to
cluster and to constitute a self-bound nucleus [35]. Thus, in the usual mean-field ap-
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proach, translational symmetry becomes violated and, in principle, should be later
restored. The (deformed) HFB states are not eigenstates of the particle-number
operator or the total angular momentum, so different kinds of projection methods
must be used, such as a variation after projection (VAP), a projection after variation
(PAV) or approximate methods such as the Lipkin-Nogami method [64, 65, 35].

3.6 Bulk properties of nuclei
The choices of fitting observables affect the model parameters, and thus the model
itself. The future applications of the model dictate which properties are more crucial
to be included in the fitting data than the others. When the theoretical formulation
of the model is fixed, one may emphasize some properties by addressing a greater
weight on the related data or adding data points related to the property of interest.

The nuclear EDFs are mostly used for exploring the general properties of atomic
nuclei around the whole nuclear chart. That is why the commonly selected fitting
observables are mainly nuclear bulk properties such as binding energies and proton
rms radii of nuclei from light to heavy ones. The nuclear binding energy Enucl
(simply E later in the text) is extracted from the atomic binding energy Eatom by
removing the binding energy of electrons Eelec,

Enucl(Z, N) = Eatom(Z, N) − Eelec(Z), (3.37)

where the electronic binding energy can be approximated as [55]

Eelec(Z) ≈ −1.433 × 10−5Z2.39 (MeV). (3.38)

In addition to the binding energy, one of the bulk properties of nuclei that can
be experimentally measured is the nuclear charge radius. Nuclear charge radii can
be measured for example via laser spectroscopy. The theoretically accessible proton
rms point radius 〈R2

p〉 is connected to the charge radii via the equation

〈R2
ch〉 = 〈R2

p〉 + 〈r2
p〉 + N

Z
〈r2

n〉, (3.39)

with the proton charge radius 〈r2
p〉 = 0.7691 fm2 and the neutron charge radius

〈r2
n〉 = −0.1161 fm2 [66].

Pairing correlations of EDFs are typically constrained by odd-even staggering
(OES) of binding energy. OES measures how much the binding energy of a nucleus
having odd number of nucleons is lower than that of the two neighboring nuclei.
OES is measured via the empirical pairing gap that is mathematically defined as
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(three point formula)

Δ(3)(N) ≡ πN

2 [E(N − 1) + E(N + 1) − 2E(N)], with (3.40)

πN = (−1)N . (3.41)

In Equation (3.40) the negative binding energy E is a function of the particle number
N .

Even though OES has been understood to originate from nucleonic pairing cor-
relations for a long time, there are several mechanisms that contribute to OES. It
was shown 20 years ago, that OES is also strongly attributed to the deformed mean
field in light nuclei [67]. A similar observation was also made in DFT calculations
on clusters of alkali-metal atoms at that time [68].

3.7 Concept of infinite nuclear matter (INM)

One concept that is often used for estimating the goodness and functionality of
nuclear models is the concept of infinite nuclear matter (INM). INM is a bound-
less homogeneous nuclear medium where only nuclear forces exist. The impact of
Coulomb interaction is usually neglected, and pairing correlations are also usually
excluded.

Infinite nuclear matter can be used as an approximation for the interior of heavy
nuclei, and it has been studied through different nuclear theories. In 2013, the
first up-to-date coupled-cluster (CC) calculations were performed to study infinite
nuclear matter [69], even though INM has been studied via several approximate ab
initio methods already many decades ago [70, 71]. INM has been studied also via
self-consistent Green’s function method [72].

Translationally invariant INM is described with the plane wave wavefunction,

φ�k(
rσq) = (2π)− 3
2 exp(i
k · 
r)χσχq, (3.42)

where the particle type q = {n, p} and the spin and isospin parts of the wave
function are represented as χσ and χq. The Fermi momentum is connected to the
scalar-isoscalar density ρ0 as

ρ0 =
∑
σq

∫
|�k|≤kF

d3
pφ∗
�k
(
rσq)φ�k(
rσq) ≡ 2k3

F

3π2 , (3.43)
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The kinetic density is also derived from the wavefunction as

τqσ =
∫

|�k|≤kF,qσ

d3
k
[

∇φ∗

�k
(
rσq)

]
·

[

∇φ�k(
rσq)

]
(3.44)

=
( 1

2π

)3 ∫ kF

0

∫ π

0

∫ 2π

0
k4 sin(θ) dθ dφ dk (3.45)

= 3
20

2
3π2 k5

F,qσ (3.46)

and it can be expressed with ρ0 as

τ0 = 3
5

2k5
F

3π2 = 3
5

(
3π2

2

)2/3

ρ
5/3
0 . (3.47)

In infinite homogeneous nuclear matter all gradient terms vanish. If the studied
system is assumed to be unpolarized, time-odd spin densities and currents also
vanish. One of the most studied observables of infinite nuclear matter is its equation
of state (EOS). EOS is a quantity that describes the binding energy per nucleon in
infinite nuclear matter. Let us denote EOS as a function W , so that

E

A
= W (ρn, ρp), (3.48)

let us expand it around the saturation density ρc and the zero relative neutron
excess I,

W (ρn, ρp) = W (ρ0, I) = W (ρ0) + S2(ρ0)I2 + O(I4), (3.49)
where the relative neutron excess is defined as

I = ρ1

ρ0
. (3.50)

The leading term of the expansion is written as

W (ρ0) = ENM

A
+ P NM

ρ2
c

(ρ0 − ρc) + KNM

18ρ2
c

(ρ0 − ρc)2, (3.51)

whereas the next-to-leading term is

S2(ρ0) = aNM
sym + 1

3ρc

LNM
sym(ρ0 − ρc) + 1

18ρ2
c

ΔKNM(ρ0 − ρc)2. (3.52)

The different coefficients in Equations (3.51) and (3.52) represent the total energy
per nucleon at equilibrium (ENM/A), the nucleonic pressure (P NM), the nuclear
matter incompressibility (KNM), the symmetry energy coefficient (aNM

sym), the density
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dependence of the symmetry energy (LNM
sym) and the incompressibility correction

term (ΔKNM), which are mathematically defined as

ENM

A
= W (ρc) (3.53)

P NM= ρ2 dW (ρ0)
dρ0

∣∣∣∣∣
ρ0=ρc

(3.54)

KNM= 18P NM

ρ0
+ 9ρ2

0
d2W (ρ0)

dρ2
0

(3.55)

aNM
sym= S2(ρc) = 1

2
d2W (ρ0, I)

dI2

∣∣∣∣∣ρ0=ρc
I=0

(3.56)

LNM
sym= 3ρc

dS2(ρ0)
dρ0

∣∣∣∣∣
ρ0=ρc

(3.57)

ΔKNM= 9ρ2
c

d2S2(ρ0)
d2ρ0

∣∣∣∣∣
ρ0=ρc

, (3.58)

and the saturation density ρc is defined as the point where the nucleonic pressure
equals to zero, namely P NM(ρc) = 0.

Infinite nuclear matter can be divided into several subcategories. Symmetric
infinite nuclear matter (SNM) is infinite nuclear matter with an equal number of
neutrons and protons, and it is also non-polarized with an equal amount of spin up
and spin down particles. Thus, for SNM,

ρ1 = 0, ρn = ρp = 1
2ρ0, τn = τp = 1

2τ0 and I = 0. (3.59)

The assumption of symmetric nuclear matter leads to the following values for the
INM properties, namely [55]

ρc ≈ 0.16 fm−3, P NM = 0,
ENM

A
≈ −16 MeV and KNM ≈ 220 MeV, (3.60)

which were used in the optimization of the UNEDF models.
Asymmetric nuclear matter (ANM) is a form of nuclear matter for which the

neutron and proton densities are assumed to be different, thus I 
= 0, and the
corresponding EOS depends on the neutron excess. The properties S2(ρc), LNM

sym
and ΔKNM are theoretically accessible via ANM, but the experimental values are
significantly sloppier. Experimentally the values of S2(ρc) and LNM

sym are around [55]

S2(ρc) ≈ 30 MeV and LNM
sym ≈ 80 MeV. (3.61)

The last but not least form of infinite nuclear matter is pure neutron matter (PNM).
It is infinite nuclear matter made only from neutrons.
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In practice, EOS is derived from the functional by

E

A
≡ E

ρ0
. (3.62)

EOS from different spin and isospin channels can derived and used in optimization,
see Appendices A-E.
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Figure 3.1: Deformation energy surface for 18O calculated with the zero-range
Skyrme force SLy4. When the calculation is performed by using more gauge points
in the integration (black curve), anomalies become clearly visible. Figure adapted
from the work by M. Bender et al. [53]
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Chapter 4

Optimization

For the present, the parameters of nuclear energy density functionals cannot be
derived from the underlying theories. There has been general interest to create a
connection between ab initio and DFT methods, and the parameters of EDFs have
been tried to link to ab initio calculations [73, 74], but without proper success.

As long as there is no analytical way to derive the parameters, one has to obtain
the parameters by other means. The model parameters can be tuned by hand or
optimized on experimental data of atomic nuclei. Optimization of the parameter
set with respect to a selected set of experimental data is handy, since at the end
of the optimization procedure one has ended up in the minimum of χ2, and may
use the information about the curvature of χ2 to estimate the propagated model
uncertainties. This is explained in more detail in Chapter 5. In the following, the
different aspects of an optimization process are discussed and few example studies
are explained.

4.1 Multi-objective approach

The optimization of an EDF can be seen as a multi-objective optimization prob-
lem. A desired final functional should be able to describe some predefined nuclear
properties and thus the parameters must be fitted to carefully selected data. Most
often the selected data set includes several nuclear bulk properties such as binding
energies, proton rms radii and pairing gaps, which makes the optimization problem
to be a multiobjective optimization problem in which every separate observable
type represents a separate objective. Mathematically the problem is formulated as

min(f1(x), f2(x), ..., fk(x))
s.t. x ∈ X (4.1)

33
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where x represents the parameters to be optimized, fi denotes an objective function
i, and X is the feasible set of solutions. The feasible set is typically defined by
intervals, inequalities and constraining functions if needed. Here, the objective
functions fi(x) correspond to the minimization of the difference between theoretical
and experimental values, i.e.

fi(x) =
Ni∑

j=1

(
Oi,th

j (x) − Oi,exp
j

)2
(4.2)

where i represents an index for the various datatypes, and index j labels different
datapoints of type j. Ni is the number of data points of type i: E.g. there may be
different number of binding energies than proton rms radii in the data set.

In general, there is no feasible solution that minimizes all the objective functions
simultaneously. Instead, the best solutions form a set and and the set is called
Pareto optimal solutions. A Pareto optimal solution is a solution that cannot be
improved with respect to any of the objective functions without degrading another
objective. That is to say, if xP is a Pareto optimal solution, there is no solution x∗

so that

fi(x∗) ≤ fi(xP ) for all objectives fi and
fj(x∗) < fj(xP ) for any objective fj. (4.3)

Pareto optimal solutions are illustrated in Figure 4.1. F1 and F2 represent two
separate objective functions of a bi-objective optimization problem in arbitrary units
(a.u.). The set of feasible solutions is marked in blue. When minimizing F1 and
F2 simultaneously, there are infinite number of Pareto optimal solutions, including
solutions p1 and p2. Solutions p3, p4 and p5 are not Pareto optimal: Solution p1
is better in both of the objectives F1 and F2 when comparing to solution p3. The
same holds for solution p2 when comparing it to solution p4. Solution p2 is better
than solution p5 in F1, therefore p5 not being Pareto optimal.

Finding a representative set of Pareto optimal solutions is not as straightforward
as solving a single-objective optimization problem. It may be computationally de-
manding or even infeasible. If that is the case, one may be forced to transform
the multiobjective problem into a single-objective problem such that the obtained
solution is one of the Pareto optimal solutions of the original problem. One of the
simplest methods to perform the transformation is scalarization. In linear scalar-
ization the objective function is defined as a weighted sum of original objective
functions, so that the transformed optimization problem is written as

min
k∑

i=1
wifi(x)

s.t. x ∈ X, (4.4)



4.1. MULTI-OBJECTIVE APPROACH 35

2 4 6 8 10
F1 [a.u.]

−3

−2

−1

0

1

2

F 2
[a

.u
.] p1

p3

p2

p4

p5

Figure 4.1: Illustration of Pareto optimal solutions in two-objective optimization
problem. The set of feasible solutions is marked in blue, F1 and F2 represent
two objectives to be minimized in arbitrary units. Solutions p1 and p2 are Pareto
optimal, whereas solutions p3, p4 and p5 are not.

where wi > 0 represents a weight of the objective i. If one aims to treate all the ob-
jective functions equally, a weight of an objective function should be approximately
an inverse of the scale of the corresponding objective function. The inverse value
of the scale, in the units of data type i, makes the product wifi(x) dimensionless
and different data types can be summed. Thus, the optimization problem of model
parameters (Equation (4.2)) may be scalarized as

min
k∑

i=1

Ni∑
j=1

wi

(
Oi,th

j (x) − Oi,exp
j

)2

s.t. x ∈ X, (4.5)

or if one treats every squared residual
(
Oi,th

j (x) − Oi,exp
j

)2
as a separate objective,

one may address a separate weight wi,j for every data point of every data type and
then solve the minimization problem

min
k∑

i=1

Ni∑
j=1

wi,j

(
Oi,th

j (x) − Oi,exp
j

)2

s.t. x ∈ X. (4.6)

Sometimes it is justified to assign a different weight for a single data point of a
given type, even though all the other weights of the specific data type are the same.
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For instance, it may be known that a specific data point would be very helpful in
the optimization of model parameters, but the data point is not precisely fixed,
the data point is pseudo-data (e.g. the data is not measured but comes from an
underlying theory) or the experimentally measured data point has an expectionally
large error bar. In this case the data point is used, but with a smaller weight.

4.2 Penalty function approach
One may look at the optimization problem the other way around. The optimiza-
tion problem of model parameters can be seen as a penalty function minimization
problem, so that the starting point is to choose the χ2 function describing the
goodness-of-fit. It is defined as [34, 75]

χ2(x) =
Nd∑
k=1

(
Oth

k (x) − Oexp
k

)2

ΔO2
k

, (4.7)

where x represents the model parameters to be optimized, Oth
k and Oexp

k correspond
to theoretical and experimental values of observables, Nd is the number of all data
points and ΔOk is the adopted errors of data point k. The adopted total errors
accumulate from theoretical, numerical and experimental errors:

ΔO2
k =

(
ΔOth

k

)2
+ (ΔOnum

k )2 + (ΔOexp
k )2 . (4.8)

The total penalty function reflects the distribution of residuals |Oth
k − Oexp

k |.
Statistically, the average penalty function per degree of freedom should equal to
one at the minimum x0, that is

χ2(x0)
Nd − Np

↔ 1, (4.9)

where Np is the number of optimized parameters. The justification for Equa-
tion (4.9) comes from the distribution. Since the χ2 is a random variable, it has
a normalized probability distribution. It can be shown, that for this kind of a
statistic, the expectation value (mean value) corresponds to the degrees of freedom
ν = Nd − Np, with the standard deviation σχ2 =

√
2ν. Since the expectation value

equals to the degrees of freedom, the different degrees of freedom should bring a
contribution of 1 on average.

Most often in the field of nuclear density functional theory, the main error con-
tribution comes from the theoretical error ΔOth

k that covers deficiency rooted in the
theoretical formulation of the model. The two latter contributions, namely the nu-
merical error ΔOnum

k and the experimental error ΔOexp
k , are usually only marginal
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when compared to the theoretical error, leading to the approximation

ΔO2
k ≈

(
ΔOth

k

)2
. (4.10)

The estimated errors ΔO2
k have a substantial effect on the outcome of the op-

timization process. Even though it is crucial to give reasonable estimates for the
theoretical errors ΔOth

k , there is always some haphazardness in the choices which
cannot be completely avoided. Theoretical errors can be evaluated after the model
optimization, but good error estimates should already be given beforehand. In prin-
ciple, it could be possible to give some reasonable estimates for ΔOth

k , optimize the
model, evaluate the statistical errors by using the optimized model and then use
the calculated errors for another optimization run (and repeat the steps until the
error estimates do not change significantly), but the optimization process is most
often computationally demanding and cannot be repeated multiple times. That is
why EDFs are mainly optimized by applying ”educated guesses” for ΔOth

k .
If the educated guesses do not produce χ2 = 1, or if different variations of a

fit are studied without changing the error estimates, the normalization condition
of Equation (4.9) is not fulfilled. However, if we assume ΔO2

k ≈
(
ΔOth

k

)2
, we can

renormalize the penalty function so that the normalization condition is actualized,

χ2
norm(x0) = χ2(x0)

s
= Nd − Np, (4.11)

and the scale factor s does not affect the minimum x0. The scale factor

s = χ2(x0)
Nd − Np

, (4.12)

that leads to the optimization of the penalty function

χ2
norm(x) = 1

Nd − Np

Nd∑
k=1

(
Oth

k (x) − Oexp
k

)2

ΔO2
k

, (4.13)

has an impact on the calculation of the Jacobian and covariance matrices that will
be discussed in Chapter 5.

4.3 Optimization of the UNEDF models
There are various different optimization methods that can be applied to optimize
the parameters of nuclear EDFs. Since the derivatives of functions are not com-
putationally feasible, the derivative-free optimization methods are used, even basic
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ones such as the Nelder-Mead method. Genetic algorithms may be used as well, but
they often require a lot of calculations which is problematic in HFB calculations.

The optimization of the UNEDF models was done in co-operation together with
mathematicians and computer scientists. The used optimization algorithm is called
POUNDerS (Practical Optimization Using No Derivatives for Squares), see Refer-
ence [76] for details. The algorithm was used to minimize the normalized penalty
function of Equation (4.13) and optimize the parameters (3.27), with the exception
that CJJ

0 and CJJ
1 terms were non-zero only in UNEDF2 [57]. Since some of the

optimized parameters were INM properties, it was possible to put a few bounds on
them.

The first data set, namely the data set for the optimization of UNEDF0 [55],
included properties of spherical and deformed nuclei that can be seen in Figure 4.2.
Binding energies, proton rms radii and average odd-even mass staggering of 72 nuclei
around the nuclear chart were used. The free parameters of the UNEDF1 [56] model
were the same, but a few binding energies and 4 fission isomer energies were added
and the center of mass correction was neglected, since the aim of UNEDF1 was to
create an EDF suitable for fission studies. The aim of the UNEDF2 optimization
was to produce an EDF that would be an improvement with respect to single
particle spectra, so nine single-particle splittings were included in the data set, five
additional data points for odd-even staggering were added and also the CJJ

0 and
CJJ

1 terms were optimized.

4.4 Optimization of the finite-range pseudopoten-
tial

The optimization of the local finite-range pseudopotential up to NLO was carried
out in Ref. [63] for spherical nuclei and some INM properties. One goal of this
doctoral thesis was to implement an optimization procedure that allowed nuclear
deformation and thereby the finite-range pseudopotential could be optimized on
data of deformed nuclei.

The optimization program was implemented by using POUNDerS that was al-
ready found out to be successful in the UNEDF project. The first test to check
whether the implementation was working as expected was done on the same data
set as the original optimization [63]. Since the HF(B) solvers were different be-
tween these two projects – Bennaceur et al. used the spherical radial code FINRES4
whereas the program HFBTEMP with an axial HO basis was used in this project
– the optimized parameters would not be the same but comparable [77, 39].

The parameters of the pseudopotential were successfully optimized on spherical
nuclei by using HFBTEMP and POUNDerS, and the obtained parameters were
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Figure 4.2: Data set of the optimization of the UNEDF0 model. Binding energies,
charge radii and odd-even staggering were used to optimize the model parameters.
Figure adapted from Ref. [55].

comparable to the results of Ref. [63]. Different sizes of the model space were
tested, and the optimization was carried out in a basis consisting of 10, 12 and 14
harmonic oscillator (HO) shells. As it can be seen in Figure 4.3, the size of the
model space does not significantly affect the number of needed iterations in the
optimization process, but the final value of the (unnormalized) χ2 penalty function
is different. The choice of the size of the model space has an impact not only on
the theoretical predictions but the computational costs such as computational time
and required memory as well. Even though the number of optimization iterations is
the same, each HFB calculation on 14 HO shells requires more computation time.

The first test on the data of the selected spherical nuclei was performed success-
fully. Since the implementation already allowed deformation, everything was more
or less ready for the optimization on deformed nuclei. All that was needed was to
decide which nuclei would be added to the data set and then do the optimization
on the updated data. A simple task, one may think – just add the data points and
let a supercomputer calculate.

Unfortunately, the optimization on deformed nuclei revealed to be a task far
from trivial. Various attempts were performed with different data sets but without
success. The nuclei of two trial data sets are illustrated in Figure 4.4. The data set
of Subplot 4.4a was more or less the data set used in the optimization of UNEDF0,
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Figure 4.3: Convergence of the χ2 penalty function when computed with a com-
putation space of 10, 12 and 14 harmonic oscillator shells. The upper panel is in
logarithmic scale whereas the scale of lower panel is natural. The data was originally
published in Article II.

but the heaviest nuclei were left out. The data set of nuclei in Subplot 4.4b included
isotonic and isotopic middle-shell nuclei that had a clear deformation (|β| > 0.25).
Their binding energies, radii, average pairing gaps and intrinsic quadrupole mo-
ments were used: The quadrupole moments were believed to constrain deformation
properties better.

It is often difficult to explain why something did not work, also in this case. It
seems that the data sets including deformed nuclei do not constrain the parame-
ters sufficiently. Most often the optimization failed after one hundred optimization
iterations because of one nucleus for which the HFB calculations did not converge
in the end. If the problematic nucleus was removed from the data set and the
optimization was performed again, another nucleus became problematic and the
corresponding HFB calculation did not converge. This may indicate that the op-
timized parameters tended to wander into regions of parameter space that cause
finite-size instabilities. The connection between the unconverged HFB calculations
and the appearance of finite-size instabilities of symmetric nuclear matter has been
studied and demonstrated during the last two decades [78, 79, 80, 81].
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Figure 4.4: Nuclei of two trial data sets. The aim was to optimize the local NLO
pseudopotential on deformed nuclei and their properties. Subplot a illustrates a
data set motivated by the UNEDF0 optimization, only the very heaviest nuclei and
the corresponding data points were left out of the set. Subplot b shows how the
isotopic and isotonic chains of nuclei were selected around the nuclear chart. Their
binding energies, proton rms radii, pairing gaps and quadrupole moments formed
the fitting data.
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Chapter 5

Uncertainty Analysis

Still today the nuclear interaction is not perfectly understood. As a concequence,
the relationships between operators and observables are not completely appre-
hended. Effective theories, that are adjusted on experimental data, are commonly
used in the field of nuclear physics. Since the structure of the models is justified
by general arguments and the rest is fitted, one may understandably question the
predictive power of the models. The uncertainty analysis is needed, undoubtably,
and a set of tools have already been presented [34].

Uncertainty analysis is not important only for the uncertainty estimation itself.
By studying how the uncertainties propagate from the model parameters to the
predicted observables we may gain important insights as to where the shortcomings
of the model lie. Since the nuclear EDFs are optimized through the least squares
fitting method, statistical analysis and the resultant error estimates are available.

The model error (theoretical error) estimates can be subcategorized. The sta-
tistical model error is most often possible to estimate, since the prediction power

Figure 5.1: Two main classes of model error illustrated. Adapted from Ref. [82]

43
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of the model is related to the quality of the optimized fit. It describes the random
errors of theoretical predictions. The systematic model error is grounded on the
theoretical structure of the model. If there are false assumptions included or some
relevant components missing in the model, they will show up in the systematic
model error. Unfortunately, the systematic model error is difficult to assess since
there is no exact reference model. The systematic and statistical error are illus-
trated in Figure 5.1. A model can be precise (a small statistical error), accurate (a
small systematic error), both precise and accurate, or neither of them. Third error
source, namely the numerical error emanating from the computational precision,
exists but is most often negligible in DFT calculations.

The expressions uncertainty and error are not completely fixed in literature, but
in this thesis we connect the term uncertainty to the imperfection of models, and
error is used to describe the imperfection of single predictions. Next we focus to
study uncertainty of theoretical models by using standard deviation as a measure
of statistical errors of theoretical predictions.

5.1 Standard deviation
One of the most fundamental but a straightforward method to estimate the predic-
tive power of a model is to study the uncertainties of optimized model parameters
and determine how this uncertainty propagates into given predictions. The statisti-
cal error can be expressed as the statistical standard deviation of theoretical values,
for instance.

The standard deviation σ of the observable y can be computed from the rela-
tionship

σ2(y) =
n∑

i,j=1
Cov (xi, xj)

[
∂y

∂xi

] [
∂y

∂xj

]
, (5.1)

where xi and xj are model parameters and Cov (xi, xj) is the covariance matrix
between parameters xi and xj. For the standard deviation one needs to compute
a set of partial derivatives that are demanding or impossible to calculate for these
numerical models explicitly. That is why approximations are used. Following the
definition of a partial derivate, a derivative of function y(x) at the point a can be
estimated by a finite difference, such that

y′(a) ≈ y(a + h) − y(a − h)
2h

, (5.2)

where h represents the finite step. Equation (5.2) can be improved e.g. by applying
Richardson extrapolation [83], or one may use other higher-order methods for the
approximation.
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χ2 Normalized χ2

Penalty function ∑
i
(Oi−Oexp

i )2

ΔO2
i

1
Nd−Np

∑
i
(Oi−Oexp

i )2

ΔO2
i

Covariance matrix s
(
ĴT Ĵ

)−1
χ2(p0)

(
ĴT Ĵ

)−1

Table 5.1: Different χ2 functions and the corresponding covariance matrices. The
scale factor is defined as s = χ2(p0)

Nd−Np
[34]. The Jacobian matrix is the same for both

of the χ2 functions (see Equation (5.4)).

One of the most fundamental quantities that is needed for the calculation of
standard deviations is a Jacobian matrix of observables, J . The matrix elements of
J are partial derivatives of the observables O used in the optimization with respect
to the model parameters p. The observables are approximated as linear functions of
p in the vicinity of the minimal χ2, and the parameters are estimated to be normally
distributed. The matrix elements of J are mathematically defined as

Jiα = 1
ΔOi

∂Oi

∂pα

, (5.3)

where ΔOi represents the weight of the corresponding data type. Depending on
the normalization of χ2, the covariance matrix can be approximated as [34]

Cov = s
(
ĴT Ĵ

)−1
or Cov = χ2(p0)

(
ĴT Ĵ

)−1
. (5.4)

The scale factor s is defined as

s = χ2(p0)
Nd − Np

, (5.5)

and it depends on the number of data points in the optimization Nd and the number
of optimized parameters Np. The penalty functions and corresponding covariance
matrices are represented in Table 5.1.
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A simple ”recipe” for computing a standard deviation is the following:

1. Compute the Jacobian matrix J . Choose the Jacobian matrix
that corresponds to the penalty function χ2 used in the opti-
mization process.

2. Compute the covariance matrix Cov(xi, xj) that is proportional
to (JT J)−1.

3. Compute an observable y and its statistical error (standard de-
viation):

(a) Compute the prediction y(
p0) with the optimized parame-
ters 
p0.

(b) Compute the partial derivatives ∂y
∂xi

for instance with a
finite step method of Equation (5.2).

(c) Calculate the standard deviation of Equation (5.1).
(d) Get the result: yTh = y(
p0) ± σy

5.2 Broad prospects of uncertainty estimation
Naturally, the biggest motivation to estimate uncertainties and errors stems from
the need to trust the prediction power of the model in question. However, the
uncertainty analysis may provide much more information than mere error bars for
some single predictions. In the following, different ways to represent the uncer-
tainties and errors are shown, and the possible benefits of uncertainty analysis are
discussed.

Statistical errors give insight on how reliable the theoretical predictions are.
In Figure 5.2 the theoretical predictions and experimentally measured values of
binding energies of even-even Gd isotopes are compared. Three different theoretical
models, UNEDF0, UNEDF1 and UNEDF2, are used. The shaded bands represent
the corresponding theoretical statistical errors, namely the standard deviations, of
separate predictions. The standard deviations are plotted separately in Figure 5.2d
as a function of mass number A. Experimental errors are not included since they are
insignificant when compared to the scale of theoretical errors. The range of nuclei
is greater in Subplot d, since the number of performed theoretical calculations is
greater than the number of experimental measurements. If the models were perfect,
all the binding energy residuals ETh − EExp in Subplots a–c would be zero within
the error bars. However, this is not the case for most of the calculations.

Systematic studies of errors reveal how the errors change as a function of certain
variables. We can read from Figure 5.2d that the uncertainties of the UNEDF



5.2. BROAD PROSPECTS OF UNCERTAINTY ESTIMATION 47

140 150 160
A

−2

0

2

E
T
h
−
E

E
x
p
(M

eV
)

Gd

a.

UNEDF0

140 150 160
A

−4

−2

0

2

E
T
h
−
E

E
x
p
(M

eV
)

Gd

b.

UNEDF1

140 150 160
A

−4

−2

0

2

E
T
h
−
E

E
x
p
(M

eV
)

Gd

c.

UNEDF2

140 160 180
A

1

2

3

σ
E
(M

eV
)

Gd

d.

UNEDF0

UNEDF1

UNEDF2

Figure 5.2: Binding energy residuals ETh−EExp of Gd isotopes as a function of mass
number A. The calculations are perfomed by using three different Skyrme EDFs,
namely UNEDF0 (a), UNEDF1 (b) and UNEDF2 (c). Shaded bands represent
the theoretical uncertainties. Subplot d illustrates how theoretical errors change as
a function of mass number A, among some experimentally unknown Gd isotopes
as well. Experimental values are from AME2012 [84]. The theoretical data was
originally published in Article I.

models increase when going towards neutron rich nuclei. This is not a surprise,
since when the neutron number N increases, we move towards the experimentally
unknown nuclei and simultaneosly outside of the set of nuclei that were used in the
fitting process of these models. The predictive power of a model tends to weaken
outside of the region where the model parameters were adjusted.

In contrast to measurement errors in general, theoretical errors of two observ-
ables may depend on each other. This is illustrated in Figure 5.3, which is otherwise
the same as Figure 5.2 but the observable of interest is two neutron separation en-
ergy S2n. It is defined as a difference of two consecutive binding energies,

S2n(Z, N) = E(Z, N) − E(Z, N − 2). (5.6)
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When comparing Figures 5.2 and 5.3, it is noticed that the theoretical results of S2n

differ less from the experimental measurements than the binding energies that were
used for the calculations of S2n. The same holds for the standard deviations σS,2n:
They are smaller than the corresponding standard deviations of binding energies.

However, the standard deviations σS,2n do not behave smoothly as a function of
mass number A. The prominent peak in σS,2n at the mass number A = 178 stands
out in Figure 5.3d among the UNEDF2 calculations. The peak can be explained
by studying the theoretical predictions for nuclear deformations that are seen in
Figure 5.4.
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Figure 5.3: Same as Figure 5.2, but for the residuals of two neutron separation
energies S2n

Th − S2n
Exp. The theoretical statistical errors of binding energy depend on

each other and result in smaller errors of two neutron separation energies than of
the original ones.

Figure 5.4a shows us the ground state deformations of Gd isotopes predicted by
the UNEDF2 model. The ground state deformation is expressed by the deformation
parameter β. Most of Gd isotopes within the range A = [130, 180] are theoretically
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prolate (β ∈ [0.2, 0.4]), some of them are spherical (β ≈ 0) and the rest few are
oblate (β ≈ −0.2). When the differences of the ground state deformations of two
consecutive isotopes are plotted and compared to the statistical error of the two
neutron separation energy σS,2n (Figure 5.4b), the clear relationship can be spotted.
The statistical error σS,2n increases when the deformation changes from prolate to
oblate or the other way around.

Uncertainty analysis may help us to understand where the shortcomings of the
studied theoretical model come from. Binding energy residuals of the isotonic chain
of nuclei with the neutron number N = 76 are plotted in Figure 5.5. The theoretical
calculations were perfomed by using the UNEDF2 model and the experimental val-
ues were taken from Ref. [84]. While the mass number A increases, the theoretical
binding energies tend to deviate more and more from the experimental results (Fig-
ure 5.5a). However, the standard deviations σE do not change, and the wrong trend
cannot be explained by the theoretical errors. Since the statistical error emerges
from the fact how well the model parameters were constrained, the wrong trend
seems to be related to the formulation and structure of the model. The model is
lacking in some important physical aspects, and the model cannot be significantly
improved by improving the optimization process.

In addition to the usage of standard deviation as an error bar for single predic-
tions, the parameterwise contributions to the standard deviation can be studied as
well. This gives information about which parameters create most of the theoretical
error and if the error is caused equally by all the model parameters or mainly by a
couple of them. Figure 5.6 demonstrates how the standard deviations of theoretical
binding energies of two gadolinium isotopes, 154Gd and 180Gd, are composed in the
UNEDF0, UNEDF1 and UNEDF2 calculations.

In each color matrix, one matrix element corresponds to one addend of the dou-
ble sum in Equation (5.1), thus the total standard deviation for one binding energy
is the sum of all the elements in the corresponding color matrix. The contributions
are expressed in the unit of MeV2 in Figure 5.6. Naturally, the total standard devi-
ation σE is a positive number, but the separate contributions may be negative since
covariance matrix elements and partial derivatives may be negative.

As we saw earlier in Figure 5.2, the standard deviation σE of the UNEDF0
parametrization increases rapidly when going towards neutron rich nuclei, and the
theoretical binding energies at the mass number A ≈ 180 have a statistical error
of the order of 3 MeV. The increase in the statistical error shows up indirectly in
Figure 5.6 as well: The scale of individual contributions is significantly different in
180Gd than in 154Gd. The other major remark is that the error composition of the
heavy Gd isotopes is mainly due to aNM

sym and LNM
sym within the UNEDF0 calculations.

The parameters related to the symmetry energy become more important in neutron
rich nuclei.
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When comparing the results given by the UNEDF0 and UNEDF2 models, the
statistical errors of UNEDF2 originate more uniformly from the model parameters
than the errors of UNEDF0. In addition, one can notice that the scale of parameter-
wise contributions of UNEDF2 do not significantly increase in neutron rich nuclei.
These are interesting remarks when remembering that the theoretical formulations
of these models are relatively similar.

Even though the representation of Figure 5.6 is accurate and illustrates well
the contributions, it is inconvinient when the error composition of series of nu-
clei is studied. Since the error composition is mainly focused on certain rows (or
columns) of matrices in Figure 5.6, one can study row- or columnwise contributions
by summing once over the model parameters.

In Figure 5.7 the addends of Equation (5.1) are represented after applying one of
the two sums. From that point of view the labels of Figure 5.7 are slightly mislead-
ing, since the one sum over the parameters has already been applied. Anyhow, they
still give a realistic impression as to which of the model parameters contribute to
the errors the most. As we can notice, the standard deviations of binding energies of
neutron rich Dy isotopes are mainly affected by the parameters aNM

sym and LNM
sym when

applying the UNEDF0 model. This is not a surprise after the error study of Gd
isotopes, since Gd and Dy nuclei are relatively similar, having the proton numbers
Z = 64 and Z = 66, respectively. We can also notice that the error composition
of the binding energies given by the UNEDF2 model is splitted among the model
parameters, and the magnitude of contributions is smaller than the ones given by
UNEDF0.

5.3 Eigenmode formalism
Until now, the statistical errors have been represented as components of standard
deviation and their sums. Lastly we introduce the eigenmode formalism represent-
ing standard deviation after a transformation. If we denote the covariance matrix
as C, the vector of partial derivatives of the observable y as Di = ∂y

∂xi
and the

transformation diagonalizing the covariance matrix as P so that Cdiag = P −1CP ,
then

σ2
y =DT CD (5.7)

=DT P (P −1CP )P −1D (5.8)
=DT P (Cdiag)P −1D. (5.9)

Since the covariance matrix C is symmetric, P T = P −1, and the columns of P
are the eigenvectors of C, in such a way that an eigenvector vi corresponds to the
eigenvalue λi. The standard deviation of an observable y is then computed via the
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equation

σ2
y =

∑
i

⎛
⎝∑

j

∂y

∂xj

vi
j

⎞
⎠

2

λi. (5.10)

The eigenmode formalism helps to see how many directions in the parameter space
are causing the statistical error. For example, we can see in Figure 5.8 that the stan-
dard deviation of binding energies of neutron rich Gd isotopes are mainly caused by
five eigenvectors (UNEDF0, UNEDF2) or 2-3 eigenvectors (UNEDF1). Of course,
these eigenvectors are different from one model to another, since the covariance
matrices are different. The eigenvectors are not shown here, they are just linear
combinations of the model parameters.

The contributions of statistical errors are easy to show in eigenmode formalism,
but it is difficult to exploit the gained knowledge in practice in future optimization
work. Even though we would know that the eigenvector

v1 = (0.3, 0.006, 0.02, 0.05, 0.0001, 0.01, 0.5, 0.11, 0.08, 0.004)

in some parameter space, it does not really help us to make a better model at the
moment. The parameters of EDFs are difficult to optimize, not to mention linear
combinations of them. Anyhow, the eigenmode formalism may give us some hints
about the error composition and if the error is composed by a couple of directions
or equally by the all eigenvectors.
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Figure 5.4: (a.) Ground state deformation of Gd isotopes as a function of mass
number A. (b.) Illustration on the relationship between the rapid change of ground
state deformation and the statistical errors of two neutron separation energies.
The difference between ground state deformation parameter β of two consecutive
isotopes is marked in blue, and the statistical errors of two neutron separation
energies are marked in magenta.
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Figure 5.5: Binding energy residuals ETh − EExp of the isotonic chain of nuclei
with the neutron number N = 76 computed by using UNEDF2. In Subplot a, the
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theoretical data was originally published in Article I. The experimental values are
from AME2012 [84].
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E. Originally published in Article I.
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the representation of Figure 5.6. Note that here we consider Dy isotopes, in contrast
to the two Gd isotopes of Figure 5.6. The data was originally published in Article I.
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Figure 5.8: Composition of standard deviation of Gd isotopes A ∈ [130, 180] in the
eigenmode formalism. The data points represent the contribution of each eigen-
vector to the standard deviation. Despite the labels and symbols being the same,
the eigenvectors are different between the models. The eigenvectors are not shown
here. The data was originally published in Article I.



Chapter 6

Conclusions and outlook

In this thesis, different aspects of the development process of nuclear DFT models
were discussed. Formation of a theoretical model starts from the mathematical
formulation and derivation of the observables that are required in the development
of the model. In the following steps, the model parameters are optimized to pre-
determined experimental data. After optimization of the model, it is tested and
uncertainty analysis is performed. All the steps were discussed, with particular
emphasis on uncertainty analysis and optimization.

Model development was described step-by-step, corresponding to an actual model
development process. However, that order does not correspond to the chronolog-
ical order of the performed separate projects: The doctoral studies started from
the uncertainty analysis of the UNEDF models. The UNEDF models were created
together with mathematicians and computer scientists to create ”state-of-the-art”
nuclear models that could be applied throughout the nuclear chart and whose uncer-
tainty can be evaluated. The statistical errors of UNEDF0, UNEDF1 and UNEDF2
were computed for some bulk properties, and particularly the statistical errors of
binding energies were studied in this thesis. It was found out, that the stastistical
errors increase rapidly when going towards experimentally unknown neutron rich
nuclei. Uncertainty analysis provided more information on which parameters are
the main source of uncertainty.

The second project was related to the mathematical formulation and derivation
of observables. The Equation of State (EOS) in infinite nuclear matter was derived
for a four-body zero-range interaction and for the novel finite-range pseudopotential
introduced a few years ago [63]. Various INM properties are needed in the fitting
process of functionals to better constrain the model parameters. The derivations
and resulting formulas can be found in Appendix, in the end of this thesis.

The third project of author’s doctoral studies dealt with the optimization of the
novel finite-range pseudopotential. The pseudopotential was already optimized to
data of spherical nuclei in Ref. [63] up to NLO and N2LO, and the aim of our project
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was to extend the optimization procedure and allow nuclear deformation. The
interface between the optimization algorithm POUNDerS [76] and the HFB solver
HFBTEMP [39] was implemented, and the implementation was tested successfully
by reperforming the optimization of Ref. [63] and comparing the results. However,
the optimization to deformed nuclei turned out to be a task far from trivial – despite
various optimization runs on different data sets, the finite-range pseudopotential has
not yet been optimized while allowing the nuclear deformation.

Fortunately, there are still some means to succeed in the optimization. Like in
the case of the UNEDF models, one could use the derivations of INM properties, and
instead of optimizing the pure model parameters, the INM properties derived from
the pseudopotential could be used as fitting parameters among some of the original
model parameters. By studing more directly the INM properties themselves, one
could set boundaries on the selected INM parameters, potentially helping in the
optimization procedure. Additionally, the possible problems related to the finite-
size instabilities could be studied further in order to find out what kind of parameter
sets tend to lead unconverged HFB calculations and finite-size instabilities.



Appendix A

S,T decomposition of EOS in INM
in general

The purpose of this Appendix is to show how the spin-isospin decomposition of
Equation of State can be calculated for different interactions in infinite nuclear
matter. The calculation of (S,T) decomposition of EOS is straightforward. In
order to get a potential energy in each (S,T) channel, one calculates the sum of
expectation values

EST
pot = 1

2
∑
kl

〈kl|V̂ P̂ SP̂ T |kl〉 (A.1)

where |kl〉 represents a non-normalized antisymmetrized two-body state. The spin
and isospin projection operators are defined as

P̂ S=0 = 1
2

(
1̂ − P̂ σ

)
, P̂ S=1 = 1

2
(
1̂ + P̂ σ

)
, (A.2)

P̂ T =0 = 1
2

(
1̂ − P̂ τ

)
, P̂ T =1 = 1

2
(
1̂ + P̂ τ

)
, (A.3)

where P̂ σ and P̂ τ are the spin and isospin exchange operators, mathematically
defined as

P̂ σ
12 = 1

2 (1 + σ̂σσ1 · σ̂σσ2) and P̂ τ
12 = 1

2 (1 + τ̂ττ 1 · τ̂ττ 2) . (A.4)

The spin and isospin operators, P̂ σ
12 and P̂ τ

12, exchange the spins and isospins of
particle 1 and 2. Since exchanging two spins or isospins twice does not make
effectively any changes, the relationships

P̂ σ
12P̂

σ
12 = 1̂ and P̂ τ

12P̂
τ
12 = 1̂ (A.5)

hold.
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A.1 Products of densities in INM

The density can be expressed as an expansion in spin-isospin space. We can write

ρ(r1σ1q1, r2σ2q2) = 1
4 [ρ0(r1, r2)δσ1σ2δq1,q2 + ρ1(r1, r2)δσ1σ2〈q1|τττ z|q2〉
+s0(r1, r2)〈s1|σσσ|s2〉δq1q2 + s1(r1, r2)〈s1|σσσ|s2〉〈q1|τττ z|q2〉]

INM= 1
4ρ0(r1, r2)δσ1σ2δq1,q2 , (A.6)

where the last equality holds for homogeneous symmetric infinite nuclear matter.
When the normal density is summed over spins and isospins, it becomes

∑
sq

ρ(r1sq, r2sq) =ρ0(r1, r2), (A.7)

and the products of two normal densities are

∑
ss′qq′

ρ(r1sq, r2sq′)ρ(r3s
′q′, r4s

′q) =1
2 [ρ0(r1, r2)ρ0(r3, r4) + ρ1(r1, r2)ρ1(r3, r4)]

INM= 1
2ρ0(r1, r2)ρ0(r3, r4) (A.8)

∑
ss′qq′

ρ(r1sq, r2s
′q)ρ(r3s

′q′, r4sq′) =1
2 [ρ0(r1, r2)ρ0(r3, r4) + s0(r1, r2) · s0(r3, r4)]

INM= 1
2ρ0(r1, r2)ρ0(r3, r4) (A.9)

∑
ss′qq′

ρ(r1sq, r2s
′q′)ρ(r3s

′q′, r4sq) =1
4 [ρ0(r1, r2)ρ0(r3, r4) + ρ1(r1, r2)ρ1(r3, r4)

+ s0(r1, r2) · s0(r3, r4) + s1(r1, r2) · s1(r3, r4)]

INM= 1
4ρ0(r1, r2)ρ0(r3, r4) (A.10)

In homogeneous symmetric infinite nuclear matter, the sums of products of three
normal densities can be expressed as a products of three isoscalar densities. When
all three densities depend on two separate (iso)spin indeces, the product is

∑
σ1σ2σ3
q1q2q3

ρ(r1σ1q1, r2σ2q2)ρ(r2σ2q2,r3σ3q3)ρ(r3σ3q3, r1σ1q1)

INM= 1
16ρ0(r1, r2)ρ0(r2, r3)ρ0(r3, r1). (A.11)
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If one density depends on two same spin or isospin indeces (underlined),
∑

σ1σ2σ3
q1q2q3

ρ(r4σ1q2, r1σ1q1)ρ(r6σ3q3,r2σ2q2)ρ(r5σ2q1, r3σ3q3)

INM= 1
8ρ0(r4, r1)ρ0(r6, r2)ρ0(r5, r3) (A.12)

∑
σ1σ2σ3
q1q2q3

ρ(r4σ2q1, r1σ1q1)ρ(r6σ3q3,r2σ2q2)ρ(r5σ1q2, r3σ3q3)

INM= 1
8ρ0(r4, r1)ρ0(r6, r2)ρ0(r5, r3), (A.13)

and when one density depends on one isospin and another density depends on one
spin,

∑
σ1σ2σ3
q1q2q3

ρ(r4σ2q1, r1σ1q1)ρ(r6σ1q3,r2σ2q2)ρ(r5σ3q2, r3σ3q3)

INM= 1
4ρ0(r4, r1)ρ0(r6, r2)ρ0(r5, r3). (A.14)
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Appendix B

S,T decomposition for the Skyrme
interaction

Expression for the stardard Skyrme effective force reads as

V (R, r) =
2∑

i=0
t0i

(
1 + x0iP̂σ

)
δ(r) [ρ0(R)]i/3

+1
2t1

(
1 + x1P̂σ

) [
δ(r)k2 + k′2δ(r)

]
+t2

(
1 + x2P̂σ

)
k′ · δ(r)k

+iW0 [σ1 + σ2] k′ × δ(r)k, (B.1)

and since we are dealing with the fermions, we have the property

P̂σP̂τ P̂x = −1. (B.2)

for the exchange operators. For a zero-range interaction, P̂x produces only a sign
±1 when it is applied — for the t0 and t1 terms of the Skyrme interactions it does
nothing, and for the t2 term it gives an additional −1. Thus we have a relation

P̂σ = −P̂τ for the t0, t1 terms (B.3)
P̂σ = P̂τ for the t2 term. (B.4)

When we apply gradients to densities, we may have a gradient that acts only
on one set of coordinates ri of the density. Later, when taking limits (that is, when
applying delta operators), we must know which ri the gradient acted on. Thus we
use the following notation of left (and similarly right) gradients:∫

d3r1d3r2 δ(r1 − r2)∇1ρ0(r1, r2) =
∫

d3r ∇lρ0(r) (B.5)
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where we use the common notation ρ0(r, r) = ρ0(r). In fact, one can also write
ρ0(r) = ρ0. In addition, we recall the relationships between full gradients and
laplacians:

∇ρ = ∇lρ + ∇rρ (B.6)
2ij = ∇rρ − ∇lρ (B.7)

and

∇lρ = 1
2∇ρ − ij (B.8)

∇rρ = 1
2∇ρ + ij (B.9)

And for the laplacian, we have
Δρ = ∇2

l ρ + 2∇l · ∇rρ + ∇2
rρ. (B.10)

B.1 The t0 term of the Skyrme interaction
For t0 term P̂τ = −P̂σ, so in the channel S = 0 and T = 0 we get

P̂S=0P̂T =0=
1
4

(
1 − P̂σ − P̂τ + P̂σP̂τ

)

= 1
4(1 − P̂σ + P̂σ − P̂σP̂σ)

= 0, (B.11)
when we recall that P̂σP̂σ = 1. Thus, the contribution of t0 term in (S,T) =
(0,0) channel is 0 (see Equation (A.1)). In the very same manner we derive the
contributions of the other S,T channels. For S = 0, T = 1,

P̂S=0P̂T =1=
1
4

(
1 − P̂σ

) (
1 + P̂τ

)

= 1
4

(
1 − P̂σ

) (
1 − P̂σ

)

= 1
2

(
1 − P̂σ

)
(B.12)

and thus(
1 + x0iP̂σ

)1
2

(
1 − P̂σ

)

= 1
2

(
1 − P̂ + x0iP̂σ − x0iP̂σP̂σ

)

= 1
2(1 − x0i)

(
1 − P̂σ

)

→ 1
2(1 − x0i) (δσ1σ3δσ2σ4δq1q3δq2q4 − δσ1σ4δσ2σ3δq1q3δq2q4) , (B.13)
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where the experission after the arrow shows the contribution of the term after
inserted into the expectation value of Equation (A.1). The contribution to the EOS
is then

E01
t0 = 1

2
∑
qσ

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)×

∑
i

t0iδ(r1 − r2)
[
ρ0

(1
2(r1 + r2)

)]i/3 1
2 (1 − x0i) ×

(δσ1σ3δσ2σ4δq1q3δq2q4 − δσ1σ4δσ2σ3δq1q3δq2q4) ×
[ρ(r3σ3q3r1σ1q1)ρ(r4σ4q4r2σ2q2) − ρ(r4σ4q4r1σ1q1)ρ(r3σ3q3r2σ2q2)] (B.14)

= 1
4

∑
qσ

∫
d3r1d3r2

∑
i

t0iδ(r1 − r2)
[
ρ0

(1
2(r1 + r2)

)]i/3
(1 − x0i) ×

[ρ(r1σ1q1r1σ1q1)ρ(r2σ2q2r2σ2q2) − ρ(r2σ2q2r1σ1q1)ρ(r1σ1q1r2σ2q2)
− ρ(r1σ2q1r1σ1q1)ρ(r2σ1q2r2σ2q2) + ρ(r2σ1q2r1σ1q1)ρ(r1σ2q1r2σ2q2)]

= 1
4

∫
d3r

∑
i

t0i [ρ0(r)]i/3 (1 − x0i) ×
{

ρ0(r)ρ0(r) − 1
4 [ρ0(r)ρ0(r) + ρ1(r)ρ1(r) + s0(r)s0(r) + s1(r)s1(r)]

−1
2 [ρ0(r)ρ0(r) + s0(r)s0(r)] + 1

2 [ρ0(r)ρ0(r) + ρ1(r)ρ1(r)]
}

(B.15)

= 1
4

∫
d3r

∑
i

t0i [ρ0(r)]i/3 (1 − x0i) × 3
4ρ0(r)ρ0(r) (B.16)

= 3
16

∫
d3r

∑
i

t0i [ρ0(r)]2+i/3 (1 − x0i) , (B.17)

where we use the fact that s0 = s1 = ρ1 = 0 in the symmetric non-polarized nuclear
matter. We recall that for

Epot =
∫

dr E(r), (B.18)

the Equation of State is

E

A

(0,1)

= E
ρ0

= 3
16

∑
i

t0i [ρ0(r)]1+i/3 (1 − x0i) . (B.19)

For the channel S = 1, T = 0, we get

E

A

(1,0)

= E
ρ0

= 3
16

∑
i

t0i [ρ0(r)]1+i/3 (1 + x0i) (B.20)
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and in the same manner as in the case of (S,T) = (0,0) we see that the contribution
from t0 term in (S,T) = (1,1) channel is zero, since:

P̂S=1P̂T =1 = 1
4

(
1 + P̂σ

) (
1 + P̂τ

)

= 1
4

(
1 + P̂σ

) (
1 − P̂σ

)

= 1
4

(
1 − P̂σP̂σ

)
= 0. (B.21)

B.2 The t1 term of the Skyrme interaction
Again, the contribution of the channel S = 0, T = 0 is zero,

E

A

(0,0)

= 0. (B.22)

And the channel S = 0, T = 1 gives
(
1 + x1P̂σ

)
P̂S=0P̂T =1 = 1

2 (1 − x1)
(
1 − P̂σ

)
, (B.23)

thus

E01
t1 =t1

8
∑
qσ

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

[
δ(r1 − r2)k2

34 + k∗2
12δ(r1 − r2)

]
× (1 − x1)

(
1 − P̂σ

)
[ρ(r3σ3q3r1σ1q1)ρ(r4σ4q4r2σ2q2) − ρ(r4σ4q4r1σ1q1)ρ(r3σ3q3r2σ2q2)] (B.24)

=t1

8
∑
qσ

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

[
δ(r1 − r2)k2

34 + k∗2
12δ(r1 − r2)

]
×

(1 − x1) [ρ(r3σ1q1r1σ1q1)ρ(r4σ2q2r2σ2q2) − ρ(r4σ2q2r1σ1q1)ρ(r3σ1q1r2σ2q2)
− ρ(r3σ2q1r1σ1q1)ρ(r4σ1q2r2σ2q2) + ρ(r4σ1q2r1σ1q1)ρ(r3σ2q1r2σ2q2)] (B.25)

=t1

8

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

[
δ(r1 − r2)k2

34 + k∗2
12δ(r1 − r2)

]

(1 − x1)
[∑

q1σ1

ρ(r3σ1q1r1σ1q1)
∑
q2σ2

ρ(r4σ2q2r2σ2q2)

− ∑
q1q2σ1σ2

ρ(r4σ2q2r1σ1q1)ρ(r3σ1q1r2σ2q2)

− ∑
σ1σ2

(∑
q1

ρ(r3σ2q1r1σ1q1)
∑
q2

ρ(r4σ1q2r2σ2q2)
)
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+
∑
q1q2

(∑
σ1

ρ(r4σ1q2r1σ1q1)
∑
σ2

ρ(r3σ2q1r2σ2q2)
)]

(B.26)

=t1

8

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)[

δ(r1 − r2)k2
34 + k∗2

12δ(r1 − r2)
]

(1 − x1)
{ρ0(r3, r1)ρ0(r4, r2)

−1
4 [ρ0(r4, r1)ρ0(r3, r2) + ρ1(r4, r1)ρ1(r3, r2)

+s0(r4, r1)s0(r3, r2) + s1(r4, r1)s1(r3, r2)]

−1
2 [ρ0(r3, r1)ρ0(r4, r2) + s0(r3, r1)s0(r4, r2)]

+1
2 [ρ0(r4, r1)ρ0(r3, r2) + ρ1(r4, r1)ρ1(r4, r1)]}

=t1

8

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

[
δ(r1 − r2)k2

34 + k∗2
12δ(r1 − r2)

]

(1 − x1)
[1
2ρ0(r3, r1)ρ0(r4, r2) + 1

4ρ0(r4, r1)ρ0(r3, r2)
]

(B.27)

Next we apply the relative momentum operators k∗
12 = − 1

2i
(∇1 − ∇2) and k34 =

1
2i

(∇3 − ∇4). We see that
[
(∇1 − ∇2)2 + (∇3 − ∇4)2

]
ρ0(r3, r1)ρ0(r4, r2)

= [∇1∇1ρ0(r3, r1)] ρ0(r4, r2) − 2 [∇1ρ0(r3, r1)] [∇2ρ0(r4, r2)]
+ ρ0(r3, r1) [∇2∇2ρ0(r4, r2)] + [∇3∇3ρ0(r3, r1)]
ρ0(r4, r2) − 2 [∇3ρ0(r3, r1)] [∇4ρ0(r4, r2)] + ρ0(r3, r1) [∇4∇4ρ0(r4, r2)] (B.28)

After applying δ(r1 − r2), δ(r1 − r3) and δ(r2 − r4) and the corresponding three
integrals, this takes the form of

= [∇r∇rρ0(r)] ρ0(r) − 2 [∇rρ0(r)] [∇rρ0(r)] + ρ0(r) [∇r∇rρ0(r)]
+ [∇l∇lρ0(r)] ρ0(r) − 2 [∇lρ0(r)] [∇lρ0(r)] + ρ0(r) [∇l∇lρ0(r)]

=2 [∇r∇rρ0(r)] ρ0(r) − 2 [∇rρ0(r)] [∇rρ0(r)]
+ 2 [∇l∇lρ0(r)] ρ0(r) − 2 [∇lρ0(r)] [∇lρ0(r)]

=2 [(∇r∇r + 2∇r∇l + ∇l∇l)ρ0(r)] ρ0(r) − 2 [∇rρ0(r)] [∇rρ0(r)]
− 2 [∇lρ0(r)] [∇lρ0(r)] − 4 [∇r∇lρ0(r)] ρ0(r)

=2 [Δρ0(r)] ρ0(r) − 2 [∇rρ0(r)] [∇rρ0(r)] − 2 [∇lρ0(r)] [∇lρ0(r)] − 4 [∇r∇lρ0(r)] ρ0(r)
(B.29)



68 APPENDIX B. S,T DECOMPOSITION, SKYRME

Since ∇rρ0 and ∇lρ0 can be written as a combination of j and ∇ρ, the only
term which is non-zero in symmetric nuclear matter is the one proportional to
[∇r∇lρ0(r)] ρ0(r). And it is easily seen that both of the terms ρ0(r3, r1)ρ(r4, r2) and
ρ0(r4, r1)ρ0(r3, r2) will produce the same outcome when

[
δ(r1 − r2)k2

34 + k∗2
12δ(r1 − r2)

]
(B.30)

is applied, and it leads to the factor 1
2 + 1

4 = 3
4 , thus

E01
t1 = t1

8

∫
d3r(1 − x1)(− 1

2i
) 1
2i

3
4 (−4) [∇r∇lρ0(r)] ρ0(r)

= t1

8
3
4

∫
d3r(1 − x1)τ0(r)ρ0(r)

= t1

8
3
4

∫
d3r(1 − x1)

3
5

(
3π2

2

)2/3

ρ
5/3
0 (r)ρ0(r)

= 9t1

160

∫
d3r(1 − x1)

3
5

(
3π2

2

)2/3

ρ
5/3
0 (r)ρ0(r). (B.31)

The contribution to the EOS is

E

A

(0,1)

= E
ρ0

= 9
160t1(1 − x1)

(
3π2

2

)2/3

ρ
5/3
0 (r). (B.32)

The contributions of the last two channels are derived correspondingly.

E

A

(0,1)

= E
ρ0

= 9
160t1(1 + x1)

(
3π2

2

)2/3

ρ
5/3
0 (r) (B.33)

E

A

(1,1)

= E
ρ0

= 0. (B.34)

B.3 The t2 term of the Skyrme interaction

In the S = 0, T = 0 channel, we have the property P̂τ = P̂σ and we get

P̂S=0P̂T =0(1 + x2P̂σ) = 1
4(1 − 2P̂σ + P̂σP̂σ)(1 + x2P̂σ)

= 1
2(1 − x2)(1 − P̂σ), (B.35)



B.3. THE T2 TERM OF THE SKYRME INTERACTION 69

so the expectation value becomes

E00
t2 =1

2t2
∑
qσ

∫
d3r1d3r2d3r3d3r4 δ(r1 − r3)δ(r2 − r4)×

k∗
12 · δ(r1 − r2)k34

1
2(1 − x2)(1 − P̂σ)×

[ρ(r3σ3q3r1σ1q1)ρ(r4σ4q4r2σ2q2) − ρ(r4σ4q4r1σ1q1)ρ(r3σ3q3r2σ2q2)]

=1
4t2

∑
qσ

∫
d3r1d3r2d3r3d3r4 δ(r1 − r3)δ(r2 − r4)

k∗
12 · δ(r1 − r2)k34(1 − x2)×

[ρ(r3σ1q1r1σ1q1)ρ(r4σ2q2r2σ2q2) − ρ(r4σ2q2r1σ1q1)ρ(r3σ1q1r2σ2q2)
− ρ(r3σ2q1r1σ1q1)ρ(r4σ1q2r2σ2q2) + ρ(r4σ1q2r1σ1q1)ρ(r3σ2q1r2σ2q2)] (B.36)
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Once again, we take sums over q and σ, and use the property s0 = s1 = ρ1 of
symmetric infinite nuclear matter.

E00
t2 =1

4t2

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

k∗
12 · δ(r1 − r2)k34(1 − x2)×[1
2ρ0(r3, r1)ρ0(r4, r2) + 1

4ρ0(r4, r1)ρ0(r3, r2)
]

=1
8t2

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)

k∗
12 · δ(r1 − r2)

( 1
2i

)
(1 − x2)×

([∇3ρ0(r3, r1)] ρ0(r4, r2) + ρ0(r3, r1) [−∇4ρ0(r4, r2)]

+ 1
2 [−∇4ρ0(r4, r1)] ρ0(r3, r2) + 1

2ρ0(r4, r1) [∇3ρ0(r3, r2)]
)

=1
8t2

∫
d3r1d3r2d3r3d3r4δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)( 1

2i

) (
− 1

2i

)
(1 − x2)×

([∇1∇3ρ0(r3, r1)] ρ0(r4, r2) + [∇3ρ0(r3, r1)] [−∇2ρ0(r4, r2)]
+ [∇1ρ0(r3, r1)] [−∇4ρ0(r4, r2)] + ρ0(r3, r1) [∇2∇4ρ0(r4, r2)]

+1
2 [−∇1∇4ρ0(r4, r1)] ρ0(r3, r2) + 1

2 [−∇4ρ0(r4, r1)] [−∇2ρ0(r3, r2)]

+ 1
2 [∇1ρ0(r4, r1)] [∇3ρ0(r3, r2)] + 1

2ρ0(r4, r1) [−∇2∇3ρ0(r3, r2)]
)

=1
8t2

∫
d3r

1
4(1 − x2)×

([∇r∇lρ0(r)] ρ0(r) + [∇lρ0(r)] [−∇rρ0(r)]
+ [∇rρ0(r)] [−∇lρ0(r)] + ρ0(r) [∇r∇lρ0(r)]

+1
2 [−∇r∇lρ0(r)] ρ0(r) + 1

2 [−∇lρ0(r)] [−∇rρ0(r)]

+ 1
2 [∇rρ0(r)] [∇lρ0(r)] + 1

2ρ0(r) [−∇r∇lρ0(r)]
)

=1
8

1
4t2

∫
d3r(1 − x2) ([∇r∇lρ0(r)] ρ0(r) − [∇lρ0(r)] [∇rρ0(r)]) (B.37)

Since we can write ∇rρ0(r) and ∇lρ0(r) with j and Δρ0, the term proportional
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to [∇lρ0(r)] [∇rρ0(r)] equals to zero in symmetric nuclear matter, and we get

E00
t2 = 1

32t2

∫
d3r(1 − x2) [∇r∇lρ0(r)] ρ0(r)

= 1
32t2

∫
d3r(1 − x2)τ0(r)ρ0(r)

= 1
32t2

∫
d3r(1 − x2)

3
5

(
3π2

2

)2/3

ρ
5/3
0 (r)ρ0(r)

= 3
160t2

∫
d3r(1 − x2)

(
3π2

2

)2/3

ρ
5/3
0 (r)ρ0(r) (B.38)

and the contribution to the channel (0,0) follows:

E

A

(0,0)

= E
ρ0

= 3
160t2(1 − x2)

(
3π2

2

)2/3

ρ
5/3
0 . (B.39)

Again, the rest of the contributions are calculated in the very same manner. For
the t2 term the property P̂τ = P̂σ hold, so

P̂S=0P̂T =1 = 1
4(1 · 1 − P̂σP̂σ) = 0 (B.40)

which means that there is no contribution from t2 term in (S,T) = (0,1) channel.
Similarly, for the channel S = 1, T = 0,

P̂S=1P̂T =0 = 0 (B.41)

and thus no contribution on this channel. In the channel (S,T) = (1,1) we have

P̂S=1P̂T =1(1 + x2P̂σ) = 1
2(1 + x2)(1 + P̂σ), (B.42)

which leads to the energy

E11
t2 = 27

160t2

∫
d3r(1 + x2)

(
3π2

2

)2/3

ρ
5/3
0 (r)ρ0(r) (B.43)

and the corresponding EOS channel is

E

A

(1,1)

= E
ρ0

= 27
160t2(1 + x2)

(
3π2

2

)2/3

ρ
5/3
0 (B.44)
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B.4 The spin-orbit term of the Skyrme interac-
tion

The contribution of SO term is trivial: whenever deriving the functional from spin
orbit term, the functional is proportional to J · ∇ρ. This will lead to zero contribu-
tion in symmetric nuclear matter, because ∇ρ = 0. Thus there is no contribution
from the SO term in any channel in symmetric nuclear matter.



Appendix C

S,T decomposition for the
finite-range pseudopotential

The lowest order of the pseudopotential is written as

V 0
0 (r1, r2, r3, r4)

=
(
W 0

1 1̂σ1̂τ + B0
1 1̂τ P̂σ − H0

1 1̂σP̂τ − M0
1 P̂σP̂τ

)
Ô0

0δ(r13)δ(r24)ga(r12) (C.1)

where Ô0
0 = 1̂ at the lowest order. We can write the action of 1̂σ, 1̂τ , P̂σ and P̂τ in

the expectation value as delta functions, so that

1̂σ = δσ1σ3δσ2σ4 (C.2)
P̂σ = δσ1σ4δσ2σ3 (C.3)

and similarly for the isospin operators 1̂τ and P̂τ .

C.1 The W 0
1 term of the pseudopotential

Let’s start the calculations from the channel S = 0, T = 0, when we have

1̂σ1̂τ P̂S=0P̂T =0 = 1
4

(
1̂σ1̂τ − 1̂σP̂τ − P̂σ1̂τ + P̂σP̂τ

)
, (C.4)
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which leads to the expression of energy

E00
pot =1

2
∑
qσ

∫
d3r1d3r2d3r3d3r4δ(r13)δ(r24)ga(r12)W 0

1 1̂σ1̂τ P̂S=0P̂T =0×
(ρ(r3σ3q3r1σ1q1)ρ(r4σ4q4r2σ2q2) − ρ(r4σ4q4r1σ1q1)ρ(r3σ3q3r2σ2q2))

=W 0
1

8
∑
qσ

∫
d3r1d3r2d3r3d3r4δ×

(r13)δ(r24)ga(r12)
(
1̂σ1̂τ − 1̂σP̂τ − P̂σ1̂τ + P̂σP̂τ

)
×

(ρ(r3σ3q3r1σ1q1)ρ(r4σ4q4r2σ2q2) − ρ(r4σ4q4r1σ1q1)ρ(r3σ3q3r2σ2q2))

=W 0
1

8
∑
qσ

∫
d3r1d3r2d3r3d3r4δ(r13)δ(r24)ga(r12)×

[ρ(r3σ1q1r1σ1q1)ρ(r4σ2q2r2σ2q2) − ρ(r4σ2q2r1σ1q1)ρ(r3σ1q1r2σ2q2)
−ρ(r3σ1q2r1σ1q1)ρ(r4σ2q1r2σ2q2) + ρ(r4σ2q1r1σ1q1)ρ(r3σ1q2r2σ2q2)
−ρ(r3σ2q1r1σ1q1)ρ(r4σ1q2r2σ2q2) + ρ(r4σ1q2r1σ1q1)ρ(r3σ2q1r2σ2q2)
+ρ(r3σ2q2r1σ1q1)ρ(r4σ1q1r2σ2q2) − ρ(r4σ1q1r1σ1q1)ρ(r3σ2q2r2σ2q2)]

=W 0
1

8
∑
qσ

∫
d3r1d3r2ga(r12)×

[ρ(r1σ1q1r1σ1q1)ρ(r2σ2q2r2σ2q2) − ρ(r2σ2q2r1σ1q1)ρ(r1σ1q1r2σ2q2)
−ρ(r1σ1q2r1σ1q1)ρ(r2σ2q1r2σ2q2) + ρ(r2σ2q1r1σ1q1)ρ(r1σ1q2r2σ2q2)
−ρ(r1σ2q1r1σ1q1)ρ(r2σ1q2r2σ2q2) + ρ(r2σ1q2r1σ1q1)ρ(r1σ2q1r2σ2q2)
+ρ(r1σ2q2r1σ1q1)ρ(r2σ1q1r2σ2q2) − ρ(r2σ1q1r1σ1q1)ρ(r1σ2q2r2σ2q2)] (C.5)

We apply the sums over products of densities and we get

E00
pot =W 0

1

8

∫
d3r1d3r2ga(r12) ×

[
ρ0(r1)ρ0(r2) − 1

4ρ0(r2, r1)ρ0(r1, r2)

− 1
2ρ0(r1)ρ0(r2) + 1

2ρ0(r2, r1)ρ0(r1, r2) − 1
2ρ0(r1)ρ0(r2)

+ 1
2ρ0(r2, r1)ρ0(r1, r2) + 1

4ρ0(r1)ρ0(r2) − ρ0(r2, r1)ρ(r1, r2)
]

=W 0
1

8

∫
d3r1d3r2ga(r12)

[1
4ρ0(r1)ρ0(r2) − 1

4ρ0(r2, r1)ρ0(r1, r2)
]

=W 0
1

32

∫
d3R

(
ρ2

0

∫
d3rga(r) −

∫
d3rga(r)ρ0(r2, r1)ρ0(r1, r2)

)
(C.6)
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After applying the integrals we get

E00
pot = W 0

1

32

∫
d3Rρ2

0(1 − F0(ξ)), (C.7)

where

F0(ξ) = 12
ξ3

[
1 − e−ξ2

ξ3 − 3 − e−ξ2

2ξ
+

√
π

2 erfξ
]

, (C.8)

and that leads us to the EOS:

E

A

(0,0)

= E
ρ0

= 1
32W 0

1 ρ0(1 − F0(ξ)). (C.9)

For the contribution of the channel S = 0, T = 1 we need to know that

1̂σ1̂τ P̂S=0P̂T =1 = 1
4

(
1̂σ1̂τ + 1̂σP̂τ − P̂σ1̂τ − P̂σP̂τ

)
(C.10)

and we can immediately see, that the calculation is very similar to the one of (S,T)
= (0,0) but with two different signs. Indeed, all the rest contributions are calculated
in the same manner and we end up in the results

E

A

(0,1)

= E
ρ0

= 3
32W 0

1 ρ0(1 + F0(ξ)) (C.11)

E

A

(1,0)

= E
ρ0

= 3
32W 0

1 ρ0(1 + F0(ξ)) (C.12)

E

A

(1,1)

= E
ρ0

= 9
32W 0

1 ρ0(1 − F0(ξ)). (C.13)

C.2 The B0
1 term of the pseudopotential

In the S = 0, T = 0 channel we get that

1̂τ P̂σP̂S=0P̂T =0 = 1
4

(
−1̂σ1̂τ + 1̂σP̂τ + P̂σ1̂τ − P̂σP̂τ

)
, (C.14)

which leads to the contribution

E

A

(0,0)

= E
ρ0

= − 1
32B0

1ρ0(1 − F0(ξ)) (C.15)
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Again, the rest of the contributions are calculated in the very same manner, and
we get the contributions

E

A

(0,1)

= − 3
32B0

1ρ0(1 + F0(ξ)) (C.16)

E

A

(1,0)

= 3
32B0

1ρ0(1 + F0(ξ)) (C.17)

E

A

(1,1)

= 9
32B0

1ρ0(1 − F0(ξ)). (C.18)

C.3 The −H0
1 term of the pseudopotential

In the S = 0, T = 0 channel of the −H0
1 term, we have

1̂σP̂τ P̂S=0P̂T =0 = 1
4

(
−1̂σ1̂τ + 1̂σP̂τ + P̂σ1̂τ − P̂σP̂τ

)
, (C.19)

which leads to the contribution

E

A

(0,0)

= E
ρ0

= 1
32H0

1 ρ0(1 − F0(ξ)). (C.20)

The other contributions are

E

A

(0,1)

= − 3
32H0

1 ρ0(1 + F0(ξ)) (C.21)

E

A

(1,0)

= 3
32H0

1 ρ0(1 + F0(ξ)) and (C.22)

E

A

(1,1)

= − 9
32H0

1 ρ0(1 − F0(ξ)). (C.23)

C.4 The −M 0
1 term of the pseudopotential

In the S = 0, T = 0 channel we end up in the expression

P̂σP̂τ P̂S=0P̂T =0 = 1
4

(
1̂σ1̂τ − 1̂σP̂τ − P̂σ1̂τ + P̂σP̂τ

)
(C.24)

which gives

E

A

(0,0)

= E
ρ0

= − 1
32M0

1 ρ0(1 − F0(ξ)). (C.25)
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The other contributions follow:

E

A

(0,1)

= 3
32M0

1 ρ0(1 + F0(ξ)) (C.26)

E

A

(1,0)

= 3
32M0

1 ρ0(1 + F0(ξ)) and (C.27)

E

A

(1,1)

= − 9
32M0

1 ρ0(1 − F0(ξ)). (C.28)

C.5 Total decomposition at LO

When we combine the previous results, we get the full S, T decomposition of EOS
in INM for the finite-range pseudopotential at LO:

(S, T ) = (0, 0) : E

A
= 1

32(W 0
1 − B0

1 + H0
1 − M0

1 )ρ0(1 − F0(ξ)) (C.29)

(S, T ) = (0, 1) : E

A
= 3

32(W 0
1 − B0

1 − H0
1 + M0

1 )ρ0(1 + F0(ξ)) (C.30)

(S, T ) = (1, 0) : E

A
= 1

32(W 0
1 + B0

1 + H0
1 + M0

1 )ρ0(1 + F0(ξ)) (C.31)

(S, T ) = (1, 1) : E

A
= 9

32(W 0
1 + B0

1 − H0
1 − M0

1 )ρ0(1 − F0(ξ)) (C.32)

C.6 Decomposition at local NpLO

Since the local version of pseudopotential can be written as

V(n)
loc (r1, r2; r3, r4) =

(
W

(n)
1 1̂σ1̂τ + B

(n)
1 1̂τ P̂σ − H

(n)
1 1̂σP̂τ − M

(n)
1 P̂σP̂τ

)
×

δ(r13)δ(r24)
(1

2

)n/2
[kn

12ga(r12)] . (C.33)

When we recall the property

( 1
2i2

)n/2
∇nga(r) =

(
−1

a

∂

∂a

)p

ga(r), (C.34)

where p = n/2, we see that we get the next-leading-order terms directly from LO
just by derivating the non-constant part. Thus, for the terms NpLO, we get the
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contributions of different S,T channels:

(0, 0) : E

A
= 1

32(W p
1 − Bp

1 + Hp
1 − Mp

1 )ρ0

(
−1

a

∂

∂a

)p

(−F0(kF a)) (C.35)

(0, 1) : E

A
= 3

32(W p
1 − Bp

1 − Hp
1 + Mp

1 )ρ0

(
−1

a

∂

∂a

)p

F0(kF a) (C.36)

(1, 0) : E

A
= 1

32(W p
1 + Bp

1 + Hp
1 + Mp

1 )ρ0

(
−1

a

∂

∂a

)p

F0(kF a) (C.37)

(1, 1) : E

A
= 9

32(W p
1 + Bp

1 − Hp
1 − Mp

1 )ρ0

(
−1

a

∂

∂a

)p

(−F0(kF a)) (C.38)



Appendix D

S,T decomposition for the
zero-range 3-body interaction

Next the S,T decomposition for the 3-body interaction presented in Ref [85] is
derived starting from the derivation of the expectation value of the interaction.
Three-body terms can be written in our notation as

V123 = u0δ(r1 − r2)δ(r2 − r3)
+u1

2
(
1 + y1P̂

σ
12

) (
k†2

12δ(r1 − r2)δ(r2 − r3) + δ(r1 − r2)δ(r2 − r3)k2
45

)
+u2

(
1 + y21P̂

σ
12

)
k†

12δ(r1 − r2)δ(r2 − r3)k45

+u2y22

(
P̂ σ

13 + P̂ σ
23

)
k†

12δ(r1 − r2)δ(r2 − r3)k45. (D.1)

The corresponding expectation value is

E123
x =1

6
∑

σ1σ2σ3
q1q2q3

∫
d3r1d3r2d3r3d3r4d3r5d3r6〈123|vx|456〉×

[ρ(r4σ4q4, r1σ1q1)ρ(r5σ5q5, r2σ2q2)ρ(r6σ6q6, r3σ3q3)
− ρ(r4σ4q4, r1σ1q1)ρ(r6σ6q6, r2σ2q2)ρ(r5σ5q5, r3σ3q3)
+ ρ(r5σ5q5, r1σ1q1)ρ(r6σ6q6, r2σ2q2)ρ(r4σ4q4, r3σ3q3)
− ρ(r5σ5q5, r1σ1q1)ρ(r4σ4q4, r2σ2q2)ρ(r6σ6q6, r3σ3q3)
+ ρ(r6σ6q6, r1σ1q1)ρ(r4σ4q4, r2σ2q2)ρ(r5σ5q5, r3σ3q3)
− ρ(r6σ6q6, r1σ1q1)ρ(r5σ5q5, r2σ2q2)ρ(r4σ4q4, r3σ3q3)] (D.2)
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where vx refers to the different terms of the 3-body interaction. For example, the u0
term of v123 produces the following energy in infinite homogeneous nuclear matter:

Eu0 =
∑

σ1σ2σ3
q1q2q3

1
6

∫
d3r1d3r2d3r3d3r4d3r5d3r6u0×

δ(r1 − r4)δ(r2 − r5)δ(r3 − r6)δ(r4 − r5)δ(r5 − r6)×
δσ1σ4δσ2σ5δσ3σ6δq1,q4δq2,q5δq3,q6×
[ρ(r4σ4q4, r1σ1q1)ρ(r5σ5q5, r2σ2q2)ρ(r6σ6q6, r3σ3q3)
− ρ(r4σ4q4, r1σ1q1)ρ(r6σ6q6, r2σ2q2)ρ(r5σ5q5, r3σ3q3)
+ ρ(r5σ5q5, r1σ1q1)ρ(r6σ6q6, r2σ2q2)ρ(r4σ4q4, r3σ3q3)
− ρ(r5σ5q5, r1σ1q1)ρ(r4σ4q4, r2σ2q2)ρ(r6σ6q6, r3σ3q3)
+ ρ(r6σ6q6, r1σ1q1)ρ(r4σ4q4, r2σ2q2)ρ(r5σ5q5, r3σ3q3)
− ρ(r6σ6q6, r1σ1q1)ρ(r5σ5q5, r2σ2q2)ρ(r4σ4q4, r3σ3q3)] (D.3)

=1
6

∫
d3ru0δ(r1 − r4)δ(r2 − r5)δ(r3 − r6)δ(r4 − r5)δ(r5 − r6)[

ρ0(r4, r1)ρ0(r5, r2)ρ0(r6, r3) − 1
4ρ0(r4, r1)ρ0(r6, r2)ρ0(r5, r3)

+ 1
16ρ0(r5, r1)ρ0(r6, r2)ρ0(r4, r3) − 1

4ρ0(r5, r1)ρ0(r4, r2)ρ0(r6, r3)

+ 1
16ρ0(r6, r1)ρ0(r4, r2)ρ0(r5, r3) − 1

4ρ0(r6, r1)ρ0(r5, r2)ρ0(r4, r3)
]

(D.4)

=1
6

∫
d3ru0

3
8ρ0(r)ρ0(r)ρ0(r) (D.5)

In our notation the other two components of the three-body interaction are

V132 =u0δ(r1 − r2)δ(r2 − r3)

+ u1

2
(
1 + y1P̂

σ
13

) (
k∗2

13δ(r1 − r2)δ(r2 − r3) + δ(r1 − r2)δ(r2 − r3)k2
46

)
+ u2

(
1 + y21P̂

σ
13

)
k∗

13δ(r1 − r2)δ(r2 − r3)k46

+ u2y22

(
P̂ σ

12 + P̂ σ
23

)
k∗

13δ(r1 − r2)δ(r2 − r3)k46. (D.6)

.
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Table D.1: S,T-decomposition of 3-body V123 with respect to different pairs of
particles 1, 2 and 3. The constants in the table must be multiplied by ρ0ρ0 or τ0ρ0
(see the leftmost column).
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Table D.2: S,T-decomposition of 3-body V132 with respect to different pairs of
particles 1, 2 and 3. The constants in the table must be multiplied by ρ0ρ0 or τ0ρ0
(see the leftmost column).
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The last part of the three-body interaction, namely V231, is defined as

V231 =u0δ(r1 − r2)δ(r2 − r3) (D.7)

+ u1

2
(
1 + y1P̂

σ
23

) (
k∗2

23δ(r1 − r2)δ(r2 − r3) + δ(r1 − r2)δ(r2 − r3)k2
45

)
(D.8)

+ u2

(
1 + y21P̂

σ
23

)
k∗

13δ(r1 − r2)δ(r2 − r3)k45 (D.9)

+ u2y22

(
P̂ σ

12 + P̂ σ
13

)
k∗

23δ(r1 − r2)δ(r2 − r3)k45. (D.10)
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Table D.3: S,T-decomposition of 3-body V231 with respect to different pairs of
particles 1, 2 and 3. The constants in the table must be multiplied by ρ0ρ0 or τ0ρ0
(see the leftmost column).



Appendix E

S,T decomposition of the
zero-range 4-body interaction

E.1 Energy
The zero-range 4-body interaction is defined as

V̂4 = v0 (δr1,r3δr2,r3δr3,r4 + δr1,r2δr3,r2δr2,r4 + ...) (E.1)

and altogether there are
(

6
3

)
= 6 · 5 · 4 · 3!

3!(6 − 3)! = 20 (E.2)

terms. In addition, there are 24 different terms coming from the constractions (here
we denote xi = ri, σi, qi):
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〈c†
1c

†
2c

†
3c

†
4c8c7c6c5〉

= ρ(x5, x1)ρ(x6, x2)ρ(x7, x3)ρ(x8, x4)
+ρ(x5, x1)ρ(x6, x2)ρ(x8, x3)ρ(x7, x4)
+ρ(x5, x1)ρ(x7, x2)ρ(x8, x3)ρ(x6, x4)
+ρ(x5, x1)ρ(x7, x2)ρ(x6, x3)ρ(x8, x4)
+ρ(x5, x1)ρ(x8, x2)ρ(x6, x3)ρ(x7, x4)
+ρ(x5, x1)ρ(x8, x2)ρ(x7, x3)ρ(x6, x4)

+ρ(x6, x1)ρ(x5, x2)ρ(x8, x3)ρ(x7, x4)
+ρ(x6, x1)ρ(x5, x2)ρ(x7, x3)ρ(x8, x4)
+ρ(x6, x1)ρ(x7, x2)ρ(x5, x3)ρ(x8, x4)
+ρ(x6, x1)ρ(x7, x2)ρ(x8, x3)ρ(x5, x4)
+ρ(x6, x1)ρ(x8, x2)ρ(x7, x3)ρ(x5, x4)
+ρ(x6, x1)ρ(x8, x2)ρ(x5, x3)ρ(x7, x4)

+ρ(x7, x1)ρ(x5, x2)ρ(x6, x3)ρ(x8, x4)
+ρ(x7, x1)ρ(x5, x2)ρ(x8, x3)ρ(x6, x4)
+ρ(x7, x1)ρ(x6, x2)ρ(x8, x3)ρ(x5, x4)
+ρ(x7, x1)ρ(x6, x2)ρ(x5, x3)ρ(x8, x4)
+ρ(x7, x1)ρ(x8, x2)ρ(x5, x3)ρ(x6, x4)
+ρ(x7, x1)ρ(x8, x2)ρ(x6, x3)ρ(x5, x4)

+ρ(x8, x1)ρ(x5, x2)ρ(x7, x3)ρ(x6, x4)
+ρ(x8, x1)ρ(x5, x2)ρ(x6, x3)ρ(x7, x4)
+ρ(x8, x1)ρ(x6, x2)ρ(x5, x3)ρ(x7, x4)
+ρ(x8, x1)ρ(x6, x2)ρ(x7, x3)ρ(x5, x4)
+ρ(x8, x1)ρ(x7, x2)ρ(x6, x3)ρ(x5, x4)
+ρ(x8, x1)ρ(x7, x2)ρ(x5, x3)ρ(x6, x4) (E.3)

=: D(x1, x2, ..., x8) (E.4)
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In general for the 4-body system, the energy is calculated as

E = 1
4!

∑
σq

∫
d3r1d3r2...d3r8 v0δ(r1 − r5)δ(r2 − r6)δ(r3 − r7)δ(r4 − r8) ×

〈x1x2x3x4|V̂4|x5x6x7x8〉 × D(x1, x2, ..., x8) (E.5)

and now, for the zero-range interaction of Equation (E.1) it is

E = 1
256

∫
d3r v0ρ0ρ0ρ0ρ0, (E.6)

which is calculated by using Wolfram Mathematica.

E.2 S,T decomposition
The expectation value of V̂41̂ we get directly from the calculation of energy, namely

〈V̂41̂〉 = 〈V̂4〉 = E = 1
256

∫
d3r v0ρ0ρ0ρ0ρ0. (E.7)

Next we need the expectation value of V̂4P̂σ, that is

〈V̂4P̂σ
12〉 = 1

24
∑
qσ

∫
d3r1d3r2...d3r8 v0δ(r1 − r5)δ(r2 − r6)δ(r3 − r7) ×

δ(r4 − r8)δ(r5 − r7)δ(r6 − r7)δ(r7 − r8) × D(x1, ..., x8)×
δσ1,σ6δσ2,σ5δσ3,σ7δσ4,σ8δq1,q5δq2,q6δq3,q7δq4,q8

=0 (E.8)

Since P̂ xP̂ σP̂ τ = −1, and P̂ x = 1̂ holds for zero-range interactions without any
gradients, we get P̂ τ = −P̂ σ, and all the rest of components we need for the S,T
decomposition are provided directly:

〈V̂4P̂τ
12〉 = −〈V̂4P̂σ

12〉 = 0 (E.9)

〈V̂4P̂σ
12P̂τ

12〉 = −〈V̂4P̂σ
12P̂σ

12〉 = − 1
256

∫
d3r v0ρ0ρ0ρ0ρ0 (E.10)

We recall that

P̂S=0 = 1
2

(
1̂ − P̂σ

)
(E.11)

P̂S=1 = 1
2

(
1̂ + P̂σ

)
(E.12)

P̂T =0 = 1
2

(
1̂ − P̂τ

)
(E.13)

P̂T =1 = 1
2

(
1̂ + P̂τ

)
(E.14)
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Table E.1: ST decomposition of EOS for projections on particles 1 and 2.
S,T E/A

0,0 0

0,1 1
512v0ρ

3
0

1,0 1
512v0ρ

3
0

1,1 0

Table E.2: The full ST decomposition of EOS in INM.
S,T E/A

0,0 0

0,1 5
128v0ρ

3
0

1,0 5
128v0ρ

3
0

1,1 0

and since P̂τ = −P̂σ, we get

P̂S=0P̂T =0 = 1
4

(
1̂ − P̂ 2

σ

)
= 0 (E.15)

P̂S=0P̂T =1 = 1
2

(
1̂ − P̂σ

)
(E.16)

P̂S=1P̂T =0 = 1
2

(
1̂ + P̂σ

)
(E.17)

P̂S=1P̂T =1 = 1
4

(
1̂ − P̂ 2

σ

)
= 0. (E.18)

The equation of state, E/A = E/ρ0, where E =
∫

d3r E , follows from that and
the results are shown in Table E.1. The final S,T decomposition of 4-body interac-
tion (E.1) is easy to get. Since the full interaction is a sum of delta terms, which
all give exactly the same contribution, we have to just multiply the contribution
with the number of terms (20). In addition, in principle we should also derive the
results from projection on the particles (1, 3), (1, 4), (2, 3) and so on, and finally
take the average of them, but this is now trivial since the contributions are exactly
the same, and we would only multiply by 6 and divide by 6. Thus, the only thing
we have to do, is to multiply by 20, and the final results can be found in Table E.2.
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Abstract. The parameters of the nuclear energy density have to be adjusted to

experimental data. As a result they carry certain uncertainty which then propagates

to calculated values of observables. In the present work we quantify the statistical

uncertainties of binding energies, proton quadrupole moments, and proton matter

radius for three UNEDF Skyrme energy density functionals by taking advantage of

the knowledge of the model parameter uncertainties. We find that the uncertainty of

UNEDF models increases rapidly when going towards proton or neutron rich nuclei.

We also investigate the impact of each model parameter on the total error budget.

Keywords: Skyrme energy density functional, uncertainty quantification, error

propagation

1. Introduction

Among numerous different nuclear many-body models, the nuclear density functional

theory (DFT) [1] is the only one, which can describe nuclear properties microscopically

throughout the entire nuclear landscape [2]. The cornerstone of the nuclear DFT is the

energy density functional (EDF), which incorporates nucleonic interactions and many-

body correlations into a functional constructed from one-body densities and currents.

The Skyrme EDF, for its part, relies on local nuclear densities and currents, together

with a set of coupling constants as model parameters. Due to the lack of suitable ab-

initio methods to compute these coupling constants, they must be determined through

adjustment to experimental data, such as nuclear binding energies and radii.

During the last couple of decades, numerous Skyrme parameterizations have been

obtained from various adjustment schemes, see e.g. the list in [3]. The standard

Skyrme EDF has proven to be quite successful, but its limitations have also become

apparent. For the sake of better accuracy, more reliable predictive power, and for a

spectroscopic-quality level, one has to move beyond the the standard Skyrme EDF [4,5].

Nevertheless, by studying the performance and predictive power of the present EDFs,
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valuable information can be obtained which can be used and applied in the work towards

forthcoming novel EDFs [6].

As with every model parameters optimization procedure, one of the main challenges

is to find the best set of input observables, in order to constrain the parameter space

of the model. The predictive power of the EDF highly depends on the input data.

Therefore, a comprehensive analysis of the impact of input observables on the parameter

space and on the model predictions provides valuable information. Naturally, the nuclear

bulk properties are crucial for general constraining and the data especially relating

to odd-mass nuclei is important for spectroscopical properties [7]. Binding energies,

surface thickness, charge radii, single particle energies and energies of giant resonances

are essential properties of nuclei, and used in various EDF optimization schemes.

All model predictions contain several sources of uncertainties. Roughly speaking,

these can be divided into two main categories, the systematic model uncertainties

and the statistical model uncertainties. The systematic model uncertainty stems from

sources like the model deficiency and input data bias. The statistical uncertainty results

from the model parameter optimization process.

Despite the importance of uncertainty analysis, error estimate is a rather novel

topic in low-energy nuclear physics [8]. During the last few years, efforts have been

made to improve this situation in the EDF calculations [9–13], as well as in the

domain of ab-initio calculations [14, 15]. Various statistical tools have been applied

from traditional methods to more modern ones (e.g. the Bayesian framework [16–19]).

Apart from the fact that uncertainty quantification is an important topic in itself, with

the help of statistical analysis, information about shortcomings of theoretical models

and optimization procedures is also obtained.

In this work, we present the quantitative results for statistical uncertainty

propagation for three existing UNEDF Skyrme EDF models: the UNEDF0 [20], the

UNEDF1 [21], and the UNEDF2 [22]. In particular, we quantify contributions from the

model parameters to the total error budget of binding energy in isotopic and isotonic

chains of nuclei. By analyzing the obtained information we may recognize potential

frailties of these models. In the present study, two-neutron separation energies are also

considered, as well as proton quadrupole moments and proton matter radii, and the

related uncertainties are worked out. In addition to even-even nuclei, uncertainties

related to odd-even nuclei are studied.

This paper is organized as follows. In Sec. 2 we briefly review the theoretical

framework related to the topic: Namely, the Skyrme energy density functional and the

error propagation. In Sec. 3 we present our results and, finally, conclusions and future

perspectives are given in Sec. 4.
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2. Theoretical framework

2.1. Skyrme energy density functional

The UNEDF models are based on the Skyrme energy density. The ground state

of a nucleus is determined in the framework of the Hartree-Fock-Bogoliubov (HFB)

theory [1,23]. The three parameterizations considered in this work, UNEDF0, UNEDF1

and UNEDF2, were adjusted on a experimental data consisting of binding energies for

deformed and spherical nuclei, odd-even mass differences, and charge radii. In addition,

latter parameterizations include data on fission isomer excitation energies and single-

particle energies.

The Skyrme EDF has a form of local energy density functional, stemming from

Skyrme energy density. It can be written as

E =

∫
d3rH(r) (1)

=

∫
d3r

[Ekin(r) + χ0(r) + χ1(r) + χ̃(r) + ECoul(r)
]
. (2)

where the energy density H(r) is a time-even, scalar, isoscalar and real function of local

densities and their derivatives. In the equation (2), the Skyrme energy density has

been split into kinetic term Ekin(r), isoscalar (t = 0) and isovector (t = 1) particle-hole

Skyrme energy densities χt(r), pairing energy density χ̃(r) and Coulomb term ECoul(r).

The time-even part of the isoscalar and isovector particle-hole Skyrme energy densities

is given by

χt(r) = Cρ2

t ρ2t + Cρτ
t ρtτt + CJJ

t

∑
μν

Jμν,tJμν,t + CρΔρ
t ρtΔρt

+ Cρ∇J
t ρt∇ · Jt . (3)

In the equation (3), τt is the isoscalar or isovector kinetic density and Jμν,t is the spin-

current density tensor. Definitions of these densities can be found in reference [1]. With

the UNEDF models, only the time-even part of the total energy density was defined

and time-odd part of the energy density was set to zero. The energy density is always

time-even, also the part called ”time-odd” - the time-odd energy density means that

this part of the energy density is built by using time-odd densities.

The pairing energy density χ̃(r) used here has the form of

χ̃(r) =
1

4

∑
q=n,p

V q
0

[
1− 1

2

ρ0(r)

ρc

]
ρ̃2q(r) , (4)

where V q
0 (q = n, p) are the pairing strength parameters for neutrons and protons,

respectively, and ρc was set to the equilibrium density 0.16 fm−3. All the coefficients

Cx
t and V q

0 are real constants, except the coefficients Cρρ
t which depend on the isoscalar

density so that

Cρρ
t = Cρρ

t0 + Cρρ
tDρ

γ
0 . (5)
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Table 1. The parameters of UNEDF models used in the sensitivity analysis. Here

”x” indicates parameter was included in sensitivity analysis. Parameters which were

fixed during the whole optimization procedure are denoted as ”–”, and the rest of the

parameters are those which hit the boundary values during optimization. The index

t = 0, 1 separates the isoscalar and isovector terms.

EDF ρc
ENM

A
KNM aNM

sym LNM
sym 1/M∗

s 1/M∗
v CρΔρ

t V n,p
0 Cρ∇J

t CJJ
t

UNEDF0 x x x x – x x x –

UNEDF1 x x x x – x x x –

UNEDF2 x x x x – x x x x

Altogether, there are 13 independent constants from Skyrme energy density and two

constants from pairing, namely

{Cρρ
t0 , C

ρρ
tD, C

ρΔρ
t , Cρτ

t , CJ2

t , Cρ∇J
t }t=0,1 , γ, V

n
0 and V p

0 . (6)

Seven of these parameters for t = 0 and t = 1, Cρρ
t0 , C

ρρ
tD, C

ρτ
t and γ, can be written with

the help of the infinite nuclear matter parameters [20,24]. All in all, the model depends

on 15 independent parameters, namely

ρc,
ENM

A
,KNM, aNM

sym, L
NM
sym,M

∗
s ,M

∗
v , C

ρΔρ
0 ,

CρΔρ
1 , V n

0 , V
p
0 , C

ρ∇J
0 , Cρ∇J

1 , CJJ
0 , and CJJ

1 , (7)

which were optimized in the previous works, in references [20–22]. Here ρc is the

saturation density, ENM/A represents the total energy per nucleon at equilibrium, KNM

is the nuclear matter incompressibility, aNM
sym is the symmetry energy coefficient, LNM

sym

describes the slope of the symmetry energy, M∗
s is the isoscalar effective mass and the

last one, M∗
v , is the isovector effective mass.

In the present work, we have compared calculated theoretical binding energies to the

experimental ones from [25]. In order to obtain experimental nuclear binding energies,

the experimental atomic masses were corrected by taking into account the electron

binding energies, approximated as

BE ≈ −1.433× 10−5Z2.39 MeV . (8)

2.2. Propagation of error

The UNEDF parameterizations were accompanied by sensitivity analysis, providing

covariance matrix of the model parameters. This allows to calculate the standard

deviation of any observable predicted by the model. In the present work we consider

the statistical errors on binding energies and on two-neutron separation energies.

The statistical standard deviation σ of an observed variable y is given by

σ2(y) =
n∑

i,j=1

Cov(xi, xj)
[

∂y
∂xi

] [
∂y
∂xj

]
, (9)
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where Cov(xi, xj) is the covariance matrix element between the model parameters xi

and xj, and n is the number of model parameters. The covariance matrix Cov(xi, xj) is

related to the corresponding correlation matrix Corr(xi, xj) as

Cov(xi, xj) =Corr(xi, xj)σxi
σxj

, (10)

where σxi
and σxj

are the standard deviations of parameters xi and xj, respectively. The

correlation matrices of the UNEDF models and the standard deviations of the model

parameters are given in Appendix A.

The standard deviation in equation (9) contains a sum of terms connected to

the model parameters. Due to correlations between model parameters, off-diagonal

components has to be also taken into account. By diagonalizing the covariance

matrix (or, equivalently, the curvature matrix of χ2(x) function) it is possible analyze

eigenmodes, as was demonstrated in reference [26]. This method was also used in

analysis of DD-PC1 functional uncertainties [12]. With application of an orthogonal

transformation, which diagonalizes the covariance matrix, one obtains the square

of the standard deviation σ2(y) expressed as a sum over eigenvalues multiplied by

corresponding eigenvectors and partial derivatives of y.

Some of the UNEDF model parameters have been excluded from the sensitivity

analysis. Table 1 lists those UNEDF parameters which were included in the sensitivity

analysis [20–22] (marked with x), those which were fixed during the whole optimization

procedure (-) and those which ended up at their boundaries during the optimization

(empty space). Sensitivity analysis can not be performed for fixed parameters or those

which drifted onto the boundary during the optimization. However, those parameters

which were included in sensitivity analysis have a visible contribution to the statistical

error of an observable and their contribution to the total error budget can be calculated

from equation (9).

2.3. Numerical methods

In the present work we used the code HFBTHO [27, 28] to calculate observables and

their statistical errors. The program solves the Hartree-Fock-Bogoliubov equations for

Skyrme EDFs in the axially symmetric harmonic oscillator basis. Time-reversal and

parity symmetries were assumed. Because particle number is not a good quantum

number in HFB theory, we used the Lipkin-Nogami method to restore it approximately.

The HFB equations were solved in a basis consisting of 20 oscillator shells and the

convergence criteria was set to 10−7. This means that the desired accuracy has been

reached when the norm of the HFB matrix difference between two consecutive iterations

is less than 10−7. Both of the Coulomb terms, ECoul
dir and ECoul

exchange were used, but the

exchange term was calculated by using Slater approximation. A rough position of the

energy minimum, with respect of quadrupole deformation, was first located from a

constrained HFB calculation. Then, an unconstrained HFB calculation was performed

in order to converge to the precise position of the energy minimum.
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In order to obtain standard errors one has to calculate the derivatives of an

observable y(x) with respect to the model parameters xi, as in equation (9). In the

present work these derivatives were approximated by a finite differences. That is

∂y

∂xi

≈ y(x1, x2, . . . , xi +Δxi, . . . , xn)− y(x)

Δxi

, (11)

where value of ith parameter has been shifted by amount of Δxi from the model base

values. The rounded values of UNEDF parameters and corresponding shifts Δxi have

been listed on Table B1. We tested that the computed statistical errors remained

essentially the same when shift parameters Δxi were slightly varied.

Lastly, we recall that standard deviation does not measure the total uncertainty of a

model. Another main ingredient, namely the systematic error, is much more challenging

to assess. It can be addressed e.g. by studying a dispersion of different predictions given

by various Skyrme EDF models [2, 29]. However, due to lack of exact reference model,

precise systematic errors are not within one’s reach.

3. Results

3.1. Binding energy residuals
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Figure 1. (Color online) Differences between theoretical and experimental binding

energies for even-even dysprosium and gadolinium isotopes with error bars representing

statistical model error (on the left) and related statistical model error (on the right)

as a function of the mass number.
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The differences between the theoretical and experimental binding energies for even-

even gadolinium and dysprosium isotopes are shown in figure 1. The error bars represent

the calculated theoretical standard deviations, and they are also given as a function

of the mass number in the graphs on the right. The uncertainties are given for all

the calculated binding energies, including also those nuclei for which the experimental

binding energy is not currently known. As it can be seen, UNEDF0 gives more consistent

results with the measured experimental energies for lighter isotopes, whereas UNEDF1

and UNEDF2 seem to improve their accuracy considerably for heavier isotopes. Most of

the theoretical results do not overlap with the experimental values, even when including

error bars. Two interesting points can be seen in the graphs on the left: 146Gd and
148Dy. Both of these nuclei have neutron number of N = 82, that is, one of the magic

numbers. Here, the theoretical predictions for the binding energies given by UNEDF1

and UNEDF2 are comparatively farther away from the experimental results. However,

there is no visible increase in the standard deviation of the binding energy of these two

nuclei. This suggests that the increased residual is due to underlying model deficiency,

and not due to the parameter optimization procedure.

The calculated standard deviations of binding energies are found to be around

0.5–3.0MeV, 0.4–1.7MeV, and 0.3–1.5MeV for UNEDF0, UNEDF1 and UNEDF2,

respectively. Even though the standard deviations have a magnitude of one thousandth

of the total binding energy, the theoretical uncertainties are still far larger compared

to experimental precision, which can be of the order of few keV’s [30]. However,

uncertainties of the UNEDF models have decreased after every model: The obtained

standard deviation for UNEDF0 is larger compared to two later parameterizations.

The behavior of uncertainty is relatively smooth and the uncertainty of binding

energy grows quickly when going towards neutron rich nuclei. In addition, one can also

see that uncertainties grow when going towards the other extreme, namely proton rich

nuclei. This is an indication that isovector part of the EDFs is not as well constrained

as the isoscalar part.

The residuals of the two-neutron separation energy, S2n, are shown in figure 2.

The two-neutron separation energies were calculated for even-even Dy and Gd isotopes.

Similarly to the previous figure, theoretical errors are marked as error bars in the graphs

on the left hand side panels, and also given as a function of the mass number on the

right hand side panels. The theoretical statistical error is calculated similarly, through

finite differences of S2n values to compute the derivatives. For neutron rich nuclei,

all three parameterizations give essentially the same result for S2n, within the error

bars. Otherwise, the latest UNEDF2 parameterization seems to differ most from the

experimental results when compared to previous two parameterizations.

Since S2n is defined as a difference of two binding energies, the partial derivatives

are also calculated from energy difference between two nucleus. As a consequence, some

of the parameter uncertainties can cancel each other. In particularly, the uncertainty

coming from a relatively less constrained isovector part of the EDF is now partly

canceled, resulting to more moderate uncertainty in the neutron rich region compared
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Figure 2. (Color online) Same as figure 1 but for two-neutron separation energy S2n.

to the uncertainty of binding energy. Similar observation was also done at [9].
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Figure 3. (Color online) Panel a: Deformation parameter β2 as a function of mass

number A. Panel b: Calculated statistical error of σS,2n when using either lowest or

secondary energy minimum of 178Gd. Panel c: Deformation energies of five dysprosium

isotopes as a function of deformation parameter β2.

One common feature for all UNEDF models is an existence of a few high peaks in

the statistical error of S2n. These peaks are located mainly around the same neutron

numbers for Gd and Dy isotopes. For instance, the two highest peaks given by UNEDF2

are located at the nuclei 178Gd and 180Dy. The explanation for all of the high peaks

can be found in a sudden change in deformation. Figure 3, in panel a, shows how
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deformation parameter β2 varies with mass number A for Gd. When comparing this

to that of σS,2n, shown in figure 2, one can notice similarity between uncertainty peaks

and large change in the deformation. If there is a significant difference in deformation

between two consecutive even-even nuclei, this results to a larger statistical error of

two-neutron separation energy.

The relationship between σS,2n and a sudden large change of β2 can be tested by

looking at the secondary local minimum of the deformation energy landscape. For the

calculated Gd and Dy nuclei, there usually exists two energy minima, the oblate one and

the prolate one, as shown in figure 3, panel c. By picking always the lowest minimum

results to large statistical error of S2n when deformation has a large change between two

even nucleus. However, if one uses the secondary minimum, in which case the two nuclei

appearing in the expression of S2n have similar deformation compared to the each other,

one obtains substantially smaller σS,2n. In figure 3, panel b, the black line describes the

same peak at A = 178 given by UNEDF2 as in figure 2, calculated with the lowest

energy minima. The second (red) line corresponds to case where second minimum of
178Gd was used, resulting a much smaller σS,2n for 178Gd. Indeed, a large difference in

deformation of involved nuclei seems to give large uncertainty on two-neutron separation

energy. A possible explanation is considerably different shell structure between these

two nuclei due to deformation. The largest impact on the extremely high peaks in σS,2n

given by UNEDF2 is connected to the parameter CJJ
1 , whereas for UNEDF1 the main

contributors are M∗
s , both CρΔJ together with CρΔρ

0 and V n
0 parameters.
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Figure 4. (Color online) Same as figure 1, but for the isotonic chain with the neutron

number N = 76.

The binding energy residuals between theory and experiment for isotonic chain

of N = 76 can be found in figure 4. Only even-even nuclei are studied. The

UNEDF1 and UNEDF2 parameterizations give rather similar results, but the binding

energy behavior of UNEDF0 parameterization is notably different. Compared to the

UNEDF0 optimization procedure, in the optimization of UNEDF1 the same set of 12

EDF parameters were optimized but seven additional data points were included in the

database and the center of mass correction was neglected [21]. The other important

remark is the fact that even though the trend of UNEDF1 and UNEDF2 models is
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incorrect – the calculated binding energies for proton rich nuclei are getting further far

away from the experimental ones when mass number increases – the uncertainties do

not nevertheless become larger.
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Figure 5. (Color online) Same as figure 1 but for even-even and even-odd Sn isotopes.

We have also considered the statistical error of odd-even nuclei. The binding energy

residual for Sn isotopic chain was computed by using all three UNEDF models. The

results are shown in figure 5. The odd-even nuclei were calculated by using the quasi-

particle blocking procedure with the equal filling approximation [7]. The same blocking

configuration, which corresponded the lowest energy with unshifted parameterization,

was used for calculation of all partial derivatives. The same set of results for even Sn

isotopes, with UNEDF0, was calculated in [9]. The results show that the binding energy

residuals of even-even nuclei are relatively greater compared to those of odd nuclei. On

this account, the binding energy residuals stagger between the odd and even nuclei.

Nevertheless, there are no visible odd-even effects in the standard deviations of binding

energy. This can be explained by the lack of time-odd part in the used EDFs.

3.2. Uncertainty of Q2,p and proton matter radius

The standard deviation of proton matter quadrupole moment Q2,p and proton matter

root-mean-square (rms) radius rp,rms for all three UNEDF models is shown in figure 6.

The scale of σQ2 can be read on the left side and the scale of σr on the right side of the

figure. As expected, the uncertainty of these two observables behaves similarly and is

strongly correlated. High values of uncertainty are located in deformed nuclei next to

spherical nuclei, due to soft deformation energy landscape with respect of quadrupole

deformation.

Despite the general strong correlation between σr and σQ2, with UNEDF1 and

UNEDF2, there are a few points of Q2,p which differ from the major trend. The

vanishing uncertainty of Q2,p in 152Gd is explained by the fact that 152Gd is predicted

to be spherical by UNEDF2 EDF. This can be seen in figure 3, panel a. The divergent

uncertainty of Q2,p in 180Gd (178Gd, 180Gd) in UNEDF1 (UNEDF2) is related to the

change of sign in quadrupole moment and deformation parameter β2 which is shown
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Figure 6. (Color online) The standard deviation of proton quadrupole moment Q2,p

and proton rms radius rp,rms for Gd isotopic chain with all three UNEDF models. The

scale of σQ2 can be read on the left side and the scale of σr on the right side of the

figure

also in figure 3, panel a. Most of the nuclei are predicted to be prolate by UNEDF1

and UNEDF2, but above-mentioned nuclei are predicted to be oblate, resulting to rapid

changes of the statistical uncertainty of Q2,p for Gd isotopic chain. However, 140Gd

and 142Gd isotope are also predicted to be oblate by UNEDF1 and UNEDF2 EDFs,

but there is no significant effect in the uncertainties given by UNEDF1. There is no

oblate-shaped nuclei among the Gd isotopes calculated with UNEDF0 EDF.

In addition to the large uncertainties next to the spherical nuclei, there is also

another visible trend in the uncertainties. Similarly like with the uncertainties of the

binding energy, when going towards the neutron rich nuclei, the uncertainties of Q2,p and

rp,rms increases systematically. The same behavior is also followed with the uncertainties

of the neutron matter radius.

3.3. Contributions of the model parameters

One of the goals of present work is to study contributions of the model parameters to

the total error budget of binding energy. The most elementary way to represent the

contributions of the model parameters to the total uncertainty is by listing component

matrix. Here, every single small color square in the matrix represents the value of

one particular cross contribution coming from parameters (xi, xj) to the total sum of

equation (9). The component matrices for the binding energy uncertainties of 154Gd

and 180Gd are shown in figure 7. Some of these components have negative sign, due to a

negative partial derivative or a negative covariance matrix element. The total squared

standard deviation is always, nevertheless, a positive number. One should also bear in

mind that the contribution of a parameter to the standard deviation is visible only if

this parameter was included in the sensitivity analysis, as mentioned before.

For 154Gd, which has one of the smallest statistical error of binding energy with all

UNEDF parameterizations, the total error budget with UNEDF0 and UNEDF2 EDFs

consist of several components. The total error budget with UNEDF1 is simpler, and



Uncertainty propagation within the UNEDF models 12

ρ
c

E
N
M
/A

a
N
M

sy
m

L
N
M

sy
m

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1

V
n 0

V
p 0

ρc

ENM/A
aNM
sym

LNM
sym

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1

V n
0

V p
0

Gd154

−100

−80

−60

−40

−20

0

20

40

60

80

100

ρ
c

E
N
M
/A

a
N
M

sy
m

L
N
M

sy
m

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1

V
n 0

V
p 0

ρc

ENM/A
aNM
sym

LNM
sym

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1

V n
0

V p
0

Gd180

−1200

−900

−600

−300

0

300

600

900

1200

ρ
c

a
N
M

sy
m

L
N
M

sy
m

1/
M

∗ s

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1

V
n 0

V
p 0

ρc

aNM
sym

LNM
sym

1/M∗
s

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1

V n
0

V p
0 −400

−320

−240

−160

−80

0

80

160

240

320

400

ρ
c

a
N
M

sy
m

L
N
M

sy
m

1/
M

∗ s

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1

V
n 0

V
p 0

ρc

aNM
sym

LNM
sym

1/M∗
s

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1

V n
0

V p
0 −320

−240

−160

−80

0

80

160

240

320

ρ
c

K a
N
M

sy
m

1/
M

∗ s

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1
V

n 0

V
p 0

C
J
J

0

C
J
J

1

ρc
K

aNM
sym

1/M∗
s

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1
V n
0

V p
0

CJJ
0

CJJ
1 −100

−80

−60

−40

−20

0

20

40

60

80

100

ρ
c

K a
N
M

sy
m

1/
M

∗ s

C
ρ
Δ
ρ

0

C
ρ
Δ
ρ

1

C
ρ
∇
J

0

C
ρ
∇
J

1
V

n 0

V
p 0

C
J
J

0

C
J
J

1

ρc
K

aNM
sym

1/M∗
s

CρΔρ
0

CρΔρ
1

Cρ∇J
0

Cρ∇J
1
V n
0

V p
0

CJJ
0

CJJ
1

U
N

E
D

F2
U

N
E

D
F1

U
N

E
D

F0

−100

−75

−50

−25

0

25

50

75

100

Figure 7. (Color online) Individual contributions of the model parameters (xi, xj),

in the total sum of equation (9), for the uncertainty of binding energy in 154Gd and
180Gd isotopes and for all three UNEDF models. The contributions are in units of

MeV2.

mainly coming from 1/M∗
s and CρΔρ

0 parameters. On the other hand, the uncertainty

budget for the neutron rich nucleus 180Gd splits into several pieces when going from the

oldest parameterization to the latest one. The uncertainty of UNEDF0 is affected by

a couple of parameters, mainly by aNM
sym and LNM

sym. The most contributing parameters

to the uncertainty of UNEDF1 are 1/M∗
s and CρΔρ

0 , whereas in the case of UNEDF2
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the CρΔρ
0 parameter have slightly greater contribution. Even though one parameter has

slightly greater contribution, the uncertainty of binding energy for neutron rich nuclei

is relatively widely spread among the model parameters of UNEDF2.

The component matrix representation shows explicitly how different model

parameters contribute to the total error budget pairwise. Unfortunately, this

representation requires a lot of space. By considering a summed contribution of one

row (or, equivalently, one column) of the component matrix, we can represent the

error budget as a stacked histograms for each isotope. We refer this once summed

contribution as a row contribution of a parameter xi. Here, components of the total

error are calculated by summing over one index in equation (9), resulting the total

squared standard deviation being then a sum of all row contributions.

The results for the row contributions are shown in figure 8 for the binding energies

of even Dy isotopes and in figure 9 for the binding energies of even N = 76 isotones. The

error budget for UNEDF0 binding energy is mainly composed of only a few contributing

rows. For nuclei close to the valley of stability, two dominant sources of uncertainty

are the rows ENM/A and CρΔρ
0 parameters, whereas in the neutron rich Dy isotopes the

rows of LNM
sym and aNM

sym dominate. In other words, model parameters related to symmetry

energy become more important with neutron rich nuclei. It was found earlier that LNM
sym

has also a strong impact on the statistical error of neutron root-mean-square radii and

neutron skin thickness [9, 29]. The most dominant sources of uncertainty are the same

for isotopic and isotonic chains.

Contrary to UNEDF0, the error budget of latter two parameterizations is more split

among the various different row contributions in neutron rich nuclei. Generally speaking,

the rows connected to aNM
sym, both CρΔρ

t parameters, Cρ∇J
0 , and 1/M∗

s have a significant

impact on the total error budget with UNEDF2. It should be noticed that the correlation

between CρΔρ
0 and 1/M∗

s is strong: In principle, if one can reduce the uncertainty on

CρΔρ
0 , it should also reduce the uncertainty of 1/M∗

s . The isovector parameters, for their

part, are more difficult to constrain, but they impact on the stability of the functional:

For instance CρΔρ
1 is the coupling constant of the gradient term, which has been found

to trigger scalar-isovector instabilities [31].

Lastly, we represent the uncertainties of binding energies in the eigenmode

formalism in figure 10. The eigenvectors are listed in descending order of eigenvalues.

The eigenvectors and eigenvalues are not shown here - it is not a laborious task to

diagonalize covariance matrices given in references [20–22]. Basically, a small eigenvalue

means that the linear combination of model parameters described by this eigenvector

is well constrained. If the eigenvalue is large, the corresponding eigenvector is poorly

constrained. The eigenvector representation does not directly tell about the model

parameters themselves, but describes how the uncertainty propagates from a certain

linear combinations of the model parameters, instead. As we can see, e.g. for neutron

rich nuclei, only five eigenvectors of UNEDF0 contribute significantly to the total

error budget. The eigenvector having the greatest eigenvalue, and thus being least

constrained, has also the biggest contribution to the error budget among the neutron
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Figure 8. (Color online) Error budget of σ2
E for even-even Dy isotopes with

UNEDF0, UNEDF1 and UNEDF2 EDFs in the row contribution representation. The

contribution of a summed up row is indicated with corresponding model parameter

name.

and proton rich nuclei. In the case of UNEDF1, mainly two eigenvectors contribute to

the total error budget of a given nucleus, whereas there are 5 significant contributors

with UNEDF2 EDF. Interestingly, with UNEDF1, one can see many contributing
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eigenvectors at deformation transition region around A = 140 – 152.

We can also investigate how different model parameters contribute to the

uncertainty, in terms of components of one particular eigenvector. For example, with

UNEDF0, the first eigenvector has the biggest contribution with neutron rich nuclei.

When looking at the individual components of this eigenvector, the main contributing

model parameters are aNM
sym and LNM

sym. With the second largest contributing eigenvector,
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Figure 10. (Color online) The uncertainties of binding energies in the eigenmode

formalism. Each curve represents the contribution of one eigenvector. The eigenvectors

are different for each UNEDF parameterization, even though symbols and numbering

is the same.

the contribution of aNM
sym is the largest one and with third most contributing eigenvector,

the parameters CρΔρ
0 , aNM

sym and ENM/A are the most important ones. With UNEDF1,

the uncertainty of binding energy for neutron rich nuclei comes from aNM
sym, L

NM
sym and

CρΔρ
0 model parameters when considering the most contributing eigenvector, and from

aNM
sym and ρc when considering eigenvector having the second largest contribution. On

the other hand, with UNEDF2, the contributions are more split among various model

parameters. Largest contributing components of two most important eigenvectors

consist of several parameters (more than five). The uncertainty coming from the third

most contributing eigenvector consists almost entirely of aNM
sym and ρc model parameters.

In the end of this section, we can conclude that three different methods used in this

study, namely the component matrix representation, the histogram representation of

row contributions, and the eigenmode method, are in support of each other, with each

one having their own advantage.

4. Conclusions

In the present work we have calculated statistical errors of the UNEDF models for

binding energy, two-neutron separation energy, proton quadrupole moment and proton

rms radius by using information about the covariance matrix of the model parameters.

The standard deviation has been interpreted as a statistical error. We have also

quantified the contributions of each model parameters to the total error budget by

using three different methods and checked if there are any visible odd-even effects in the

uncertainties of the UNEDF models. We presented our results for the error budget by



Uncertainty propagation within the UNEDF models 17

using the component matrix representation, the row contribution representation, and

finally, by using the eigenmode method. We found out that the standard deviation of

binding energy grows quickly when going away from the valley of stability towards proton

rich or neutron rich nuclei. Similarly, uncertainties of proton quadrupole moment Q2,p

and proton rms radius rrms,p increase rapidly among the neutron rich nuclei as a function

of mass number. That is to say, the predictive power of UNEDF models becomes weaker

when extrapolating further away from known nuclei to experimentally unknown region.

For the Sn isotopic chain, even though there exists odd-even staggering in the residuals

of binding energies, no visible odd-even effect was seen in the related errors.

The error budget of the UNEDF parameterizations becomes more evenly split

among various model parameters with UNEDF1 and UNEDF2 parameterizations in

neutron rich nuclei. This can be seen by using any of the three methods mentioned

above. The most dominant contributors to the error budget of neutron rich nuclei

with UNEDF0 were LNM
sym and aNM

sym parameters, that is to say, coefficients related to

the symmetry energy. In the case of UNEDF1, LNM
sym and aNM

sym still have a significant

contribution and, in addition, the role of CρΔρ
0 and 1/M∗

s becomes important. With

UNEDF2, the role of other model parameters becomes even more prominent.

A comparison of the binding energy standard deviations to the residuals seems to

point out that the underlying theoretical model is missing some important physics. One

clear indication of this is the increase of the binding energy residuals close to the semi-

magic nuclei. However, calculated standard deviation does not usually reflect this kind

of behavior. Similar observation was also done in [9]. Also, the systematically incorrect

trend of UNEDF1 and UNEDF2 with the binding energy residual in the N = 76 isotonic

chain does not appear in theoretical uncertainties, as shown in figure 4.

The trend in the UNEDF statistical errors is such that the calculated standard

deviation decreases as more data is included in the optimization procedure. From a

statistical point of view, the larger uncertainty of the isovector parameters reflects to the

increasing uncertainty when going towards the both isospin extremes. Unfortunately,

new data may not always help to reduce uncertainties. A sophisticated parameter

optimization within Bayesian framework showed that new data points on nuclear binding

energies at neutron rich region were not able provide a better constraint for the UNEDF1

model parameters [16]. On the other hand, data on the neutron skin thickness could

potentially help to reduce uncertainties related on isovector model parameters [32].

As was concluded for the UNEDF2 parameterization, the limits of standard Skyrme-

EDFs have been reached and novel approaches are called for [22]. Information about

the shortcomings and uncertainties of present models will provide valuable input for

development of novel EDF models. A comprehensive sensitivity analysis of a novel

EDF parameterization is essential when addressing its predictive power.
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Appendix A. Appendix: Correlation matrices

Table A1. Correlation matrix and standard deviations of the UNEDF0 parameter

set [20]. The values are rounded. The units are following: ρc is in fm−3; ENM/A, aNM
sym

and LNM
sym are in MeV; CρΔρ

t and Cρ∇J
0 are in MeV fm−5, and V n,p

0 are in MeV fm−3.

ρc ENM/A aNM
sym LNM

sym CρΔρ
0 CρΔρ

1 V n
0 V p

0 Cρ∇J
0 Cρ∇J

1

ρc 1.00

ENM/A -0.28 1.00

aNM
sym -0.10 -0.88 1.00

LNM
sym -0.17 -0.80 0.97 1.00

CρΔρ
0 0.09 0.80 -0.81 -0.74 1.00

CρΔρ
1 0.20 0.35 -0.47 -0.66 0.23 1.00

V n
0 0.02 0.21 -0.23 -0.25 0.23 0.23 1.00

V p
0 -0.13 -0.42 0.52 0.56 -0.29 -0.45 -0.14 1.00

Cρ∇J
0 0.37 -0.14 0.02 -0.00 0.44 -0.02 0.09 0.16 1.00

Cρ∇J
1 -0.06 -0.18 0.27 0.33 -0.38 -0.20 -0.01 0.00 -0.37 1.00

σ 0.001 0.055 3.058 40.037 1.697 56.965 2.105 3.351 3.423 29.460

Table A2. Same as table A1 but for UNEDF1. LNM
sym is in units of MeV and 1/M∗

s is

unitless.

ρc aNM
sym LNM

sym 1/M∗
s CρΔρ

0 CρΔρ
1 V n

0 V p
0 Cρ∇J

0 Cρ∇J
1

ρc 1.00

aNM
sym -0.35 1.00

LNM -0.14 0.71 1.00

1/M∗
s 0.32 0.23 0.36 1.00

CρΔρ
0 -0.25 -0.25 -0.35 -0.99 1.00

CρΔρ
1 -0.06 -0.15 -0.77 -0.22 0.19 1.00

V n
0 -0.32 -0.22 -0.36 -0.99 0.98 0.22 1.00

V p
0 -0.33 -0.18 -0.29 -0.97 0.97 0.15 0.96 1.00

Cρ∇J
0 -0.14 -0.20 -0.32 -0.86 0.91 0.22 0.85 0.84 1.00

Cρ∇J
1 0.05 -0.17 -0.13 -0.10 0.07 0.21 0.10 0.07 -0.03 1.00

σ 0.0004 0.604 13.136 0.123 5.361 52.169 18.561 13.049 5.048 23.147
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Table A3. Same as table A1 but for UNEDF2. The parameters Cρ∇J
1 are in units of

MeV fm−3.

ρc KNM
sym aNM

sym 1/M∗
s CρΔρ

0 CρΔρ
1 V n

0 V p
0 Cρ∇J

0 Cρ∇J
1 CJJ

0 CJJ
1

ρc 1.00

KNM
sym -0.97 1.00

aNM
sym -0.07 -0.03 1.00

1/M∗
s 0.08 -0.05 -0.24 1.00

CρΔρ
0 -0.43 0.43 0.22 -0.89 1.00

CρΔρ
1 -0.42 0.37 0.83 -0.17 0.31 1.00

V n
0 -0.06 0.02 0.27 -0.96 0.85 0.17 1.00

V p
0 -0.09 0.05 0.21 -0.89 0.80 0.14 0.86 1.00

Cρ∇J
0 -0.51 0.50 0.34 -0.40 0.68 0.55 0.36 0.34 1.00

Cρ∇J
1 -0.31 0.29 -0.19 -0.00 0.04 0.18 -0.07 -0.02 0.14 1.00

CJJ
0 0.56 -0.55 -0.26 0.05 -0.35 -0.53 -0.02 -0.02 -0.88 -0.35 1.00

CJJ
1 0.36 -0.35 0.13 -0.23 0.16 -0.14 0.29 0.25 -0.02 -0.57 0.29 1.00

σ 0.001 10.119 0.321 0.052 2.689 24.322 8.353 6.792 5.841 15.479 16.481 17.798
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Appendix B. Appendix: Values of the parameters and used finite

differences

Table B1. Rounded values xi for each UNEDF parameterization and the

corresponding used finite differences Δxi used in the derivatives. The units are the

same as in tables A1, A2 and A3.

UNEDF0 UNEDF1 UNEDF2

parameter xi Δxi xi Δxi xi Δxi

ρc 0.161 0.004 0.159 0.004 0.156 0.004

ENM
sym /A -16.056 0.02

KNM
sym 239.930 2.0

aNM
sym 30.543 0.1 28.987 0.2 29.131 0.2

LNM
sym 45.080 0.4 40.005 0.4

1/M∗
s 0.992 0.012 1.074 0.012

CρΔρ
0 -55.261 0.6 -45.135 0.6 -46.831 0.6

CρΔρ
1 -55.623 2.0 -145.382 2.0 -113.164 2.0

V n
0 -170.374 2.0 -186.065 2.0 -208.889 2.0

V p
0 -199.202 2.0 -206.580 2.0 -230.330 2.0

Cρ∇J
0 -79.531 0.7 -74.026 0.7 -64.308 0.7

Cρ∇J
1 45.630 1.5 -35.658 1.5 -38.650 1.5

CJJ
0 -54.433 2.0

CJJ
1 -65.903 4.0
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[12] Nikšić T, Paar N, Reinhard P-G, and Vretenar D. J. Phys. G: Nucl. Part. Phys., 42:034008, 2015.

[13] Kortelainen M. J. Phys. G: Nucl. Part. Phys., 42:034021, 2015.



Uncertainty propagation within the UNEDF models 22

[14] Ekström A, Carlsson B D, Wendt K A, Forssén C, Hjorth-Jensen M, Machleidt R, and Wild S M.

J. Phys. G: Nucl. Part. Phys., 42:034003, 2015.

[15] Lähde T A, Epelbaum E, Krebs H, Lee D, Meißner U-G, and Rupak G. J. Phys. G: Nucl. Part.

Phys., 42:034012, 2015.

[16] McDonnell J D, Schunck N, Higdon D, Sarich J, Wild S M, and Nazarewicz W. Phys. Rev. Lett.,

114:122501, 2015.

[17] Higdon D, McDonnell J D, Schunck N, Sarich J, and Wild S M. J. Phys. G: Nucl. Part. Phys.,

42:034009, 2015.

[18] Graczyk K M and Juszczak C. J. Phys. G: Nucl. Part. Phys., 42:034019, 2015.

[19] Wesolowski S, Klco N, Furnstahl R J, Phillips D R, and Thapaliya A. J. Phys. G: Nucl. Part.

Phys., 43:074001, 2016.
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We take an additional step towards the optimization of the novel finite-
range pseudopotential at a constrained Hartree–Fock–Bogolyubov level and
implement an optimization procedure within an axial code using harmonic
oscillator basis. We perform the optimization using three different numbers
of the harmonic oscillator shells. We apply the new parameterizations in
the O–Kr part of the nuclear chart and isotopic chain of Sn, and we compare
the results with experimental values and those given by a parameterization
obtained using a spherical code.

DOI:10.5506/APhysPolB.50.269

1. Introduction

Novel approaches are essential when one aims to build an energy den-
sity functional (EDF) with spectroscopic quality and high predictive power,
possibly applicable for beyond-mean-field calculations.

The two most used families of non-relativistic nuclear EDFs are based on
effective Skyrme and Gogny interactions. Despite their ability to reproduce
nuclear binding energies fairly well, their shortcomings have also become

∗ Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear
Landscape”, Zakopane, Poland, August 26–September 2, 2018.

(269)
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apparent. The often used two-body density-dependent term, which is needed
to reproduce some nuclear matter properties [1], introduces problems in
beyond-mean-field and symmetry-restoration calculations — for example,
clear inconsistencies and anomalies can be seen in projected energies [2,
3]. Some strategies have been implemented to handle the problem with
singularities, but there is no general solution for these problems unless the
total energy is directly derived as an expectation value of a true interaction
that is called functional generator [4, 5].

Concerning the predictive power, recent analyses point out to the fact
that the uncertainties of state-of-the-art models increase rapidly when going
towards both the proton and neutron rich nuclei (see Ref. [6] and references
cited therein). In addition, these models miss some important physics, since
differences between theoretical calculations and experimental results cannot
be explained by statistical errors.

Thus, to achieve significant improvements, novel approaches are called
for. One possible direction is an EDF generated by a finite-range pseudo-
potential [7, 8]. The first EDF parameter adjustment gave promising re-
sults [8]. However, propagated errors in deformed nuclei were found to be
large, emphasizing the need for input data to constrain deformation prop-
erties. Furthermore, if the adjusted parameters are meant to be used for
deformed nuclei with a code using a harmonic oscillator (HO) basis, it is
interesting to study the dependence of parameters and statistical errors on
the dimension of the basis.

2. Methods

We follow the definitions of the finite-range pseudopotential introduced
in previous studies [7, 8]. The different orders n of the pseudopotential are
written as

V(n)
j (r1, r2; r3, r4) =

(
W

(n)
j 1̂σ1̂τ +B

(n)
j 1̂τ P̂

σ −H
(n)
j 1̂σP̂

τ −M
(n)
j P̂ σP̂ τ

)
× Ô

(n)
j (k12,k34) δ(r13)δ(r24)ga(r12) ,

where kij = 1
2i(∇i −∇j) is the relative momentum operator, rij = ri − rj

is the relative position, and P̂ σ (P̂ τ ) is the spin (isospin) exchange operator.
We used a Gaussian form for the regulator ga(r) =

1
(a
√
π)3

e−r2/a2 with a =

1.15 fm. There are three operators Ô(n)
j up to next-to-leading order (NLO),

namely Ô0
1(k12,k34) = 1̂, Ô1

1(k12,k34) =
1
2(k

∗2
12 +k2

34) and Ô1
2(k12,k34) =

k∗
12 · k34. In addition, the zero-range Skyrme

Vδ(r1, r2; r3, r4) = t0

(
1 + x0P̂

σ
)
δ(r13)δ(r24)δ(r12) (1)
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was used with x0 = 1 and t0 = 1000 MeV fm3. This term is active in the
particle–hole channel only and counteracts the strong attraction from the
finite-range term needed to obtain pairing strong enough in the bulk. We
considered only the local version of pseudopotential defined by the condition
Ôi(k34 + k12) = Ôi(k34 − k∗

12), and as a consequence, parameters were
coupled so that W 1

2 = −W 1
1 , B1

2 = −B1
1 , H1

2 = −H1
1 and M1

2 = −M1
1 . In

the end, there were 9 parameters to be optimized at local NLO, since one
constant defining the zero-range spin–orbit term was also optimized.

We optimized parameters p of the functional by minimizing the penalty
function

χ2(p) =

Nd∑
i=0

(Oi(p)−Oexp
i )2

ΔO2
i

, (2)

where Nd represents the number of data points, Oi(p) and Oexp
i correspond

to theoretical and experimental values of chosen (pseudo-)observables, re-
spectively, and ΔOi represents the tolerance related to the specific data
point. Since the purpose of this study was to quantify the effects of the used
model space size and compare the results with a parameterization optimized
in a coordinate space, the data set followed the one of Ref. [8]. The only
exception was the average neutron pairing gap 〈Δn〉 in 120Sn. In Ref. [8], the
average neutron gap was calculated with �max = 9 and �max = 11 (see [8] for
the definition of �max). In this study, it was calculated only once with the
same set-up as the other data points. Otherwise, the data set consisted of
binding energies and radii of 8 doubly magic and semi-magic nuclei, namely
40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 120Sn, 132Sn and 208Pb, and altogether six
data points of pseudo-observables in the infinite and polarized nuclear mat-
ter. Finally, to avoid isovector finite-size instabilities, we used the isovector
density ρ1(r) in the center of 208Pb, and we aimed for the value ρ1(0) > 0,
in the very same manner as described in Ref. [8].

We used the axial code HFBTEMP [9] together with the optimization
algorithm POUNDerS [10] for derivative-free nonlinear least squares prob-
lems. The code HFBTEMP expands the solutions of the HFB equations on
the axial HO basis and we will use it for fits including deformed nuclei in
future. We benchmarked HFBTEMP successfully against HFODD [11], and
POUNDerS was already applied earlier in the field of nuclear physics [12].
We optimized the local NLO pseudopotential by using three different num-
bers of the HO shells, namely 10, 12, and 14, whereby we obtained three
parameterizations that we discuss.
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3. Results

The convergence of the optimization procedure is shown in Fig. 1. In
the upper panel, the values of the objective function χ2 are represented in
a logarithmic scale as a function of the number of the optimization round,
whereas in the lower panel, the scale of χ2 is natural. We observe that the
required number of optimization iterations does not significantly depend on
the used number of the HO shells. However, the needed computational time
for every iteration is, of course, greater when a larger model space is used.
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Fig. 1. The objective function χ2 as a function of the optimization rounds.

Using the same set-up as in the optimization, we tested the three ob-
tained parameterizations by calculating even–even nuclei in the O–Kr part
of the nuclear chart. The obtained binding energies are shown in the form
of residuals ETh − EExp in Fig. 2. Here, all calculations were done at axi-
ally deformed HFB level, that is, for each nucleus, we obtained the energy
minimum with respect to deformation. Experimental binding energies were
taken from AME2016 atomic mass evaluation [13]. We compare the residu-
als to the ones given by the parameterization REG2c.161026 of Ref. [8], that
was obtained by using the spherical coordinate space code FINRES4 [14]. In
this study, the theoretical binding energies given by REG2c.161026 were
computed with HFBTEMP and 14 HO shells, assuming axial symmetry.

We observe that the differences between the results obtained with the
parameters adjusted for 10, 12, and 14 HO shells are small in this part
of the nuclear chart. These results differ more from the ones obtained by
REG2c.161026, but still the differences are minor in mid-shell nuclei when
comparing to the values of residuals. This can be also seen in Fig. 3, which
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Fig. 2. Binding energy residuals ETh − EExp in units of MeV, calculated with
parameter set optimized for 10, 12, and 14 HO shell basis. These are compared
to results with REG2c.161026 parameterization [8], calculated here with 14 HO
shells.

Fig. 3. The same as in Fig. 2, but for the isotopic chains of Mg and Sn and the
residual ETh − EExp represented on the ordinate.

represents the binding energy residuals of Mg and Sn nuclei as functions of
the neutron number. Figure 3 shows how the binding energy residuals are
greater in mid-shell nuclei, as expected, and how the binding energy residuals
are not necessarily smaller if a larger model space is used. Our results for
REG2c.161026 parameterization give less bound light nuclei since it was
optimized with a code using coordinate space representation. This effect
fades away in heavier nuclei, since a smaller basis state set can no longer
accommodate all relevant aspects of a coordinate-space-based HFB solution.
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4. Summary and outlook

We optimized a local finite-range pseudopotential up to next-to-leading
order by using 10, 12, and 14 HO shells. We applied the three parameter-
izations in the O–Kr part of the nuclear chart and Sn isotopic chain. The
obtained differences of computed binding energies turn out to be relatively
small. This reflects the fact that even though the binding energies do depend
on the number of used HO shells, this dependence is fairly well-absorbed in
the parameters during the optimization. Nevertheless, importance of the
larger model space increases in heavier nuclei. The next step in the opti-
mization of the pseudopotential will be to include data on deformed nuclei
in the penalty function, and the work in this direction is in progress.

T.H. was supported by the Finnish Cultural Foundation, North Karelia
Regional Fund (grant 55161255). J.D. was supported by the STFC grants
Nos. ST/M006433/1 and ST/P003885/1. We acknowledge the CSC-IT Cen-
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Abstract. We present preliminary results obtained with a finite-range two-body pseudopo-
tential complemented with zero-range spin-orbit and density-dependent terms. After discussing
the penalty function used to adjust parameters, we discuss predictions for binding energies of
spherical nuclei calculated at the mean-field level, and we compare them with those obtained
using the standard Gogny D1S finite-range effective interaction.

1. Introduction
A new class of pseudopotentials for nuclear structure were introduced several years ago [1, 2, 3].
These pseudopotentials allow for a consistent formulation of the low-energy energy-density-
functional (EDF) approach in terms of effective theory. Specifically, this can be done by
considering a zero-range effective interaction with derivative terms up to a given order p = 2n,
hereafter denoted NnLO [4], and replacing the contact Dirac delta function by a regulator,

ga(r) =
e−

r2

a2

(a
√
π)

3 , (1)

where a is the range of the obtained pseudopotential or regularization scale.
In this work we complemented the regularized pseudopotential with the standard zero-range

spin-orbit term and two-body zero-range density-dependent effective interaction. Therefore,
the obtained EDF is meant to be used at the mean-field (single-reference) level. The density-
dependent term represents a convenient way to adjust the nucleon effective mass in infinite
nuclear matter to any reasonable value in the interval 0.70 � m∗/m � 0.90 [5]. For this zero-
range density dependent term, we use the same form as in the Gogny D1S interaction [6], i.e.,

1

6
t3

(
1 + x3 P̂σ

)
ρ
1/3
0 (r1)δ(r1 − r2), (2)



where P̂σ is the spin-exchange operator and x3 is fixed to 1, so for time-even invariant states, this
term does not contribute to pairing. Finally, because of the zero-range nature of the spin-orbit
term, we omitted its contribution to the pairing channel.

The general EDF derived from this pseudopotential [3], including its particle-hole and
particle-particle parts, were limited to the local part. This could constitute a significant
restriction to its flexibility. However, such a limitation reduces the number of free parameters
to be adjusted and simplifies implementations in the existing codes.

After presenting the ingredients of the penalty function used to adjust the parameters, we
present results obtained for binding energy of spherical nuclei along with their comparison with
those obtained for the Gogny D1S functional.

2. Adjustments of parameters
The pseudopotentials considered here contain 10 parameters at NLO, 14 at N2LO and 18 at
N3LO. We adjusted 15 series of parameters with effective masses of 0.70, 0.75, 0.80, 0.85, and
0.90 at NLO, N2LO, and N3LO. For each series, the range a of the regulator was varied from
0.8 fm to 1.6 fm.

The use of a penalty function containing data for finite nuclei would not be sufficient to
efficiently constrain these parameters or even to constrain them at all. Typical reasons for
this difficulty are: appearance of finite-size instabilities, phase transitions to unphysical states
(for example, those characterized by a very large vector pairing) or numerical problems related
to compensations of large coupling constants with opposite signs. To avoid these unwanted
situations, the penalty function must contain specially designed constrains that we list here,
along with the nuclear data and pseudo-data:

(i) Empirical quantities in infinite nuclear matter: saturation density ρsat, binding energy per
nucleon in symmetricmatter E/A, compressionmodulusK∞, isoscalar effective mass m∗/m
symmetry energy coefficient J , and its slope L, see Table 1.

(ii) Decomposition of the potential energy in the different (S, T ) channel [7, 8] and binding
energy per nucleon in neutron and polarized matter.

(iii) Average pairing gap in infinite nuclear matter for kF = 0.4, 0.8 and 1.2 fm−1 with the
values obtained with D1S as targets.

(iv) Binding energies of the following 17 spherical (or approximated as spherical) nuclei 36Ca,
40Ca, 48Ca, 54Ca, 54Ni, 56Ni, 72Ni, 80Zr, 90Zr, 112Zr, 100Sn, 132Sn, 138Sn, 178Pb, 208Pb, 214Pb,
and 216Th with a tolerance of 1 MeV if the binding energy is known from experiment and
2 MeV if it is extrapolated (values are taken from [9]).

(v) Proton density rms radii (taken from [10]) for 40Ca, 48Ca and 208Pb with a tolerance of
0.02 fm and 0.03 fm for the one of 56Ni (extrapolated from systematics);

(vi) Isovector density at the center of 208Pb and isoscalar density at the center of 40Ca to avoid
finite-size scalar-isovector (i.e. S = 0, T = 1) instabilities. The use of the linear response (as
in Ref. [11] for zero-range interactions) would lead to toomuch time-consuming calculations.
Therefore we use these two empirical constraints on these densities which are observed to
grow when a scalar-isovector instability tends to develop. Possible instabilities in the vector
channels (S = 1) are not under control in this series of fits.

(vii) Coupling constants for the vector pairing (given by eq. (36) in [3]) are constrained to be
equal to 0 ± 5 MeV fm3 to avoid transitions to unphysical states with unrealistically large
vector pairing.

These adjustments were performed in three steps:

(i) First, we made exploratory adjustments (with fixed values for the effective mass) trying to
determine whether the other canonical values for infinite nuclearmatter were attainable and,



Table 1. Infinite nuclear matter targeted properties and tolerances used for the final step of
the parameters adjustment.

Quantity E/A [MeV] ρsat [fm]−3 K∞ [MeV] m∗/m J [MeV] L [MeV]

Value -16.0 0.158 230 0.70-0.90 29.0 15.00

Tolerance 0.3 0.003 5 0.001 0.5 0.05

in this case, what would be their optimal values in average. We obtained ρsat = 0.158 fm−3,
for the saturation density, J = 29 MeV for the symmetry energy coefficient and L = 15 MeV
for its slope. This value for L is very low compared with what is considered as realistic
nowadays [12, 13, 14] but we observed that larger values inevitably lead to finite-size
instabilities.

(ii) With effective mass and ρsat, J , and L fixed to these values, and for each value of the
effective mass and order of the interaction, we systematically determined the ranges a of
the regulator that give the lowest values of the penalty function.

(iii) With these values for the ranges fixed, we readjusted the parameters by relaxing values of
ρsat, m

∗/m, J , and L and allowing for them narrow tolerances of ρsat = 0.158±0.003 fm−3,
m∗/m = 0.700 ± 0.001, J = 29.0 ± 0.5 MeV, and L = 15.00 ± 0.05 MeV.

The summary of targeted values and tolerances for infinite nuclear matter properties are given
in Table 1. The targeted values and tolerances for all other data and pseudo-data will be given
and motivated with more details in a forthcoming article [15].

3. Results and discussion
Questions concerning the dependence of the penalty function and observables on the range of
the regulator, covariance analysis of the parameters and propagation of statistical errors on
calculated quantities will not be discussed in this contribution where we only report results for
spherical nuclei. The sets of parameters obtained by minimizing the penalty function will be
given in [15].

We have built a set of 214 nuclei with even numbers of protons and neutrons which, according
to the predictions obtained with the Gogny D1S interaction [16], can be considered as spherical
or almost spherical. In Table 2, we report the obtained average root mean squared deviations√
ΔE2 and average deviations ΔE. We use the subscript “all” when these quantities are

calculated for the full set of 214 even-even nuclei and the subscript “fit” when they are calculated
for the 17 nuclei used in the penalty function only.

Since binding energies of nuclei are not the only ingredients used in the penalty function, there

is no reason for
√
ΔE2

fit to decrease when more parameters are used, i.e. to decrease with n
for interactions at NnLO. Nonetheless, we observe that it decreases with n for all constrained

values of the effective mass. Interestingly,
√

ΔE2
all is also a decreasing function of n for all

values of the effective mass but for 0.7. This means that for m∗/m � 0.75, the increase of
the number of parameters in the pseudopotential improves its predictive power, at least for the
binding energies of spherical nuclei. The average deviation ΔEfit is also a decreasing function
of n while, in general, ΔEall has a less regular behaviour, although it does decrease with n for
m∗/m = 0.85.

To visualize the global behaviour of the results obtained for the binding energies of spherical
nuclei, in Fig. 1 we plotted the binding energy residuals obtained for the set of 214 spherical



Table 2. Average root mean squared deviation (
√
ΔE2) and average deviation (ΔE) for 214

even-even nuclei (with subscript “all”) and for the 17 nuclei used in the penalty function (with
subscript “fit”) for the pseudopotentials at NLO, N2LO and N3LO with effective mass from 0.70
to 0.90.

m∗/m 0.70 0.75 0.80 0.85 0.90

NLO
√

ΔE2
all 1.840 1.759 1.801 1.929 2.141

ΔEall 0.382 0.029 -0.301 -0.633 -0.950√
ΔE2

fit 1.899 1.899 1.956 2.052 2.201
ΔEfit 0.112 0.112 0.115 0.121 0.129

N2LO
√

ΔE2
all 2.028 1.827 1.709 1.594 1.540

ΔEall 0.879 0.670 0.484 0.295 0.116√
ΔE2

fit 1.893 1.741 1.690 1.610 1.602
ΔEfit 0.111 0.102 0.099 0.095 0.094

N3LO
√

ΔE2
all 1.712 1.577 1.531 1.458 1.490

ΔEall 0.378 0.231 -0.048 -0.105 -0.313√
ΔE2

fit 1.587 1.446 1.690 1.264 1.228
ΔEfit 0.093 0.085 0.080 0.074 0.072

Figure 1. Binding energy residuals obtained with the pseudopotentials with m∗/m constrained
to 0.70 at order n = 1, 2 and 3 (black dots) compared with the ones obtained with the D1S
Gogny interaction (open square).
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nuclei and for the pseudopotential with m∗/m = 0.70 at n = 1, 2, 3. Similarly, in Fig. 2, we
plotted those obtained for the pseudopotentials with m∗/m = 0.85. We chose these two values
because, on the one hand, m∗/m = 0.70 is close to the value obtained with D1S and, on the other

hand, m∗/m = 0.85 is the effective mass that leads to the lowest value for
√
ΔE2

all (obtained
at N3LO). In the same figures, to show the comparison with a commonly used finite-range
interaction, we also plotted the residuals obtained for the Gogny D1S EDF. The comparison
should be considered with caution, because the Gogny D1S interaction, although often used at
the mean-field level only, is supposed to be used in beyond mean-field approaches, such as the
5-dimensional Collective Hamiltonian (known as 5DCH [17]) to provide observables that can be
compared with experimental data.



Figure 2. Same as figure 1 for the pseudopotentials with m∗/m constrained to 0.85.
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Both figures show that the residuals obtained for the regularized pseudopotentials are more
compressed around zero than those obtained for D1S. Fig. 1 explicitly exhibits the information
already summarized in Table 2, i.e., for the effective mass of 0.70, adding new parameters in the
pseudopotential does not significantly improve the predictive power for the binding energies of
spherical nuclei.

Comparing the results shown in Figs. 1 and 2, one can see that the typical arches appearing
in the residuals between shell closures are significantly damped. Furthermore, one can see that
this damping is more pronounced for higher order pseudopotentials.

4. Conclusion
In this article, we have reported results for binding energies of spherical nuclei obtained for the
new class of pseudopotentials introduced several years ago [1, 2, 3]. A more complete study
including the discussion of proton radii, single particle energies, and properties of deformed
nuclei is in preparation. Although a definitive conclusion can only be drawn after a comparison
of a larger body of observables with data, the studied class of pseudopotential looks promising.
Possible improvements could still be the inclusion of non-local terms and the use of regularized
spin-orbit and tensor terms [2, 3], which will be the subject of future developments. Which part
of correlations can be incorporated into the coupling constants of the pseudopotential used at
the mean-field (single-reference) level remains an open question.
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Abstract. We developed new parameterizations of local regularized finite-range

pseudopotentials up to next-to-next-to-next-to-leading order (N3LO), used as

generators of nuclear density functionals. When supplemented with zero-range spin-

orbit and density-dependent terms, they provide a correct single-reference description

of binding energies and radii of spherical and deformed nuclei. We compared the

obtained results to experimental data and discussed benchmarks against the standard

well-established Gogny D1S functional.
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1. Introduction

The nuclear density functional theory (DFT) offers one of the most flexible frameworks

to microscopically describe structure of atomic nuclei [1, 2]. A key element in the nuclear

DFT is the energy density functional (EDF), which is usually obtained by employing

effective forces as its generators. A long-standing goal of nuclear DFT is to construct

an EDF with a high precision of describing existing data and a high predictive power.

The Skyrme and Gogny EDFs [1, 3] are the most utilized non-relativistic EDFs in

nuclear structure calculations. The Skyrme EDF is based on a zero-range generator,

combined with a momentum expansion up to second order, whereas the Gogny EDF

is based on the generator constructed with two Gaussian terms. While zero-range

potentials are computationally simpler and less demanding, they lack in flexibility

of their exchange terms. In addition, in the pairing channel they manifest the well-

known problem of nonconvergent pairing energy, which needs to be regularized, see
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Refs. [4, 5] and references cited therein. While Skyrme-type EDFs can reproduce

various nuclear bulk properties relatively well, their limits have been reached [6], and

proposed extensions of zero-range generators [7, 8] did not prove efficient enough [9].

New approaches are, therefore, required.

To improve present EDFs, a possible route is to use EDFs based on regularized

finite-range pseudopotentials [10]. Such EDFs stem from a momentum expansion around

a finite-range regulator and thus have a form compatible with powerful effective-theory

methods [11, 12]. Here, as well as in our earlier studies [13, 14], we chose a Gaussian

regulator, which offers numerically simple treatment, particularly when combined with

the harmonic oscillator basis. The momentum expansion can be built order-by-order,

resulting in an EDF with increasing precision. Due to its finite-range nature, treatment

of the pairing channel does not require any particular regularization or renormalization.

The ultimate goal of building EDFs based on regularized finite-range pseudopo-

tentials is to apply them to beyond mean-field multi-reference calculations. However,

before that, to evaluate expected performance and detect possible pitfalls, their predic-

tive power should be benchmarked at the single-reference level. The goal of this work

is to adjust the single-reference parameters of pseudopotentials up to next-to-next-to-

next-to-leading order (N3LO) and to compare the obtained results to experimental data

on the one hand and to those obtained for the Gogny D1S EDF [15] on the other. The

D1S EDF offers an excellent reference to compare to, because it contains finite-range

terms of a similar nature, although its possible extensions to more than two Gaus-

sians [16], cannot be cast in the form of an effective-theory expansion. Because EDFs

adjusted in present work are intended to be used solely at the single-reference level, they

include a density-dependent term. This term significantly improves infinite nuclear mat-

ter properties, with the drawback that such EDFs become unsuitable for multi-reference

calculations, see, e.g., Refs. [17, 18].

This article is organized as follows. In Sec. 2, we briefly recall the formalism of the

regularized finite-range pseudopotential and in Sec. 3 we present details of adjusting

its parameters. Then, in Secs. 4 and 5, we present results and conclusions of our

study, respectively. In Appendices A–D, we give specific details of our approach and in

the supplemental material (URL will be inserted by publisher) we collected files with

numerical results given in a machine readable format.

2. Pseudopotential

In this study, we use the local regularized pseudopotential with terms at nth order

introduced in [13],

V(n)
loc (r1, r2; r3, r4) =

(
W

(n)
1 1̂σ1̂τ +B

(n)
1 1̂τ P̂

σ −H
(n)
1 1̂σP̂

τ −M
(n)
1 P̂ σP̂ τ

)

× δ(r13)δ(r24)

(
1

2

)n/2

kn
12ga(r12) , (1)
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where the Gaussian regulator is defined as

ga(r) =
1

(a
√
π)3

e−
r2

a2 , (2)

and 1̂σ and 1̂τ are respectively the identity operators in spin and isospin space and P̂ σ

and P̂ τ the spin and isospin exchange operators. Standard relative-momentum operators

are defined as kij =
1
2i
(∇i −∇j) and relative positions as rij = ri − rj.

Up to the nth order (NnLO), this pseudopotential depends on the following

parameters,

• 8 parameters up to the next-to-leading-order (NLO): W
(0)
1 , B

(0)
1 , H

(0)
1 , M

(0)
1 , W

(2)
1 ,

B
(2)
1 , H

(2)
1 and M

(2)
1 ;

• 4 additional parameters up to N2LO: W
(4)
1 , B

(4)
1 , H

(4)
1 and M

(4)
1 ;

• and 4 additional parameters up to N3LO: W
(6)
1 , B

(6)
1 , H

(6)
1 and M

(6)
1 .

In the present study, we determined coupling constants of pseudopotentials that

are meant to be used at the single-reference level. Therefore, we complemented

pseudopotentials (1) with standard zero-range spin-orbit and density-dependent terms,

VSO(r1, r2; r3, r4) = iWSO (σ1 + σ2) · (k∗
12 × k34) δ(r13)δ(r24)δ(r12) , (3)

VDD(r1, r2; r3, r4) =
1

6
t3

(
1 + P̂σ

)
ρ
1/3
0 (r1)δ(r13)δ(r24)δ(r12) , (4)

which carry two additional parameters WSO and t3. The density-dependent term, which

has the same form as in the Gogny D1S interaction [15], represents a convenient way to

adjust the nucleon effective mass in infinite nuclear matter to any reasonable value in

the interval 0.70 � m∗
m

� 0.90 [19]. This term contributes neither to the binding of the

neutron matter nor to nuclear pairing in time-even systems. To avoid using a zero-range

term in the pairing channel, we neglect contribution of the spin-orbit term to pairing.

Expressions giving the contributions to the EDFs of the local regularized

pseudopotential (1) can be found in Ref. [14], whereas those of the zero-range spin-

orbit (3) and density-dependent term (4) can be found, for example, in Refs. [20, 21].

3. Adjustments of parameters

As explained in Sec. 2, pseudopotentials considered here contain 10 parameters at NLO,

14 at N2LO, and 18 at N3LO. In this study, we adjusted 15 series of parameters with

effective masses m∗/m equal to 0.70, 0.75, 0.80, 0.85, and 0.90 at NLO, N2LO, and

N3LO. For each series, the range a of the regulator was varied between 0.8 and 1.6 fm.

Our previous experience shows that the use of a penalty function only

containing data on finite nuclei is not sufficient to efficiently constrain parameters of

pseudopotentials, or even to constrain them at all. Typical reasons for these difficulties

are (i) appearance of finite-size instabilities, (ii) phase transitions to unphysical states

(for example those with very large vector pairing), or (iii) numerical problems due to

compensations of large coupling constants with opposite signs. To avoid these unwanted
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situations, the penalty function must contain specially designed empirical constrains.

Before performing actual fits, such constrains cannot be easily defined; therefore, to

design the final penalty function, we went through the steps summarized below.

• Step 1:

We made some preliminary fits so as to detect possible pitfalls and devise ways to

avoid them. The main resulting observation was that it seems to be very difficult, if

possible at all, to adjust parameters leading to a value of the slope of the symmetry

energy coefficient L in the range of the commonly accepted values, which is roughly

between 40 and 70MeV [22, 23, 24]. Therefore, for all adjustments performed in

this study, we set its value to L = 15MeV. This value is rather low, although it is

at a similar lower side as those corresponding to various Gogny parameterizations:

L = 18.4MeV for D1 [25], L = 22.4MeV for D1S [15], L = 24.8MeV for D1M [26],

or L = 43.2MeV for D1M* [27].

• Step 2:

With the fixed value of L = 15MeV, we performed a series of exploratory

adjustments with fixed values of other infinite-nuclear-matter properties, that is,

for the saturation density of ρsat = 0.16 fm−3, binding energy per nucleon in infinite

symmetric matter of E/A = −16MeV, compression modulus of K∞ = 230MeV,

and symmetry energy coefficient of J = 32MeV. These initial values were the same

as for the Skyrme interactions of the SLy family [28, 29]. The conclusion drawn

from this step was that the favoured values for ρsat and J were slightly lower than

the initial ones. Therefore, we decided to fix ρsat and J at the results corresponding

to pseudopotentials giving the lowest values of the penalty function χ2, see Fig. 1

and Table 1.

• Step 3:

In a consistent effective theory, with increasing order of expansion, the dependence

of observables on the range a of the regulator should become weaker and weaker.

In our previous work [14], where all terms of the pseudopotential were regulated

with the same range, such a behaviour was clearly visible. In the present work,

the regulated part of the pseudopotential is combined with two zero-range terms.

As a result, even at N3LO, there remains a significant dependence of the penalty

functions on a, see Fig. 1. Therefore, in step 3 we picked for further analyses the

parameterizations of pseudopotentials that correspond to the minimum values of

penalty functions.

Then, for each of the five values of the effective mass and for each of the three orders

of expansion, we optimized the corresponding parameters of the pseudopotential,

but this time with the infinite-matter properties not rigidly fixed but allowed to

change within small tolerance intervals, see Table 1.

In the supplemental material (URL will be inserted by publisher), the corresponding

15 sets of parameters are listed in a machine readable format. Following the naming

convention adopted in Ref. [30], these final sets are named as REGnm.190617, where
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Figure 1. Penalty functions χ2 obtained in step 2 of the adjustment (see text) as

functions of the regulator range a. Panels (a)-(e) correspond to the five values of the

effective mass adopted in this study.

Table 1. Target infinite nuclear matter properties and the corresponding tolerance

intervals used in step 3 of the adjustment (see text).

Quantity E/A [MeV] ρsat [fm
−3] K∞ [MeV] m∗/m J [MeV] L [MeV]

Value -16.0 0.158 230 0.70-0.90 29.0 15.00

Tolerance 0.3 0.003 5 0.001 0.5 0.05

n stands for the order of the pseudopotential (n = 2 at NLO, n = 4 at N2LO, and

n = 6 at N3LO), and m = a, b, c, d, or e stands for one of the five adopted values of

the effective mass m∗/m 0.70, 0.75, 0.80, 0.85, or 0.90, respectively. For brevity, in the

remaining of this paper, we omit the date of the final adjustment, denoted by 190617,

which otherwise is an inherent part of the name.

We are now in a position to list all contributions to the penalty function χ2, which

come from the empirical constrains used in step 3 of the adjustment and from those

corresponding to the nuclear data and pseudo-data that we used.

(i) Empirical properties of the symmetric infinite nuclear matter. These correspond

to: saturation density ρsat, binding energy per nucleon E/A, compression modulus

K∞, isoscalar effective mass m∗/m, symmetry energy coefficient J , and its slope L.

The target values and the corresponding tolerance intervals are listed in Table 1.

(ii) Potential energies per nucleon in symmetric infinite nuclear matter. We used val-

ues in four spin-isospin channels (S, T ) determined in theoretical calculations of



Properties of spherical and deformed nuclei. . . 6

Refs. [31, 32]. Although it is not clear if these constraints have any significant

impact on the observables calculated in finite nuclei, we observed that they seem

to prevent the aforementioned numerical instabilities due to compensations of large

coupling constants with opposite signs. Explicit formulas for the decomposition of

the potential energy in the (S, T ) channels are given in Appendix A.

(iii) Energy per nucleon in infinite neutron matter. We used values calculated for

potentials UV14 plus UVII (see Table III in [33]) at densities below 0.4 fm−3 with

a tolerance interval of 25 %.

(iv) Energy per nucleon in polarized infinite nuclear matter. Adjustment of parameters

often leads to the appearance of a bound state in symmetric polarized matter. To

avoid this type of result, we used the constraint of E/A = 12.52MeV at density

0.1 fm−3 (taken from Ref. [34]) with a large tolerance interval of 25%.

(v) Average pairing gap in infinite nuclear matter. Our goal was to obtain a reasonable

profile for the average gap in symmetric infinite nuclear matter and to avoid too

frequent collapse of pairing for deformed minima (especially for protons). Therefore,

we used as targets the values calculated for the D1S functional at kF = 0.4, 0.8,

and 1.2 fm−1 with the tolerance intervals of 0.1MeV.

(vi) Binding energies of spherical nuclei. We used experimental values of the following

17 spherical (or approximated as spherical) nuclei 36Ca, 40Ca, 48Ca, 54Ca, 54Ni,
56Ni, 72Ni, 80Zr, 90Zr, 112Zr, 100Sn, 132Sn, 138Sn, 178Pb, 208Pb, 214Pb, and 216Th. We

attributed tolerance intervals of 1MeV (2MeV) if the binding energy was known

experimentally (extrapolated) [35]. The motivation for this list was to use open-shell

nuclei along with doubly magic ones, so as to better constrain distances between

successive shells.

(vii) Proton rms radii. We used values taken from Ref. [36] for 40Ca, 48Ca, 208Pb, and
214Pb with the tolerance intervals of 0.02 fm and that for 56Ni (which is extrapolated

from systematics) with the tolerance interval of 0.03 fm.

(viii) Isovector and isoscalar central densities. To avoid finite-size scalar-isovector (i.e.

S = 0, T = 1) instabilities, we used isovector density at the center of 208Pb and

isoscalar density at the center of 40Ca. A use of the linear response methodology

(such as in Ref. [37] for zero-range interactions) would lead to too much time-

consuming calculations. As a proxy, we used the two empirical constraints on

central densities, which are known to grow uncontrollably when the scalar-isovector

instabilities develop. We used the empirical values of ρ1(0) < 0 fm−3 in 208Pb

and ρ0(0) < 0.187 fm−3 in 40Ca with asymmetric tolerance intervals as described

in Ref. [14]. For ρ0(0) in 40Ca, we have used the central density obtained with

SLy5 [29] as an upper limit. In the parameter adjustments performed in this study,

possible instabilities in the vector channels (S = 1) are still not under control.

(ix) Surface energy coefficient. As it was recently shown [38, 39], a constraint on the

surface energy coefficient is an efficient way to improve properties of EDFs. For the

regularized pseudopotentials considered here, we calculate a simple estimate of the
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Figure 2. Results of statistical analyses performed for parameterizations

corresponding to m∗/m = 0.85. Eigenvalues of the Hessian matrices (a) are

compared with propagated uncertainties of binding energies of 100Sn, 120Sn, and 132Sn,

determined at NLO REG2d (b), N2LO REG4d (c), and N3LO REG2d (d) plotted as

functions of the numbers of eigenvalues kept in the Hessian matrices.

surface energy coefficient using a liquid-drop type formula aLDM
surf with target value

of 18.5MeV and the tolerance interval of 0.2MeV. The relevance of this constraint

and the motivation for the target value are discussed in Appendix B.

(x) Coupling constants corresponding to vector pairing. Terms of the EDF that

correspond to this channel are given in Eq. (36) of Ref. [14]. To avoid transitions

to unphysical regions of unrealistically large vector pairing, we constrain them to

be equal to 0± 5MeV fm3.

4. Results and discussion

4.1. Parameters and statistical uncertainties

For the purpose of presenting observables calculated in finite nuclei, we decided to use

a criterion of binding energies of spherical nuclei, see Sec. 4.3. It then appears that

optimal results are obtained for m∗/m = 0.85 at N3LO [40] and a = 1.50 fm, that
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is, for the pseudopotential named REG6d. Following this guidance, below we also

present some results corresponding to the same effective mass of m∗/m = 0.85 and

lower orders: REG2d (NLO and a = 0.85 fm) and REG4d (N2LO and a = 1.15 fm). For

an extended comparison with the Gogny D1S parameterization [15], which corresponds

to m∗/m = 0.697, we also show results for m∗/m = 0.70, that is, for REG6a (N3LO

and a = 1.60 fm). Parameters of the four selected pseudopotentials are tabulated in

Appendix C. In the supplemental material (URL will be inserted by publisher) they are

collected in a machine readable format.

We performed the standard analysis of statistical uncertainties as presented in

Ref. [41]. For REG2d, REG4d and REG6d, eigenvalues of the Hessian matrices

corresponding to penalty functions scaled to χ2 = 1 are shown in Fig, 2(a). The

numbers of eigenvalues correspond to the numbers of parameters optimized during the

adjustments, and, therefore, vary from 10 (NLO) to 18 (N3LO).

The magnitude of the eigenvalues of the Hessian matrices reveals how well the

penalty functions are constrained in the directions of the corresponding eigenvectors in

the parameter space. We observe that for the three pseudopotentials considered here,

there is a rapid decrease of magnitude from the first to the third eigenvalue and then a

slower and almost regular decrease, where no clear gap can be identified. This suggests

that all parameters of the pseudopotentials are important.

For three tin isotopes of different nature: 100Sn (closed-shell, isospin symmetric,

unpaired), 120Sn (open-shell, isospin asymmetric, paired) and 132Sn (closed-shell, isospin

asymmetric, unpaired), we calculated the propagated statistical uncertainties of the

total binding energies as functions of the number of kept eigenvalues of the Hessian

matrices, Figs 2(b)-(d) for REG2d–REG6d, respectively. For each of the considered

parameterizations, after a given number of kept eigenvalues (denoted in Figs 2(b)-(d)

by vertical lines), we observe a saturation of the propagated statistical uncertainties.

Therefore, we performed the final determination of the statistical uncertainties by

keeping these minimal numbers of eigenvalues, i.e. 6 eigenvalues for REG2d (NLO)

and 7 for REG4d (N2LO) and REG6d (N3LO).

4.2. Infinite nuclear matter

In Table 2, we list quantities characterizing the properties of infinite nuclear matter. We

present results for pseudopotentials REG2d, REG4d, REG6d, and REG6a compared

to those characterizing the D1S interaction [15]. For the two strongly constrained

quantities, m∗/m and L, the target values are almost perfectly met, whereas, for the

other ones, we observe some deviations, which, nevertheless, are well within the tolerance

intervals allowed in the penalty function.

For pseudopotentials REG6a and REG6d, the isoscalar effective mass in symmetric

matter and energies per particle (equations of state) for symmetric, neutron, polarized,

and polarized neutron matter are plotted in Fig. 3 along with the same quantities for

D1S [15]. The plotted equations of state can be obtained from those calculated in four
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Table 2. Infinite nuclearmatter properties corresponding to pseudopotentials REG2d,

REG4d, REG6d, and REG6a, compared to those of the Gogny D1S interaction [15].

Pseudopotential E/A ρsat K∞ m∗/m J L

[MeV] [fm−3] [MeV] [MeV] [MeV]

REG2d -15.86 0.1574 235.4 0.8499 29.24 14.99

REG4d -15.86 0.1589 225.6 0.8492 29.17 15.00

REG6d -15.77 0.1584 232.1 0.8496 28.56 15.00

REG6a -15.74 0.1564 233.6 0.7014 28.23 15.00

D1S -16.01 0.1633 202.8 0.6970 31.13 22.44
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Figure 3. Infinite-nuclear-matter isoscalar effective mass and energies per particle in

symmetric, neutron, polarized, and polarized neutronmatter as functions of the nuclear

density ρ0. Results calculated for the D1S interaction [15] (dashed lines) are compared

with those obtained for the two pseudopotentials at N3LO with m∗/m = 0.70 (a) and

m∗/m = 0.85 (b) (solid lines).

spin-isospin (S, T ) channels, see Appendix A. For these two N3LO pseudopotentials,

equations of state of symmetric matter are somewhat stiffer than that obtained for D1S.

This is because of its slightly larger compression modulus K∞. We also can see that for

polarized symmetric matter, a shallow bound state appears at low density. This feature

also affects D1S. The constraint on the equation of state of polarized symmetric matter

introduced in the penalty function has probably limited the development of this state,

but did not totally avoid its appearance. Further studies are needed to analyze to what

extent it could impact observables calculated in time-odd nuclei and how this possible

flaw might be corrected.

The two main differences that appear when we compare the properties in infinite

nuclear matter of REG6a and REG6d on one hand and those of D1S on the other

hand relate to the equation of state of the neutron matter and isoscalar effective
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Figure 4. Binding-energy residuals as functions of the neutron number, calculated

for a set of spherical nuclei (see text) and plotted for the D1S [15] (a), REG6a (b),

and REG6d (c) pseudopotentials.

masses. First, near saturation, the regularized pseudopotentials give equations of

state of neutron matter slightly lower than D1S, which can be attributed to its lower

symmetry energy. Second, for the N3LO pseudopotentials, dependence of the effective on

density is less regular than for D1S. We note, however, that the N3LO effective masses

are monotonically decreasing functions of the density, and thus the pseudopotentials

obtained in this study do not lead to a surface-peaked effective mass, a feature which

was expected to improve the description of the density of states around the Fermi

energy [42].

4.3. Binding energies, radii, and pairing gaps of spherical nuclei

In this section, we present results of systematic calculations performed for spherical

nuclei and compared with experimental data. For the purpose of such a comparison,

we have selected a set of 214 nuclei that were identified as spherical in the systematic

calculations performed for the D1S functional in Refs. [43, 44]. In Fig. 4, we present

an overview of the binding-energy residuals obtained for the D1S, REG6a, and REG6d

functionals. Experimental values were taken from the 2016 atomic mass evaluation [35].

The obtained root-mean-square (RMS) binding-energy residuals are equal to 2.582MeV

for D1S, 1.717MeV for REG6a, and 1.458MeV for REG6d. We also see that for REG6d,

the trends of binding-energy residuals along isotopic chains in heavy nuclei become

much better reproduced. As a reference, we have also determined the analogous RMS

value corresponding to the UNEDF0 functional [36, 45], which turns out to be equal to

1.900MeV.

In Figs. 5 and 6, we show detailed values of binding-energy residuals along the

isotopic or isotonic chains of semi-magic nuclei. In most chains one can see a clear

improvement of the isospin dependence of masses. In particular, in almost all semi-

magic chains, kinks of energy residuals at doubly magic nuclei either decreased or even

vanished completely, like at N = 82 and 126, see Figs. 6(b) and (c), respectively.
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Figure 5. Binding-energy residuals of proton (neutron) semi-magic nuclei with Z (N)

equal to 20, 28, or 50, plotted in the left (right) panels as functions of the neutron

(proton) number, calculated for the REG2d (up triangles), REG4d (down triangles),

REG6d (circles), and D1S [15] (squares) pseudopotentials. Shaded zones correspond

to the AME2016 masses extrapolated from systematics [35].
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Figure 8. RMS residuals of binding energies (a) and charge radii (b) as functions of

the order of pseudopotentials, adjusted in this study for the five values of the isoscalar

effective mass m∗/m.

In Fig. 7, for the same set of EDFs and nuclei as those used in Fig. 4, we show

the analogous residuals of the charge radii of spherical nuclei. The experimental values

were taken from Ref. [46]. Again, the N3LO EDFs provide the smallest deviations from

data. We note that the residuals of the order of 0.02 fm are typical for many Skyrme-like

EDFs, for example, for the UNEDF family of EDFs [6]. Figures 8(a) and (b) present

summary of the RMS residuals of binding energies and charge radii, respectively, which

were obtained in this study. We see that a decrease of the penalty functions when

going from NLO to N2LO, see Fig. 1, is often accompanied by an increase of the RMS

residuals. This indicates that the data for 17 spherical nuclei, which are included in

the penalty function, see Sec. 3, do not automatically lead to a better description of all

spherical nuclei. Only at N3LO a consistently better description is obtained.

Finally, in Figs. 9 and 10, we show calculated average neutron and proton pairing

gaps, respectively. Qualitatively, all three EDFs shown in the figures give very similar

results. A thorough comparison with experimental odd-even mass staggering, along

with parameter adjustments better focused on the pairing channel, will be the subject

of a forthcoming publication.
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Figure 9. Same as in Fig. 4 but for the average neutron pairing gaps.
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Figure 10. Same as in Fig. 9 but for the average proton pairing gaps.

4.4. Single particle energies

In Figs. 11 and 12, we show comparison of single-particle energies calculated in semi-

magic nuclei for the D1S [15], REG6a (m∗/m = 0.70), and REG6d (m∗/m = 0.85)

functionals with the empirical values taken from the compilation published in the

supplemental material of Ref. [47], which contains the single-particle energies collected

within three data sets. In all panels of Figs. 11 and 12, horizontal lines of the

rightmost columns represent average values of the three data sets, whereas shaded boxes

represent spreads between the minimum and maximum values. Quantum numbers in

parentheses indicate single-particle states with corresponding attributed spectroscopic

factors smaller than 0.8 or unknown.

The spin-orbit interaction corresponding to functional REG6a (m∗/m = 0.70) is

significantly different than that of D1S, which may explain differences between the single-

particle energies of states with large orbital angular momenta. Differences between the

results obtained for functionals with m∗/m = 0.70 and m∗/m = 0.85 mostly amount to

a global compression. Generally speaking, the calculated single-particle energy spacings

are larger than those of the empirical ones, which can be explained by the effective

masses being smaller than one.

We note that the comparison between the calculated and empirical single-particle

energies is given here only for the purpose of illustration. Indeed, both are subjected to
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Figure 11. Neutron (left) and proton (right) single-particle energies in 16O (top),
40Ca (middle), and 48Ca (bottom), calculated for the D1S [15], REG6a (N3LO,

m∗/m = 0.70), and REG6d (N3LO, m∗/m = 0.85) functionals. Empirical values

were taken from the compilation of Ref. [47].

uncertainties of definition and meaning. The calculated ones, which are here determined

as the eigenenergies of the mean-field Hamiltonian, could also be evaluated from

calculated odd-even mass differences. Similarly, determination of the empirical ones

is always uncertain from the point of view of the fragmentation of the single-particle

strengths. For these reasons, we did not include single-particle energies in the definition

of our penalty function, see Sec. 3. Nevertheless, positions and ordering of single-particle
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Figure 12. Same as in Fig. 11 but for 56Ni (top), 132Sn (middle), and 208Pb (bottom).

energies are crucial for a correct description of other observables, such as, for example,

ground-state deformations or deformation energies. Therefore, we consider comparisons

presented in Figs. 11 and 12 to be very useful illustrations of properties of the underlying

EDFs.
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Figure 13. Deformation energies of selected nuclei, calculated for the D1S [15]

(squares) and N3LO REG6d (circles) functionals, extrapolated to infinite harmonic-

oscillator basis, see Appendix D, plotted in the absolute energy scale, and compared

with the experimental binding energies [35] (horizontal lines).

4.5. Deformed nuclei

Using the methodology of extrapolating results calculated for N0 = 16 harmonic-

oscillator shells to infinite N0, presented in Appendix D, for a set of nine nuclei from
54Cr to 252Cf we determined deformation energies, Fig. 13, and binding-energy residuals,

Fig. 14. The figures compare results obtained for the D1S [15] and N3LO REG6d

functionals.

In general, the pattern of deformations obtained for both functionals is very similar.

This is gratifying, because deformed nuclei were not included in the adjustment of either

one of the two EDFs. For this admittedly fairly limited sample of nuclei, the pattern of

RMS binding-energy residuals is fairly analogous to what we have observed in spherical

nuclei, see Sec. 4.3, with REG6d giving values that are about 30% smaller than those

for D1S. It is interesting to see that in several instances, the two functionals generate

absolute energies of the deformed minima that are more similar to one another than
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Figure 14. Same as in Fig. 13 but for the binding-energy residuals calculated at

spherical shapes (a) and deformed minima (b).

those of the spherical shapes. In the present study we limit ourselves to presenting

results only for these very few nuclei, whereas attempts of using deformed nuclei in

penalty functions [48] and systematic mass-table calculations [49] are left to forthcoming

publications.

5. Conclusions

In this article, we reported on the next step in adjusting parameters of regularized finite-

range functional generators to data. We have shown that an order-by-order improvement

of agreement with data is possible, and that the sixth order (N3LO) functional describes

data similarly or better than the standard Gogny or Skyrme functionals.

We implemented adjustments of parameters based on minimizing fairly complicated

penalty function. Our experience shows that a blind optimization to selected

experimental data seldom works. Instead, one has to implement sophisticated

constraints, which prevent wandering of parameters towards regions where different

kinds of instabilities loom.

We consider the process of developing new functionals and adjusting their

parameters a continuous effort to better their precision and predictive power. At the

expense of introducing single density-dependent generator, here we were able to raise

the values of the effective mass, obtained in our previous study [14], well above those

that are achievable with purely two-body density-independent generators [19]. Such

a solution is perfectly satisfactory at the single-reference level. However, for multi-

reference implementations, the density-dependent term must be replaced by second-

order three-body zero-range generators [50], or otherwise entirely new yet unknown

approach would be required.

Although a definitive conclusion about usefulness of EDFs obtained in this study

can only be drawn after a comparison of observables of more diverse nature, this class

of pseudopotentials looks promising, even if it can clearly be further improved. In the

future, we plan on continuing novel developments by implementing non-local regularized
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pseudopotentials along with their spin-orbit and tensor terms [13]. This may allow us

to fine-tune spectroscopic properties of functionals and facilitate precise description of

deformed and odd nuclei.

Appendix A. Decomposition of the potential energy in (S, T ) channels

The techniques to derive decomposition of the potential energy per particle, E
(S,T )
pot /A,

into four spin-isospin (S, T ) channels are the same for finite-range and zero-range

pseudopotentials. Therefore, we do not repeat here the details of the derivation, which

can be found, for example, in Ref. [51].

First, we recall the expression for the auxiliary function F0(ξ), already introduced

in Ref. [30],

F0(ξ) =
12

ξ3

[
1− e−ξ2

ξ3
− 3− e−ξ2

2ξ
+

√
π

2
Erf ξ

]
. (A.1)

Then, in the symmetric infinite nuclear matter with Fermi momentum kF and density

ρ0 = 2k3
F/3π

2, contributions of the finite-range local pseudopotential (1) at order zero

(n = 0) to (S, T ) channels can be expressed as:

E
(0,0)
pot

A
=

1

32

(
W

(0)
1 −B

(0)
1 +H

(0)
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(0)
1

)
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32
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1
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1
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and those at higher orders n as:

E
(0,0)
pot

A
= − 1
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Appendix B. Estimate of the surface energy coefficient

In section 3, we introduced a constraint on the estimate of the surface energy coefficient

aLDM
surf , calculated with a liquid-drop-type formula. In the case of local functionals (such as

Skyrme functionals), to calculate the surface energy coefficient [38], several approaches
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can be considered, such as the Hartree-Fock (HF) calculation [52], approximation of the

Extended Thomas Fermi (ETF) type [53] or Modified Thomas Fermi (MTF) type [54], or

within a leptodermous protocol, which is based on an analysis of calculations performed

for very large fictitious nuclei [55].

Some of these approaches are not usable with the regularized pseudopotentials

considered in this article. Indeed, the ETF and MTF methods can only be used for

functionals that depend on local densities. In principle, the leptodermous protocol

could be used, but it would require a significant expense in CPU time. Moreover, the

HF calculations cannot be considered because the Friedel oscillations of the density

make the extraction of a stable and precise value of the surface energy coefficient very

difficult (see discussion in Ref. [38] and references therein).

Therefore, for the purpose of performing parameter adjustments, we decided to

use a very simple estimate of the surface energy coefficient, which is usable with any

kind of functional. After determining the self-consistent total binding energy E of

a fictitious symmetric, spin-saturated, and unpaired N = Z = 40 nucleus without

Coulomb interaction, we used a simple liquid-drop formula to calculate the surface

energy coefficient,

aLDM
surf =

E − avA

A2/3
, (B.1)

where A = 80 and av is the volume energy coefficient in symmetric infinite nuclear

matter at the saturation point.

Values of aLDM
surf obtained in this way do depends on A, but, at least in the case

Skyrme functionals, they vary linearly with the surface energy coefficients obtained

using full HF calculations. Detailed study of the usability of estimates (B.1) will be the

subject of a forthcoming publication [56].

In section 3, we used the value of aLDM
surf = 18.5MeV as the target value of

the parameter adjustments. This value is only slightly below the value obtained for

the Skyrme functional SLy5s1 (18.6MeV), which is an improved version of the SLy5

functional with optimized surface properties [38, 39]. This target value we used was

only an educated guess, and it may require fine-tuning after a systematic study of the

properties of deformed nuclei will have been performed.

Appendix C. Parameters of the pseudopotentials

Parameters of the pseudopotentials used in Sec. 4, REG2d at NLO, REG4d at N2LO,

and REG6d at N3LO with m∗/m � 0.85, and REG6a at N3LO with m∗/m � 0.70

are reported in Table C1 along with their statistical uncertainties. As it turns out,

values of parameters rounded to the significant digits, which would be consistent with

the statistical uncertainties, give results visibly different than those corresponding to

unrounded values. Therefore, in the Table we give all parameters up to the sixth

decimal figure. Moreover, the statistical uncertainties of parameters are only given

for illustration, whereas the propagated uncertainties of observables have to evaluated
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Table C1. Parameters a (in fm), t3 (in MeV fm4), WSO (in MeV fm5), and W
(n)
1 ,

B
(n)
1 , H

(n)
1 , and M

(n)
1 (in MeV fm3+n), of pseudopotentials REG2d, REG4d, REG6d,

and REG6a with statistical uncertainties.

REG2d REG4d REG6d REG6a

(NLO) (N2LO) (N3LO) (N3LO)

a 0.85 1.15 1.50 1.60

t3 11516.477663(0.5) 11399.197904(0.1) 11509.501921(0.3) 9521.936183(0.3)

WSO 106.098237(2.8) 115.427981(2.2) 116.417478(1.9) 122.713008(1.9)

W
(0)
1 −2510.198547(3.6) −689.651657(2.4) −2253.706132(0.5) −1478.053786(0.9)

B
(0)
1 1108.303995(10.0) −824.881825(6.4) 740.258749(1.9) 87.165128(2.4)

H
(0)
1 −2138.673166(2.2) −247.692094(1.1) −1794.716098(2.2) −1031.141021(2.3)

M
(0)
1 746.778833(1.6) −1270.827895(2.2) 282.583629(1.0) −362.705492(1.3)

W
(2)
1 −637.749560(3.7) −741.229448(2.0) −3207.567147(2.1) −2459.995595(2.2)

B
(2)
1 210.327285(3.1) 434.961848(2.6) 2368.246502(1.2) 1412.933291(1.6)

H
(2)
1 −892.452162(2.3) −951.018473(1.0) −3163.516190(0.8) −2418.882336(0.8)

M
(2)
1 379.274480(7.1) 615.750351(2.0) 2319.605187(0.4) 1370.885213(0.6)

W
(4)
1 442.206742(3.8) 559.364051(1.3) 835.586806(2.1)

B
(4)
1 −972.382568(2.9) −1398.820389(0.9) −1594.561771(1.2)

H
(4)
1 420.867921(4.9) 351.670752(1.3) 774.195095(1.9)

M
(4)
1 −953.687931(2.3) −1197.878374(0.3) −1535.312092(0.5)

W
(6)
1 −1603.038264(2.8) −1700.366589(3.8)

B
(6)
1 828.626124(2.0) 904.903410(2.8)

H
(6)
1 −1581.833642(2.0) −1705.515946(2.4)

M
(6)
1 802.445641(1.9) 914.640430(2.5)

using the full covariance matrices [41]. Parameters of other pseudopotentials derived in

this study along with the covariance matrix corresponding to REG6d are listed in the

supplemental material (URL will be inserted by publisher).
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Figure D1. The relative, panels (a) and (b), and absolute, panel (c), binding energies

of the spherical point in 166Er, presented in function of the number N0 of harmonic-

oscillator shells used in codes hfodd and hfbtemp. In panel (c), the horizontal line

represents the asymptotic value determined using code finres4.

Appendix D. Extrapolation of binding energies of deformed nuclei to

infinite harmonic-oscillator basis

In this study, results for spherical nuclei were obtained using code finres4 [57], which

solves HFB equations for finite-range generators on a mesh of points in spherical space

coordinates. Because of the spherical symmetry, it is perfectly possible to perform

calculations with a mesh dense enough and a number of partial waves high enough for

the results to be stable with respect to any change of the numerical conditions. Results

for deformed nuclei were obtained using the 3D code hfodd (v2.92a) [58, 59] or axial-

symmetry code hfbtemp [60]. These two codes solve HFB equations by expanding

single-particle wave functions on harmonic-oscillator bases. Since for deformed nuclei

the amount of CPU time and memory is much larger than for spherical ones, it is

not practically possible to use enough major harmonic-oscillator shells to reach the

asymptotic regime, especially for heavy nuclei.

In order to estimate what would be the converged asymptotic value of the total

binding energy of a given deformed nucleus, we proceeded in the following way. First,

using code finres4, we determined the total binding energy Esph of a given nucleus at the

spherical point. Second, using codes hfodd or hfbtemp, for the same nucleus and for

a given number of shells N0, we determined total binding energies Esph(N0) (constrained

to sphericity) and Edef(N0) (constrained to a non-zero deformation). Third, we assumed

that with N0 → ∞, the deformation energy ΔEdef(N0) = Edef(N0)−Esph(N0) converges

much faster to its asymptotic value than either of the two energies. Fourth, within this

assumption, we estimate the asymptotic energies of deformed nuclei as

Edef(N0 = ∞) = Esph +ΔEdef(N0) = Edef(N0) + Esph − Esph(N0). (D.1)

In Fig. D1, we present typical convergence pattern that supports the main

assumption leading to estimate (D.1). Fig. D1(a) shows deformation energies ΔE of
166Er calculated for the numbers of shells between N0 = 10 and 16 using the D1S

functional [15]. It is clear that in the scale of the figure, differences between the four
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curves are hardly discernible. In a magnified scale, in Fig. D1(b) we show total energies

Edef(N0)− Edef(16) relative to that obtained for N0 = 16. We see that at N0 = 10 and

12, the relative energies are fairly flat; however, they also exhibit significant changes,

including sudden jumps related to individual orbitals entering and leaving the space

of harmonic-oscillator wave functions that are included in the basis with changing

deformation. Nevertheless, already at N0 = 14, the relative energy becomes very smooth

and almost perfectly flat. This behaviour gives strong support to applying estimate

(D.1) already at N0 = 16. Such a method was indeed used to present all total binding

energies of deformed nuclei discussed in this article.

Finally, in Fig. D1(c), in the absolute energy scale we show total binding energies in
166Er obtained using codes hfodd (up toN0 = 20, large full circles) and hfbtemp (up to

N0 = 30, small empty circles). Calculations were constrained to the spherical point and

thus the results are directly comparable with the value of Esph = −1339.069768 obtained

using the spherical code finres4 (horizontal line). These results constitute a very strong

benchmark of our implementations of the N3LO pseudopotentials in three very different

codes. For N0 ≤ 20, differences between the hfodd and hfbtemp total energies (not

visible in the scale of the figure) do not exceed 3 keV. By fitting an exponential curve

to the hfbtemp results (thin line) we obtained the extrapolated asymptotic value of

energy Esph(N0 = ∞) = −1339.097(34), which within the extrapolation error of 34 keV

(shown in the figure by the shaded band) perfectly agrees with the finres4 value.
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